aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2009-01-28 08:15:05 +0000
committerdos-reis <gdr@axiomatics.org>2009-01-28 08:15:05 +0000
commit3dfe242d21ca1835872a115b80de6f409a2c4835 (patch)
tree5c41b8ebbaa762ec124cb1f4326960043bbea9e6
parentae24ace4c0535a261375e21af707befac3060ad9 (diff)
downloadopen-axiom-3dfe242d21ca1835872a115b80de6f409a2c4835.tar.gz
* algebra/domain.spad.pamphlet (findConstructor$Constructor): New.
-rwxr-xr-xconfigure18
-rw-r--r--configure.ac2
-rw-r--r--configure.ac.pamphlet2
-rw-r--r--src/ChangeLog4
-rw-r--r--src/algebra/domain.spad.pamphlet10
-rw-r--r--src/share/algebra/browse.daase2374
-rw-r--r--src/share/algebra/category.daase6300
-rw-r--r--src/share/algebra/compress.daase1989
-rw-r--r--src/share/algebra/interp.daase9778
-rw-r--r--src/share/algebra/operation.daase31967
10 files changed, 25223 insertions, 27221 deletions
diff --git a/configure b/configure
index 4ea53678..6762468a 100755
--- a/configure
+++ b/configure
@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
-# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2009-01-17.
+# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2009-01-28.
#
# Report bugs to <open-axiom-bugs@lists.sf.net>.
#
@@ -713,8 +713,8 @@ SHELL=${CONFIG_SHELL-/bin/sh}
# Identity of this package.
PACKAGE_NAME='OpenAxiom'
PACKAGE_TARNAME='openaxiom'
-PACKAGE_VERSION='1.3.0-2009-01-17'
-PACKAGE_STRING='OpenAxiom 1.3.0-2009-01-17'
+PACKAGE_VERSION='1.3.0-2009-01-28'
+PACKAGE_STRING='OpenAxiom 1.3.0-2009-01-28'
PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net'
ac_unique_file="src/Makefile.pamphlet"
@@ -1405,7 +1405,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
-\`configure' configures OpenAxiom 1.3.0-2009-01-17 to adapt to many kinds of systems.
+\`configure' configures OpenAxiom 1.3.0-2009-01-28 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1475,7 +1475,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
- short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2009-01-17:";;
+ short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2009-01-28:";;
esac
cat <<\_ACEOF
@@ -1579,7 +1579,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
-OpenAxiom configure 1.3.0-2009-01-17
+OpenAxiom configure 1.3.0-2009-01-28
generated by GNU Autoconf 2.60
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
@@ -1593,7 +1593,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
-It was created by OpenAxiom $as_me 1.3.0-2009-01-17, which was
+It was created by OpenAxiom $as_me 1.3.0-2009-01-28, which was
generated by GNU Autoconf 2.60. Invocation command line was
$ $0 $@
@@ -26424,7 +26424,7 @@ exec 6>&1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
-This file was extended by OpenAxiom $as_me 1.3.0-2009-01-17, which was
+This file was extended by OpenAxiom $as_me 1.3.0-2009-01-28, which was
generated by GNU Autoconf 2.60. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -26473,7 +26473,7 @@ Report bugs to <bug-autoconf@gnu.org>."
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF
ac_cs_version="\\
-OpenAxiom config.status 1.3.0-2009-01-17
+OpenAxiom config.status 1.3.0-2009-01-28
configured by $0, generated by GNU Autoconf 2.60,
with options \\"`echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"
diff --git a/configure.ac b/configure.ac
index ea921a79..5a268588 100644
--- a/configure.ac
+++ b/configure.ac
@@ -1,6 +1,6 @@
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.3.0-2009-01-17],
+AC_INIT([OpenAxiom], [1.3.0-2009-01-28],
[open-axiom-bugs@lists.sf.net])
AC_CONFIG_AUX_DIR(config)
diff --git a/configure.ac.pamphlet b/configure.ac.pamphlet
index 1ec02938..7df5ea7e 100644
--- a/configure.ac.pamphlet
+++ b/configure.ac.pamphlet
@@ -1126,7 +1126,7 @@ information:
<<Autoconf init>>=
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.3.0-2009-01-17],
+AC_INIT([OpenAxiom], [1.3.0-2009-01-28],
[open-axiom-bugs@lists.sf.net])
@
diff --git a/src/ChangeLog b/src/ChangeLog
index 5033124a..a180c6f2 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,7 @@
+2009-01-28 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/domain.spad.pamphlet (findConstructor$Constructor): New.
+
2009-01-17 Gabriel Dos Reis <gdr@cs.tamu.edu>
* interp/br-saturn.boot (htpMakeEmptyPage): Use deprecated GENTEMP
diff --git a/src/algebra/domain.spad.pamphlet b/src/algebra/domain.spad.pamphlet
index 64415657..4d0cb784 100644
--- a/src/algebra/domain.spad.pamphlet
+++ b/src/algebra/domain.spad.pamphlet
@@ -70,11 +70,19 @@ ConstructorCategory(): Category == OperatorCategory Identifier with
++ Basic Operations: name, kind, arity.
++ Description:
++ This domain provides implementations for constructors.
-Constructor(): ConstructorCategory == add
+Constructor(): ConstructorCategory with
+ findConstructor: Symbol -> Maybe %
+ ++ \spad{findConstructor(s)} attempts to find a constructor
+ ++ named \spad{s}. If successful, returns that constructor;
+ ++ otherwise, returns \spad{nothing}.
+ == add
Rep == Identifier
name x == rep x
kind x == getConstructorKind(x)$Lisp
arity x == getConstructorArity(x)$Lisp
+ findConstructor s ==
+ isConstructorName(s)$Lisp => just per(s pretend Identifier)
+ nothing
@
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 86afad48..17316efd 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2280968 . 3440812768)
+(2279501 . 3442118607)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4396 . T) (-4394 . T) (-4393 . T) ((-4401 "*") . T) (-4392 . T) (-4397 . T) (-4391 . T))
+((-4397 . T) (-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4393 . T) (-4398 . T) (-4392 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3249)
+(-32 R -3478)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))
+((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4399)))
+((|HasAttribute| |#1| (QUOTE -4400)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3249 UP UPUP -1448)
+(-40 -3478 UP UPUP -2992)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4392 |has| (-406 |#2|) (-362)) (-4397 |has| (-406 |#2|) (-362)) (-4391 |has| (-406 |#2|) (-362)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4050 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4050 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4050 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-561)))) (-4050 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
-(-41 R -3249)
+((-4393 |has| (-406 |#2|) (-362)) (-4398 |has| (-406 |#2|) (-362)) (-4392 |has| (-406 |#2|) (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-349))) (-3936 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-349))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+(-41 R -3478)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,45 +106,45 @@ NIL
((|HasCategory| |#1| (QUOTE (-306))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4396 |has| |#1| (-553)) (-4394 . T) (-4393 . T))
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553))))
+((-4397 |has| |#1| (-554)) (-4395 . T) (-4394 . T))
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4399 . T) (-4400 . T))
-((-4050 (-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|))))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))))
+((-4400 . T) (-4401 . T))
+((-3936 (-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844)))) (-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4396 . T))
+((-4397 . T))
NIL
-(-51 S)
-((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
+(-51)
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
-(-52)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+(-52 S)
+((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
(-53 R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3249)
+(-54 |Base| R -3478)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,133 +158,133 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
NIL
-(-58 A B)
+(-58 S)
+((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-59 S)
-((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
-(-61 -3305)
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
+(-61 -3949)
+((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-62 -3949)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3305)
+(-63 -3949)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3305)
+(-64 -3949)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3305)
-((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-65 -3305)
+(-65 -3949)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3305)
+(-66 -3949)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3305)
+(-67 -3949)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3305)
+(-68 -3949)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3305)
+(-69 -3949)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3305)
+(-70 -3949)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3305)
+(-71 -3949)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3305)
+(-72 -3949)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3305)
+(-73 -3949)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3305)
+(-74 -3949)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-75 -3949)
+((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-76 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3305)
-((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-77 |nameOne| |nameTwo| |nameThree|)
+((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3305)
-((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-78 -3949)
+((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3305)
+(-79 -3949)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3305)
+(-80 -3949)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3305)
+(-81 -3949)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3305)
+(-82 -3949)
+((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+NIL
+NIL
+(-83 -3949)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3305)
+(-84 -3949)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3305)
+(-85 -3949)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3305)
+(-86 -3949)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3305)
-((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-87 -3949)
+((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -3305)
+(-88 -3949)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3305)
-((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
-NIL
-NIL
-(-89 -3305)
+(-89 -3949)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-362))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4399 . T))
+((-4400 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4399 . T) ((-4401 "*") . T) (-4400 . T) (-4396 . T) (-4394 . T) (-4393 . T) (-4392 . T) (-4397 . T) (-4391 . T) (-4390 . T) (-4389 . T) (-4388 . T) (-4387 . T) (-4395 . T) (-4398 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4386 . T))
+((-4400 . T) ((-4402 "*") . T) (-4401 . T) (-4397 . T) (-4395 . T) (-4394 . T) (-4393 . T) (-4398 . T) (-4392 . T) (-4391 . T) (-4390 . T) (-4389 . T) (-4388 . T) (-4396 . T) (-4399 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4387 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4401 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4402 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4399 . T))
+((-4400 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,52 +358,52 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4400 . T))
+((-4401 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4050 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-857)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4394 . T) (-4393 . T))
+((-4395 . T) (-4394 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-113 A)
-((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-844))))
-(-114)
+(-113)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -3249 UP)
+(-114 A)
+((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-844))))
+(-115 -3478 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-902))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-116 |#1|) (QUOTE (-1015))) (|HasCategory| (-116 |#1|) (QUOTE (-814))) (-4050 (|HasCategory| (-116 |#1|) (QUOTE (-814))) (|HasCategory| (-116 |#1|) (QUOTE (-844)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-116 |#1|) (QUOTE (-1141))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-902)))) (|HasCategory| (-116 |#1|) (QUOTE (-144)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-903))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-116 |#1|) (QUOTE (-1013))) (|HasCategory| (-116 |#1|) (QUOTE (-814))) (-3936 (|HasCategory| (-116 |#1|) (QUOTE (-814))) (|HasCategory| (-116 |#1|) (QUOTE (-844)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-116 |#1|) (QUOTE (-1141))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-903)))) (|HasCategory| (-116 |#1|) (QUOTE (-144)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4400)))
+((|HasAttribute| |#1| (QUOTE -4401)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,24 +430,24 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-128)
-((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| (-129) (QUOTE (-844))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-4050 (-12 (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| (-129) (QUOTE (-844))) (|HasCategory| (-129) (QUOTE (-1090)))) (|HasCategory| (-129) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))))
-(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
+(-129)
+((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| (-128) (QUOTE (-844))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128)))))) (-3936 (-12 (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-128) (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| (-128) (QUOTE (-844))) (|HasCategory| (-128) (QUOTE (-1091)))) (|HasCategory| (-128) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128))))))
(-130)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -462,14 +462,14 @@ NIL
NIL
(-133)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4401 "*") . T))
+(((-4402 "*") . T))
NIL
-(-134 |minix| -2192 S T$)
-((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
+(-134 |minix| -2999 R)
+((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
-(-135 |minix| -2192 R)
-((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
+(-135 |minix| -2999 S T$)
+((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
(-136)
@@ -490,8 +490,8 @@ NIL
NIL
(-140)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4399 . T) (-4389 . T) (-4400 . T))
-((-4050 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+((-4400 . T) (-4390 . T) (-4401 . T))
+((-3936 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
(-141 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -506,7 +506,7 @@ NIL
NIL
(-144)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-145 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -514,9 +514,9 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4396 . T))
+((-4397 . T))
NIL
-(-147 -3249 UP UPUP)
+(-147 -3478 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -527,14 +527,14 @@ NIL
(-149 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasAttribute| |#1| (QUOTE -4399)))
+((|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasAttribute| |#1| (QUOTE -4400)))
(-150 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-151 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4394 . T) (-4393 . T) (-4396 . T))
+((-4395 . T) (-4394 . T) (-4397 . T))
NIL
(-152)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -556,7 +556,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-157 R -3249)
+(-157 R -3478)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -569,11 +569,11 @@ NIL
NIL
NIL
(-160)
-((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
+((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
(-161)
-((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
+((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
(-162)
@@ -587,23 +587,23 @@ NIL
(-164 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4395)) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-844))))
+((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4396)) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-844))))
(-165 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
-((-4392 -4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4395 |has| |#1| (-6 -4395)) (-4398 |has| |#1| (-6 -4398)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 -3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4396 |has| |#1| (-6 -4396)) (-4399 |has| |#1| (-6 -4399)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-166 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-167 R S)
+(-167 R)
+((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
+((-4393 -3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4396 |has| |#1| (-6 -4396)) (-4399 |has| |#1| (-6 -4399)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-349))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1190)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1013))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-903))))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasAttribute| |#1| (QUOTE -4396)) (|HasAttribute| |#1| (QUOTE -4399)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-349)))))
+(-168 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
-(-168 R)
-((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4392 -4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4395 |has| |#1| (-6 -4395)) (-4398 |has| |#1| (-6 -4398)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1015)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1190)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-902))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-902))))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasAttribute| |#1| (QUOTE -4395)) (|HasAttribute| |#1| (QUOTE -4398)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-348)))))
(-169 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -614,7 +614,7 @@ NIL
NIL
(-171)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-172)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -622,7 +622,7 @@ NIL
NIL
(-173 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4401 "*") . T) (-4392 . T) (-4397 . T) (-4391 . T) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") . T) (-4393 . T) (-4398 . T) (-4392 . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-174)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -639,7 +639,7 @@ NIL
(-177 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-945 |#2|) (LIST (QUOTE -879) (|devaluate| |#1|))))
+((|HasCategory| (-939 |#2|) (LIST (QUOTE -879) (|devaluate| |#1|))))
(-178 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -657,26 +657,26 @@ NIL
NIL
NIL
(-182)
-((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
+((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-183 S)
-((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
+(-183)
+((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
NIL
NIL
-(-184)
+(-184 S)
((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
(-185)
-((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
+((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
(-186)
-((|constructor| (NIL "This domain provides implementations for constructors.")))
+((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-187 R -3249)
+(-187 R -3478)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -784,28 +784,28 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-214 -3249 UP UPUP R)
+(-214 -3478 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-215 -3249 FP)
+(-215 -3478 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-216)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4050 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144)))))
(-217)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-218 R -3249)
-((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+(-218 R -3478)
+((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-219 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-220 R1 R2)
@@ -814,19 +814,19 @@ NIL
NIL
(-221 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-222 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4396 . T))
+((-4397 . T))
NIL
-(-223 R -3249)
+(-223 R -3478)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-224)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1408 . T) (-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-225)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -834,15 +834,15 @@ NIL
NIL
(-226 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))) (|HasAttribute| |#1| (QUOTE (-4401 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4402 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-227 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-228 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4400 . T))
+((-4401 . T))
NIL
(-229 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -850,7 +850,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))))
(-230 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-231 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -858,36 +858,36 @@ NIL
NIL
(-232)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-233 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4399)))
+((|HasAttribute| |#1| (QUOTE -4400)))
(-234 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4400 . T))
+((-4401 . T))
NIL
(-235)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-236 S -2192 R)
+(-236 S -2999 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasAttribute| |#3| (QUOTE -4396)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1090))))
-(-237 -2192 R)
+((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasAttribute| |#3| (QUOTE -4397)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1091))))
+(-237 -2999 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4393 |has| |#2| (-1042)) (-4394 |has| |#2| (-1042)) (-4396 |has| |#2| (-6 -4396)) ((-4401 "*") |has| |#2| (-171)) (-4399 . T))
+((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T))
NIL
-(-238 -2192 A B)
+(-238 -2999 R)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
+((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-3936 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+(-239 -2999 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-239 -2192 R)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4393 |has| |#2| (-1042)) (-4394 |has| |#2| (-1042)) (-4396 |has| |#2| (-6 -4396)) ((-4401 "*") |has| |#2| (-171)) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-362))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-4050 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4050 (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4396)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-240)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -898,7 +898,7 @@ NIL
NIL
(-242)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4392 . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-243 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -906,16 +906,16 @@ NIL
NIL
(-244 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-245 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-246 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4401 "*") |has| |#2| (-171)) (-4392 |has| |#2| (-553)) (-4397 |has| |#2| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-902))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-247)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -926,64 +926,64 @@ NIL
NIL
(-249 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4396 -4050 (-2198 (|has| |#4| (-1042)) (|has| |#4| (-232))) (-2198 (|has| |#4| (-1042)) (|has| |#4| (-893 (-1166)))) (|has| |#4| (-6 -4396)) (-2198 (|has| |#4| (-1042)) (|has| |#4| (-634 (-561))))) (-4393 |has| |#4| (-1042)) (-4394 |has| |#4| (-1042)) ((-4401 "*") |has| |#4| (-171)) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#4| (QUOTE (-362))) (-4050 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1042)))) (-4050 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (QUOTE (-787))) (-4050 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-842)))) (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (QUOTE (-171))) (-4050 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-720)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-842)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1042)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1090))))) (-4050 (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1042))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (-4050 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-720))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-4050 (|HasCategory| |#4| (QUOTE (-1042))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1090)))) (-4050 (|HasAttribute| |#4| (QUOTE -4396)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))))
+((-4397 -3936 (-3240 (|has| |#4| (-1042)) (|has| |#4| (-232))) (-3240 (|has| |#4| (-1042)) (|has| |#4| (-893 (-1166)))) (|has| |#4| (-6 -4397)) (-3240 (|has| |#4| (-1042)) (|has| |#4| (-634 (-544))))) (-4394 |has| |#4| (-1042)) (-4395 |has| |#4| (-1042)) ((-4402 "*") |has| |#4| (-171)) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-362))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1042)))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (QUOTE (-787))) (-3936 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-842)))) (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (QUOTE (-171))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#4| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-720)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#4| (QUOTE (-1042)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasAttribute| |#4| (QUOTE -4397)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))))
(-250 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4396 -4050 (-2198 (|has| |#3| (-1042)) (|has| |#3| (-232))) (-2198 (|has| |#3| (-1042)) (|has| |#3| (-893 (-1166)))) (|has| |#3| (-6 -4396)) (-2198 (|has| |#3| (-1042)) (|has| |#3| (-634 (-561))))) (-4393 |has| |#3| (-1042)) (-4394 |has| |#3| (-1042)) ((-4401 "*") |has| |#3| (-171)) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#3| (QUOTE (-362))) (-4050 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4050 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-4050 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-4050 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-720)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-842)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090))))) (-4050 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4050 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-720))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-4050 (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090)))) (-4050 (|HasAttribute| |#3| (QUOTE -4396)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+((-4397 -3936 (-3240 (|has| |#3| (-1042)) (|has| |#3| (-232))) (-3240 (|has| |#3| (-1042)) (|has| |#3| (-893 (-1166)))) (|has| |#3| (-6 -4397)) (-3240 (|has| |#3| (-1042)) (|has| |#3| (-634 (-544))))) (-4394 |has| |#3| (-1042)) (-4395 |has| |#3| (-1042)) ((-4402 "*") |has| |#3| (-171)) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-362))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-3936 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-720)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasAttribute| |#3| (QUOTE -4397)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
(-251 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-232))))
(-252 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
NIL
(-253 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
+NIL
+(-254 |Ex|)
+((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
+NIL
NIL
-(-254)
+(-255)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-255 R |Ex|)
+(-256 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-256)
+(-257)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-257 R)
+(-258 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-258 |Ex|)
-((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
-NIL
-NIL
(-259)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
(-260)
-((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
+((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-261 S)
-((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
+(-261)
+((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-262)
-((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
+(-262 S)
+((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
(-263 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-264 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1028,11 +1028,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-275 R -3249)
+(-275 R -3478)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-276 R -3249)
+(-276 R -3478)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1051,10 +1051,10 @@ NIL
(-280 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))))
(-281 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4400 . T))
+((-4401 . T))
NIL
(-282 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1075,18 +1075,18 @@ NIL
(-286 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4400)))
+((|HasAttribute| |#1| (QUOTE -4401)))
(-287 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-288 S R |Mod| -4047 -3405 |exactQuo|)
+(-288 S R |Mod| -2187 -3917 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-289)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4392 . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-290)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1096,65 +1096,65 @@ NIL
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-292 S R)
+(-292 S)
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4397 -3936 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4394 |has| |#1| (-1042)) (-4395 |has| |#1| (-1042)))
+((|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720)))) (|HasCategory| |#1| (QUOTE (-471))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-297))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-171))))
+(-293 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-293 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4396 -4050 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4393 |has| |#1| (-1042)) (-4394 |has| |#1| (-1042)))
-((|HasCategory| |#1| (QUOTE (-362))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720)))) (|HasCategory| |#1| (QUOTE (-471))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1090)))) (-4050 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-301))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-4050 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720)))) (-4050 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-171))))
(-294 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))))
(-295)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-296 -3249 S)
-((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
+(-296 S)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1042))))
+(-297)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-(-297 E -3249)
-((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
+(-298 -3478 S)
+((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
-(-298 A B)
-((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+NIL
+(-299 E -3478)
+((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-299)
+(-300)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-300 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+(-301 A B)
+((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-1042))))
-(-301)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
+(-302)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
-(-302 R1)
+NIL
+(-303 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-303 R1 R2)
+(-304 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-304)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
-NIL
-NIL
(-305 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
(-306)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-307 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1164,35 +1164,35 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-309 -3249)
+(-309 -3478)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
(-310)
-((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
+((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
(-311)
-((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
+((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
(-312 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-902))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-1015))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (-4050 (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-844)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-1141))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (-12 (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-902))) (|HasCategory| $ (QUOTE (-144)))) (-4050 (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-902))) (|HasCategory| $ (QUOTE (-144))))))
-(-313 R S)
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-903))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-1013))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (-3936 (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-844)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-1141))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-903)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-144)))))
+(-313 R)
+((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
+((-4397 -3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (-12 (|has| |#1| (-554)) (-3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (|has| |#1| (-1042)) (|has| |#1| (-471)))) (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) ((-4402 "*") |has| |#1| (-554)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-554)) (-4392 |has| |#1| (-554)))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042)))) (-3936 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1102)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1102)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544)))))
+(-314 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-314 R FE)
+(-315 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-315 R)
-((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4396 -4050 (-2198 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (-12 (|has| |#1| (-553)) (-4050 (-2198 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (|has| |#1| (-1042)) (|has| |#1| (-471)))) (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4394 |has| |#1| (-171)) (-4393 |has| |#1| (-171)) ((-4401 "*") |has| |#1| (-553)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-553)) (-4391 |has| |#1| (-553)))
-((-4050 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-553))) (-4050 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1102)))) (-4050 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))))) (-4050 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1102)))) (-4050 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))))) (-4050 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
-(-316 R -3249)
+(-316 R -3478)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1202,8 +1202,8 @@ NIL
NIL
(-318 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))))
(-319 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1214,8 +1214,8 @@ NIL
NIL
(-321 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4394 . T) (-4393 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-786))))
+((-4395 . T) (-4394 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-786))))
(-322 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1227,22 +1227,22 @@ NIL
(-324 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))))
+((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))))
(-325 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-326 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-327 S -3249)
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-327 S -3478)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-328 -3249)
+(-328 -3478)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-329)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1256,22 +1256,22 @@ NIL
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-332 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-332 -3478 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+NIL
+NIL
+(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-333 S -3249 UP UPUP R)
+(-334 S -3478 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-334 -3249 UP UPUP R)
+(-335 -3478 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-335 -3249 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
-NIL
-NIL
(-336 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
@@ -1282,95 +1282,95 @@ NIL
NIL
(-338 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
-(-339 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
-((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
-NIL
-NIL
-(-340 S -3249 UP UPUP)
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-377)))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544)))))
+(-339 |p| |n|)
+((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| (-899 |#1|) (QUOTE (-144))) (|HasCategory| (-899 |#1|) (QUOTE (-367)))) (|HasCategory| (-899 |#1|) (QUOTE (-146))) (|HasCategory| (-899 |#1|) (QUOTE (-367))) (|HasCategory| (-899 |#1|) (QUOTE (-144))))
+(-340 S -3478 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-362))))
-(-341 -3249 UP UPUP)
+(-341 -3478 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4392 |has| (-406 |#2|) (-362)) (-4397 |has| (-406 |#2|) (-362)) (-4391 |has| (-406 |#2|) (-362)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 |has| (-406 |#2|) (-362)) (-4398 |has| (-406 |#2|) (-362)) (-4392 |has| (-406 |#2|) (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+NIL
+(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
+NIL
NIL
-(-342 |p| |extdeg|)
+(-343 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| (-903 |#1|) (QUOTE (-144))) (|HasCategory| (-903 |#1|) (QUOTE (-367)))) (|HasCategory| (-903 |#1|) (QUOTE (-146))) (|HasCategory| (-903 |#1|) (QUOTE (-367))) (|HasCategory| (-903 |#1|) (QUOTE (-144))))
-(-343 GF |defpol|)
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| (-899 |#1|) (QUOTE (-144))) (|HasCategory| (-899 |#1|) (QUOTE (-367)))) (|HasCategory| (-899 |#1|) (QUOTE (-146))) (|HasCategory| (-899 |#1|) (QUOTE (-367))) (|HasCategory| (-899 |#1|) (QUOTE (-144))))
+(-344 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
-(-344 GF |extdeg|)
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-345 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
-(-345 GF)
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-346 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-346 F1 GF F2)
+(-347 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-347 S)
+(-348 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-348)
+(-349)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-349 R UP -3249)
+(-350 R UP -3478)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-350 |p| |extdeg|)
+(-351 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| (-903 |#1|) (QUOTE (-144))) (|HasCategory| (-903 |#1|) (QUOTE (-367)))) (|HasCategory| (-903 |#1|) (QUOTE (-146))) (|HasCategory| (-903 |#1|) (QUOTE (-367))) (|HasCategory| (-903 |#1|) (QUOTE (-144))))
-(-351 GF |uni|)
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| (-899 |#1|) (QUOTE (-144))) (|HasCategory| (-899 |#1|) (QUOTE (-367)))) (|HasCategory| (-899 |#1|) (QUOTE (-146))) (|HasCategory| (-899 |#1|) (QUOTE (-367))) (|HasCategory| (-899 |#1|) (QUOTE (-144))))
+(-352 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
-(-352 GF |extdeg|)
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-353 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
-(-353 |p| |n|)
-((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| (-903 |#1|) (QUOTE (-144))) (|HasCategory| (-903 |#1|) (QUOTE (-367)))) (|HasCategory| (-903 |#1|) (QUOTE (-146))) (|HasCategory| (-903 |#1|) (QUOTE (-367))) (|HasCategory| (-903 |#1|) (QUOTE (-144))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-354 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
-(-355 -3249 GF)
-((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-355 GF)
+((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-356 GF)
-((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
+(-356 -3478 GF)
+((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-357 -3249 FP FPP)
+(-357 -3478 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-358 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-359 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-360 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-361 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1378,23 +1378,23 @@ NIL
NIL
(-362)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-363 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+(-363 S)
+((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-364 S)
-((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
+(-364 |Name| S)
+((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
(-365 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-553))))
+((|HasCategory| |#2| (QUOTE (-554))))
(-366 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4396 |has| |#1| (-553)) (-4394 . T) (-4393 . T))
+((-4397 |has| |#1| (-554)) (-4395 . T) (-4394 . T))
NIL
(-367)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1406,23 +1406,23 @@ NIL
((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-362))))
(-369 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-NIL
-(-370 S A R B)
-((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
-NIL
-(-371 A S)
+(-370 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))))
-(-372 S)
+((|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))))
+(-371 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4399 . T))
+((-4400 . T))
+NIL
+(-372 S A R B)
+((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+NIL
NIL
(-373 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4394 . T) (-4393 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4395 . T) (-4394 . T))
NIL
(-374 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1431,50 +1431,50 @@ NIL
(-375 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))))
+((|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))))
(-376 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4396 . T))
+((-4397 . T))
NIL
-(-377 |Par|)
-((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
+(-377)
+((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-4383 . T) (-4391 . T) (-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
+(-378 |Par|)
+((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
-(-378)
-((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4382 . T) (-4390 . T) (-1408 . T) (-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
NIL
(-379 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
(-380 R S)
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
+((-4395 . T) (-4394 . T))
+((|HasCategory| |#1| (QUOTE (-171))))
+(-381 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4394 . T) (-4393 . T))
+((-4395 . T) (-4394 . T))
((|HasCategory| |#1| (QUOTE (-171))))
-(-381 R |Basis|)
-((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4394 . T) (-4393 . T))
-NIL
(-382)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-383)
+(-383 R |Basis|)
+((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+((-4395 . T) (-4394 . T))
+NIL
+(-384)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-384 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4394 . T) (-4393 . T))
-((|HasCategory| |#1| (QUOTE (-171))))
(-385 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
((|HasCategory| |#1| (QUOTE (-844))))
(-386)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-387)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1486,41 +1486,41 @@ NIL
NIL
(-389 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4394 . T) (-4393 . T))
+((-4395 . T) (-4394 . T))
NIL
(-390)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-391 -3249 UP UPUP R)
+(-391 -3478 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-392 S)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
+(-392)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-393)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
+(-393 S)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
(-394)
-((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
+((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
(-395)
-((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
(-396)
-((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
+((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-397 -3305 |returnType| -1642 |symbols|)
+(-397 -3949 |returnType| -1491 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-398 -3249 UP)
+(-398 -3478 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1534,129 +1534,129 @@ NIL
NIL
(-401)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-402 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4382)) (|HasAttribute| |#1| (QUOTE -4390)))
+((|HasAttribute| |#1| (QUOTE -4383)) (|HasAttribute| |#1| (QUOTE -4391)))
(-403)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1408 . T) (-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-404 R S)
+(-404 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-1209))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450))))
+(-405 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-405 A B)
+(-406 S)
+((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
+((-4387 -12 (|has| |#1| (-6 -4398)) (|has| |#1| (-450)) (|has| |#1| (-6 -4387))) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-814))) (-3936 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-844)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4387)) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-407 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-406 S)
-((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4386 -12 (|has| |#1| (-6 -4397)) (|has| |#1| (-450)) (|has| |#1| (-6 -4386))) (-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-814))) (-4050 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-844)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822))))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#1| (QUOTE -4386)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-407 S R UP)
+(-408 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-408 R UP)
+(-409 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-409 A S)
+(-410 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))
-(-410 S)
+((|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))))
+(-411 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-411 R1 F1 U1 A1 R2 F2 U2 A2)
-((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
+(-412 R -3478 UP A)
+((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
+((-4397 . T))
NIL
+(-413 R1 F1 U1 A1 R2 F2 U2 A2)
+((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
-(-412 R -3249 UP A)
-((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4396 . T))
NIL
-(-413 R -3249 UP A |ibasis|)
+(-414 R -3478 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1031) (|devaluate| |#2|))))
-(-414 AR R AS S)
+(-415 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-415 S R)
+(-416 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
-(-416 R)
+(-417 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4396 |has| |#1| (-553)) (-4394 . T) (-4393 . T))
+((-4397 |has| |#1| (-554)) (-4395 . T) (-4394 . T))
NIL
-(-417 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1209))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450))))
(-418 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-419 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
+(-419 S R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
+((|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))))
+(-420 R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4397 -3936 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) ((-4402 "*") |has| |#1| (-554)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-554)) (-4392 |has| |#1| (-554)))
NIL
-(-420 R A S B)
+(-421 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-421 R FE |Expon| UPS TRAN |x|)
-((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
+(-422 R FE |x| |cen|)
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-422 S A R B)
-((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+(-423 R FE |Expon| UPS TRAN |x|)
+((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-423 A S)
+(-424 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-367))))
-(-424 S)
+(-425 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4399 . T) (-4389 . T) (-4400 . T))
+((-4400 . T) (-4390 . T) (-4401 . T))
+NIL
+(-426 S A R B)
+((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
-(-425 R -3249)
+NIL
+(-427 R -3478)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-426 R E)
+(-428 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4386 -12 (|has| |#1| (-6 -4386)) (|has| |#2| (-6 -4386))) (-4393 . T) (-4394 . T) (-4396 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4386)) (|HasAttribute| |#2| (QUOTE -4386))))
-(-427 R -3249)
+((-4387 -12 (|has| |#1| (-6 -4387)) (|has| |#2| (-6 -4387))) (-4394 . T) (-4395 . T) (-4397 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4387)) (|HasAttribute| |#2| (QUOTE -4387))))
+(-429 R -3478)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-428 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-NIL
-((|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))))
-(-429 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4396 -4050 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4394 |has| |#1| (-171)) (-4393 |has| |#1| (-171)) ((-4401 "*") |has| |#1| (-553)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-553)) (-4391 |has| |#1| (-553)))
-NIL
-(-430 R -3249)
+(-430 R -3478)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-431 R -3249)
+(-431 R -3478)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-432 R -3249)
+(-432 R -3478)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1664,16 +1664,16 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-434 R -3249 UP)
+(-434 R -3478 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-48)))))
(-435)
-((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
(-436)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
+((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
(-437 |f|)
@@ -1692,7 +1692,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-441 R UP -3249)
+(-441 R UP -3478)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1709,37 +1709,37 @@ NIL
NIL
NIL
(-445 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
-NIL
+((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
+((|HasCategory| |#1| (QUOTE (-362))))
(-446 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
+((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
(-447 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
+((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
(-448 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
+((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
+NIL
NIL
-((|HasCategory| |#1| (QUOTE (-362))))
(-449 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
(-450)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-451 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4396 |has| (-406 (-945 |#1|)) (-553)) (-4394 . T) (-4393 . T))
-((|HasCategory| (-406 (-945 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| (-406 (-945 |#1|)) (QUOTE (-553))))
+((-4397 |has| (-406 (-939 |#1|)) (-554)) (-4395 . T) (-4394 . T))
+((|HasCategory| (-406 (-939 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-406 (-939 |#1|)) (QUOTE (-554))))
(-452 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4401 "*") |has| |#2| (-171)) (-4392 |has| |#2| (-553)) (-4397 |has| |#2| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-902))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-453 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1766,7 +1766,7 @@ NIL
NIL
(-459 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4394 . T) (-4393 . T))
+((-4395 . T) (-4394 . T))
NIL
(-460 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1774,8 +1774,8 @@ NIL
NIL
(-461 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857)))))
(-462 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1804,7 +1804,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-469 |lv| -3249 R)
+(-469 |lv| -3478 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1814,23 +1814,23 @@ NIL
NIL
(-471)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-472 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))))
(-473 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))))
+((-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))))
(-474 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857)))))
(-475)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-476)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1838,29 +1838,29 @@ NIL
NIL
(-477 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))))
(-478)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-479 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4401 "*") |has| |#2| (-171)) (-4392 |has| |#2| (-553)) (-4397 |has| |#2| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-902))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
-(-480 -2192 S)
+(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-480 -2999 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4393 |has| |#2| (-1042)) (-4394 |has| |#2| (-1042)) (-4396 |has| |#2| (-6 -4396)) ((-4401 "*") |has| |#2| (-171)) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-362))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-4050 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4050 (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4396)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-3936 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-481)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
(-482 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
-(-483 -3249 UP UPUP R)
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
+(-483 -3478 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1870,12 +1870,12 @@ NIL
NIL
(-485)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4050 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144)))))
(-486 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))))
+((|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))))
(-487 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1896,34 +1896,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-492 -3249 UP |AlExt| |AlPol|)
+(-492 -3478 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-493)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544)))))
(-494 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-495 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-496 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-497 R UP -3249)
+(-497 R UP -3478)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-498 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-857)))))
(-499 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1936,7 +1936,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-502 -3249 |Expon| |VarSet| |DPoly|)
+(-502 -3478 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-1166)))))
@@ -1961,15 +1961,15 @@ NIL
NIL
NIL
(-508 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
(-509 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-510 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-511 S A B)
@@ -1986,36 +1986,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-786))))
(-514 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-515)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-516 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| (-578 |#1|) (QUOTE (-144))) (|HasCategory| (-578 |#1|) (QUOTE (-367)))) (|HasCategory| (-578 |#1|) (QUOTE (-146))) (|HasCategory| (-578 |#1|) (QUOTE (-367))) (|HasCategory| (-578 |#1|) (QUOTE (-144))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (|HasCategory| (-578 |#1|) (QUOTE (-144))) (|HasCategory| (-578 |#1|) (QUOTE (-367)))) (|HasCategory| (-578 |#1|) (QUOTE (-146))) (|HasCategory| (-578 |#1|) (QUOTE (-367))) (|HasCategory| (-578 |#1|) (QUOTE (-144))))
(-517 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-518 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-519 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4400)))
+((|HasAttribute| |#3| (QUOTE -4401)))
(-520 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4400)))
+((|HasAttribute| |#7| (QUOTE -4401)))
(-521 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))) (|HasAttribute| |#1| (QUOTE (-4401 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4402 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-522)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2048,7 +2048,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-530 K -3249 |Par|)
+(-530 K -3478 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2060,19 +2060,19 @@ NIL
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-533 R)
-((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
+(-533)
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-534)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+(-534 R)
+((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
(-535 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-536 K -3249 |Par|)
+(-536 K -3478 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2093,7 +2093,7 @@ NIL
NIL
NIL
(-541 R UP)
-((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
+((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
(-542 S)
@@ -2102,93 +2102,93 @@ NIL
NIL
(-543)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4397 . T) (-4398 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-544)
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
+((-4382 . T) (-4388 . T) (-4392 . T) (-4387 . T) (-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+NIL
+(-545)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-545)
+(-546)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-546)
+(-547)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-547 |Key| |Entry| |addDom|)
+(-548 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
-(-548 R -3249)
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))))
+(-549 R -3478)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-549 R0 -3249 UP UPUP R)
+(-550 R0 -3478 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-550)
+(-551)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-551 R)
+(-552 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1408 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4176 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-552 S)
+(-553 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-553)
+(-554)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-554 R -3249)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-555 R -3478)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-555 I)
+(-556 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-556)
-((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+(-557)
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-557 R -3249 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-558 R -3478 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -649) (|devaluate| |#2|))))
-(-558)
+((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|))))
+(-559)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-559 -3249 UP UPUP R)
+(-560 -3478 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-560 -3249 UP)
+(-561 -3478 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-561)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4381 . T) (-4387 . T) (-4391 . T) (-4386 . T) (-4397 . T) (-4398 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-NIL
(-562)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-563 R -3249 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-563 R -3478 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -649) (|devaluate| |#2|))))
-(-564 R -3249)
+((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|))))
+(-564 R -3478)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-1129)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-624)))))
-(-565 -3249 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1129)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-625)))))
+(-565 -3478 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2196,27 +2196,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-567 -3249)
+(-567 -3478)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-568 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1408 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4176 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-569)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-570 R -3249)
+(-570 R -3478)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-624))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-553))))
-(-571 -3249 UP)
-((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
+((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-625))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-554))))
+(-571 -3478 UP)
+((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-572 R -3249)
+(-572 R -3478)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2238,28 +2238,28 @@ NIL
NIL
(-577 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-578 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
(-579)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-580 R -3249)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-580 -3478)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+((-4395 . T) (-4394 . T))
+((|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166)))))
+(-581 E -3478)
+((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-581 E -3249)
-((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
+(-582 R -3478)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-582 -3249)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4394 . T) (-4393 . T))
-((|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166)))))
(-583 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2286,20 +2286,20 @@ NIL
NIL
(-589 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-4050 (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-3936 (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
(-590 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-591 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|)))) (|HasCategory| (-561) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))) (|HasCategory| (-544) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))))
(-592 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4394 |has| |#1| (-553)) (-4393 |has| |#1| (-553)) ((-4401 "*") |has| |#1| (-553)) (-4392 |has| |#1| (-553)) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-553))))
+((-4395 |has| |#1| (-554)) (-4394 |has| |#1| (-554)) ((-4402 "*") |has| |#1| (-554)) (-4393 |has| |#1| (-554)) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-554))))
(-593 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
@@ -2308,7 +2308,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-595 R -3249 FG)
+(-595 R -3478 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2318,12 +2318,12 @@ NIL
NIL
(-597 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-598 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-844))) (|HasAttribute| |#1| (QUOTE -4399)) (|HasCategory| |#3| (QUOTE (-1090))))
+((|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-844))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#3| (QUOTE (-1091))))
(-599 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2338,28 +2338,28 @@ NIL
NIL
(-602 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4396 -4050 (-2198 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))) (-4394 . T) (-4393 . T))
-((-4050 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+((-4397 -3936 (-3240 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))) (-4395 . T) (-4394 . T))
+((-3936 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
(-603 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857)))))
(-604 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-605 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4400 . T))
+((-4401 . T))
NIL
-(-606 R S)
-((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
+(-606 S)
+((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))))
+(-607 R S)
+((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
-(-607 S)
-((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))))
(-608 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2368,7 +2368,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-610 -3249 UP)
+(-610 -3478 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2384,26 +2384,26 @@ NIL
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-614 S R)
+(-614 A R S)
+((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-842))))
+(-615 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-615 R)
+(-616 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4396 . T))
+((-4397 . T))
NIL
-(-616 A R S)
-((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-842))))
-(-617 R -3249)
+(-617 R -3478)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-618 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4394 . T) (-4393 . T) ((-4401 "*") . T) (-4392 . T) (-4396 . T))
-((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))
+((-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4393 . T) (-4397 . T))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))))
(-619 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2418,80 +2418,80 @@ NIL
NIL
(-622 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-623 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-624)
-((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
+(-624 R -3478)
+((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-625 R -3249)
-((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
+(-625)
+((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-626 |lv| -3249)
+(-626 |lv| -3478)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-627)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2677) (QUOTE (-52))))))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-52) (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1148) (QUOTE (-844))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (QUOTE (-1090))))
-(-628 S R)
+((-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2226) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -308) (QUOTE (-51))))) (|HasCategory| (-1148) (QUOTE (-844))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091))))
+(-628 R A)
+((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
+((-4397 -3936 (-3240 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))) (-4395 . T) (-4394 . T))
+((-3936 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+(-629 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
-(-629 R)
+(-630 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4394 . T) (-4393 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4395 . T) (-4394 . T))
NIL
-(-630 R A)
-((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4396 -4050 (-2198 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))) (-4394 . T) (-4393 . T))
-((-4050 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
(-631 R FE)
-((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
+((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
(-632 R)
-((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
+((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
(-633 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2186 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362))))
+((-3726 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362))))
(-634 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4396 . T))
-NIL
-(-635 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
-NIL
+((-4397 . T))
NIL
+(-635 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-636 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-637 A B C)
+(-637 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+NIL
+NIL
+(-638 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-638 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-639 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
(-640 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-641 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2503,62 +2503,62 @@ NIL
(-643 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4400)))
+((|HasAttribute| |#1| (QUOTE -4401)))
(-644 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-645 R -3249 L)
+(-645 M R S)
+((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4395 . T) (-4394 . T))
+((|HasCategory| |#1| (QUOTE (-785))))
+(-646 R -3478 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-646 A)
+(-647 A -2793)
+((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-648 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-647 A M)
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-649 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-648 S A)
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-650 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
-(-649 A)
+(-651 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-650 -3249 UP)
+(-652 -3478 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-651 A -1734)
-((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-652 A L)
+(-653 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-653 S)
+(-654 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-654)
+(-655)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-655 M R S)
-((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4394 . T) (-4393 . T))
-((|HasCategory| |#1| (QUOTE (-785))))
(-656 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
(-657 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4394 . T) (-4393 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4395 . T) (-4394 . T))
((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-171))))
(-658 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2566,14 +2566,14 @@ NIL
NIL
(-659 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
-(-660 -3249)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-660 -3478 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-661 -3249 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-661 -3478)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
(-662 R E OV P)
@@ -2582,8 +2582,8 @@ NIL
NIL
(-663 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4396 . T) (-4399 . T) (-4393 . T) (-4394 . T))
-((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4401 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-553))) (-4050 (|HasAttribute| |#2| (QUOTE (-4401 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+((-4397 . T) (-4400 . T) (-4394 . T) (-4395 . T))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4402 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554))) (-3936 (|HasAttribute| |#2| (QUOTE (-4402 #1#))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
(-664)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2603,7 +2603,7 @@ NIL
(-668 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-669)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2640,26 +2640,26 @@ NIL
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-678 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
-((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
-NIL
-NIL
-(-679 S R |Row| |Col|)
+(-678 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4401 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-553))))
-(-680 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4402 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554))))
+(-679 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
+NIL
+(-680 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
+NIL
NIL
(-681 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))))
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))))
(-682 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4399 . T) (-4400 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))) (|HasAttribute| |#1| (QUOTE (-4401 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4400 . T) (-4401 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4402 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-683 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2668,7 +2668,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-685 S -3249 FLAF FLAS)
+(-685 S -3478 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2678,27 +2678,27 @@ NIL
NIL
(-687)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4392 . T) (-4397 |has| (-692) (-362)) (-4391 |has| (-692) (-362)) (-4398 |has| (-692) (-6 -4398)) (-4395 |has| (-692) (-6 -4395)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-692) (QUOTE (-146))) (|HasCategory| (-692) (QUOTE (-144))) (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-692) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-692) (QUOTE (-367))) (|HasCategory| (-692) (QUOTE (-362))) (-4050 (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-692) (QUOTE (-362)))) (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-692) (QUOTE (-232))) (-4050 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-348)))) (|HasCategory| (-692) (QUOTE (-348))) (|HasCategory| (-692) (LIST (QUOTE -285) (QUOTE (-692)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -308) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (-4050 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-348)))) (|HasCategory| (-692) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-692) (QUOTE (-1015))) (|HasCategory| (-692) (QUOTE (-1190))) (-12 (|HasCategory| (-692) (QUOTE (-995))) (|HasCategory| (-692) (QUOTE (-1190)))) (-4050 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-362))) (-12 (|HasCategory| (-692) (QUOTE (-348))) (|HasCategory| (-692) (QUOTE (-902))))) (-4050 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (-12 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-902)))) (-12 (|HasCategory| (-692) (QUOTE (-348))) (|HasCategory| (-692) (QUOTE (-902))))) (|HasCategory| (-692) (QUOTE (-543))) (-12 (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-1190)))) (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902))) (-4050 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-362)))) (-4050 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-553)))) (-12 (|HasCategory| (-692) (QUOTE (-232))) (|HasCategory| (-692) (QUOTE (-362)))) (-12 (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-692) (QUOTE (-362)))) (|HasCategory| (-692) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-692) (QUOTE (-844))) (|HasCategory| (-692) (QUOTE (-553))) (|HasAttribute| (-692) (QUOTE -4398)) (|HasAttribute| (-692) (QUOTE -4395)) (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-144)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-348)))))
+((-4393 . T) (-4398 |has| (-692) (-362)) (-4392 |has| (-692) (-362)) (-4399 |has| (-692) (-6 -4399)) (-4396 |has| (-692) (-6 -4396)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-692) (QUOTE (-146))) (|HasCategory| (-692) (QUOTE (-144))) (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-692) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-692) (QUOTE (-367))) (|HasCategory| (-692) (QUOTE (-362))) (-3936 (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-692) (QUOTE (-362)))) (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-692) (QUOTE (-232))) (-3936 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-349)))) (|HasCategory| (-692) (QUOTE (-349))) (|HasCategory| (-692) (LIST (QUOTE -285) (QUOTE (-692)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -308) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (-3936 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-349)))) (|HasCategory| (-692) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-692) (QUOTE (-1013))) (|HasCategory| (-692) (QUOTE (-1190))) (-12 (|HasCategory| (-692) (QUOTE (-995))) (|HasCategory| (-692) (QUOTE (-1190)))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (-12 (|HasCategory| (-692) (QUOTE (-349))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-362)))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (-12 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-903)))) (-12 (|HasCategory| (-692) (QUOTE (-349))) (|HasCategory| (-692) (QUOTE (-903))))) (|HasCategory| (-692) (QUOTE (-543))) (-12 (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-1190)))) (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-362)))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-554)))) (-12 (|HasCategory| (-692) (QUOTE (-232))) (|HasCategory| (-692) (QUOTE (-362)))) (-12 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| (-692) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-692) (QUOTE (-844))) (|HasCategory| (-692) (QUOTE (-554))) (|HasAttribute| (-692) (QUOTE -4399)) (|HasAttribute| (-692) (QUOTE -4396)) (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-144)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-349)))))
(-688 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4400 . T))
+((-4401 . T))
NIL
(-689 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
(-690)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-691 OV E -3249 PG)
+(-691 OV E -3478 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-692)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1408 . T) (-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-693 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2706,7 +2706,7 @@ NIL
NIL
(-694)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4398 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4399 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-695 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2728,7 +2728,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-700 S -3154 I)
+(-700 S -3051 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2738,7 +2738,7 @@ NIL
NIL
(-702 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-703 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2748,25 +2748,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-705 R |Mod| -4047 -3405 |exactQuo|)
+(-705 R |Mod| -2187 -3917 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-706 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4395 |has| |#1| (-362)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-707 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-708 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4394 |has| |#1| (-171)) (-4393 |has| |#1| (-171)) (-4396 . T))
+((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
-(-709 R |Mod| -4047 -3405 |exactQuo|)
+(-709 R |Mod| -2187 -3917 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4396 . T))
+((-4397 . T))
NIL
(-710 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2774,11 +2774,11 @@ NIL
NIL
(-711 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4394 . T) (-4393 . T))
+((-4395 . T) (-4394 . T))
NIL
-(-712 -3249)
+(-712 -3478)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-713 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2799,10 +2799,10 @@ NIL
(-717 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))))
+((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))))
(-718 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4392 |has| |#1| (-362)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 |has| |#1| (-362)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-719 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2812,7 +2812,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-721 -3249 UP)
+(-721 -3478 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2830,8 +2830,8 @@ NIL
NIL
(-725 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4401 "*") |has| |#2| (-171)) (-4392 |has| |#2| (-553)) (-4397 |has| |#2| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-902))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-726 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2846,16 +2846,16 @@ NIL
NIL
(-729 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4394 |has| |#1| (-171)) (-4393 |has| |#1| (-171)) (-4396 . T))
+((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T))
((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-844))))
(-730 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-4400 . T) (-4390 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
+(-731 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4389 . T) (-4400 . T))
+((-4390 . T) (-4401 . T))
NIL
-(-731 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4399 . T) (-4389 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-732)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2866,7 +2866,7 @@ NIL
NIL
(-734 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4394 . T) (-4393 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4395 . T) (-4394 . T) (-4397 . T))
NIL
(-735 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2882,7 +2882,7 @@ NIL
NIL
(-738 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4394 . T) (-4393 . T))
+((-4395 . T) (-4394 . T))
NIL
(-739)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2964,11 +2964,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-759 -3249)
+(-759 -3478)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-760 P -3249)
+(-760 P -3478)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -2976,7 +2976,7 @@ NIL
NIL
NIL
NIL
-(-762 UP -3249)
+(-762 UP -3478)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2990,18 +2990,18 @@ NIL
NIL
(-765)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4401 "*") . T))
+(((-4402 "*") . T))
NIL
-(-766 R -3249)
+(-766 R -3478)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-767 S)
-((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
+(-767)
+((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-768)
-((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
+(-768 S)
+((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
(-769 R |PolR| E |PolE|)
@@ -3012,7 +3012,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-771 -3249 |ExtF| |SUEx| |ExtP| |n|)
+(-771 -3478 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3026,28 +3026,28 @@ NIL
NIL
(-774 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2186 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2186 (|HasCategory| |#1| (QUOTE (-543)))) (-2186 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2186 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-561))))) (-2186 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2186 (|HasCategory| |#1| (LIST (QUOTE -985) (QUOTE (-561))))))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-775 R S)
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))))) (-3936 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (QUOTE (-543)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-544))))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -984) (QUOTE (-544))))))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-775 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-776 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-776 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4395 |has| |#1| (-362)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-777 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))
(-778 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-779 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-171))))
+((-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-171))))
(-780)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3084,43 +3084,43 @@ NIL
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-789)
-((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
-NIL
-NIL
-(-790 S R)
+(-789 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-367))))
-(-791 R)
+((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-367))))
+(-790 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-792 -4050 R OS S)
-((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+(-791)
+((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-793 R)
+(-792 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-4050 (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-3936 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))))
+(-793 -3936 R OS S)
+((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+NIL
+NIL
(-794)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-795 R -3249 L)
+(-795 R -3478 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-796 R -3249)
-((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
+(-796 R -3478)
+((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
(-797)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-798 R -3249)
+(-798 R -3478)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3128,11 +3128,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-800 -3249 UP UPUP R)
+(-800 -3478 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-801 -3249 UP L LQ)
+(-801 -3478 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3140,41 +3140,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-803 -3249 UP L LQ)
+(-803 -3478 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-804 -3249 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
+(-804 -3478 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-805 -3249 L UP A LO)
+(-805 -3478 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-806 -3249 UP)
+(-806 -3478 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-807 -3249 LO)
+(-807 -3478 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-808 -3249 LODO)
+(-808 -3478 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-809 -2192 S |f|)
+(-809 -2999 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4393 |has| |#2| (-1042)) (-4394 |has| |#2| (-1042)) (-4396 |has| |#2| (-6 -4396)) ((-4401 "*") |has| |#2| (-171)) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-362))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-4050 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4050 (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4396)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-3936 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-810 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-811 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4401 "*") |has| |#2| (-362)) (-4392 |has| |#2| (-362)) (-4397 |has| |#2| (-362)) (-4391 |has| |#2| (-362)) (-4396 . T) (-4394 . T) (-4393 . T))
+(((-4402 "*") |has| |#2| (-362)) (-4393 |has| |#2| (-362)) (-4398 |has| |#2| (-362)) (-4392 |has| |#2| (-362)) (-4397 . T) (-4395 . T) (-4394 . T))
((|HasCategory| |#2| (QUOTE (-362))))
(-812 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3186,72 +3186,72 @@ NIL
NIL
(-814)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-815)
-((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
(-816)
-((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
+((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
(-817)
-((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
+((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
(-818)
-((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
(-819)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-820 R)
+(-820)
+((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+NIL
+NIL
+(-821 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-821 P R)
+(-822 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-232))))
-(-822)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
-NIL
-NIL
(-823)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
(-824 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4399 . T) (-4389 . T) (-4400 . T))
+((-4400 . T) (-4390 . T) (-4401 . T))
NIL
(-825)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-826 R S)
+(-826 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4397 |has| |#1| (-842)))
+((|HasCategory| |#1| (QUOTE (-842))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+(-827 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-827 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4396 |has| |#1| (-842)))
-((|HasCategory| |#1| (QUOTE (-842))) (-4050 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4050 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
-(-828 A S)
+(-828 R)
+((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
+((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
+(-829 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-829 S)
+(-830 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-830 R)
-((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4394 |has| |#1| (-171)) (-4393 |has| |#1| (-171)) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
(-831)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
@@ -3272,19 +3272,19 @@ NIL
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-836 R S)
+(-836 R)
+((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
+((-4397 |has| |#1| (-842)))
+((|HasCategory| |#1| (QUOTE (-842))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+(-837 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-837 R)
-((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4396 |has| |#1| (-842)))
-((|HasCategory| |#1| (QUOTE (-842))) (-4050 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4050 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
(-838)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-839 -2192 S)
+(-839 -2999 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3298,7 +3298,7 @@ NIL
NIL
(-842)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-843 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3311,27 +3311,27 @@ NIL
(-845 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))))
+((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))))
(-846 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-847 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553))))
-(-848 R |sigma| -1965)
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554))))
+(-848 R |sigma| -3645)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-849 |x| R |sigma| -1965)
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-849 |x| R |sigma| -3645)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-362))))
+((-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-362))))
(-850 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))
(-851)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
@@ -3340,24 +3340,24 @@ NIL
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-853 S)
-((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
+(-853)
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-854)
+(-854 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
(-855)
-((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
+((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
(-856)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
(-857)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
(-858 |VariableList|)
@@ -3366,7 +3366,7 @@ NIL
NIL
(-859 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4394 |has| |#1| (-171)) (-4393 |has| |#1| (-171)) (-4396 . T))
+((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
(-860 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3377,25 +3377,25 @@ NIL
NIL
NIL
(-862 |p|)
-((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-863 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-864 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-863 |#1|) (QUOTE (-902))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-863 |#1|) (QUOTE (-144))) (|HasCategory| (-863 |#1|) (QUOTE (-146))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-863 |#1|) (QUOTE (-1015))) (|HasCategory| (-863 |#1|) (QUOTE (-814))) (-4050 (|HasCategory| (-863 |#1|) (QUOTE (-814))) (|HasCategory| (-863 |#1|) (QUOTE (-844)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-863 |#1|) (QUOTE (-1141))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-863 |#1|) (QUOTE (-232))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -863) (|devaluate| |#1|)) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| (-863 |#1|) (QUOTE (-306))) (|HasCategory| (-863 |#1|) (QUOTE (-543))) (|HasCategory| (-863 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-863 |#1|) (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-863 |#1|) (QUOTE (-902)))) (|HasCategory| (-863 |#1|) (QUOTE (-144)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-862 |#1|) (QUOTE (-903))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-862 |#1|) (QUOTE (-144))) (|HasCategory| (-862 |#1|) (QUOTE (-146))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-862 |#1|) (QUOTE (-1013))) (|HasCategory| (-862 |#1|) (QUOTE (-814))) (-3936 (|HasCategory| (-862 |#1|) (QUOTE (-814))) (|HasCategory| (-862 |#1|) (QUOTE (-844)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-862 |#1|) (QUOTE (-1141))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-862 |#1|) (QUOTE (-232))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -862) (|devaluate| |#1|)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -862) (|devaluate| |#1|)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -862) (|devaluate| |#1|)) (LIST (QUOTE -862) (|devaluate| |#1|)))) (|HasCategory| (-862 |#1|) (QUOTE (-306))) (|HasCategory| (-862 |#1|) (QUOTE (-543))) (|HasCategory| (-862 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-862 |#1|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-862 |#1|) (QUOTE (-903)))) (|HasCategory| (-862 |#1|) (QUOTE (-144)))))
(-865 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-814))) (-4050 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-814))) (-3936 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-866 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1091)))) (-3936 (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))))
(-867)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3451,27 +3451,27 @@ NIL
(-880 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2186 (|HasCategory| |#2| (QUOTE (-1042)))) (-2186 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (-2186 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))
-(-881 R A B)
+((-12 (-3726 (|HasCategory| |#2| (QUOTE (-1042)))) (-3726 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (-3726 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))
+(-881 R S)
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+NIL
+NIL
+(-882 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-882 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+(-883 R)
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-883 R -3154)
+(-884 R -3051)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-884 R S)
+(-885 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-885 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
-NIL
-NIL
(-886 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
@@ -3484,7 +3484,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-889 UP -3249)
+(-889 UP -3478)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3502,49 +3502,49 @@ NIL
NIL
(-893 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4396 . T))
+((-4397 . T))
NIL
(-894 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
-(-895 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
+(-895 S)
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((-4397 . T))
+((-3936 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844))))
+(-896 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-896 S)
+(-897 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4396 . T))
+((-4397 . T))
NIL
-(-897 S)
+(-898 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-898 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4396 . T))
-((-4050 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844))))
-(-899 R E |VarSet| S)
+(-899 |p|)
+((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
+(-900 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-900 R S)
+(-901 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-901 S)
+(-902 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-144))))
-(-902)
+(-903)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-903 |p|)
-((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
-(-904 R0 -3249 UP UPUP R)
+(-904 R0 -3478 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3558,7 +3558,7 @@ NIL
NIL
(-907 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-908 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3572,63 +3572,63 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-911 -3249)
+(-911 -3478)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-912 R)
-((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
+(-912)
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+(((-4402 "*") . T))
NIL
+(-913 R)
+((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
-(-913)
-((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
NIL
(-914)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4401 "*") . T))
+((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-915 -3249 P)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
+(-915 |xx| -3478)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-916 |xx| -3249)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
+(-916 -3478 P)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
(-917 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-918 S)
-((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
+(-918)
+((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-919)
-((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
+(-919 S)
+((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
(-920)
-((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
+((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
(-921)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-922 R -3249)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
+(-922)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-923)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
+(-923 R -3478)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
(-924 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-925 S R -3249)
+(-925 S R -3478)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3648,12 +3648,12 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -879) (|devaluate| |#1|))))
-(-930 R -3249 -3154)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+(-930 -3051)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-931 -3154)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
+(-931 R -3478 -3051)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
(-932 S R Q)
@@ -3674,8 +3674,8 @@ NIL
NIL
(-936 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-937 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3684,35 +3684,35 @@ NIL
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-842))))
-(-939 R S)
+(-939 R)
+((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1166) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-940 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-940 |x| R)
+(-941 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-941 S R E |VarSet|)
+(-942 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-902))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-844))))
-(-942 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-903))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-844))))
+(-943 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
NIL
-(-943 E V R P -3249)
+(-944 E V R P -3478)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-944 E |Vars| R P S)
+(-945 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-945 R)
-((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-946 E V R P -3249)
+(-946 E V R P -3478)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-450))))
@@ -3724,42 +3724,42 @@ NIL
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-949 R L)
+(-949 R E)
+((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4398)))
+(-950 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-950 A B)
+(-951 S)
+((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-952 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-951 S)
-((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-952)
+(-953)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-953 -3249)
+(-954 -3478)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-954 I)
+(-955 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-955)
+(-956)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-956 R E)
-((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4397)))
(-957 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4396 -12 (|has| |#2| (-471)) (|has| |#1| (-471))))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787))))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844)))))
+((-4397 -12 (|has| |#2| (-471)) (|has| |#1| (-471))))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720))))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844)))))
(-958)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3774,7 +3774,7 @@ NIL
NIL
(-961 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
NIL
(-962 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3794,7 +3794,7 @@ NIL
NIL
(-966 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-967)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3803,10 +3803,10 @@ NIL
(-968 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-553))))
+((|HasCategory| |#2| (QUOTE (-554))))
(-969 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4399 . T))
+((-4400 . T))
NIL
(-970 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3822,7 +3822,7 @@ NIL
NIL
(-973 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-974 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3840,18 +3840,18 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-978 K R UP -3249)
+(-978 K R UP -3478)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-979 |vl| |nv|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
+(-979 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
+((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))))
+(-980 |vl| |nv|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
-(-980 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))))
(-981 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
@@ -3860,17 +3860,17 @@ NIL
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-983 A B R S)
-((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
-NIL
-NIL
-(-984 A S)
+(-983 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-1141))))
-(-985 S)
+((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1141))))
+(-984 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+NIL
+(-985 A B R S)
+((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
+NIL
NIL
(-986 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3882,28 +3882,28 @@ NIL
NIL
(-988 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
NIL
-(-989 S R)
+(-989 R)
+((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
+((-4393 |has| |#1| (-289)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543))))
+(-990 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-289))))
-(-990 R)
+((|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-289))))
+(-991 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4392 |has| |#1| (-289)) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 |has| |#1| (-289)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-991 QR R QS S)
+(-992 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-992 R)
-((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4392 |has| |#1| (-289)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543))))
(-993 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-994 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3912,14 +3912,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-996 -3249 UP UPUP |radicnd| |n|)
+(-996 -3478 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4392 |has| (-406 |#2|) (-362)) (-4397 |has| (-406 |#2|) (-362)) (-4391 |has| (-406 |#2|) (-362)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4050 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4050 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4050 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-561)))) (-4050 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+((-4393 |has| (-406 |#2|) (-362)) (-4398 |has| (-406 |#2|) (-362)) (-4392 |has| (-406 |#2|) (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-349))) (-3936 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-349))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
(-997 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4050 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144)))))
(-998)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3939,7 +3939,7 @@ NIL
(-1002 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-1090))))
+((|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-1091))))
(-1003 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -3950,21 +3950,21 @@ NIL
NIL
(-1005)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4392 . T) (-4397 . T) (-4391 . T) (-4394 . T) (-4393 . T) ((-4401 "*") . T) (-4396 . T))
+((-4393 . T) (-4398 . T) (-4392 . T) (-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4397 . T))
NIL
-(-1006 R -3249)
+(-1006 R -3478)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1007 R -3249)
+(-1007 R -3478)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1008 -3249 UP)
+(-1008 -3478 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1009 -3249 UP)
+(-1009 -3478 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3980,16 +3980,16 @@ NIL
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1013 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+(-1013)
+((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
(-1014 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1015)
-((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
+(-1015 |Pol|)
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
(-1016)
@@ -3998,36 +3998,36 @@ NIL
NIL
(-1017 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4392 . T) (-4397 . T) (-4391 . T) (-4394 . T) (-4393 . T) ((-4401 "*") . T) (-4396 . T))
-((-4050 (|HasCategory| (-406 (-561)) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-406 (-561)) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 (-561)) (LIST (QUOTE -1031) (QUOTE (-561)))))
-(-1018 -3249 L)
+((-4393 . T) (-4398 . T) (-4392 . T) (-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4397 . T))
+((-3936 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-406 (-544)) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-406 (-544)) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 (-544)) (LIST (QUOTE -1031) (QUOTE (-544)))))
+(-1018 -3478 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
(-1019 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1090))))
+((|HasCategory| |#1| (QUOTE (-1091))))
(-1020 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
-(-1021 R)
-((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857)))))
+(-1021)
+((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
+NIL
NIL
-((|HasAttribute| |#1| (QUOTE (-4401 "*"))))
(-1022 R)
+((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
+NIL
+((|HasAttribute| |#1| (QUOTE (-4402 "*"))))
+(-1023 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))))
-(-1023 S)
+(-1024 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1024)
-((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
-NIL
-NIL
(-1025 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
@@ -4036,14 +4036,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1027 -3249 |Expon| |VarSet| |FPol| |LFPol|)
+(-1027 -3478 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1028)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2677) (QUOTE (-52))))))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-52) (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-52) (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2226) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -308) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-51) (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))))
(-1029)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4060,20 +4060,20 @@ NIL
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1033)
-((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
+(-1033 R)
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1034 UP)
-((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
+(-1034)
+((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1035 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
+(-1035 UP)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
(-1036 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
(-1037 T$)
@@ -4086,8 +4086,8 @@ NIL
NIL
(-1039 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1090))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -774) (|devaluate| |#1|) (LIST (QUOTE -858) (|devaluate| |#2|)))))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| (-858 |#2|) (QUOTE (-367))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1091))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -774) (|devaluate| |#1|) (LIST (QUOTE -858) (|devaluate| |#2|)))))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-858 |#2|) (QUOTE (-367))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))))
(-1040)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
@@ -4098,24 +4098,24 @@ NIL
NIL
(-1042)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4396 . T))
+((-4397 . T))
NIL
-(-1043 |xx| -3249)
+(-1043 |xx| -3478)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
(-1044 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-553))) (|HasCategory| |#4| (QUOTE (-171))))
+((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-554))) (|HasCategory| |#4| (QUOTE (-171))))
(-1045 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4399 . T) (-4394 . T) (-4393 . T))
+((-4400 . T) (-4395 . T) (-4394 . T))
NIL
(-1046 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4399 . T) (-4394 . T) (-4393 . T))
-((-4050 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4395 . T) (-4394 . T))
+((-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857)))))
(-1047 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4134,7 +4134,7 @@ NIL
NIL
(-1051)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1052 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -4142,19 +4142,19 @@ NIL
NIL
(-1053)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4387 . T) (-4391 . T) (-4386 . T) (-4397 . T) (-4398 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4388 . T) (-4392 . T) (-4387 . T) (-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1054)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2677) (QUOTE (-52))))))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-52) (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (QUOTE (-1090))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-52) (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2226) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -308) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-51) (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))))
(-1055 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -985) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-1166)))))
+((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -984) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-1166)))))
(-1056 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
NIL
(-1057)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4178,7 +4178,7 @@ NIL
NIL
(-1062 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-1063 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4188,15 +4188,15 @@ NIL
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1065 |f|)
-((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
+(-1065 |Base| R -3478)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1066 |Base| R -3249)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-1066 |f|)
+((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1067 |Base| R -3249)
+(-1067 |Base| R -3478)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4204,14 +4204,14 @@ NIL
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1069 UP SAE UPA)
+(-1069 R UP M)
+((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
+((-4393 |has| |#1| (-362)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-349))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-349)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))))
+(-1070 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1070 R UP M)
-((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4392 |has| |#1| (-362)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))))
(-1071 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4238,36 +4238,36 @@ NIL
NIL
(-1077 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-1078 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1079 R S)
+(-1079 S)
+((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1091))))
+(-1080 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-842))))
-(-1080)
+(-1081)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1081 R S)
-((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
-NIL
-NIL
(-1082 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1090))))
-(-1083 S)
-((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
+((|HasCategory| |#1| (QUOTE (-1091))))
+(-1083 R S)
+((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
(-1084 S)
-((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
+NIL
NIL
-((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090))))
(-1085 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
NIL
@@ -4276,36 +4276,36 @@ NIL
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1087 A S)
+(-1087 S)
+((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
+((-4400 . T) (-4390 . T) (-4401 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-1088 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1088 S)
+(-1089 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4389 . T))
+((-4390 . T))
NIL
-(-1089 S)
+(-1090 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1090)
+(-1091)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1091 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1092 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1092 S)
-((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4399 . T) (-4389 . T) (-4400 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-1093 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
+(-1093)
+((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1094)
-((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
+(-1094 |Str| |Sym| |Int| |Flt| |Expr|)
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
(-1095 |Str| |Sym| |Int| |Flt| |Expr|)
@@ -4326,7 +4326,7 @@ NIL
NIL
(-1099 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-1100)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4342,26 +4342,26 @@ NIL
NIL
(-1103 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4393 |has| |#3| (-1042)) (-4394 |has| |#3| (-1042)) (-4396 |has| |#3| (-6 -4396)) ((-4401 "*") |has| |#3| (-171)) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4050 (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#3| (QUOTE (-362))) (-4050 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4050 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-4050 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-4050 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4050 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1090)))) (-4050 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4050 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4050 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4050 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-720)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-842)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090))))) (-4050 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4050 (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090)))) (|HasAttribute| |#3| (QUOTE -4396)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+((-4394 |has| |#3| (-1042)) (-4395 |has| |#3| (-1042)) (-4397 |has| |#3| (-6 -4397)) ((-4402 "*") |has| |#3| (-171)) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#3| (QUOTE (-362))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-3936 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#3| (QUOTE -4397)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
(-1104 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-450))))
(-1105)
-((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
+((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1106 R -3249)
-((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1106)
+((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1107 R)
-((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1107 R -3478)
+((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1108)
-((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
+(-1108 R)
+((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
(-1109)
@@ -4370,19 +4370,19 @@ NIL
NIL
(-1110)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4387 . T) (-4391 . T) (-4386 . T) (-4397 . T) (-4398 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4388 . T) (-4392 . T) (-4387 . T) (-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1111 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4399 . T) (-4400 . T))
+((-4400 . T) (-4401 . T))
NIL
(-1112 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4401 "*"))) (|HasCategory| |#3| (QUOTE (-171))))
+((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4402 "*"))) (|HasCategory| |#3| (QUOTE (-171))))
(-1113 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4399 . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4400 . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1114 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4390,17 +4390,17 @@ NIL
NIL
(-1115 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-1116 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-362))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))))
(-1117 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
-(-1118 UP -3249)
+(-1118 UP -3478)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4454,19 +4454,19 @@ NIL
NIL
(-1131 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1090)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1090))) (-4050 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1090))))) (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1091)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1091))) (-3936 (-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1091)))) (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-857)))))
(-1132 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4396 . T) (-4388 |has| |#2| (-6 (-4401 "*"))) (-4399 . T) (-4393 . T) (-4394 . T))
-((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4401 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-362))) (-4050 (|HasAttribute| |#2| (QUOTE (-4401 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+((-4397 . T) (-4389 |has| |#2| (-6 (-4402 "*"))) (-4400 . T) (-4394 . T) (-4395 . T))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4402 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasAttribute| |#2| (QUOTE (-4402 "*"))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
(-1133 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1134)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-1135 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4474,12 +4474,12 @@ NIL
NIL
(-1136 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857)))))
(-1137 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-1138 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4490,8 +4490,8 @@ NIL
NIL
(-1140 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))))
+((-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))))
(-1141)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4501,43 +4501,43 @@ NIL
NIL
NIL
(-1143 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-4401 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
+(-1144 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1144 A B)
+(-1145 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1145 A B C)
+(-1146 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1146 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4400 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-1147)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
(-1148)
NIL
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
(-1149 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#1|)))))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (QUOTE (-1090))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857)))))
(-1150 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))
(-1151 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1152 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1153 R UP)
@@ -4558,9 +4558,9 @@ NIL
NIL
(-1157 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4401 "*") -4050 (-2198 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-2198 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-902)))) (-4392 -4050 (-2198 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-553)) (-2198 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-902)))) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|)))))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasCategory| (-561) (QUOTE (-1102))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-1158 R -3249)
+(((-4402 "*") -3936 (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-903)))) (-4393 -3936 (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-554)) (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-146)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|))))) (|HasCategory| (-544) (QUOTE (-1102))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1013)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-306)))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1158 R -3478)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4568,26 +4568,26 @@ NIL
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1160 R S)
+(-1160 R)
+((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1161 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1161 E OV R P)
+(-1162 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1162 R)
-((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4395 |has| |#1| (-362)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-1163 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))))
(-1164 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))))
(-1165)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4602,10 +4602,10 @@ NIL
NIL
(-1168 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-6 -4397)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| (-964) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasAttribute| |#1| (QUOTE -4397)))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-964) (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4398)))
(-1169)
-((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
+((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
(-1170)
@@ -4636,14 +4636,14 @@ NIL
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1177 S)
+(-1177 |Key| |Entry|)
+((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
+((-4400 . T) (-4401 . T))
+((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))))
+(-1178 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1178 |Key| |Entry|)
-((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4399 . T) (-4400 . T))
-((-12 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2677) (|devaluate| |#2|)))))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4050 (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
(-1179 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4654,7 +4654,7 @@ NIL
NIL
(-1181 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4400 . T))
+((-4401 . T))
NIL
(-1182 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4664,12 +4664,12 @@ NIL
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1184 S)
-((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
+(-1184)
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1185)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
+(-1185 S)
+((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
(-1186)
@@ -4694,8 +4694,8 @@ NIL
NIL
(-1191 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
(-1192 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4704,7 +4704,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1194 R -3249)
+(-1194 R -3478)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4712,22 +4712,22 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1196 R -3249)
+(-1196 R -3478)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -879) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -879) (|devaluate| |#1|)))))
-(-1197 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -879) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -879) (|devaluate| |#1|)))))
+(-1197 |Coef|)
+((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))))
+(-1198 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-367))))
-(-1198 R E V P)
+(-1199 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
-(-1199 |Coef|)
-((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-362))))
(-1200 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4739,17 +4739,17 @@ NIL
(-1202 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
-(-1203 -3249)
+((|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))))
+(-1203 -3478)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
(-1204)
-((|constructor| (NIL "This domain represents a type AST.")))
+((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
(-1205)
-((|constructor| (NIL "The fundamental Type.")))
+((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
(-1206 S)
@@ -4766,7 +4766,7 @@ NIL
NIL
(-1209)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1210)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
@@ -4780,150 +4780,150 @@ NIL
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1213 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1213 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
+(((-4402 "*") -3936 (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-903)))) (-4393 -3936 (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-814))) (|has| |#1| (-554)) (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-146)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|))))) (|HasCategory| (-544) (QUOTE (-1102))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1013)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-306)))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1214 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1214 |Coef|)
+(-1215 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-1215 S |Coef| UTS)
+(-1216 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
-(-1216 |Coef| UTS)
+(-1217 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-1217 |Coef| UTS)
+(-1218 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-4050 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasCategory| (-561) (QUOTE (-1102))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1015)))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))))) (-4050 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-902))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))))
-(-1218 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4401 "*") -4050 (-2198 (|has| |#1| (-362)) (|has| (-1246 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-2198 (|has| |#1| (-362)) (|has| (-1246 |#1| |#2| |#3|) (-902)))) (-4392 -4050 (-2198 (|has| |#1| (-362)) (|has| (-1246 |#1| |#2| |#3|) (-814))) (|has| |#1| (-553)) (-2198 (|has| |#1| (-362)) (|has| (-1246 |#1| |#2| |#3|) (-902)))) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|)))))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasCategory| (-561) (QUOTE (-1102))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-3936 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))))) (-3936 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232))))) (|HasCategory| (-544) (QUOTE (-1102))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-903))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))))
(-1219 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1220 R S)
+(-1220 S)
+((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1091))))
+(-1221 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-842))))
-(-1221 S)
-((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090))))
-(-1222 |x| R |y| S)
+(-1222 |x| R)
+((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4396 |has| |#2| (-362)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-1223 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1223 R Q UP)
+(-1224 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1224 R UP)
+(-1225 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1225 R UP)
+(-1226 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1226 R U)
+(-1227 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1227 |x| R)
-((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4401 "*") |has| |#2| (-171)) (-4392 |has| |#2| (-553)) (-4395 |has| |#2| (-362)) (-4397 |has| |#2| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4050 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4050 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4050 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
-(-1228 R PR S PS)
-((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
-NIL
-NIL
-(-1229 S R)
+(-1228 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1141))))
-(-1230 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1141))))
+(-1229 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4395 |has| |#1| (-362)) (-4397 |has| |#1| (-6 -4397)) (-4394 . T) (-4393 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T))
+NIL
+(-1230 R PR S PS)
+((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
+NIL
NIL
(-1231 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4064) (LIST (|devaluate| |#2|) (QUOTE (-1166))))))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4353) (LIST (|devaluate| |#2|) (QUOTE (-1166))))))
(-1232 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1233 RC P)
-((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
+((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1234 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1234 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(-1235 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1235 |Coef|)
+(-1236 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-1236 S |Coef| ULS)
+(-1237 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1237 |Coef| ULS)
+(-1238 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-1238 |Coef| ULS)
+(-1239 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
-(-1239 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4397 |has| |#1| (-362)) (-4391 |has| |#1| (-362)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4050 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))
(-1240 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4401 "*") |has| (-1239 |#2| |#3| |#4|) (-171)) (-4392 |has| (-1239 |#2| |#3| |#4|) (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| (-1239 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-1239 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1239 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1239 |#2| |#3| |#4|) (QUOTE (-171))) (-4050 (|HasCategory| (-1239 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-1239 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| (-1239 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-1239 |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-1239 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1239 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1239 |#2| |#3| |#4|) (QUOTE (-553))))
+(((-4402 "*") |has| (-1234 |#2| |#3| |#4|) (-171)) (-4393 |has| (-1234 |#2| |#3| |#4|) (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-171))) (-3936 (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-554))))
(-1241 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4400)))
+((|HasAttribute| |#1| (QUOTE -4401)))
(-1242 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1243 |Coef1| |Coef2| UTS1 UTS2)
+(-1243 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(-1244 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1244 S |Coef|)
+(-1245 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasSignature| |#2| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2563) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))))
-(-1245 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasSignature| |#2| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4219) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))))
+(-1246 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
-(-1246 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4401 "*") |has| |#1| (-171)) (-4392 |has| |#1| (-553)) (-4393 . T) (-4394 . T) (-4396 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4050 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4064) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-4050 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -2563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1405) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
(-1247 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1248 -3249 UP L UTS)
+(-1248 -3478 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-553))))
+((|HasCategory| |#1| (QUOTE (-554))))
(-1249)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
@@ -4938,30 +4938,30 @@ NIL
((|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1252 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4400 . T) (-4399 . T))
+((-4401 . T) (-4400 . T))
NIL
-(-1253 A B)
+(-1253 R)
+((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
+((-4401 . T) (-4400 . T))
+((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-1254 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1254 R)
-((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4400 . T) (-4399 . T))
-((-4050 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4050 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4050 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-1255)
-((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
(-1256)
-((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
+((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
(-1257)
-((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
+((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
(-1258)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
(-1259)
@@ -4974,13 +4974,13 @@ NIL
NIL
(-1261 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4394 . T) (-4393 . T))
+((-4395 . T) (-4394 . T))
NIL
(-1262 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1263 K R UP -3249)
+(-1263 K R UP -3478)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -4994,56 +4994,56 @@ NIL
NIL
(-1266 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4394 |has| |#1| (-171)) (-4393 |has| |#1| (-171)) (-4396 . T))
+((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
(-1267 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4400 . T) (-4399 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
+((-4401 . T) (-4400 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857)))))
(-1268 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4393 . T) (-4394 . T) (-4396 . T))
+((-4394 . T) (-4395 . T) (-4397 . T))
NIL
(-1269 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4396 . T) (-4392 |has| |#2| (-6 -4392)) (-4394 . T) (-4393 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4392)))
+((-4397 . T) (-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4393)))
(-1270 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1271 |vl| R)
-((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4392 |has| |#2| (-6 -4392)) (-4394 . T) (-4393 . T) (-4396 . T))
-NIL
-(-1272 S -3249)
+(-1271 S -3478)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))))
-(-1273 -3249)
+(-1272 -3478)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4391 . T) (-4397 . T) (-4392 . T) ((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
+NIL
+(-1273 |vl| R)
+((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
+((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T))
NIL
(-1274 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4392 |has| |#2| (-6 -4392)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -711) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasAttribute| |#2| (QUOTE -4392)))
-(-1275 |vl| R)
+((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -711) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasAttribute| |#2| (QUOTE -4393)))
+(-1275 R)
+((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
+((-4393 |has| |#1| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4393)))
+(-1276 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4392 |has| |#2| (-6 -4392)) (-4394 . T) (-4393 . T) (-4396 . T))
+((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T))
NIL
-(-1276 R)
-((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4392 |has| |#1| (-6 -4392)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4392)))
(-1277 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4396 . T) (-4397 |has| |#1| (-6 -4397)) (-4392 |has| |#1| (-6 -4392)) (-4394 . T) (-4393 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4396)) (|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#1| (QUOTE -4392)))
+((-4397 . T) (-4398 |has| |#1| (-6 -4398)) (-4393 |has| |#1| (-6 -4393)) (-4395 . T) (-4394 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#1| (QUOTE -4398)) (|HasAttribute| |#1| (QUOTE -4393)))
(-1278 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4392 |has| |#2| (-6 -4392)) (-4394 . T) (-4393 . T) (-4396 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4392)))
+((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4393)))
(-1279 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
@@ -5058,7 +5058,7 @@ NIL
NIL
(-1282 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4401 "*") . T) (-4393 . T) (-4394 . T) (-4396 . T))
+(((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T))
NIL
NIL
NIL
@@ -5076,4 +5076,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2280948 2280953 2280958 2280963) (-2 NIL 2280928 2280933 2280938 2280943) (-1 NIL 2280908 2280913 2280918 2280923) (0 NIL 2280888 2280893 2280898 2280903) (-1282 "ZMOD.spad" 2280697 2280710 2280826 2280883) (-1281 "ZLINDEP.spad" 2279741 2279752 2280687 2280692) (-1280 "ZDSOLVE.spad" 2269590 2269612 2279731 2279736) (-1279 "YSTREAM.spad" 2269083 2269094 2269580 2269585) (-1278 "XRPOLY.spad" 2268303 2268323 2268939 2269008) (-1277 "XPR.spad" 2266094 2266107 2268021 2268120) (-1276 "XPOLY.spad" 2265649 2265660 2265950 2266019) (-1275 "XPOLYC.spad" 2264966 2264982 2265575 2265644) (-1274 "XPBWPOLY.spad" 2263403 2263423 2264746 2264815) (-1273 "XF.spad" 2261864 2261879 2263305 2263398) (-1272 "XF.spad" 2260305 2260322 2261748 2261753) (-1271 "XFALG.spad" 2257329 2257345 2260231 2260300) (-1270 "XEXPPKG.spad" 2256580 2256606 2257319 2257324) (-1269 "XDPOLY.spad" 2256194 2256210 2256436 2256505) (-1268 "XALG.spad" 2255854 2255865 2256150 2256189) (-1267 "WUTSET.spad" 2251693 2251710 2255500 2255527) (-1266 "WP.spad" 2250892 2250936 2251551 2251618) (-1265 "WHILEAST.spad" 2250690 2250699 2250882 2250887) (-1264 "WHEREAST.spad" 2250361 2250370 2250680 2250685) (-1263 "WFFINTBS.spad" 2247924 2247946 2250351 2250356) (-1262 "WEIER.spad" 2246138 2246149 2247914 2247919) (-1261 "VSPACE.spad" 2245811 2245822 2246106 2246133) (-1260 "VSPACE.spad" 2245504 2245517 2245801 2245806) (-1259 "VOID.spad" 2245181 2245190 2245494 2245499) (-1258 "VIEW.spad" 2242803 2242812 2245171 2245176) (-1257 "VIEWDEF.spad" 2238000 2238009 2242793 2242798) (-1256 "VIEW3D.spad" 2221835 2221844 2237990 2237995) (-1255 "VIEW2D.spad" 2209572 2209581 2221825 2221830) (-1254 "VECTOR.spad" 2208247 2208258 2208498 2208525) (-1253 "VECTOR2.spad" 2206874 2206887 2208237 2208242) (-1252 "VECTCAT.spad" 2204774 2204785 2206842 2206869) (-1251 "VECTCAT.spad" 2202482 2202495 2204552 2204557) (-1250 "VARIABLE.spad" 2202262 2202277 2202472 2202477) (-1249 "UTYPE.spad" 2201906 2201915 2202252 2202257) (-1248 "UTSODETL.spad" 2201199 2201223 2201862 2201867) (-1247 "UTSODE.spad" 2199387 2199407 2201189 2201194) (-1246 "UTS.spad" 2194176 2194204 2197854 2197951) (-1245 "UTSCAT.spad" 2191627 2191643 2194074 2194171) (-1244 "UTSCAT.spad" 2188722 2188740 2191171 2191176) (-1243 "UTS2.spad" 2188315 2188350 2188712 2188717) (-1242 "URAGG.spad" 2182947 2182958 2188305 2188310) (-1241 "URAGG.spad" 2177543 2177556 2182903 2182908) (-1240 "UPXSSING.spad" 2175186 2175212 2176624 2176757) (-1239 "UPXS.spad" 2172334 2172362 2173318 2173467) (-1238 "UPXSCONS.spad" 2170091 2170111 2170466 2170615) (-1237 "UPXSCCA.spad" 2168656 2168676 2169937 2170086) (-1236 "UPXSCCA.spad" 2167363 2167385 2168646 2168651) (-1235 "UPXSCAT.spad" 2165944 2165960 2167209 2167358) (-1234 "UPXS2.spad" 2165485 2165538 2165934 2165939) (-1233 "UPSQFREE.spad" 2163897 2163911 2165475 2165480) (-1232 "UPSCAT.spad" 2161490 2161514 2163795 2163892) (-1231 "UPSCAT.spad" 2158789 2158815 2161096 2161101) (-1230 "UPOLYC.spad" 2153767 2153778 2158631 2158784) (-1229 "UPOLYC.spad" 2148637 2148650 2153503 2153508) (-1228 "UPOLYC2.spad" 2148106 2148125 2148627 2148632) (-1227 "UP.spad" 2145263 2145278 2145656 2145809) (-1226 "UPMP.spad" 2144153 2144166 2145253 2145258) (-1225 "UPDIVP.spad" 2143716 2143730 2144143 2144148) (-1224 "UPDECOMP.spad" 2141953 2141967 2143706 2143711) (-1223 "UPCDEN.spad" 2141160 2141176 2141943 2141948) (-1222 "UP2.spad" 2140522 2140543 2141150 2141155) (-1221 "UNISEG.spad" 2139875 2139886 2140441 2140446) (-1220 "UNISEG2.spad" 2139368 2139381 2139831 2139836) (-1219 "UNIFACT.spad" 2138469 2138481 2139358 2139363) (-1218 "ULS.spad" 2129021 2129049 2130114 2130543) (-1217 "ULSCONS.spad" 2121415 2121435 2121787 2121936) (-1216 "ULSCCAT.spad" 2119144 2119164 2121261 2121410) (-1215 "ULSCCAT.spad" 2116981 2117003 2119100 2119105) (-1214 "ULSCAT.spad" 2115197 2115213 2116827 2116976) (-1213 "ULS2.spad" 2114709 2114762 2115187 2115192) (-1212 "UINT8.spad" 2114586 2114595 2114699 2114704) (-1211 "UINT32.spad" 2114462 2114471 2114576 2114581) (-1210 "UINT16.spad" 2114338 2114347 2114452 2114457) (-1209 "UFD.spad" 2113403 2113412 2114264 2114333) (-1208 "UFD.spad" 2112530 2112541 2113393 2113398) (-1207 "UDVO.spad" 2111377 2111386 2112520 2112525) (-1206 "UDPO.spad" 2108804 2108815 2111333 2111338) (-1205 "TYPE.spad" 2108736 2108745 2108794 2108799) (-1204 "TYPEAST.spad" 2108655 2108664 2108726 2108731) (-1203 "TWOFACT.spad" 2107305 2107320 2108645 2108650) (-1202 "TUPLE.spad" 2106789 2106800 2107204 2107209) (-1201 "TUBETOOL.spad" 2103626 2103635 2106779 2106784) (-1200 "TUBE.spad" 2102267 2102284 2103616 2103621) (-1199 "TS.spad" 2100856 2100872 2101832 2101929) (-1198 "TSETCAT.spad" 2087983 2088000 2100824 2100851) (-1197 "TSETCAT.spad" 2075096 2075115 2087939 2087944) (-1196 "TRMANIP.spad" 2069462 2069479 2074802 2074807) (-1195 "TRIMAT.spad" 2068421 2068446 2069452 2069457) (-1194 "TRIGMNIP.spad" 2066938 2066955 2068411 2068416) (-1193 "TRIGCAT.spad" 2066450 2066459 2066928 2066933) (-1192 "TRIGCAT.spad" 2065960 2065971 2066440 2066445) (-1191 "TREE.spad" 2064531 2064542 2065567 2065594) (-1190 "TRANFUN.spad" 2064362 2064371 2064521 2064526) (-1189 "TRANFUN.spad" 2064191 2064202 2064352 2064357) (-1188 "TOPSP.spad" 2063865 2063874 2064181 2064186) (-1187 "TOOLSIGN.spad" 2063528 2063539 2063855 2063860) (-1186 "TEXTFILE.spad" 2062085 2062094 2063518 2063523) (-1185 "TEX.spad" 2059217 2059226 2062075 2062080) (-1184 "TEX1.spad" 2058773 2058784 2059207 2059212) (-1183 "TEMUTL.spad" 2058328 2058337 2058763 2058768) (-1182 "TBCMPPK.spad" 2056421 2056444 2058318 2058323) (-1181 "TBAGG.spad" 2055457 2055480 2056401 2056416) (-1180 "TBAGG.spad" 2054501 2054526 2055447 2055452) (-1179 "TANEXP.spad" 2053877 2053888 2054491 2054496) (-1178 "TABLE.spad" 2052288 2052311 2052558 2052585) (-1177 "TABLEAU.spad" 2051769 2051780 2052278 2052283) (-1176 "TABLBUMP.spad" 2048552 2048563 2051759 2051764) (-1175 "SYSTEM.spad" 2047826 2047835 2048542 2048547) (-1174 "SYSSOLP.spad" 2045299 2045310 2047816 2047821) (-1173 "SYSNNI.spad" 2044475 2044486 2045289 2045294) (-1172 "SYSINT.spad" 2043948 2043959 2044465 2044470) (-1171 "SYNTAX.spad" 2040218 2040227 2043938 2043943) (-1170 "SYMTAB.spad" 2038274 2038283 2040208 2040213) (-1169 "SYMS.spad" 2034259 2034268 2038264 2038269) (-1168 "SYMPOLY.spad" 2033266 2033277 2033348 2033475) (-1167 "SYMFUNC.spad" 2032741 2032752 2033256 2033261) (-1166 "SYMBOL.spad" 2030168 2030177 2032731 2032736) (-1165 "SWITCH.spad" 2026925 2026934 2030158 2030163) (-1164 "SUTS.spad" 2023824 2023852 2025392 2025489) (-1163 "SUPXS.spad" 2020959 2020987 2021956 2022105) (-1162 "SUP.spad" 2017728 2017739 2018509 2018662) (-1161 "SUPFRACF.spad" 2016833 2016851 2017718 2017723) (-1160 "SUP2.spad" 2016223 2016236 2016823 2016828) (-1159 "SUMRF.spad" 2015189 2015200 2016213 2016218) (-1158 "SUMFS.spad" 2014822 2014839 2015179 2015184) (-1157 "SULS.spad" 2005361 2005389 2006467 2006896) (-1156 "SUCHTAST.spad" 2005130 2005139 2005351 2005356) (-1155 "SUCH.spad" 2004810 2004825 2005120 2005125) (-1154 "SUBSPACE.spad" 1996817 1996832 2004800 2004805) (-1153 "SUBRESP.spad" 1995977 1995991 1996773 1996778) (-1152 "STTF.spad" 1992076 1992092 1995967 1995972) (-1151 "STTFNC.spad" 1988544 1988560 1992066 1992071) (-1150 "STTAYLOR.spad" 1980942 1980953 1988425 1988430) (-1149 "STRTBL.spad" 1979447 1979464 1979596 1979623) (-1148 "STRING.spad" 1978856 1978865 1978870 1978897) (-1147 "STRICAT.spad" 1978644 1978653 1978824 1978851) (-1146 "STREAM.spad" 1975502 1975513 1978169 1978184) (-1145 "STREAM3.spad" 1975047 1975062 1975492 1975497) (-1144 "STREAM2.spad" 1974115 1974128 1975037 1975042) (-1143 "STREAM1.spad" 1973819 1973830 1974105 1974110) (-1142 "STINPROD.spad" 1972725 1972741 1973809 1973814) (-1141 "STEP.spad" 1971926 1971935 1972715 1972720) (-1140 "STBL.spad" 1970452 1970480 1970619 1970634) (-1139 "STAGG.spad" 1969527 1969538 1970442 1970447) (-1138 "STAGG.spad" 1968600 1968613 1969517 1969522) (-1137 "STACK.spad" 1967951 1967962 1968207 1968234) (-1136 "SREGSET.spad" 1965655 1965672 1967597 1967624) (-1135 "SRDCMPK.spad" 1964200 1964220 1965645 1965650) (-1134 "SRAGG.spad" 1959297 1959306 1964168 1964195) (-1133 "SRAGG.spad" 1954414 1954425 1959287 1959292) (-1132 "SQMATRIX.spad" 1952030 1952048 1952946 1953033) (-1131 "SPLTREE.spad" 1946582 1946595 1951466 1951493) (-1130 "SPLNODE.spad" 1943170 1943183 1946572 1946577) (-1129 "SPFCAT.spad" 1941947 1941956 1943160 1943165) (-1128 "SPECOUT.spad" 1940497 1940506 1941937 1941942) (-1127 "SPADXPT.spad" 1932636 1932645 1940487 1940492) (-1126 "spad-parser.spad" 1932101 1932110 1932626 1932631) (-1125 "SPADAST.spad" 1931802 1931811 1932091 1932096) (-1124 "SPACEC.spad" 1915815 1915826 1931792 1931797) (-1123 "SPACE3.spad" 1915591 1915602 1915805 1915810) (-1122 "SORTPAK.spad" 1915136 1915149 1915547 1915552) (-1121 "SOLVETRA.spad" 1912893 1912904 1915126 1915131) (-1120 "SOLVESER.spad" 1911413 1911424 1912883 1912888) (-1119 "SOLVERAD.spad" 1907423 1907434 1911403 1911408) (-1118 "SOLVEFOR.spad" 1905843 1905861 1907413 1907418) (-1117 "SNTSCAT.spad" 1905443 1905460 1905811 1905838) (-1116 "SMTS.spad" 1903703 1903729 1905008 1905105) (-1115 "SMP.spad" 1901142 1901162 1901532 1901659) (-1114 "SMITH.spad" 1899985 1900010 1901132 1901137) (-1113 "SMATCAT.spad" 1898095 1898125 1899929 1899980) (-1112 "SMATCAT.spad" 1896137 1896169 1897973 1897978) (-1111 "SKAGG.spad" 1895098 1895109 1896105 1896132) (-1110 "SINT.spad" 1893924 1893933 1894964 1895093) (-1109 "SIMPAN.spad" 1893652 1893661 1893914 1893919) (-1108 "SIG.spad" 1892980 1892989 1893642 1893647) (-1107 "SIGNRF.spad" 1892088 1892099 1892970 1892975) (-1106 "SIGNEF.spad" 1891357 1891374 1892078 1892083) (-1105 "SIGAST.spad" 1890738 1890747 1891347 1891352) (-1104 "SHP.spad" 1888656 1888671 1890694 1890699) (-1103 "SHDP.spad" 1878367 1878394 1878876 1879007) (-1102 "SGROUP.spad" 1877975 1877984 1878357 1878362) (-1101 "SGROUP.spad" 1877581 1877592 1877965 1877970) (-1100 "SGCF.spad" 1870462 1870471 1877571 1877576) (-1099 "SFRTCAT.spad" 1869390 1869407 1870430 1870457) (-1098 "SFRGCD.spad" 1868453 1868473 1869380 1869385) (-1097 "SFQCMPK.spad" 1863090 1863110 1868443 1868448) (-1096 "SFORT.spad" 1862525 1862539 1863080 1863085) (-1095 "SEXOF.spad" 1862368 1862408 1862515 1862520) (-1094 "SEX.spad" 1862260 1862269 1862358 1862363) (-1093 "SEXCAT.spad" 1859811 1859851 1862250 1862255) (-1092 "SET.spad" 1858111 1858122 1859232 1859271) (-1091 "SETMN.spad" 1856545 1856562 1858101 1858106) (-1090 "SETCAT.spad" 1856030 1856039 1856535 1856540) (-1089 "SETCAT.spad" 1855513 1855524 1856020 1856025) (-1088 "SETAGG.spad" 1852034 1852045 1855493 1855508) (-1087 "SETAGG.spad" 1848563 1848576 1852024 1852029) (-1086 "SEQAST.spad" 1848266 1848275 1848553 1848558) (-1085 "SEGXCAT.spad" 1847388 1847401 1848256 1848261) (-1084 "SEG.spad" 1847201 1847212 1847307 1847312) (-1083 "SEGCAT.spad" 1846108 1846119 1847191 1847196) (-1082 "SEGBIND.spad" 1845180 1845191 1846063 1846068) (-1081 "SEGBIND2.spad" 1844876 1844889 1845170 1845175) (-1080 "SEGAST.spad" 1844590 1844599 1844866 1844871) (-1079 "SEG2.spad" 1844015 1844028 1844546 1844551) (-1078 "SDVAR.spad" 1843291 1843302 1844005 1844010) (-1077 "SDPOL.spad" 1840681 1840692 1840972 1841099) (-1076 "SCPKG.spad" 1838760 1838771 1840671 1840676) (-1075 "SCOPE.spad" 1837905 1837914 1838750 1838755) (-1074 "SCACHE.spad" 1836587 1836598 1837895 1837900) (-1073 "SASTCAT.spad" 1836496 1836505 1836577 1836582) (-1072 "SAOS.spad" 1836368 1836377 1836486 1836491) (-1071 "SAERFFC.spad" 1836081 1836101 1836358 1836363) (-1070 "SAE.spad" 1834256 1834272 1834867 1835002) (-1069 "SAEFACT.spad" 1833957 1833977 1834246 1834251) (-1068 "RURPK.spad" 1831598 1831614 1833947 1833952) (-1067 "RULESET.spad" 1831039 1831063 1831588 1831593) (-1066 "RULE.spad" 1829243 1829267 1831029 1831034) (-1065 "RULECOLD.spad" 1829095 1829108 1829233 1829238) (-1064 "RSTRCAST.spad" 1828812 1828821 1829085 1829090) (-1063 "RSETGCD.spad" 1825190 1825210 1828802 1828807) (-1062 "RSETCAT.spad" 1814974 1814991 1825158 1825185) (-1061 "RSETCAT.spad" 1804778 1804797 1814964 1814969) (-1060 "RSDCMPK.spad" 1803230 1803250 1804768 1804773) (-1059 "RRCC.spad" 1801614 1801644 1803220 1803225) (-1058 "RRCC.spad" 1799996 1800028 1801604 1801609) (-1057 "RPTAST.spad" 1799698 1799707 1799986 1799991) (-1056 "RPOLCAT.spad" 1779058 1779073 1799566 1799693) (-1055 "RPOLCAT.spad" 1758132 1758149 1778642 1778647) (-1054 "ROUTINE.spad" 1753995 1754004 1756779 1756806) (-1053 "ROMAN.spad" 1753323 1753332 1753861 1753990) (-1052 "ROIRC.spad" 1752403 1752435 1753313 1753318) (-1051 "RNS.spad" 1751306 1751315 1752305 1752398) (-1050 "RNS.spad" 1750295 1750306 1751296 1751301) (-1049 "RNG.spad" 1750030 1750039 1750285 1750290) (-1048 "RMODULE.spad" 1749668 1749679 1750020 1750025) (-1047 "RMCAT2.spad" 1749076 1749133 1749658 1749663) (-1046 "RMATRIX.spad" 1747900 1747919 1748243 1748282) (-1045 "RMATCAT.spad" 1743433 1743464 1747856 1747895) (-1044 "RMATCAT.spad" 1738856 1738889 1743281 1743286) (-1043 "RINTERP.spad" 1738744 1738764 1738846 1738851) (-1042 "RING.spad" 1738214 1738223 1738724 1738739) (-1041 "RING.spad" 1737692 1737703 1738204 1738209) (-1040 "RIDIST.spad" 1737076 1737085 1737682 1737687) (-1039 "RGCHAIN.spad" 1735655 1735671 1736561 1736588) (-1038 "RGBCSPC.spad" 1735436 1735448 1735645 1735650) (-1037 "RGBCMDL.spad" 1734966 1734978 1735426 1735431) (-1036 "RF.spad" 1732580 1732591 1734956 1734961) (-1035 "RFFACTOR.spad" 1732042 1732053 1732570 1732575) (-1034 "RFFACT.spad" 1731777 1731789 1732032 1732037) (-1033 "RFDIST.spad" 1730765 1730774 1731767 1731772) (-1032 "RETSOL.spad" 1730182 1730195 1730755 1730760) (-1031 "RETRACT.spad" 1729610 1729621 1730172 1730177) (-1030 "RETRACT.spad" 1729036 1729049 1729600 1729605) (-1029 "RETAST.spad" 1728848 1728857 1729026 1729031) (-1028 "RESULT.spad" 1726908 1726917 1727495 1727522) (-1027 "RESRING.spad" 1726255 1726302 1726846 1726903) (-1026 "RESLATC.spad" 1725579 1725590 1726245 1726250) (-1025 "REPSQ.spad" 1725308 1725319 1725569 1725574) (-1024 "REP.spad" 1722860 1722869 1725298 1725303) (-1023 "REPDB.spad" 1722565 1722576 1722850 1722855) (-1022 "REP2.spad" 1712137 1712148 1722407 1722412) (-1021 "REP1.spad" 1706127 1706138 1712087 1712092) (-1020 "REGSET.spad" 1703924 1703941 1705773 1705800) (-1019 "REF.spad" 1703253 1703264 1703879 1703884) (-1018 "REDORDER.spad" 1702429 1702446 1703243 1703248) (-1017 "RECLOS.spad" 1701212 1701232 1701916 1702009) (-1016 "REALSOLV.spad" 1700344 1700353 1701202 1701207) (-1015 "REAL.spad" 1700216 1700225 1700334 1700339) (-1014 "REAL0Q.spad" 1697498 1697513 1700206 1700211) (-1013 "REAL0.spad" 1694326 1694341 1697488 1697493) (-1012 "RDUCEAST.spad" 1694047 1694056 1694316 1694321) (-1011 "RDIV.spad" 1693698 1693723 1694037 1694042) (-1010 "RDIST.spad" 1693261 1693272 1693688 1693693) (-1009 "RDETRS.spad" 1692057 1692075 1693251 1693256) (-1008 "RDETR.spad" 1690164 1690182 1692047 1692052) (-1007 "RDEEFS.spad" 1689237 1689254 1690154 1690159) (-1006 "RDEEF.spad" 1688233 1688250 1689227 1689232) (-1005 "RCFIELD.spad" 1685419 1685428 1688135 1688228) (-1004 "RCFIELD.spad" 1682691 1682702 1685409 1685414) (-1003 "RCAGG.spad" 1680603 1680614 1682681 1682686) (-1002 "RCAGG.spad" 1678442 1678455 1680522 1680527) (-1001 "RATRET.spad" 1677802 1677813 1678432 1678437) (-1000 "RATFACT.spad" 1677494 1677506 1677792 1677797) (-999 "RANDSRC.spad" 1676814 1676822 1677484 1677489) (-998 "RADUTIL.spad" 1676569 1676577 1676804 1676809) (-997 "RADIX.spad" 1673471 1673484 1675036 1675129) (-996 "RADFF.spad" 1671885 1671921 1672003 1672159) (-995 "RADCAT.spad" 1671479 1671487 1671875 1671880) (-994 "RADCAT.spad" 1671071 1671081 1671469 1671474) (-993 "QUEUE.spad" 1670414 1670424 1670678 1670705) (-992 "QUAT.spad" 1668996 1669006 1669338 1669403) (-991 "QUATCT2.spad" 1668615 1668633 1668986 1668991) (-990 "QUATCAT.spad" 1666780 1666790 1668545 1668610) (-989 "QUATCAT.spad" 1664696 1664708 1666463 1666468) (-988 "QUAGG.spad" 1663522 1663532 1664664 1664691) (-987 "QQUTAST.spad" 1663291 1663299 1663512 1663517) (-986 "QFORM.spad" 1662754 1662768 1663281 1663286) (-985 "QFCAT.spad" 1661457 1661467 1662656 1662749) (-984 "QFCAT.spad" 1659751 1659763 1660952 1660957) (-983 "QFCAT2.spad" 1659442 1659458 1659741 1659746) (-982 "QEQUAT.spad" 1658999 1659007 1659432 1659437) (-981 "QCMPACK.spad" 1653746 1653765 1658989 1658994) (-980 "QALGSET.spad" 1649821 1649853 1653660 1653665) (-979 "QALGSET2.spad" 1647817 1647835 1649811 1649816) (-978 "PWFFINTB.spad" 1645127 1645148 1647807 1647812) (-977 "PUSHVAR.spad" 1644456 1644475 1645117 1645122) (-976 "PTRANFN.spad" 1640582 1640592 1644446 1644451) (-975 "PTPACK.spad" 1637670 1637680 1640572 1640577) (-974 "PTFUNC2.spad" 1637491 1637505 1637660 1637665) (-973 "PTCAT.spad" 1636740 1636750 1637459 1637486) (-972 "PSQFR.spad" 1636047 1636071 1636730 1636735) (-971 "PSEUDLIN.spad" 1634905 1634915 1636037 1636042) (-970 "PSETPK.spad" 1620338 1620354 1634783 1634788) (-969 "PSETCAT.spad" 1614258 1614281 1620318 1620333) (-968 "PSETCAT.spad" 1608152 1608177 1614214 1614219) (-967 "PSCURVE.spad" 1607135 1607143 1608142 1608147) (-966 "PSCAT.spad" 1605902 1605931 1607033 1607130) (-965 "PSCAT.spad" 1604759 1604790 1605892 1605897) (-964 "PRTITION.spad" 1603704 1603712 1604749 1604754) (-963 "PRTDAST.spad" 1603423 1603431 1603694 1603699) (-962 "PRS.spad" 1592985 1593002 1603379 1603384) (-961 "PRQAGG.spad" 1592416 1592426 1592953 1592980) (-960 "PROPLOG.spad" 1591819 1591827 1592406 1592411) (-959 "PROPFRML.spad" 1589737 1589748 1591809 1591814) (-958 "PROPERTY.spad" 1589231 1589239 1589727 1589732) (-957 "PRODUCT.spad" 1586911 1586923 1587197 1587252) (-956 "PR.spad" 1585297 1585309 1586002 1586129) (-955 "PRINT.spad" 1585049 1585057 1585287 1585292) (-954 "PRIMES.spad" 1583300 1583310 1585039 1585044) (-953 "PRIMELT.spad" 1581281 1581295 1583290 1583295) (-952 "PRIMCAT.spad" 1580904 1580912 1581271 1581276) (-951 "PRIMARR.spad" 1579909 1579919 1580087 1580114) (-950 "PRIMARR2.spad" 1578632 1578644 1579899 1579904) (-949 "PREASSOC.spad" 1578004 1578016 1578622 1578627) (-948 "PPCURVE.spad" 1577141 1577149 1577994 1577999) (-947 "PORTNUM.spad" 1576916 1576924 1577131 1577136) (-946 "POLYROOT.spad" 1575745 1575767 1576872 1576877) (-945 "POLY.spad" 1573042 1573052 1573559 1573686) (-944 "POLYLIFT.spad" 1572303 1572326 1573032 1573037) (-943 "POLYCATQ.spad" 1570405 1570427 1572293 1572298) (-942 "POLYCAT.spad" 1563811 1563832 1570273 1570400) (-941 "POLYCAT.spad" 1556519 1556542 1562983 1562988) (-940 "POLY2UP.spad" 1555967 1555981 1556509 1556514) (-939 "POLY2.spad" 1555562 1555574 1555957 1555962) (-938 "POLUTIL.spad" 1554503 1554532 1555518 1555523) (-937 "POLTOPOL.spad" 1553251 1553266 1554493 1554498) (-936 "POINT.spad" 1552090 1552100 1552177 1552204) (-935 "PNTHEORY.spad" 1548756 1548764 1552080 1552085) (-934 "PMTOOLS.spad" 1547513 1547527 1548746 1548751) (-933 "PMSYM.spad" 1547058 1547068 1547503 1547508) (-932 "PMQFCAT.spad" 1546645 1546659 1547048 1547053) (-931 "PMPRED.spad" 1546114 1546128 1546635 1546640) (-930 "PMPREDFS.spad" 1545558 1545580 1546104 1546109) (-929 "PMPLCAT.spad" 1544628 1544646 1545490 1545495) (-928 "PMLSAGG.spad" 1544209 1544223 1544618 1544623) (-927 "PMKERNEL.spad" 1543776 1543788 1544199 1544204) (-926 "PMINS.spad" 1543352 1543362 1543766 1543771) (-925 "PMFS.spad" 1542925 1542943 1543342 1543347) (-924 "PMDOWN.spad" 1542211 1542225 1542915 1542920) (-923 "PMASS.spad" 1541223 1541231 1542201 1542206) (-922 "PMASSFS.spad" 1540192 1540208 1541213 1541218) (-921 "PLOTTOOL.spad" 1539972 1539980 1540182 1540187) (-920 "PLOT.spad" 1534803 1534811 1539962 1539967) (-919 "PLOT3D.spad" 1531223 1531231 1534793 1534798) (-918 "PLOT1.spad" 1530364 1530374 1531213 1531218) (-917 "PLEQN.spad" 1517580 1517607 1530354 1530359) (-916 "PINTERP.spad" 1517196 1517215 1517570 1517575) (-915 "PINTERPA.spad" 1516978 1516994 1517186 1517191) (-914 "PI.spad" 1516585 1516593 1516952 1516973) (-913 "PID.spad" 1515541 1515549 1516511 1516580) (-912 "PICOERCE.spad" 1515198 1515208 1515531 1515536) (-911 "PGROEB.spad" 1513795 1513809 1515188 1515193) (-910 "PGE.spad" 1505048 1505056 1513785 1513790) (-909 "PGCD.spad" 1503930 1503947 1505038 1505043) (-908 "PFRPAC.spad" 1503073 1503083 1503920 1503925) (-907 "PFR.spad" 1499730 1499740 1502975 1503068) (-906 "PFOTOOLS.spad" 1498988 1499004 1499720 1499725) (-905 "PFOQ.spad" 1498358 1498376 1498978 1498983) (-904 "PFO.spad" 1497777 1497804 1498348 1498353) (-903 "PF.spad" 1497351 1497363 1497582 1497675) (-902 "PFECAT.spad" 1495017 1495025 1497277 1497346) (-901 "PFECAT.spad" 1492711 1492721 1494973 1494978) (-900 "PFBRU.spad" 1490581 1490593 1492701 1492706) (-899 "PFBR.spad" 1488119 1488142 1490571 1490576) (-898 "PERM.spad" 1483800 1483810 1487949 1487964) (-897 "PERMGRP.spad" 1478536 1478546 1483790 1483795) (-896 "PERMCAT.spad" 1477088 1477098 1478516 1478531) (-895 "PERMAN.spad" 1475620 1475634 1477078 1477083) (-894 "PENDTREE.spad" 1474959 1474969 1475249 1475254) (-893 "PDRING.spad" 1473450 1473460 1474939 1474954) (-892 "PDRING.spad" 1471949 1471961 1473440 1473445) (-891 "PDEPROB.spad" 1470964 1470972 1471939 1471944) (-890 "PDEPACK.spad" 1464966 1464974 1470954 1470959) (-889 "PDECOMP.spad" 1464428 1464445 1464956 1464961) (-888 "PDECAT.spad" 1462782 1462790 1464418 1464423) (-887 "PCOMP.spad" 1462633 1462646 1462772 1462777) (-886 "PBWLB.spad" 1461215 1461232 1462623 1462628) (-885 "PATTERN.spad" 1455646 1455656 1461205 1461210) (-884 "PATTERN2.spad" 1455382 1455394 1455636 1455641) (-883 "PATTERN1.spad" 1453684 1453700 1455372 1455377) (-882 "PATRES.spad" 1451231 1451243 1453674 1453679) (-881 "PATRES2.spad" 1450893 1450907 1451221 1451226) (-880 "PATMATCH.spad" 1449050 1449081 1450601 1450606) (-879 "PATMAB.spad" 1448475 1448485 1449040 1449045) (-878 "PATLRES.spad" 1447559 1447573 1448465 1448470) (-877 "PATAB.spad" 1447323 1447333 1447549 1447554) (-876 "PARTPERM.spad" 1444685 1444693 1447313 1447318) (-875 "PARSURF.spad" 1444113 1444141 1444675 1444680) (-874 "PARSU2.spad" 1443908 1443924 1444103 1444108) (-873 "script-parser.spad" 1443428 1443436 1443898 1443903) (-872 "PARSCURV.spad" 1442856 1442884 1443418 1443423) (-871 "PARSC2.spad" 1442645 1442661 1442846 1442851) (-870 "PARPCURV.spad" 1442103 1442131 1442635 1442640) (-869 "PARPC2.spad" 1441892 1441908 1442093 1442098) (-868 "PAN2EXPR.spad" 1441304 1441312 1441882 1441887) (-867 "PALETTE.spad" 1440274 1440282 1441294 1441299) (-866 "PAIR.spad" 1439257 1439270 1439862 1439867) (-865 "PADICRC.spad" 1436587 1436605 1437762 1437855) (-864 "PADICRAT.spad" 1434602 1434614 1434823 1434916) (-863 "PADIC.spad" 1434297 1434309 1434528 1434597) (-862 "PADICCT.spad" 1432838 1432850 1434223 1434292) (-861 "PADEPAC.spad" 1431517 1431536 1432828 1432833) (-860 "PADE.spad" 1430257 1430273 1431507 1431512) (-859 "OWP.spad" 1429497 1429527 1430115 1430182) (-858 "OVAR.spad" 1429278 1429301 1429487 1429492) (-857 "OUT.spad" 1428362 1428370 1429268 1429273) (-856 "OUTFORM.spad" 1417658 1417666 1428352 1428357) (-855 "OUTBFILE.spad" 1417076 1417084 1417648 1417653) (-854 "OUTBCON.spad" 1416074 1416082 1417066 1417071) (-853 "OUTBCON.spad" 1415070 1415080 1416064 1416069) (-852 "OSI.spad" 1414545 1414553 1415060 1415065) (-851 "OSGROUP.spad" 1414463 1414471 1414535 1414540) (-850 "ORTHPOL.spad" 1412924 1412934 1414380 1414385) (-849 "OREUP.spad" 1412377 1412405 1412604 1412643) (-848 "ORESUP.spad" 1411676 1411700 1412057 1412096) (-847 "OREPCTO.spad" 1409495 1409507 1411596 1411601) (-846 "OREPCAT.spad" 1403552 1403562 1409451 1409490) (-845 "OREPCAT.spad" 1397499 1397511 1403400 1403405) (-844 "ORDSET.spad" 1396665 1396673 1397489 1397494) (-843 "ORDSET.spad" 1395829 1395839 1396655 1396660) (-842 "ORDRING.spad" 1395219 1395227 1395809 1395824) (-841 "ORDRING.spad" 1394617 1394627 1395209 1395214) (-840 "ORDMON.spad" 1394472 1394480 1394607 1394612) (-839 "ORDFUNS.spad" 1393598 1393614 1394462 1394467) (-838 "ORDFIN.spad" 1393418 1393426 1393588 1393593) (-837 "ORDCOMP.spad" 1391883 1391893 1392965 1392994) (-836 "ORDCOMP2.spad" 1391168 1391180 1391873 1391878) (-835 "OPTPROB.spad" 1389806 1389814 1391158 1391163) (-834 "OPTPACK.spad" 1382191 1382199 1389796 1389801) (-833 "OPTCAT.spad" 1379866 1379874 1382181 1382186) (-832 "OPSIG.spad" 1379518 1379526 1379856 1379861) (-831 "OPQUERY.spad" 1379067 1379075 1379508 1379513) (-830 "OP.spad" 1378809 1378819 1378889 1378956) (-829 "OPERCAT.spad" 1378397 1378407 1378799 1378804) (-828 "OPERCAT.spad" 1377983 1377995 1378387 1378392) (-827 "ONECOMP.spad" 1376728 1376738 1377530 1377559) (-826 "ONECOMP2.spad" 1376146 1376158 1376718 1376723) (-825 "OMSERVER.spad" 1375148 1375156 1376136 1376141) (-824 "OMSAGG.spad" 1374936 1374946 1375104 1375143) (-823 "OMPKG.spad" 1373548 1373556 1374926 1374931) (-822 "OM.spad" 1372513 1372521 1373538 1373543) (-821 "OMLO.spad" 1371938 1371950 1372399 1372438) (-820 "OMEXPR.spad" 1371772 1371782 1371928 1371933) (-819 "OMERR.spad" 1371315 1371323 1371762 1371767) (-818 "OMERRK.spad" 1370349 1370357 1371305 1371310) (-817 "OMENC.spad" 1369693 1369701 1370339 1370344) (-816 "OMDEV.spad" 1363982 1363990 1369683 1369688) (-815 "OMCONN.spad" 1363391 1363399 1363972 1363977) (-814 "OINTDOM.spad" 1363154 1363162 1363317 1363386) (-813 "OFMONOID.spad" 1359341 1359351 1363144 1363149) (-812 "ODVAR.spad" 1358602 1358612 1359331 1359336) (-811 "ODR.spad" 1358246 1358272 1358414 1358563) (-810 "ODPOL.spad" 1355592 1355602 1355932 1356059) (-809 "ODP.spad" 1345439 1345459 1345812 1345943) (-808 "ODETOOLS.spad" 1344022 1344041 1345429 1345434) (-807 "ODESYS.spad" 1341672 1341689 1344012 1344017) (-806 "ODERTRIC.spad" 1337613 1337630 1341629 1341634) (-805 "ODERED.spad" 1337000 1337024 1337603 1337608) (-804 "ODERAT.spad" 1334551 1334568 1336990 1336995) (-803 "ODEPRRIC.spad" 1331442 1331464 1334541 1334546) (-802 "ODEPROB.spad" 1330699 1330707 1331432 1331437) (-801 "ODEPRIM.spad" 1327973 1327995 1330689 1330694) (-800 "ODEPAL.spad" 1327349 1327373 1327963 1327968) (-799 "ODEPACK.spad" 1313951 1313959 1327339 1327344) (-798 "ODEINT.spad" 1313382 1313398 1313941 1313946) (-797 "ODEIFTBL.spad" 1310777 1310785 1313372 1313377) (-796 "ODEEF.spad" 1306144 1306160 1310767 1310772) (-795 "ODECONST.spad" 1305663 1305681 1306134 1306139) (-794 "ODECAT.spad" 1304259 1304267 1305653 1305658) (-793 "OCT.spad" 1302397 1302407 1303113 1303152) (-792 "OCTCT2.spad" 1302041 1302062 1302387 1302392) (-791 "OC.spad" 1299815 1299825 1301997 1302036) (-790 "OC.spad" 1297314 1297326 1299498 1299503) (-789 "OCAMON.spad" 1297162 1297170 1297304 1297309) (-788 "OASGP.spad" 1296977 1296985 1297152 1297157) (-787 "OAMONS.spad" 1296497 1296505 1296967 1296972) (-786 "OAMON.spad" 1296358 1296366 1296487 1296492) (-785 "OAGROUP.spad" 1296220 1296228 1296348 1296353) (-784 "NUMTUBE.spad" 1295807 1295823 1296210 1296215) (-783 "NUMQUAD.spad" 1283669 1283677 1295797 1295802) (-782 "NUMODE.spad" 1274805 1274813 1283659 1283664) (-781 "NUMINT.spad" 1272363 1272371 1274795 1274800) (-780 "NUMFMT.spad" 1271203 1271211 1272353 1272358) (-779 "NUMERIC.spad" 1263275 1263285 1271008 1271013) (-778 "NTSCAT.spad" 1261777 1261793 1263243 1263270) (-777 "NTPOLFN.spad" 1261322 1261332 1261694 1261699) (-776 "NSUP.spad" 1254332 1254342 1258872 1259025) (-775 "NSUP2.spad" 1253724 1253736 1254322 1254327) (-774 "NSMP.spad" 1249919 1249938 1250227 1250354) (-773 "NREP.spad" 1248291 1248305 1249909 1249914) (-772 "NPCOEF.spad" 1247537 1247557 1248281 1248286) (-771 "NORMRETR.spad" 1247135 1247174 1247527 1247532) (-770 "NORMPK.spad" 1245037 1245056 1247125 1247130) (-769 "NORMMA.spad" 1244725 1244751 1245027 1245032) (-768 "NONE.spad" 1244466 1244474 1244715 1244720) (-767 "NONE1.spad" 1244142 1244152 1244456 1244461) (-766 "NODE1.spad" 1243611 1243627 1244132 1244137) (-765 "NNI.spad" 1242498 1242506 1243585 1243606) (-764 "NLINSOL.spad" 1241120 1241130 1242488 1242493) (-763 "NIPROB.spad" 1239661 1239669 1241110 1241115) (-762 "NFINTBAS.spad" 1237121 1237138 1239651 1239656) (-761 "NETCLT.spad" 1237095 1237106 1237111 1237116) (-760 "NCODIV.spad" 1235293 1235309 1237085 1237090) (-759 "NCNTFRAC.spad" 1234935 1234949 1235283 1235288) (-758 "NCEP.spad" 1233095 1233109 1234925 1234930) (-757 "NASRING.spad" 1232691 1232699 1233085 1233090) (-756 "NASRING.spad" 1232285 1232295 1232681 1232686) (-755 "NARNG.spad" 1231629 1231637 1232275 1232280) (-754 "NARNG.spad" 1230971 1230981 1231619 1231624) (-753 "NAGSP.spad" 1230044 1230052 1230961 1230966) (-752 "NAGS.spad" 1219569 1219577 1230034 1230039) (-751 "NAGF07.spad" 1217962 1217970 1219559 1219564) (-750 "NAGF04.spad" 1212194 1212202 1217952 1217957) (-749 "NAGF02.spad" 1206003 1206011 1212184 1212189) (-748 "NAGF01.spad" 1201606 1201614 1205993 1205998) (-747 "NAGE04.spad" 1195066 1195074 1201596 1201601) (-746 "NAGE02.spad" 1185408 1185416 1195056 1195061) (-745 "NAGE01.spad" 1181292 1181300 1185398 1185403) (-744 "NAGD03.spad" 1179212 1179220 1181282 1181287) (-743 "NAGD02.spad" 1171743 1171751 1179202 1179207) (-742 "NAGD01.spad" 1165856 1165864 1171733 1171738) (-741 "NAGC06.spad" 1161643 1161651 1165846 1165851) (-740 "NAGC05.spad" 1160112 1160120 1161633 1161638) (-739 "NAGC02.spad" 1159367 1159375 1160102 1160107) (-738 "NAALG.spad" 1158902 1158912 1159335 1159362) (-737 "NAALG.spad" 1158457 1158469 1158892 1158897) (-736 "MULTSQFR.spad" 1155415 1155432 1158447 1158452) (-735 "MULTFACT.spad" 1154798 1154815 1155405 1155410) (-734 "MTSCAT.spad" 1152832 1152853 1154696 1154793) (-733 "MTHING.spad" 1152489 1152499 1152822 1152827) (-732 "MSYSCMD.spad" 1151923 1151931 1152479 1152484) (-731 "MSET.spad" 1149865 1149875 1151629 1151668) (-730 "MSETAGG.spad" 1149710 1149720 1149833 1149860) (-729 "MRING.spad" 1146681 1146693 1149418 1149485) (-728 "MRF2.spad" 1146249 1146263 1146671 1146676) (-727 "MRATFAC.spad" 1145795 1145812 1146239 1146244) (-726 "MPRFF.spad" 1143825 1143844 1145785 1145790) (-725 "MPOLY.spad" 1141260 1141275 1141619 1141746) (-724 "MPCPF.spad" 1140524 1140543 1141250 1141255) (-723 "MPC3.spad" 1140339 1140379 1140514 1140519) (-722 "MPC2.spad" 1139981 1140014 1140329 1140334) (-721 "MONOTOOL.spad" 1138316 1138333 1139971 1139976) (-720 "MONOID.spad" 1137635 1137643 1138306 1138311) (-719 "MONOID.spad" 1136952 1136962 1137625 1137630) (-718 "MONOGEN.spad" 1135698 1135711 1136812 1136947) (-717 "MONOGEN.spad" 1134466 1134481 1135582 1135587) (-716 "MONADWU.spad" 1132480 1132488 1134456 1134461) (-715 "MONADWU.spad" 1130492 1130502 1132470 1132475) (-714 "MONAD.spad" 1129636 1129644 1130482 1130487) (-713 "MONAD.spad" 1128778 1128788 1129626 1129631) (-712 "MOEBIUS.spad" 1127464 1127478 1128758 1128773) (-711 "MODULE.spad" 1127334 1127344 1127432 1127459) (-710 "MODULE.spad" 1127224 1127236 1127324 1127329) (-709 "MODRING.spad" 1126555 1126594 1127204 1127219) (-708 "MODOP.spad" 1125214 1125226 1126377 1126444) (-707 "MODMONOM.spad" 1124943 1124961 1125204 1125209) (-706 "MODMON.spad" 1121702 1121718 1122421 1122574) (-705 "MODFIELD.spad" 1121060 1121099 1121604 1121697) (-704 "MMLFORM.spad" 1119920 1119928 1121050 1121055) (-703 "MMAP.spad" 1119660 1119694 1119910 1119915) (-702 "MLO.spad" 1118087 1118097 1119616 1119655) (-701 "MLIFT.spad" 1116659 1116676 1118077 1118082) (-700 "MKUCFUNC.spad" 1116192 1116210 1116649 1116654) (-699 "MKRECORD.spad" 1115794 1115807 1116182 1116187) (-698 "MKFUNC.spad" 1115175 1115185 1115784 1115789) (-697 "MKFLCFN.spad" 1114131 1114141 1115165 1115170) (-696 "MKCHSET.spad" 1113996 1114006 1114121 1114126) (-695 "MKBCFUNC.spad" 1113481 1113499 1113986 1113991) (-694 "MINT.spad" 1112920 1112928 1113383 1113476) (-693 "MHROWRED.spad" 1111421 1111431 1112910 1112915) (-692 "MFLOAT.spad" 1109937 1109945 1111311 1111416) (-691 "MFINFACT.spad" 1109337 1109359 1109927 1109932) (-690 "MESH.spad" 1107069 1107077 1109327 1109332) (-689 "MDDFACT.spad" 1105262 1105272 1107059 1107064) (-688 "MDAGG.spad" 1104549 1104559 1105242 1105257) (-687 "MCMPLX.spad" 1100535 1100543 1101149 1101338) (-686 "MCDEN.spad" 1099743 1099755 1100525 1100530) (-685 "MCALCFN.spad" 1096845 1096871 1099733 1099738) (-684 "MAYBE.spad" 1096129 1096140 1096835 1096840) (-683 "MATSTOR.spad" 1093405 1093415 1096119 1096124) (-682 "MATRIX.spad" 1092109 1092119 1092593 1092620) (-681 "MATLIN.spad" 1089435 1089459 1091993 1091998) (-680 "MATCAT.spad" 1081020 1081042 1089403 1089430) (-679 "MATCAT.spad" 1072477 1072501 1080862 1080867) (-678 "MATCAT2.spad" 1071745 1071793 1072467 1072472) (-677 "MAPPKG3.spad" 1070644 1070658 1071735 1071740) (-676 "MAPPKG2.spad" 1069978 1069990 1070634 1070639) (-675 "MAPPKG1.spad" 1068796 1068806 1069968 1069973) (-674 "MAPPAST.spad" 1068109 1068117 1068786 1068791) (-673 "MAPHACK3.spad" 1067917 1067931 1068099 1068104) (-672 "MAPHACK2.spad" 1067682 1067694 1067907 1067912) (-671 "MAPHACK1.spad" 1067312 1067322 1067672 1067677) (-670 "MAGMA.spad" 1065102 1065119 1067302 1067307) (-669 "MACROAST.spad" 1064681 1064689 1065092 1065097) (-668 "M3D.spad" 1062377 1062387 1064059 1064064) (-667 "LZSTAGG.spad" 1059605 1059615 1062367 1062372) (-666 "LZSTAGG.spad" 1056831 1056843 1059595 1059600) (-665 "LWORD.spad" 1053536 1053553 1056821 1056826) (-664 "LSTAST.spad" 1053320 1053328 1053526 1053531) (-663 "LSQM.spad" 1051546 1051560 1051944 1051995) (-662 "LSPP.spad" 1051079 1051096 1051536 1051541) (-661 "LSMP.spad" 1049919 1049947 1051069 1051074) (-660 "LSMP1.spad" 1047723 1047737 1049909 1049914) (-659 "LSAGG.spad" 1047392 1047402 1047691 1047718) (-658 "LSAGG.spad" 1047081 1047093 1047382 1047387) (-657 "LPOLY.spad" 1046035 1046054 1046937 1047006) (-656 "LPEFRAC.spad" 1045292 1045302 1046025 1046030) (-655 "LO.spad" 1044693 1044707 1045226 1045253) (-654 "LOGIC.spad" 1044295 1044303 1044683 1044688) (-653 "LOGIC.spad" 1043895 1043905 1044285 1044290) (-652 "LODOOPS.spad" 1042813 1042825 1043885 1043890) (-651 "LODO.spad" 1042197 1042213 1042493 1042532) (-650 "LODOF.spad" 1041241 1041258 1042154 1042159) (-649 "LODOCAT.spad" 1039899 1039909 1041197 1041236) (-648 "LODOCAT.spad" 1038555 1038567 1039855 1039860) (-647 "LODO2.spad" 1037828 1037840 1038235 1038274) (-646 "LODO1.spad" 1037228 1037238 1037508 1037547) (-645 "LODEEF.spad" 1036000 1036018 1037218 1037223) (-644 "LNAGG.spad" 1031802 1031812 1035990 1035995) (-643 "LNAGG.spad" 1027568 1027580 1031758 1031763) (-642 "LMOPS.spad" 1024304 1024321 1027558 1027563) (-641 "LMODULE.spad" 1023946 1023956 1024294 1024299) (-640 "LMDICT.spad" 1023229 1023239 1023497 1023524) (-639 "LITERAL.spad" 1023135 1023146 1023219 1023224) (-638 "LIST.spad" 1020853 1020863 1022282 1022309) (-637 "LIST3.spad" 1020144 1020158 1020843 1020848) (-636 "LIST2.spad" 1018784 1018796 1020134 1020139) (-635 "LIST2MAP.spad" 1015661 1015673 1018774 1018779) (-634 "LINEXP.spad" 1015093 1015103 1015641 1015656) (-633 "LINDEP.spad" 1013870 1013882 1015005 1015010) (-632 "LIMITRF.spad" 1011784 1011794 1013860 1013865) (-631 "LIMITPS.spad" 1010667 1010680 1011774 1011779) (-630 "LIE.spad" 1008681 1008693 1009957 1010102) (-629 "LIECAT.spad" 1008157 1008167 1008607 1008676) (-628 "LIECAT.spad" 1007661 1007673 1008113 1008118) (-627 "LIB.spad" 1005709 1005717 1006320 1006335) (-626 "LGROBP.spad" 1003062 1003081 1005699 1005704) (-625 "LF.spad" 1001981 1001997 1003052 1003057) (-624 "LFCAT.spad" 1001000 1001008 1001971 1001976) (-623 "LEXTRIPK.spad" 996503 996518 1000990 1000995) (-622 "LEXP.spad" 994506 994533 996483 996498) (-621 "LETAST.spad" 994205 994213 994496 994501) (-620 "LEADCDET.spad" 992589 992606 994195 994200) (-619 "LAZM3PK.spad" 991293 991315 992579 992584) (-618 "LAUPOL.spad" 989982 989995 990886 990955) (-617 "LAPLACE.spad" 989555 989571 989972 989977) (-616 "LA.spad" 988995 989009 989477 989516) (-615 "LALG.spad" 988771 988781 988975 988990) (-614 "LALG.spad" 988555 988567 988761 988766) (-613 "KVTFROM.spad" 988290 988300 988545 988550) (-612 "KTVLOGIC.spad" 987713 987721 988280 988285) (-611 "KRCFROM.spad" 987451 987461 987703 987708) (-610 "KOVACIC.spad" 986164 986181 987441 987446) (-609 "KONVERT.spad" 985886 985896 986154 986159) (-608 "KOERCE.spad" 985623 985633 985876 985881) (-607 "KERNEL.spad" 984158 984168 985407 985412) (-606 "KERNEL2.spad" 983861 983873 984148 984153) (-605 "KDAGG.spad" 982964 982986 983841 983856) (-604 "KDAGG.spad" 982075 982099 982954 982959) (-603 "KAFILE.spad" 981038 981054 981273 981300) (-602 "JORDAN.spad" 978865 978877 980328 980473) (-601 "JOINAST.spad" 978559 978567 978855 978860) (-600 "JAVACODE.spad" 978425 978433 978549 978554) (-599 "IXAGG.spad" 976548 976572 978415 978420) (-598 "IXAGG.spad" 974526 974552 976395 976400) (-597 "IVECTOR.spad" 973297 973312 973452 973479) (-596 "ITUPLE.spad" 972442 972452 973287 973292) (-595 "ITRIGMNP.spad" 971253 971272 972432 972437) (-594 "ITFUN3.spad" 970747 970761 971243 971248) (-593 "ITFUN2.spad" 970477 970489 970737 970742) (-592 "ITAYLOR.spad" 968269 968284 970313 970438) (-591 "ISUPS.spad" 960680 960695 967243 967340) (-590 "ISUMP.spad" 960177 960193 960670 960675) (-589 "ISTRING.spad" 959180 959193 959346 959373) (-588 "ISAST.spad" 958899 958907 959170 959175) (-587 "IRURPK.spad" 957612 957631 958889 958894) (-586 "IRSN.spad" 955572 955580 957602 957607) (-585 "IRRF2F.spad" 954047 954057 955528 955533) (-584 "IRREDFFX.spad" 953648 953659 954037 954042) (-583 "IROOT.spad" 951979 951989 953638 953643) (-582 "IR.spad" 949768 949782 951834 951861) (-581 "IR2.spad" 948788 948804 949758 949763) (-580 "IR2F.spad" 947988 948004 948778 948783) (-579 "IPRNTPK.spad" 947748 947756 947978 947983) (-578 "IPF.spad" 947313 947325 947553 947646) (-577 "IPADIC.spad" 947074 947100 947239 947308) (-576 "IP4ADDR.spad" 946631 946639 947064 947069) (-575 "IOMODE.spad" 946252 946260 946621 946626) (-574 "IOBFILE.spad" 945613 945621 946242 946247) (-573 "IOBCON.spad" 945478 945486 945603 945608) (-572 "INVLAPLA.spad" 945123 945139 945468 945473) (-571 "INTTR.spad" 938369 938386 945113 945118) (-570 "INTTOOLS.spad" 936080 936096 937943 937948) (-569 "INTSLPE.spad" 935386 935394 936070 936075) (-568 "INTRVL.spad" 934952 934962 935300 935381) (-567 "INTRF.spad" 933316 933330 934942 934947) (-566 "INTRET.spad" 932748 932758 933306 933311) (-565 "INTRAT.spad" 931423 931440 932738 932743) (-564 "INTPM.spad" 929786 929802 931066 931071) (-563 "INTPAF.spad" 927554 927572 929718 929723) (-562 "INTPACK.spad" 917864 917872 927544 927549) (-561 "INT.spad" 917225 917233 917718 917859) (-560 "INTHERTR.spad" 916491 916508 917215 917220) (-559 "INTHERAL.spad" 916157 916181 916481 916486) (-558 "INTHEORY.spad" 912570 912578 916147 916152) (-557 "INTG0.spad" 906033 906051 912502 912507) (-556 "INTFTBL.spad" 900062 900070 906023 906028) (-555 "INTFACT.spad" 899121 899131 900052 900057) (-554 "INTEF.spad" 897436 897452 899111 899116) (-553 "INTDOM.spad" 896051 896059 897362 897431) (-552 "INTDOM.spad" 894728 894738 896041 896046) (-551 "INTCAT.spad" 892981 892991 894642 894723) (-550 "INTBIT.spad" 892484 892492 892971 892976) (-549 "INTALG.spad" 891666 891693 892474 892479) (-548 "INTAF.spad" 891158 891174 891656 891661) (-547 "INTABL.spad" 889676 889707 889839 889866) (-546 "INT8.spad" 889556 889564 889666 889671) (-545 "INT32.spad" 889435 889443 889546 889551) (-544 "INT16.spad" 889314 889322 889425 889430) (-543 "INS.spad" 886781 886789 889216 889309) (-542 "INS.spad" 884334 884344 886771 886776) (-541 "INPSIGN.spad" 883768 883781 884324 884329) (-540 "INPRODPF.spad" 882834 882853 883758 883763) (-539 "INPRODFF.spad" 881892 881916 882824 882829) (-538 "INNMFACT.spad" 880863 880880 881882 881887) (-537 "INMODGCD.spad" 880347 880377 880853 880858) (-536 "INFSP.spad" 878632 878654 880337 880342) (-535 "INFPROD0.spad" 877682 877701 878622 878627) (-534 "INFORM.spad" 874843 874851 877672 877677) (-533 "INFORM1.spad" 874468 874478 874833 874838) (-532 "INFINITY.spad" 874020 874028 874458 874463) (-531 "INETCLTS.spad" 873997 874005 874010 874015) (-530 "INEP.spad" 872529 872551 873987 873992) (-529 "INDE.spad" 872258 872275 872519 872524) (-528 "INCRMAPS.spad" 871679 871689 872248 872253) (-527 "INBFILE.spad" 870751 870759 871669 871674) (-526 "INBFF.spad" 866521 866532 870741 870746) (-525 "INBCON.spad" 864809 864817 866511 866516) (-524 "INBCON.spad" 863095 863105 864799 864804) (-523 "INAST.spad" 862760 862768 863085 863090) (-522 "IMPTAST.spad" 862468 862476 862750 862755) (-521 "IMATRIX.spad" 861413 861439 861925 861952) (-520 "IMATQF.spad" 860507 860551 861369 861374) (-519 "IMATLIN.spad" 859112 859136 860463 860468) (-518 "ILIST.spad" 857768 857783 858295 858322) (-517 "IIARRAY2.spad" 857156 857194 857375 857402) (-516 "IFF.spad" 856566 856582 856837 856930) (-515 "IFAST.spad" 856180 856188 856556 856561) (-514 "IFARRAY.spad" 853667 853682 855363 855390) (-513 "IFAMON.spad" 853529 853546 853623 853628) (-512 "IEVALAB.spad" 852918 852930 853519 853524) (-511 "IEVALAB.spad" 852305 852319 852908 852913) (-510 "IDPO.spad" 852103 852115 852295 852300) (-509 "IDPOAMS.spad" 851859 851871 852093 852098) (-508 "IDPOAM.spad" 851579 851591 851849 851854) (-507 "IDPC.spad" 850513 850525 851569 851574) (-506 "IDPAM.spad" 850258 850270 850503 850508) (-505 "IDPAG.spad" 850005 850017 850248 850253) (-504 "IDENT.spad" 849777 849785 849995 850000) (-503 "IDECOMP.spad" 847014 847032 849767 849772) (-502 "IDEAL.spad" 841937 841976 846949 846954) (-501 "ICDEN.spad" 841088 841104 841927 841932) (-500 "ICARD.spad" 840277 840285 841078 841083) (-499 "IBPTOOLS.spad" 838870 838887 840267 840272) (-498 "IBITS.spad" 838069 838082 838506 838533) (-497 "IBATOOL.spad" 834944 834963 838059 838064) (-496 "IBACHIN.spad" 833431 833446 834934 834939) (-495 "IARRAY2.spad" 832419 832445 833038 833065) (-494 "IARRAY1.spad" 831464 831479 831602 831629) (-493 "IAN.spad" 829677 829685 831280 831373) (-492 "IALGFACT.spad" 829278 829311 829667 829672) (-491 "HYPCAT.spad" 828702 828710 829268 829273) (-490 "HYPCAT.spad" 828124 828134 828692 828697) (-489 "HOSTNAME.spad" 827932 827940 828114 828119) (-488 "HOMOTOP.spad" 827675 827685 827922 827927) (-487 "HOAGG.spad" 824943 824953 827665 827670) (-486 "HOAGG.spad" 821986 821998 824710 824715) (-485 "HEXADEC.spad" 820088 820096 820453 820546) (-484 "HEUGCD.spad" 819103 819114 820078 820083) (-483 "HELLFDIV.spad" 818693 818717 819093 819098) (-482 "HEAP.spad" 818085 818095 818300 818327) (-481 "HEADAST.spad" 817616 817624 818075 818080) (-480 "HDP.spad" 807459 807475 807836 807967) (-479 "HDMP.spad" 804635 804650 805253 805380) (-478 "HB.spad" 802872 802880 804625 804630) (-477 "HASHTBL.spad" 801342 801373 801553 801580) (-476 "HASAST.spad" 801058 801066 801332 801337) (-475 "HACKPI.spad" 800541 800549 800960 801053) (-474 "GTSET.spad" 799480 799496 800187 800214) (-473 "GSTBL.spad" 797999 798034 798173 798188) (-472 "GSERIES.spad" 795166 795193 796131 796280) (-471 "GROUP.spad" 794435 794443 795146 795161) (-470 "GROUP.spad" 793712 793722 794425 794430) (-469 "GROEBSOL.spad" 792200 792221 793702 793707) (-468 "GRMOD.spad" 790771 790783 792190 792195) (-467 "GRMOD.spad" 789340 789354 790761 790766) (-466 "GRIMAGE.spad" 781945 781953 789330 789335) (-465 "GRDEF.spad" 780324 780332 781935 781940) (-464 "GRAY.spad" 778783 778791 780314 780319) (-463 "GRALG.spad" 777830 777842 778773 778778) (-462 "GRALG.spad" 776875 776889 777820 777825) (-461 "GPOLSET.spad" 776329 776352 776557 776584) (-460 "GOSPER.spad" 775594 775612 776319 776324) (-459 "GMODPOL.spad" 774732 774759 775562 775589) (-458 "GHENSEL.spad" 773801 773815 774722 774727) (-457 "GENUPS.spad" 769902 769915 773791 773796) (-456 "GENUFACT.spad" 769479 769489 769892 769897) (-455 "GENPGCD.spad" 769063 769080 769469 769474) (-454 "GENMFACT.spad" 768515 768534 769053 769058) (-453 "GENEEZ.spad" 766454 766467 768505 768510) (-452 "GDMP.spad" 763472 763489 764248 764375) (-451 "GCNAALG.spad" 757367 757394 763266 763333) (-450 "GCDDOM.spad" 756539 756547 757293 757362) (-449 "GCDDOM.spad" 755773 755783 756529 756534) (-448 "GB.spad" 753291 753329 755729 755734) (-447 "GBINTERN.spad" 749311 749349 753281 753286) (-446 "GBF.spad" 745068 745106 749301 749306) (-445 "GBEUCLID.spad" 742942 742980 745058 745063) (-444 "GAUSSFAC.spad" 742239 742247 742932 742937) (-443 "GALUTIL.spad" 740561 740571 742195 742200) (-442 "GALPOLYU.spad" 739007 739020 740551 740556) (-441 "GALFACTU.spad" 737172 737191 738997 739002) (-440 "GALFACT.spad" 727305 727316 737162 737167) (-439 "FVFUN.spad" 724328 724336 727295 727300) (-438 "FVC.spad" 723380 723388 724318 724323) (-437 "FUNCTION.spad" 723229 723241 723370 723375) (-436 "FT.spad" 721522 721530 723219 723224) (-435 "FTEM.spad" 720685 720693 721512 721517) (-434 "FSUPFACT.spad" 719585 719604 720621 720626) (-433 "FST.spad" 717671 717679 719575 719580) (-432 "FSRED.spad" 717149 717165 717661 717666) (-431 "FSPRMELT.spad" 715973 715989 717106 717111) (-430 "FSPECF.spad" 714050 714066 715963 715968) (-429 "FS.spad" 708112 708122 713825 714045) (-428 "FS.spad" 701952 701964 707667 707672) (-427 "FSINT.spad" 701610 701626 701942 701947) (-426 "FSERIES.spad" 700797 700809 701430 701529) (-425 "FSCINT.spad" 700110 700126 700787 700792) (-424 "FSAGG.spad" 699227 699237 700066 700105) (-423 "FSAGG.spad" 698306 698318 699147 699152) (-422 "FSAGG2.spad" 697005 697021 698296 698301) (-421 "FS2UPS.spad" 691488 691522 696995 697000) (-420 "FS2.spad" 691133 691149 691478 691483) (-419 "FS2EXPXP.spad" 690256 690279 691123 691128) (-418 "FRUTIL.spad" 689198 689208 690246 690251) (-417 "FR.spad" 682892 682902 688222 688291) (-416 "FRNAALG.spad" 677979 677989 682834 682887) (-415 "FRNAALG.spad" 673078 673090 677935 677940) (-414 "FRNAAF2.spad" 672532 672550 673068 673073) (-413 "FRMOD.spad" 671926 671956 672463 672468) (-412 "FRIDEAL.spad" 671121 671142 671906 671921) (-411 "FRIDEAL2.spad" 670723 670755 671111 671116) (-410 "FRETRCT.spad" 670234 670244 670713 670718) (-409 "FRETRCT.spad" 669611 669623 670092 670097) (-408 "FRAMALG.spad" 667939 667952 669567 669606) (-407 "FRAMALG.spad" 666299 666314 667929 667934) (-406 "FRAC.spad" 663398 663408 663801 663974) (-405 "FRAC2.spad" 663001 663013 663388 663393) (-404 "FR2.spad" 662335 662347 662991 662996) (-403 "FPS.spad" 659144 659152 662225 662330) (-402 "FPS.spad" 655981 655991 659064 659069) (-401 "FPC.spad" 655023 655031 655883 655976) (-400 "FPC.spad" 654151 654161 655013 655018) (-399 "FPATMAB.spad" 653913 653923 654141 654146) (-398 "FPARFRAC.spad" 652386 652403 653903 653908) (-397 "FORTRAN.spad" 650892 650935 652376 652381) (-396 "FORT.spad" 649821 649829 650882 650887) (-395 "FORTFN.spad" 646991 646999 649811 649816) (-394 "FORTCAT.spad" 646675 646683 646981 646986) (-393 "FORMULA.spad" 644139 644147 646665 646670) (-392 "FORMULA1.spad" 643618 643628 644129 644134) (-391 "FORDER.spad" 643309 643333 643608 643613) (-390 "FOP.spad" 642510 642518 643299 643304) (-389 "FNLA.spad" 641934 641956 642478 642505) (-388 "FNCAT.spad" 640521 640529 641924 641929) (-387 "FNAME.spad" 640413 640421 640511 640516) (-386 "FMTC.spad" 640211 640219 640339 640408) (-385 "FMONOID.spad" 637266 637276 640167 640172) (-384 "FM.spad" 636961 636973 637200 637227) (-383 "FMFUN.spad" 633991 633999 636951 636956) (-382 "FMC.spad" 633043 633051 633981 633986) (-381 "FMCAT.spad" 630697 630715 633011 633038) (-380 "FM1.spad" 630054 630066 630631 630658) (-379 "FLOATRP.spad" 627775 627789 630044 630049) (-378 "FLOAT.spad" 621063 621071 627641 627770) (-377 "FLOATCP.spad" 618480 618494 621053 621058) (-376 "FLINEXP.spad" 618192 618202 618460 618475) (-375 "FLINEXP.spad" 617858 617870 618128 618133) (-374 "FLASORT.spad" 617178 617190 617848 617853) (-373 "FLALG.spad" 614824 614843 617104 617173) (-372 "FLAGG.spad" 611842 611852 614804 614819) (-371 "FLAGG.spad" 608761 608773 611725 611730) (-370 "FLAGG2.spad" 607442 607458 608751 608756) (-369 "FINRALG.spad" 605471 605484 607398 607437) (-368 "FINRALG.spad" 603426 603441 605355 605360) (-367 "FINITE.spad" 602578 602586 603416 603421) (-366 "FINAALG.spad" 591559 591569 602520 602573) (-365 "FINAALG.spad" 580552 580564 591515 591520) (-364 "FILE.spad" 580135 580145 580542 580547) (-363 "FILECAT.spad" 578653 578670 580125 580130) (-362 "FIELD.spad" 578059 578067 578555 578648) (-361 "FIELD.spad" 577551 577561 578049 578054) (-360 "FGROUP.spad" 576160 576170 577531 577546) (-359 "FGLMICPK.spad" 574947 574962 576150 576155) (-358 "FFX.spad" 574322 574337 574663 574756) (-357 "FFSLPE.spad" 573811 573832 574312 574317) (-356 "FFPOLY.spad" 565063 565074 573801 573806) (-355 "FFPOLY2.spad" 564123 564140 565053 565058) (-354 "FFP.spad" 563520 563540 563839 563932) (-353 "FF.spad" 562968 562984 563201 563294) (-352 "FFNBX.spad" 561480 561500 562684 562777) (-351 "FFNBP.spad" 559993 560010 561196 561289) (-350 "FFNB.spad" 558458 558479 559674 559767) (-349 "FFINTBAS.spad" 555872 555891 558448 558453) (-348 "FFIELDC.spad" 553447 553455 555774 555867) (-347 "FFIELDC.spad" 551108 551118 553437 553442) (-346 "FFHOM.spad" 549856 549873 551098 551103) (-345 "FFF.spad" 547291 547302 549846 549851) (-344 "FFCGX.spad" 546138 546158 547007 547100) (-343 "FFCGP.spad" 545027 545047 545854 545947) (-342 "FFCG.spad" 543819 543840 544708 544801) (-341 "FFCAT.spad" 536846 536868 543658 543814) (-340 "FFCAT.spad" 529952 529976 536766 536771) (-339 "FFCAT2.spad" 529697 529737 529942 529947) (-338 "FEXPR.spad" 521406 521452 529453 529492) (-337 "FEVALAB.spad" 521112 521122 521396 521401) (-336 "FEVALAB.spad" 520603 520615 520889 520894) (-335 "FDIV.spad" 520045 520069 520593 520598) (-334 "FDIVCAT.spad" 518087 518111 520035 520040) (-333 "FDIVCAT.spad" 516127 516153 518077 518082) (-332 "FDIV2.spad" 515781 515821 516117 516122) (-331 "FCPAK1.spad" 514334 514342 515771 515776) (-330 "FCOMP.spad" 513713 513723 514324 514329) (-329 "FC.spad" 503628 503636 513703 513708) (-328 "FAXF.spad" 496563 496577 503530 503623) (-327 "FAXF.spad" 489550 489566 496519 496524) (-326 "FARRAY.spad" 487696 487706 488733 488760) (-325 "FAMR.spad" 485816 485828 487594 487691) (-324 "FAMR.spad" 483920 483934 485700 485705) (-323 "FAMONOID.spad" 483570 483580 483874 483879) (-322 "FAMONC.spad" 481792 481804 483560 483565) (-321 "FAGROUP.spad" 481398 481408 481688 481715) (-320 "FACUTIL.spad" 479594 479611 481388 481393) (-319 "FACTFUNC.spad" 478770 478780 479584 479589) (-318 "EXPUPXS.spad" 475603 475626 476902 477051) (-317 "EXPRTUBE.spad" 472831 472839 475593 475598) (-316 "EXPRODE.spad" 469703 469719 472821 472826) (-315 "EXPR.spad" 464978 464988 465692 466099) (-314 "EXPR2UPS.spad" 461070 461083 464968 464973) (-313 "EXPR2.spad" 460773 460785 461060 461065) (-312 "EXPEXPAN.spad" 457711 457736 458345 458438) (-311 "EXIT.spad" 457382 457390 457701 457706) (-310 "EXITAST.spad" 457118 457126 457372 457377) (-309 "EVALCYC.spad" 456576 456590 457108 457113) (-308 "EVALAB.spad" 456140 456150 456566 456571) (-307 "EVALAB.spad" 455702 455714 456130 456135) (-306 "EUCDOM.spad" 453244 453252 455628 455697) (-305 "EUCDOM.spad" 450848 450858 453234 453239) (-304 "ESTOOLS.spad" 442688 442696 450838 450843) (-303 "ESTOOLS2.spad" 442289 442303 442678 442683) (-302 "ESTOOLS1.spad" 441974 441985 442279 442284) (-301 "ES.spad" 434521 434529 441964 441969) (-300 "ES.spad" 426974 426984 434419 434424) (-299 "ESCONT.spad" 423747 423755 426964 426969) (-298 "ESCONT1.spad" 423496 423508 423737 423742) (-297 "ES2.spad" 422991 423007 423486 423491) (-296 "ES1.spad" 422557 422573 422981 422986) (-295 "ERROR.spad" 419878 419886 422547 422552) (-294 "EQTBL.spad" 418350 418372 418559 418586) (-293 "EQ.spad" 413224 413234 416023 416135) (-292 "EQ2.spad" 412940 412952 413214 413219) (-291 "EP.spad" 409254 409264 412930 412935) (-290 "ENV.spad" 407956 407964 409244 409249) (-289 "ENTIRER.spad" 407624 407632 407900 407951) (-288 "EMR.spad" 406825 406866 407550 407619) (-287 "ELTAGG.spad" 405065 405084 406815 406820) (-286 "ELTAGG.spad" 403269 403290 405021 405026) (-285 "ELTAB.spad" 402716 402734 403259 403264) (-284 "ELFUTS.spad" 402095 402114 402706 402711) (-283 "ELEMFUN.spad" 401784 401792 402085 402090) (-282 "ELEMFUN.spad" 401471 401481 401774 401779) (-281 "ELAGG.spad" 399414 399424 401451 401466) (-280 "ELAGG.spad" 397294 397306 399333 399338) (-279 "ELABEXPR.spad" 396225 396233 397284 397289) (-278 "EFUPXS.spad" 393001 393031 396181 396186) (-277 "EFULS.spad" 389837 389860 392957 392962) (-276 "EFSTRUC.spad" 387792 387808 389827 389832) (-275 "EF.spad" 382558 382574 387782 387787) (-274 "EAB.spad" 380834 380842 382548 382553) (-273 "E04UCFA.spad" 380370 380378 380824 380829) (-272 "E04NAFA.spad" 379947 379955 380360 380365) (-271 "E04MBFA.spad" 379527 379535 379937 379942) (-270 "E04JAFA.spad" 379063 379071 379517 379522) (-269 "E04GCFA.spad" 378599 378607 379053 379058) (-268 "E04FDFA.spad" 378135 378143 378589 378594) (-267 "E04DGFA.spad" 377671 377679 378125 378130) (-266 "E04AGNT.spad" 373513 373521 377661 377666) (-265 "DVARCAT.spad" 370198 370208 373503 373508) (-264 "DVARCAT.spad" 366881 366893 370188 370193) (-263 "DSMP.spad" 364312 364326 364617 364744) (-262 "DROPT.spad" 358257 358265 364302 364307) (-261 "DROPT1.spad" 357920 357930 358247 358252) (-260 "DROPT0.spad" 352747 352755 357910 357915) (-259 "DRAWPT.spad" 350902 350910 352737 352742) (-258 "DRAW.spad" 343502 343515 350892 350897) (-257 "DRAWHACK.spad" 342810 342820 343492 343497) (-256 "DRAWCX.spad" 340252 340260 342800 342805) (-255 "DRAWCURV.spad" 339789 339804 340242 340247) (-254 "DRAWCFUN.spad" 328961 328969 339779 339784) (-253 "DQAGG.spad" 327129 327139 328929 328956) (-252 "DPOLCAT.spad" 322470 322486 326997 327124) (-251 "DPOLCAT.spad" 317897 317915 322426 322431) (-250 "DPMO.spad" 310123 310139 310261 310562) (-249 "DPMM.spad" 302362 302380 302487 302788) (-248 "DOMCTOR.spad" 302254 302262 302352 302357) (-247 "DOMAIN.spad" 301385 301393 302244 302249) (-246 "DMP.spad" 298607 298622 299179 299306) (-245 "DLP.spad" 297955 297965 298597 298602) (-244 "DLIST.spad" 296534 296544 297138 297165) (-243 "DLAGG.spad" 294945 294955 296524 296529) (-242 "DIVRING.spad" 294487 294495 294889 294940) (-241 "DIVRING.spad" 294073 294083 294477 294482) (-240 "DISPLAY.spad" 292253 292261 294063 294068) (-239 "DIRPROD.spad" 281833 281849 282473 282604) (-238 "DIRPROD2.spad" 280641 280659 281823 281828) (-237 "DIRPCAT.spad" 279583 279599 280505 280636) (-236 "DIRPCAT.spad" 278254 278272 279178 279183) (-235 "DIOSP.spad" 277079 277087 278244 278249) (-234 "DIOPS.spad" 276063 276073 277059 277074) (-233 "DIOPS.spad" 275021 275033 276019 276024) (-232 "DIFRING.spad" 274313 274321 275001 275016) (-231 "DIFRING.spad" 273613 273623 274303 274308) (-230 "DIFEXT.spad" 272772 272782 273593 273608) (-229 "DIFEXT.spad" 271848 271860 272671 272676) (-228 "DIAGG.spad" 271478 271488 271828 271843) (-227 "DIAGG.spad" 271116 271128 271468 271473) (-226 "DHMATRIX.spad" 269420 269430 270573 270600) (-225 "DFSFUN.spad" 262828 262836 269410 269415) (-224 "DFLOAT.spad" 259549 259557 262718 262823) (-223 "DFINTTLS.spad" 257758 257774 259539 259544) (-222 "DERHAM.spad" 255668 255700 257738 257753) (-221 "DEQUEUE.spad" 254986 254996 255275 255302) (-220 "DEGRED.spad" 254601 254615 254976 254981) (-219 "DEFINTRF.spad" 252126 252136 254591 254596) (-218 "DEFINTEF.spad" 250622 250638 252116 252121) (-217 "DEFAST.spad" 249990 249998 250612 250617) (-216 "DECIMAL.spad" 248096 248104 248457 248550) (-215 "DDFACT.spad" 245895 245912 248086 248091) (-214 "DBLRESP.spad" 245493 245517 245885 245890) (-213 "DBASE.spad" 244147 244157 245483 245488) (-212 "DATAARY.spad" 243609 243622 244137 244142) (-211 "D03FAFA.spad" 243437 243445 243599 243604) (-210 "D03EEFA.spad" 243257 243265 243427 243432) (-209 "D03AGNT.spad" 242337 242345 243247 243252) (-208 "D02EJFA.spad" 241799 241807 242327 242332) (-207 "D02CJFA.spad" 241277 241285 241789 241794) (-206 "D02BHFA.spad" 240767 240775 241267 241272) (-205 "D02BBFA.spad" 240257 240265 240757 240762) (-204 "D02AGNT.spad" 235061 235069 240247 240252) (-203 "D01WGTS.spad" 233380 233388 235051 235056) (-202 "D01TRNS.spad" 233357 233365 233370 233375) (-201 "D01GBFA.spad" 232879 232887 233347 233352) (-200 "D01FCFA.spad" 232401 232409 232869 232874) (-199 "D01ASFA.spad" 231869 231877 232391 232396) (-198 "D01AQFA.spad" 231315 231323 231859 231864) (-197 "D01APFA.spad" 230739 230747 231305 231310) (-196 "D01ANFA.spad" 230233 230241 230729 230734) (-195 "D01AMFA.spad" 229743 229751 230223 230228) (-194 "D01ALFA.spad" 229283 229291 229733 229738) (-193 "D01AKFA.spad" 228809 228817 229273 229278) (-192 "D01AJFA.spad" 228332 228340 228799 228804) (-191 "D01AGNT.spad" 224391 224399 228322 228327) (-190 "CYCLOTOM.spad" 223897 223905 224381 224386) (-189 "CYCLES.spad" 220729 220737 223887 223892) (-188 "CVMP.spad" 220146 220156 220719 220724) (-187 "CTRIGMNP.spad" 218636 218652 220136 220141) (-186 "CTOR.spad" 218536 218544 218626 218631) (-185 "CTORKIND.spad" 218139 218147 218526 218531) (-184 "CTORCAT.spad" 217594 217602 218129 218134) (-183 "CTORCAT.spad" 217047 217057 217584 217589) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2279481 2279486 2279491 2279496) (-2 NIL 2279461 2279466 2279471 2279476) (-1 NIL 2279441 2279446 2279451 2279456) (0 NIL 2279421 2279426 2279431 2279436) (-1282 "ZMOD.spad" 2279230 2279243 2279359 2279416) (-1281 "ZLINDEP.spad" 2278274 2278285 2279220 2279225) (-1280 "ZDSOLVE.spad" 2268123 2268145 2278264 2278269) (-1279 "YSTREAM.spad" 2267616 2267627 2268113 2268118) (-1278 "XRPOLY.spad" 2266836 2266856 2267472 2267541) (-1277 "XPR.spad" 2264627 2264640 2266554 2266653) (-1276 "XPOLYC.spad" 2263944 2263960 2264553 2264622) (-1275 "XPOLY.spad" 2263499 2263510 2263800 2263869) (-1274 "XPBWPOLY.spad" 2261936 2261956 2263279 2263348) (-1273 "XFALG.spad" 2258960 2258976 2261862 2261931) (-1272 "XF.spad" 2257421 2257436 2258862 2258955) (-1271 "XF.spad" 2255862 2255879 2257305 2257310) (-1270 "XEXPPKG.spad" 2255113 2255139 2255852 2255857) (-1269 "XDPOLY.spad" 2254727 2254743 2254969 2255038) (-1268 "XALG.spad" 2254387 2254398 2254683 2254722) (-1267 "WUTSET.spad" 2250226 2250243 2254033 2254060) (-1266 "WP.spad" 2249425 2249469 2250084 2250151) (-1265 "WHILEAST.spad" 2249223 2249232 2249415 2249420) (-1264 "WHEREAST.spad" 2248894 2248903 2249213 2249218) (-1263 "WFFINTBS.spad" 2246457 2246479 2248884 2248889) (-1262 "WEIER.spad" 2244671 2244682 2246447 2246452) (-1261 "VSPACE.spad" 2244344 2244355 2244639 2244666) (-1260 "VSPACE.spad" 2244037 2244050 2244334 2244339) (-1259 "VOID.spad" 2243714 2243723 2244027 2244032) (-1258 "VIEWDEF.spad" 2238911 2238920 2243704 2243709) (-1257 "VIEW3D.spad" 2222746 2222755 2238901 2238906) (-1256 "VIEW2D.spad" 2210483 2210492 2222736 2222741) (-1255 "VIEW.spad" 2208105 2208114 2210473 2210478) (-1254 "VECTOR2.spad" 2206732 2206745 2208095 2208100) (-1253 "VECTOR.spad" 2205407 2205418 2205658 2205685) (-1252 "VECTCAT.spad" 2203307 2203318 2205375 2205402) (-1251 "VECTCAT.spad" 2201015 2201028 2203085 2203090) (-1250 "VARIABLE.spad" 2200795 2200810 2201005 2201010) (-1249 "UTYPE.spad" 2200439 2200448 2200785 2200790) (-1248 "UTSODETL.spad" 2199732 2199756 2200395 2200400) (-1247 "UTSODE.spad" 2197920 2197940 2199722 2199727) (-1246 "UTSCAT.spad" 2195371 2195387 2197818 2197915) (-1245 "UTSCAT.spad" 2192466 2192484 2194915 2194920) (-1244 "UTS2.spad" 2192059 2192094 2192456 2192461) (-1243 "UTS.spad" 2186848 2186876 2190526 2190623) (-1242 "URAGG.spad" 2181480 2181491 2186838 2186843) (-1241 "URAGG.spad" 2176076 2176089 2181436 2181441) (-1240 "UPXSSING.spad" 2173719 2173745 2175157 2175290) (-1239 "UPXSCONS.spad" 2171476 2171496 2171851 2172000) (-1238 "UPXSCCA.spad" 2170041 2170061 2171322 2171471) (-1237 "UPXSCCA.spad" 2168748 2168770 2170031 2170036) (-1236 "UPXSCAT.spad" 2167329 2167345 2168594 2168743) (-1235 "UPXS2.spad" 2166870 2166923 2167319 2167324) (-1234 "UPXS.spad" 2164018 2164046 2165002 2165151) (-1233 "UPSQFREE.spad" 2162431 2162445 2164008 2164013) (-1232 "UPSCAT.spad" 2160024 2160048 2162329 2162426) (-1231 "UPSCAT.spad" 2157323 2157349 2159630 2159635) (-1230 "UPOLYC2.spad" 2156792 2156811 2157313 2157318) (-1229 "UPOLYC.spad" 2151770 2151781 2156634 2156787) (-1228 "UPOLYC.spad" 2146640 2146653 2151506 2151511) (-1227 "UPMP.spad" 2145530 2145543 2146630 2146635) (-1226 "UPDIVP.spad" 2145093 2145107 2145520 2145525) (-1225 "UPDECOMP.spad" 2143330 2143344 2145083 2145088) (-1224 "UPCDEN.spad" 2142537 2142553 2143320 2143325) (-1223 "UP2.spad" 2141899 2141920 2142527 2142532) (-1222 "UP.spad" 2139056 2139071 2139449 2139602) (-1221 "UNISEG2.spad" 2138549 2138562 2139012 2139017) (-1220 "UNISEG.spad" 2137902 2137913 2138468 2138473) (-1219 "UNIFACT.spad" 2137003 2137015 2137892 2137897) (-1218 "ULSCONS.spad" 2129397 2129417 2129769 2129918) (-1217 "ULSCCAT.spad" 2127126 2127146 2129243 2129392) (-1216 "ULSCCAT.spad" 2124963 2124985 2127082 2127087) (-1215 "ULSCAT.spad" 2123179 2123195 2124809 2124958) (-1214 "ULS2.spad" 2122691 2122744 2123169 2123174) (-1213 "ULS.spad" 2113243 2113271 2114336 2114765) (-1212 "UINT8.spad" 2113120 2113129 2113233 2113238) (-1211 "UINT32.spad" 2112996 2113005 2113110 2113115) (-1210 "UINT16.spad" 2112872 2112881 2112986 2112991) (-1209 "UFD.spad" 2111937 2111946 2112798 2112867) (-1208 "UFD.spad" 2111064 2111075 2111927 2111932) (-1207 "UDVO.spad" 2109911 2109920 2111054 2111059) (-1206 "UDPO.spad" 2107338 2107349 2109867 2109872) (-1205 "TYPEAST.spad" 2107257 2107266 2107328 2107333) (-1204 "TYPE.spad" 2107189 2107198 2107247 2107252) (-1203 "TWOFACT.spad" 2105839 2105854 2107179 2107184) (-1202 "TUPLE.spad" 2105323 2105334 2105738 2105743) (-1201 "TUBETOOL.spad" 2102160 2102169 2105313 2105318) (-1200 "TUBE.spad" 2100801 2100818 2102150 2102155) (-1199 "TSETCAT.spad" 2087928 2087945 2100769 2100796) (-1198 "TSETCAT.spad" 2075041 2075060 2087884 2087889) (-1197 "TS.spad" 2073630 2073646 2074606 2074703) (-1196 "TRMANIP.spad" 2067996 2068013 2073336 2073341) (-1195 "TRIMAT.spad" 2066955 2066980 2067986 2067991) (-1194 "TRIGMNIP.spad" 2065472 2065489 2066945 2066950) (-1193 "TRIGCAT.spad" 2064984 2064993 2065462 2065467) (-1192 "TRIGCAT.spad" 2064494 2064505 2064974 2064979) (-1191 "TREE.spad" 2063065 2063076 2064101 2064128) (-1190 "TRANFUN.spad" 2062896 2062905 2063055 2063060) (-1189 "TRANFUN.spad" 2062725 2062736 2062886 2062891) (-1188 "TOPSP.spad" 2062399 2062408 2062715 2062720) (-1187 "TOOLSIGN.spad" 2062062 2062073 2062389 2062394) (-1186 "TEXTFILE.spad" 2060619 2060628 2062052 2062057) (-1185 "TEX1.spad" 2060175 2060186 2060609 2060614) (-1184 "TEX.spad" 2057307 2057316 2060165 2060170) (-1183 "TEMUTL.spad" 2056862 2056871 2057297 2057302) (-1182 "TBCMPPK.spad" 2054955 2054978 2056852 2056857) (-1181 "TBAGG.spad" 2053991 2054014 2054935 2054950) (-1180 "TBAGG.spad" 2053035 2053060 2053981 2053986) (-1179 "TANEXP.spad" 2052411 2052422 2053025 2053030) (-1178 "TABLEAU.spad" 2051892 2051903 2052401 2052406) (-1177 "TABLE.spad" 2050303 2050326 2050573 2050600) (-1176 "TABLBUMP.spad" 2047086 2047097 2050293 2050298) (-1175 "SYSTEM.spad" 2046360 2046369 2047076 2047081) (-1174 "SYSSOLP.spad" 2043833 2043844 2046350 2046355) (-1173 "SYSNNI.spad" 2043009 2043020 2043823 2043828) (-1172 "SYSINT.spad" 2042482 2042493 2042999 2043004) (-1171 "SYNTAX.spad" 2038752 2038761 2042472 2042477) (-1170 "SYMTAB.spad" 2036808 2036817 2038742 2038747) (-1169 "SYMS.spad" 2032799 2032808 2036798 2036803) (-1168 "SYMPOLY.spad" 2031806 2031817 2031888 2032015) (-1167 "SYMFUNC.spad" 2031281 2031292 2031796 2031801) (-1166 "SYMBOL.spad" 2028708 2028717 2031271 2031276) (-1165 "SWITCH.spad" 2025465 2025474 2028698 2028703) (-1164 "SUTS.spad" 2022364 2022392 2023932 2024029) (-1163 "SUPXS.spad" 2019499 2019527 2020496 2020645) (-1162 "SUPFRACF.spad" 2018604 2018622 2019489 2019494) (-1161 "SUP2.spad" 2017994 2018007 2018594 2018599) (-1160 "SUP.spad" 2014763 2014774 2015544 2015697) (-1159 "SUMRF.spad" 2013729 2013740 2014753 2014758) (-1158 "SUMFS.spad" 2013362 2013379 2013719 2013724) (-1157 "SULS.spad" 2003901 2003929 2005007 2005436) (-1156 "SUCHTAST.spad" 2003670 2003679 2003891 2003896) (-1155 "SUCH.spad" 2003350 2003365 2003660 2003665) (-1154 "SUBSPACE.spad" 1995357 1995372 2003340 2003345) (-1153 "SUBRESP.spad" 1994517 1994531 1995313 1995318) (-1152 "STTFNC.spad" 1990985 1991001 1994507 1994512) (-1151 "STTF.spad" 1987084 1987100 1990975 1990980) (-1150 "STTAYLOR.spad" 1979482 1979493 1986965 1986970) (-1149 "STRTBL.spad" 1977987 1978004 1978136 1978163) (-1148 "STRING.spad" 1977396 1977405 1977410 1977437) (-1147 "STRICAT.spad" 1977184 1977193 1977364 1977391) (-1146 "STREAM3.spad" 1976729 1976744 1977174 1977179) (-1145 "STREAM2.spad" 1975797 1975810 1976719 1976724) (-1144 "STREAM1.spad" 1975501 1975512 1975787 1975792) (-1143 "STREAM.spad" 1972359 1972370 1975026 1975041) (-1142 "STINPROD.spad" 1971265 1971281 1972349 1972354) (-1141 "STEP.spad" 1970466 1970475 1971255 1971260) (-1140 "STBL.spad" 1968992 1969020 1969159 1969174) (-1139 "STAGG.spad" 1968067 1968078 1968982 1968987) (-1138 "STAGG.spad" 1967140 1967153 1968057 1968062) (-1137 "STACK.spad" 1966491 1966502 1966747 1966774) (-1136 "SREGSET.spad" 1964195 1964212 1966137 1966164) (-1135 "SRDCMPK.spad" 1962740 1962760 1964185 1964190) (-1134 "SRAGG.spad" 1957837 1957846 1962708 1962735) (-1133 "SRAGG.spad" 1952954 1952965 1957827 1957832) (-1132 "SQMATRIX.spad" 1950570 1950588 1951486 1951573) (-1131 "SPLTREE.spad" 1945122 1945135 1950006 1950033) (-1130 "SPLNODE.spad" 1941710 1941723 1945112 1945117) (-1129 "SPFCAT.spad" 1940487 1940496 1941700 1941705) (-1128 "SPECOUT.spad" 1939037 1939046 1940477 1940482) (-1127 "SPADXPT.spad" 1931176 1931185 1939027 1939032) (-1126 "spad-parser.spad" 1930641 1930650 1931166 1931171) (-1125 "SPADAST.spad" 1930342 1930351 1930631 1930636) (-1124 "SPACEC.spad" 1914355 1914366 1930332 1930337) (-1123 "SPACE3.spad" 1914131 1914142 1914345 1914350) (-1122 "SORTPAK.spad" 1913676 1913689 1914087 1914092) (-1121 "SOLVETRA.spad" 1911433 1911444 1913666 1913671) (-1120 "SOLVESER.spad" 1909953 1909964 1911423 1911428) (-1119 "SOLVERAD.spad" 1905963 1905974 1909943 1909948) (-1118 "SOLVEFOR.spad" 1904383 1904401 1905953 1905958) (-1117 "SNTSCAT.spad" 1903983 1904000 1904351 1904378) (-1116 "SMTS.spad" 1902243 1902269 1903548 1903645) (-1115 "SMP.spad" 1899682 1899702 1900072 1900199) (-1114 "SMITH.spad" 1898525 1898550 1899672 1899677) (-1113 "SMATCAT.spad" 1896635 1896665 1898469 1898520) (-1112 "SMATCAT.spad" 1894677 1894709 1896513 1896518) (-1111 "SKAGG.spad" 1893638 1893649 1894645 1894672) (-1110 "SINT.spad" 1892464 1892473 1893504 1893633) (-1109 "SIMPAN.spad" 1892192 1892201 1892454 1892459) (-1108 "SIGNRF.spad" 1891307 1891318 1892182 1892187) (-1107 "SIGNEF.spad" 1890583 1890600 1891297 1891302) (-1106 "SIGAST.spad" 1889964 1889973 1890573 1890578) (-1105 "SIG.spad" 1889292 1889301 1889954 1889959) (-1104 "SHP.spad" 1887210 1887225 1889248 1889253) (-1103 "SHDP.spad" 1876921 1876948 1877430 1877561) (-1102 "SGROUP.spad" 1876529 1876538 1876911 1876916) (-1101 "SGROUP.spad" 1876135 1876146 1876519 1876524) (-1100 "SGCF.spad" 1869016 1869025 1876125 1876130) (-1099 "SFRTCAT.spad" 1867944 1867961 1868984 1869011) (-1098 "SFRGCD.spad" 1867007 1867027 1867934 1867939) (-1097 "SFQCMPK.spad" 1861644 1861664 1866997 1867002) (-1096 "SFORT.spad" 1861079 1861093 1861634 1861639) (-1095 "SEXOF.spad" 1860922 1860962 1861069 1861074) (-1094 "SEXCAT.spad" 1858473 1858513 1860912 1860917) (-1093 "SEX.spad" 1858365 1858374 1858463 1858468) (-1092 "SETMN.spad" 1856801 1856818 1858355 1858360) (-1091 "SETCAT.spad" 1856286 1856295 1856791 1856796) (-1090 "SETCAT.spad" 1855769 1855780 1856276 1856281) (-1089 "SETAGG.spad" 1852290 1852301 1855749 1855764) (-1088 "SETAGG.spad" 1848819 1848832 1852280 1852285) (-1087 "SET.spad" 1847119 1847130 1848240 1848279) (-1086 "SEQAST.spad" 1846822 1846831 1847109 1847114) (-1085 "SEGXCAT.spad" 1845944 1845957 1846812 1846817) (-1084 "SEGCAT.spad" 1844851 1844862 1845934 1845939) (-1083 "SEGBIND2.spad" 1844547 1844560 1844841 1844846) (-1082 "SEGBIND.spad" 1843619 1843630 1844502 1844507) (-1081 "SEGAST.spad" 1843333 1843342 1843609 1843614) (-1080 "SEG2.spad" 1842758 1842771 1843289 1843294) (-1079 "SEG.spad" 1842571 1842582 1842677 1842682) (-1078 "SDVAR.spad" 1841847 1841858 1842561 1842566) (-1077 "SDPOL.spad" 1839237 1839248 1839528 1839655) (-1076 "SCPKG.spad" 1837316 1837327 1839227 1839232) (-1075 "SCOPE.spad" 1836461 1836470 1837306 1837311) (-1074 "SCACHE.spad" 1835143 1835154 1836451 1836456) (-1073 "SASTCAT.spad" 1835052 1835061 1835133 1835138) (-1072 "SAOS.spad" 1834924 1834933 1835042 1835047) (-1071 "SAERFFC.spad" 1834637 1834657 1834914 1834919) (-1070 "SAEFACT.spad" 1834338 1834358 1834627 1834632) (-1069 "SAE.spad" 1832513 1832529 1833124 1833259) (-1068 "RURPK.spad" 1830154 1830170 1832503 1832508) (-1067 "RULESET.spad" 1829595 1829619 1830144 1830149) (-1066 "RULECOLD.spad" 1829447 1829460 1829585 1829590) (-1065 "RULE.spad" 1827651 1827675 1829437 1829442) (-1064 "RSTRCAST.spad" 1827368 1827377 1827641 1827646) (-1063 "RSETGCD.spad" 1823746 1823766 1827358 1827363) (-1062 "RSETCAT.spad" 1813530 1813547 1823714 1823741) (-1061 "RSETCAT.spad" 1803334 1803353 1813520 1813525) (-1060 "RSDCMPK.spad" 1801786 1801806 1803324 1803329) (-1059 "RRCC.spad" 1800170 1800200 1801776 1801781) (-1058 "RRCC.spad" 1798552 1798584 1800160 1800165) (-1057 "RPTAST.spad" 1798254 1798263 1798542 1798547) (-1056 "RPOLCAT.spad" 1777614 1777629 1798122 1798249) (-1055 "RPOLCAT.spad" 1756688 1756705 1777198 1777203) (-1054 "ROUTINE.spad" 1752551 1752560 1755335 1755362) (-1053 "ROMAN.spad" 1751879 1751888 1752417 1752546) (-1052 "ROIRC.spad" 1750959 1750991 1751869 1751874) (-1051 "RNS.spad" 1749862 1749871 1750861 1750954) (-1050 "RNS.spad" 1748851 1748862 1749852 1749857) (-1049 "RNG.spad" 1748586 1748595 1748841 1748846) (-1048 "RMODULE.spad" 1748224 1748235 1748576 1748581) (-1047 "RMCAT2.spad" 1747632 1747689 1748214 1748219) (-1046 "RMATRIX.spad" 1746456 1746475 1746799 1746838) (-1045 "RMATCAT.spad" 1741989 1742020 1746412 1746451) (-1044 "RMATCAT.spad" 1737412 1737445 1741837 1741842) (-1043 "RINTERP.spad" 1737300 1737320 1737402 1737407) (-1042 "RING.spad" 1736770 1736779 1737280 1737295) (-1041 "RING.spad" 1736248 1736259 1736760 1736765) (-1040 "RIDIST.spad" 1735632 1735641 1736238 1736243) (-1039 "RGCHAIN.spad" 1734211 1734227 1735117 1735144) (-1038 "RGBCSPC.spad" 1733992 1734004 1734201 1734206) (-1037 "RGBCMDL.spad" 1733522 1733534 1733982 1733987) (-1036 "RFFACTOR.spad" 1732984 1732995 1733512 1733517) (-1035 "RFFACT.spad" 1732719 1732731 1732974 1732979) (-1034 "RFDIST.spad" 1731707 1731716 1732709 1732714) (-1033 "RF.spad" 1729321 1729332 1731697 1731702) (-1032 "RETSOL.spad" 1728738 1728751 1729311 1729316) (-1031 "RETRACT.spad" 1728166 1728177 1728728 1728733) (-1030 "RETRACT.spad" 1727592 1727605 1728156 1728161) (-1029 "RETAST.spad" 1727404 1727413 1727582 1727587) (-1028 "RESULT.spad" 1725464 1725473 1726051 1726078) (-1027 "RESRING.spad" 1724811 1724858 1725402 1725459) (-1026 "RESLATC.spad" 1724135 1724146 1724801 1724806) (-1025 "REPSQ.spad" 1723864 1723875 1724125 1724130) (-1024 "REPDB.spad" 1723569 1723580 1723854 1723859) (-1023 "REP2.spad" 1713141 1713152 1723411 1723416) (-1022 "REP1.spad" 1707131 1707142 1713091 1713096) (-1021 "REP.spad" 1704683 1704692 1707121 1707126) (-1020 "REGSET.spad" 1702480 1702497 1704329 1704356) (-1019 "REF.spad" 1701809 1701820 1702435 1702440) (-1018 "REDORDER.spad" 1700985 1701002 1701799 1701804) (-1017 "RECLOS.spad" 1699768 1699788 1700472 1700565) (-1016 "REALSOLV.spad" 1698900 1698909 1699758 1699763) (-1015 "REAL0Q.spad" 1696182 1696197 1698890 1698895) (-1014 "REAL0.spad" 1693010 1693025 1696172 1696177) (-1013 "REAL.spad" 1692882 1692891 1693000 1693005) (-1012 "RDUCEAST.spad" 1692603 1692612 1692872 1692877) (-1011 "RDIV.spad" 1692254 1692279 1692593 1692598) (-1010 "RDIST.spad" 1691817 1691828 1692244 1692249) (-1009 "RDETRS.spad" 1690613 1690631 1691807 1691812) (-1008 "RDETR.spad" 1688720 1688738 1690603 1690608) (-1007 "RDEEFS.spad" 1687793 1687810 1688710 1688715) (-1006 "RDEEF.spad" 1686789 1686806 1687783 1687788) (-1005 "RCFIELD.spad" 1683975 1683984 1686691 1686784) (-1004 "RCFIELD.spad" 1681247 1681258 1683965 1683970) (-1003 "RCAGG.spad" 1679159 1679170 1681237 1681242) (-1002 "RCAGG.spad" 1676998 1677011 1679078 1679083) (-1001 "RATRET.spad" 1676358 1676369 1676988 1676993) (-1000 "RATFACT.spad" 1676050 1676062 1676348 1676353) (-999 "RANDSRC.spad" 1675370 1675378 1676040 1676045) (-998 "RADUTIL.spad" 1675125 1675133 1675360 1675365) (-997 "RADIX.spad" 1672027 1672040 1673592 1673685) (-996 "RADFF.spad" 1670441 1670477 1670559 1670715) (-995 "RADCAT.spad" 1670035 1670043 1670431 1670436) (-994 "RADCAT.spad" 1669627 1669637 1670025 1670030) (-993 "QUEUE.spad" 1668970 1668980 1669234 1669261) (-992 "QUATCT2.spad" 1668589 1668607 1668960 1668965) (-991 "QUATCAT.spad" 1666754 1666764 1668519 1668584) (-990 "QUATCAT.spad" 1664670 1664682 1666437 1666442) (-989 "QUAT.spad" 1663252 1663262 1663594 1663659) (-988 "QUAGG.spad" 1662078 1662088 1663220 1663247) (-987 "QQUTAST.spad" 1661847 1661855 1662068 1662073) (-986 "QFORM.spad" 1661310 1661324 1661837 1661842) (-985 "QFCAT2.spad" 1661001 1661017 1661300 1661305) (-984 "QFCAT.spad" 1659704 1659714 1660903 1660996) (-983 "QFCAT.spad" 1657998 1658010 1659199 1659204) (-982 "QEQUAT.spad" 1657555 1657563 1657988 1657993) (-981 "QCMPACK.spad" 1652302 1652321 1657545 1657550) (-980 "QALGSET2.spad" 1650298 1650316 1652292 1652297) (-979 "QALGSET.spad" 1646375 1646407 1650212 1650217) (-978 "PWFFINTB.spad" 1643685 1643706 1646365 1646370) (-977 "PUSHVAR.spad" 1643014 1643033 1643675 1643680) (-976 "PTRANFN.spad" 1639140 1639150 1643004 1643009) (-975 "PTPACK.spad" 1636228 1636238 1639130 1639135) (-974 "PTFUNC2.spad" 1636049 1636063 1636218 1636223) (-973 "PTCAT.spad" 1635298 1635308 1636017 1636044) (-972 "PSQFR.spad" 1634605 1634629 1635288 1635293) (-971 "PSEUDLIN.spad" 1633463 1633473 1634595 1634600) (-970 "PSETPK.spad" 1618896 1618912 1633341 1633346) (-969 "PSETCAT.spad" 1612816 1612839 1618876 1618891) (-968 "PSETCAT.spad" 1606710 1606735 1612772 1612777) (-967 "PSCURVE.spad" 1605693 1605701 1606700 1606705) (-966 "PSCAT.spad" 1604460 1604489 1605591 1605688) (-965 "PSCAT.spad" 1603317 1603348 1604450 1604455) (-964 "PRTITION.spad" 1602262 1602270 1603307 1603312) (-963 "PRTDAST.spad" 1601981 1601989 1602252 1602257) (-962 "PRS.spad" 1591543 1591560 1601937 1601942) (-961 "PRQAGG.spad" 1590974 1590984 1591511 1591538) (-960 "PROPLOG.spad" 1590377 1590385 1590964 1590969) (-959 "PROPFRML.spad" 1588295 1588306 1590367 1590372) (-958 "PROPERTY.spad" 1587789 1587797 1588285 1588290) (-957 "PRODUCT.spad" 1585469 1585481 1585755 1585810) (-956 "PRINT.spad" 1585221 1585229 1585459 1585464) (-955 "PRIMES.spad" 1583472 1583482 1585211 1585216) (-954 "PRIMELT.spad" 1581453 1581467 1583462 1583467) (-953 "PRIMCAT.spad" 1581076 1581084 1581443 1581448) (-952 "PRIMARR2.spad" 1579799 1579811 1581066 1581071) (-951 "PRIMARR.spad" 1578804 1578814 1578982 1579009) (-950 "PREASSOC.spad" 1578176 1578188 1578794 1578799) (-949 "PR.spad" 1576562 1576574 1577267 1577394) (-948 "PPCURVE.spad" 1575699 1575707 1576552 1576557) (-947 "PORTNUM.spad" 1575474 1575482 1575689 1575694) (-946 "POLYROOT.spad" 1574303 1574325 1575430 1575435) (-945 "POLYLIFT.spad" 1573564 1573587 1574293 1574298) (-944 "POLYCATQ.spad" 1571666 1571688 1573554 1573559) (-943 "POLYCAT.spad" 1565072 1565093 1571534 1571661) (-942 "POLYCAT.spad" 1557780 1557803 1564244 1564249) (-941 "POLY2UP.spad" 1557228 1557242 1557770 1557775) (-940 "POLY2.spad" 1556823 1556835 1557218 1557223) (-939 "POLY.spad" 1554120 1554130 1554637 1554764) (-938 "POLUTIL.spad" 1553061 1553090 1554076 1554081) (-937 "POLTOPOL.spad" 1551809 1551824 1553051 1553056) (-936 "POINT.spad" 1550648 1550658 1550735 1550762) (-935 "PNTHEORY.spad" 1547314 1547322 1550638 1550643) (-934 "PMTOOLS.spad" 1546071 1546085 1547304 1547309) (-933 "PMSYM.spad" 1545616 1545626 1546061 1546066) (-932 "PMQFCAT.spad" 1545203 1545217 1545606 1545611) (-931 "PMPREDFS.spad" 1544647 1544669 1545193 1545198) (-930 "PMPRED.spad" 1544116 1544130 1544637 1544642) (-929 "PMPLCAT.spad" 1543186 1543204 1544048 1544053) (-928 "PMLSAGG.spad" 1542767 1542781 1543176 1543181) (-927 "PMKERNEL.spad" 1542334 1542346 1542757 1542762) (-926 "PMINS.spad" 1541910 1541920 1542324 1542329) (-925 "PMFS.spad" 1541483 1541501 1541900 1541905) (-924 "PMDOWN.spad" 1540769 1540783 1541473 1541478) (-923 "PMASSFS.spad" 1539738 1539754 1540759 1540764) (-922 "PMASS.spad" 1538750 1538758 1539728 1539733) (-921 "PLOTTOOL.spad" 1538530 1538538 1538740 1538745) (-920 "PLOT3D.spad" 1534950 1534958 1538520 1538525) (-919 "PLOT1.spad" 1534091 1534101 1534940 1534945) (-918 "PLOT.spad" 1528922 1528930 1534081 1534086) (-917 "PLEQN.spad" 1516138 1516165 1528912 1528917) (-916 "PINTERPA.spad" 1515920 1515936 1516128 1516133) (-915 "PINTERP.spad" 1515536 1515555 1515910 1515915) (-914 "PID.spad" 1514492 1514500 1515462 1515531) (-913 "PICOERCE.spad" 1514149 1514159 1514482 1514487) (-912 "PI.spad" 1513756 1513764 1514123 1514144) (-911 "PGROEB.spad" 1512353 1512367 1513746 1513751) (-910 "PGE.spad" 1503606 1503614 1512343 1512348) (-909 "PGCD.spad" 1502488 1502505 1503596 1503601) (-908 "PFRPAC.spad" 1501631 1501641 1502478 1502483) (-907 "PFR.spad" 1498288 1498298 1501533 1501626) (-906 "PFOTOOLS.spad" 1497546 1497562 1498278 1498283) (-905 "PFOQ.spad" 1496916 1496934 1497536 1497541) (-904 "PFO.spad" 1496335 1496362 1496906 1496911) (-903 "PFECAT.spad" 1494001 1494009 1496261 1496330) (-902 "PFECAT.spad" 1491695 1491705 1493957 1493962) (-901 "PFBRU.spad" 1489565 1489577 1491685 1491690) (-900 "PFBR.spad" 1487103 1487126 1489555 1489560) (-899 "PF.spad" 1486677 1486689 1486908 1487001) (-898 "PERMGRP.spad" 1481413 1481423 1486667 1486672) (-897 "PERMCAT.spad" 1479965 1479975 1481393 1481408) (-896 "PERMAN.spad" 1478497 1478511 1479955 1479960) (-895 "PERM.spad" 1474178 1474188 1478327 1478342) (-894 "PENDTREE.spad" 1473517 1473527 1473807 1473812) (-893 "PDRING.spad" 1472008 1472018 1473497 1473512) (-892 "PDRING.spad" 1470507 1470519 1471998 1472003) (-891 "PDEPROB.spad" 1469522 1469530 1470497 1470502) (-890 "PDEPACK.spad" 1463524 1463532 1469512 1469517) (-889 "PDECOMP.spad" 1462986 1463003 1463514 1463519) (-888 "PDECAT.spad" 1461340 1461348 1462976 1462981) (-887 "PCOMP.spad" 1461191 1461204 1461330 1461335) (-886 "PBWLB.spad" 1459773 1459790 1461181 1461186) (-885 "PATTERN2.spad" 1459509 1459521 1459763 1459768) (-884 "PATTERN1.spad" 1457811 1457827 1459499 1459504) (-883 "PATTERN.spad" 1452242 1452252 1457801 1457806) (-882 "PATRES2.spad" 1451904 1451918 1452232 1452237) (-881 "PATRES.spad" 1449451 1449463 1451894 1451899) (-880 "PATMATCH.spad" 1447608 1447639 1449159 1449164) (-879 "PATMAB.spad" 1447033 1447043 1447598 1447603) (-878 "PATLRES.spad" 1446117 1446131 1447023 1447028) (-877 "PATAB.spad" 1445881 1445891 1446107 1446112) (-876 "PARTPERM.spad" 1443243 1443251 1445871 1445876) (-875 "PARSURF.spad" 1442671 1442699 1443233 1443238) (-874 "PARSU2.spad" 1442466 1442482 1442661 1442666) (-873 "script-parser.spad" 1441986 1441994 1442456 1442461) (-872 "PARSCURV.spad" 1441414 1441442 1441976 1441981) (-871 "PARSC2.spad" 1441203 1441219 1441404 1441409) (-870 "PARPCURV.spad" 1440661 1440689 1441193 1441198) (-869 "PARPC2.spad" 1440450 1440466 1440651 1440656) (-868 "PAN2EXPR.spad" 1439862 1439870 1440440 1440445) (-867 "PALETTE.spad" 1438832 1438840 1439852 1439857) (-866 "PAIR.spad" 1437815 1437828 1438420 1438425) (-865 "PADICRC.spad" 1435145 1435163 1436320 1436413) (-864 "PADICRAT.spad" 1433160 1433172 1433381 1433474) (-863 "PADICCT.spad" 1431701 1431713 1433086 1433155) (-862 "PADIC.spad" 1431396 1431408 1431627 1431696) (-861 "PADEPAC.spad" 1430075 1430094 1431386 1431391) (-860 "PADE.spad" 1428815 1428831 1430065 1430070) (-859 "OWP.spad" 1428055 1428085 1428673 1428740) (-858 "OVAR.spad" 1427836 1427859 1428045 1428050) (-857 "OUTFORM.spad" 1417132 1417140 1427826 1427831) (-856 "OUTBFILE.spad" 1416550 1416558 1417122 1417127) (-855 "OUTBCON.spad" 1415548 1415556 1416540 1416545) (-854 "OUTBCON.spad" 1414544 1414554 1415538 1415543) (-853 "OUT.spad" 1413628 1413636 1414534 1414539) (-852 "OSI.spad" 1413103 1413111 1413618 1413623) (-851 "OSGROUP.spad" 1413021 1413029 1413093 1413098) (-850 "ORTHPOL.spad" 1411482 1411492 1412938 1412943) (-849 "OREUP.spad" 1410935 1410963 1411162 1411201) (-848 "ORESUP.spad" 1410234 1410258 1410615 1410654) (-847 "OREPCTO.spad" 1408053 1408065 1410154 1410159) (-846 "OREPCAT.spad" 1402110 1402120 1408009 1408048) (-845 "OREPCAT.spad" 1396057 1396069 1401958 1401963) (-844 "ORDSET.spad" 1395223 1395231 1396047 1396052) (-843 "ORDSET.spad" 1394387 1394397 1395213 1395218) (-842 "ORDRING.spad" 1393777 1393785 1394367 1394382) (-841 "ORDRING.spad" 1393175 1393185 1393767 1393772) (-840 "ORDMON.spad" 1393030 1393038 1393165 1393170) (-839 "ORDFUNS.spad" 1392156 1392172 1393020 1393025) (-838 "ORDFIN.spad" 1391976 1391984 1392146 1392151) (-837 "ORDCOMP2.spad" 1391261 1391273 1391966 1391971) (-836 "ORDCOMP.spad" 1389726 1389736 1390808 1390837) (-835 "OPTPROB.spad" 1388364 1388372 1389716 1389721) (-834 "OPTPACK.spad" 1380749 1380757 1388354 1388359) (-833 "OPTCAT.spad" 1378424 1378432 1380739 1380744) (-832 "OPSIG.spad" 1378076 1378084 1378414 1378419) (-831 "OPQUERY.spad" 1377625 1377633 1378066 1378071) (-830 "OPERCAT.spad" 1377213 1377223 1377615 1377620) (-829 "OPERCAT.spad" 1376799 1376811 1377203 1377208) (-828 "OP.spad" 1376541 1376551 1376621 1376688) (-827 "ONECOMP2.spad" 1375959 1375971 1376531 1376536) (-826 "ONECOMP.spad" 1374704 1374714 1375506 1375535) (-825 "OMSERVER.spad" 1373706 1373714 1374694 1374699) (-824 "OMSAGG.spad" 1373494 1373504 1373662 1373701) (-823 "OMPKG.spad" 1372106 1372114 1373484 1373489) (-822 "OMLO.spad" 1371531 1371543 1371992 1372031) (-821 "OMEXPR.spad" 1371365 1371375 1371521 1371526) (-820 "OMERRK.spad" 1370399 1370407 1371355 1371360) (-819 "OMERR.spad" 1369942 1369950 1370389 1370394) (-818 "OMENC.spad" 1369286 1369294 1369932 1369937) (-817 "OMDEV.spad" 1363575 1363583 1369276 1369281) (-816 "OMCONN.spad" 1362984 1362992 1363565 1363570) (-815 "OM.spad" 1361949 1361957 1362974 1362979) (-814 "OINTDOM.spad" 1361712 1361720 1361875 1361944) (-813 "OFMONOID.spad" 1357899 1357909 1361702 1361707) (-812 "ODVAR.spad" 1357160 1357170 1357889 1357894) (-811 "ODR.spad" 1356804 1356830 1356972 1357121) (-810 "ODPOL.spad" 1354150 1354160 1354490 1354617) (-809 "ODP.spad" 1343997 1344017 1344370 1344501) (-808 "ODETOOLS.spad" 1342580 1342599 1343987 1343992) (-807 "ODESYS.spad" 1340230 1340247 1342570 1342575) (-806 "ODERTRIC.spad" 1336171 1336188 1340187 1340192) (-805 "ODERED.spad" 1335558 1335582 1336161 1336166) (-804 "ODERAT.spad" 1333111 1333128 1335548 1335553) (-803 "ODEPRRIC.spad" 1330002 1330024 1333101 1333106) (-802 "ODEPROB.spad" 1329259 1329267 1329992 1329997) (-801 "ODEPRIM.spad" 1326533 1326555 1329249 1329254) (-800 "ODEPAL.spad" 1325909 1325933 1326523 1326528) (-799 "ODEPACK.spad" 1312511 1312519 1325899 1325904) (-798 "ODEINT.spad" 1311942 1311958 1312501 1312506) (-797 "ODEIFTBL.spad" 1309337 1309345 1311932 1311937) (-796 "ODEEF.spad" 1304708 1304724 1309327 1309332) (-795 "ODECONST.spad" 1304227 1304245 1304698 1304703) (-794 "ODECAT.spad" 1302823 1302831 1304217 1304222) (-793 "OCTCT2.spad" 1302467 1302488 1302813 1302818) (-792 "OCT.spad" 1300605 1300615 1301321 1301360) (-791 "OCAMON.spad" 1300453 1300461 1300595 1300600) (-790 "OC.spad" 1298227 1298237 1300409 1300448) (-789 "OC.spad" 1295726 1295738 1297910 1297915) (-788 "OASGP.spad" 1295541 1295549 1295716 1295721) (-787 "OAMONS.spad" 1295061 1295069 1295531 1295536) (-786 "OAMON.spad" 1294922 1294930 1295051 1295056) (-785 "OAGROUP.spad" 1294784 1294792 1294912 1294917) (-784 "NUMTUBE.spad" 1294371 1294387 1294774 1294779) (-783 "NUMQUAD.spad" 1282233 1282241 1294361 1294366) (-782 "NUMODE.spad" 1273369 1273377 1282223 1282228) (-781 "NUMINT.spad" 1270927 1270935 1273359 1273364) (-780 "NUMFMT.spad" 1269767 1269775 1270917 1270922) (-779 "NUMERIC.spad" 1261839 1261849 1269572 1269577) (-778 "NTSCAT.spad" 1260341 1260357 1261807 1261834) (-777 "NTPOLFN.spad" 1259886 1259896 1260258 1260263) (-776 "NSUP2.spad" 1259278 1259290 1259876 1259881) (-775 "NSUP.spad" 1252288 1252298 1256828 1256981) (-774 "NSMP.spad" 1248483 1248502 1248791 1248918) (-773 "NREP.spad" 1246855 1246869 1248473 1248478) (-772 "NPCOEF.spad" 1246101 1246121 1246845 1246850) (-771 "NORMRETR.spad" 1245699 1245738 1246091 1246096) (-770 "NORMPK.spad" 1243601 1243620 1245689 1245694) (-769 "NORMMA.spad" 1243289 1243315 1243591 1243596) (-768 "NONE1.spad" 1242965 1242975 1243279 1243284) (-767 "NONE.spad" 1242706 1242714 1242955 1242960) (-766 "NODE1.spad" 1242175 1242191 1242696 1242701) (-765 "NNI.spad" 1241062 1241070 1242149 1242170) (-764 "NLINSOL.spad" 1239684 1239694 1241052 1241057) (-763 "NIPROB.spad" 1238225 1238233 1239674 1239679) (-762 "NFINTBAS.spad" 1235685 1235702 1238215 1238220) (-761 "NETCLT.spad" 1235659 1235670 1235675 1235680) (-760 "NCODIV.spad" 1233857 1233873 1235649 1235654) (-759 "NCNTFRAC.spad" 1233499 1233513 1233847 1233852) (-758 "NCEP.spad" 1231659 1231673 1233489 1233494) (-757 "NASRING.spad" 1231255 1231263 1231649 1231654) (-756 "NASRING.spad" 1230849 1230859 1231245 1231250) (-755 "NARNG.spad" 1230193 1230201 1230839 1230844) (-754 "NARNG.spad" 1229535 1229545 1230183 1230188) (-753 "NAGSP.spad" 1228608 1228616 1229525 1229530) (-752 "NAGS.spad" 1218133 1218141 1228598 1228603) (-751 "NAGF07.spad" 1216526 1216534 1218123 1218128) (-750 "NAGF04.spad" 1210758 1210766 1216516 1216521) (-749 "NAGF02.spad" 1204567 1204575 1210748 1210753) (-748 "NAGF01.spad" 1200170 1200178 1204557 1204562) (-747 "NAGE04.spad" 1193630 1193638 1200160 1200165) (-746 "NAGE02.spad" 1183972 1183980 1193620 1193625) (-745 "NAGE01.spad" 1179856 1179864 1183962 1183967) (-744 "NAGD03.spad" 1177776 1177784 1179846 1179851) (-743 "NAGD02.spad" 1170307 1170315 1177766 1177771) (-742 "NAGD01.spad" 1164420 1164428 1170297 1170302) (-741 "NAGC06.spad" 1160207 1160215 1164410 1164415) (-740 "NAGC05.spad" 1158676 1158684 1160197 1160202) (-739 "NAGC02.spad" 1157931 1157939 1158666 1158671) (-738 "NAALG.spad" 1157466 1157476 1157899 1157926) (-737 "NAALG.spad" 1157021 1157033 1157456 1157461) (-736 "MULTSQFR.spad" 1153979 1153996 1157011 1157016) (-735 "MULTFACT.spad" 1153362 1153379 1153969 1153974) (-734 "MTSCAT.spad" 1151396 1151417 1153260 1153357) (-733 "MTHING.spad" 1151053 1151063 1151386 1151391) (-732 "MSYSCMD.spad" 1150487 1150495 1151043 1151048) (-731 "MSETAGG.spad" 1150332 1150342 1150455 1150482) (-730 "MSET.spad" 1148274 1148284 1150038 1150077) (-729 "MRING.spad" 1145245 1145257 1147982 1148049) (-728 "MRF2.spad" 1144813 1144827 1145235 1145240) (-727 "MRATFAC.spad" 1144359 1144376 1144803 1144808) (-726 "MPRFF.spad" 1142389 1142408 1144349 1144354) (-725 "MPOLY.spad" 1139824 1139839 1140183 1140310) (-724 "MPCPF.spad" 1139088 1139107 1139814 1139819) (-723 "MPC3.spad" 1138903 1138943 1139078 1139083) (-722 "MPC2.spad" 1138545 1138578 1138893 1138898) (-721 "MONOTOOL.spad" 1136880 1136897 1138535 1138540) (-720 "MONOID.spad" 1136199 1136207 1136870 1136875) (-719 "MONOID.spad" 1135516 1135526 1136189 1136194) (-718 "MONOGEN.spad" 1134262 1134275 1135376 1135511) (-717 "MONOGEN.spad" 1133030 1133045 1134146 1134151) (-716 "MONADWU.spad" 1131044 1131052 1133020 1133025) (-715 "MONADWU.spad" 1129056 1129066 1131034 1131039) (-714 "MONAD.spad" 1128200 1128208 1129046 1129051) (-713 "MONAD.spad" 1127342 1127352 1128190 1128195) (-712 "MOEBIUS.spad" 1126028 1126042 1127322 1127337) (-711 "MODULE.spad" 1125898 1125908 1125996 1126023) (-710 "MODULE.spad" 1125788 1125800 1125888 1125893) (-709 "MODRING.spad" 1125119 1125158 1125768 1125783) (-708 "MODOP.spad" 1123778 1123790 1124941 1125008) (-707 "MODMONOM.spad" 1123507 1123525 1123768 1123773) (-706 "MODMON.spad" 1120266 1120282 1120985 1121138) (-705 "MODFIELD.spad" 1119624 1119663 1120168 1120261) (-704 "MMLFORM.spad" 1118484 1118492 1119614 1119619) (-703 "MMAP.spad" 1118224 1118258 1118474 1118479) (-702 "MLO.spad" 1116651 1116661 1118180 1118219) (-701 "MLIFT.spad" 1115223 1115240 1116641 1116646) (-700 "MKUCFUNC.spad" 1114756 1114774 1115213 1115218) (-699 "MKRECORD.spad" 1114358 1114371 1114746 1114751) (-698 "MKFUNC.spad" 1113739 1113749 1114348 1114353) (-697 "MKFLCFN.spad" 1112695 1112705 1113729 1113734) (-696 "MKCHSET.spad" 1112560 1112570 1112685 1112690) (-695 "MKBCFUNC.spad" 1112045 1112063 1112550 1112555) (-694 "MINT.spad" 1111484 1111492 1111947 1112040) (-693 "MHROWRED.spad" 1109985 1109995 1111474 1111479) (-692 "MFLOAT.spad" 1108501 1108509 1109875 1109980) (-691 "MFINFACT.spad" 1107901 1107923 1108491 1108496) (-690 "MESH.spad" 1105638 1105646 1107891 1107896) (-689 "MDDFACT.spad" 1103831 1103841 1105628 1105633) (-688 "MDAGG.spad" 1103118 1103128 1103811 1103826) (-687 "MCMPLX.spad" 1099104 1099112 1099718 1099907) (-686 "MCDEN.spad" 1098312 1098324 1099094 1099099) (-685 "MCALCFN.spad" 1095414 1095440 1098302 1098307) (-684 "MAYBE.spad" 1094698 1094709 1095404 1095409) (-683 "MATSTOR.spad" 1091974 1091984 1094688 1094693) (-682 "MATRIX.spad" 1090678 1090688 1091162 1091189) (-681 "MATLIN.spad" 1088004 1088028 1090562 1090567) (-680 "MATCAT2.spad" 1087272 1087320 1087994 1087999) (-679 "MATCAT.spad" 1078857 1078879 1087240 1087267) (-678 "MATCAT.spad" 1070314 1070338 1078699 1078704) (-677 "MAPPKG3.spad" 1069213 1069227 1070304 1070309) (-676 "MAPPKG2.spad" 1068547 1068559 1069203 1069208) (-675 "MAPPKG1.spad" 1067365 1067375 1068537 1068542) (-674 "MAPPAST.spad" 1066678 1066686 1067355 1067360) (-673 "MAPHACK3.spad" 1066486 1066500 1066668 1066673) (-672 "MAPHACK2.spad" 1066251 1066263 1066476 1066481) (-671 "MAPHACK1.spad" 1065881 1065891 1066241 1066246) (-670 "MAGMA.spad" 1063671 1063688 1065871 1065876) (-669 "MACROAST.spad" 1063250 1063258 1063661 1063666) (-668 "M3D.spad" 1060946 1060956 1062628 1062633) (-667 "LZSTAGG.spad" 1058174 1058184 1060936 1060941) (-666 "LZSTAGG.spad" 1055400 1055412 1058164 1058169) (-665 "LWORD.spad" 1052105 1052122 1055390 1055395) (-664 "LSTAST.spad" 1051889 1051897 1052095 1052100) (-663 "LSQM.spad" 1050112 1050126 1050510 1050561) (-662 "LSPP.spad" 1049645 1049662 1050102 1050107) (-661 "LSMP1.spad" 1047466 1047480 1049635 1049640) (-660 "LSMP.spad" 1046313 1046341 1047456 1047461) (-659 "LSAGG.spad" 1045982 1045992 1046281 1046308) (-658 "LSAGG.spad" 1045671 1045683 1045972 1045977) (-657 "LPOLY.spad" 1044625 1044644 1045527 1045596) (-656 "LPEFRAC.spad" 1043882 1043892 1044615 1044620) (-655 "LOGIC.spad" 1043484 1043492 1043872 1043877) (-654 "LOGIC.spad" 1043084 1043094 1043474 1043479) (-653 "LODOOPS.spad" 1042002 1042014 1043074 1043079) (-652 "LODOF.spad" 1041046 1041063 1041959 1041964) (-651 "LODOCAT.spad" 1039704 1039714 1041002 1041041) (-650 "LODOCAT.spad" 1038360 1038372 1039660 1039665) (-649 "LODO2.spad" 1037633 1037645 1038040 1038079) (-648 "LODO1.spad" 1037033 1037043 1037313 1037352) (-647 "LODO.spad" 1036417 1036433 1036713 1036752) (-646 "LODEEF.spad" 1035189 1035207 1036407 1036412) (-645 "LO.spad" 1034590 1034604 1035123 1035150) (-644 "LNAGG.spad" 1030392 1030402 1034580 1034585) (-643 "LNAGG.spad" 1026158 1026170 1030348 1030353) (-642 "LMOPS.spad" 1022894 1022911 1026148 1026153) (-641 "LMODULE.spad" 1022536 1022546 1022884 1022889) (-640 "LMDICT.spad" 1021819 1021829 1022087 1022114) (-639 "LITERAL.spad" 1021725 1021736 1021809 1021814) (-638 "LIST3.spad" 1021016 1021030 1021715 1021720) (-637 "LIST2MAP.spad" 1017893 1017905 1021006 1021011) (-636 "LIST2.spad" 1016533 1016545 1017883 1017888) (-635 "LIST.spad" 1014251 1014261 1015680 1015707) (-634 "LINEXP.spad" 1013683 1013693 1014231 1014246) (-633 "LINDEP.spad" 1012460 1012472 1013595 1013600) (-632 "LIMITRF.spad" 1010393 1010403 1012450 1012455) (-631 "LIMITPS.spad" 1009283 1009296 1010383 1010388) (-630 "LIECAT.spad" 1008759 1008769 1009209 1009278) (-629 "LIECAT.spad" 1008263 1008275 1008715 1008720) (-628 "LIE.spad" 1006277 1006289 1007553 1007698) (-627 "LIB.spad" 1004325 1004333 1004936 1004951) (-626 "LGROBP.spad" 1001678 1001697 1004315 1004320) (-625 "LFCAT.spad" 1000697 1000705 1001668 1001673) (-624 "LF.spad" 999616 999632 1000687 1000692) (-623 "LEXTRIPK.spad" 995119 995134 999606 999611) (-622 "LEXP.spad" 993122 993149 995099 995114) (-621 "LETAST.spad" 992821 992829 993112 993117) (-620 "LEADCDET.spad" 991205 991222 992811 992816) (-619 "LAZM3PK.spad" 989909 989931 991195 991200) (-618 "LAUPOL.spad" 988598 988611 989502 989571) (-617 "LAPLACE.spad" 988171 988187 988588 988593) (-616 "LALG.spad" 987947 987957 988151 988166) (-615 "LALG.spad" 987731 987743 987937 987942) (-614 "LA.spad" 987171 987185 987653 987692) (-613 "KVTFROM.spad" 986906 986916 987161 987166) (-612 "KTVLOGIC.spad" 986329 986337 986896 986901) (-611 "KRCFROM.spad" 986067 986077 986319 986324) (-610 "KOVACIC.spad" 984780 984797 986057 986062) (-609 "KONVERT.spad" 984502 984512 984770 984775) (-608 "KOERCE.spad" 984239 984249 984492 984497) (-607 "KERNEL2.spad" 983942 983954 984229 984234) (-606 "KERNEL.spad" 982477 982487 983726 983731) (-605 "KDAGG.spad" 981580 981602 982457 982472) (-604 "KDAGG.spad" 980691 980715 981570 981575) (-603 "KAFILE.spad" 979654 979670 979889 979916) (-602 "JORDAN.spad" 977481 977493 978944 979089) (-601 "JOINAST.spad" 977175 977183 977471 977476) (-600 "JAVACODE.spad" 977041 977049 977165 977170) (-599 "IXAGG.spad" 975164 975188 977031 977036) (-598 "IXAGG.spad" 973142 973168 975011 975016) (-597 "IVECTOR.spad" 971913 971928 972068 972095) (-596 "ITUPLE.spad" 971058 971068 971903 971908) (-595 "ITRIGMNP.spad" 969869 969888 971048 971053) (-594 "ITFUN3.spad" 969363 969377 969859 969864) (-593 "ITFUN2.spad" 969093 969105 969353 969358) (-592 "ITAYLOR.spad" 966885 966900 968929 969054) (-591 "ISUPS.spad" 959296 959311 965859 965956) (-590 "ISUMP.spad" 958793 958809 959286 959291) (-589 "ISTRING.spad" 957796 957809 957962 957989) (-588 "ISAST.spad" 957515 957523 957786 957791) (-587 "IRURPK.spad" 956228 956247 957505 957510) (-586 "IRSN.spad" 954188 954196 956218 956223) (-585 "IRRF2F.spad" 952663 952673 954144 954149) (-584 "IRREDFFX.spad" 952264 952275 952653 952658) (-583 "IROOT.spad" 950595 950605 952254 952259) (-582 "IR2F.spad" 949795 949811 950585 950590) (-581 "IR2.spad" 948815 948831 949785 949790) (-580 "IR.spad" 946604 946618 948670 948697) (-579 "IPRNTPK.spad" 946364 946372 946594 946599) (-578 "IPF.spad" 945929 945941 946169 946262) (-577 "IPADIC.spad" 945690 945716 945855 945924) (-576 "IP4ADDR.spad" 945247 945255 945680 945685) (-575 "IOMODE.spad" 944868 944876 945237 945242) (-574 "IOBFILE.spad" 944229 944237 944858 944863) (-573 "IOBCON.spad" 944094 944102 944219 944224) (-572 "INVLAPLA.spad" 943739 943755 944084 944089) (-571 "INTTR.spad" 936997 937014 943729 943734) (-570 "INTTOOLS.spad" 934708 934724 936571 936576) (-569 "INTSLPE.spad" 934014 934022 934698 934703) (-568 "INTRVL.spad" 933580 933590 933928 934009) (-567 "INTRF.spad" 931944 931958 933570 933575) (-566 "INTRET.spad" 931376 931386 931934 931939) (-565 "INTRAT.spad" 930051 930068 931366 931371) (-564 "INTPM.spad" 928414 928430 929694 929699) (-563 "INTPAF.spad" 926189 926207 928346 928351) (-562 "INTPACK.spad" 916499 916507 926179 926184) (-561 "INTHERTR.spad" 915765 915782 916489 916494) (-560 "INTHERAL.spad" 915431 915455 915755 915760) (-559 "INTHEORY.spad" 911844 911852 915421 915426) (-558 "INTG0.spad" 905325 905343 911776 911781) (-557 "INTFTBL.spad" 900779 900787 905315 905320) (-556 "INTFACT.spad" 899838 899848 900769 900774) (-555 "INTEF.spad" 898155 898171 899828 899833) (-554 "INTDOM.spad" 896770 896778 898081 898150) (-553 "INTDOM.spad" 895447 895457 896760 896765) (-552 "INTCAT.spad" 893700 893710 895361 895442) (-551 "INTBIT.spad" 893203 893211 893690 893695) (-550 "INTALG.spad" 892385 892412 893193 893198) (-549 "INTAF.spad" 891877 891893 892375 892380) (-548 "INTABL.spad" 890395 890426 890558 890585) (-547 "INT8.spad" 890275 890283 890385 890390) (-546 "INT32.spad" 890154 890162 890265 890270) (-545 "INT16.spad" 890033 890041 890144 890149) (-544 "INT.spad" 889394 889402 889887 890028) (-543 "INS.spad" 886861 886869 889296 889389) (-542 "INS.spad" 884414 884424 886851 886856) (-541 "INPSIGN.spad" 883870 883883 884404 884409) (-540 "INPRODPF.spad" 882936 882955 883860 883865) (-539 "INPRODFF.spad" 881994 882018 882926 882931) (-538 "INNMFACT.spad" 880965 880982 881984 881989) (-537 "INMODGCD.spad" 880449 880479 880955 880960) (-536 "INFSP.spad" 878734 878756 880439 880444) (-535 "INFPROD0.spad" 877784 877803 878724 878729) (-534 "INFORM1.spad" 877409 877419 877774 877779) (-533 "INFORM.spad" 874570 874578 877399 877404) (-532 "INFINITY.spad" 874122 874130 874560 874565) (-531 "INETCLTS.spad" 874099 874107 874112 874117) (-530 "INEP.spad" 872631 872653 874089 874094) (-529 "INDE.spad" 872360 872377 872621 872626) (-528 "INCRMAPS.spad" 871781 871791 872350 872355) (-527 "INBFILE.spad" 870853 870861 871771 871776) (-526 "INBFF.spad" 866623 866634 870843 870848) (-525 "INBCON.spad" 864911 864919 866613 866618) (-524 "INBCON.spad" 863197 863207 864901 864906) (-523 "INAST.spad" 862862 862870 863187 863192) (-522 "IMPTAST.spad" 862570 862578 862852 862857) (-521 "IMATRIX.spad" 861515 861541 862027 862054) (-520 "IMATQF.spad" 860609 860653 861471 861476) (-519 "IMATLIN.spad" 859214 859238 860565 860570) (-518 "ILIST.spad" 857870 857885 858397 858424) (-517 "IIARRAY2.spad" 857258 857296 857477 857504) (-516 "IFF.spad" 856668 856684 856939 857032) (-515 "IFAST.spad" 856282 856290 856658 856663) (-514 "IFARRAY.spad" 853769 853784 855465 855492) (-513 "IFAMON.spad" 853631 853648 853725 853730) (-512 "IEVALAB.spad" 853020 853032 853621 853626) (-511 "IEVALAB.spad" 852407 852421 853010 853015) (-510 "IDPOAMS.spad" 852163 852175 852397 852402) (-509 "IDPOAM.spad" 851883 851895 852153 852158) (-508 "IDPO.spad" 851681 851693 851873 851878) (-507 "IDPC.spad" 850615 850627 851671 851676) (-506 "IDPAM.spad" 850360 850372 850605 850610) (-505 "IDPAG.spad" 850107 850119 850350 850355) (-504 "IDENT.spad" 849879 849887 850097 850102) (-503 "IDECOMP.spad" 847116 847134 849869 849874) (-502 "IDEAL.spad" 842039 842078 847051 847056) (-501 "ICDEN.spad" 841190 841206 842029 842034) (-500 "ICARD.spad" 840379 840387 841180 841185) (-499 "IBPTOOLS.spad" 838972 838989 840369 840374) (-498 "IBITS.spad" 838171 838184 838608 838635) (-497 "IBATOOL.spad" 835046 835065 838161 838166) (-496 "IBACHIN.spad" 833533 833548 835036 835041) (-495 "IARRAY2.spad" 832521 832547 833140 833167) (-494 "IARRAY1.spad" 831566 831581 831704 831731) (-493 "IAN.spad" 829779 829787 831382 831475) (-492 "IALGFACT.spad" 829380 829413 829769 829774) (-491 "HYPCAT.spad" 828804 828812 829370 829375) (-490 "HYPCAT.spad" 828226 828236 828794 828799) (-489 "HOSTNAME.spad" 828034 828042 828216 828221) (-488 "HOMOTOP.spad" 827777 827787 828024 828029) (-487 "HOAGG.spad" 825045 825055 827767 827772) (-486 "HOAGG.spad" 822088 822100 824812 824817) (-485 "HEXADEC.spad" 820190 820198 820555 820648) (-484 "HEUGCD.spad" 819205 819216 820180 820185) (-483 "HELLFDIV.spad" 818795 818819 819195 819200) (-482 "HEAP.spad" 818187 818197 818402 818429) (-481 "HEADAST.spad" 817718 817726 818177 818182) (-480 "HDP.spad" 807561 807577 807938 808069) (-479 "HDMP.spad" 804737 804752 805355 805482) (-478 "HB.spad" 802974 802982 804727 804732) (-477 "HASHTBL.spad" 801444 801475 801655 801682) (-476 "HASAST.spad" 801160 801168 801434 801439) (-475 "HACKPI.spad" 800643 800651 801062 801155) (-474 "GTSET.spad" 799582 799598 800289 800316) (-473 "GSTBL.spad" 798101 798136 798275 798290) (-472 "GSERIES.spad" 795268 795295 796233 796382) (-471 "GROUP.spad" 794537 794545 795248 795263) (-470 "GROUP.spad" 793814 793824 794527 794532) (-469 "GROEBSOL.spad" 792302 792323 793804 793809) (-468 "GRMOD.spad" 790873 790885 792292 792297) (-467 "GRMOD.spad" 789442 789456 790863 790868) (-466 "GRIMAGE.spad" 782047 782055 789432 789437) (-465 "GRDEF.spad" 780426 780434 782037 782042) (-464 "GRAY.spad" 778885 778893 780416 780421) (-463 "GRALG.spad" 777932 777944 778875 778880) (-462 "GRALG.spad" 776977 776991 777922 777927) (-461 "GPOLSET.spad" 776431 776454 776659 776686) (-460 "GOSPER.spad" 775696 775714 776421 776426) (-459 "GMODPOL.spad" 774834 774861 775664 775691) (-458 "GHENSEL.spad" 773903 773917 774824 774829) (-457 "GENUPS.spad" 770004 770017 773893 773898) (-456 "GENUFACT.spad" 769581 769591 769994 769999) (-455 "GENPGCD.spad" 769165 769182 769571 769576) (-454 "GENMFACT.spad" 768617 768636 769155 769160) (-453 "GENEEZ.spad" 766556 766569 768607 768612) (-452 "GDMP.spad" 763574 763591 764350 764477) (-451 "GCNAALG.spad" 757469 757496 763368 763435) (-450 "GCDDOM.spad" 756641 756649 757395 757464) (-449 "GCDDOM.spad" 755875 755885 756631 756636) (-448 "GBINTERN.spad" 751895 751933 755865 755870) (-447 "GBF.spad" 747652 747690 751885 751890) (-446 "GBEUCLID.spad" 745526 745564 747642 747647) (-445 "GB.spad" 743044 743082 745482 745487) (-444 "GAUSSFAC.spad" 742341 742349 743034 743039) (-443 "GALUTIL.spad" 740663 740673 742297 742302) (-442 "GALPOLYU.spad" 739109 739122 740653 740658) (-441 "GALFACTU.spad" 737274 737293 739099 739104) (-440 "GALFACT.spad" 727407 727418 737264 737269) (-439 "FVFUN.spad" 724430 724438 727397 727402) (-438 "FVC.spad" 723482 723490 724420 724425) (-437 "FUNCTION.spad" 723331 723343 723472 723477) (-436 "FTEM.spad" 722494 722502 723321 723326) (-435 "FT.spad" 720790 720798 722484 722489) (-434 "FSUPFACT.spad" 719690 719709 720726 720731) (-433 "FST.spad" 717776 717784 719680 719685) (-432 "FSRED.spad" 717254 717270 717766 717771) (-431 "FSPRMELT.spad" 716078 716094 717211 717216) (-430 "FSPECF.spad" 714155 714171 716068 716073) (-429 "FSINT.spad" 713813 713829 714145 714150) (-428 "FSERIES.spad" 713000 713012 713633 713732) (-427 "FSCINT.spad" 712313 712329 712990 712995) (-426 "FSAGG2.spad" 711012 711028 712303 712308) (-425 "FSAGG.spad" 710129 710139 710968 711007) (-424 "FSAGG.spad" 709208 709220 710049 710054) (-423 "FS2UPS.spad" 703691 703725 709198 709203) (-422 "FS2EXPXP.spad" 702814 702837 703681 703686) (-421 "FS2.spad" 702459 702475 702804 702809) (-420 "FS.spad" 696521 696531 702234 702454) (-419 "FS.spad" 690361 690373 696076 696081) (-418 "FRUTIL.spad" 689303 689313 690351 690356) (-417 "FRNAALG.spad" 684390 684400 689245 689298) (-416 "FRNAALG.spad" 679489 679501 684346 684351) (-415 "FRNAAF2.spad" 678943 678961 679479 679484) (-414 "FRMOD.spad" 678337 678367 678874 678879) (-413 "FRIDEAL2.spad" 677939 677971 678327 678332) (-412 "FRIDEAL.spad" 677134 677155 677919 677934) (-411 "FRETRCT.spad" 676645 676655 677124 677129) (-410 "FRETRCT.spad" 676022 676034 676503 676508) (-409 "FRAMALG.spad" 674350 674363 675978 676017) (-408 "FRAMALG.spad" 672710 672725 674340 674345) (-407 "FRAC2.spad" 672313 672325 672700 672705) (-406 "FRAC.spad" 669412 669422 669815 669988) (-405 "FR2.spad" 668746 668758 669402 669407) (-404 "FR.spad" 662467 662477 667770 667839) (-403 "FPS.spad" 659276 659284 662357 662462) (-402 "FPS.spad" 656113 656123 659196 659201) (-401 "FPC.spad" 655155 655163 656015 656108) (-400 "FPC.spad" 654283 654293 655145 655150) (-399 "FPATMAB.spad" 654045 654055 654273 654278) (-398 "FPARFRAC.spad" 652518 652535 654035 654040) (-397 "FORTRAN.spad" 651024 651067 652508 652513) (-396 "FORTFN.spad" 648194 648202 651014 651019) (-395 "FORTCAT.spad" 647878 647886 648184 648189) (-394 "FORT.spad" 646807 646815 647868 647873) (-393 "FORMULA1.spad" 646286 646296 646797 646802) (-392 "FORMULA.spad" 643750 643758 646276 646281) (-391 "FORDER.spad" 643441 643465 643740 643745) (-390 "FOP.spad" 642642 642650 643431 643436) (-389 "FNLA.spad" 642066 642088 642610 642637) (-388 "FNCAT.spad" 640653 640661 642056 642061) (-387 "FNAME.spad" 640545 640553 640643 640648) (-386 "FMTC.spad" 640343 640351 640471 640540) (-385 "FMONOID.spad" 637398 637408 640299 640304) (-384 "FMFUN.spad" 634428 634436 637388 637393) (-383 "FMCAT.spad" 632082 632100 634396 634423) (-382 "FMC.spad" 631134 631142 632072 632077) (-381 "FM1.spad" 630491 630503 631068 631095) (-380 "FM.spad" 630186 630198 630425 630452) (-379 "FLOATRP.spad" 627907 627921 630176 630181) (-378 "FLOATCP.spad" 625324 625338 627897 627902) (-377 "FLOAT.spad" 618612 618620 625190 625319) (-376 "FLINEXP.spad" 618324 618334 618592 618607) (-375 "FLINEXP.spad" 617990 618002 618260 618265) (-374 "FLASORT.spad" 617310 617322 617980 617985) (-373 "FLALG.spad" 614956 614975 617236 617305) (-372 "FLAGG2.spad" 613637 613653 614946 614951) (-371 "FLAGG.spad" 610655 610665 613617 613632) (-370 "FLAGG.spad" 607574 607586 610538 610543) (-369 "FINRALG.spad" 605603 605616 607530 607569) (-368 "FINRALG.spad" 603558 603573 605487 605492) (-367 "FINITE.spad" 602710 602718 603548 603553) (-366 "FINAALG.spad" 591691 591701 602652 602705) (-365 "FINAALG.spad" 580684 580696 591647 591652) (-364 "FILECAT.spad" 579202 579219 580674 580679) (-363 "FILE.spad" 578785 578795 579192 579197) (-362 "FIELD.spad" 578191 578199 578687 578780) (-361 "FIELD.spad" 577683 577693 578181 578186) (-360 "FGROUP.spad" 576292 576302 577663 577678) (-359 "FGLMICPK.spad" 575079 575094 576282 576287) (-358 "FFX.spad" 574454 574469 574795 574888) (-357 "FFSLPE.spad" 573943 573964 574444 574449) (-356 "FFPOLY2.spad" 573003 573020 573933 573938) (-355 "FFPOLY.spad" 564255 564266 572993 572998) (-354 "FFP.spad" 563652 563672 563971 564064) (-353 "FFNBX.spad" 562164 562184 563368 563461) (-352 "FFNBP.spad" 560677 560694 561880 561973) (-351 "FFNB.spad" 559142 559163 560358 560451) (-350 "FFINTBAS.spad" 556556 556575 559132 559137) (-349 "FFIELDC.spad" 554131 554139 556458 556551) (-348 "FFIELDC.spad" 551792 551802 554121 554126) (-347 "FFHOM.spad" 550540 550557 551782 551787) (-346 "FFF.spad" 547975 547986 550530 550535) (-345 "FFCGX.spad" 546822 546842 547691 547784) (-344 "FFCGP.spad" 545711 545731 546538 546631) (-343 "FFCG.spad" 544503 544524 545392 545485) (-342 "FFCAT2.spad" 544248 544288 544493 544498) (-341 "FFCAT.spad" 537275 537297 544087 544243) (-340 "FFCAT.spad" 530381 530405 537195 537200) (-339 "FF.spad" 529829 529845 530062 530155) (-338 "FEXPR.spad" 521538 521584 529585 529624) (-337 "FEVALAB.spad" 521244 521254 521528 521533) (-336 "FEVALAB.spad" 520735 520747 521021 521026) (-335 "FDIVCAT.spad" 518777 518801 520725 520730) (-334 "FDIVCAT.spad" 516817 516843 518767 518772) (-333 "FDIV2.spad" 516471 516511 516807 516812) (-332 "FDIV.spad" 515913 515937 516461 516466) (-331 "FCPAK1.spad" 514466 514474 515903 515908) (-330 "FCOMP.spad" 513845 513855 514456 514461) (-329 "FC.spad" 503760 503768 513835 513840) (-328 "FAXF.spad" 496695 496709 503662 503755) (-327 "FAXF.spad" 489682 489698 496651 496656) (-326 "FARRAY.spad" 487828 487838 488865 488892) (-325 "FAMR.spad" 485948 485960 487726 487823) (-324 "FAMR.spad" 484052 484066 485832 485837) (-323 "FAMONOID.spad" 483702 483712 484006 484011) (-322 "FAMONC.spad" 481924 481936 483692 483697) (-321 "FAGROUP.spad" 481530 481540 481820 481847) (-320 "FACUTIL.spad" 479726 479743 481520 481525) (-319 "FACTFUNC.spad" 478902 478912 479716 479721) (-318 "EXPUPXS.spad" 475735 475758 477034 477183) (-317 "EXPRTUBE.spad" 472963 472971 475725 475730) (-316 "EXPRODE.spad" 469835 469851 472953 472958) (-315 "EXPR2UPS.spad" 465927 465940 469825 469830) (-314 "EXPR2.spad" 465630 465642 465917 465922) (-313 "EXPR.spad" 460905 460915 461619 462026) (-312 "EXPEXPAN.spad" 457843 457868 458477 458570) (-311 "EXITAST.spad" 457579 457587 457833 457838) (-310 "EXIT.spad" 457250 457258 457569 457574) (-309 "EVALCYC.spad" 456708 456722 457240 457245) (-308 "EVALAB.spad" 456272 456282 456698 456703) (-307 "EVALAB.spad" 455834 455846 456262 456267) (-306 "EUCDOM.spad" 453376 453384 455760 455829) (-305 "EUCDOM.spad" 450980 450990 453366 453371) (-304 "ESTOOLS2.spad" 450581 450595 450970 450975) (-303 "ESTOOLS1.spad" 450266 450277 450571 450576) (-302 "ESTOOLS.spad" 442106 442114 450256 450261) (-301 "ESCONT1.spad" 441855 441867 442096 442101) (-300 "ESCONT.spad" 438628 438636 441845 441850) (-299 "ES2.spad" 438123 438139 438618 438623) (-298 "ES1.spad" 437689 437705 438113 438118) (-297 "ES.spad" 430236 430244 437679 437684) (-296 "ES.spad" 422689 422699 430134 430139) (-295 "ERROR.spad" 420010 420018 422679 422684) (-294 "EQTBL.spad" 418482 418504 418691 418718) (-293 "EQ2.spad" 418198 418210 418472 418477) (-292 "EQ.spad" 413072 413082 415871 415983) (-291 "EP.spad" 409386 409396 413062 413067) (-290 "ENV.spad" 408088 408096 409376 409381) (-289 "ENTIRER.spad" 407756 407764 408032 408083) (-288 "EMR.spad" 406957 406998 407682 407751) (-287 "ELTAGG.spad" 405197 405216 406947 406952) (-286 "ELTAGG.spad" 403401 403422 405153 405158) (-285 "ELTAB.spad" 402848 402866 403391 403396) (-284 "ELFUTS.spad" 402227 402246 402838 402843) (-283 "ELEMFUN.spad" 401916 401924 402217 402222) (-282 "ELEMFUN.spad" 401603 401613 401906 401911) (-281 "ELAGG.spad" 399546 399556 401583 401598) (-280 "ELAGG.spad" 397426 397438 399465 399470) (-279 "ELABEXPR.spad" 396357 396365 397416 397421) (-278 "EFUPXS.spad" 393133 393163 396313 396318) (-277 "EFULS.spad" 389969 389992 393089 393094) (-276 "EFSTRUC.spad" 387924 387940 389959 389964) (-275 "EF.spad" 382690 382706 387914 387919) (-274 "EAB.spad" 380966 380974 382680 382685) (-273 "E04UCFA.spad" 380502 380510 380956 380961) (-272 "E04NAFA.spad" 380079 380087 380492 380497) (-271 "E04MBFA.spad" 379659 379667 380069 380074) (-270 "E04JAFA.spad" 379195 379203 379649 379654) (-269 "E04GCFA.spad" 378731 378739 379185 379190) (-268 "E04FDFA.spad" 378267 378275 378721 378726) (-267 "E04DGFA.spad" 377803 377811 378257 378262) (-266 "E04AGNT.spad" 373645 373653 377793 377798) (-265 "DVARCAT.spad" 370330 370340 373635 373640) (-264 "DVARCAT.spad" 367013 367025 370320 370325) (-263 "DSMP.spad" 364444 364458 364749 364876) (-262 "DROPT1.spad" 364107 364117 364434 364439) (-261 "DROPT0.spad" 358934 358942 364097 364102) (-260 "DROPT.spad" 352879 352887 358924 358929) (-259 "DRAWPT.spad" 351034 351042 352869 352874) (-258 "DRAWHACK.spad" 350342 350352 351024 351029) (-257 "DRAWCX.spad" 347784 347792 350332 350337) (-256 "DRAWCURV.spad" 347321 347336 347774 347779) (-255 "DRAWCFUN.spad" 336493 336501 347311 347316) (-254 "DRAW.spad" 329093 329106 336483 336488) (-253 "DQAGG.spad" 327261 327271 329061 329088) (-252 "DPOLCAT.spad" 322602 322618 327129 327256) (-251 "DPOLCAT.spad" 318029 318047 322558 322563) (-250 "DPMO.spad" 310255 310271 310393 310694) (-249 "DPMM.spad" 302494 302512 302619 302920) (-248 "DOMCTOR.spad" 302386 302394 302484 302489) (-247 "DOMAIN.spad" 301517 301525 302376 302381) (-246 "DMP.spad" 298739 298754 299311 299438) (-245 "DLP.spad" 298087 298097 298729 298734) (-244 "DLIST.spad" 296666 296676 297270 297297) (-243 "DLAGG.spad" 295077 295087 296656 296661) (-242 "DIVRING.spad" 294619 294627 295021 295072) (-241 "DIVRING.spad" 294205 294215 294609 294614) (-240 "DISPLAY.spad" 292385 292393 294195 294200) (-239 "DIRPROD2.spad" 291193 291211 292375 292380) (-238 "DIRPROD.spad" 280773 280789 281413 281544) (-237 "DIRPCAT.spad" 279715 279731 280637 280768) (-236 "DIRPCAT.spad" 278386 278404 279310 279315) (-235 "DIOSP.spad" 277211 277219 278376 278381) (-234 "DIOPS.spad" 276195 276205 277191 277206) (-233 "DIOPS.spad" 275153 275165 276151 276156) (-232 "DIFRING.spad" 274445 274453 275133 275148) (-231 "DIFRING.spad" 273745 273755 274435 274440) (-230 "DIFEXT.spad" 272904 272914 273725 273740) (-229 "DIFEXT.spad" 271980 271992 272803 272808) (-228 "DIAGG.spad" 271610 271620 271960 271975) (-227 "DIAGG.spad" 271248 271260 271600 271605) (-226 "DHMATRIX.spad" 269552 269562 270705 270732) (-225 "DFSFUN.spad" 262960 262968 269542 269547) (-224 "DFLOAT.spad" 259681 259689 262850 262955) (-223 "DFINTTLS.spad" 257890 257906 259671 259676) (-222 "DERHAM.spad" 255800 255832 257870 257885) (-221 "DEQUEUE.spad" 255118 255128 255407 255434) (-220 "DEGRED.spad" 254733 254747 255108 255113) (-219 "DEFINTRF.spad" 252303 252313 254723 254728) (-218 "DEFINTEF.spad" 250827 250843 252293 252298) (-217 "DEFAST.spad" 250195 250203 250817 250822) (-216 "DECIMAL.spad" 248301 248309 248662 248755) (-215 "DDFACT.spad" 246100 246117 248291 248296) (-214 "DBLRESP.spad" 245698 245722 246090 246095) (-213 "DBASE.spad" 244352 244362 245688 245693) (-212 "DATAARY.spad" 243814 243827 244342 244347) (-211 "D03FAFA.spad" 243642 243650 243804 243809) (-210 "D03EEFA.spad" 243462 243470 243632 243637) (-209 "D03AGNT.spad" 242542 242550 243452 243457) (-208 "D02EJFA.spad" 242004 242012 242532 242537) (-207 "D02CJFA.spad" 241482 241490 241994 241999) (-206 "D02BHFA.spad" 240972 240980 241472 241477) (-205 "D02BBFA.spad" 240462 240470 240962 240967) (-204 "D02AGNT.spad" 235266 235274 240452 240457) (-203 "D01WGTS.spad" 233585 233593 235256 235261) (-202 "D01TRNS.spad" 233562 233570 233575 233580) (-201 "D01GBFA.spad" 233084 233092 233552 233557) (-200 "D01FCFA.spad" 232606 232614 233074 233079) (-199 "D01ASFA.spad" 232074 232082 232596 232601) (-198 "D01AQFA.spad" 231520 231528 232064 232069) (-197 "D01APFA.spad" 230944 230952 231510 231515) (-196 "D01ANFA.spad" 230438 230446 230934 230939) (-195 "D01AMFA.spad" 229948 229956 230428 230433) (-194 "D01ALFA.spad" 229488 229496 229938 229943) (-193 "D01AKFA.spad" 229014 229022 229478 229483) (-192 "D01AJFA.spad" 228537 228545 229004 229009) (-191 "D01AGNT.spad" 224596 224604 228527 228532) (-190 "CYCLOTOM.spad" 224102 224110 224586 224591) (-189 "CYCLES.spad" 220934 220942 224092 224097) (-188 "CVMP.spad" 220351 220361 220924 220929) (-187 "CTRIGMNP.spad" 218841 218857 220341 220346) (-186 "CTORKIND.spad" 218444 218452 218831 218836) (-185 "CTORCAT.spad" 217899 217907 218434 218439) (-184 "CTORCAT.spad" 217352 217362 217889 217894) (-183 "CTORCALL.spad" 216932 216940 217342 217347) (-182 "CTOR.spad" 216627 216635 216922 216927) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX2.spad" 195875 195887 196152 196157) (-167 "COMPLEX.spad" 189911 189921 190155 190404) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMMAAST.spad" 184512 184520 184739 184744) (-160 "COMM.spad" 184321 184329 184502 184507) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN2.spad" 153563 153590 154167 154172) (-134 "CARTEN.spad" 148666 148690 153553 153558) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTEBUF.spad" 142736 142744 144073 144100) (-128 "BYTE.spad" 142157 142165 142726 142731) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP1.spad" 126718 126728 129288 129293) (-113 "BOP.spad" 122182 122190 126708 126713) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP80.spad" 98053 98066 98721 98726) (-87 "ASP8.spad" 97096 97109 98043 98048) (-86 "ASP78.spad" 96547 96560 97086 97091) (-85 "ASP77.spad" 95916 95929 96537 96542) (-84 "ASP74.spad" 95008 95021 95906 95911) (-83 "ASP73.spad" 94279 94292 94998 95003) (-82 "ASP7.spad" 93439 93452 94269 94274) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP49.spad" 87631 87644 88622 88627) (-77 "ASP42.spad" 86038 86077 87621 87626) (-76 "ASP41.spad" 84617 84656 86028 86033) (-75 "ASP4.spad" 83912 83925 84607 84612) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP19.spad" 62666 62679 67970 67975) (-63 "ASP12.spad" 62080 62093 62656 62661) (-62 "ASP10.spad" 61351 61364 62070 62075) (-61 "ASP1.spad" 60732 60745 61341 61346) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY12.spad" 58761 58772 60082 60087) (-58 "ARRAY1.spad" 57596 57605 57944 57971) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY1.spad" 46438 46447 47357 47362) (-51 "ANY.spad" 44780 44787 46428 46433) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 2d1e2876..5acfef10 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,3540 +1,3540 @@
-(162034 . 3440812774)
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) #0#) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-((((-561)) . T) (($) -4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T))
-(((|#2| |#2|) . T))
-((((-561)) . T))
-((($ $) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2| |#2|) . T) ((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))))
-((($) . T))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#2|) . T))
-((($) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
-(|has| |#1| (-902))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((($) . T) (((-406 (-561))) . T))
-((($) . T))
-((($) . T))
-(((|#2| |#2|) . T))
-((((-143)) . T))
-((((-534)) . T) (((-1148)) . T) (((-224)) . T) (((-378)) . T) (((-885 (-378))) . T))
-(((|#1|) . T))
-((((-224)) . T) (((-856)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-((($ $) . T) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
-(-4050 (|has| |#1| (-814)) (|has| |#1| (-844)))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(|has| |#1| (-842))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#2| |#3|) . T))
+(162053 . 3442118613)
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
((((-1171)) . T))
-((((-561)) . T) (((-863 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-((($) . T) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-856)) . T))
-((((-1171)) . T))
-(((|#4|) . T))
-((((-856)) . T))
-((((-856)) |has| |#1| (-1090)))
-((((-856)) . T) (((-1171)) . T))
-(((|#1|) . T) ((|#2|) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(((|#2| (-480 (-3548 |#1|) (-765))) . T))
-(((|#1| (-529 (-1166))) . T))
-(((#0=(-863 |#1|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-((((-1148)) . T) (((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(|has| |#4| (-367))
-(|has| |#3| (-367))
-(((|#1|) . T))
-((((-504)) . T))
-((((-863 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| |#2|) . T))
-((($) . T))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
-(|has| |#1| (-553))
-((((-561)) . T) (((-406 (-561))) -4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-((((-2 (|:| -2442 |#1|) (|:| -4181 |#2|))) . T))
-((($) . T))
-((((-561)) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1166)) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-1166)) . T))
-((((-561)) . T) (($) . T))
-((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-((((-856)) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
-((((-856)) . T))
-(((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) . T))
-(((|#1| |#2|) . T))
-((((-856)) . T))
-(((|#1|) . T))
-(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-(((|#1|) . T))
-(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
-(((|#2|) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($ $) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
-((($) . T))
-(((|#1|) . T))
+((((-406 |#2|) |#3|) . T))
+((((-406 (-544))) |has| #1=(-406 |#2|) (-1031 (-406 (-544)))) (((-544)) |has| #1# (-1031 (-544))) ((#1#) . T))
+((((-406 |#2|)) . T))
+((((-544)) |has| #1=(-406 |#2|) (-634 (-544))) ((#1#) . T))
+((((-406 |#2|)) . T))
+((((-406 |#2|) |#3|) . T))
+(|has| (-406 |#2|) (-146))
+((((-406 |#2|) |#3|) . T))
+(|has| (-406 |#2|) (-144))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+(|has| (-406 |#2|) (-232))
+((((-1166)) |has| (-406 |#2|) (-893 (-1166))))
+((((-406 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-406 |#2|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(((|#1| |#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-367))
(((|#1|) . T))
+((((-1132 |#2| |#1|)) . T) ((|#1|) . T))
+((((-857)) . T))
(((|#1|) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-(((|#1| |#2|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
(((|#1| |#1|) . T))
-((((-856)) . T))
-(|has| |#1| (-553))
-(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|))))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(|has| |#1| (-1090))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(|has| |#1| (-1090))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(|has| |#1| (-842))
-((($) . T) (((-406 (-561))) . T))
(((|#1|) . T))
-((((-561) (-129)) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-129)) . T))
-((((-1171)) . T))
-(-4050 (|has| |#4| (-787)) (|has| |#4| (-842)))
-(-4050 (|has| |#4| (-787)) (|has| |#4| (-842)))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(((|#1|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-857)) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
(((|#1| |#2|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1090))
-(|has| |#1| (-1090))
-(((|#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) . T))
-((((-561) |#1|) . T))
-((((-561)) . T))
-((((-561)) . T))
-((((-903 |#1|)) . T))
-(((|#1| (-529 |#2|)) . T))
-((((-561)) . T))
-((((-561)) . T))
-(((|#1|) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(((|#1| (-765)) . T))
-(|has| |#2| (-787))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(|has| |#2| (-842))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#1| |#2|) . T))
+((((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#2|) . T))
+(((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+((((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-1148) |#1|) . T))
-((((-561) (-129)) . T))
-(((|#1|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#3| (-765)) . T))
-(|has| |#1| (-146))
-(|has| |#1| (-144))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(|has| |#1| (-1090))
-((((-406 (-561))) . T) (((-561)) . T))
-((((-561)) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((((-561)) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#2|) . T))
-((((-1166) |#2|) |has| |#2| (-512 (-1166) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|)))
-((((-406 (-561))) . T) (((-561)) . T))
-((((-561)) . T) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1072)) . T) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
+((((-167 (-377))) . T) (((-224)) . T) (((-377)) . T))
+((((-406 (-544))) . T) (((-544)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($) . T) (((-406 (-544))) . T))
+((($) . T) (((-406 (-544))) . T))
+((((-406 (-544))) . T) (($) . T))
+(((#1=(-406 (-544)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-606 $) $) . T))
+((((-857)) . T))
+((((-406 (-544))) . T) (((-544)) . T) (((-606 $)) . T))
+((($) . T) (((-544)) . T) (((-406 (-544))) . T) (((-606 $)) . T))
+((((-857)) . T))
+(((|#1|) . T))
+((((-857)) . T))
(((|#1|) . T) (($) . T))
-((((-561)) . T))
-((((-561)) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-((((-561)) . T))
-((((-561)) . T))
-(((#0=(-692) (-1162 #0#)) . T))
-((((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-((((-561) |#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-362))
-((($) . T) (((-561)) . T) (((-406 (-561))) . T))
+(((|#1|) . T) (((-544)) . T))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-856)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-1148) |#1|) . T))
-(((|#3| |#3|) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| |#1|) . T))
-(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((($) -4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-561) |#1|) . T))
-((((-856)) . T))
-((((-168 (-224))) |has| |#1| (-1015)) (((-168 (-378))) |has| |#1| (-1015)) (((-534)) |has| |#1| (-609 (-534))) (((-1162 |#1|)) . T) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-(|has| |#1| (-362))
-((((-856)) . T))
-((((-129)) . T))
-(-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))
-(-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))
-(-4050 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-((((-856)) . T) (((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-1171)) . T))
-((((-856)) . T))
-(((|#1|) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
-(((|#2|) . T) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-(|has| |#1| (-553))
-((((-561)) -4050 (|has| |#4| (-171)) (|has| |#4| (-842)) (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090))) (|has| |#4| (-1042))) ((|#4|) -4050 (|has| |#4| (-171)) (|has| |#4| (-1090))) (((-406 (-561))) -12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))
-((((-561)) -4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042))) ((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(|has| |#1| (-553))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(((|#1|) . T))
-(|has| |#1| (-553))
-(|has| |#1| (-553))
-(|has| |#1| (-553))
-((((-692)) . T))
+((((-857)) . T))
+((((-765)) . T))
+((((-765)) . T))
+((((-857)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))
-(((|#2|) . T) (($) . T) (((-406 (-561))) . T))
-(-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))
-((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) . T))
-(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
-(((|#4| |#4|) -4050 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($ $) |has| |#4| (-171)))
-(((|#3| |#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
-((((-856)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2442 |#1|) (|:| -4181 |#2|))) . T) (((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))))
-(((|#4|) -4050 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($) |has| |#4| (-171)))
-(((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171)))
-((((-2 (|:| -2442 |#1|) (|:| -4181 |#2|))) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-((((-638 |#1|)) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
-((((-406 $) (-406 $)) |has| |#2| (-553)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-902))
-((((-1148) (-52)) . T))
-((((-561)) |has| #0=(-406 |#2|) (-634 (-561))) ((#0#) . T))
-((((-534)) . T) (((-224)) . T) (((-378)) . T) (((-885 (-378))) . T))
-((((-856)) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
-(((|#1|) |has| |#1| (-171)))
-(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-856)) . T))
-((((-856)) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
(|has| |#1| (-844))
-(((|#2|) . T) (((-561)) . T) (((-813 |#1|)) . T))
-(|has| |#1| (-1090))
-(((|#1|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) . T) (((-1171)) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((((-1171)) . T))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(|has| |#1| (-232))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1| (-529 (-812 (-1166)))) . T))
-(((|#1| (-964)) . T))
-(((#0=(-863 |#1|) $) |has| #0# (-285 #0# #0#)))
-((((-561) |#4|) . T))
-((((-561) |#3|) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
-(|has| |#1| (-1141))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-(|has| (-1240 |#1| |#2| |#3| |#4|) (-144))
-(|has| (-1240 |#1| |#2| |#3| |#4|) (-146))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
-(((|#1|) |has| |#1| (-171)))
-((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
-(|has| |#1| (-1090))
-((((-1148) |#1|) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
-((((-1115 |#1| (-1166))) . T) (((-561)) . T) (((-812 (-1166))) . T) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-1166)) . T))
-(|has| |#2| (-367))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1042)))
-((((-856)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) #0#) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(((|#1|) . T))
-((((-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((#0=(-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) #0#) |has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))))
-((((-856)) . T))
-((((-561) |#1|) . T))
-((((-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534)))) (((-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378))))) (((-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561))))))
-((($) . T))
-((((-856)) . T))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(((|#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1| (-58 |#1|) (-58 |#1|)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692)))) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#1|) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T))
+(((|#1| |#1|) . T))
+((((-857)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-857)) . T))
+((((-997 2)) . T) (((-406 (-544))) . T) (((-857)) . T))
+((((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) (((-544)) . T) (((-406 (-544))) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T) (((-406 (-544))) . T) (($) . T))
+(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((((-406 (-544))) . T) (((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T))
+((((-857)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-544) (-112)) . T))
+((((-544) (-112)) . T))
+((((-544) (-112)) . T))
+((((-533)) . T))
+((((-112)) . T))
+((((-857)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-533)) . T))
+((((-857)) . T))
+((((-857)) . T))
((($) . T))
+((((-857)) . T))
((($) . T))
+((($ $) . T))
((($) . T))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) . T))
-((((-856)) . T))
-(|has| (-1239 |#2| |#3| |#4|) (-146))
-(|has| (-1239 |#2| |#3| |#4|) (-144))
-(((|#2|) |has| |#2| (-1090)) (((-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
-(((|#1|) . T))
-(|has| |#1| (-1090))
-((((-856)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
-(((|#1|) . T))
-((((-561) |#1|) . T))
-(((|#2|) |has| |#2| (-171)))
-(((|#1|) |has| |#1| (-171)))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-((((-856)) |has| |#1| (-1090)))
-(-4050 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-903 |#1|)) . T))
-((((-406 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-561) |#1|)))
-((((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-844))
-(((|#1|) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
-(((|#1|) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-(|has| |#1| (-362))
-(-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))
-(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
-(|has| |#1| (-362))
-((((-561)) . T))
-(|has| |#1| (-15 * (|#1| (-765) |#1|)))
-((((-1132 |#2| (-406 (-945 |#1|)))) . T) (((-406 (-945 |#1|))) . T))
((($) . T))
-(((|#1|) |has| |#1| (-171)) (($) . T))
-(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
+((((-544)) . T) (($) . T))
(((|#1|) . T))
-((((-561) |#1|) . T))
-((((-856)) . T))
-(((|#2|) . T))
-(-4050 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-((((-561)) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-((($) |has| |#1| (-553)) (((-561)) . T))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-((((-1246 |#1| |#2| |#3|)) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) ((|#1|) |has| |#1| (-171)))
-((((-1250 |#2|)) . T) (((-1246 |#1| |#2| |#3|)) . T) (((-1218 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-561)) . T) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (((-561)) . T))
+((((-857)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) (((-116 |#1|)) . T) (((-406 (-544))) . T))
+((((-116 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+((((-116 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+(((#1=(-116 |#1|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-116 |#1|)) . T))
+((((-1166) #1=(-116 |#1|)) |has| #1# (-512 (-1166) #1#)) ((#1# #1#) |has| #1# (-308 #1#)))
+(((#1=(-116 |#1|)) |has| #1# (-308 #1#)))
+(((#1=(-116 |#1|) $) |has| #1# (-285 #1# #1#)))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-544)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
(((|#1|) . T))
-((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
-(-4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553)))
-(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))))
-((($ $) |has| |#1| (-553)))
-(((#0=(-692) (-1162 #0#)) . T))
-((((-856)) . T) (((-1254 |#4|)) . T))
-((((-856)) . T) (((-1254 |#3|)) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))))
-((($) |has| |#1| (-553)))
-((((-856)) . T))
-((($) . T))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((#1=(-1246 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
-(((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
-(((|#3|) |has| |#3| (-1042)))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(|has| |#1| (-1090))
-(((|#2| (-813 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-362))
-((((-406 $) (-406 $)) |has| |#1| (-553)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1072) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-903 |#1|)) . T))
-((((-143)) . T))
-((((-143)) . T))
-(((|#3|) |has| |#3| (-1090)) (((-561)) -12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
-((((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
(((|#1|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
-(|has| |#1| (-362))
-((((-1171)) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-(|has| |#2| (-814))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-842))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-((((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-(((|#1| |#2|) . T))
-((((-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166)))))
-((((-1148) |#1|) . T))
-(((|#1| |#2| |#3| (-529 |#3|)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-((((-856)) . T))
(((|#1|) . T))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(|has| |#1| (-367))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-561)) . T))
-((((-561)) . T))
-(((|#1|) . T) (((-561)) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
-((((-1166) #0=(-863 |#1|)) |has| #0# (-512 (-1166) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
(((|#1|) . T))
-((((-561) |#4|) . T))
-((((-561) |#3|) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-1240 |#1| |#2| |#3| |#4|)) . T))
-((((-406 (-561))) . T) (((-561)) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-561)) . T) (((-406 (-561))) . T))
-((((-561)) . T))
-((((-561)) . T))
-((($) . T) (((-561)) . T) (((-406 (-561))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-((((-561)) -4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042))) ((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
(((|#1|) . T))
-(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) |has| |#1| (-553)))
-((((-561) |#4|) . T))
-((((-561) |#3|) . T))
-((((-856)) . T))
-((((-561)) . T) (((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
-((((-561) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
-((($) . T))
-((($ $) . T) ((#0=(-1166) $) . T) ((#0# |#1|) . T))
-(((|#2|) |has| |#2| (-171)))
-((($) -4050 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2|) |has| |#2| (-171)) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
-(((|#2| |#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
((((-143)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
-((((-856)) . T))
-(((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
-(((|#1|) . T))
-((((-856)) . T))
-(|has| |#1| (-1090))
-(|has| $ (-146))
+((((-143)) . T))
+((((-143)) . T) (((-857)) . T))
+((((-128)) . T))
+((((-128)) . T))
+((((-1148)) . T) (((-857)) . T))
+((((-128)) . T))
+((((-544) (-128)) . T))
+((((-544) (-128)) . T))
+((((-544) (-128)) . T))
+((((-128)) . T))
+((((-128)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-561) |#1|) . T))
-((($) -4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
-(|has| |#1| (-362))
-(-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))
-(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
-(|has| |#1| (-362))
-(|has| |#1| (-15 * (|#1| (-765) |#1|)))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-((((-856)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(((|#2| (-529 (-858 |#1|))) . T))
-((((-856)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-578 |#1|)) . T))
-((($) . T))
-((((-561)) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-(((|#1|) . T) (($) . T))
-((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
-((((-1164 |#1| |#2| |#3|)) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) ((|#1|) |has| |#1| (-171)))
-((((-1250 |#2|)) . T) (((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-561)) . T) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-(((|#4|) . T))
+((((-765)) . T))
+((((-765)) . T))
+((((-857)) . T))
+((((-544) (-765)) . T) ((|#3| (-765)) . T))
+((((-857)) . T))
(((|#3|) . T))
-((((-863 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (((-561)) . T))
-((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
-(((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-561)) . T) (((-406 (-561))) -4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
-((((-561) |#2|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((#1=(-1164 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) . T))
-(((|#2|) |has| |#2| (-1042)))
-(|has| |#1| (-1090))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
-(((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1|) |has| |#1| (-171)) (($) . T))
-(((|#1|) . T))
-(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((((-856)) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
-(((#0=(-1072) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($) . T))
-(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1090)) (((-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
-(((|#2|) |has| |#1| (-362)))
-((((-561) |#1|) . T))
+(((|#3|) . T))
+(((|#3| (-765)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-504)) . T))
+((((-182)) . T) (((-857)) . T))
+((((-857)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-635 (-143))) . T) (((-1148)) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-544)) . T))
+(((|#2|) . T) (($) . T))
+((((-857)) . T))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
+((((-857)) . T))
+((((-857)) . T))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-856)) . T))
-((((-406 |#2|) |#3|) . T))
-(((|#1| (-406 (-561))) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-856)) . T) (((-1171)) . T))
-(|has| |#1| (-144))
+(|has| |#1| (-815))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-349)))
+((((-857)) . T))
(|has| |#1| (-146))
-((((-1171)) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T))
-(((|#2| |#3| (-858 |#1|)) . T))
-((((-1166)) |has| |#2| (-893 (-1166))))
(((|#1|) . T))
-(((|#1| (-529 |#2|) |#2|) . T))
-(((|#1| (-765) (-1072)) . T))
-((((-406 (-561))) |has| |#2| (-362)) (($) . T))
-(((|#1| (-529 (-1078 (-1166))) (-1078 (-1166))) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-1166)) |has| |#1| (-893 (-1166))))
+(-3936 (|has| |#1| (-232)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(((|#1|) . T))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(((|#1|) |has| |#1| (-308 |#1|)))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+(((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544))))
+(((|#1|) . T))
+((((-544)) |has| |#1| (-879 (-544))) (((-377)) |has| |#1| (-879 (-377))))
+(((|#1|) . T))
+((((-544)) . T) (($) -3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1| (-1160 |#1|)) . T))
+(((|#1| (-1160 |#1|)) . T))
+((($) -3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
+((($) -3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+(((|#1| (-1160 |#1|)) . T))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(-3936 (|has| |#1| (-367)) (|has| |#1| (-349)))
+(|has| |#1| (-844))
(((|#1|) . T))
-((((-992 |#1|)) . T) (((-561)) . T) ((|#1|) . T) (((-406 (-561))) -4050 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-167 (-224))) |has| |#1| . #1=((-1013))) (((-167 (-377))) |has| |#1| . #1#) (((-533)) |has| |#1| (-609 (-533))) (((-1160 |#1|)) . T) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))))
+(-12 (|has| |#1| (-306)) (|has| |#1| (-903)))
+(-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))
+(|has| |#1| (-1190))
+(|has| |#1| (-1190))
+(|has| |#1| (-1190))
+(|has| |#1| (-1190))
+(|has| |#1| (-1190))
+(|has| |#1| (-1190))
+(((|#1|) . T))
+((((-857)) . T))
+((((-406 (-544))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T) ((#2=(-406 |#1|) #2#) . T) ((|#1| |#1|) . T))
+((((-406 (-544))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-544)) . T))
+((((-406 (-544))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((((-857)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-504)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-635 |#1|)) . T))
+((((-857)) . T))
+((((-997 10)) . T) (((-406 (-544))) . T) (((-857)) . T))
+((((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) (((-544)) . T) (((-406 (-544))) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T) (((-406 (-544))) . T) (($) . T))
+(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((((-406 (-544))) . T) (((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-313 |#1|)) . T))
+((((-857)) . T))
+((((-313 |#1|)) . T) (($) . T))
+((((-313 |#1|)) . T) (((-544)) . T))
+((((-313 |#1|)) . T))
+((((-544)) . T) (((-406 (-544))) . T))
+((((-377)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-533)) . T) (((-224)) . T) (((-377)) . T) (((-883 (-377))) . T))
+((((-857)) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1|) . T))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091)))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091)))
+(((|#2|) |has| |#2| (-171)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
+(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362))))
+((((-857)) -3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) (((-1253 |#2|)) . T))
+(|has| |#2| (-171))
+(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
+(((|#2| |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
+(((|#2|) |has| |#2| (-1042)))
+((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
+(|has| |#2| (-367))
+(((|#2|) |has| |#2| (-1042)))
+(((|#2|) |has| |#2| (-1042)) (((-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042))))
+(((|#2|) |has| |#2| (-1091)))
+((((-544)) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))))
+(((|#2|) |has| |#2| (-1091)) (((-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))))
+((((-544) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2|) . T))
+((((-544) |#2|) . T))
+((((-544) |#2|) . T))
(|has| |#2| (-787))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
(|has| |#2| (-842))
-((((-886 |#1|)) . T) (((-813 |#1|)) . T))
-((((-813 (-1166))) . T))
+(|has| |#2| (-842))
+(((|#2|) |has| |#2| (-362)))
+(((|#1| |#2|) . T))
+((((-635 |#1|)) . T))
+((((-635 |#1|)) . T))
(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-638 (-561))) . T))
-((((-638 (-561))) . T) (((-856)) . T))
-((((-406 (-561))) . T) (((-856)) . T))
-((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-(|has| |#1| (-232))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((($ $) . T))
-(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-1246 |#1| |#2| |#3|) $) -12 (|has| (-1246 |#1| |#2| |#3|) (-285 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
(((|#1|) . T))
-((((-1130 |#1| |#2|)) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
-(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
+((((-635 |#1|)) . T) (((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((($) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-844))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544)))))
((($) . T))
+(((|#2| (-238 (-4364 |#1|) (-765))) . T))
(((|#2|) . T))
-(((|#3|) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(((|#2|) . T))
-((((-856)) -4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-856))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090))) (((-1254 |#2|)) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T) (($) . T))
-(((|#1|) |has| |#1| (-171)))
-((((-561)) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-561) (-143)) . T))
-((($) -4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
-((((-561)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-561)) . T))
-((($) |has| |#1| (-553)) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-561)) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
-(((|#2|) |has| |#1| (-362)))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#1|) . T) (($ $) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-1171)) . T))
-(((|#1| (-529 #0=(-1166)) #0#) . T))
-(((|#1|) . T) (($) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((|#2| (-238 (-4364 |#1|) (-765))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-903)))
+((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-844))
+((((-858 |#1|)) . T))
+(|has| |#2| (-903))
+(|has| |#2| (-903))
+((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T))
+((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T))
+(((|#2| (-238 (-4364 |#1|) (-765)) (-858 |#1|)) . T))
+((((-857)) . T))
+((((-504)) . T))
+((((-182)) . T) (((-857)) . T))
+(((|#4|) |has| |#4| (-171)))
+(-3936 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(-3936 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(-3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(-3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(((|#3|) . T) ((|#2|) . T) (($) -3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042))) ((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))))
+(((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362))))
+((((-857)) . T) (((-1253 |#4|)) . T))
(|has| |#4| (-171))
+(((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($) |has| |#4| (-171)))
+(((|#4| |#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($ $) |has| |#4| (-171)))
+(((|#4|) |has| |#4| (-1042)))
+((((-1166)) -12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042))))
+(-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))
+(|has| |#4| (-367))
+(((|#4|) |has| |#4| (-1042)))
+(((|#4|) |has| |#4| (-1042)) (((-544)) -12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))))
+(((|#4|) |has| |#4| (-1091)))
+((((-544)) -3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091))) (|has| |#4| (-1042))) ((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-1091))) (((-406 (-544))) -12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))
+(((|#4|) |has| |#4| (-1091)) (((-544)) -12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091))) (((-406 (-544))) -12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))
+((((-544) |#4|) . T))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) . T))
+((((-544) |#4|) . T))
+((((-544) |#4|) . T))
+(|has| |#4| (-787))
+(-3936 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(-3936 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(-3936 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(-3936 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(|has| |#4| (-842))
+(|has| |#4| (-842))
+(((|#4|) |has| |#4| (-362)))
+(((|#1| |#4|) . T))
+(((|#3|) |has| |#3| (-171)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(((|#2|) . T) (($) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))))
+(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362))))
+((((-857)) . T) (((-1253 |#3|)) . T))
(|has| |#3| (-171))
-(((#0=(-406 (-945 |#1|)) #0#) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(|has| |#1| (-1090))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(|has| |#1| (-1090))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-(((|#1| |#1|) |has| |#1| (-171)))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) . T))
-((((-406 (-945 |#1|))) . T))
-(((|#1|) |has| |#1| (-171)))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-856)) . T))
-((((-1240 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1042)) (((-561)) -12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))
-(((|#1| |#2|) . T))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171)))
+(((|#3| |#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171)))
+(((|#3|) |has| |#3| (-1042)))
+((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))
+(-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))
+(|has| |#3| (-367))
+(((|#3|) |has| |#3| (-1042)))
+(((|#3|) |has| |#3| (-1042)) (((-544)) -12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))))
+(((|#3|) |has| |#3| (-1091)))
+((((-544)) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))
+(((|#3|) |has| |#3| (-1091)) (((-544)) -12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))
+((((-544) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))
+(((|#3|) . T))
+((((-544) |#3|) . T))
+((((-544) |#3|) . T))
(|has| |#3| (-787))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
(|has| |#3| (-842))
+(|has| |#3| (-842))
+(((|#3|) |has| |#3| (-362)))
+(((|#1| |#3|) . T))
+((((-857)) . T))
(((|#1|) . T))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-(((|#2|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| (-1146 |#1|)) |has| |#1| (-842)))
-((((-561) |#2|) . T))
-(|has| |#1| (-1090))
+((((-857)) . T))
+(|has| |#1| (-232))
+((($) . T))
+(((|#1| (-529 |#3|) |#3|) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) (((-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377)))))
+((((-1166)) |has| |#1| (-893 (-1166))) ((|#3|) . T))
+(|has| |#1| (-844))
+((($ $) . T) ((|#2| $) |has| |#1| . #1=((-232))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-903)))
+((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-1141)))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(|has| |#1| (-1090))
-(((|#2|) . T))
-((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
-(((|#4|) -4050 (|has| |#4| (-171)) (|has| |#4| (-362))))
-(((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362))))
-((((-856)) . T))
-(((|#1|) . T))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-902)))
-((($ $) . T) ((#0=(-1166) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-812 (-1166)) |#1|) . T) ((#1# $) . T))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-902)))
-((((-561) |#2|) . T))
-((((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((($) -4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))))
-((((-561) |#1|) . T))
-(|has| (-406 |#2|) (-146))
-(|has| (-406 |#2|) (-144))
-(((|#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-406 (-561))) . T))
-((((-856)) . T))
-(|has| |#1| (-553))
-(|has| |#1| (-553))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-856)) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((((-387) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#2| (-1141))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-((((-856)) . T) (((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-1171)) . T))
-((((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-1204)) . T) (((-856)) . T) (((-1171)) . T))
-((((-116 |#1|)) . T))
+(((|#1| (-529 |#3|)) . T))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T))
+(((|#1| (-529 |#3|)) . T))
+((((-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) (((-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) (((-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))))
+((((-1115 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#2|) . T))
+((((-1115 |#1| |#2|)) . T) (((-544)) . T) ((|#3|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) ((|#2|) . T))
+(((|#1| |#2| |#3| (-529 |#3|)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+((((-857)) . T))
+((($) . T))
+((($) . T))
+((((-857)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T) (((-544)) . T))
+((($) . T))
+((((-857)) . T))
+(((|#1|) |has| |#1| (-362)))
+((((-1166)) |has| |#1| (-893 (-1166))))
+(((|#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362))))
+(((|#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))))
+(((|#1| |#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))))
+((((-544)) -3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))))
+(((|#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))) (($) -3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))))
+(-3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(|has| |#1| (-471))
+(-3936 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1091)))
+((((-112)) |has| |#1| (-1091)) (((-857)) -3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1091)))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)))
+(((|#1| |#2|) . T))
+((((-857)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-857)) . T))
((((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
+((((-857)) . T))
+(|has| (-1240 |#1| |#2| |#3| |#4|) (-144))
+(|has| (-1240 |#1| |#2| |#3| |#4|) (-146))
+((((-1240 |#1| |#2| |#3| |#4|)) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T) (((-406 (-544))) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-544))) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T) (((-406 (-544))) . T) (($) . T))
+(((#1=(-1240 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T))
+((((-1166) #1=(-1240 |#1| |#2| |#3| |#4|)) |has| #1# (-512 (-1166) #1#)) ((#1# #1#) |has| #1# (-308 #1#)))
+(((#1=(-1240 |#1| |#2| |#3| |#4|)) |has| #1# (-308 #1#)))
+(((#1=(-1240 |#1| |#2| |#3| |#4|) $) |has| #1# (-285 #1# #1#)))
+((((-1240 |#1| |#2| |#3| |#4|)) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T))
+((((-1234 |#2| |#3| |#4|)) . T) (((-544)) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-544))) . T))
+((((-1234 |#2| |#3| |#4|)) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T))
+((((-1240 |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(((|#1|) |has| |#1| (-554)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042)))
+((((-857)) . T))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-554)) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-554)) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042)))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+((((-606 $) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-544))) |has| |#1| (-554)))
+((($) -3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-554)))
+(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-544))) |has| |#1| (-554)))
+(|has| |#1| (-554))
+(((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-554)) (($) |has| |#1| (-554)))
+(((|#1| |#1|) |has| |#1| (-171)) ((#1=(-406 (-544)) #1#) |has| |#1| (-554)) (($ $) |has| |#1| (-554)))
+(|has| |#1| (-554))
+(((|#1|) |has| |#1| (-1042)))
+(((|#1|) |has| |#1| (-1042)) (((-544)) -12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))
(((|#1|) . T))
-((((-387) (-1148)) . T))
-(|has| |#1| (-553))
-((((-561) |#1|) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-(((|#2|) . T))
-((((-856)) . T))
-((((-813 |#1|)) . T))
-(((|#2|) |has| |#2| (-171)))
-((((-1166) (-52)) . T))
+((((-544)) |has| |#1| (-879 (-544))) (((-377)) |has| |#1| (-879 (-377))))
(((|#1|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-553))
-(((|#1|) |has| |#1| (-171)))
-((((-638 |#1|)) . T))
-((((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(((|#2|) |has| |#2| (-308 |#2|)))
-(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+(|has| |#1| (-471))
+((((-1166)) |has| |#1| (-1042)))
(((|#1|) . T))
-(((|#1| (-1162 |#1|)) . T))
-(|has| $ (-146))
-(((|#2|) . T))
-(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-((($) . T) (((-561)) . T) (((-406 (-561))) . T))
-(|has| |#2| (-367))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-((((-561)) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-561)) . T) (((-406 (-561))) . T) (($) . T))
-((((-1164 |#1| |#2| |#3|) $) -12 (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((($) . T) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((($ $) . T))
-((((-856)) . T))
+((((-533)) |has| |#1| (-609 (-533))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))))
+((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (((-606 $)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) -3936 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-406 (-939 |#1|))) |has| |#1| (-554)) (((-939 |#1|)) |has| |#1| (-1042)) (((-1166)) . T))
+((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (((-544)) -3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))) (|has| |#1| (-1042))) ((|#1|) . T) (((-606 $)) . T) (($) |has| |#1| (-554)) (((-406 (-544))) -3936 (|has| |#1| (-554)) (|has| |#1| (-1031 (-406 (-544))))) (((-406 (-939 |#1|))) |has| |#1| (-554)) (((-939 |#1|)) |has| |#1| (-1042)) (((-1166)) . T))
+(((|#1|) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+((((-857)) . T))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| (-406 (-544))) . T))
+(((|#1| (-406 (-544))) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T))
+(((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(((|#1| (-406 (-544)) (-1072)) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))))
((($ $) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((#0=(-1246 |#1| |#2| |#3|) #0#) -12 (|has| (-1246 |#1| |#2| |#3|) (-308 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1166) #0#) -12 (|has| (-1246 |#1| |#2| |#3|) (-512 (-1166) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-(-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))
+(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))
(((|#1|) . T))
+(|has| |#1| (-844))
(((|#1|) . T))
(((|#1|) . T))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-406 (-561))) . T) (((-561)) . T))
-((((-561) (-143)) . T))
-((((-143)) . T))
+(((|#1| (-544)) . T))
+(((#1=(-544) #1#) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-857)) . T))
+((((-857)) . T))
(((|#1|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
-((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-112)) . T))
(((|#1|) . T))
-((((-534)) |has| |#1| (-609 (-534))) (((-224)) . #0=(|has| |#1| (-1015))) (((-378)) . #0#))
-((((-856)) . T))
-((((-1171)) . T))
-(|has| |#1| (-814))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(|has| |#1| (-844))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-553)))
-(|has| |#1| (-553))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T))
-(|has| |#1| (-902))
-(((|#1|) . T))
-(|has| |#1| (-1090))
-((((-856)) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-553)))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| (-1254 |#1|) (-1254 |#1|)) . T))
-((((-561) (-143)) . T))
-((($) . T))
-(-4050 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-((((-1171)) . T) (((-856)) . T))
-((((-1171)) . T))
-((((-856)) . T))
-(|has| |#1| (-1090))
-(((|#1| (-964)) . T))
-(((|#1| |#1|) . T))
-((($) . T))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(-12 (|has| |#1| (-471)) (|has| |#2| (-471)))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))
+(((|#1| (-765)) . T))
(((|#1|) . T))
-(|has| |#2| (-787))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(|has| |#2| (-842))
-(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
-(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
-(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-561)) . T))
-(((|#2|) |has| |#2| (-171)))
-(((|#1|) |has| |#1| (-171)))
-((((-856)) . T))
-(|has| |#1| (-348))
(((|#1|) . T))
+(|has| |#1| (-844))
(((|#1|) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
(((|#1|) . T))
-((((-406 (-561))) . T) (($) . T))
-((($) |has| |#1| (-553)) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-561)) . T))
-((($) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) . T))
-(|has| |#1| (-822))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
-(|has| |#1| (-1090))
-(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-((($) |has| |#1| (-553)))
-(((|#4|) |has| |#4| (-1090)))
-(((|#3|) |has| |#3| (-1090)))
-(|has| |#3| (-367))
-(((|#1|) . T) (((-856)) . T))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| |#2|) . T))
-(((|#2|) . T))
-(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1| |#1|) |has| |#1| (-171)))
-(|has| |#2| (-362))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-171)))
-((((-406 (-561))) . T) (((-561)) . T))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-((((-143)) . T))
(((|#1|) . T))
-((($) -4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
-((((-143)) . T))
-((((-143)) . T))
-((((-406 (-561))) . #0=(|has| |#2| (-362))) (($) . #0#) ((|#2|) . T) (((-561)) . T))
-(((|#1| |#2| |#3|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-1166)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T) (($) . T))
+(((|#3|) . T))
+((($) . T))
+((($ $) . T) (((-606 $) $) . T))
+((((-857)) . T))
+(((|#3|) . T) (((-606 $)) . T))
+(((|#3|) . T) (((-544)) . T) (((-606 $)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+(((#1=(-899 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
(|has| $ (-146))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+(((#1=(-899 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
(|has| $ (-146))
-((((-1171)) . T))
-(|has| |#1| (-1090))
-((((-856)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-553)) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
-((($ $) |has| |#1| (-285 $ $)) ((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-(((|#1| (-406 (-561))) . T))
+((((-899 |#1|)) . T))
(((|#1|) . T))
-((((-1166)) . T))
-(|has| |#1| (-553))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(|has| |#1| (-553))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-856)) . T))
-(|has| |#2| (-144))
-(|has| |#2| (-146))
-(((|#2|) . T) (($) . T))
-(|has| |#1| (-146))
-(|has| |#1| (-144))
-(|has| |#4| (-842))
-(((|#2| (-239 (-3548 |#1|) (-765)) (-858 |#1|)) . T))
-(|has| |#3| (-842))
-(((|#1| (-529 |#3|) |#3|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
(|has| |#1| (-146))
-(|has| |#1| (-144))
-(((#0=(-406 (-561)) #0#) |has| |#2| (-362)) (($ $) . T))
-((((-863 |#1|)) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
(|has| |#1| (-146))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
-((((-856)) . T))
-(|has| |#1| (-144))
-((((-406 (-561))) |has| |#2| (-362)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-348)) (|has| |#1| (-367)))
-((((-1132 |#2| |#1|)) . T) ((|#1|) . T))
-(|has| |#2| (-171))
-(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
-(((|#2|) . T) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
-((((-856)) . T))
+(|has| |#1| (-367))
(((|#1|) . T))
-(((|#2|) . T) (($) . T))
-((((-692)) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(|has| |#1| (-553))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T))
+((((-899 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+(((#1=(-899 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(|has| $ (-146))
+((((-899 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1166) (-52)) . T))
-(((|#1|) . T) (($) . T))
-((((-997 10)) . T) (((-406 (-561))) . T) (((-856)) . T))
-((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-(((|#1|) . T))
-((((-997 16)) . T) (((-406 (-561))) . T) (((-856)) . T))
-((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-(((|#1| (-561)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| |#2|) . T))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
(((|#1|) . T))
-(((|#1| (-406 (-561))) . T))
-(((|#3|) . T) (((-607 $)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-561)) -4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042))) ((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-((($ $) . T) ((|#2| $) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-(((#0=(-1164 |#1| |#2| |#3|) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1166) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) |has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))))
-((((-856)) . T))
(((|#1|) . T))
-(((|#3| |#3|) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T))
-((((-1166) (-52)) . T))
-(((|#3|) . T))
-((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-1090))
-(((|#2| |#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
-(((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362))))
-((((-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
-((((-1171)) . T))
-((((-765)) . T))
-(|has| |#1| (-553))
-((((-561)) . T))
-((((-856)) . T))
-(((|#1| (-406 (-561)) (-1072)) . T))
-(|has| |#1| (-144))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(((|#1|) . T))
+(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-553))
-((((-561)) . T))
-((((-116 |#1|)) . T))
(((|#1|) . T))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
(|has| |#1| (-146))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-553)))
-((((-885 (-561))) . T) (((-885 (-378))) . T) (((-534)) . T) (((-1166)) . T))
-((((-856)) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((($) . T))
-((((-856)) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(((|#2|) |has| |#2| (-171)))
-((($) -4050 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2|) |has| |#2| (-171)) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
-((((-863 |#1|)) . T))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
-(-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))
-(|has| |#2| (-1141))
-(((#0=(-52)) . T) (((-2 (|:| -2285 (-1166)) (|:| -2677 #0#))) . T))
-(((|#1| |#2|) . T))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-(((|#1| (-561) (-1072)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| (-406 (-561)) (-1072)) . T))
-((($) -4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-561) |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(|has| |#2| (-367))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
-((((-856)) . T))
-((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(((|#1|) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#4|) . T))
-(|has| |#1| (-348))
-((((-561)) -4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042))) ((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
-(((|#1|) . T))
-(((|#4|) . T) (((-856)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) #0#) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(|has| |#1| (-553))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-(((|#1| |#2|) . T))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-902)))
-((((-406 (-561))) . T) (((-561)) . T))
-((((-561)) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($) . T))
-((((-856)) . T))
-(((|#1|) . T))
-((((-863 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-((((-856)) . T))
-(((|#3| |#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171)))
-(|has| |#1| (-1015))
-((((-856)) . T))
-(((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171)))
-((((-561) (-112)) . T))
-((((-1171)) . T))
-(((|#1|) |has| |#1| (-308 |#1|)))
-((((-1171)) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
-((((-1166) $) |has| |#1| (-512 (-1166) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)))
-((((-1166)) |has| |#1| (-893 (-1166))))
-(-4050 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))
-(((|#1| |#4|) . T))
-(((|#1| |#3|) . T))
+(|has| |#1| (-367))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
((((-387) |#1|) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-1090))
-(((|#2|) . T) (((-856)) . T))
-((((-856)) . T))
-(((|#2|) . T))
-((((-903 |#1|)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
+((((-224)) . T))
+((((-544)) . T) (((-406 (-544))) . T))
+((((-377)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-533)) . T) (((-1148)) . T) (((-224)) . T) (((-377)) . T) (((-883 (-377))) . T))
+((((-224)) . T) (((-857)) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)))
(((|#1| |#2|) . T))
-((($) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(((|#1|) . T))
+((((-857)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
-(((#0=(-863 |#1|)) |has| #0# (-308 #0#)))
-((((-561)) . T) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T))
-(((|#1| |#2|) . T))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
(((|#1|) . T))
-(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(|has| |#1| (-1190))
-(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-((((-406 (-561))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1042)))
-(((|#3|) |has| |#3| (-1042)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(|has| |#1| (-362))
-((((-561)) . T) (((-406 (-561))) . T) (($) . T))
-((($ $) . T) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-561) |#3|) . T))
-((((-856)) . T))
-((((-534)) |has| |#3| (-609 (-534))))
-((((-682 |#3|)) . T) (((-856)) . T))
+((((-857)) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#2|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-842))
-(|has| |#1| (-842))
-((($) . T) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-553)))
-((($) . T))
-(((#0=(-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) #0#) |has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))))
-(|has| |#2| (-844))
-((($) . T))
-(((|#2|) |has| |#2| (-1090)))
-((((-856)) -4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-856))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090))) (((-1254 |#2|)) . T))
-(|has| |#1| (-844))
(|has| |#1| (-844))
-((((-1148) (-52)) . T))
-(|has| |#1| (-844))
-((((-856)) . T))
-((((-561)) |has| #0=(-406 |#2|) (-634 (-561))) ((#0#) . T))
-((($) . T) (((-561)) . T))
-((((-561) (-143)) . T))
-((((-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((|#1| |#2|) . T))
-((((-406 (-561))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-856)) . T))
-((((-903 |#1|)) . T))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
-(|has| |#1| (-842))
-(|has| |#1| (-362))
-(|has| |#1| (-842))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-857)) . T))
+((((-1148)) . T))
+((((-1148)) . T))
+((((-1148)) . T) (((-857)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+((((-857)) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-406 |#2|)) . T))
+((((-857)) . T))
+(|has| |#1| (-1209))
+((((-533)) |has| |#1| (-609 (-533))) (((-224)) . #1=(|has| |#1| (-1013))) (((-377)) . #1#))
+(|has| |#1| (-1013))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-1209)))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T))
+(((|#1|) . T))
+((($ $) |has| |#1| (-285 $ $)) ((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+((($) |has| |#1| (-308 $)) ((|#1|) |has| |#1| (-308 |#1|)))
+((((-1166) $) |has| |#1| (-512 (-1166) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)))
+(((|#1|) . T))
+(|has| |#1| (-232))
+((((-1166)) |has| |#1| (-893 (-1166))))
+(((|#1|) . T))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-842))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (($) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T) (($) . T))
+(-12 (|has| |#1| (-543)) (|has| |#1| (-815)))
+((((-857)) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(((|#1|) . T))
((((-1166)) |has| |#1| (-893 (-1166))))
-((((-504)) . T))
-(((|#1| (-1166)) . T))
-(((|#1| (-1254 |#1|) (-1254 |#1|)) . T))
-((((-856)) . T) (((-1171)) . T))
-(((|#1| |#2|) . T))
-((($ $) . T))
-((((-1171)) . T))
-(|has| |#1| (-1090))
-(((|#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) . T))
-((((-406 (-945 |#1|))) . T))
-((((-534)) . T))
-((((-856)) . T))
-((($) . T))
-(((|#2|) . T) (($) . T))
-((((-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((|#1| |#2|) . T))
+(|has| |#1| (-232))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) ((|#1|) . T) (((-406 (-544))) . T))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-171)))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#3|) . T))
-(((|#1|) |has| |#1| (-171)))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(((|#1|) |has| |#1| (-308 |#1|)))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
(((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544))))
(((|#1|) . T))
-((((-534)) |has| |#1| (-609 (-534))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))))
-((((-856)) . T))
-(((|#2|) . T) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-504)) . T))
-(|has| |#2| (-842))
-((((-504)) . T))
-(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
-(|has| |#1| (-553))
-((((-1148) |#1|) . T))
+((((-544)) |has| |#1| (-879 (-544))) (((-377)) |has| |#1| (-879 (-377))))
+(|has| |#1| (-814))
+(|has| |#1| (-814))
+(|has| |#1| (-814))
+(-3936 (|has| |#1| (-814)) (|has| |#1| (-844)))
+(|has| |#1| (-814))
+(|has| |#1| (-814))
+(|has| |#1| (-814))
+(((|#1|) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-1013))
+((((-533)) |has| |#1| (-609 (-533))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))) (((-377)) . #1=(|has| |#1| (-1013))) (((-224)) . #1#))
+((((-544)) . T) ((|#1|) . T) (($) . T) (((-406 (-544))) . T) (((-1166)) |has| |#1| (-1031 (-1166))))
+((((-406 (-544))) |has| |#1| . #1=((-1031 (-544)))) (((-544)) |has| |#1| . #1#) (((-1166)) |has| |#1| (-1031 (-1166))) ((|#1|) . T))
(|has| |#1| (-1141))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-951 |#1|)) . T))
-(((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1| |#1|) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-561))) (((-561)) |has| |#1| (-1031 (-561))) (((-1166)) |has| |#1| (-1031 (-1166))) ((|#1|) . T))
-((((-561) |#2|) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
-((((-561)) |has| |#1| (-879 (-561))) (((-378)) |has| |#1| (-879 (-378))))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1|) . T))
-(((|#1|) . T))
-((((-638 |#4|)) . T) (((-856)) . T))
-((((-534)) |has| |#4| (-609 (-534))))
-((((-534)) |has| |#4| (-609 (-534))))
-((((-856)) . T) (((-638 |#4|)) . T))
-((($) |has| |#1| (-842)))
-((((-561)) -4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042))) ((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
(((|#1|) . T))
-((((-638 |#4|)) . T) (((-856)) . T))
-((((-534)) |has| |#4| (-609 (-534))))
+((((-857)) . T))
+((((-857)) . T))
+(((|#1|) . T))
+((((-857)) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (((-544)) . T))
+(((|#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-387) (-1148)) . T))
+((((-857)) . T))
+((((-406 (-939 |#1|))) . T))
+((((-406 (-939 |#1|))) . T))
+((((-1132 |#2| (-406 (-939 |#1|)))) . T) (((-406 (-939 |#1|))) . T))
+((((-857)) . T))
+((((-406 (-939 |#1|))) . T))
+(((#1=(-406 (-939 |#1|)) #1#) . T))
+((((-406 (-939 |#1|))) . T))
+((((-406 (-939 |#1|))) . T))
+((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544)))))
+((($) . T))
+(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-1166)) |has| (-406 |#2|) (-893 (-1166))))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) #0#) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-856)) -4050 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-608 (-856))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1090))) (((-1254 |#3|)) . T))
-((((-561) |#2|) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(((|#2| |#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
-(((|#2|) . T) (((-561)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((|#2|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-1148) (-1166) (-561) (-224) (-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-856)) . T))
-((((-561) (-112)) . T))
-(((|#1|) . T))
-((((-856)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-112)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
-(|has| $ (-146))
-((((-406 |#2|)) . T))
-((((-886 |#1|)) . T) ((|#2|) . T) (((-561)) . T) (((-813 |#1|)) . T))
-((((-406 (-561))) |has| #0=(-406 |#2|) (-1031 (-406 (-561)))) (((-561)) |has| #0# (-1031 (-561))) ((#0#) . T))
-(((|#2| |#2|) . T))
-(((|#4|) |has| |#4| (-171)))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T))
(|has| |#2| (-144))
(|has| |#2| (-146))
-(((|#3|) |has| |#3| (-171)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((|#2| |#3|) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-903)))
+((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-844))
+((((-858 |#1|)) . T))
+(|has| |#2| (-903))
+(|has| |#2| (-903))
+((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T))
+((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T))
+(((|#2| |#3| (-858 |#1|)) . T))
+(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+((((-857)) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#4|) . T))
+((((-635 |#4|)) . T) (((-857)) . T))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) . T))
+((((-533)) |has| |#4| (-609 (-533))))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-857)) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+((((-857)) . T))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| (-406 (-544))) . T))
+(((|#1| (-406 (-544))) . T))
(|has| |#1| (-146))
(|has| |#1| (-144))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(|has| |#1| (-146))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(|has| |#1| (-146))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(|has| |#1| (-146))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T))
+(((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(((|#1| (-406 (-544)) (-1072)) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))))
+((($ $) . T))
+(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))
(((|#1|) . T))
-(|has| |#2| (-232))
+(((|#1| |#2|) . T))
+((((-857)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-533)) |has| |#4| (-609 (-533))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) . T))
+((((-857)) . T) (((-635 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-533)) . T) (((-406 (-1160 (-544)))) . T) (((-224)) . T) (((-377)) . T))
+((((-406 (-544))) . T) (((-544)) . T))
+((((-377)) . T) (((-224)) . T) (((-857)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (((-544)) . T) (($) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+(((|#1| |#2|) . T))
+((((-857)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544)))))
+((($) . T))
+(((|#2| (-480 (-4364 |#1|) (-765))) . T))
(((|#2|) . T))
-((((-856)) . T) (((-1171)) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((|#2| (-480 (-4364 |#1|) (-765))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-903)))
+((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-844))
+((((-858 |#1|)) . T))
+(|has| |#2| (-903))
+(|has| |#2| (-903))
+((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T))
+((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T))
+(((|#2| (-480 (-4364 |#1|) (-765)) (-858 |#1|)) . T))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091)))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091)))
+(((|#2|) |has| |#2| (-171)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
+(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362))))
+((((-857)) -3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) (((-1253 |#2|)) . T))
+(|has| |#2| (-171))
+(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
+(((|#2| |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
+(((|#2|) |has| |#2| (-1042)))
+((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
+(|has| |#2| (-367))
+(((|#2|) |has| |#2| (-1042)))
+(((|#2|) |has| |#2| (-1042)) (((-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042))))
+(((|#2|) |has| |#2| (-1091)))
+((((-544)) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))))
+(((|#2|) |has| |#2| (-1091)) (((-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))))
+((((-544) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2|) . T))
+((((-544) |#2|) . T))
+((((-544) |#2|) . T))
+(|has| |#2| (-787))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(|has| |#2| (-842))
+(|has| |#2| (-842))
+(((|#2|) |has| |#2| (-362)))
+(((|#1| |#2|) . T))
((((-1171)) . T))
-((((-1166) (-52)) . T))
-((((-856)) . T))
-((((-856)) . T) (((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-(((|#1| |#1|) . T))
-((((-1166)) |has| |#2| (-893 (-1166))))
-((((-129)) . T))
-((((-561) (-112)) . T))
-(|has| |#1| (-553))
-(((|#1|) . T) (((-561)) . T) (((-813 (-1166))) . T))
-(((|#2|) . T))
-(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
-(((|#1| |#1|) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-857)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-997 16)) . T) (((-406 (-544))) . T) (((-857)) . T))
+((((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) (((-544)) . T) (((-406 (-544))) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T) (((-406 (-544))) . T) (($) . T))
+(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((((-406 (-544))) . T) (((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T))
+((((-1148)) . T) (((-857)) . T))
+((((-167 (-377))) . T) (((-224)) . T) (((-377)) . T))
+((((-406 (-544))) . T) (((-544)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($) . T) (((-406 (-544))) . T))
+((($) . T) (((-406 (-544))) . T))
+((((-406 (-544))) . T) (($) . T))
+(((#1=(-406 (-544)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-606 $) $) . T))
+((((-857)) . T))
+((((-406 (-544))) . T) (((-544)) . T) (((-606 $)) . T))
+((($) . T) (((-544)) . T) (((-406 (-544))) . T) (((-606 $)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#3|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((((-561)) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
-(((|#1|) . T))
-((((-997 2)) . T) (((-406 (-561))) . T) (((-856)) . T))
-((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-992 |#1|)) . T) ((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-406 (-561))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1162 |#1|)) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-(((|#3|) . T) (($) . T))
(|has| |#1| (-844))
-(((|#2|) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-((((-561) |#2|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#2|) . T))
-((((-561) |#3|) . T))
-(((|#2|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-856)) . T))
-((((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
-(|has| |#1| (-1090))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) #0#) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(((|#2| |#2|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#2|) . T))
-(|has| |#2| (-362))
-(((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
(((|#1|) . T))
-(((|#2|) . T))
-((((-1148) (-52)) . T))
-(((|#2|) |has| |#2| (-171)))
-((((-561) |#3|) . T))
-((((-561) (-143)) . T))
-((((-143)) . T))
-((((-856)) . T))
-((((-1171)) . T))
-((((-112)) . T))
-(|has| |#1| (-146))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(((|#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-144))
-((($) . T))
-(|has| |#1| (-553))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1|) . T))
-(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
-((((-143)) . T))
-((((-856)) . T))
-((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
-((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
-((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
-((((-1148) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-544) (-112)) . T))
+((((-544) (-112)) . T))
+((((-544) (-112)) . T))
+((((-533)) . T))
+((((-112)) . T))
+((((-857)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-1166)) . T) (((-857)) . T))
(((|#1| |#2|) . T))
-((((-561) (-143)) . T))
-(((#0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) #0#) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(|has| |#1| (-844))
-(((|#2| (-765) (-1072)) . T))
+((((-857)) . T))
(((|#1| |#2|) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-553)))
-(|has| |#1| (-785))
-(((|#1|) |has| |#1| (-171)))
-(((|#4|) . T))
-(((|#4|) . T))
+((((-857)) . T))
+((((-857)) . T))
(((|#1| |#2|) . T))
-(-4050 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146))))
-(-4050 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144))))
-(((|#4|) . T))
-(|has| |#1| (-144))
-((((-1148) |#1|) . T))
-(|has| |#1| (-146))
-(((|#1|) . T))
-((((-561)) . T))
-((((-856)) . T))
(((|#1| |#2|) . T))
-((((-856)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#3|) . T))
-((((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-856)) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(((|#1|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))) (((-951 |#1|)) . T))
-(|has| |#1| (-842))
-(|has| |#1| (-842))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-951 |#1|)) . T))
-(|has| |#2| (-362))
-(((|#1|) |has| |#1| (-171)))
-(((|#2|) |has| |#2| (-1042)))
-((((-1148) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
-(((|#2| (-886 |#1|)) . T))
-((($) . T))
-((((-387) (-1148)) . T))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) -4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-856))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090))) (((-1254 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2285 (-1148)) (|:| -2677 #0#))) . T))
-(((|#1|) . T))
-((((-856)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-((((-143)) . T))
-(|has| |#2| (-144))
-(|has| |#2| (-146))
-(|has| |#1| (-471))
-(-4050 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
-(|has| |#1| (-362))
-((((-856)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-((($) |has| |#1| (-553)))
-((((-1171)) . T))
-(|has| |#1| (-842))
-(|has| |#1| (-842))
-((((-856)) . T))
-(((|#2|) . T))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#2|) . T) (((-561)) . T) (((-813 |#1|)) . T))
+((((-857)) . T))
(((|#1| |#2|) . T))
-((((-1166)) |has| |#1| (-893 (-1166))))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
-((((-856)) . T))
-(|has| |#1| (-1090))
-(((|#2| (-480 (-3548 |#1|) (-765)) (-858 |#1|)) . T))
-((((-406 (-561))) . #0=(|has| |#2| (-362))) (($) . #0#))
-(((|#1| (-529 (-1166)) (-1166)) . T))
+((((-857)) . T))
+((((-857)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-171))
-(((|#2| |#2|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
+(|has| |#1| (-844))
(((|#1|) . T))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
(((|#1|) . T))
-(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-1166) (-52)) . T))
-((($ $) . T))
-(((|#1| (-561)) . T))
-((((-903 |#1|)) . T))
-(((|#1|) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))) (($) -4050 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))))
-(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-((((-561) |#2|) . T))
-((((-561)) . T))
-((((-1246 |#1| |#2| |#3|)) -12 (|has| (-1246 |#1| |#2| |#3|) (-308 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-(|has| |#1| (-844))
-((((-682 |#2|)) . T) (((-856)) . T))
-((((-406 (-561))) . T) (((-561)) . T) (($) . T))
-(((|#1| |#2|) . T))
-((((-406 (-945 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#1|) |has| |#1| (-171)))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(|has| |#2| (-844))
-(|has| |#1| (-844))
-(((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362))))
-(-4050 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-902)))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-((((-561) |#2|) . T))
-(((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362))))
-(|has| |#1| (-348))
-(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
-(((|#2|) . T) (((-561)) . T))
-((($) . T) (((-406 (-561))) . T))
-((((-561) (-112)) . T))
-(|has| |#1| (-814))
-(|has| |#1| (-814))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
(((|#1|) . T))
-(-4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-842))
-(|has| |#1| (-842))
-(|has| |#1| (-842))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-38 (-406 (-561))))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
(((|#1|) . T))
-(|has| |#1| (-842))
-(((#0=(-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) #0#) |has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(|has| |#1| (-1090))
-((((-856)) . T) (((-1171)) . T))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-578 |#1|)) . T))
+((((-578 |#1|)) . T))
+((((-578 |#1|)) . T))
+((((-578 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+(((#1=(-578 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-578 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+((((-578 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-578 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(|has| $ (-146))
+((((-578 |#1|)) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1| |#4| |#5|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) . T))
(((|#1|) . T))
-(((|#3| |#3|) . T))
-(((|#2|) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
(((|#1|) . T))
-(((|#1| (-529 |#2|) |#2|) . T))
-((((-856)) . T))
-((((-143)) . T) (((-856)) . T))
-(((|#1| (-765) (-1072)) . T))
-(((|#3|) . T))
-((((-143)) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) -4050 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))) ((|#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
(((|#1|) . T))
-((((-143)) . T))
-(((|#2|) |has| |#2| (-171)))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
(((|#1|) . T))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
-(|has| |#3| (-171))
-(((|#4|) |has| |#4| (-362)))
-(((|#3|) |has| |#3| (-362)))
+(|has| |#1| (-844))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-362)))
-((((-856)) . T))
-(((|#2|) . T))
-(((|#1| (-1162 |#1|)) . T))
-((((-1072)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((($) . T) ((|#1|) . T) (((-406 (-561))) . T))
-(((|#2|) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((($) |has| |#1| (-842)))
-(|has| |#1| (-902))
-((((-1166)) . T))
-((((-856)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((#0=(-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) #0#) |has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-902)))
-(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
(((|#1|) . T))
-(((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362))))
-(|has| |#1| (-844))
-(|has| |#1| (-553))
-((((-578 |#1|)) . T))
+(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T))
+((((-765) |#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-576)) . T))
+((((-1093)) . T))
+((((-635 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-544)) . T) (((-224)) . T) (((-857)) . T))
+((((-857)) . T))
+((((-1148) (-1166) (-544) (-224) (-857)) . T))
((($) . T))
-(((|#2|) . T))
-(-4050 (-12 (|has| |#1| (-362)) (|has| |#2| (-814))) (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-((((-903 |#1|)) . T))
-(((|#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) . T))
-(((|#1| |#4| |#5|) . T))
-(((|#1| (-765)) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-((((-665 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-534)) . T))
-((((-856)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((((-1171)) . T))
-((((-406 (-561))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-561)) . T))
-(((|#3|) . T) (((-561)) . T) (((-607 $)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#2|) . T))
-(-4050 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1090)))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
-(|has| |#1| (-1190))
-(|has| |#1| (-1190))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
-(|has| |#1| (-1190))
-(|has| |#1| (-1190))
-(((|#3| |#3|) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T) ((#1=(-406 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((($) . T) (((-406 (-561))) . T) (((-406 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#3|) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-((((-1148) (-52)) . T))
-(|has| |#1| (-1090))
-(-4050 (|has| |#2| (-814)) (|has| |#2| (-844)))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-171)) (($) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-857)) . T))
((($) . T))
-((((-1164 |#1| |#2| |#3|)) -12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-((((-856)) . T))
-((((-561)) . T) (($) . T))
-((((-765)) . T))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-((($) . T) (((-561)) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-544)) . T) (($) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-1148)) . T) (((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((((-544)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#1| |#2|) . T))
+((((-857)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#1| |#2|) . T))
((($) . T))
-(|has| |#2| (-902))
-(|has| |#1| (-362))
-(((|#2|) |has| |#2| (-1090)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-534)) . T) (((-406 (-1162 (-561)))) . T) (((-224)) . T) (((-378)) . T))
-((((-378)) . T) (((-224)) . T) (((-856)) . T))
-(|has| |#1| (-902))
-(|has| |#1| (-902))
-(|has| |#1| (-902))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-902)))
-((($) . T) ((|#2|) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-902)))
-((((-856)) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
((($ $) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
+((($) . T))
+((((-857)) . T))
+((($) . T))
+((($) . T))
+((((-544)) . T) (($) . T))
+((((-544)) . T))
+(((|#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((($) . T))
+((((-857)) . T))
+((($) . T))
((($ $) . T))
-((((-561) (-112)) . T))
((($) . T))
+((($) . T))
+((((-544)) . T) (($) . T))
(((|#1|) . T))
-((((-561)) . T))
-((((-112)) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#1| (-561)) . T))
+((((-544)) . T))
+((($) . T))
((($) . T))
-(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
-((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
+((($) . T))
+(|has| $ (-146))
+((($) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($) . T) (((-406 (-544))) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-544)) . T) (((-406 (-544))) . T) (($) . T))
(((|#1|) . T))
-((((-561)) . T))
-(((|#1| |#2|) . T))
-((((-1166)) |has| |#1| (-1042)))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
(((|#1|) . T))
-((((-856)) . T))
-(((|#1| (-561)) . T))
-(((|#1| (-1246 |#1| |#2| |#3|)) . T))
+(((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T))
+((((-857)) . T))
+((((-406 (-544))) . T))
+((((-406 (-544))) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-544) (-143)) . T))
+((((-544) (-143)) . T))
+((((-544) (-143)) . T))
+((((-143)) . T))
+((((-857)) . T))
+((((-143)) . T))
+((((-143)) . T))
+(|has| |#1| (-15 * (|#1| (-544) |#1|)))
+((((-857)) . T))
+((($ $) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))
+(((|#1| (-544) (-1072)) . T))
+((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))))
+(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+((((-544)) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+(((|#1| (-544)) . T))
+(((|#1| (-544)) . T))
+((($) |has| |#1| (-554)))
+((($ $) |has| |#1| (-554)))
+((($) |has| |#1| (-554)))
+((($) |has| |#1| (-554)))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+((($) |has| |#1| (-554)) (((-544)) . T))
+((($) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+(((|#1|) . T))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
(((|#1|) . T))
-(((|#1| (-406 (-561))) . T))
-(((|#1| (-1218 |#1| |#2| |#3|)) . T))
-(((|#1| (-765)) . T))
+(|has| |#1| (-844))
(((|#1|) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-856)) . T))
-(|has| |#1| (-1090))
-((((-1148) |#1|) . T))
-((($) . T))
-(|has| |#2| (-146))
-(|has| |#2| (-144))
-(((|#1| (-529 (-812 (-1166))) (-812 (-1166))) . T))
-((((-856)) . T))
-((((-1240 |#1| |#2| |#3| |#4|)) . T))
-((((-1240 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1042)))
-((((-561) (-112)) . T))
-((((-856)) |has| |#1| (-1090)))
-(|has| |#2| (-171))
-((((-561)) . T))
-(|has| |#2| (-842))
(((|#1|) . T))
-((((-561)) . T))
-((((-856)) . T))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-348)))
-(|has| |#1| (-146))
-((((-856)) . T))
-(((|#3|) . T))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-((((-856)) . T))
-((((-1239 |#2| |#3| |#4|)) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T))
-((((-856)) . T))
-((((-48)) -12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (((-607 $)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) -4050 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-406 (-945 |#1|))) |has| |#1| (-553)) (((-945 |#1|)) |has| |#1| (-1042)) (((-1166)) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-765)) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-308 |#1|)))
-((((-1240 |#1| |#2| |#3| |#4|)) . T))
-((((-561)) |has| |#1| (-879 (-561))) (((-378)) |has| |#1| (-879 (-378))))
+((((-128)) . T))
+((((-128)) . T))
+((((-128)) . T) (((-857)) . T))
+((((-1171)) . T))
+((((-1205)) . T) (((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+(((|#1|) -3936 (|has| |#2| (-366 |#1|)) (|has| |#2| (-417 |#1|))))
+(((|#1|) |has| |#2| (-417 |#1|)))
(((|#1|) . T))
-(|has| |#1| (-553))
(((|#1|) . T))
-((((-856)) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(((|#1|) |has| |#1| (-171)))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-(((|#1|) . T))
-(((|#3|) |has| |#3| (-1090)))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(((|#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-362))))
-((((-1239 |#2| |#3| |#4|)) . T))
-((((-112)) . T))
-(|has| |#1| (-814))
-(|has| |#1| (-814))
-(((|#1| (-561) (-1072)) . T))
-((($) |has| |#1| (-308 $)) ((|#1|) |has| |#1| (-308 |#1|)))
+(((|#2|) . T) (((-857)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+((((-1148) |#1|) . T))
+((((-1148) |#1|) . T))
+((((-1148) |#1|) . T))
+((((-1148) |#1|) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((#1=(-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) #1#) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+((((-1148) |#1|) . T))
+((((-857)) . T))
+((((-387) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+((((-533)) |has| |#1| (-609 (-533))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))))
+(((|#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
(|has| |#1| (-842))
(|has| |#1| (-842))
-(((|#1| (-561) (-1072)) . T))
-(-4050 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#1| (-406 (-561)) (-1072)) . T))
-(((|#1| (-765) (-1072)) . T))
-(|has| |#1| (-844))
-(((#0=(-903 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
-(|has| |#2| (-144))
-(|has| |#2| (-146))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(((|#2|) . T))
+((((-857)) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T) (($) . T))
+(((|#2|) . T) (((-544)) . T))
(((|#2|) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
(|has| |#1| (-144))
(|has| |#1| (-146))
-(|has| |#1| (-1090))
-((((-903 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-(|has| |#1| (-1090))
-((((-561)) -4050 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))))
-(((|#1|) . T))
-(|has| |#1| (-1090))
-((((-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-561)))) ((|#2|) |has| |#1| (-362)))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
-((((-682 (-338 (-4078) (-4078 (QUOTE X) (QUOTE HESS)) (-692)))) . T))
-(((|#2|) |has| |#2| (-171)))
-(((|#1|) |has| |#1| (-171)))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-((((-856)) . T))
-(|has| |#3| (-842))
-((((-856)) . T))
-((((-1239 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
-((((-856)) . T))
-(((|#1| |#1|) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))))
-(((|#1|) . T))
-((((-561)) . T))
-((((-561)) . T))
-(((|#1|) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))))
-(((|#2|) |has| |#2| (-362)))
-((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-362)))
-(|has| |#1| (-844))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) |has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-902)))
-(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
-((((-856)) . T))
-((((-856)) . T))
-((((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-((((-856)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-(|has| |#1| (-232))
+(((|#2|) . T) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T))
+(((|#1|) . T))
+((((-406 |#2|)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+(|has| |#2| (-232))
+(((|#2|) . T) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (($) . T) (((-544)) . T))
+((($) . T))
+((((-857)) . T))
+((((-1166)) |has| |#2| (-893 (-1166))))
+(((|#2|) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T))
+((((-1148) (-51)) . T))
+((((-857)) . T))
+((((-1148) (-51)) . T))
+((((-1148) (-51)) . T))
+((((-1148) (-51)) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4267 (-1148)) (|:| -2226 #1#))) . T))
+(((#1=(-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) #1#) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T))
+((((-1148) (-51)) . T))
+(((|#1|) -3936 (|has| |#2| (-366 |#1|)) (|has| |#2| (-417 |#1|))))
+(((|#1|) |has| |#2| (-417 |#1|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-857)) . T))
(((|#1|) . T))
-(((|#1| (-561)) . T))
-(|has| |#1| (-842))
-(((|#1| (-1164 |#1| |#2| |#3|)) . T))
-(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-815))
(((|#1|) . T))
-(((|#1| (-406 (-561))) . T))
-(((|#1| (-1157 |#1| |#2| |#3|)) . T))
-(((|#1| (-765)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
(((|#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-844))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-1171)) . T))
+(((|#1|) . T) (((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+(((|#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-857)) . T))
+(|has| |#1| (-785))
+(|has| |#1| (-785))
+(|has| |#1| (-785))
+(|has| |#1| (-785))
+(|has| |#1| (-785))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-857)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
-(|has| |#1| (-146))
-(|has| |#1| (-144))
-((((-561)) . T) ((|#1|) . T) (($) . T) (((-406 (-561))) . T) (((-1166)) |has| |#1| (-1031 (-1166))))
-(((|#1| |#2|) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) -4050 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))) ((|#1|) . T))
-((((-143)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#1|) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-561)) . T))
-((((-856)) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(|has| (-406 |#2|) (-232))
-((((-638 |#1|)) . T))
-(|has| |#1| (-902))
-(((|#2|) |has| |#2| (-1042)))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(|has| |#1| (-362))
(((|#1|) |has| |#1| (-171)))
+((((-857)) . T))
+(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-863 |#1|)) . T))
-((((-856)) . T))
+(((|#1|) . T) (($) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1090)))
-(|has| |#2| (-844))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-((((-638 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-561)) . T) (((-224)) . T) (((-856)) . T))
-((((-406 (-561))) . T) (((-561)) . T) (((-607 $)) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T))
(((|#1|) . T))
-((((-856)) . T))
-((($) . T))
-(|has| |#1| (-844))
-((((-856)) . T))
-(((|#1| (-529 |#2|) |#2|) . T))
-(((|#1| (-561) (-1072)) . T))
-((((-903 |#1|)) . T))
-((((-856)) . T))
-(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-857)) . T))
(((|#1|) . T))
-(((|#1| (-406 (-561)) (-1072)) . T))
-(((|#1| (-765) (-1072)) . T))
-(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-561)) -4050 (|has| (-406 (-561)) (-1031 (-561))) (|has| |#1| (-1031 (-561)))) (((-406 (-561))) . T))
-(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T))
(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
+(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T))
(((|#1|) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-(|has| |#2| (-232))
-(((|#2| (-529 (-858 |#1|)) (-858 |#1|)) . T))
-((((-856)) . T))
-((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) . T))
-(((|#1| |#3|) . T))
-((((-856)) . T))
-(((|#1|) |has| |#1| (-171)) (((-945 |#1|)) . T) (((-561)) . T))
(((|#1|) |has| |#1| (-171)))
-((((-692)) . T))
-((((-692)) . T))
-(((|#2|) |has| |#2| (-171)))
-(|has| |#2| (-842))
-((((-561)) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
-((((-112)) |has| |#1| (-1090)) (((-856)) -4050 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1090))))
+((((-857)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T) (($) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) . T))
+((((-665 |#1|)) . T))
+((((-665 |#1|)) . T))
+(((|#2| (-665 |#1|)) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-857)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) . T))
-((((-856)) . T))
-((((-561) |#1|) . T))
-((((-856)) . T))
-((((-692)) . T) (((-406 (-561))) . T) (((-561)) . T))
-(((|#1| |#1|) |has| |#1| (-171)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-((((-378)) . T))
-((((-692)) . T))
-((((-406 (-561))) . #0=(|has| |#2| (-362))) (($) . #0#))
-(((|#1|) |has| |#1| (-171)))
-((((-406 (-945 |#1|))) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-6 (-4402 "*"))))
(((|#2| |#2|) . T))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-844))
-(|has| |#2| (-902))
-(|has| |#1| (-902))
-(|has| |#1| (-362))
-(|has| |#1| (-844))
-(((|#3|) |has| |#3| (-1042)))
+((((-682 |#2|)) . T) (((-857)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
((((-1166)) |has| |#2| (-893 (-1166))))
-((((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-471))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-362))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-553)) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
-(|has| |#1| (-38 (-406 (-561))))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-(|has| |#1| (-348))
-((((-143)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((($) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#2|) . T) (((-856)) . T))
-(((|#2|) . T) (((-856)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-844))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-(((|#1| |#2|) . T))
-(|has| |#1| (-146))
-(|has| |#1| (-144))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
+(|has| |#2| (-232))
(((|#2|) . T))
-(((|#3|) . T))
-((((-116 |#1|)) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-844))
-(((|#2|) . T) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
-((((-116 |#1|)) . T))
-(((|#2|) |has| |#2| (-171)))
+(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544))))
+(((|#2|) . T))
+((((-544)) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))))
+(((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))))
+(((|#1| |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2|) . T))
+(((|#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
(((|#1|) . T))
-((((-561)) . T))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-((((-856)) . T))
-((((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))) (((-378)) . #0=(|has| |#1| (-1015))) (((-224)) . #0#))
-(((|#1|) |has| |#1| (-362)))
-((((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((($ $) . T) (((-607 $) $) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-((($) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T) (((-406 (-561))) . T))
-((($) -4050 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-553)))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-((((-378)) . T) (((-561)) . T) (((-406 (-561))) . T))
-((((-638 (-774 |#1| (-858 |#2|)))) . T) (((-856)) . T))
-((((-534)) |has| (-774 |#1| (-858 |#2|)) (-609 (-534))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-378)) . T))
-(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
-((((-856)) . T))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-902)))
(((|#1|) . T))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-((((-765)) . T))
-(|has| |#1| (-1090))
-((((-856)) . T))
-((((-1166)) . T) (((-856)) . T))
-((((-406 (-561))) . T) (((-561)) . T) (((-607 $)) . T))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
-((((-561)) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(((#0=(-1239 |#2| |#3| |#4|)) . T) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))) (($) . T))
-((((-561)) . T))
-(|has| |#1| (-362))
-(-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
-(-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
-(|has| |#1| (-362))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
-(|has| |#1| (-146))
-(|has| |#1| (-144))
-(|has| |#1| (-232))
-(|has| |#1| (-362))
-(((|#3|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-561)) |has| |#2| (-634 (-561))) ((|#2|) . T))
-(((|#2|) . T))
-(|has| |#1| (-1090))
-(((|#1| |#2|) . T))
-((((-561)) . T) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))
-(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
-(((|#3|) |has| |#3| (-171)))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
-((((-856)) . T))
-((((-561)) . T))
-(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-406 (-561))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
-((((-945 |#1|)) . T) (((-856)) . T))
-(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#0=(-406 (-561)) #0#) |has| |#1| (-362)))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
-((((-945 |#1|)) . T))
-((($) . T))
-((((-561) |#1|) . T))
-((((-1166)) |has| (-406 |#2|) (-893 (-1166))))
-(((|#1|) . T) (($) -4050 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-561))) |has| |#1| (-362)))
-((((-534)) |has| |#2| (-609 (-534))))
-((((-682 |#2|)) . T) (((-856)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-((((-863 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(-4050 (|has| |#4| (-787)) (|has| |#4| (-842)))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
-((((-856)) . T))
-((((-856)) . T))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#2|) |has| |#2| (-1042)))
+((((-857)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
(((|#1|) . T))
-((((-406 |#2|)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
-((((-561) |#1|) . T))
(((|#1|) . T))
+((((-857)) . T))
+((((-1171)) . T))
+((((-1205)) . T) (((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1|) . T))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
+((((-857)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-692)) . T))
+((((-692)) . T))
+((((-692)) . T))
+((((-692)) . T))
+((((-692)) . T))
+((((-377)) . T))
+((((-692)) . T))
+(((#1=(-692) (-1160 #1#)) . T))
+(((#1=(-692) (-1160 #1#)) . T))
+(((#1=(-692) (-1160 #1#)) . T))
+((((-692)) . T))
+((((-167 (-224))) . T) (((-167 (-377))) . T) (((-1160 (-692))) . T) (((-883 (-377))) . T))
+((((-692)) . T))
+((((-406 (-544))) . T) (((-692)) . T) (($) . T))
+((((-406 (-544))) . T) (((-692)) . T) (($) . T))
+((((-857)) . T))
+((((-406 (-544))) . T) (((-692)) . T) (($) . T))
+(((#1=(-406 (-544)) #1#) . T) ((#2=(-692) #2#) . T) (($ $) . T))
+((((-406 (-544))) . T) (((-692)) . T) (($) . T) (((-544)) . T))
+((((-406 (-544))) . T) (((-692)) . T) (($) . T))
+((((-692)) . T) (((-406 (-544))) . T) (((-544)) . T))
+((((-377)) . T) (((-544)) . T) (((-406 (-544))) . T))
+((((-377)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-224)) . T) (((-377)) . T) (((-883 (-377))) . T))
+((((-857)) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-377)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((($) . T))
+((($) . T))
+((((-857)) . T))
((($) . T))
-((((-561)) . T) (($) . T) (((-406 (-561))) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-406 (-561))) . T) (($) . T))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-1209)))
+((($ $) . T))
+((($) . T) (((-544)) . T))
((($) . T))
-((((-406 (-561))) |has| #0=(-406 |#2|) (-1031 (-406 (-561)))) (((-561)) |has| #0# (-1031 (-561))) ((#0#) . T))
-(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
-(((|#1| (-765)) . T))
-(|has| |#1| (-844))
-(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-561)) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) |has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(|has| |#1| (-842))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-348))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-561)) . T))
-(((|#2|) . T) (((-561)) . T) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1072)) . T) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
-(((|#1| |#2|) . T))
-((((-143)) . T))
-((((-774 |#1| (-858 |#2|))) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(|has| |#1| (-1190))
-((((-856)) . T))
+((((-544)) . T))
(((|#1|) . T))
-(-4050 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1090)))
-((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)))
-(((|#2|) . T))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-((((-903 |#1|)) . T))
-((($) . T))
-((((-406 (-945 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-534)) |has| |#4| (-609 (-534))))
-((((-856)) . T) (((-638 |#4|)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
(((|#1|) . T))
-(|has| |#1| (-842))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) |has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))))
-(|has| |#1| (-1090))
+(((|#1|) . T) (((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (((-544)) . T) (($) . T))
+(|has| |#1| (-367))
+(((|#1|) . T))
+((((-857)) . T))
+((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(|has| |#1| (-362))
+(((|#1| (-765) (-1072)) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
(|has| |#1| (-844))
+((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-665 |#1|)) . T))
-((($) . T) (((-406 (-561))) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-(|has| |#1| (-144))
+(((|#1| (-765)) . T))
(|has| |#1| (-146))
-(-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
-(-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
(|has| |#1| (-144))
-(|has| |#1| (-146))
-(|has| |#1| (-146))
+(((|#2|) . T) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1072)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T))
+((((-1072)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1| (-765)) . T))
+(((#1=(-1072) |#1|) . T) ((#1# $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1141))
+(((|#1|) . T))
+((((-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) . T))
+((((-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) . T))
+((((-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) . T) (((-857)) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
(|has| |#1| (-144))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(|has| |#1| (-842))
-(((|#1| |#2|) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
-((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-1090))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T) (((-561)) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T))
+(|has| |#1| (-146))
+(((|#2| |#2|) . T))
+((((-113)) . T) ((|#1|) . T))
+((((-113)) . T) ((|#1|) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+((((-857)) . T))
+((((-544)) . T))
+((($) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544)))))
+((($) . T))
+(((|#2| (-529 (-858 |#1|))) . T))
+(((|#2|) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T))
(|has| |#2| (-144))
(|has| |#2| (-146))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-1090))
-(((|#2|) |has| |#2| (-171)))
-(((|#2|) . T))
-(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-362)))
-((((-406 |#2|)) . T))
-((((-856)) . T))
-(((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-(((|#1|) -4050 (|has| |#1| (-171)) (|has| |#1| (-362))))
-((((-315 |#1|)) . T))
-(((|#2|) |has| |#2| (-362)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))))
+(((|#2| (-529 (-858 |#1|))) . T))
(((|#2|) . T))
-((((-406 (-561))) . T) (((-692)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((#0=(-774 |#1| (-858 |#2|)) #0#) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))))
-((((-561)) . T) (($) . T))
+(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544))))
+(-3936 (|has| |#2| (-450)) (|has| |#2| (-903)))
+((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-844))
((((-858 |#1|)) . T))
-(((|#2|) |has| |#2| (-171)))
+(|has| |#2| (-903))
+(|has| |#2| (-903))
+((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T))
+((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T))
+(((|#2| (-529 (-858 |#1|)) (-858 |#1|)) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) |has| |#1| (-171)))
(((|#1|) |has| |#1| (-171)))
-(((|#2|) . T))
-((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
-((((-1166)) |has| |#1| (-893 (-1166))) (((-1078 (-1166))) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#4|) |has| |#4| (-1042)) (((-561)) -12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))))
-(((|#3|) |has| |#3| (-1042)) (((-561)) -12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))))
(|has| |#1| (-144))
(|has| |#1| (-146))
-((($ $) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1090)))
-(|has| |#1| (-553))
-(((|#2|) . T))
-((((-561)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
+(((|#1|) . T) ((|#2|) . T))
+(((|#1|) . T) ((|#2|) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+((((-857)) . T))
(((|#1|) . T))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
-((((-578 |#1|)) . T))
-((($) . T))
-(((|#1| (-59 |#1|) (-59 |#1|)) . T))
(((|#1|) . T))
+((((-857)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
(((|#1|) . T))
-((($) . T))
(((|#1|) . T))
-((((-856)) . T))
-(((|#2|) |has| |#2| (-6 (-4401 "*"))))
+((((-533)) |has| |#1| (-609 (-533))))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) . T))
(((|#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#1| (-529 |#2|) |#2|) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544)))) (((-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377)))))
+(((|#2|) . T))
+(|has| |#1| (-844))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-903)))
+((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T))
(((|#1|) . T))
-((((-1239 |#2| |#3| |#4|)) . T) (((-561)) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-561))) . T))
-((((-48)) -12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (((-561)) -4050 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))) (|has| |#1| (-1042))) ((|#1|) . T) (((-607 $)) . T) (($) |has| |#1| (-553)) (((-406 (-561))) -4050 (|has| |#1| (-553)) (|has| |#1| (-1031 (-406 (-561))))) (((-406 (-945 |#1|))) |has| |#1| (-553)) (((-945 |#1|)) |has| |#1| (-1042)) (((-1166)) . T))
-((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
-((($) . T) (((-116 |#1|)) . T) (((-406 (-561))) . T))
-((((-1115 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((((-1162 |#1|)) . T) (((-1072)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((((-1115 |#1| (-1166))) . T) (((-1078 (-1166))) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-1166)) . T))
-(|has| |#1| (-1090))
-((($) . T))
-(|has| |#1| (-1090))
-((((-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))) (((-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378)))))
-(((|#1| |#2|) . T))
-((((-1166) |#1|) . T))
-(((|#4|) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-1166) (-52)) . T))
-((((-1239 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
-((((-856)) . T))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
-(((#0=(-1240 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-171)) ((#0=(-406 (-561)) #0#) |has| |#1| (-553)) (($ $) |has| |#1| (-553)))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-1240 |#1| |#2| |#3| |#4|)) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-553)) (($) |has| |#1| (-553)))
-(|has| |#1| (-362))
-(|has| |#1| (-144))
-(|has| |#1| (-146))
+(((|#1| (-529 |#2|)) . T))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
(|has| |#1| (-146))
(|has| |#1| (-144))
-((((-406 (-561))) . T) (($) . T))
-(((|#3|) |has| |#3| (-362)))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-((((-1166)) . T))
-((($) . T) (((-1239 |#2| |#3| |#4|)) . T) (((-406 (-561))) |has| (-1239 |#2| |#3| |#4|) (-38 (-406 (-561)))) (((-561)) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-(((|#2| |#3|) . T))
-(-4050 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((((-1115 |#1| |#2|)) . T) (((-939 |#1|)) |has| |#2| (-609 (-1166))) (((-857)) . T))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T))
+((((-1115 |#1| |#2|)) . T) ((|#2|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-544)) . T))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T))
+((((-1115 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
(((|#1| (-529 |#2|)) . T))
-(((|#1| (-765)) . T))
-(((|#1| (-529 (-1078 (-1166)))) . T))
-(((|#1|) |has| |#1| (-171)))
-(((|#1|) . T))
-(|has| |#2| (-902))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-((((-856)) . T))
-((($ $) . T) ((#0=(-1239 |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-561)) #1#) |has| #0# (-38 (-406 (-561)))))
-((((-903 |#1|)) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
-((($) . T) (((-406 (-561))) . T))
-((((-856)) . T))
-((($) . T))
+(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((($) . T))
-(-4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553)))
+((((-939 |#1|)) |has| |#2| (-609 (-1166))) (((-1148)) -12 (|has| |#1| (-1031 (-544))) (|has| |#2| (-609 (-1166)))) (((-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544))))) (((-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377))))) (((-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533)))))
+(((|#1| (-529 |#2|) |#2|) . T))
+(((|#1|) . T))
+((((-1160 |#1|)) . T) (((-857)) . T))
+((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
(|has| |#1| (-362))
-(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1239 |#2| |#3| |#4|)) . T) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362)) (|has| |#1| (-348)))
-(-4050 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
-((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-112)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
-(|has| |#2| (-362))
+(((|#1| (-765) (-1072)) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
(|has| |#1| (-844))
+((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-561)) . T))
-((((-856)) . T))
-(|has| |#1| (-1090))
-(((|#4|) . T))
-(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-406 $) (-406 $)) |has| |#1| (-553)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-814))
-(((|#4|) . T))
-((($) . T))
-((($ $) . T))
+(((|#1| (-765)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((((-1160 |#1|)) . T) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1072)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T))
+((((-1160 |#1|)) . T) (((-1072)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1| (-765)) . T))
+(((#1=(-1072) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-((((-856)) . T))
-(((|#1| (-529 (-1166))) . T))
-(((|#1|) |has| |#1| (-171)))
-((((-856)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#2|) -4050 (|has| |#2| (-6 (-4401 "*"))) (|has| |#2| (-171))))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(|has| |#2| (-844))
-(|has| |#2| (-902))
-(|has| |#1| (-902))
-(((|#2|) |has| |#2| (-171)))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-856)) . T))
-((((-856)) . T))
-((((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) . T))
-(((|#1|) . T))
-((((-856)) . T))
-(((|#1| |#2|) . T))
-(((|#1| (-406 (-561))) . T))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-289)) (|has| |#1| (-362)))
-((((-143)) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-842))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+(|has| |#1| (-1141))
(((|#1|) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-186)) . T) (((-856)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))))
-((((-1166) (-52)) . T))
-(((|#2|) . T))
+((((-857)) . T))
+((($) . T) ((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+((((-533)) |has| |#1| (-609 (-533))))
+(|has| |#1| (-367))
(((|#1|) . T))
-((((-638 (-143))) . T) (((-1148)) . T))
-((((-856)) . T))
-((((-1148)) . T))
((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
+(((|#1|) |has| |#1| (-308 |#1|)))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+((((-989 |#1|)) . T) ((|#1|) . T))
+((((-989 |#1|)) . T) (((-544)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| (-989 |#1|) (-1031 (-406 (-544))))))
+((((-989 |#1|)) . T) ((|#1|) . T) (((-544)) -3936 (|has| |#1| (-1031 (-544))) (|has| (-989 |#1|) (-1031 (-544)))) (((-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| (-989 |#1|) (-1031 (-406 (-544))))))
(|has| |#1| (-844))
-((((-856)) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) . T))
+(((|#1|) . T))
+((((-857)) . T))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091)))
+(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091)))
+(((|#2|) |has| |#2| (-171)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
+(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362))))
+((((-857)) -3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) (((-1253 |#2|)) . T))
+(|has| |#2| (-171))
+(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
+(((|#2| |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
+(((|#2|) |has| |#2| (-1042)))
+((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
+(|has| |#2| (-367))
+(((|#2|) |has| |#2| (-1042)))
+(((|#2|) |has| |#2| (-1042)) (((-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042))))
+(((|#2|) |has| |#2| (-1091)))
+((((-544)) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))))
+(((|#2|) |has| |#2| (-1091)) (((-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))))
+((((-544) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2|) . T))
+((((-544) |#2|) . T))
+((((-544) |#2|) . T))
+(|has| |#2| (-787))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-3936 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(|has| |#2| (-842))
+(|has| |#2| (-842))
(((|#2|) |has| |#2| (-362)))
-((((-856)) . T))
-((((-534)) |has| |#4| (-609 (-534))))
-((((-856)) . T) (((-638 |#4|)) . T))
-(((|#2|) . T))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((($) . T) (((-561)) . T) (((-406 (-561))) . T) (((-607 $)) . T))
-(-4050 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-((((-1166) (-52)) . T))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(|has| |#1| (-902))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(|has| |#1| (-902))
-(((|#1|) . T) (((-561)) . T) (((-406 (-561))) . T) (($) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-856)) . T))
-((((-561)) . T))
-(((#0=(-406 (-561)) #0#) . T) (($ $) . T))
-((((-406 (-561))) . T) (($) . T))
-(((|#1| (-406 (-561)) (-1072)) . T))
-(|has| |#1| (-1090))
-(|has| |#1| (-553))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(|has| |#1| (-814))
-(((#0=(-903 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
-((((-406 |#2|)) . T))
-(|has| |#1| (-842))
-((((-1191 |#1|)) . T) (((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) . T) ((#1=(-561) #1#) . T) (($ $) . T))
-((((-903 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-(((|#2|) |has| |#2| (-1042)) (((-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))))
-(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2|) . T))
+(((|#1|) . T))
+((((-857)) . T))
+(|has| |#1| (-232))
+((($) . T))
+(((|#1| (-529 (-812 (-1166))) (-812 (-1166))) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-812 (-1166))) . T))
+(|has| |#1| (-844))
+((($ $) . T) ((#1=(-1166) $) |has| |#1| . #2=((-232))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-812 (-1166)) |#1|) . T) ((#3# $) . T))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-903)))
+((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-529 (-812 (-1166)))) . T))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
(|has| |#1| (-146))
(|has| |#1| (-144))
-(((|#2|) . T))
-((((-856)) . T))
-((((-406 (-561))) . T) (((-692)) . T) (($) . T) (((-561)) . T))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2285 (-1166)) (|:| -2677 #0#))) . T))
-(|has| |#1| (-348))
-((((-561)) . T))
-((((-856)) . T))
-(((|#1|) . T))
-(((#0=(-1240 |#1| |#2| |#3| |#4|) $) |has| #0# (-285 #0# #0#)))
-(|has| |#1| (-362))
-(((#0=(-1072) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(((#0=(-406 (-561)) #0#) . T) ((#1=(-692) #1#) . T) (($ $) . T))
-((((-315 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) |has| |#1| (-362)))
-(|has| |#1| (-1090))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
(((|#1|) . T))
-(((|#1|) -4050 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
-(((|#1|) -4050 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
-(((|#2|) . T))
-((((-406 (-561))) . T) (((-692)) . T) (($) . T))
-((((-576)) . T))
-(((|#3| |#3|) . T))
-(|has| |#2| (-232))
-((((-858 |#1|)) . T))
-((((-1166)) |has| |#1| (-893 (-1166))) ((|#3|) . T))
-((((-638 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-1015)))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-856)) . T))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-((((-406 (-561))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
-((((-561)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-((((-561)) . T))
-(((|#3|) . T))
-(|has| |#1| (-1090))
+(((|#1| (-529 (-812 (-1166)))) . T))
+((((-1115 |#1| (-1166))) . T) (((-812 (-1166))) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-1166)) . T))
+((((-1115 |#1| (-1166))) . T) (((-544)) . T) (((-812 (-1166))) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-1166)) . T))
+(((|#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) . T))
+(|has| |#2| (-362))
+(|has| |#2| (-362))
+(|has| |#2| (-362))
+(|has| |#2| (-362))
+((((-406 (-544))) . #1=(|has| |#2| (-362))) (($) . #1#))
+((((-406 (-544))) . #1=(|has| |#2| (-362))) (($) . #1#))
+(|has| |#2| (-362))
+(|has| |#2| (-362))
+(|has| |#2| (-362))
+(|has| |#2| (-362))
+(|has| |#2| (-362))
(((|#2|) . T))
+((((-406 (-544))) . #1=(|has| |#2| (-362))) (($) . #1#) ((|#2|) . T) (((-544)) . T))
+((((-406 (-544))) |has| |#2| (-362)) (($) . T))
+(((|#2|) . T) (((-857)) . T))
+((((-406 (-544))) |has| |#2| (-362)) (($) . T))
+(((#1=(-406 (-544)) #1#) |has| |#2| (-362)) (($ $) . T))
+((((-857)) . T))
(((|#1|) . T))
-((((-561)) . T))
-(((|#2|) . T) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (($) . T) (((-561)) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
-(((|#1| |#2|) . T))
-((($) . T))
-((((-578 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((($) . T) (((-406 (-561))) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-1254 |#1|) (-1254 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((#0=(-116 |#1|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
-((((-1115 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($ $) . T))
-((((-665 |#1|)) . T))
-((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
-((((-116 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((((-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) (((-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))))
-(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
-((((-143)) . T))
-((($) . T))
-((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-378)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
(((|#1|) . T))
-(|has| |#2| (-902))
-(|has| |#1| (-902))
-(|has| |#1| (-902))
-(((|#4|) . T))
-(|has| |#2| (-1015))
-((($) . T))
-(|has| |#1| (-902))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((($) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+(|has| |#1| (-232))
+(((|#2|) |has| |#2| (-171)))
+(((|#2| |#2|) . T))
(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-((($) . T))
-(|has| |#1| (-362))
-((((-903 |#1|)) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(-4050 (|has| |#1| (-367)) (|has| |#1| (-844)))
-(((|#1|) . T))
-((((-765)) . T))
-((((-856)) . T))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
-((((-406 |#2|) |#3|) . T))
-((($) . T) (((-406 (-561))) . T))
-((($) . T) (((-561)) . T) (((-406 (-561))) . T) (((-607 $)) . T))
-((((-561)) . T) (($) . T))
-((((-561)) . T) (($) . T))
-((((-765) |#1|) . T))
-(((|#2| (-239 (-3548 |#1|) (-765))) . T))
-(((|#1| (-529 |#3|)) . T))
-((((-406 (-561))) . T))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-1148)) . T) (((-856)) . T))
-(((#0=(-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) #0#) |has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))))
-((((-1148)) . T))
-(|has| |#1| (-902))
-(|has| |#2| (-362))
-(-4050 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T))
-((((-856)) . T))
-(((|#1|) . T))
-((((-378)) . T) (((-561)) . T))
-(((#0=(-406 (-561)) #0#) . T) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
+((((-857)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-171)))
+((((-544)) . T) ((|#2|) |has| |#2| (-171)))
+(((|#2|) . T))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+((($) |has| |#1| (-842)))
+(|has| |#1| (-842))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) -3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-857)) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
(((|#1| |#1|) . T))
-((((-856)) . T))
-(|has| |#1| (-553))
-((((-406 (-561))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(-4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-38 (-406 (-561))))
-(-12 (|has| |#1| (-543)) (|has| |#1| (-822)))
-((((-856)) . T))
-((((-1166)) -4050 (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))))
-(|has| |#1| (-362))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
-(|has| |#1| (-362))
-((((-406 (-561))) . T) (($) . T))
-((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
-((((-561) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-362)))
-(((|#2|) |has| |#1| (-362)))
-((((-561)) . T) (($) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#1|) . T))
+((((-113)) . T) ((|#1|) . T))
+((((-113)) . T) ((|#1|) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-504)) . T))
+((((-857)) . T))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+((($) |has| |#1| (-842)))
+(|has| |#1| (-842))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+(-3936 (|has| |#1| (-21)) (|has| |#1| (-842)))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) -3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-857)) . T))
(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))) (((-406 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))))
-(((|#2|) . T))
-((((-1166) #0=(-1240 |#1| |#2| |#3| |#4|)) |has| #0# (-512 (-1166) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
-((((-607 $) $) . T) (($ $) . T))
-((((-168 (-224))) . T) (((-168 (-378))) . T) (((-1162 (-692))) . T) (((-885 (-378))) . T))
-((((-856)) . T))
-(|has| |#1| (-553))
-(|has| |#1| (-553))
-(|has| (-406 |#2|) (-232))
-(((|#1| (-406 (-561))) . T))
-((($ $) . T))
-((((-1166)) |has| |#2| (-893 (-1166))))
-((($) . T))
-((((-856)) . T))
-((((-406 (-561))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-(((|#2|) |has| |#1| (-362)))
-((((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-378)))) (((-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-561)))))
-(|has| |#1| (-362))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(|has| |#1| (-362))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(|has| |#1| (-362))
-(|has| |#1| (-553))
+((((-857)) . T))
+((($) . T) ((|#1|) . T))
+(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(((|#3|) . T))
-((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-561)) . T))
+((((-544)) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
(((|#1|) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(-4050 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(((|#2|) |has| |#2| (-171)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-857)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-171)))
(((|#2|) . T))
+((((-1250 |#1|)) . T) (((-544)) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))))
+(((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))))
(((|#2|) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(|has| |#1| (-146))
-((((-1148) |#1|) . T))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(|has| |#1| (-146))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(|has| |#1| (-146))
-((((-578 |#1|)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-883 (-544))) . T) (((-883 (-377))) . T) (((-533)) . T) (((-1166)) . T))
+((((-857)) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+((((-939 |#1|)) . T))
+(((|#1|) |has| |#1| (-171)) (((-939 |#1|)) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+((((-939 |#1|)) . T) (((-857)) . T))
((($) . T))
-((((-406 |#2|)) . T))
-(|has| |#1| (-553))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-348)))
-(|has| |#1| (-146))
-((((-856)) . T))
+((((-857)) . T))
((($) . T))
-((((-406 (-561))) |has| |#2| (-1031 (-561))) (((-561)) |has| |#2| (-1031 (-561))) (((-1166)) |has| |#2| (-1031 (-1166))) ((|#2|) . T))
-(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
-((((-1130 |#1| |#2|)) . T))
-(((|#1| (-561)) . T))
-(((|#1| (-406 (-561))) . T))
-((((-561)) |has| |#2| (-879 (-561))) (((-378)) |has| |#2| (-879 (-378))))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-544)) . T) (($) . T))
+(((|#1|) . T))
+((((-857)) . T))
+((((-862 |#1|)) . T))
+((((-862 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) (((-862 |#1|)) . T) (((-406 (-544))) . T))
+((((-862 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+((((-862 |#1|)) . T) (((-406 (-544))) . T) (($) . T))
+(((#1=(-862 |#1|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-862 |#1|)) . T))
+((((-1166) #1=(-862 |#1|)) |has| #1# (-512 (-1166) #1#)) ((#1# #1#) |has| #1# (-308 #1#)))
+(((#1=(-862 |#1|)) |has| #1# (-308 #1#)))
+(((#1=(-862 |#1|) $) |has| #1# (-285 #1# #1#)))
+((((-862 |#1|)) . T))
+((((-862 |#1|)) . T))
+((((-862 |#1|)) . T))
+((((-862 |#1|)) . T))
+((((-544)) . T) (((-862 |#1|)) . T) (($) . T) (((-406 (-544))) . T))
+((((-862 |#1|)) . T))
+((((-862 |#1|)) . T))
+((((-857)) . T))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
(((|#2|) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-((((-112)) . T))
-(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+((((-1166)) |has| |#2| (-893 (-1166))))
+(|has| |#2| (-232))
+(((|#2|) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) ((|#2|) . T) (((-406 (-544))) . T))
+(((|#2|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#2|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#2| |#2|) . T) ((#1=(-406 (-544)) #1#) . T) (($ $) . T))
(((|#2|) . T))
-((((-856)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-1166) (-52)) . T))
-((((-406 |#2|)) . T))
-((((-856)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1090))
-(|has| |#1| (-785))
-(|has| |#1| (-785))
-((((-856)) . T))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-114)) . T) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-224)) . T) (((-378)) . T) (((-885 (-378))) . T))
-((((-856)) . T))
-((((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)) (((-406 (-561))) |has| |#1| (-553)))
-((((-856)) . T))
-((((-856)) . T))
+((((-1166) |#2|) |has| |#2| (-512 (-1166) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|)))
+(((|#2|) |has| |#2| (-308 |#2|)))
+(((|#2| $) |has| |#2| (-285 |#2| |#2|)))
+(((|#2|) . T))
+(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544))))
+(((|#2|) . T))
+((((-544)) |has| |#2| (-879 (-544))) (((-377)) |has| |#2| (-879 (-377))))
+(|has| |#2| (-814))
+(|has| |#2| (-814))
+(|has| |#2| (-814))
+(-3936 (|has| |#2| (-814)) (|has| |#2| (-844)))
+(|has| |#2| (-814))
+(|has| |#2| (-814))
+(|has| |#2| (-814))
+(((|#2|) . T))
+(|has| |#2| (-903))
+(|has| |#2| (-1013))
+((((-533)) |has| |#2| (-609 (-533))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-377)) . #1=(|has| |#2| (-1013))) (((-224)) . #1#))
+((((-544)) . T) ((|#2|) . T) (($) . T) (((-406 (-544))) . T) (((-1166)) |has| |#2| (-1031 (-1166))))
+((((-406 (-544))) |has| |#2| . #1=((-1031 (-544)))) (((-544)) |has| |#2| . #1#) (((-1166)) |has| |#2| (-1031 (-1166))) ((|#2|) . T))
+(|has| |#2| (-1141))
(((|#2|) . T))
-((((-856)) . T))
-(((#0=(-903 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
+(-12 (|has| |#1| (-1091)) (|has| |#2| (-1091)))
+(-12 (|has| |#1| (-1091)) (|has| |#2| (-1091)))
+((((-857)) -3936 (-12 (|has| |#1| (-608 (-857))) (|has| |#2| (-608 (-857)))) (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091)))))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-1166)) . T) ((|#1|) . T))
+((((-1166)) . T) ((|#1|) . T))
+((((-857)) . T))
+((((-665 |#1|)) . T))
+((((-665 |#1|)) . T))
+((((-857)) . T))
+((((-857)) . T))
(((|#1|) . T))
+((((-1191 |#1|)) . T) (((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
(((|#1|) . T))
-((((-903 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-(|has| |#1| (-362))
-((((-856)) . T))
-(((|#2|) . T))
-((((-561)) . T))
-((((-856)) . T))
-((((-561)) . T))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-1148)) . T) (((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
-((((-856)) . T))
-(|has| |#1| (-146))
-(|has| |#1| (-144))
-((($) . T) ((#0=(-1239 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1090)))
-(|has| |#1| (-1141))
-((((-561) |#1|) . T))
(((|#1|) . T))
-(((#0=(-116 |#1|) $) |has| #0# (-285 #0# #0#)))
-(((|#1|) |has| |#1| (-171)))
-((((-315 |#1|)) . T) (((-561)) . T))
+((((-857)) . T))
+(-3936 (|has| |#1| (-367)) (|has| |#1| (-844)))
(((|#1|) . T))
-((((-856)) . T))
-((((-114)) . T) ((|#1|) . T))
-((((-856)) . T))
-(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-308 |#1|)))
-((((-561) |#1|) . T))
-((((-1166) |#1|) . T))
+((((-857)) . T))
+((((-544)) . T))
+((($) . T))
+((($) . T))
+((($) . T))
+(|has| $ (-146))
+((($) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) . T))
+((($) . T) (((-406 (-544))) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-406 (-544))) . T) (($) . T))
+((((-544)) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-635 |#1|)) . T))
(((|#1|) . T))
-((((-561)) . T) (((-406 (-561))) . T))
(((|#1|) . T))
-(|has| |#1| (-553))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-((((-378)) . T))
+(|has| |#1| (-844))
(((|#1|) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
(((|#1|) . T))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(|has| |#1| (-553))
-(|has| |#1| (-1090))
-((((-774 |#1| (-858 |#2|))) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
(((|#1|) . T))
-(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-902))
-(((|#1| (-529 |#2|)) . T))
-(((|#1| (-765)) . T))
-(|has| |#1| (-232))
-(((|#1| (-529 (-1078 (-1166)))) . T))
-(|has| |#2| (-362))
-((((-578 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-((((-561)) . T) (((-406 (-561))) . T) (($) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-561)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-((((-856)) . T))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
-((((-856)) . T))
-((((-1110)) . T) (((-856)) . T))
-((((-534)) . T) (((-856)) . T))
+((((-533)) |has| |#1| (-609 (-533))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))))
+((($) . T))
+(((|#1| (-529 (-1166))) . T))
(((|#1|) . T))
-((($ $) . T) (((-607 $) $) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
+(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
+(((|#1| (-529 (-1166))) . T))
(((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544))))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-903)))
+((($ $) . T) ((#1=(-1166) $) . T) ((#1# |#1|) . T))
+(|has| |#1| (-844))
+((((-1166)) . T))
+((((-377)) |has| |#1| (-879 (-377))) (((-544)) |has| |#1| (-879 (-544))))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T) (((-1166)) . T))
+((((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1166)) . T))
+(((|#1| (-529 (-1166)) (-1166)) . T))
+((((-1110)) . T) (((-857)) . T))
+(((|#1| |#2|) . T))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-554)))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((((-857)) . T))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T))
+((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-544)) . T))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-561)) . T))
-(((|#3|) . T))
-((((-856)) . T))
-(-4050 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-561)) . T) (((-406 (-561))) -4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
-((((-1115 |#1| |#2|)) . T) ((|#2|) . T) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-561)) . T))
-((((-1162 |#1|)) . T) (((-561)) . T) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1072)) . T) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
-(-4050 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
-((((-1115 |#1| (-1166))) . T) (((-561)) . T) (((-1078 (-1166))) . T) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-1166)) . T))
-(((#0=(-578 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(((|#1|) |has| |#1| (-171)))
-(((|#1| (-1254 |#1|) (-1254 |#1|)) . T))
-((((-578 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-((($) . T) (((-406 (-561))) . T))
-((($) . T) (((-406 (-561))) . T))
-(((|#2|) |has| |#2| (-6 (-4401 "*"))))
+(|has| |#1| (-844))
(((|#1|) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
(((|#1|) . T))
-((((-856)) . T))
-((((-293 |#3|)) . T))
-(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
(((|#1|) . T))
-((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-(((|#2|) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-(((|#2|) . T) ((|#6|) . T))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) . T))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(|has| |#2| (-902))
-(|has| |#1| (-902))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) . T))
(((|#1|) . T))
-((((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) . T))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
+(-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844))))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
+(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
+(-12 (|has| |#1| (-471)) (|has| |#2| (-471)))
+(-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
+(-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
+(-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
+(-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))
+(-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-635 (-544))) . T))
+((((-635 (-544))) . T) (((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+((((-533)) |has| |#1| (-609 (-533))))
(((|#1|) . T))
+((((-1166)) |has| |#1| (-893 (-1166))))
+(|has| |#1| (-232))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-289)) (|has| |#1| (-362)))
+((((-544)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))
+(((|#1|) . T) (((-406 (-544))) |has| |#1| (-362)))
+((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-362)))
+(((|#1|) . T) (($) -3936 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-544))) |has| |#1| (-362)))
+(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#1=(-406 (-544)) #1#) |has| |#1| (-362)))
+(((|#1|) . T) (((-406 (-544))) |has| |#1| (-362)))
(((|#1|) . T))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(((|#1|) |has| |#1| (-308 |#1|)))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544))))
(((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(|has| |#1| (-844))
(((|#1|) . T))
-(|has| |#1| (-1090))
(((|#1|) . T))
-((((-1166)) . T) ((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
-(((#0=(-406 (-561)) #0#) . T))
-((((-406 (-561))) . T))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-406 (-561))) . T) (((-561)) . T) (($) . T))
-((((-534)) . T))
-((((-856)) . T))
-((((-561)) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-((((-1166)) |has| |#2| (-893 (-1166))) (((-1072)) . T))
-((((-1239 |#2| |#3| |#4|)) . T))
-((((-903 |#1|)) . T))
-((($) . T) (((-406 (-561))) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
-((((-856)) . T))
-(|has| |#1| (-1209))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-((((-1166)) |has| |#1| (-893 (-1166))))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((($) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) . T))
-(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))))
-((($) . T) (((-406 (-561))) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1042)) (((-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-553))))
-(|has| |#1| (-553))
-(((|#1|) |has| |#1| (-362)))
-((((-561)) . T))
-(|has| |#1| (-785))
-(|has| |#1| (-785))
-((((-1166) #0=(-116 |#1|)) |has| #0# (-512 (-1166) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
-(((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
-((((-1072)) . T) ((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
(((|#1|) . T))
(((|#1|) . T))
+((((-406 |#2|) |#3|) . T))
+((((-406 (-544))) |has| #1=(-406 |#2|) (-1031 (-406 (-544)))) (((-544)) |has| #1# (-1031 (-544))) ((#1#) . T))
+((((-406 |#2|)) . T))
+((((-544)) |has| #1=(-406 |#2|) (-634 (-544))) ((#1#) . T))
+((((-406 |#2|)) . T))
+((((-406 |#2|) |#3|) . T))
+(|has| (-406 |#2|) (-146))
+((((-406 |#2|) |#3|) . T))
+(|has| (-406 |#2|) (-144))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+(|has| (-406 |#2|) (-232))
+((((-1166)) |has| (-406 |#2|) (-893 (-1166))))
+((((-406 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-406 |#2|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-857)) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T))
+(((|#1| |#2| |#3|) . T))
+((((-406 (-544))) . T) (((-857)) . T))
+((((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((($) . T) (((-544)) . T) (((-406 (-544))) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T) (((-406 (-544))) . T) (($) . T))
+(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((((-406 (-544))) . T) (((-544)) . T))
+((((-544)) . T) (($) . T) (((-406 (-544))) . T))
+((((-544)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T))
+(((|#1|) . T) (($) . T) (((-406 (-544))) . T) (((-544)) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) . T) ((#2=(-544) #2#) . T) (($ $) . T))
+(((|#1|) . T) (((-544)) . T) (((-406 (-544))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T))
+(((|#1|) . T) (((-406 (-544))) . T))
+(((|#1|) . T) (((-544)) -3936 (|has| |#1| (-1031 (-544))) (|has| (-406 (-544)) (-1031 (-544)))) (((-406 (-544))) . T))
+(|has| |#1| (-1091))
+((((-857)) |has| |#1| (-1091)))
+(|has| |#1| (-1091))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#4|) . T))
+((((-635 |#4|)) . T) (((-857)) . T))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) . T))
+((((-533)) |has| |#4| (-609 (-533))))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-((((-561) (-765)) . T) ((|#3| (-765)) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (((-544)) . T))
+((((-1166) (-51)) . T))
+((((-857)) . T))
+((((-1166) (-51)) . T))
+((((-1166) (-51)) . T))
+((((-1166) (-51)) . T))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4267 (-1166)) (|:| -2226 #1#))) . T))
+(((#1=(-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) #1#) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+((((-1166) (-51)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
+((((-774 |#1| (-858 |#2|))) . T))
+((((-635 (-774 |#1| (-858 |#2|)))) . T) (((-857)) . T))
+((((-774 |#1| (-858 |#2|))) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))))
+(((#1=(-774 |#1| (-858 |#2|)) #1#) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))))
+((((-774 |#1| (-858 |#2|))) . T))
+((((-533)) |has| (-774 |#1| (-858 |#2|)) (-609 (-533))))
+(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
+(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
+((((-533)) |has| |#3| (-609 (-533))))
+(((|#3|) |has| |#3| (-362)))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-682 |#3|)) . T) (((-857)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))
+(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362))))
+(((|#1| |#2| |#3| (-238 |#2| |#3|) (-238 |#1| |#3|)) . T))
+((((-857)) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-856)) . T))
-(|has| |#2| (-814))
-(|has| |#2| (-814))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((((-561)) |has| |#1| (-879 (-561))) (((-378)) |has| |#1| (-879 (-378))))
-(((|#1|) . T))
-((((-863 |#1|)) . T))
-((((-863 |#1|)) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-902)))
-((((-406 (-561))) . T) (((-692)) . T) (($) . T))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-(|has| |#1| (-362))
+((((-1166)) . T))
+((($) . T))
+((((-857)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-544)) . T) (($) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((((-544)) . T))
+((((-1166) (-51)) . T))
+((((-857)) . T))
+((((-1166) (-51)) . T))
+((((-1166) (-51)) . T))
+((((-1166) (-51)) . T))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4267 (-1166)) (|:| -2226 #1#))) . T))
+(((#1=(-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) #1#) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T))
+((((-1166) (-51)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-292 |#3|)) . T))
+((((-292 |#3|)) . T))
+(((|#3| |#3|) . T))
+((((-857)) . T))
+((((-857)) . T))
+(((|#3| |#3|) . T))
+((((-857)) . T))
+((((-857)) . T))
(((|#2|) . T))
+(((|#1|) |has| |#1| (-362)))
+((((-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166)))))
+(-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-349)))
+(-3936 (|has| |#1| (-367)) (|has| |#1| (-349)))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(-3936 (|has| |#1| (-144)) (|has| |#1| (-349)))
+(|has| |#1| (-349))
+(((|#1| |#2|) . T))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+((($ $) . T) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
+((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T))
+(|has| |#1| (-146))
+(((|#1| |#2|) . T))
(((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544))))
(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-858 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#2| (-765)) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1| |#2|) . T))
((((-1166)) . T))
-((((-863 |#1|)) . T))
-(-4050 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-((((-856)) . T))
-(((|#1|) . T))
-(-4050 (|has| |#2| (-787)) (|has| |#2| (-842)))
-(-4050 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844))))
-((((-863 |#1|)) . T))
+((((-857)) . T))
+((((-857)) . T))
(((|#1|) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-((($ $) . T) (((-607 $) $) . T))
+((((-857)) . T))
+(|has| |#1| (-232))
((($) . T))
-((((-856)) . T))
-((((-561)) . T))
-(((|#2|) . T))
-((((-856)) . T))
-(((|#1|) . T) (((-406 (-561))) |has| |#1| (-362)))
-((((-856)) . T))
+(((|#1| (-529 (-1078 (-1166))) (-1078 (-1166))) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1078 (-1166))) . T))
+(|has| |#1| (-844))
+((($ $) . T) ((#1=(-1166) $) |has| |#1| . #2=((-232))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1078 (-1166)) |#1|) . T) ((#3# $) . T))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-903)))
+((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T))
(((|#1|) . T))
-((((-856)) . T))
-((($) . T) ((|#2|) . T) (((-406 (-561))) . T))
-(|has| |#1| (-1090))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| (-529 (-1078 (-1166)))) . T))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
(((|#1|) . T))
+(((|#1| (-529 (-1078 (-1166)))) . T))
+((((-1115 |#1| (-1166))) . T) (((-1078 (-1166))) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-1166)) . T))
+((((-1115 |#1| (-1166))) . T) (((-544)) . T) (((-1078 (-1166))) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-1166)) . T))
+(((|#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) . T))
+((((-857)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-856)) . T))
-(|has| |#2| (-902))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
-((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
-((((-856)) . T))
-((((-856)) . T))
-(((|#3|) |has| |#3| (-1042)) (((-561)) -12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))))
-((((-1115 |#1| |#2|)) . T) (((-945 |#1|)) |has| |#2| (-609 (-1166))) (((-856)) . T))
-((((-945 |#1|)) |has| |#2| (-609 (-1166))) (((-1148)) -12 (|has| |#1| (-1031 (-561))) (|has| |#2| (-609 (-1166)))) (((-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561))))) (((-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378))))) (((-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534)))))
-((((-1162 |#1|)) . T) (((-856)) . T))
-((((-856)) . T))
-((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T) (((-1166)) . T))
-((((-856)) . T))
-((((-561)) . T))
(((|#1|) . T))
-((($) . T))
-((((-378)) |has| |#1| (-879 (-378))) (((-561)) |has| |#1| (-879 (-561))))
-((((-561)) . T))
+(((|#1| (-635 |#1|)) |has| |#1| (-842)))
+(|has| |#1| (-1091))
+((((-857)) |has| |#1| (-1091)))
+(|has| |#1| (-1091))
(((|#1|) . T))
-((((-856)) . T))
(((|#1|) . T))
-((((-856)) . T))
-((((-1171)) . T))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-638 |#1|)) . T))
+(|has| |#1| (-1091))
+((((-857)) |has| |#1| (-1091)))
+(|has| |#1| (-1091))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-1171)) . T))
-(((|#1|) |has| |#1| (-171)) (($) . T))
-((((-561)) . T) (((-406 (-561))) . T))
-(((|#1|) |has| |#1| (-308 |#1|)))
-((((-856)) . T))
-((((-378)) . T))
-(((|#1|) . T))
(((|#1|) . T))
-((((-856)) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-406 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1090))
-(((|#2| (-480 (-3548 |#1|) (-765))) . T))
-((((-561) |#1|) . T))
-((((-1148)) . T) (((-856)) . T))
-(((|#2| |#2|) . T))
-(((|#1| (-529 (-1166))) . T))
-(-4050 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-561)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
-(|has| |#1| (-553))
-((($) . T) (((-406 (-561))) . T))
-((($) . T))
-((($) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((((-857)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
(((|#1|) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-856)) . T))
-((((-143)) . T))
-(((|#1|) . T) (((-406 (-561))) . T))
(((|#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
(((|#1|) . T))
-((((-856)) . T))
+(|has| |#1| (-367))
(((|#1|) . T))
-(|has| |#1| (-1141))
-(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
(((|#1|) . T))
-((((-406 $) (-406 $)) |has| |#1| (-553)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((((-856)) . T))
-((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T) ((|#2|) . T))
-((((-1072)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
-((((-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378)))) (((-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))))
-((((-1240 |#1| |#2| |#3| |#4|)) . T))
-((((-561) |#1|) . T))
-(((|#1| |#1|) . T))
-((($) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-171)) (($) . T))
+((((-857)) . T))
+((((-635 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-544)) . T) (((-224)) . T) (((-857)) . T))
+((((-857)) . T))
+((((-1148) (-1166) (-544) (-224) (-857)) . T))
+((((-635 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+((((-857)) . T))
+(((|#1| |#2| |#3| |#4| |#5|) . T))
+((((-857)) . T))
+(-3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1091)))
+(-3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1091)))
+(((|#3|) |has| |#3| (-171)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-3936 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((($) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))))
+(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362))))
+((((-857)) -3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-608 (-857))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1091))) (((-1253 |#3|)) . T))
+(|has| |#3| (-171))
+(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171)))
+(((|#3| |#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171)))
+(((|#3|) |has| |#3| (-1042)))
+((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))
+(-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))
+(|has| |#3| (-367))
+(((|#3|) |has| |#3| (-1042)))
+(((|#3|) |has| |#3| (-1042)) (((-544)) -12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))))
+(((|#3|) |has| |#3| (-1091)))
+((((-544)) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))
+(((|#3|) |has| |#3| (-1091)) (((-544)) -12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))
+((((-544) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))
+(((|#3|) . T))
+((((-544) |#3|) . T))
+((((-544) |#3|) . T))
+(|has| |#3| (-787))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-3936 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(|has| |#3| (-842))
+(|has| |#3| (-842))
+(((|#3|) |has| |#3| (-362)))
+(((|#1| |#3|) . T))
+((((-857)) . T))
+((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
((($) . T))
-((((-692)) . T))
-((((-774 |#1| (-858 |#2|))) . T))
+((((-857)) . T))
((($) . T))
-((((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-1090))
-(|has| |#1| (-1090))
-(|has| |#2| (-362))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(|has| |#1| (-38 (-406 (-561))))
-((((-561)) . T))
-((((-1166)) -12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042))))
-((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-544)) . T) (($) . T))
+((((-544)) . T))
+((((-544)) . T))
+((((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T))
+((((-544)) . T))
+((((-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533)))) (((-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377))))) (((-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544))))))
+((($) . T))
+(((|#1| (-529 |#2|)) . T))
(((|#1|) . T))
-(|has| |#1| (-232))
-(((|#1| (-529 |#3|)) . T))
-(((|#2| (-239 (-3548 |#1|) (-765))) . T))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(|has| |#1| (-367))
-(((|#1|) . T) (($) . T))
+((((-857)) . T))
+((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
+(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))))
(((|#1| (-529 |#2|)) . T))
-(-4050 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(((|#1| (-765)) . T))
-(|has| |#1| (-553))
-(-4050 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-856)) . T))
-((((-561)) . T) (((-406 (-561))) . T) (($) . T))
-(-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
-(-4050 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(((|#1|) |has| |#1| (-171)))
-(((|#4|) |has| |#4| (-1042)))
-(((|#3|) |has| |#3| (-1042)))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
-((((-561)) . T) (((-406 (-561))) -4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
-((((-1115 |#1| |#2|)) . T) (((-561)) . T) ((|#3|) . T) (($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) ((|#2|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
-((((-1171)) . T))
-((((-665 |#1|)) . T))
-((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-((((-856)) . T))
-((((-638 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-561)) . T) (((-224)) . T) (((-856)) . T))
-((($) . T) (((-406 (-561))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1090)) (((-561)) -12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090))) (((-406 (-561))) -12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))
-(((|#3|) |has| |#3| (-1090)) (((-561)) -12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
-(|has| |#2| (-362))
-(((|#2|) |has| |#2| (-1042)) (((-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))))
(((|#1|) . T))
-(|has| |#2| (-362))
-(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(((|#2| |#2|) . T))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544))))
+(-3936 (|has| |#1| (-450)) (|has| |#1| (-903)))
+((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
+(|has| |#1| (-844))
(((|#2|) . T))
-((((-856)) |has| |#1| (-1090)))
+((((-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377)))) (((-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544)))))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T) ((|#2|) . T))
+((((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#2|) . T))
+(((|#1| (-529 |#2|) |#2|) . T))
((($) . T))
-((((-1240 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
+((($ $) . T) ((|#2| $) . T))
+(((|#2|) . T))
+((((-857)) . T))
+(((|#1| (-529 |#2|) |#2|) . T))
+((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))))
+(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+((((-544)) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+(((|#1| (-529 |#2|)) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| |#2|) . T))
+((((-857)) . T))
(((|#1|) . T))
-(|has| |#2| (-814))
-(|has| |#2| (-814))
-(|has| |#1| (-362))
-(|has| |#1| (-362))
-(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
-(|has| |#1| (-362))
-(((|#1|) |has| |#2| (-416 |#1|)))
-(((|#1|) |has| |#2| (-416 |#1|)))
-((((-1148)) . T))
-((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-638 |#1|)) . T) (((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-1171)) . T))
-((((-1171)) . T))
-((((-1171)) . T))
-((((-638 |#1|)) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-856)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1204)) . T) (((-856)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-1171)) . T))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) |has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-((((-561) |#1|) . T))
-((((-561) |#1|) . T))
-((((-561) |#1|) . T))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-561) |#1|) . T))
-(((|#1|) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-((((-1166)) |has| |#1| (-893 (-1166))) (((-812 (-1166))) . T))
-(-4050 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-((((-813 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-856)) . T))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-((((-856)) . T))
-((((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-561))) . T))
-(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)) (((-406 (-561))) |has| |#1| (-553)))
-(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
-(|has| |#1| (-362))
-(-4050 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232))))
-(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
-(|has| |#1| (-362))
-(((|#1|) . T))
-(((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1| |#1|) . T))
-((((-561) |#1|) . T))
-((((-315 |#1|)) . T))
-(((#0=(-692) (-1162 #0#)) . T))
-((((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-842))
-(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) ((|#1|) |has| |#1| (-171)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-561)) . T) (($) -4050 (|has| |#1| (-362)) (|has| |#1| (-553))))
-((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1115 |#1| (-1166))) . T) (((-812 (-1166))) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-1166)) . T))
-((($) . T))
-(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1072) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1166) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-1078 (-1166)) |#1|) . T) ((#1# $) . T))
+((((-1171)) . T) (((-857)) . T))
+((((-857)) . T))
+((((-1130 |#1| |#2|)) . T))
+(((#1=(-1130 |#1| |#2|) #1#) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))))
+((((-1130 |#1| |#2|)) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))))
+((((-857)) . T))
+((((-1130 |#1| |#2|)) . T))
+((((-533)) |has| |#2| (-609 (-533))))
+(((|#2|) |has| |#2| (-6 (-4402 "*"))))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-682 |#2|)) . T) (((-857)) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
-(|has| |#2| (-902))
-((($) . T) ((#0=(-1239 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))))
-((((-561) |#1|) . T))
-((((-1171)) . T))
-(((#0=(-1240 |#1| |#2| |#3| |#4|)) |has| #0# (-308 #0#)))
-((($) . T))
-(((|#1|) . T))
-((($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
+(((|#2|) -3936 (|has| |#2| (-6 (-4402 "*"))) (|has| |#2| (-171))))
+(((|#2|) . T))
+((((-1166)) |has| |#2| (-893 (-1166))))
(|has| |#2| (-232))
-(|has| $ (-146))
-((((-856)) . T))
-((($) . T) (((-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-856)) . T))
-(|has| |#1| (-842))
-((((-129)) . T))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))
-((((-406 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-129)) . T))
-((((-856)) . T))
-(((|#2| (-665 |#1|)) . T))
-(-12 (|has| |#1| (-306)) (|has| |#1| (-902)))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#2|) . T))
+(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544))))
+(((|#2|) . T))
+((((-544)) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))))
+(((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))))
+(((|#1| |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))
+(((|#2|) . T))
+(((|#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-533)) |has| |#4| (-609 (-533))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
(((|#4|) . T))
-(|has| |#1| (-553))
-((($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T))
-((((-1166)) -4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))
-(((|#1|) . T) (($) -4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166)))))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
-((((-561) |#1|) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+((((-857)) . T) (((-635 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
(((|#1|) . T))
-(((|#1| (-529 (-812 (-1166)))) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((((-561)) . T) ((|#2|) . T) (($) . T) (((-406 (-561))) . T) (((-1166)) |has| |#2| (-1031 (-1166))))
(((|#1|) . T))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(((|#1| |#2|) . T))
+((((-857)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-635 |#1|)) . T))
(((|#1|) . T))
-(-4050 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
-((((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((($) . T) (((-863 |#1|)) . T) (((-406 (-561))) . T))
-((((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(|has| |#1| (-553))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-406 |#2|)) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-406 (-561)) #0#) . T) (($ $) . T))
-((((-561)) . T))
-(((|#2|) . T) (((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
-((((-578 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
-((((-856)) . T))
-((((-406 (-561))) . T) (($) . T))
-((((-561) |#1|) . T))
-((((-856)) . T))
-((($ $) . T) (((-1166) $) . T))
-((((-1246 |#1| |#2| |#3|)) . T))
-((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
-((((-856)) . T))
-((((-856)) . T))
-((((-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) (((-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) (((-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1|) . T) (((-856)) . T) (((-1171)) . T))
-((((-856)) . T))
-((((-1171)) . T))
-((((-114)) . T) ((|#1|) . T) (((-561)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
-(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
-((((-129)) . T))
-((((-856)) . T))
-((((-1246 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
-(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
-(|has| |#1| (-362))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-1094)) . T))
-((((-856)) . T))
-((($) -4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
-((($) . T))
-((($) -4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-((((-1246 |#1| |#2| |#3|)) . T) (((-1218 |#1| |#2| |#3|)) . T))
-((((-1166)) . T) (((-856)) . T))
-(|has| |#2| (-902))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
(((|#1|) . T))
-(|has| |#1| (-902))
+((((-533)) |has| |#1| (-609 (-533))))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) |has| |#1| (-171)))
-((((-692)) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-1171)) . T))
-(((|#1|) |has| |#1| (-171)))
-((((-1171)) . T))
-((((-1171)) . T))
-(((|#1|) |has| |#1| (-171)))
-((((-406 (-561))) . T) (($) . T))
-(((|#1| (-561)) . T))
-((((-1171)) . T))
-((((-1171)) . T))
-((((-1171)) . T))
-((((-1171)) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-857)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-544) (-143)) . T))
+((((-544) (-143)) . T))
+((((-544) (-143)) . T))
+((((-143)) . T))
+((((-143)) . T))
+((((-1148) |#1|) . T))
+((((-857)) . T))
+((((-1148) |#1|) . T))
+((((-1148) |#1|) . T))
+((((-1148) |#1|) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((#1=(-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) #1#) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T))
+((((-1148) |#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1164 |#1| |#2| |#3|)) . T))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
(|has| |#1| (-362))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1164 |#1| |#2| |#3|)) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|)))))
+(((#1=(-1164 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|)))) (((-1166) #1#) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|)))))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
(|has| |#1| (-362))
-(-4050 (|has| |#1| (-171)) (|has| |#1| (-553)))
-(((|#1| (-561)) . T))
-(((|#1| (-406 (-561))) . T))
-(((|#1| (-765)) . T))
-((((-406 (-561))) . T))
-(((|#1| (-529 |#2|) |#2|) . T))
-((((-561) |#1|) . T))
-((((-561) |#1|) . T))
-(|has| |#1| (-1090))
-((((-561) |#1|) . T))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))
+((((-1166)) -3936 (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166)))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(-3936 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-146))))
+(-3936 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-144))))
+((((-857)) . T))
+(((|#1|) . T))
+((((-1164 |#1| |#2| |#3|) $) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-544) (-1072)) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((#2=(-1164 |#1| |#2| |#3|) #2#) |has| |#1| (-362)) ((|#1| |#1|) . T))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+((((-1164 |#1| |#2| |#3|)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) ((|#1|) |has| |#1| (-171)))
+(((|#1| (-544)) . T))
+(((|#1| (-544)) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| (-1164 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
+((((-857)) . T))
+((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))
+(|has| |#1| (-362))
+(((|#1| (-765) (-1072)) . T))
+(|has| |#1| (-903))
+(|has| |#1| (-903))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
+(|has| |#1| (-844))
+((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T))
(((|#1|) . T))
-((((-885 (-378))) . T) (((-885 (-561))) . T) (((-1166)) . T) (((-534)) . T))
+(((|#1| (-765)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1072)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T))
+((((-1072)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1| (-765)) . T))
+(((#1=(-1072) |#1|) . T) ((#1# $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1141))
(((|#1|) . T))
-((((-856)) . T))
-(-4050 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-(-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
-((((-561)) . T))
-((((-561)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(((|#1| |#2|) . T))
+((((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(-4050 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
-((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
-(-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))
+(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))
+((($ $) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))))
+(((|#1| (-406 (-544)) (-1072)) . T))
(|has| |#1| (-144))
(|has| |#1| (-146))
+(((|#1| (-406 (-544))) . T))
+(((|#1| (-406 (-544))) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+((((-857)) . T))
+(((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))))
+(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))))
+(((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) . T))
(|has| |#1| (-362))
+(|has| |#1| (-362))
+(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+((((-1250 |#2|)) . T) (((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(((|#1| (-1157 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| (-765)) . T))
+(((|#1| (-765)) . T))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-554)))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1| (-765) (-1072)) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|)))))
+((($ $) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (((-544)) . T))
+(|has| |#1| (-15 * (|#1| (-765) |#1|)))
+(((|#1|) . T))
+((((-857)) . T))
+((((-377)) . T) (((-544)) . T))
+((((-1148)) . T))
+((((-883 (-377))) . T) (((-883 (-544))) . T) (((-1166)) . T) (((-533)) . T))
+((((-857)) . T))
+(((|#1| (-964)) . T))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-554)))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((((-857)) . T))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T))
+((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-544)) . T))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))))
+(((|#1| (-964)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-544)) . T))
+((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-544)) . T))
+((((-533)) . T) (((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
(((|#1| |#2|) . T))
+((((-857)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-232))
-((((-856)) . T))
-(((|#1| (-765) (-1072)) . T))
-((((-561) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-561) |#1|) . T))
-((((-561) |#1|) . T))
-((((-116 |#1|)) . T))
-((((-406 (-561))) . T) (((-561)) . T))
-(((|#2|) |has| |#2| (-1042)))
-((((-406 (-561))) . T) (($) . T))
-(((|#2|) . T))
-((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
-((((-561)) . T))
-((((-561)) . T))
-((((-1148) (-1166) (-561) (-224) (-856)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-561)) . T) ((|#2|) |has| |#2| (-171)))
-((((-114)) . T) ((|#1|) . T) (((-561)) . T))
-(-4050 (|has| |#1| (-348)) (|has| |#1| (-367)))
(((|#1| |#2|) . T))
-((((-224)) . T))
-((((-406 (-561))) . T) (($) . T) (((-561)) . T))
-((((-856)) . T))
-((($) . T) ((|#1|) . T))
-((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
-(((|#2|) |has| |#2| (-1090)) (((-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-534)) |has| |#1| (-609 (-534))))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
-((($) . T) (((-406 (-561))) . T))
-(|has| |#1| (-902))
-(|has| |#1| (-902))
-((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) (((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) (((-885 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-378))))) (((-885 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-561))))) (((-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-534)))))
-((((-856)) . T))
-((((-856)) . T))
-(((|#2| |#2|) . T))
-(((|#1| |#1|) |has| |#1| (-171)))
-(((|#1|) . T) (((-561)) . T))
-((((-1171)) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-553)))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-(((|#2|) . T))
-(-4050 (|has| |#1| (-21)) (|has| |#1| (-842)))
-(((|#1|) |has| |#1| (-171)))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-387) (-1148)) . T))
(((|#1|) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))))
(((|#1|) . T))
-((((-856)) -4050 (-12 (|has| |#1| (-608 (-856))) (|has| |#2| (-608 (-856)))) (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))))
-((((-406 |#2|) |#3|) . T))
-((((-406 (-561))) . T) (($) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-362))
-((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
-(|has| (-406 |#2|) (-146))
-(|has| (-406 |#2|) (-144))
-((((-692)) . T))
-(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
-(((#0=(-561) #0#) . T))
-((($) . T) (((-406 (-561))) . T))
-(-4050 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
-(-4050 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
-((((-856)) . T) (((-1171)) . T))
-(|has| |#4| (-787))
-(-4050 (|has| |#4| (-787)) (|has| |#4| (-842)))
-(|has| |#4| (-842))
-(|has| |#3| (-787))
+((($) . T))
+((($ $) . T) (((-1166) $) . T))
+((((-1166)) . T))
+((((-857)) . T))
+(((|#1| (-529 #1=(-1166)) #1#) . T))
+((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))))
+(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+((((-544)) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)))
+(((|#1| (-529 (-1166))) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| (-1166)) . T))
+(|has| |#1| (-1091))
+(|has| |#1| (-1091))
+((((-951 |#1|)) . T))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))) (((-951 |#1|)) . T))
+((((-951 |#1|)) . T))
((((-1171)) . T))
-(-4050 (|has| |#3| (-787)) (|has| |#3| (-842)))
-(|has| |#3| (-842))
-((((-561)) . T))
-(((|#2|) . T))
-((((-1166)) -4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
-((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166)))))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1|) . T))
-(((|#1|) . T))
+((((-857)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1243 |#1| |#2| |#3|)) . T))
+((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(|has| |#1| (-362))
+((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1243 |#1| |#2| |#3|)) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|)))))
+(((#1=(-1243 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|)))) (((-1166) #1#) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-512 (-1166) (-1243 |#1| |#2| |#3|)))))
+((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))
+((((-1166)) -3936 (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166)))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))
+((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(-3936 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-146))))
+(-3936 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-144))))
+((((-857)) . T))
+(((|#1|) . T))
+((((-1243 |#1| |#2| |#3|) $) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-285 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-544) (-1072)) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((#2=(-1243 |#1| |#2| |#3|) #2#) |has| |#1| (-362)) ((|#1| |#1|) . T))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+((((-1243 |#1| |#2| |#3|)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) ((|#1|) |has| |#1| (-171)))
+(((|#1| (-544)) . T))
+(((|#1| (-544)) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| (-1243 |#1| |#2| |#3|)) . T))
+(((|#2|) |has| |#1| (-362)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-1141)))
+(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544)))) (((-406 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544)))))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-1013)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-903)))
+(((|#2|) |has| |#1| (-362)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-814))) (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+((((-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-377)))) (((-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-544)))))
+(|has| |#1| (-362))
+(((|#2|) |has| |#1| (-362)))
+((((-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544)))) ((|#2|) |has| |#1| (-362)))
+(((|#2|) |has| |#1| (-362)))
+(((|#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|))))
+(((|#2|) |has| |#1| (-362)))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))
+((((-1166)) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))
+(((|#2|) |has| |#1| (-362)))
+((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) (((-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) (((-883 (-377))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-377))))) (((-883 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-544))))) (((-533)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-533)))))
+(-3936 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146))))
+(-3936 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144))))
+((((-857)) . T))
(((|#1|) . T))
+(((|#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) (($ $) . T))
+(((|#1| (-544) (-1072)) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) ((|#1|) |has| |#1| (-171)))
+(((|#1| (-544)) . T))
+(((|#1| (-544)) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| |#2|) . T))
+(((|#1| (-1143 |#1|)) |has| |#1| (-842)))
+(|has| |#1| (-1091))
+((((-857)) |has| |#1| (-1091)))
+(|has| |#1| (-1091))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-858 |#1|)) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-1130 |#1| |#2|)) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(((|#2|) . T) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
+(((|#2|) . T))
+((((-857)) . T))
+((((-406 $) (-406 $)) |has| |#2| (-554)) (($ $) . T) ((|#2| |#2|) . T))
+(|has| |#2| (-362))
+(-3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-903)))
+(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+(-3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+(-3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))
+(|has| |#2| (-362))
+(((|#2| (-765) (-1072)) . T))
+(|has| |#2| (-903))
+(|has| |#2| (-903))
+((((-1166)) |has| |#2| (-893 (-1166))) (((-1072)) . T))
+(|has| |#2| (-844))
+((((-544)) |has| |#2| (-634 (-544))) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2| (-765)) . T))
+(|has| |#2| (-146))
+(|has| |#2| (-144))
+((((-1250 |#1|)) . T) (((-544)) . T) (($) -3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-1072)) . T) ((|#2|) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))))
+((($) -3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2|) |has| |#2| (-171)) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))))
+((($) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2| |#2|) . T) ((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2|) |has| |#2| (-171)) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))))
+(((|#2|) . T))
+((((-1072)) . T) ((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))))
+(((|#2| (-765)) . T))
+(((#1=(-1072) |#2|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1015))
-(((|#2|) . T) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-((((-856)) . T))
-((((-534)) |has| |#2| (-609 (-534))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-378)) . #0=(|has| |#2| (-1015))) (((-224)) . #0#))
-((((-293 |#3|)) . T))
-((((-1166) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-406 (-561))))
-(|has| |#1| (-38 (-406 (-561))))
-((((-856)) . T))
+(|has| |#2| (-1141))
(((|#2|) . T))
-((((-856)) . T))
-((($ $) . T))
-((((-406 (-561))) . T) (((-692)) . T) (($) . T))
-((((-1164 |#1| |#2| |#3|)) . T))
-((((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T))
-((((-856)) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-561) |#1|) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-1243 |#1| |#2| |#3|)) . T) (((-1213 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))
+((($ $) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))))
+(((|#1| (-406 (-544)) (-1072)) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(((|#1| (-406 (-544))) . T))
+(((|#1| (-406 (-544))) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-362))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+((((-857)) . T))
+(((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))))
+(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))))
+(((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+((((-1250 |#2|)) . T) (((-1243 |#1| |#2| |#3|)) . T) (((-1213 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(((|#1| (-1213 |#1| |#2| |#3|)) . T))
(((|#2|) . T))
-(|has| |#2| (-362))
-(((|#3|) . T) ((|#2|) . T) (($) -4050 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042))) ((|#4|) -4050 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))))
-(((|#2|) . T) (($) -4050 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -4050 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))))
-(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))
+((($ $) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))))
+(((|#1| (-406 (-544)) (-1072)) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(((|#1| (-406 (-544))) . T))
+(((|#1| (-406 (-544))) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
(|has| |#1| (-362))
-((((-116 |#1|)) . T))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+((((-857)) . T))
+(((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))))
+(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))))
+(((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554)))
+(-3936 (|has| |#1| (-362)) (|has| |#1| (-554)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(((|#1| |#2|) . T))
+((((-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
+(|has| (-1234 |#2| |#3| |#4|) (-146))
+(|has| (-1234 |#2| |#3| |#4|) (-144))
+((($) . T) ((#1=(-1234 |#2| |#3| |#4|)) |has| #1# (-171)) (((-406 (-544))) |has| #1# (-38 (-406 (-544)))))
+((((-857)) . T))
+((($) . T) ((#1=(-1234 |#2| |#3| |#4|)) . T) (((-406 (-544))) |has| #1# (-38 (-406 (-544)))))
+((($ $) . T) ((#1=(-1234 |#2| |#3| |#4|) #1#) . T) ((#2=(-406 (-544)) #2#) |has| #1# (-38 (-406 (-544)))))
+(((#1=(-1234 |#2| |#3| |#4|)) . T) (((-406 (-544))) |has| #1# (-38 (-406 (-544)))) (($) . T))
+((($) . T) (((-1234 |#2| |#3| |#4|)) . T) (((-406 (-544))) |has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544)))) (((-544)) . T))
+((($) . T) ((#1=(-1234 |#2| |#3| |#4|)) |has| #1# (-171)) (((-406 (-544))) |has| #1# (-38 (-406 (-544)))))
+((((-1234 |#2| |#3| |#4|)) . T))
+((((-1234 |#2| |#3| |#4|)) . T))
+((((-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(|has| |#1| (-38 (-406 (-544))))
+(((|#1| (-765)) . T))
+(((|#1| (-765)) . T))
+(|has| |#1| (-554))
+(|has| |#1| (-554))
+(-3936 (|has| |#1| (-171)) (|has| |#1| (-554)))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))))
+(((|#1| (-765) (-1072)) . T))
+((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|)))))
+((($ $) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T))
+((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (((-544)) . T))
+(|has| |#1| (-15 * (|#1| (-765) |#1|)))
(((|#1|) . T))
+((((-1166)) . T) (((-857)) . T))
(((|#1|) . T))
-((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
-((((-1166)) . T) ((|#1|) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-((((-186)) . T) (((-856)) . T))
-((((-856)) . T))
(((|#1|) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-((((-129)) . T) (((-856)) . T))
-((((-561) |#1|) . T))
-((((-129)) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-544) |#1|) . T))
+((((-533)) |has| |#1| (-609 (-533))))
(((|#1|) . T))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))
+((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091))))
(((|#1|) . T))
+(|has| |#1| (-844))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) (($ $) . T))
-((($ $) . T))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-902)))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-((((-856)) . T))
-((((-856)) . T))
-((((-856)) . T))
-(((|#1| (-529 |#2|)) . T))
-((((-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) . T))
-((((-561) (-129)) . T))
-(((|#1| (-561)) . T))
-(((|#1| (-406 (-561))) . T))
-(((|#1| (-765)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
+(((|#1|) . T))
+((((-857)) . T))
+((((-857)) . T))
+((((-857)) . T))
((((-1171)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-(-4050 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
-(-4050 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
-((($) . T))
-(((|#2| (-529 (-858 |#1|))) . T))
((((-1171)) . T))
+((((-857)) . T) (((-1171)) . T))
((((-1171)) . T))
-((((-561) |#1|) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(((|#4|) . T))
+(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-544)) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+(((|#4|) . T) (((-857)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-533)) |has| |#4| (-609 (-533))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))
+(((|#4|) . T))
+((((-857)) . T) (((-635 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-171)))
(((|#2|) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-856)) . T) (((-1171)) . T))
-((((-1171)) . T))
-((((-856)) -4050 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
-(((|#1|) . T))
-(((|#2| (-765)) . T))
(((|#1| |#2|) . T))
-((((-1148) |#1|) . T))
-((((-406 |#2|)) . T))
-((((-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T))
-(|has| |#1| (-553))
-(|has| |#1| (-553))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-857)) . T))
((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-171)))
+((((-813 |#1|)) . T))
+(((|#2|) . T) (((-544)) . T) (((-813 |#1|)) . T))
+(((|#2| (-813 |#1|)) . T))
+(((|#2| (-886 |#1|)) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-857)) . T))
+((((-886 |#1|)) . T) ((|#2|) . T) (((-544)) . T) (((-813 |#1|)) . T))
+((((-886 |#1|)) . T) (((-813 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-1166) |#1|) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-857)) . T))
+(((|#1|) . T) (((-544)) . T) (((-813 (-1166))) . T))
+((((-813 (-1166))) . T))
+((((-1166) |#1|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-561)) . T) (($) . T))
-(((|#2| $) |has| |#2| (-285 |#2| |#2|)))
-(((|#1| (-638 |#1|)) |has| |#1| (-842)))
-(-4050 (|has| |#1| (-232)) (|has| |#1| (-348)))
-(-4050 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-1250 |#1|)) . T) (((-561)) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
-(|has| |#1| (-1090))
-(((|#1|) . T))
-((((-1250 |#1|)) . T) (((-561)) . T) (($) -4050 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-1072)) . T) ((|#2|) . T) (((-406 (-561))) -4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))))
-((((-406 (-561))) . T) (($) . T))
-((((-992 |#1|)) . T) ((|#1|) . T) (((-561)) -4050 (|has| (-992 |#1|) (-1031 (-561))) (|has| |#1| (-1031 (-561)))) (((-406 (-561))) -4050 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-((((-1166)) |has| |#1| (-893 (-1166))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
-(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1130 |#1| |#2|) #0#) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))))
+(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) #0#) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))))
-(((#0=(-116 |#1|)) |has| #0# (-308 #0#)))
+(((|#2|) . T) ((|#1|) . T) (((-544)) . T))
+(((|#1|) . T) (($) . T))
+((((-857)) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-857)) . T))
+(((|#2|) . T) (((-544)) . T) (((-813 |#1|)) . T))
+((((-813 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-544)) . T))
((($ $) . T))
-(-4050 (|has| |#1| (-844)) (|has| |#1| (-1090)))
-((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-232)) ((|#2| |#1|) |has| |#1| (-232)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-476 . -1090) T) ((-263 . -512) 161925) ((-246 . -512) 161868) ((-244 . -1090) 161818) ((-568 . -111) 161803) ((-529 . -23) T) ((-137 . -1090) T) ((-136 . -1090) T) ((-117 . -308) 161760) ((-132 . -1090) T) ((-477 . -512) 161552) ((-670 . -611) 161536) ((-687 . -102) T) ((-1131 . -512) 161455) ((-389 . -130) T) ((-1267 . -969) 161424) ((-31 . -93) T) ((-597 . -487) 161408) ((-616 . -130) T) ((-813 . -840) T) ((-521 . -57) 161358) ((-59 . -512) 161291) ((-517 . -512) 161224) ((-417 . -893) 161183) ((-168 . -1042) T) ((-514 . -512) 161116) ((-495 . -512) 161049) ((-494 . -512) 160982) ((-793 . -1031) 160765) ((-692 . -38) 160730) ((-1227 . -611) 160478) ((-342 . -348) T) ((-1084 . -1083) 160462) ((-1084 . -1090) 160440) ((-849 . -611) 160337) ((-168 . -242) 160288) ((-168 . -232) 160239) ((-1084 . -1085) 160197) ((-865 . -285) 160155) ((-224 . -789) T) ((-224 . -786) T) ((-687 . -283) NIL) ((-568 . -611) 160127) ((-1140 . -1181) 160106) ((-406 . -985) 160090) ((-694 . -21) T) ((-694 . -25) T) ((-1269 . -641) 160064) ((-315 . -159) 160043) ((-315 . -142) 160022) ((-1140 . -107) 159972) ((-133 . -25) T) ((-40 . -230) 159949) ((-116 . -21) T) ((-116 . -25) T) ((-603 . -287) 159925) ((-473 . -287) 159904) ((-1227 . -325) 159881) ((-1227 . -1042) T) ((-849 . -1042) T) ((-793 . -337) 159865) ((-138 . -184) T) ((-117 . -1141) NIL) ((-91 . -608) 159797) ((-475 . -130) T) ((-1227 . -232) T) ((-1086 . -488) 159778) ((-1086 . -608) 159744) ((-1080 . -488) 159725) ((-1080 . -608) 159691) ((-589 . -1205) T) ((-1064 . -488) 159672) ((-568 . -1042) T) ((-1064 . -608) 159638) ((-655 . -711) 159622) ((-1057 . -488) 159603) ((-1057 . -608) 159569) ((-951 . -287) 159546) ((-60 . -34) T) ((-1053 . -789) T) ((-1053 . -786) T) ((-1029 . -488) 159527) ((-1012 . -488) 159508) ((-810 . -720) T) ((-725 . -47) 159473) ((-618 . -38) 159460) ((-354 . -289) T) ((-351 . -289) T) ((-343 . -289) T) ((-263 . -289) 159391) ((-246 . -289) 159322) ((-1029 . -608) 159288) ((-1017 . -102) T) ((-1012 . -608) 159254) ((-621 . -488) 159235) ((-412 . -720) T) ((-117 . -38) 159180) ((-481 . -488) 159161) ((-621 . -608) 159127) ((-412 . -471) T) ((-217 . -488) 159108) ((-481 . -608) 159074) ((-353 . -102) T) ((-217 . -608) 159040) ((-1199 . -1049) T) ((-705 . -1049) T) ((-1164 . -47) 159017) ((-1163 . -47) 158987) ((-1157 . -47) 158964) ((-128 . -287) 158939) ((-1028 . -150) 158885) ((-903 . -289) T) ((-1116 . -47) 158857) ((-687 . -308) NIL) ((-513 . -608) 158839) ((-508 . -608) 158821) ((-506 . -608) 158803) ((-326 . -1090) 158753) ((-706 . -450) 158684) ((-48 . -102) T) ((-1238 . -285) 158669) ((-1217 . -285) 158589) ((-638 . -659) 158573) ((-638 . -644) 158557) ((-338 . -21) T) ((-338 . -25) T) ((-40 . -348) NIL) ((-173 . -21) T) ((-173 . -25) T) ((-638 . -372) 158541) ((-600 . -488) 158523) ((-597 . -285) 158500) ((-600 . -608) 158467) ((-387 . -102) T) ((-1110 . -142) T) ((-126 . -608) 158399) ((-867 . -1090) T) ((-651 . -410) 158383) ((-708 . -608) 158365) ((-248 . -608) 158332) ((-186 . -608) 158314) ((-161 . -608) 158296) ((-156 . -608) 158278) ((-1269 . -720) T) ((-1092 . -34) T) ((-864 . -789) NIL) ((-864 . -786) NIL) ((-852 . -844) T) ((-725 . -879) NIL) ((-1278 . -130) T) ((-380 . -130) T) ((-885 . -611) 158246) ((-897 . -102) T) ((-725 . -1031) 158122) ((-529 . -130) T) ((-1077 . -410) 158106) ((-993 . -487) 158090) ((-117 . -399) 158067) ((-1157 . -1205) 158046) ((-776 . -410) 158030) ((-774 . -410) 158014) ((-936 . -34) T) ((-687 . -1141) NIL) ((-250 . -641) 157849) ((-249 . -641) 157671) ((-811 . -913) 157650) ((-452 . -410) 157634) ((-597 . -19) 157618) ((-1136 . -1198) 157587) ((-1157 . -879) NIL) ((-1157 . -877) 157539) ((-597 . -599) 157516) ((-1191 . -608) 157448) ((-1165 . -608) 157430) ((-62 . -394) T) ((-1163 . -1031) 157365) ((-1157 . -1031) 157331) ((-687 . -38) 157281) ((-472 . -285) 157266) ((-1211 . -608) 157248) ((-725 . -376) 157232) ((-832 . -608) 157214) ((-651 . -1049) T) ((-1238 . -995) 157180) ((-1217 . -995) 157146) ((-1078 . -611) 157130) ((-1054 . -1181) 157105) ((-1066 . -611) 157082) ((-865 . -609) 156889) ((-865 . -608) 156871) ((-1178 . -487) 156808) ((-417 . -1015) 156786) ((-48 . -308) 156773) ((-1054 . -107) 156719) ((-477 . -487) 156656) ((-518 . -1205) T) ((-1157 . -337) 156608) ((-1131 . -487) 156579) ((-1157 . -376) 156531) ((-1077 . -1049) T) ((-436 . -102) T) ((-182 . -1090) T) ((-250 . -34) T) ((-249 . -34) T) ((-776 . -1049) T) ((-774 . -1049) T) ((-725 . -893) 156508) ((-452 . -1049) T) ((-59 . -487) 156492) ((-1027 . -1048) 156466) ((-517 . -487) 156450) ((-514 . -487) 156434) ((-495 . -487) 156418) ((-494 . -487) 156402) ((-244 . -512) 156335) ((-1027 . -111) 156302) ((-1164 . -893) 156215) ((-1163 . -893) 156121) ((-1157 . -893) 155954) ((-1116 . -893) 155938) ((-663 . -1102) T) ((-353 . -1141) T) ((-639 . -93) T) ((-321 . -1048) 155920) ((-250 . -785) 155899) ((-250 . -788) 155850) ((-31 . -488) 155831) ((-250 . -787) 155810) ((-249 . -785) 155789) ((-249 . -788) 155740) ((-249 . -787) 155719) ((-31 . -608) 155685) ((-50 . -1049) T) ((-250 . -720) 155595) ((-249 . -720) 155505) ((-1199 . -1090) T) ((-663 . -23) T) ((-578 . -1049) T) ((-516 . -1049) T) ((-378 . -1048) 155470) ((-321 . -111) 155445) ((-73 . -382) T) ((-73 . -394) T) ((-1017 . -38) 155382) ((-687 . -399) 155364) ((-99 . -102) T) ((-705 . -1090) T) ((-996 . -144) 155336) ((-996 . -146) 155308) ((-378 . -111) 155264) ((-318 . -1209) 155243) ((-472 . -995) 155209) ((-353 . -38) 155174) ((-40 . -369) 155146) ((-866 . -608) 155018) ((-127 . -125) 155002) ((-121 . -125) 154986) ((-830 . -1048) 154956) ((-827 . -21) 154908) ((-821 . -1048) 154892) ((-827 . -25) 154844) ((-318 . -553) 154795) ((-515 . -611) 154776) ((-561 . -822) T) ((-239 . -1205) T) ((-1027 . -611) 154745) ((-830 . -111) 154710) ((-821 . -111) 154689) ((-1238 . -608) 154671) ((-1217 . -608) 154653) ((-1217 . -609) 154324) ((-1162 . -902) 154303) ((-1115 . -902) 154282) ((-48 . -38) 154247) ((-1276 . -1102) T) ((-597 . -608) 154159) ((-597 . -609) 154120) ((-1274 . -1102) T) ((-360 . -611) 154104) ((-321 . -611) 154088) ((-239 . -1031) 153915) ((-1162 . -641) 153840) ((-1115 . -641) 153765) ((-848 . -641) 153739) ((-712 . -608) 153721) ((-544 . -367) T) ((-1276 . -23) T) ((-1274 . -23) T) ((-489 . -1090) T) ((-378 . -611) 153671) ((-378 . -613) 153653) ((-1027 . -1042) T) ((-1178 . -285) 153632) ((-168 . -367) 153583) ((-997 . -1205) T) ((-830 . -611) 153537) ((-821 . -611) 153492) ((-44 . -23) T) ((-477 . -285) 153471) ((-582 . -1090) T) ((-1136 . -1099) 153440) ((-1094 . -1093) 153392) ((-389 . -21) T) ((-389 . -25) T) ((-151 . -1102) T) ((-1282 . -102) T) ((-997 . -877) 153374) ((-997 . -879) 153356) ((-1199 . -711) 153253) ((-618 . -230) 153237) ((-616 . -21) T) ((-288 . -553) T) ((-616 . -25) T) ((-1185 . -1090) T) ((-705 . -711) 153202) ((-239 . -376) 153171) ((-997 . -1031) 153131) ((-378 . -1042) T) ((-222 . -1049) T) ((-117 . -230) 153108) ((-59 . -285) 153085) ((-151 . -23) T) ((-514 . -285) 153062) ((-326 . -512) 152995) ((-494 . -285) 152972) ((-378 . -242) T) ((-378 . -232) T) ((-830 . -1042) T) ((-821 . -1042) T) ((-706 . -942) 152941) ((-694 . -844) T) ((-472 . -608) 152923) ((-821 . -232) 152902) ((-133 . -844) T) ((-651 . -1090) T) ((-1178 . -599) 152881) ((-547 . -1181) 152860) ((-335 . -1090) T) ((-318 . -362) 152839) ((-406 . -146) 152818) ((-406 . -144) 152797) ((-957 . -1102) 152696) ((-239 . -893) 152628) ((-809 . -1102) 152538) ((-647 . -846) 152522) ((-477 . -599) 152501) ((-547 . -107) 152451) ((-997 . -376) 152433) ((-997 . -337) 152415) ((-97 . -1090) T) ((-957 . -23) 152226) ((-475 . -21) T) ((-475 . -25) T) ((-809 . -23) 152096) ((-1166 . -608) 152078) ((-59 . -19) 152062) ((-1166 . -609) 151984) ((-1162 . -720) T) ((-1115 . -720) T) ((-514 . -19) 151968) ((-494 . -19) 151952) ((-59 . -599) 151929) ((-1077 . -1090) T) ((-894 . -102) 151907) ((-848 . -720) T) ((-776 . -1090) T) ((-514 . -599) 151884) ((-494 . -599) 151861) ((-774 . -1090) T) ((-774 . -1056) 151828) ((-459 . -1090) T) ((-452 . -1090) T) ((-582 . -711) 151803) ((-642 . -1090) T) ((-1246 . -47) 151780) ((-1240 . -102) T) ((-1239 . -47) 151750) ((-1218 . -47) 151727) ((-1199 . -171) 151678) ((-1163 . -306) 151657) ((-997 . -893) NIL) ((-1157 . -306) 151636) ((-622 . -1102) T) ((-663 . -130) T) ((-1086 . -611) 151617) ((-1080 . -611) 151598) ((-1070 . -553) 151549) ((-1070 . -1209) 151500) ((-1064 . -611) 151481) ((-274 . -1090) T) ((-85 . -439) T) ((-85 . -394) T) ((-1057 . -611) 151462) ((-1029 . -611) 151443) ((-50 . -1090) T) ((-1012 . -611) 151424) ((-705 . -171) T) ((-591 . -47) 151401) ((-224 . -641) 151366) ((-578 . -1090) T) ((-516 . -1090) T) ((-358 . -1209) T) ((-352 . -1209) T) ((-344 . -1209) T) ((-485 . -814) T) ((-485 . -913) T) ((-318 . -1102) T) ((-108 . -1209) T) ((-708 . -1048) 151336) ((-338 . -844) T) ((-216 . -913) T) ((-216 . -814) T) ((-621 . -611) 151317) ((-358 . -553) T) ((-352 . -553) T) ((-344 . -553) T) ((-481 . -611) 151298) ((-108 . -553) T) ((-651 . -711) 151268) ((-1157 . -1015) NIL) ((-217 . -611) 151249) ((-318 . -23) T) ((-67 . -1205) T) ((-993 . -608) 151181) ((-687 . -230) 151163) ((-708 . -111) 151128) ((-638 . -34) T) ((-244 . -487) 151112) ((-1092 . -1088) 151096) ((-170 . -1090) T) ((-945 . -902) 151075) ((-513 . -611) 151059) ((-1282 . -1141) T) ((-1278 . -21) T) ((-479 . -902) 151038) ((-1278 . -25) T) ((-1276 . -130) T) ((-1274 . -130) T) ((-1267 . -102) T) ((-1250 . -608) 151004) ((-1239 . -1031) 150939) ((-1077 . -711) 150788) ((-1053 . -641) 150775) ((-945 . -641) 150700) ((-776 . -711) 150529) ((-534 . -608) 150511) ((-534 . -609) 150492) ((-774 . -711) 150341) ((-1218 . -1205) 150320) ((-1067 . -102) T) ((-380 . -25) T) ((-380 . -21) T) ((-479 . -641) 150245) ((-459 . -711) 150216) ((-452 . -711) 150065) ((-980 . -102) T) ((-1218 . -879) NIL) ((-1218 . -877) 150017) ((-1178 . -609) NIL) ((-731 . -102) T) ((-1178 . -608) 149999) ((-600 . -611) 149981) ((-1132 . -1113) 149926) ((-1039 . -1198) 149855) ((-529 . -25) T) ((-894 . -308) 149793) ((-708 . -611) 149747) ((-342 . -1049) T) ((-639 . -488) 149728) ((-140 . -102) T) ((-44 . -130) T) ((-288 . -1102) T) ((-674 . -93) T) ((-669 . -93) T) ((-657 . -608) 149710) ((-639 . -608) 149663) ((-476 . -93) T) ((-354 . -608) 149645) ((-351 . -608) 149627) ((-343 . -608) 149609) ((-263 . -609) 149357) ((-263 . -608) 149339) ((-246 . -608) 149321) ((-246 . -609) 149182) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1218 . -1031) 149148) ((-1199 . -512) 149115) ((-1131 . -608) 149097) ((-813 . -851) T) ((-813 . -720) T) ((-597 . -287) 149074) ((-578 . -711) 149039) ((-477 . -609) NIL) ((-477 . -608) 149021) ((-516 . -711) 148966) ((-315 . -102) T) ((-312 . -102) T) ((-288 . -23) T) ((-151 . -130) T) ((-903 . -608) 148948) ((-385 . -720) T) ((-865 . -1048) 148900) ((-903 . -609) 148882) ((-865 . -111) 148820) ((-708 . -1042) T) ((-706 . -1230) 148804) ((-138 . -102) T) ((-135 . -102) T) ((-114 . -102) T) ((-687 . -348) NIL) ((-517 . -608) 148736) ((-378 . -789) T) ((-222 . -1090) T) ((-378 . -786) T) ((-224 . -788) T) ((-224 . -785) T) ((-59 . -609) 148697) ((-59 . -608) 148609) ((-224 . -720) T) ((-514 . -609) 148570) ((-514 . -608) 148482) ((-495 . -608) 148414) ((-494 . -609) 148375) ((-494 . -608) 148287) ((-1070 . -362) 148238) ((-40 . -410) 148215) ((-77 . -1205) T) ((-864 . -902) NIL) ((-358 . -328) 148199) ((-358 . -362) T) ((-352 . -328) 148183) ((-352 . -362) T) ((-344 . -328) 148167) ((-344 . -362) T) ((-315 . -283) 148146) ((-108 . -362) T) ((-70 . -1205) T) ((-1218 . -337) 148098) ((-864 . -641) 148043) ((-1218 . -376) 147995) ((-957 . -130) 147850) ((-809 . -130) 147720) ((-951 . -644) 147704) ((-1077 . -171) 147615) ((-951 . -372) 147599) ((-1053 . -788) T) ((-1053 . -785) T) ((-865 . -611) 147497) ((-776 . -171) 147388) ((-774 . -171) 147299) ((-810 . -47) 147261) ((-1053 . -720) T) ((-326 . -487) 147245) ((-945 . -720) T) ((-452 . -171) 147156) ((-244 . -285) 147133) ((-1267 . -308) 147071) ((-479 . -720) T) ((-1246 . -893) 146984) ((-1239 . -893) 146890) ((-1238 . -1048) 146725) ((-1218 . -893) 146558) ((-1217 . -1048) 146366) ((-1199 . -289) 146345) ((-1173 . -367) T) ((-1172 . -367) T) ((-1136 . -150) 146329) ((-1110 . -102) T) ((-1108 . -1090) T) ((-1070 . -23) T) ((-1065 . -102) T) ((-920 . -948) T) ((-731 . -308) 146267) ((-75 . -1205) T) ((-30 . -948) T) ((-168 . -902) 146220) ((-657 . -381) 146192) ((-112 . -838) T) ((-1 . -608) 146174) ((-1070 . -1102) T) ((-128 . -644) 146156) ((-50 . -615) 146140) ((-996 . -408) 146112) ((-591 . -893) 146025) ((-437 . -102) T) ((-140 . -308) NIL) ((-128 . -372) 146007) ((-865 . -1042) T) ((-827 . -844) 145986) ((-81 . -1205) T) ((-705 . -289) T) ((-40 . -1049) T) ((-578 . -171) T) ((-516 . -171) T) ((-509 . -608) 145968) ((-168 . -641) 145878) ((-505 . -608) 145860) ((-350 . -146) 145842) ((-350 . -144) T) ((-358 . -1102) T) ((-352 . -1102) T) ((-344 . -1102) T) ((-997 . -306) T) ((-907 . -306) T) ((-865 . -242) T) ((-108 . -1102) T) ((-865 . -232) 145821) ((-1238 . -111) 145642) ((-1217 . -111) 145431) ((-244 . -1242) 145415) ((-561 . -842) T) ((-358 . -23) T) ((-353 . -348) T) ((-315 . -308) 145402) ((-312 . -308) 145343) ((-352 . -23) T) ((-318 . -130) T) ((-344 . -23) T) ((-997 . -1015) T) ((-31 . -611) 145324) ((-108 . -23) T) ((-244 . -599) 145301) ((-1240 . -38) 145193) ((-1227 . -902) 145172) ((-112 . -1090) T) ((-1028 . -102) T) ((-1227 . -641) 145097) ((-864 . -788) NIL) ((-849 . -641) 145071) ((-864 . -785) NIL) ((-810 . -879) NIL) ((-864 . -720) T) ((-1077 . -512) 144944) ((-776 . -512) 144891) ((-774 . -512) 144843) ((-568 . -641) 144830) ((-810 . -1031) 144658) ((-452 . -512) 144601) ((-387 . -388) T) ((-1238 . -611) 144414) ((-1217 . -611) 144162) ((-60 . -1205) T) ((-616 . -844) 144141) ((-498 . -654) T) ((-1136 . -969) 144110) ((-996 . -450) T) ((-692 . -842) T) ((-508 . -786) T) ((-472 . -1048) 143945) ((-342 . -1090) T) ((-312 . -1141) NIL) ((-288 . -130) T) ((-393 . -1090) T) ((-687 . -369) 143912) ((-863 . -1049) T) ((-222 . -615) 143889) ((-326 . -285) 143866) ((-472 . -111) 143687) ((-1238 . -1042) T) ((-1217 . -1042) T) ((-810 . -376) 143671) ((-168 . -720) T) ((-647 . -102) T) ((-1238 . -242) 143650) ((-1238 . -232) 143602) ((-1217 . -232) 143507) ((-1217 . -242) 143486) ((-996 . -401) NIL) ((-663 . -634) 143434) ((-315 . -38) 143344) ((-312 . -38) 143273) ((-69 . -608) 143255) ((-318 . -491) 143221) ((-1178 . -287) 143200) ((-1212 . -844) T) ((-1103 . -1102) 143110) ((-83 . -1205) T) ((-61 . -608) 143092) ((-477 . -287) 143071) ((-1269 . -1031) 143048) ((-1154 . -1090) T) ((-1103 . -23) 142918) ((-810 . -893) 142854) ((-1227 . -720) T) ((-1092 . -1205) T) ((-472 . -611) 142680) ((-1077 . -289) 142611) ((-959 . -1090) T) ((-886 . -102) T) ((-776 . -289) 142522) ((-326 . -19) 142506) ((-59 . -287) 142483) ((-774 . -289) 142414) ((-849 . -720) T) ((-117 . -842) NIL) ((-514 . -287) 142391) ((-326 . -599) 142368) ((-494 . -287) 142345) ((-452 . -289) 142276) ((-1028 . -308) 142127) ((-674 . -488) 142108) ((-568 . -720) T) ((-669 . -488) 142089) ((-674 . -608) 142039) ((-669 . -608) 142005) ((-655 . -608) 141987) ((-476 . -488) 141968) ((-476 . -608) 141934) ((-244 . -609) 141895) ((-244 . -488) 141872) ((-137 . -488) 141853) ((-136 . -488) 141834) ((-132 . -488) 141815) ((-244 . -608) 141707) ((-212 . -102) T) ((-137 . -608) 141673) ((-136 . -608) 141639) ((-132 . -608) 141605) ((-1137 . -34) T) ((-936 . -1205) T) ((-342 . -711) 141550) ((-663 . -25) T) ((-663 . -21) T) ((-1166 . -611) 141531) ((-472 . -1042) T) ((-630 . -416) 141496) ((-602 . -416) 141461) ((-1110 . -1141) T) ((-578 . -289) T) ((-516 . -289) T) ((-1239 . -306) 141440) ((-472 . -232) 141392) ((-472 . -242) 141371) ((-1218 . -306) 141350) ((-1218 . -1015) NIL) ((-1070 . -130) T) ((-865 . -789) 141329) ((-143 . -102) T) ((-40 . -1090) T) ((-865 . -786) 141308) ((-638 . -1003) 141292) ((-577 . -1049) T) ((-561 . -1049) T) ((-493 . -1049) T) ((-406 . -450) T) ((-358 . -130) T) ((-315 . -399) 141276) ((-312 . -399) 141237) ((-352 . -130) T) ((-344 . -130) T) ((-1171 . -1090) T) ((-1110 . -38) 141224) ((-1084 . -608) 141191) ((-108 . -130) T) ((-947 . -1090) T) ((-914 . -1090) T) ((-765 . -1090) T) ((-665 . -1090) T) ((-694 . -146) T) ((-116 . -146) T) ((-1276 . -21) T) ((-1276 . -25) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-657 . -1048) 141175) ((-529 . -844) T) ((-498 . -844) T) ((-354 . -1048) 141127) ((-351 . -1048) 141079) ((-343 . -1048) 141031) ((-250 . -1205) T) ((-249 . -1205) T) ((-263 . -1048) 140874) ((-246 . -1048) 140717) ((-657 . -111) 140696) ((-545 . -838) T) ((-354 . -111) 140634) ((-351 . -111) 140572) ((-343 . -111) 140510) ((-263 . -111) 140339) ((-246 . -111) 140168) ((-811 . -1209) 140147) ((-618 . -410) 140131) ((-44 . -21) T) ((-44 . -25) T) ((-809 . -634) 140037) ((-811 . -553) 140016) ((-250 . -1031) 139843) ((-249 . -1031) 139670) ((-126 . -119) 139654) ((-903 . -1048) 139619) ((-706 . -102) T) ((-692 . -1049) T) ((-534 . -613) 139522) ((-342 . -171) T) ((-151 . -25) T) ((-88 . -608) 139504) ((-151 . -21) T) ((-903 . -111) 139460) ((-40 . -711) 139405) ((-863 . -1090) T) ((-657 . -611) 139382) ((-639 . -611) 139363) ((-354 . -611) 139300) ((-351 . -611) 139237) ((-545 . -1090) T) ((-343 . -611) 139174) ((-326 . -609) 139135) ((-326 . -608) 139047) ((-263 . -611) 138800) ((-246 . -611) 138585) ((-1217 . -786) 138538) ((-1217 . -789) 138491) ((-250 . -376) 138460) ((-249 . -376) 138429) ((-647 . -38) 138399) ((-603 . -34) T) ((-480 . -1102) 138309) ((-473 . -34) T) ((-1103 . -130) 138179) ((-957 . -25) 137990) ((-903 . -611) 137940) ((-867 . -608) 137922) ((-957 . -21) 137877) ((-809 . -21) 137787) ((-809 . -25) 137638) ((-1211 . -367) T) ((-618 . -1049) T) ((-1168 . -553) 137617) ((-1162 . -47) 137594) ((-354 . -1042) T) ((-351 . -1042) T) ((-480 . -23) 137464) ((-343 . -1042) T) ((-246 . -1042) T) ((-263 . -1042) T) ((-1115 . -47) 137436) ((-117 . -1049) T) ((-1027 . -641) 137410) ((-951 . -34) T) ((-354 . -232) 137389) ((-354 . -242) T) ((-351 . -232) 137368) ((-351 . -242) T) ((-343 . -232) 137347) ((-343 . -242) T) ((-246 . -325) 137304) ((-263 . -325) 137276) ((-263 . -232) 137255) ((-1146 . -150) 137239) ((-250 . -893) 137171) ((-249 . -893) 137103) ((-1072 . -844) T) ((-413 . -1102) T) ((-1046 . -23) T) ((-903 . -1042) T) ((-321 . -641) 137085) ((-1017 . -842) T) ((-1199 . -995) 137051) ((-1163 . -913) 137030) ((-1157 . -913) 137009) ((-1157 . -814) NIL) ((-903 . -242) T) ((-811 . -362) 136988) ((-384 . -23) T) ((-127 . -1090) 136966) ((-121 . -1090) 136944) ((-903 . -232) T) ((-128 . -34) T) ((-378 . -641) 136909) ((-863 . -711) 136896) ((-1039 . -150) 136861) ((-40 . -171) T) ((-687 . -410) 136843) ((-706 . -308) 136830) ((-830 . -641) 136790) ((-821 . -641) 136764) ((-318 . -25) T) ((-318 . -21) T) ((-651 . -285) 136743) ((-577 . -1090) T) ((-561 . -1090) T) ((-493 . -1090) T) ((-244 . -287) 136720) ((-312 . -230) 136681) ((-1162 . -879) NIL) ((-55 . -1090) T) ((-1115 . -879) 136540) ((-129 . -844) T) ((-1162 . -1031) 136420) ((-1115 . -1031) 136303) ((-182 . -608) 136285) ((-848 . -1031) 136181) ((-776 . -285) 136108) ((-811 . -1102) T) ((-1027 . -720) T) ((-597 . -644) 136092) ((-1039 . -969) 136021) ((-992 . -102) T) ((-811 . -23) T) ((-706 . -1141) 135999) ((-687 . -1049) T) ((-597 . -372) 135983) ((-350 . -450) T) ((-342 . -289) T) ((-1255 . -1090) T) ((-247 . -1090) T) ((-398 . -102) T) ((-288 . -21) T) ((-288 . -25) T) ((-360 . -720) T) ((-704 . -1090) T) ((-692 . -1090) T) ((-360 . -471) T) ((-1199 . -608) 135965) ((-1162 . -376) 135949) ((-1115 . -376) 135933) ((-1017 . -410) 135895) ((-140 . -228) 135877) ((-378 . -788) T) ((-378 . -785) T) ((-863 . -171) T) ((-378 . -720) T) ((-705 . -608) 135859) ((-706 . -38) 135688) ((-1254 . -1252) 135672) ((-350 . -401) T) ((-1254 . -1090) 135622) ((-577 . -711) 135609) ((-561 . -711) 135596) ((-493 . -711) 135561) ((-315 . -624) 135540) ((-830 . -720) T) ((-821 . -720) T) ((-638 . -1205) T) ((-1070 . -634) 135488) ((-1162 . -893) 135431) ((-1115 . -893) 135415) ((-655 . -1048) 135399) ((-108 . -634) 135381) ((-480 . -130) 135251) ((-1168 . -1102) T) ((-945 . -47) 135220) ((-618 . -1090) T) ((-655 . -111) 135199) ((-489 . -608) 135165) ((-326 . -287) 135142) ((-479 . -47) 135099) ((-1168 . -23) T) ((-117 . -1090) T) ((-103 . -102) 135077) ((-1266 . -1102) T) ((-1046 . -130) T) ((-1017 . -1049) T) ((-813 . -1031) 135061) ((-996 . -718) 135033) ((-1266 . -23) T) ((-692 . -711) 134998) ((-582 . -608) 134980) ((-385 . -1031) 134964) ((-353 . -1049) T) ((-384 . -130) T) ((-323 . -1031) 134948) ((-224 . -879) 134930) ((-997 . -913) T) ((-91 . -34) T) ((-997 . -814) T) ((-907 . -913) T) ((-1185 . -608) 134912) ((-1110 . -822) T) ((-485 . -1209) T) ((-1095 . -1090) T) ((-1070 . -21) T) ((-1070 . -25) T) ((-216 . -1209) T) ((-992 . -308) 134877) ((-224 . -1031) 134837) ((-40 . -289) T) ((-708 . -641) 134797) ((-674 . -611) 134778) ((-669 . -611) 134759) ((-485 . -553) T) ((-476 . -611) 134740) ((-358 . -25) T) ((-358 . -21) T) ((-352 . -25) T) ((-216 . -553) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-244 . -611) 134717) ((-137 . -611) 134698) ((-136 . -611) 134679) ((-132 . -611) 134660) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1049) T) ((-577 . -171) T) ((-561 . -171) T) ((-493 . -171) T) ((-651 . -608) 134642) ((-731 . -730) 134626) ((-335 . -608) 134608) ((-68 . -382) T) ((-68 . -394) T) ((-1092 . -107) 134592) ((-1053 . -879) 134574) ((-945 . -879) 134499) ((-646 . -1102) T) ((-618 . -711) 134486) ((-479 . -879) NIL) ((-1136 . -102) T) ((-1084 . -613) 134470) ((-1053 . -1031) 134452) ((-97 . -608) 134434) ((-475 . -146) T) ((-945 . -1031) 134314) ((-117 . -711) 134259) ((-646 . -23) T) ((-479 . -1031) 134135) ((-1077 . -609) NIL) ((-1077 . -608) 134117) ((-776 . -609) NIL) ((-776 . -608) 134078) ((-774 . -609) 133712) ((-774 . -608) 133626) ((-1103 . -634) 133532) ((-459 . -608) 133514) ((-452 . -608) 133496) ((-452 . -609) 133357) ((-1028 . -228) 133303) ((-865 . -902) 133282) ((-126 . -34) T) ((-811 . -130) T) ((-642 . -608) 133264) ((-575 . -102) T) ((-354 . -1273) 133248) ((-351 . -1273) 133232) ((-343 . -1273) 133216) ((-127 . -512) 133149) ((-121 . -512) 133082) ((-509 . -786) T) ((-509 . -789) T) ((-508 . -788) T) ((-103 . -308) 133020) ((-221 . -102) 132998) ((-687 . -1090) T) ((-692 . -171) T) ((-865 . -641) 132950) ((-65 . -383) T) ((-274 . -608) 132932) ((-65 . -394) T) ((-945 . -376) 132916) ((-863 . -289) T) ((-50 . -608) 132898) ((-992 . -38) 132846) ((-578 . -608) 132828) ((-479 . -376) 132812) ((-578 . -609) 132794) ((-516 . -608) 132776) ((-903 . -1273) 132763) ((-864 . -1205) T) ((-694 . -450) T) ((-493 . -512) 132729) ((-485 . -362) T) ((-354 . -367) 132708) ((-351 . -367) 132687) ((-343 . -367) 132666) ((-708 . -720) T) ((-216 . -362) T) ((-116 . -450) T) ((-1277 . -1268) 132650) ((-864 . -877) 132627) ((-864 . -879) NIL) ((-957 . -844) 132526) ((-809 . -844) 132477) ((-647 . -649) 132461) ((-1191 . -34) T) ((-170 . -608) 132443) ((-1103 . -21) 132353) ((-1103 . -25) 132204) ((-864 . -1031) 132181) ((-945 . -893) 132162) ((-1227 . -47) 132139) ((-903 . -367) T) ((-59 . -644) 132123) ((-514 . -644) 132107) ((-479 . -893) 132084) ((-71 . -439) T) ((-71 . -394) T) ((-494 . -644) 132068) ((-59 . -372) 132052) ((-618 . -171) T) ((-514 . -372) 132036) ((-494 . -372) 132020) ((-821 . -702) 132004) ((-1162 . -306) 131983) ((-1168 . -130) T) ((-117 . -171) T) ((-1136 . -308) 131921) ((-168 . -1205) T) ((-630 . -738) 131905) ((-602 . -738) 131889) ((-1266 . -130) T) ((-1239 . -913) 131868) ((-1218 . -913) 131847) ((-1218 . -814) NIL) ((-687 . -711) 131797) ((-1217 . -902) 131750) ((-1017 . -1090) T) ((-864 . -376) 131727) ((-864 . -337) 131704) ((-898 . -1102) T) ((-168 . -877) 131688) ((-168 . -879) 131613) ((-485 . -1102) T) ((-353 . -1090) T) ((-216 . -1102) T) ((-76 . -439) T) ((-76 . -394) T) ((-168 . -1031) 131509) ((-318 . -844) T) ((-1254 . -512) 131442) ((-1238 . -641) 131339) ((-1217 . -641) 131209) ((-865 . -788) 131188) ((-865 . -785) 131167) ((-865 . -720) T) ((-485 . -23) T) ((-222 . -608) 131149) ((-173 . -450) T) ((-221 . -308) 131087) ((-86 . -439) T) ((-86 . -394) T) ((-216 . -23) T) ((-1278 . -1271) 131066) ((-577 . -289) T) ((-561 . -289) T) ((-670 . -1031) 131050) ((-493 . -289) T) ((-135 . -468) 131005) ((-48 . -1090) T) ((-706 . -230) 130989) ((-864 . -893) NIL) ((-1227 . -879) NIL) ((-882 . -102) T) ((-878 . -102) T) ((-387 . -1090) T) ((-168 . -376) 130973) ((-168 . -337) 130957) ((-1227 . -1031) 130837) ((-849 . -1031) 130733) ((-1132 . -102) T) ((-646 . -130) T) ((-117 . -512) 130641) ((-655 . -786) 130620) ((-655 . -789) 130599) ((-568 . -1031) 130581) ((-293 . -1261) 130551) ((-859 . -102) T) ((-956 . -553) 130530) ((-1199 . -1048) 130413) ((-480 . -634) 130319) ((-897 . -1090) T) ((-1017 . -711) 130256) ((-705 . -1048) 130221) ((-612 . -102) T) ((-597 . -34) T) ((-1137 . -1205) T) ((-1199 . -111) 130090) ((-472 . -641) 129987) ((-353 . -711) 129932) ((-168 . -893) 129891) ((-692 . -289) T) ((-687 . -171) T) ((-705 . -111) 129847) ((-1282 . -1049) T) ((-1227 . -376) 129831) ((-417 . -1209) 129809) ((-1108 . -608) 129791) ((-312 . -842) NIL) ((-417 . -553) T) ((-224 . -306) T) ((-1217 . -785) 129744) ((-1217 . -788) 129697) ((-1238 . -720) T) ((-1217 . -720) T) ((-48 . -711) 129662) ((-224 . -1015) T) ((-350 . -1261) 129639) ((-1240 . -410) 129605) ((-712 . -720) T) ((-1227 . -893) 129548) ((-1199 . -611) 129430) ((-112 . -608) 129412) ((-112 . -609) 129394) ((-712 . -471) T) ((-705 . -611) 129344) ((-480 . -21) 129254) ((-127 . -487) 129238) ((-121 . -487) 129222) ((-480 . -25) 129073) ((-618 . -289) T) ((-582 . -1048) 129048) ((-436 . -1090) T) ((-1053 . -306) T) ((-117 . -289) T) ((-1094 . -102) T) ((-996 . -102) T) ((-582 . -111) 129016) ((-1132 . -308) 128954) ((-1199 . -1042) T) ((-1053 . -1015) T) ((-66 . -1205) T) ((-1046 . -25) T) ((-1046 . -21) T) ((-705 . -1042) T) ((-384 . -21) T) ((-384 . -25) T) ((-687 . -512) NIL) ((-1017 . -171) T) ((-705 . -242) T) ((-1053 . -543) T) ((-504 . -102) T) ((-500 . -102) T) ((-353 . -171) T) ((-342 . -608) 128936) ((-393 . -608) 128918) ((-472 . -720) T) ((-1110 . -842) T) ((-885 . -1031) 128886) ((-108 . -844) T) ((-651 . -1048) 128870) ((-485 . -130) T) ((-1240 . -1049) T) ((-216 . -130) T) ((-1146 . -102) 128848) ((-99 . -1090) T) ((-244 . -659) 128832) ((-244 . -644) 128816) ((-651 . -111) 128795) ((-582 . -611) 128779) ((-315 . -410) 128763) ((-244 . -372) 128747) ((-1149 . -234) 128694) ((-992 . -230) 128678) ((-74 . -1205) T) ((-48 . -171) T) ((-694 . -386) T) ((-694 . -142) T) ((-1277 . -102) T) ((-1185 . -611) 128660) ((-1077 . -1048) 128503) ((-263 . -902) 128482) ((-246 . -902) 128461) ((-776 . -1048) 128284) ((-774 . -1048) 128127) ((-603 . -1205) T) ((-1154 . -608) 128109) ((-1077 . -111) 127938) ((-1039 . -102) T) ((-473 . -1205) T) ((-459 . -1048) 127909) ((-452 . -1048) 127752) ((-657 . -641) 127736) ((-864 . -306) T) ((-776 . -111) 127545) ((-774 . -111) 127374) ((-354 . -641) 127326) ((-351 . -641) 127278) ((-343 . -641) 127230) ((-263 . -641) 127155) ((-246 . -641) 127080) ((-1148 . -844) T) ((-1078 . -1031) 127064) ((-459 . -111) 127025) ((-452 . -111) 126854) ((-1066 . -1031) 126831) ((-993 . -34) T) ((-959 . -608) 126813) ((-951 . -1205) T) ((-126 . -1003) 126797) ((-956 . -1102) T) ((-864 . -1015) NIL) ((-729 . -1102) T) ((-709 . -1102) T) ((-651 . -611) 126715) ((-1254 . -487) 126699) ((-1132 . -38) 126659) ((-956 . -23) T) ((-837 . -102) T) ((-811 . -21) T) ((-811 . -25) T) ((-729 . -23) T) ((-709 . -23) T) ((-110 . -654) T) ((-903 . -641) 126624) ((-578 . -1048) 126589) ((-516 . -1048) 126534) ((-226 . -57) 126492) ((-451 . -23) T) ((-406 . -102) T) ((-262 . -102) T) ((-687 . -289) T) ((-859 . -38) 126462) ((-578 . -111) 126418) ((-516 . -111) 126347) ((-1077 . -611) 126083) ((-417 . -1102) T) ((-315 . -1049) 125973) ((-312 . -1049) T) ((-128 . -1205) T) ((-776 . -611) 125721) ((-774 . -611) 125487) ((-651 . -1042) T) ((-1282 . -1090) T) ((-452 . -611) 125272) ((-168 . -306) 125203) ((-417 . -23) T) ((-40 . -608) 125185) ((-40 . -609) 125169) ((-108 . -985) 125151) ((-116 . -862) 125135) ((-642 . -611) 125119) ((-48 . -512) 125085) ((-1191 . -1003) 125069) ((-1171 . -608) 125036) ((-1178 . -34) T) ((-947 . -608) 125002) ((-914 . -608) 124984) ((-1103 . -844) 124935) ((-765 . -608) 124917) ((-665 . -608) 124899) ((-1146 . -308) 124837) ((-477 . -34) T) ((-1082 . -1205) T) ((-475 . -450) T) ((-1131 . -34) T) ((-1077 . -1042) T) ((-50 . -611) 124806) ((-776 . -1042) T) ((-774 . -1042) T) ((-640 . -234) 124790) ((-627 . -234) 124736) ((-578 . -611) 124686) ((-516 . -611) 124616) ((-1227 . -306) 124595) ((-1077 . -325) 124556) ((-452 . -1042) T) ((-1168 . -21) T) ((-1077 . -232) 124535) ((-776 . -325) 124512) ((-776 . -232) T) ((-774 . -325) 124484) ((-725 . -1209) 124463) ((-326 . -644) 124447) ((-1168 . -25) T) ((-59 . -34) T) ((-517 . -34) T) ((-514 . -34) T) ((-452 . -325) 124426) ((-326 . -372) 124410) ((-495 . -34) T) ((-494 . -34) T) ((-996 . -1141) NIL) ((-725 . -553) 124341) ((-630 . -102) T) ((-602 . -102) T) ((-354 . -720) T) ((-351 . -720) T) ((-343 . -720) T) ((-263 . -720) T) ((-246 . -720) T) ((-1039 . -308) 124249) ((-894 . -1090) 124227) ((-50 . -1042) T) ((-1266 . -21) T) ((-1266 . -25) T) ((-1164 . -553) 124206) ((-1163 . -1209) 124185) ((-578 . -1042) T) ((-516 . -1042) T) ((-1157 . -1209) 124164) ((-360 . -1031) 124148) ((-321 . -1031) 124132) ((-1017 . -289) T) ((-378 . -879) 124114) ((-1163 . -553) 124065) ((-1157 . -553) 124016) ((-996 . -38) 123961) ((-793 . -1102) T) ((-903 . -720) T) ((-578 . -242) T) ((-578 . -232) T) ((-516 . -232) T) ((-516 . -242) T) ((-1116 . -553) 123940) ((-353 . -289) T) ((-640 . -688) 123924) ((-378 . -1031) 123884) ((-1110 . -1049) T) ((-103 . -125) 123868) ((-793 . -23) T) ((-1276 . -1271) 123844) ((-1254 . -285) 123821) ((-406 . -308) 123786) ((-1274 . -1271) 123765) ((-1240 . -1090) T) ((-863 . -608) 123747) ((-830 . -1031) 123716) ((-202 . -781) T) ((-201 . -781) T) ((-200 . -781) T) ((-199 . -781) T) ((-198 . -781) T) ((-197 . -781) T) ((-196 . -781) T) ((-195 . -781) T) ((-194 . -781) T) ((-193 . -781) T) ((-545 . -608) 123698) ((-493 . -995) T) ((-273 . -833) T) ((-272 . -833) T) ((-271 . -833) T) ((-270 . -833) T) ((-48 . -289) T) ((-269 . -833) T) ((-268 . -833) T) ((-267 . -833) T) ((-192 . -781) T) ((-607 . -844) T) ((-647 . -410) 123682) ((-222 . -611) 123644) ((-110 . -844) T) ((-646 . -21) T) ((-646 . -25) T) ((-1277 . -38) 123614) ((-117 . -285) 123565) ((-1254 . -19) 123549) ((-1254 . -599) 123526) ((-1267 . -1090) T) ((-1067 . -1090) T) ((-980 . -1090) T) ((-956 . -130) T) ((-731 . -1090) T) ((-729 . -130) T) ((-709 . -130) T) ((-509 . -787) T) ((-406 . -1141) 123504) ((-451 . -130) T) ((-509 . -788) T) ((-222 . -1042) T) ((-293 . -102) 123286) ((-140 . -1090) T) ((-692 . -995) T) ((-91 . -1205) T) ((-127 . -608) 123218) ((-121 . -608) 123150) ((-1282 . -171) T) ((-1163 . -362) 123129) ((-1157 . -362) 123108) ((-315 . -1090) T) ((-417 . -130) T) ((-312 . -1090) T) ((-406 . -38) 123060) ((-1123 . -102) T) ((-1240 . -711) 122952) ((-647 . -1049) T) ((-1125 . -1249) T) ((-318 . -144) 122931) ((-318 . -146) 122910) ((-138 . -1090) T) ((-135 . -1090) T) ((-114 . -1090) T) ((-852 . -102) T) ((-577 . -608) 122892) ((-561 . -609) 122791) ((-561 . -608) 122773) ((-493 . -608) 122755) ((-493 . -609) 122700) ((-483 . -23) T) ((-480 . -844) 122651) ((-485 . -634) 122633) ((-958 . -608) 122615) ((-216 . -634) 122597) ((-224 . -403) T) ((-655 . -641) 122581) ((-55 . -608) 122563) ((-1162 . -913) 122542) ((-725 . -1102) T) ((-350 . -102) T) ((-1204 . -1073) T) ((-1110 . -838) T) ((-812 . -844) T) ((-725 . -23) T) ((-342 . -1048) 122487) ((-1148 . -1147) T) ((-1137 . -107) 122471) ((-1164 . -1102) T) ((-1163 . -1102) T) ((-513 . -1031) 122455) ((-1157 . -1102) T) ((-1116 . -1102) T) ((-342 . -111) 122384) ((-997 . -1209) T) ((-126 . -1205) T) ((-907 . -1209) T) ((-687 . -285) NIL) ((-1255 . -608) 122366) ((-1164 . -23) T) ((-1163 . -23) T) ((-1157 . -23) T) ((-997 . -553) T) ((-1132 . -230) 122350) ((-907 . -553) T) ((-1116 . -23) T) ((-247 . -608) 122332) ((-1065 . -1090) T) ((-793 . -130) T) ((-704 . -608) 122314) ((-315 . -711) 122224) ((-312 . -711) 122153) ((-692 . -608) 122135) ((-692 . -609) 122080) ((-406 . -399) 122064) ((-437 . -1090) T) ((-485 . -25) T) ((-485 . -21) T) ((-1110 . -1090) T) ((-216 . -25) T) ((-216 . -21) T) ((-706 . -410) 122048) ((-708 . -1031) 122017) ((-1254 . -608) 121929) ((-1254 . -609) 121890) ((-1240 . -171) T) ((-244 . -34) T) ((-342 . -611) 121820) ((-393 . -611) 121802) ((-919 . -967) T) ((-1191 . -1205) T) ((-655 . -785) 121781) ((-655 . -788) 121760) ((-397 . -394) T) ((-521 . -102) 121738) ((-1028 . -1090) T) ((-221 . -988) 121722) ((-502 . -102) T) ((-618 . -608) 121704) ((-45 . -844) NIL) ((-618 . -609) 121681) ((-1028 . -605) 121656) ((-894 . -512) 121589) ((-342 . -1042) T) ((-117 . -609) NIL) ((-117 . -608) 121571) ((-865 . -1205) T) ((-663 . -416) 121555) ((-663 . -1113) 121500) ((-498 . -150) 121482) ((-342 . -232) T) ((-342 . -242) T) ((-40 . -1048) 121427) ((-865 . -877) 121411) ((-865 . -879) 121336) ((-706 . -1049) T) ((-687 . -995) NIL) ((-3 . |UnionCategory|) T) ((-1238 . -47) 121306) ((-1217 . -47) 121283) ((-1131 . -1003) 121254) ((-224 . -913) T) ((-40 . -111) 121183) ((-865 . -1031) 121047) ((-1110 . -711) 121034) ((-1095 . -608) 121016) ((-1070 . -146) 120995) ((-1070 . -144) 120946) ((-997 . -362) T) ((-318 . -1193) 120912) ((-378 . -306) T) ((-318 . -1190) 120878) ((-315 . -171) 120857) ((-312 . -171) T) ((-996 . -230) 120834) ((-907 . -362) T) ((-578 . -1273) 120821) ((-516 . -1273) 120798) ((-358 . -146) 120777) ((-358 . -144) 120728) ((-352 . -146) 120707) ((-352 . -144) 120658) ((-603 . -1181) 120634) ((-344 . -146) 120613) ((-344 . -144) 120564) ((-318 . -35) 120530) ((-473 . -1181) 120509) ((0 . |EnumerationCategory|) T) ((-318 . -95) 120475) ((-378 . -1015) T) ((-108 . -146) T) ((-108 . -144) NIL) ((-45 . -234) 120425) ((-647 . -1090) T) ((-603 . -107) 120372) ((-483 . -130) T) ((-473 . -107) 120322) ((-239 . -1102) 120232) ((-865 . -376) 120216) ((-865 . -337) 120200) ((-239 . -23) 120070) ((-40 . -611) 120000) ((-1053 . -913) T) ((-1053 . -814) T) ((-578 . -367) T) ((-516 . -367) T) ((-350 . -1141) T) ((-326 . -34) T) ((-44 . -416) 119984) ((-1171 . -611) 119919) ((-866 . -1205) T) ((-389 . -738) 119903) ((-1267 . -512) 119836) ((-725 . -130) T) ((-665 . -611) 119820) ((-1246 . -553) 119799) ((-1239 . -1209) 119778) ((-1239 . -553) 119729) ((-1218 . -1209) 119708) ((-310 . -1073) T) ((-1218 . -553) 119659) ((-731 . -512) 119592) ((-1217 . -1205) 119571) ((-1217 . -879) 119444) ((-886 . -1090) T) ((-143 . -838) T) ((-1217 . -877) 119414) ((-684 . -608) 119396) ((-1164 . -130) T) ((-521 . -308) 119334) ((-1163 . -130) T) ((-140 . -512) NIL) ((-1157 . -130) T) ((-1116 . -130) T) ((-1017 . -995) T) ((-997 . -23) T) ((-350 . -38) 119299) ((-997 . -1102) T) ((-907 . -1102) T) ((-82 . -608) 119281) ((-40 . -1042) T) ((-863 . -1048) 119268) ((-996 . -348) NIL) ((-865 . -893) 119227) ((-694 . -102) T) ((-964 . -23) T) ((-597 . -1205) T) ((-907 . -23) T) ((-863 . -111) 119212) ((-426 . -1102) T) ((-212 . -1090) T) ((-472 . -47) 119182) ((-133 . -102) T) ((-40 . -232) 119154) ((-40 . -242) T) ((-116 . -102) T) ((-592 . -553) 119133) ((-591 . -553) 119112) ((-687 . -608) 119094) ((-687 . -609) 119002) ((-315 . -512) 118968) ((-312 . -512) 118860) ((-1238 . -1031) 118844) ((-1217 . -1031) 118630) ((-992 . -410) 118614) ((-426 . -23) T) ((-1110 . -171) T) ((-1240 . -289) T) ((-647 . -711) 118584) ((-143 . -1090) T) ((-48 . -995) T) ((-406 . -230) 118568) ((-294 . -234) 118518) ((-864 . -913) T) ((-864 . -814) NIL) ((-863 . -611) 118490) ((-858 . -844) T) ((-1217 . -337) 118460) ((-1217 . -376) 118430) ((-221 . -1111) 118414) ((-1254 . -287) 118391) ((-1199 . -641) 118316) ((-956 . -21) T) ((-956 . -25) T) ((-729 . -21) T) ((-729 . -25) T) ((-709 . -21) T) ((-709 . -25) T) ((-705 . -641) 118281) ((-451 . -21) T) ((-451 . -25) T) ((-338 . -102) T) ((-173 . -102) T) ((-992 . -1049) T) ((-863 . -1042) T) ((-768 . -102) T) ((-1239 . -362) 118260) ((-1238 . -893) 118166) ((-1218 . -362) 118145) ((-1217 . -893) 117996) ((-1017 . -608) 117978) ((-406 . -822) 117931) ((-1164 . -491) 117897) ((-168 . -913) 117828) ((-1163 . -491) 117794) ((-1157 . -491) 117760) ((-706 . -1090) T) ((-1116 . -491) 117726) ((-577 . -1048) 117713) ((-561 . -1048) 117700) ((-493 . -1048) 117665) ((-315 . -289) 117644) ((-312 . -289) T) ((-353 . -608) 117626) ((-417 . -25) T) ((-417 . -21) T) ((-99 . -285) 117605) ((-577 . -111) 117590) ((-561 . -111) 117575) ((-493 . -111) 117531) ((-1166 . -879) 117498) ((-894 . -487) 117482) ((-48 . -608) 117464) ((-48 . -609) 117409) ((-239 . -130) 117279) ((-1227 . -913) 117258) ((-810 . -1209) 117237) ((-387 . -488) 117218) ((-1028 . -512) 117062) ((-387 . -608) 117028) ((-810 . -553) 116959) ((-582 . -641) 116934) ((-263 . -47) 116906) ((-246 . -47) 116863) ((-529 . -507) 116840) ((-577 . -611) 116812) ((-561 . -611) 116784) ((-493 . -611) 116717) ((-993 . -1205) T) ((-692 . -1048) 116682) ((-1246 . -23) T) ((-1246 . -1102) T) ((-1239 . -1102) T) ((-1218 . -1102) T) ((-996 . -369) 116654) ((-112 . -367) T) ((-472 . -893) 116560) ((-1239 . -23) T) ((-897 . -608) 116542) ((-55 . -611) 116524) ((-91 . -107) 116508) ((-1199 . -720) T) ((-898 . -844) 116459) ((-694 . -1141) T) ((-692 . -111) 116415) ((-1218 . -23) T) ((-592 . -1102) T) ((-591 . -1102) T) ((-706 . -711) 116244) ((-705 . -720) T) ((-1110 . -289) T) ((-997 . -130) T) ((-485 . -844) T) ((-964 . -130) T) ((-907 . -130) T) ((-793 . -25) T) ((-216 . -844) T) ((-793 . -21) T) ((-577 . -1042) T) ((-561 . -1042) T) ((-493 . -1042) T) ((-592 . -23) T) ((-342 . -1273) 116221) ((-318 . -450) 116200) ((-338 . -308) 116187) ((-591 . -23) T) ((-426 . -130) T) ((-651 . -641) 116161) ((-244 . -1003) 116145) ((-865 . -306) T) ((-1278 . -1268) 116129) ((-765 . -786) T) ((-765 . -789) T) ((-694 . -38) 116116) ((-561 . -232) T) ((-493 . -242) T) ((-493 . -232) T) ((-1140 . -234) 116066) ((-1077 . -902) 116045) ((-116 . -38) 116032) ((-208 . -794) T) ((-207 . -794) T) ((-206 . -794) T) ((-205 . -794) T) ((-865 . -1015) 116010) ((-1267 . -487) 115994) ((-776 . -902) 115973) ((-774 . -902) 115952) ((-1178 . -1205) T) ((-452 . -902) 115931) ((-731 . -487) 115915) ((-1077 . -641) 115840) ((-692 . -611) 115775) ((-776 . -641) 115700) ((-618 . -1048) 115687) ((-477 . -1205) T) ((-342 . -367) T) ((-140 . -487) 115669) ((-774 . -641) 115594) ((-1131 . -1205) T) ((-546 . -844) T) ((-459 . -641) 115565) ((-263 . -879) 115424) ((-246 . -879) NIL) ((-117 . -1048) 115369) ((-452 . -641) 115294) ((-657 . -1031) 115271) ((-618 . -111) 115256) ((-354 . -1031) 115240) ((-351 . -1031) 115224) ((-343 . -1031) 115208) ((-263 . -1031) 115052) ((-246 . -1031) 114928) ((-117 . -111) 114857) ((-59 . -1205) T) ((-517 . -1205) T) ((-514 . -1205) T) ((-495 . -1205) T) ((-494 . -1205) T) ((-436 . -608) 114839) ((-433 . -608) 114821) ((-3 . -102) T) ((-1020 . -1198) 114790) ((-827 . -102) T) ((-682 . -57) 114748) ((-692 . -1042) T) ((-50 . -641) 114722) ((-288 . -450) T) ((-474 . -1198) 114691) ((0 . -102) T) ((-578 . -641) 114656) ((-516 . -641) 114601) ((-49 . -102) T) ((-903 . -1031) 114588) ((-692 . -242) T) ((-1070 . -408) 114567) ((-725 . -634) 114515) ((-992 . -1090) T) ((-706 . -171) 114406) ((-618 . -611) 114301) ((-485 . -985) 114283) ((-263 . -376) 114267) ((-246 . -376) 114251) ((-398 . -1090) T) ((-1019 . -102) 114229) ((-338 . -38) 114213) ((-216 . -985) 114195) ((-117 . -611) 114125) ((-173 . -38) 114057) ((-1238 . -306) 114036) ((-1217 . -306) 114015) ((-651 . -720) T) ((-99 . -608) 113997) ((-1157 . -634) 113949) ((-483 . -25) T) ((-483 . -21) T) ((-1217 . -1015) 113901) ((-618 . -1042) T) ((-378 . -403) T) ((-389 . -102) T) ((-1095 . -613) 113816) ((-263 . -893) 113762) ((-246 . -893) 113739) ((-117 . -1042) T) ((-810 . -1102) T) ((-1077 . -720) T) ((-618 . -232) 113718) ((-616 . -102) T) ((-776 . -720) T) ((-774 . -720) T) ((-412 . -1102) T) ((-117 . -242) T) ((-40 . -367) NIL) ((-117 . -232) NIL) ((-1210 . -844) T) ((-452 . -720) T) ((-810 . -23) T) ((-725 . -25) T) ((-725 . -21) T) ((-696 . -844) T) ((-1067 . -285) 113697) ((-78 . -395) T) ((-78 . -394) T) ((-531 . -761) 113679) ((-687 . -1048) 113629) ((-1246 . -130) T) ((-1239 . -130) T) ((-1218 . -130) T) ((-1132 . -410) 113613) ((-630 . -366) 113545) ((-602 . -366) 113477) ((-1146 . -1139) 113461) ((-103 . -1090) 113439) ((-1164 . -25) T) ((-1164 . -21) T) ((-1163 . -21) T) ((-992 . -711) 113387) ((-222 . -641) 113354) ((-687 . -111) 113288) ((-50 . -720) T) ((-1163 . -25) T) ((-350 . -348) T) ((-1157 . -21) T) ((-1070 . -450) 113239) ((-1157 . -25) T) ((-706 . -512) 113186) ((-578 . -720) T) ((-516 . -720) T) ((-1116 . -21) T) ((-1116 . -25) T) ((-592 . -130) T) ((-591 . -130) T) ((-358 . -450) T) ((-352 . -450) T) ((-344 . -450) T) ((-472 . -306) 113165) ((-1212 . -102) T) ((-312 . -285) 113100) ((-108 . -450) T) ((-79 . -439) T) ((-79 . -394) T) ((-475 . -102) T) ((-684 . -611) 113084) ((-1282 . -608) 113066) ((-1282 . -609) 113048) ((-1070 . -401) 113027) ((-1028 . -487) 112958) ((-561 . -789) T) ((-561 . -786) T) ((-1054 . -234) 112904) ((-358 . -401) 112855) ((-352 . -401) 112806) ((-344 . -401) 112757) ((-1269 . -1102) T) ((-687 . -611) 112692) ((-1269 . -23) T) ((-1256 . -102) T) ((-174 . -608) 112674) ((-1132 . -1049) T) ((-545 . -367) T) ((-663 . -738) 112658) ((-1168 . -144) 112637) ((-1168 . -146) 112616) ((-1136 . -1090) T) ((-1136 . -1062) 112585) ((-69 . -1205) T) ((-1017 . -1048) 112522) ((-859 . -1049) T) ((-239 . -634) 112428) ((-687 . -1042) T) ((-353 . -1048) 112373) ((-61 . -1205) T) ((-1017 . -111) 112289) ((-894 . -608) 112200) ((-687 . -242) T) ((-687 . -232) NIL) ((-837 . -842) 112179) ((-692 . -789) T) ((-692 . -786) T) ((-996 . -410) 112156) ((-353 . -111) 112085) ((-378 . -913) T) ((-406 . -842) 112064) ((-706 . -289) 111975) ((-222 . -720) T) ((-1246 . -491) 111941) ((-1239 . -491) 111907) ((-1218 . -491) 111873) ((-575 . -1090) T) ((-315 . -995) 111852) ((-221 . -1090) 111830) ((-318 . -966) 111792) ((-105 . -102) T) ((-48 . -1048) 111757) ((-1278 . -102) T) ((-380 . -102) T) ((-48 . -111) 111713) ((-997 . -634) 111695) ((-1240 . -608) 111677) ((-529 . -102) T) ((-498 . -102) T) ((-1123 . -1124) 111661) ((-151 . -1261) 111645) ((-244 . -1205) T) ((-1204 . -102) T) ((-1017 . -611) 111582) ((-1162 . -1209) 111561) ((-353 . -611) 111491) ((-1115 . -1209) 111470) ((-239 . -21) 111380) ((-239 . -25) 111231) ((-127 . -119) 111215) ((-121 . -119) 111199) ((-44 . -738) 111183) ((-1162 . -553) 111094) ((-1115 . -553) 111025) ((-1028 . -285) 111000) ((-1156 . -1073) T) ((-987 . -1073) T) ((-810 . -130) T) ((-117 . -789) NIL) ((-117 . -786) NIL) ((-354 . -306) T) ((-351 . -306) T) ((-343 . -306) T) ((-250 . -1102) 110910) ((-249 . -1102) 110820) ((-1017 . -1042) T) ((-996 . -1049) T) ((-48 . -611) 110753) ((-342 . -641) 110698) ((-616 . -38) 110682) ((-1267 . -608) 110644) ((-1267 . -609) 110605) ((-1067 . -608) 110587) ((-1017 . -242) T) ((-353 . -1042) T) ((-809 . -1261) 110557) ((-250 . -23) T) ((-249 . -23) T) ((-980 . -608) 110539) ((-731 . -609) 110500) ((-731 . -608) 110482) ((-793 . -844) 110461) ((-1149 . -150) 110408) ((-992 . -512) 110320) ((-353 . -232) T) ((-353 . -242) T) ((-387 . -611) 110301) ((-997 . -25) T) ((-140 . -608) 110283) ((-140 . -609) 110242) ((-903 . -306) T) ((-997 . -21) T) ((-964 . -25) T) ((-907 . -21) T) ((-907 . -25) T) ((-426 . -21) T) ((-426 . -25) T) ((-837 . -410) 110226) ((-48 . -1042) T) ((-1276 . -1268) 110210) ((-1274 . -1268) 110194) ((-1028 . -599) 110169) ((-315 . -609) 110030) ((-315 . -608) 110012) ((-312 . -609) NIL) ((-312 . -608) 109994) ((-48 . -242) T) ((-48 . -232) T) ((-647 . -285) 109955) ((-547 . -234) 109905) ((-138 . -608) 109872) ((-135 . -608) 109854) ((-114 . -608) 109836) ((-475 . -38) 109801) ((-1278 . -1275) 109780) ((-1269 . -130) T) ((-1277 . -1049) T) ((-1072 . -102) T) ((-88 . -1205) T) ((-498 . -308) NIL) ((-993 . -107) 109764) ((-882 . -1090) T) ((-878 . -1090) T) ((-1254 . -644) 109748) ((-1254 . -372) 109732) ((-326 . -1205) T) ((-589 . -844) T) ((-1132 . -1090) T) ((-1132 . -1045) 109672) ((-103 . -512) 109605) ((-920 . -608) 109587) ((-342 . -720) T) ((-30 . -608) 109569) ((-859 . -1090) T) ((-837 . -1049) 109548) ((-40 . -641) 109493) ((-224 . -1209) T) ((-406 . -1049) T) ((-1148 . -150) 109475) ((-992 . -289) 109426) ((-612 . -1090) T) ((-224 . -553) T) ((-318 . -1235) 109410) ((-318 . -1232) 109380) ((-1178 . -1181) 109359) ((-1065 . -608) 109341) ((-640 . -150) 109325) ((-627 . -150) 109271) ((-1178 . -107) 109221) ((-477 . -1181) 109200) ((-485 . -146) T) ((-485 . -144) NIL) ((-1110 . -609) 109115) ((-437 . -608) 109097) ((-216 . -146) T) ((-216 . -144) NIL) ((-1110 . -608) 109079) ((-129 . -102) T) ((-52 . -102) T) ((-1218 . -634) 109031) ((-477 . -107) 108981) ((-986 . -23) T) ((-1278 . -38) 108951) ((-1162 . -1102) T) ((-1115 . -1102) T) ((-1053 . -1209) T) ((-310 . -102) T) ((-848 . -1102) T) ((-945 . -1209) 108930) ((-479 . -1209) 108909) ((-725 . -844) 108888) ((-1053 . -553) T) ((-945 . -553) 108819) ((-1162 . -23) T) ((-1115 . -23) T) ((-848 . -23) T) ((-479 . -553) 108750) ((-1132 . -711) 108682) ((-1136 . -512) 108615) ((-1028 . -609) NIL) ((-1028 . -608) 108597) ((-96 . -1073) T) ((-859 . -711) 108567) ((-1199 . -47) 108536) ((-250 . -130) T) ((-249 . -130) T) ((-1094 . -1090) T) ((-996 . -1090) T) ((-62 . -608) 108518) ((-1157 . -844) NIL) ((-1017 . -786) T) ((-1017 . -789) T) ((-1282 . -1048) 108505) ((-1282 . -111) 108490) ((-863 . -641) 108477) ((-1246 . -25) T) ((-1246 . -21) T) ((-1239 . -21) T) ((-1239 . -25) T) ((-1218 . -21) T) ((-1218 . -25) T) ((-1020 . -150) 108461) ((-865 . -814) 108440) ((-865 . -913) T) ((-706 . -285) 108367) ((-592 . -21) T) ((-592 . -25) T) ((-591 . -21) T) ((-40 . -720) T) ((-221 . -512) 108300) ((-591 . -25) T) ((-474 . -150) 108284) ((-461 . -150) 108268) ((-914 . -788) T) ((-914 . -720) T) ((-765 . -787) T) ((-765 . -788) T) ((-504 . -1090) T) ((-500 . -1090) T) ((-765 . -720) T) ((-224 . -362) T) ((-1146 . -1090) 108246) ((-864 . -1209) T) ((-647 . -608) 108228) ((-864 . -553) T) ((-687 . -367) NIL) ((-1282 . -611) 108210) ((-358 . -1261) 108194) ((-663 . -102) T) ((-352 . -1261) 108178) ((-344 . -1261) 108162) ((-1277 . -1090) T) ((-518 . -844) 108141) ((-811 . -450) 108120) ((-1039 . -1090) T) ((-1039 . -1062) 108049) ((-1020 . -969) 108018) ((-813 . -1102) T) ((-996 . -711) 107963) ((-385 . -1102) T) ((-474 . -969) 107932) ((-461 . -969) 107901) ((-110 . -150) 107883) ((-73 . -608) 107865) ((-886 . -608) 107847) ((-1070 . -718) 107826) ((-1282 . -1042) T) ((-810 . -634) 107774) ((-293 . -1049) 107716) ((-168 . -1209) 107621) ((-224 . -1102) T) ((-323 . -23) T) ((-1157 . -985) 107573) ((-837 . -1090) T) ((-1240 . -1048) 107478) ((-1116 . -734) 107457) ((-1238 . -913) 107436) ((-1217 . -913) 107415) ((-863 . -720) T) ((-168 . -553) 107326) ((-577 . -641) 107313) ((-561 . -641) 107300) ((-406 . -1090) T) ((-262 . -1090) T) ((-212 . -608) 107282) ((-493 . -641) 107247) ((-224 . -23) T) ((-1217 . -814) 107200) ((-1276 . -102) T) ((-353 . -1273) 107177) ((-1274 . -102) T) ((-1240 . -111) 107069) ((-143 . -608) 107051) ((-986 . -130) T) ((-44 . -102) T) ((-239 . -844) 107002) ((-1227 . -1209) 106981) ((-103 . -487) 106965) ((-1277 . -711) 106935) ((-1077 . -47) 106896) ((-1053 . -1102) T) ((-945 . -1102) T) ((-127 . -34) T) ((-121 . -34) T) ((-776 . -47) 106873) ((-774 . -47) 106845) ((-1227 . -553) 106756) ((-353 . -367) T) ((-479 . -1102) T) ((-1162 . -130) T) ((-1115 . -130) T) ((-452 . -47) 106735) ((-864 . -362) T) ((-848 . -130) T) ((-151 . -102) T) ((-1053 . -23) T) ((-945 . -23) T) ((-568 . -553) T) ((-810 . -25) T) ((-810 . -21) T) ((-1132 . -512) 106668) ((-588 . -1073) T) ((-582 . -1031) 106652) ((-1240 . -611) 106526) ((-479 . -23) T) ((-350 . -1049) T) ((-1199 . -893) 106507) ((-663 . -308) 106445) ((-1103 . -1261) 106415) ((-692 . -641) 106380) ((-996 . -171) T) ((-956 . -144) 106359) ((-630 . -1090) T) ((-602 . -1090) T) ((-956 . -146) 106338) ((-997 . -844) T) ((-729 . -146) 106317) ((-729 . -144) 106296) ((-964 . -844) T) ((-472 . -913) 106275) ((-315 . -1048) 106185) ((-312 . -1048) 106114) ((-992 . -285) 106072) ((-406 . -711) 106024) ((-694 . -842) T) ((-1240 . -1042) T) ((-315 . -111) 105920) ((-312 . -111) 105833) ((-957 . -102) T) ((-809 . -102) 105623) ((-706 . -609) NIL) ((-706 . -608) 105605) ((-651 . -1031) 105501) ((-1240 . -325) 105445) ((-1028 . -287) 105420) ((-577 . -720) T) ((-561 . -788) T) ((-168 . -362) 105371) ((-561 . -785) T) ((-561 . -720) T) ((-493 . -720) T) ((-1136 . -487) 105355) ((-1077 . -879) NIL) ((-864 . -1102) T) ((-117 . -902) NIL) ((-1276 . -1275) 105331) ((-1274 . -1275) 105310) ((-776 . -879) NIL) ((-774 . -879) 105169) ((-1269 . -25) T) ((-1269 . -21) T) ((-1202 . -102) 105147) ((-1096 . -394) T) ((-618 . -641) 105134) ((-452 . -879) NIL) ((-668 . -102) 105112) ((-1077 . -1031) 104939) ((-864 . -23) T) ((-776 . -1031) 104798) ((-774 . -1031) 104655) ((-117 . -641) 104600) ((-452 . -1031) 104476) ((-315 . -611) 104040) ((-312 . -611) 103923) ((-642 . -1031) 103907) ((-622 . -102) T) ((-221 . -487) 103891) ((-1254 . -34) T) ((-135 . -611) 103875) ((-630 . -711) 103859) ((-602 . -711) 103843) ((-663 . -38) 103803) ((-318 . -102) T) ((-85 . -608) 103785) ((-50 . -1031) 103769) ((-1110 . -1048) 103756) ((-1077 . -376) 103740) ((-776 . -376) 103724) ((-60 . -57) 103686) ((-692 . -788) T) ((-692 . -785) T) ((-578 . -1031) 103673) ((-516 . -1031) 103650) ((-692 . -720) T) ((-323 . -130) T) ((-315 . -1042) 103540) ((-312 . -1042) T) ((-168 . -1102) T) ((-774 . -376) 103524) ((-45 . -150) 103474) ((-997 . -985) 103456) ((-452 . -376) 103440) ((-406 . -171) T) ((-315 . -242) 103419) ((-312 . -242) T) ((-312 . -232) NIL) ((-293 . -1090) 103201) ((-224 . -130) T) ((-1110 . -111) 103186) ((-168 . -23) T) ((-793 . -146) 103165) ((-793 . -144) 103144) ((-250 . -634) 103050) ((-249 . -634) 102956) ((-318 . -283) 102922) ((-1146 . -512) 102855) ((-1123 . -1090) T) ((-224 . -1051) T) ((-809 . -308) 102793) ((-1077 . -893) 102728) ((-776 . -893) 102671) ((-774 . -893) 102655) ((-1276 . -38) 102625) ((-1274 . -38) 102595) ((-1227 . -1102) T) ((-849 . -1102) T) ((-452 . -893) 102572) ((-852 . -1090) T) ((-1227 . -23) T) ((-1110 . -611) 102544) ((-568 . -1102) T) ((-849 . -23) T) ((-618 . -720) T) ((-354 . -913) T) ((-351 . -913) T) ((-288 . -102) T) ((-343 . -913) T) ((-1053 . -130) T) ((-963 . -1073) T) ((-945 . -130) T) ((-117 . -788) NIL) ((-117 . -785) NIL) ((-117 . -720) T) ((-687 . -902) NIL) ((-1039 . -512) 102445) ((-479 . -130) T) ((-568 . -23) T) ((-668 . -308) 102383) ((-630 . -755) T) ((-602 . -755) T) ((-1218 . -844) NIL) ((-996 . -289) T) ((-250 . -21) T) ((-687 . -641) 102333) ((-350 . -1090) T) ((-250 . -25) T) ((-249 . -21) T) ((-249 . -25) T) ((-151 . -38) 102317) ((-2 . -102) T) ((-903 . -913) T) ((-480 . -1261) 102287) ((-222 . -1031) 102264) ((-1110 . -1042) T) ((-705 . -306) T) ((-293 . -711) 102206) ((-694 . -1049) T) ((-485 . -450) T) ((-406 . -512) 102118) ((-216 . -450) T) ((-1110 . -232) T) ((-294 . -150) 102068) ((-992 . -609) 102029) ((-992 . -608) 102011) ((-982 . -608) 101993) ((-116 . -1049) T) ((-647 . -1048) 101977) ((-224 . -491) T) ((-398 . -608) 101959) ((-398 . -609) 101936) ((-1046 . -1261) 101906) ((-647 . -111) 101885) ((-1132 . -487) 101869) ((-809 . -38) 101839) ((-63 . -439) T) ((-63 . -394) T) ((-1149 . -102) T) ((-864 . -130) T) ((-482 . -102) 101817) ((-1282 . -367) T) ((-1070 . -102) T) ((-1052 . -102) T) ((-350 . -711) 101762) ((-725 . -146) 101741) ((-725 . -144) 101720) ((-647 . -611) 101638) ((-1017 . -641) 101575) ((-521 . -1090) 101553) ((-358 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-108 . -102) T) ((-502 . -1090) T) ((-353 . -641) 101498) ((-1162 . -634) 101446) ((-1115 . -634) 101394) ((-384 . -507) 101373) ((-827 . -842) 101352) ((-378 . -1209) T) ((-687 . -720) T) ((-338 . -1049) T) ((-1218 . -985) 101304) ((-173 . -1049) T) ((-103 . -608) 101236) ((-1164 . -144) 101215) ((-1164 . -146) 101194) ((-378 . -553) T) ((-1163 . -146) 101173) ((-1163 . -144) 101152) ((-1157 . -144) 101059) ((-406 . -289) T) ((-1157 . -146) 100966) ((-1116 . -146) 100945) ((-1116 . -144) 100924) ((-318 . -38) 100765) ((-168 . -130) T) ((-312 . -789) NIL) ((-312 . -786) NIL) ((-647 . -1042) T) ((-48 . -641) 100730) ((-886 . -611) 100707) ((-1156 . -102) T) ((-987 . -102) T) ((-986 . -21) T) ((-127 . -1003) 100691) ((-121 . -1003) 100675) ((-986 . -25) T) ((-894 . -119) 100659) ((-1148 . -102) T) ((-810 . -844) 100638) ((-1227 . -130) T) ((-1162 . -25) T) ((-1162 . -21) T) ((-849 . -130) T) ((-1115 . -25) T) ((-1115 . -21) T) ((-848 . -25) T) ((-848 . -21) T) ((-776 . -306) 100617) ((-640 . -102) 100595) ((-627 . -102) T) ((-1149 . -308) 100390) ((-568 . -130) T) ((-616 . -842) 100369) ((-1146 . -487) 100353) ((-1140 . -150) 100303) ((-1136 . -608) 100265) ((-1136 . -609) 100226) ((-1017 . -785) T) ((-1017 . -788) T) ((-1017 . -720) T) ((-706 . -1048) 100049) ((-482 . -308) 99987) ((-451 . -416) 99957) ((-350 . -171) T) ((-288 . -38) 99944) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-268 . -102) T) ((-342 . -1031) 99921) ((-267 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-353 . -720) T) ((-706 . -111) 99730) ((-663 . -230) 99714) ((-578 . -306) T) ((-516 . -306) T) ((-293 . -512) 99663) ((-108 . -308) NIL) ((-72 . -394) T) ((-1103 . -102) 99453) ((-827 . -410) 99437) ((-1110 . -789) T) ((-1110 . -786) T) ((-694 . -1090) T) ((-575 . -608) 99419) ((-378 . -362) T) ((-168 . -491) 99397) ((-221 . -608) 99329) ((-133 . -1090) T) ((-116 . -1090) T) ((-48 . -720) T) ((-1039 . -487) 99294) ((-140 . -424) 99276) ((-140 . -367) T) ((-1020 . -102) T) ((-510 . -507) 99255) ((-706 . -611) 99011) ((-474 . -102) T) ((-461 . -102) T) ((-1027 . -1102) T) ((-1171 . -1031) 98946) ((-1164 . -35) 98912) ((-1164 . -95) 98878) ((-1164 . -1193) 98844) ((-1164 . -1190) 98810) ((-1148 . -308) NIL) ((-89 . -395) T) ((-89 . -394) T) ((-1070 . -1141) 98789) ((-1163 . -1190) 98755) ((-1163 . -1193) 98721) ((-1027 . -23) T) ((-1163 . -95) 98687) ((-568 . -491) T) ((-1163 . -35) 98653) ((-1157 . -1190) 98619) ((-1157 . -1193) 98585) ((-1157 . -95) 98551) ((-360 . -1102) T) ((-358 . -1141) 98530) ((-352 . -1141) 98509) ((-344 . -1141) 98488) ((-1157 . -35) 98454) ((-1116 . -35) 98420) ((-1116 . -95) 98386) ((-108 . -1141) T) ((-1116 . -1193) 98352) ((-827 . -1049) 98331) ((-640 . -308) 98269) ((-627 . -308) 98120) ((-1116 . -1190) 98086) ((-706 . -1042) T) ((-1053 . -634) 98068) ((-1070 . -38) 97936) ((-945 . -634) 97884) ((-997 . -146) T) ((-997 . -144) NIL) ((-378 . -1102) T) ((-323 . -25) T) ((-321 . -23) T) ((-936 . -844) 97863) ((-706 . -325) 97840) ((-479 . -634) 97788) ((-40 . -1031) 97676) ((-706 . -232) T) ((-694 . -711) 97663) ((-338 . -1090) T) ((-173 . -1090) T) ((-330 . -844) T) ((-417 . -450) 97613) ((-378 . -23) T) ((-358 . -38) 97578) ((-352 . -38) 97543) ((-344 . -38) 97508) ((-80 . -439) T) ((-80 . -394) T) ((-224 . -25) T) ((-224 . -21) T) ((-830 . -1102) T) ((-108 . -38) 97458) ((-821 . -1102) T) ((-768 . -1090) T) ((-116 . -711) 97445) ((-665 . -1031) 97429) ((-607 . -102) T) ((-830 . -23) T) ((-821 . -23) T) ((-1146 . -285) 97406) ((-1103 . -308) 97344) ((-1092 . -234) 97328) ((-64 . -395) T) ((-64 . -394) T) ((-110 . -102) T) ((-40 . -376) 97305) ((-96 . -102) T) ((-646 . -846) 97289) ((-1125 . -1073) T) ((-1053 . -21) T) ((-1053 . -25) T) ((-809 . -230) 97258) ((-945 . -25) T) ((-945 . -21) T) ((-616 . -1049) T) ((-1110 . -367) T) ((-479 . -25) T) ((-479 . -21) T) ((-1020 . -308) 97196) ((-882 . -608) 97178) ((-878 . -608) 97160) ((-250 . -844) 97111) ((-249 . -844) 97062) ((-521 . -512) 96995) ((-864 . -634) 96972) ((-474 . -308) 96910) ((-461 . -308) 96848) ((-350 . -289) T) ((-1146 . -1242) 96832) ((-1132 . -608) 96794) ((-1132 . -609) 96755) ((-1130 . -102) T) ((-992 . -1048) 96651) ((-40 . -893) 96603) ((-1146 . -599) 96580) ((-1282 . -641) 96567) ((-859 . -488) 96544) ((-1054 . -150) 96490) ((-865 . -1209) T) ((-992 . -111) 96372) ((-338 . -711) 96356) ((-859 . -608) 96318) ((-173 . -711) 96250) ((-406 . -285) 96208) ((-865 . -553) T) ((-108 . -399) 96190) ((-84 . -383) T) ((-84 . -394) T) ((-694 . -171) T) ((-612 . -608) 96172) ((-99 . -720) T) ((-480 . -102) 95962) ((-99 . -471) T) ((-116 . -171) T) ((-1103 . -38) 95932) ((-168 . -634) 95880) ((-1046 . -102) T) ((-992 . -611) 95770) ((-864 . -25) T) ((-809 . -237) 95749) ((-864 . -21) T) ((-812 . -102) T) ((-413 . -102) T) ((-384 . -102) T) ((-110 . -308) NIL) ((-226 . -102) 95727) ((-127 . -1205) T) ((-121 . -1205) T) ((-1027 . -130) T) ((-663 . -366) 95711) ((-992 . -1042) T) ((-1227 . -634) 95659) ((-1094 . -608) 95641) ((-996 . -608) 95623) ((-513 . -23) T) ((-508 . -23) T) ((-342 . -306) T) ((-506 . -23) T) ((-321 . -130) T) ((-3 . -1090) T) ((-996 . -609) 95607) ((-992 . -242) 95586) ((-992 . -232) 95565) ((-1282 . -720) T) ((-1246 . -144) 95544) ((-827 . -1090) T) ((-1246 . -146) 95523) ((-1239 . -146) 95502) ((-1239 . -144) 95481) ((-1238 . -1209) 95460) ((-1218 . -144) 95367) ((-1218 . -146) 95274) ((-1217 . -1209) 95253) ((-378 . -130) T) ((-561 . -879) 95235) ((0 . -1090) T) ((-173 . -171) T) ((-168 . -21) T) ((-168 . -25) T) ((-49 . -1090) T) ((-1240 . -641) 95140) ((-1238 . -553) 95091) ((-708 . -1102) T) ((-1217 . -553) 95042) ((-561 . -1031) 95024) ((-591 . -146) 95003) ((-591 . -144) 94982) ((-493 . -1031) 94925) ((-1125 . -1127) T) ((-87 . -383) T) ((-87 . -394) T) ((-865 . -362) T) ((-830 . -130) T) ((-821 . -130) T) ((-708 . -23) T) ((-504 . -608) 94891) ((-500 . -608) 94873) ((-1278 . -1049) T) ((-378 . -1051) T) ((-1019 . -1090) 94851) ((-55 . -1031) 94833) ((-894 . -34) T) ((-480 . -308) 94771) ((-588 . -102) T) ((-1146 . -609) 94732) ((-1146 . -608) 94664) ((-1162 . -844) 94643) ((-45 . -102) T) ((-1115 . -844) 94622) ((-811 . -102) T) ((-1227 . -25) T) ((-1227 . -21) T) ((-849 . -25) T) ((-44 . -366) 94606) ((-849 . -21) T) ((-725 . -450) 94557) ((-1277 . -608) 94539) ((-1046 . -308) 94477) ((-664 . -1073) T) ((-601 . -1073) T) ((-389 . -1090) T) ((-568 . -25) T) ((-568 . -21) T) ((-179 . -1073) T) ((-160 . -1073) T) ((-155 . -1073) T) ((-153 . -1073) T) ((-616 . -1090) T) ((-692 . -879) 94459) ((-1254 . -1205) T) ((-226 . -308) 94397) ((-143 . -367) T) ((-1039 . -609) 94339) ((-1039 . -608) 94282) ((-312 . -902) NIL) ((-1212 . -838) T) ((-692 . -1031) 94227) ((-705 . -913) T) ((-472 . -1209) 94206) ((-1163 . -450) 94185) ((-1157 . -450) 94164) ((-329 . -102) T) ((-865 . -1102) T) ((-315 . -641) 93985) ((-312 . -641) 93914) ((-472 . -553) 93865) ((-338 . -512) 93831) ((-547 . -150) 93781) ((-40 . -306) T) ((-837 . -608) 93763) ((-694 . -289) T) ((-865 . -23) T) ((-378 . -491) T) ((-1070 . -230) 93733) ((-510 . -102) T) ((-406 . -609) 93540) ((-406 . -608) 93522) ((-262 . -608) 93504) ((-116 . -289) T) ((-1240 . -720) T) ((-1238 . -362) 93483) ((-1217 . -362) 93462) ((-1267 . -34) T) ((-1212 . -1090) T) ((-117 . -1205) T) ((-108 . -230) 93444) ((-1168 . -102) T) ((-475 . -1090) T) ((-521 . -487) 93428) ((-731 . -34) T) ((-480 . -38) 93398) ((-140 . -34) T) ((-117 . -877) 93375) ((-117 . -879) NIL) ((-618 . -1031) 93258) ((-638 . -844) 93237) ((-1266 . -102) T) ((-294 . -102) T) ((-706 . -367) 93216) ((-117 . -1031) 93193) ((-389 . -711) 93177) ((-616 . -711) 93161) ((-45 . -308) 92965) ((-810 . -144) 92944) ((-810 . -146) 92923) ((-1277 . -381) 92902) ((-813 . -844) T) ((-1256 . -1090) T) ((-1149 . -228) 92849) ((-385 . -844) 92828) ((-1246 . -1193) 92794) ((-1246 . -1190) 92760) ((-1239 . -1190) 92726) ((-513 . -130) T) ((-1239 . -1193) 92692) ((-1218 . -1190) 92658) ((-1218 . -1193) 92624) ((-1246 . -35) 92590) ((-1246 . -95) 92556) ((-630 . -608) 92525) ((-602 . -608) 92494) ((-224 . -844) T) ((-1239 . -95) 92460) ((-1239 . -35) 92426) ((-1238 . -1102) T) ((-1110 . -641) 92413) ((-1218 . -95) 92379) ((-1217 . -1102) T) ((-589 . -150) 92361) ((-1070 . -348) 92340) ((-173 . -289) T) ((-117 . -376) 92317) ((-117 . -337) 92294) ((-1218 . -35) 92260) ((-863 . -306) T) ((-312 . -788) NIL) ((-312 . -785) NIL) ((-315 . -720) 92109) ((-312 . -720) T) ((-472 . -362) 92088) ((-358 . -348) 92067) ((-352 . -348) 92046) ((-344 . -348) 92025) ((-315 . -471) 92004) ((-1238 . -23) T) ((-1217 . -23) T) ((-712 . -1102) T) ((-708 . -130) T) ((-646 . -102) T) ((-475 . -711) 91969) ((-45 . -281) 91919) ((-105 . -1090) T) ((-68 . -608) 91901) ((-963 . -102) T) ((-858 . -102) T) ((-618 . -893) 91860) ((-1278 . -1090) T) ((-380 . -1090) T) ((-1204 . -1090) T) ((-1103 . -230) 91829) ((-82 . -1205) T) ((-1053 . -844) T) ((-945 . -844) 91808) ((-117 . -893) NIL) ((-776 . -913) 91787) ((-707 . -844) T) ((-529 . -1090) T) ((-498 . -1090) T) ((-354 . -1209) T) ((-351 . -1209) T) ((-343 . -1209) T) ((-263 . -1209) 91766) ((-246 . -1209) 91745) ((-531 . -854) T) ((-479 . -844) 91724) ((-1148 . -822) T) ((-1132 . -1048) 91708) ((-389 . -755) T) ((-687 . -1205) T) ((-684 . -1031) 91692) ((-354 . -553) T) ((-351 . -553) T) ((-343 . -553) T) ((-263 . -553) 91623) ((-246 . -553) 91554) ((-523 . -1073) T) ((-1132 . -111) 91533) ((-451 . -738) 91503) ((-859 . -1048) 91473) ((-811 . -38) 91415) ((-687 . -877) 91397) ((-687 . -879) 91379) ((-294 . -308) 91183) ((-903 . -1209) T) ((-663 . -410) 91167) ((-859 . -111) 91132) ((-687 . -1031) 91077) ((-997 . -450) T) ((-903 . -553) T) ((-531 . -608) 91059) ((-578 . -913) T) ((-472 . -1102) T) ((-516 . -913) T) ((-1146 . -287) 91036) ((-907 . -450) T) ((-65 . -608) 91018) ((-627 . -228) 90964) ((-472 . -23) T) ((-1110 . -788) T) ((-865 . -130) T) ((-1110 . -785) T) ((-1269 . -1271) 90943) ((-1110 . -720) T) ((-647 . -641) 90917) ((-293 . -608) 90658) ((-1132 . -611) 90576) ((-1028 . -34) T) ((-809 . -842) 90555) ((-577 . -306) T) ((-561 . -306) T) ((-493 . -306) T) ((-1278 . -711) 90525) ((-687 . -376) 90507) ((-687 . -337) 90489) ((-475 . -171) T) ((-380 . -711) 90459) ((-859 . -611) 90394) ((-864 . -844) NIL) ((-561 . -1015) T) ((-493 . -1015) T) ((-1123 . -608) 90376) ((-1103 . -237) 90355) ((-213 . -102) T) ((-1140 . -102) T) ((-71 . -608) 90337) ((-1132 . -1042) T) ((-1168 . -38) 90234) ((-852 . -608) 90216) ((-561 . -543) T) ((-663 . -1049) T) ((-725 . -942) 90169) ((-1132 . -232) 90148) ((-1072 . -1090) T) ((-1027 . -25) T) ((-1027 . -21) T) ((-996 . -1048) 90093) ((-898 . -102) T) ((-859 . -1042) T) ((-687 . -893) NIL) ((-354 . -328) 90077) ((-354 . -362) T) ((-351 . -328) 90061) ((-351 . -362) T) ((-343 . -328) 90045) ((-343 . -362) T) ((-485 . -102) T) ((-1266 . -38) 90015) ((-544 . -844) T) ((-521 . -680) 89965) ((-216 . -102) T) ((-1017 . -1031) 89845) ((-996 . -111) 89774) ((-1164 . -966) 89743) ((-1163 . -966) 89705) ((-518 . -150) 89689) ((-1070 . -369) 89668) ((-350 . -608) 89650) ((-321 . -21) T) ((-353 . -1031) 89627) ((-321 . -25) T) ((-1157 . -966) 89596) ((-1116 . -966) 89563) ((-76 . -608) 89545) ((-692 . -306) T) ((-168 . -844) 89524) ((-129 . -838) T) ((-903 . -362) T) ((-378 . -25) T) ((-378 . -21) T) ((-903 . -328) 89511) ((-86 . -608) 89493) ((-692 . -1015) T) ((-670 . -844) T) ((-1238 . -130) T) ((-1217 . -130) T) ((-894 . -1003) 89477) ((-830 . -21) T) ((-48 . -1031) 89420) ((-830 . -25) T) ((-821 . -25) T) ((-821 . -21) T) ((-1276 . -1049) T) ((-546 . -102) T) ((-1274 . -1049) T) ((-647 . -720) T) ((-1094 . -613) 89323) ((-996 . -611) 89253) ((-1277 . -1048) 89237) ((-1227 . -844) 89216) ((-809 . -410) 89185) ((-103 . -119) 89169) ((-129 . -1090) T) ((-52 . -1090) T) ((-919 . -608) 89151) ((-864 . -985) 89128) ((-817 . -102) T) ((-1277 . -111) 89107) ((-646 . -38) 89077) ((-568 . -844) T) ((-354 . -1102) T) ((-351 . -1102) T) ((-343 . -1102) T) ((-263 . -1102) T) ((-246 . -1102) T) ((-618 . -306) 89056) ((-1140 . -308) 88860) ((-522 . -1073) T) ((-310 . -1090) T) ((-657 . -23) T) ((-480 . -230) 88829) ((-151 . -1049) T) ((-354 . -23) T) ((-351 . -23) T) ((-343 . -23) T) ((-117 . -306) T) ((-263 . -23) T) ((-246 . -23) T) ((-996 . -1042) T) ((-706 . -902) 88808) ((-1146 . -611) 88785) ((-996 . -232) 88757) ((-996 . -242) T) ((-117 . -1015) NIL) ((-903 . -1102) T) ((-1239 . -450) 88736) ((-1218 . -450) 88715) ((-521 . -608) 88647) ((-706 . -641) 88572) ((-406 . -1048) 88524) ((-502 . -608) 88506) ((-903 . -23) T) ((-485 . -308) NIL) ((-1277 . -611) 88462) ((-472 . -130) T) ((-216 . -308) NIL) ((-406 . -111) 88400) ((-809 . -1049) 88330) ((-731 . -1088) 88314) ((-1238 . -491) 88280) ((-1217 . -491) 88246) ((-140 . -1088) 88228) ((-475 . -289) T) ((-1277 . -1042) T) ((-1210 . -102) T) ((-1054 . -102) T) ((-837 . -611) 88096) ((-498 . -512) NIL) ((-696 . -102) T) ((-480 . -237) 88075) ((-406 . -611) 87973) ((-1162 . -144) 87952) ((-1162 . -146) 87931) ((-1115 . -146) 87910) ((-1115 . -144) 87889) ((-630 . -1048) 87873) ((-602 . -1048) 87857) ((-663 . -1090) T) ((-663 . -1045) 87797) ((-1164 . -1245) 87781) ((-1164 . -1232) 87758) ((-485 . -1141) T) ((-1163 . -1237) 87719) ((-1163 . -1232) 87689) ((-1163 . -1235) 87673) ((-216 . -1141) T) ((-342 . -913) T) ((-812 . -265) 87657) ((-630 . -111) 87636) ((-602 . -111) 87615) ((-1157 . -1216) 87576) ((-837 . -1042) 87555) ((-1157 . -1232) 87532) ((-513 . -25) T) ((-493 . -301) T) ((-509 . -23) T) ((-508 . -25) T) ((-506 . -25) T) ((-505 . -23) T) ((-1157 . -1214) 87516) ((-406 . -1042) T) ((-318 . -1049) T) ((-687 . -306) T) ((-108 . -842) T) ((-706 . -720) T) ((-406 . -242) T) ((-406 . -232) 87495) ((-485 . -38) 87445) ((-216 . -38) 87395) ((-472 . -491) 87361) ((-1148 . -1134) T) ((-1091 . -102) T) ((-694 . -608) 87343) ((-694 . -609) 87258) ((-708 . -21) T) ((-708 . -25) T) ((-1125 . -102) T) ((-133 . -608) 87240) ((-116 . -608) 87222) ((-156 . -25) T) ((-1276 . -1090) T) ((-865 . -634) 87170) ((-1274 . -1090) T) ((-956 . -102) T) ((-729 . -102) T) ((-709 . -102) T) ((-451 . -102) T) ((-810 . -450) 87121) ((-44 . -1090) T) ((-1078 . -844) T) ((-657 . -130) T) ((-1054 . -308) 86972) ((-663 . -711) 86956) ((-288 . -1049) T) ((-354 . -130) T) ((-351 . -130) T) ((-343 . -130) T) ((-263 . -130) T) ((-246 . -130) T) ((-417 . -102) T) ((-151 . -1090) T) ((-45 . -228) 86906) ((-951 . -844) 86885) ((-992 . -641) 86823) ((-239 . -1261) 86793) ((-1017 . -306) T) ((-293 . -1048) 86714) ((-903 . -130) T) ((-40 . -913) T) ((-485 . -399) 86696) ((-353 . -306) T) ((-216 . -399) 86678) ((-1070 . -410) 86662) ((-293 . -111) 86578) ((-1173 . -844) T) ((-1172 . -844) T) ((-865 . -25) T) ((-865 . -21) T) ((-338 . -608) 86560) ((-1240 . -47) 86504) ((-224 . -146) T) ((-173 . -608) 86486) ((-1103 . -842) 86465) ((-768 . -608) 86447) ((-128 . -844) T) ((-603 . -234) 86394) ((-473 . -234) 86344) ((-1276 . -711) 86314) ((-48 . -306) T) ((-1274 . -711) 86284) ((-65 . -611) 86213) ((-957 . -1090) T) ((-809 . -1090) 86003) ((-311 . -102) T) ((-894 . -1205) T) ((-48 . -1015) T) ((-1217 . -634) 85911) ((-682 . -102) 85889) ((-44 . -711) 85873) ((-547 . -102) T) ((-293 . -611) 85804) ((-67 . -382) T) ((-67 . -394) T) ((-655 . -23) T) ((-663 . -755) T) ((-1202 . -1090) 85782) ((-350 . -1048) 85727) ((-668 . -1090) 85705) ((-1053 . -146) T) ((-945 . -146) 85684) ((-945 . -144) 85663) ((-793 . -102) T) ((-151 . -711) 85647) ((-479 . -146) 85626) ((-479 . -144) 85605) ((-350 . -111) 85534) ((-1070 . -1049) T) ((-321 . -844) 85513) ((-1246 . -966) 85482) ((-622 . -1090) T) ((-1239 . -966) 85444) ((-509 . -130) T) ((-505 . -130) T) ((-294 . -228) 85394) ((-358 . -1049) T) ((-352 . -1049) T) ((-344 . -1049) T) ((-293 . -1042) 85336) ((-1218 . -966) 85305) ((-378 . -844) T) ((-108 . -1049) T) ((-992 . -720) T) ((-863 . -913) T) ((-837 . -789) 85284) ((-837 . -786) 85263) ((-417 . -308) 85202) ((-466 . -102) T) ((-591 . -966) 85171) ((-318 . -1090) T) ((-406 . -789) 85150) ((-406 . -786) 85129) ((-498 . -487) 85111) ((-1240 . -1031) 85077) ((-1238 . -21) T) ((-1238 . -25) T) ((-1217 . -21) T) ((-1217 . -25) T) ((-809 . -711) 85019) ((-350 . -611) 84949) ((-692 . -403) T) ((-1267 . -1205) T) ((-601 . -102) T) ((-1103 . -410) 84918) ((-996 . -367) NIL) ((-664 . -102) T) ((-179 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-153 . -102) T) ((-103 . -34) T) ((-731 . -1205) T) ((-44 . -755) T) ((-589 . -102) T) ((-77 . -395) T) ((-77 . -394) T) ((-646 . -649) 84902) ((-140 . -1205) T) ((-864 . -146) T) ((-864 . -144) NIL) ((-1204 . -93) T) ((-350 . -1042) T) ((-70 . -382) T) ((-70 . -394) T) ((-1155 . -102) T) ((-663 . -512) 84835) ((-682 . -308) 84773) ((-956 . -38) 84670) ((-729 . -38) 84640) ((-547 . -308) 84444) ((-315 . -1205) T) ((-350 . -232) T) ((-350 . -242) T) ((-312 . -1205) T) ((-288 . -1090) T) ((-1170 . -608) 84426) ((-705 . -1209) T) ((-1146 . -644) 84410) ((-1199 . -553) 84389) ((-705 . -553) T) ((-315 . -877) 84373) ((-315 . -879) 84298) ((-312 . -877) 84259) ((-312 . -879) NIL) ((-793 . -308) 84224) ((-318 . -711) 84065) ((-323 . -322) 84042) ((-483 . -102) T) ((-472 . -25) T) ((-472 . -21) T) ((-417 . -38) 84016) ((-315 . -1031) 83679) ((-224 . -1190) T) ((-224 . -1193) T) ((-3 . -608) 83661) ((-312 . -1031) 83591) ((-2 . -1090) T) ((-2 . |RecordCategory|) T) ((-827 . -608) 83573) ((-1103 . -1049) 83503) ((-577 . -913) T) ((-561 . -814) T) ((-561 . -913) T) ((-493 . -913) T) ((-135 . -1031) 83487) ((-224 . -95) T) ((-75 . -439) T) ((-75 . -394) T) ((0 . -608) 83469) ((-168 . -146) 83448) ((-168 . -144) 83399) ((-224 . -35) T) ((-49 . -608) 83381) ((-475 . -1049) T) ((-485 . -230) 83363) ((-482 . -961) 83347) ((-480 . -842) 83326) ((-216 . -230) 83308) ((-81 . -439) T) ((-81 . -394) T) ((-1136 . -34) T) ((-809 . -171) 83287) ((-725 . -102) T) ((-1019 . -608) 83254) ((-498 . -285) 83229) ((-315 . -376) 83198) ((-312 . -376) 83159) ((-312 . -337) 83120) ((-1075 . -608) 83102) ((-810 . -942) 83049) ((-655 . -130) T) ((-1227 . -144) 83028) ((-1227 . -146) 83007) ((-1164 . -102) T) ((-1163 . -102) T) ((-1157 . -102) T) ((-1149 . -1090) T) ((-1116 . -102) T) ((-221 . -34) T) ((-288 . -711) 82994) ((-1149 . -605) 82970) ((-589 . -308) NIL) ((-482 . -1090) 82948) ((-389 . -608) 82930) ((-508 . -844) T) ((-1140 . -228) 82880) ((-1246 . -1245) 82864) ((-1246 . -1232) 82841) ((-1239 . -1237) 82802) ((-1239 . -1232) 82772) ((-1239 . -1235) 82756) ((-1218 . -1216) 82717) ((-1218 . -1232) 82694) ((-616 . -608) 82676) ((-1218 . -1214) 82660) ((-692 . -913) T) ((-1164 . -283) 82626) ((-1163 . -283) 82592) ((-1157 . -283) 82558) ((-1070 . -1090) T) ((-1052 . -1090) T) ((-48 . -301) T) ((-315 . -893) 82524) ((-312 . -893) NIL) ((-1052 . -1059) 82503) ((-1110 . -879) 82485) ((-793 . -38) 82469) ((-263 . -634) 82417) ((-246 . -634) 82365) ((-694 . -1048) 82352) ((-591 . -1232) 82329) ((-1116 . -283) 82295) ((-318 . -171) 82226) ((-358 . -1090) T) ((-352 . -1090) T) ((-344 . -1090) T) ((-498 . -19) 82208) ((-1110 . -1031) 82190) ((-1092 . -150) 82174) ((-108 . -1090) T) ((-116 . -1048) 82161) ((-705 . -362) T) ((-498 . -599) 82136) ((-694 . -111) 82121) ((-435 . -102) T) ((-45 . -1139) 82071) ((-116 . -111) 82056) ((-630 . -714) T) ((-602 . -714) T) ((-809 . -512) 81989) ((-1028 . -1205) T) ((-936 . -150) 81973) ((-1212 . -608) 81955) ((-1162 . -450) 81886) ((-1156 . -1090) T) ((-1148 . -1090) T) ((-523 . -102) T) ((-518 . -102) 81836) ((-1132 . -641) 81810) ((-1115 . -450) 81761) ((-1077 . -1209) 81740) ((-776 . -1209) 81719) ((-774 . -1209) 81698) ((-62 . -1205) T) ((-475 . -608) 81650) ((-475 . -609) 81572) ((-1077 . -553) 81503) ((-987 . -1090) T) ((-776 . -553) 81414) ((-774 . -553) 81345) ((-480 . -410) 81314) ((-618 . -913) 81293) ((-452 . -1209) 81272) ((-725 . -308) 81259) ((-694 . -611) 81231) ((-397 . -608) 81213) ((-668 . -512) 81146) ((-657 . -25) T) ((-657 . -21) T) ((-452 . -553) 81077) ((-354 . -25) T) ((-354 . -21) T) ((-117 . -913) T) ((-117 . -814) NIL) ((-351 . -25) T) ((-351 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-263 . -25) T) ((-263 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-83 . -383) T) ((-83 . -394) T) ((-133 . -611) 81059) ((-116 . -611) 81031) ((-1256 . -608) 81013) ((-1211 . -844) T) ((-1199 . -1102) T) ((-1199 . -23) T) ((-1157 . -308) 80898) ((-1116 . -308) 80885) ((-1070 . -711) 80753) ((-859 . -641) 80713) ((-936 . -973) 80697) ((-903 . -21) T) ((-288 . -171) T) ((-903 . -25) T) ((-310 . -93) T) ((-865 . -844) 80648) ((-705 . -1102) T) ((-705 . -23) T) ((-694 . -1042) T) ((-640 . -1090) 80626) ((-627 . -1090) T) ((-578 . -1209) T) ((-516 . -1209) T) ((-694 . -232) T) ((-627 . -605) 80601) ((-578 . -553) T) ((-516 . -553) T) ((-358 . -711) 80553) ((-338 . -1048) 80537) ((-352 . -711) 80489) ((-344 . -711) 80441) ((-173 . -1048) 80373) ((-173 . -111) 80284) ((-108 . -711) 80234) ((-338 . -111) 80213) ((-273 . -1090) T) ((-272 . -1090) T) ((-271 . -1090) T) ((-270 . -1090) T) ((-269 . -1090) T) ((-268 . -1090) T) ((-267 . -1090) T) ((-211 . -1090) T) ((-210 . -1090) T) ((-168 . -1193) 80191) ((-168 . -1190) 80169) ((-208 . -1090) T) ((-207 . -1090) T) ((-116 . -1042) T) ((-206 . -1090) T) ((-205 . -1090) T) ((-202 . -1090) T) ((-201 . -1090) T) ((-200 . -1090) T) ((-199 . -1090) T) ((-198 . -1090) T) ((-197 . -1090) T) ((-196 . -1090) T) ((-195 . -1090) T) ((-194 . -1090) T) ((-193 . -1090) T) ((-192 . -1090) T) ((-239 . -102) 79959) ((-168 . -35) 79937) ((-168 . -95) 79915) ((-647 . -1031) 79811) ((-480 . -1049) 79741) ((-1103 . -1090) 79531) ((-1132 . -34) T) ((-663 . -487) 79515) ((-73 . -1205) T) ((-105 . -608) 79497) ((-1278 . -608) 79479) ((-380 . -608) 79461) ((-338 . -611) 79413) ((-173 . -611) 79330) ((-1204 . -488) 79311) ((-725 . -38) 79160) ((-568 . -1193) T) ((-568 . -1190) T) ((-529 . -608) 79142) ((-518 . -308) 79080) ((-498 . -608) 79062) ((-498 . -609) 79044) ((-1204 . -608) 79010) ((-1157 . -1141) NIL) ((-1020 . -1062) 78979) ((-1020 . -1090) T) ((-997 . -102) T) ((-964 . -102) T) ((-907 . -102) T) ((-886 . -1031) 78956) ((-1132 . -720) T) ((-996 . -641) 78901) ((-474 . -1090) T) ((-461 . -1090) T) ((-582 . -23) T) ((-568 . -35) T) ((-568 . -95) T) ((-426 . -102) T) ((-1054 . -228) 78847) ((-1164 . -38) 78744) ((-859 . -720) T) ((-687 . -913) T) ((-509 . -25) T) ((-505 . -21) T) ((-505 . -25) T) ((-1163 . -38) 78585) ((-338 . -1042) T) ((-1157 . -38) 78381) ((-1070 . -171) T) ((-173 . -1042) T) ((-1116 . -38) 78278) ((-706 . -47) 78255) ((-358 . -171) T) ((-352 . -171) T) ((-517 . -57) 78229) ((-495 . -57) 78179) ((-350 . -1273) 78156) ((-224 . -450) T) ((-318 . -289) 78107) ((-344 . -171) T) ((-173 . -242) T) ((-1217 . -844) 78006) ((-108 . -171) T) ((-865 . -985) 77990) ((-651 . -1102) T) ((-578 . -362) T) ((-578 . -328) 77977) ((-516 . -328) 77954) ((-516 . -362) T) ((-315 . -306) 77933) ((-312 . -306) T) ((-597 . -844) 77912) ((-1103 . -711) 77854) ((-518 . -281) 77838) ((-651 . -23) T) ((-417 . -230) 77822) ((-312 . -1015) NIL) ((-335 . -23) T) ((-103 . -1003) 77806) ((-45 . -36) 77785) ((-607 . -1090) T) ((-350 . -367) T) ((-522 . -102) T) ((-493 . -27) T) ((-239 . -308) 77723) ((-1077 . -1102) T) ((-1277 . -641) 77697) ((-776 . -1102) T) ((-774 . -1102) T) ((-452 . -1102) T) ((-1053 . -450) T) ((-945 . -450) 77648) ((-1105 . -1073) T) ((-110 . -1090) T) ((-1077 . -23) T) ((-811 . -1049) T) ((-776 . -23) T) ((-774 . -23) T) ((-479 . -450) 77599) ((-1149 . -512) 77382) ((-380 . -381) 77361) ((-1168 . -410) 77345) ((-459 . -23) T) ((-452 . -23) T) ((-96 . -1090) T) ((-482 . -512) 77278) ((-288 . -289) T) ((-1072 . -608) 77260) ((-1072 . -609) 77241) ((-406 . -902) 77220) ((-50 . -1102) T) ((-1017 . -913) T) ((-996 . -720) T) ((-706 . -879) NIL) ((-578 . -1102) T) ((-516 . -1102) T) ((-837 . -641) 77193) ((-1199 . -130) T) ((-1157 . -399) 77145) ((-997 . -308) NIL) ((-809 . -487) 77129) ((-353 . -913) T) ((-1146 . -34) T) ((-406 . -641) 77081) ((-50 . -23) T) ((-705 . -130) T) ((-706 . -1031) 76961) ((-578 . -23) T) ((-108 . -512) NIL) ((-516 . -23) T) ((-168 . -408) 76932) ((-1130 . -1090) T) ((-1269 . -1268) 76916) ((-694 . -789) T) ((-694 . -786) T) ((-1110 . -306) T) ((-378 . -146) T) ((-279 . -608) 76898) ((-1217 . -985) 76868) ((-48 . -913) T) ((-668 . -487) 76852) ((-250 . -1261) 76822) ((-249 . -1261) 76792) ((-1166 . -844) T) ((-1103 . -171) 76771) ((-1110 . -1015) T) ((-1039 . -34) T) ((-830 . -146) 76750) ((-830 . -144) 76729) ((-731 . -107) 76713) ((-607 . -131) T) ((-480 . -1090) 76503) ((-1168 . -1049) T) ((-864 . -450) T) ((-85 . -1205) T) ((-239 . -38) 76473) ((-140 . -107) 76455) ((-706 . -376) 76439) ((-827 . -611) 76307) ((-1110 . -543) T) ((-576 . -102) T) ((-129 . -488) 76289) ((-389 . -1048) 76273) ((-1277 . -720) T) ((-1162 . -942) 76242) ((-129 . -608) 76209) ((-52 . -608) 76191) ((-1115 . -942) 76158) ((-646 . -410) 76142) ((-1266 . -1049) T) ((-616 . -1048) 76126) ((-655 . -25) T) ((-655 . -21) T) ((-1148 . -512) NIL) ((-1246 . -102) T) ((-1239 . -102) T) ((-389 . -111) 76105) ((-221 . -253) 76089) ((-1218 . -102) T) ((-1046 . -1090) T) ((-997 . -1141) T) ((-1046 . -1045) 76029) ((-812 . -1090) T) ((-342 . -1209) T) ((-630 . -641) 76013) ((-616 . -111) 75992) ((-602 . -641) 75976) ((-592 . -102) T) ((-310 . -488) 75957) ((-582 . -130) T) ((-591 . -102) T) ((-413 . -1090) T) ((-384 . -1090) T) ((-310 . -608) 75923) ((-226 . -1090) 75901) ((-640 . -512) 75834) ((-627 . -512) 75678) ((-827 . -1042) 75657) ((-638 . -150) 75641) ((-342 . -553) T) ((-706 . -893) 75584) ((-547 . -228) 75534) ((-1246 . -283) 75500) ((-1070 . -289) 75451) ((-485 . -842) T) ((-222 . -1102) T) ((-1239 . -283) 75417) ((-1218 . -283) 75383) ((-997 . -38) 75333) ((-216 . -842) T) ((-1199 . -491) 75299) ((-907 . -38) 75251) ((-837 . -788) 75230) ((-837 . -785) 75209) ((-837 . -720) 75188) ((-358 . -289) T) ((-352 . -289) T) ((-344 . -289) T) ((-168 . -450) 75119) ((-426 . -38) 75103) ((-108 . -289) T) ((-222 . -23) T) ((-406 . -788) 75082) ((-406 . -785) 75061) ((-406 . -720) T) ((-498 . -287) 75036) ((-475 . -1048) 75001) ((-651 . -130) T) ((-616 . -611) 74970) ((-1103 . -512) 74903) ((-335 . -130) T) ((-168 . -401) 74882) ((-480 . -711) 74824) ((-809 . -285) 74801) ((-475 . -111) 74757) ((-646 . -1049) T) ((-1227 . -450) 74688) ((-1265 . -1073) T) ((-1264 . -1073) T) ((-1077 . -130) T) ((-1046 . -711) 74630) ((-263 . -844) 74609) ((-246 . -844) 74588) ((-776 . -130) T) ((-774 . -130) T) ((-568 . -450) T) ((-1020 . -512) 74521) ((-616 . -1042) T) ((-588 . -1090) T) ((-531 . -172) T) ((-459 . -130) T) ((-452 . -130) T) ((-45 . -1090) T) ((-384 . -711) 74491) ((-811 . -1090) T) ((-474 . -512) 74424) ((-461 . -512) 74357) ((-451 . -366) 74327) ((-45 . -605) 74306) ((-315 . -301) T) ((-475 . -611) 74256) ((-663 . -608) 74218) ((-59 . -844) 74197) ((-1218 . -308) 74082) ((-997 . -399) 74064) ((-809 . -599) 74041) ((-514 . -844) 74020) ((-494 . -844) 73999) ((-40 . -1209) T) ((-992 . -1031) 73895) ((-50 . -130) T) ((-578 . -130) T) ((-516 . -130) T) ((-293 . -641) 73755) ((-342 . -328) 73732) ((-342 . -362) T) ((-321 . -322) 73709) ((-318 . -285) 73694) ((-40 . -553) T) ((-378 . -1190) T) ((-378 . -1193) T) ((-1028 . -1181) 73669) ((-1178 . -234) 73619) ((-1157 . -230) 73571) ((-329 . -1090) T) ((-378 . -95) T) ((-378 . -35) T) ((-1028 . -107) 73517) ((-475 . -1042) T) ((-477 . -234) 73467) ((-1149 . -487) 73401) ((-1278 . -1048) 73385) ((-380 . -1048) 73369) ((-475 . -242) T) ((-810 . -102) T) ((-708 . -146) 73348) ((-708 . -144) 73327) ((-482 . -487) 73311) ((-483 . -334) 73280) ((-1278 . -111) 73259) ((-510 . -1090) T) ((-480 . -171) 73238) ((-992 . -376) 73222) ((-412 . -102) T) ((-380 . -111) 73201) ((-992 . -337) 73185) ((-278 . -976) 73169) ((-277 . -976) 73153) ((-1276 . -608) 73135) ((-1274 . -608) 73117) ((-110 . -512) NIL) ((-1162 . -1230) 73101) ((-848 . -846) 73085) ((-1168 . -1090) T) ((-103 . -1205) T) ((-945 . -942) 73046) ((-811 . -711) 72988) ((-1218 . -1141) NIL) ((-479 . -942) 72933) ((-1053 . -142) T) ((-60 . -102) 72911) ((-44 . -608) 72893) ((-78 . -608) 72875) ((-350 . -641) 72820) ((-1266 . -1090) T) ((-509 . -844) T) ((-342 . -1102) T) ((-294 . -1090) T) ((-992 . -893) 72779) ((-294 . -605) 72758) ((-1278 . -611) 72707) ((-1246 . -38) 72604) ((-1239 . -38) 72445) ((-1218 . -38) 72241) ((-485 . -1049) T) ((-380 . -611) 72225) ((-216 . -1049) T) ((-342 . -23) T) ((-151 . -608) 72207) ((-827 . -789) 72186) ((-827 . -786) 72165) ((-1204 . -611) 72146) ((-592 . -38) 72119) ((-591 . -38) 72016) ((-863 . -553) T) ((-222 . -130) T) ((-318 . -995) 71982) ((-79 . -608) 71964) ((-706 . -306) 71943) ((-293 . -720) 71845) ((-818 . -102) T) ((-858 . -838) T) ((-293 . -471) 71824) ((-1269 . -102) T) ((-40 . -362) T) ((-865 . -146) 71803) ((-865 . -144) 71782) ((-1148 . -487) 71764) ((-1278 . -1042) T) ((-480 . -512) 71697) ((-1136 . -1205) T) ((-957 . -608) 71679) ((-640 . -487) 71663) ((-627 . -487) 71594) ((-809 . -608) 71325) ((-48 . -27) T) ((-1168 . -711) 71222) ((-646 . -1090) T) ((-855 . -854) T) ((-435 . -363) 71196) ((-1092 . -102) T) ((-963 . -1090) T) ((-858 . -1090) T) ((-810 . -308) 71183) ((-531 . -525) T) ((-531 . -573) T) ((-1274 . -381) 71155) ((-1046 . -512) 71088) ((-1149 . -285) 71064) ((-239 . -230) 71033) ((-1266 . -711) 71003) ((-1156 . -93) T) ((-987 . -93) T) ((-811 . -171) 70982) ((-1202 . -488) 70959) ((-226 . -512) 70892) ((-616 . -789) 70871) ((-616 . -786) 70850) ((-1202 . -608) 70762) ((-221 . -1205) T) ((-668 . -608) 70694) ((-1146 . -1003) 70678) ((-936 . -102) 70628) ((-350 . -720) T) ((-855 . -608) 70610) ((-1218 . -399) 70562) ((-1103 . -487) 70546) ((-60 . -308) 70484) ((-330 . -102) T) ((-1199 . -21) T) ((-1199 . -25) T) ((-40 . -1102) T) ((-705 . -21) T) ((-622 . -608) 70466) ((-513 . -322) 70445) ((-705 . -25) T) ((-108 . -285) NIL) ((-914 . -1102) T) ((-40 . -23) T) ((-765 . -1102) T) ((-561 . -1209) T) ((-493 . -1209) T) ((-318 . -608) 70427) ((-997 . -230) 70409) ((-168 . -165) 70393) ((-577 . -553) T) ((-561 . -553) T) ((-493 . -553) T) ((-765 . -23) T) ((-1238 . -146) 70372) ((-1149 . -599) 70348) ((-1238 . -144) 70327) ((-1020 . -487) 70311) ((-1217 . -144) 70236) ((-1217 . -146) 70161) ((-1269 . -1275) 70140) ((-474 . -487) 70124) ((-461 . -487) 70108) ((-521 . -34) T) ((-646 . -711) 70078) ((-112 . -960) T) ((-655 . -844) 70057) ((-1168 . -171) 70008) ((-364 . -102) T) ((-239 . -237) 69987) ((-250 . -102) T) ((-249 . -102) T) ((-1227 . -942) 69956) ((-244 . -844) 69935) ((-810 . -38) 69784) ((-45 . -512) 69576) ((-1148 . -285) 69551) ((-213 . -1090) T) ((-1140 . -1090) T) ((-1140 . -605) 69530) ((-582 . -25) T) ((-582 . -21) T) ((-1092 . -308) 69468) ((-956 . -410) 69452) ((-692 . -1209) T) ((-627 . -285) 69427) ((-1077 . -634) 69375) ((-776 . -634) 69323) ((-774 . -634) 69271) ((-342 . -130) T) ((-288 . -608) 69253) ((-898 . -1090) T) ((-692 . -553) T) ((-129 . -611) 69235) ((-863 . -1102) T) ((-452 . -634) 69183) ((-898 . -896) 69167) ((-378 . -450) T) ((-485 . -1090) T) ((-936 . -308) 69105) ((-694 . -641) 69092) ((-546 . -838) T) ((-216 . -1090) T) ((-315 . -913) 69071) ((-312 . -913) T) ((-312 . -814) NIL) ((-389 . -714) T) ((-863 . -23) T) ((-116 . -641) 69058) ((-472 . -144) 69037) ((-417 . -410) 69021) ((-472 . -146) 69000) ((-110 . -487) 68982) ((-310 . -611) 68963) ((-2 . -608) 68945) ((-185 . -102) T) ((-1148 . -19) 68927) ((-1148 . -599) 68902) ((-651 . -21) T) ((-651 . -25) T) ((-589 . -1134) T) ((-1103 . -285) 68879) ((-335 . -25) T) ((-335 . -21) T) ((-493 . -362) T) ((-1269 . -38) 68849) ((-1132 . -1205) T) ((-627 . -599) 68824) ((-546 . -1090) T) ((-1077 . -25) T) ((-1077 . -21) T) ((-529 . -786) T) ((-529 . -789) T) ((-117 . -1209) T) ((-956 . -1049) T) ((-618 . -553) T) ((-776 . -25) T) ((-776 . -21) T) ((-774 . -21) T) ((-774 . -25) T) ((-729 . -1049) T) ((-709 . -1049) T) ((-663 . -1048) 68808) ((-515 . -1073) T) ((-459 . -25) T) ((-117 . -553) T) ((-459 . -21) T) ((-452 . -25) T) ((-452 . -21) T) ((-1276 . -1048) 68792) ((-1132 . -1031) 68688) ((-811 . -289) 68667) ((-1274 . -1048) 68651) ((-817 . -1090) T) ((-1238 . -1190) 68617) ((-959 . -960) T) ((-663 . -111) 68596) ((-294 . -512) 68388) ((-1238 . -1193) 68354) ((-1238 . -95) 68320) ((-1221 . -102) 68298) ((-250 . -308) 68236) ((-249 . -308) 68174) ((-1218 . -230) 68126) ((-1149 . -609) NIL) ((-1149 . -608) 68108) ((-1217 . -1190) 68074) ((-1217 . -1193) 68040) ((-1212 . -367) T) ((-96 . -93) T) ((-1210 . -838) T) ((-1132 . -376) 68024) ((-1110 . -814) T) ((-1110 . -913) T) ((-1103 . -599) 68001) ((-1070 . -609) 67985) ((-482 . -608) 67917) ((-809 . -287) 67894) ((-603 . -150) 67841) ((-417 . -1049) T) ((-485 . -711) 67791) ((-480 . -487) 67775) ((-326 . -844) 67754) ((-338 . -641) 67728) ((-50 . -21) T) ((-50 . -25) T) ((-216 . -711) 67678) ((-168 . -718) 67649) ((-173 . -641) 67581) ((-578 . -21) T) ((-578 . -25) T) ((-516 . -25) T) ((-516 . -21) T) ((-473 . -150) 67531) ((-1070 . -608) 67513) ((-1052 . -608) 67495) ((-986 . -102) T) ((-856 . -102) T) ((-793 . -410) 67459) ((-40 . -130) T) ((-692 . -362) T) ((-694 . -720) T) ((-694 . -788) T) ((-694 . -785) T) ((-211 . -888) T) ((-577 . -1102) T) ((-561 . -1102) T) ((-493 . -1102) T) ((-358 . -608) 67441) ((-352 . -608) 67423) ((-344 . -608) 67405) ((-66 . -395) T) ((-66 . -394) T) ((-108 . -609) 67335) ((-108 . -608) 67278) ((-210 . -888) T) ((-951 . -150) 67262) ((-765 . -130) T) ((-663 . -611) 67180) ((-133 . -720) T) ((-116 . -720) T) ((-1238 . -35) 67146) ((-1046 . -487) 67130) ((-577 . -23) T) ((-561 . -23) T) ((-493 . -23) T) ((-1217 . -95) 67096) ((-1217 . -35) 67062) ((-1162 . -102) T) ((-1115 . -102) T) ((-848 . -102) T) ((-226 . -487) 67046) ((-1276 . -111) 67025) ((-1274 . -111) 67004) ((-44 . -1048) 66988) ((-1227 . -1230) 66972) ((-849 . -846) 66956) ((-1276 . -611) 66902) ((-1168 . -289) 66881) ((-110 . -285) 66856) ((-1210 . -1090) T) ((-128 . -150) 66838) ((-1132 . -893) 66797) ((-44 . -111) 66776) ((-1171 . -1249) T) ((-1156 . -488) 66757) ((-1156 . -608) 66723) ((-1148 . -609) NIL) ((-663 . -1042) T) ((-1148 . -608) 66705) ((-1054 . -605) 66680) ((-1054 . -1090) T) ((-987 . -488) 66661) ((-987 . -608) 66627) ((-74 . -439) T) ((-74 . -394) T) ((-696 . -1090) T) ((-151 . -1048) 66611) ((-663 . -232) 66590) ((-568 . -551) 66574) ((-354 . -146) 66553) ((-354 . -144) 66504) ((-351 . -146) 66483) ((-351 . -144) 66434) ((-343 . -146) 66413) ((-343 . -144) 66364) ((-263 . -144) 66343) ((-263 . -146) 66322) ((-250 . -38) 66292) ((-246 . -146) 66271) ((-117 . -362) T) ((-246 . -144) 66250) ((-249 . -38) 66220) ((-151 . -111) 66199) ((-996 . -1031) 66087) ((-1157 . -842) NIL) ((-687 . -1209) T) ((-793 . -1049) T) ((-692 . -1102) T) ((-1276 . -1042) T) ((-1274 . -611) 66016) ((-1274 . -1042) T) ((-1146 . -1205) T) ((-996 . -376) 65993) ((-903 . -144) T) ((-903 . -146) 65975) ((-863 . -130) T) ((-809 . -1048) 65872) ((-687 . -553) T) ((-692 . -23) T) ((-640 . -608) 65804) ((-640 . -609) 65765) ((-627 . -609) NIL) ((-627 . -608) 65747) ((-485 . -171) T) ((-222 . -21) T) ((-216 . -171) T) ((-222 . -25) T) ((-472 . -1193) 65713) ((-472 . -1190) 65679) ((-273 . -608) 65661) ((-272 . -608) 65643) ((-271 . -608) 65625) ((-270 . -608) 65607) ((-269 . -608) 65589) ((-498 . -644) 65571) ((-268 . -608) 65553) ((-338 . -720) T) ((-267 . -608) 65535) ((-110 . -19) 65517) ((-173 . -720) T) ((-498 . -372) 65499) ((-211 . -608) 65481) ((-518 . -1139) 65465) ((-498 . -123) T) ((-110 . -599) 65440) ((-210 . -608) 65422) ((-472 . -35) 65388) ((-472 . -95) 65354) ((-208 . -608) 65336) ((-207 . -608) 65318) ((-206 . -608) 65300) ((-205 . -608) 65282) ((-202 . -608) 65264) ((-201 . -608) 65246) ((-200 . -608) 65228) ((-199 . -608) 65210) ((-198 . -608) 65192) ((-197 . -608) 65174) ((-196 . -608) 65156) ((-534 . -1093) 65108) ((-195 . -608) 65090) ((-194 . -608) 65072) ((-45 . -487) 65009) ((-193 . -608) 64991) ((-192 . -608) 64973) ((-151 . -611) 64942) ((-1105 . -102) T) ((-809 . -111) 64832) ((-638 . -102) 64782) ((-480 . -285) 64759) ((-1103 . -608) 64490) ((-1091 . -1090) T) ((-1039 . -1205) T) ((-1277 . -1031) 64474) ((-618 . -1102) T) ((-1162 . -308) 64461) ((-1125 . -1090) T) ((-1115 . -308) 64448) ((-1086 . -1073) T) ((-1080 . -1073) T) ((-1064 . -1073) T) ((-1057 . -1073) T) ((-1029 . -1073) T) ((-1012 . -1073) T) ((-117 . -1102) T) ((-813 . -102) T) ((-621 . -1073) T) ((-618 . -23) T) ((-1140 . -512) 64240) ((-481 . -1073) T) ((-996 . -893) 64192) ((-385 . -102) T) ((-323 . -102) T) ((-217 . -1073) T) ((-956 . -1090) T) ((-151 . -1042) T) ((-725 . -410) 64176) ((-117 . -23) T) ((-729 . -1090) T) ((-709 . -1090) T) ((-696 . -131) T) ((-451 . -1090) T) ((-406 . -1205) T) ((-315 . -429) 64160) ((-588 . -93) T) ((-1020 . -609) 64121) ((-1017 . -1209) T) ((-224 . -102) T) ((-1020 . -608) 64083) ((-810 . -230) 64067) ((-809 . -611) 63797) ((-1017 . -553) T) ((-827 . -641) 63770) ((-353 . -1209) T) ((-474 . -608) 63732) ((-474 . -609) 63693) ((-461 . -609) 63654) ((-461 . -608) 63616) ((-406 . -877) 63600) ((-318 . -1048) 63435) ((-406 . -879) 63360) ((-837 . -1031) 63256) ((-485 . -512) NIL) ((-480 . -599) 63233) ((-353 . -553) T) ((-216 . -512) NIL) ((-865 . -450) T) ((-417 . -1090) T) ((-406 . -1031) 63097) ((-318 . -111) 62918) ((-687 . -362) T) ((-224 . -283) T) ((-1202 . -611) 62895) ((-48 . -1209) T) ((-809 . -1042) 62825) ((-577 . -130) T) ((-561 . -130) T) ((-493 . -130) T) ((-1162 . -1141) 62803) ((-48 . -553) T) ((-1149 . -287) 62779) ((-1053 . -102) T) ((-945 . -102) T) ((-315 . -27) 62758) ((-809 . -232) 62710) ((-248 . -829) 62692) ((-239 . -842) 62671) ((-186 . -829) 62653) ((-707 . -102) T) ((-294 . -487) 62590) ((-479 . -102) T) ((-725 . -1049) T) ((-607 . -608) 62572) ((-607 . -609) 62433) ((-406 . -376) 62417) ((-406 . -337) 62401) ((-318 . -611) 62227) ((-1162 . -38) 62056) ((-1115 . -38) 61905) ((-848 . -38) 61875) ((-389 . -641) 61859) ((-638 . -308) 61797) ((-956 . -711) 61694) ((-729 . -711) 61664) ((-221 . -107) 61648) ((-45 . -285) 61573) ((-616 . -641) 61547) ((-311 . -1090) T) ((-288 . -1048) 61534) ((-110 . -608) 61516) ((-110 . -609) 61498) ((-451 . -711) 61468) ((-810 . -252) 61407) ((-682 . -1090) 61385) ((-547 . -1090) T) ((-1164 . -1049) T) ((-1163 . -1049) T) ((-96 . -488) 61366) ((-1157 . -1049) T) ((-288 . -111) 61351) ((-1116 . -1049) T) ((-547 . -605) 61330) ((-96 . -608) 61296) ((-997 . -842) T) ((-226 . -680) 61254) ((-687 . -1102) T) ((-1199 . -734) 61230) ((-1017 . -362) T) ((-832 . -829) 61212) ((-318 . -1042) T) ((-342 . -25) T) ((-342 . -21) T) ((-406 . -893) 61171) ((-68 . -1205) T) ((-827 . -788) 61150) ((-417 . -711) 61124) ((-793 . -1090) T) ((-827 . -785) 61103) ((-692 . -130) T) ((-706 . -913) 61082) ((-687 . -23) T) ((-485 . -289) T) ((-827 . -720) 61061) ((-318 . -232) 61013) ((-318 . -242) 60992) ((-216 . -289) T) ((-129 . -367) T) ((-1238 . -450) 60971) ((-1217 . -450) 60950) ((-353 . -328) 60927) ((-353 . -362) T) ((-1130 . -608) 60909) ((-45 . -1242) 60859) ((-864 . -102) T) ((-638 . -281) 60843) ((-692 . -1051) T) ((-1265 . -102) T) ((-1264 . -102) T) ((-475 . -641) 60808) ((-466 . -1090) T) ((-45 . -599) 60733) ((-1148 . -287) 60708) ((-288 . -611) 60680) ((-40 . -634) 60619) ((-48 . -362) T) ((-1096 . -608) 60601) ((-1077 . -844) 60580) ((-627 . -287) 60555) ((-776 . -844) 60534) ((-774 . -844) 60513) ((-480 . -608) 60244) ((-239 . -410) 60213) ((-945 . -308) 60200) ((-452 . -844) 60179) ((-65 . -1205) T) ((-1054 . -512) 60023) ((-618 . -130) T) ((-544 . -102) T) ((-479 . -308) 60010) ((-601 . -1090) T) ((-117 . -130) T) ((-664 . -1090) T) ((-288 . -1042) T) ((-179 . -1090) T) ((-160 . -1090) T) ((-155 . -1090) T) ((-153 . -1090) T) ((-451 . -755) T) ((-31 . -1073) T) ((-956 . -171) 59961) ((-963 . -93) T) ((-1070 . -1048) 59871) ((-616 . -788) 59850) ((-589 . -1090) T) ((-616 . -785) 59829) ((-616 . -720) T) ((-294 . -285) 59808) ((-293 . -1205) T) ((-1046 . -608) 59770) ((-1046 . -609) 59731) ((-1017 . -1102) T) ((-168 . -102) T) ((-274 . -844) T) ((-1155 . -1090) T) ((-812 . -608) 59713) ((-1103 . -287) 59690) ((-1092 . -228) 59674) ((-996 . -306) T) ((-793 . -711) 59658) ((-358 . -1048) 59610) ((-353 . -1102) T) ((-352 . -1048) 59562) ((-413 . -608) 59544) ((-384 . -608) 59526) ((-344 . -1048) 59478) ((-226 . -608) 59410) ((-1070 . -111) 59306) ((-1017 . -23) T) ((-108 . -1048) 59256) ((-891 . -102) T) ((-835 . -102) T) ((-802 . -102) T) ((-763 . -102) T) ((-670 . -102) T) ((-472 . -450) 59235) ((-417 . -171) T) ((-358 . -111) 59173) ((-352 . -111) 59111) ((-344 . -111) 59049) ((-250 . -230) 59018) ((-249 . -230) 58987) ((-353 . -23) T) ((-71 . -1205) T) ((-224 . -38) 58952) ((-108 . -111) 58886) ((-40 . -25) T) ((-40 . -21) T) ((-663 . -714) T) ((-168 . -283) 58864) ((-48 . -1102) T) ((-914 . -25) T) ((-765 . -25) T) ((-1140 . -487) 58801) ((-483 . -1090) T) ((-1278 . -641) 58775) ((-1227 . -102) T) ((-849 . -102) T) ((-239 . -1049) 58705) ((-1053 . -1141) T) ((-957 . -786) 58658) ((-380 . -641) 58642) ((-48 . -23) T) ((-957 . -789) 58595) ((-809 . -789) 58546) ((-809 . -786) 58497) ((-294 . -599) 58476) ((-475 . -720) T) ((-568 . -102) T) ((-1070 . -611) 58294) ((-248 . -184) T) ((-186 . -184) T) ((-864 . -308) 58251) ((-646 . -285) 58230) ((-112 . -654) T) ((-358 . -611) 58167) ((-352 . -611) 58104) ((-344 . -611) 58041) ((-76 . -1205) T) ((-108 . -611) 57991) ((-1053 . -38) 57978) ((-657 . -373) 57957) ((-945 . -38) 57806) ((-725 . -1090) T) ((-479 . -38) 57655) ((-86 . -1205) T) ((-588 . -488) 57636) ((-568 . -283) T) ((-1218 . -842) NIL) ((-588 . -608) 57602) ((-1164 . -1090) T) ((-1163 . -1090) T) ((-1070 . -1042) T) ((-350 . -1031) 57579) ((-811 . -488) 57563) ((-997 . -1049) T) ((-45 . -608) 57545) ((-45 . -609) NIL) ((-907 . -1049) T) ((-811 . -608) 57514) ((-1157 . -1090) T) ((-1137 . -102) 57492) ((-1070 . -242) 57443) ((-426 . -1049) T) ((-358 . -1042) T) ((-364 . -363) 57420) ((-352 . -1042) T) ((-344 . -1042) T) ((-250 . -237) 57399) ((-249 . -237) 57378) ((-1070 . -232) 57303) ((-1116 . -1090) T) ((-293 . -893) 57262) ((-108 . -1042) T) ((-687 . -130) T) ((-417 . -512) 57104) ((-358 . -232) 57083) ((-358 . -242) T) ((-44 . -714) T) ((-352 . -232) 57062) ((-352 . -242) T) ((-344 . -232) 57041) ((-344 . -242) T) ((-1156 . -611) 57022) ((-168 . -308) 56987) ((-108 . -242) T) ((-108 . -232) T) ((-987 . -611) 56968) ((-318 . -786) T) ((-863 . -21) T) ((-863 . -25) T) ((-406 . -306) T) ((-498 . -34) T) ((-110 . -287) 56943) ((-1103 . -1048) 56840) ((-864 . -1141) NIL) ((-329 . -608) 56822) ((-406 . -1015) 56800) ((-1103 . -111) 56690) ((-684 . -1249) T) ((-435 . -1090) T) ((-1278 . -720) T) ((-63 . -608) 56672) ((-864 . -38) 56617) ((-521 . -1205) T) ((-597 . -150) 56601) ((-510 . -608) 56583) ((-1227 . -308) 56570) ((-725 . -711) 56419) ((-529 . -787) T) ((-529 . -788) T) ((-561 . -634) 56401) ((-493 . -634) 56361) ((-354 . -450) T) ((-351 . -450) T) ((-343 . -450) T) ((-263 . -450) 56312) ((-523 . -1090) T) ((-518 . -1090) 56262) ((-246 . -450) 56213) ((-1140 . -285) 56192) ((-1168 . -608) 56174) ((-682 . -512) 56107) ((-956 . -289) 56086) ((-547 . -512) 55878) ((-1266 . -608) 55847) ((-1162 . -230) 55831) ((-1103 . -611) 55561) ((-168 . -1141) 55540) ((-1266 . -488) 55524) ((-1164 . -711) 55421) ((-1163 . -711) 55262) ((-885 . -102) T) ((-1157 . -711) 55058) ((-1116 . -711) 54955) ((-1146 . -667) 54939) ((-354 . -401) 54890) ((-351 . -401) 54841) ((-343 . -401) 54792) ((-1017 . -130) T) ((-793 . -512) 54704) ((-294 . -609) NIL) ((-294 . -608) 54686) ((-903 . -450) T) ((-957 . -367) 54639) ((-809 . -367) 54618) ((-508 . -507) 54597) ((-506 . -507) 54576) ((-485 . -285) NIL) ((-480 . -287) 54553) ((-417 . -289) T) ((-353 . -130) T) ((-216 . -285) NIL) ((-687 . -491) NIL) ((-99 . -1102) T) ((-168 . -38) 54381) ((-1238 . -966) 54343) ((-1137 . -308) 54281) ((-1217 . -966) 54250) ((-903 . -401) T) ((-1103 . -1042) 54180) ((-1240 . -553) T) ((-1140 . -599) 54159) ((-112 . -844) T) ((-1054 . -487) 54090) ((-577 . -21) T) ((-577 . -25) T) ((-561 . -21) T) ((-561 . -25) T) ((-493 . -25) T) ((-493 . -21) T) ((-1227 . -1141) 54068) ((-1103 . -232) 54020) ((-48 . -130) T) ((-1186 . -102) T) ((-239 . -1090) 53810) ((-864 . -399) 53787) ((-1078 . -102) T) ((-1066 . -102) T) ((-603 . -102) T) ((-473 . -102) T) ((-1227 . -38) 53616) ((-849 . -38) 53586) ((-725 . -171) 53497) ((-646 . -608) 53479) ((-639 . -1073) T) ((-568 . -38) 53466) ((-963 . -488) 53447) ((-963 . -608) 53413) ((-951 . -102) 53363) ((-858 . -608) 53345) ((-858 . -609) 53267) ((-589 . -512) NIL) ((-1246 . -1049) T) ((-1239 . -1049) T) ((-1218 . -1049) T) ((-1282 . -1102) T) ((-1173 . -102) T) ((-592 . -1049) T) ((-591 . -1049) T) ((-1172 . -102) T) ((-1164 . -171) 53218) ((-1163 . -171) 53149) ((-1157 . -171) 53080) ((-1116 . -171) 53031) ((-997 . -1090) T) ((-964 . -1090) T) ((-907 . -1090) T) ((-1199 . -146) 53010) ((-793 . -791) 52994) ((-692 . -25) T) ((-692 . -21) T) ((-117 . -634) 52971) ((-694 . -879) 52953) ((-426 . -1090) T) ((-315 . -1209) 52932) ((-312 . -1209) T) ((-168 . -399) 52916) ((-1199 . -144) 52895) ((-472 . -966) 52857) ((-128 . -102) T) ((-72 . -608) 52839) ((-108 . -789) T) ((-108 . -786) T) ((-694 . -1031) 52821) ((-315 . -553) 52800) ((-312 . -553) T) ((-1282 . -23) T) ((-133 . -1031) 52782) ((-96 . -611) 52763) ((-480 . -1048) 52660) ((-45 . -287) 52585) ((-239 . -711) 52527) ((-515 . -102) T) ((-480 . -111) 52417) ((-1082 . -102) 52395) ((-1027 . -102) T) ((-638 . -822) 52374) ((-725 . -512) 52317) ((-1046 . -1048) 52301) ((-1125 . -93) T) ((-1054 . -285) 52276) ((-618 . -21) T) ((-618 . -25) T) ((-522 . -1090) T) ((-360 . -102) T) ((-321 . -102) T) ((-663 . -641) 52250) ((-384 . -1048) 52234) ((-1046 . -111) 52213) ((-810 . -410) 52197) ((-117 . -25) T) ((-89 . -608) 52179) ((-117 . -21) T) ((-603 . -308) 51974) ((-473 . -308) 51778) ((-1140 . -609) NIL) ((-384 . -111) 51757) ((-378 . -102) T) ((-213 . -608) 51739) ((-1140 . -608) 51721) ((-1157 . -512) 51490) ((-997 . -711) 51440) ((-1116 . -512) 51410) ((-907 . -711) 51362) ((-480 . -611) 51092) ((-350 . -306) T) ((-1178 . -150) 51042) ((-951 . -308) 50980) ((-830 . -102) T) ((-426 . -711) 50964) ((-224 . -822) T) ((-821 . -102) T) ((-819 . -102) T) ((-477 . -150) 50914) ((-1238 . -1237) 50893) ((-1110 . -1209) T) ((-338 . -1031) 50860) ((-1238 . -1232) 50830) ((-1238 . -1235) 50814) ((-1217 . -1216) 50793) ((-80 . -608) 50775) ((-898 . -608) 50757) ((-1217 . -1232) 50734) ((-1110 . -553) T) ((-914 . -844) T) ((-765 . -844) T) ((-485 . -609) 50664) ((-485 . -608) 50606) ((-378 . -283) T) ((-665 . -844) T) ((-1217 . -1214) 50590) ((-1240 . -1102) T) ((-216 . -609) 50520) ((-216 . -608) 50462) ((-1276 . -641) 50436) ((-1054 . -599) 50411) ((-812 . -611) 50395) ((-59 . -150) 50379) ((-514 . -150) 50363) ((-494 . -150) 50347) ((-358 . -1273) 50331) ((-352 . -1273) 50315) ((-344 . -1273) 50299) ((-315 . -362) 50278) ((-312 . -362) T) ((-480 . -1042) 50208) ((-687 . -634) 50190) ((-1274 . -641) 50164) ((-128 . -308) NIL) ((-1240 . -23) T) ((-682 . -487) 50148) ((-64 . -608) 50130) ((-1103 . -789) 50081) ((-1103 . -786) 50032) ((-547 . -487) 49969) ((-663 . -34) T) ((-480 . -232) 49921) ((-294 . -287) 49900) ((-239 . -171) 49879) ((-810 . -1049) T) ((-44 . -641) 49837) ((-1070 . -367) 49788) ((-725 . -289) 49719) ((-518 . -512) 49652) ((-811 . -1048) 49603) ((-1077 . -144) 49582) ((-546 . -608) 49564) ((-358 . -367) 49543) ((-352 . -367) 49522) ((-344 . -367) 49501) ((-1077 . -146) 49480) ((-864 . -230) 49457) ((-811 . -111) 49399) ((-776 . -144) 49378) ((-776 . -146) 49357) ((-263 . -942) 49324) ((-250 . -842) 49303) ((-246 . -942) 49248) ((-249 . -842) 49227) ((-774 . -144) 49206) ((-774 . -146) 49185) ((-151 . -641) 49159) ((-576 . -1090) T) ((-452 . -146) 49138) ((-452 . -144) 49117) ((-663 . -720) T) ((-817 . -608) 49099) ((-1246 . -1090) T) ((-1239 . -1090) T) ((-1218 . -1090) T) ((-1199 . -1193) 49065) ((-1199 . -1190) 49031) ((-1164 . -289) 49010) ((-1163 . -289) 48961) ((-1157 . -289) 48912) ((-1116 . -289) 48891) ((-338 . -893) 48872) ((-997 . -171) T) ((-907 . -171) T) ((-592 . -1090) T) ((-591 . -1090) T) ((-687 . -21) T) ((-687 . -25) T) ((-472 . -1235) 48856) ((-472 . -1232) 48826) ((-417 . -285) 48754) ((-545 . -844) T) ((-315 . -1102) 48603) ((-312 . -1102) T) ((-1199 . -35) 48569) ((-1199 . -95) 48535) ((-84 . -608) 48517) ((-91 . -102) 48495) ((-1282 . -130) T) ((-588 . -611) 48476) ((-578 . -144) T) ((-578 . -146) 48458) ((-516 . -146) 48440) ((-516 . -144) T) ((-315 . -23) 48292) ((-40 . -341) 48266) ((-312 . -23) T) ((-811 . -611) 48180) ((-1148 . -644) 48162) ((-1269 . -1049) T) ((-1148 . -372) 48144) ((-809 . -641) 47992) ((-1086 . -102) T) ((-1080 . -102) T) ((-1064 . -102) T) ((-168 . -230) 47976) ((-1057 . -102) T) ((-1029 . -102) T) ((-1012 . -102) T) ((-589 . -487) 47958) ((-621 . -102) T) ((-239 . -512) 47891) ((-481 . -102) T) ((-1276 . -720) T) ((-1274 . -720) T) ((-217 . -102) T) ((-1168 . -1048) 47774) ((-1168 . -111) 47643) ((-855 . -172) T) ((-811 . -1042) T) ((-674 . -1073) T) ((-669 . -1073) T) ((-513 . -102) T) ((-508 . -102) T) ((-48 . -634) 47603) ((-506 . -102) T) ((-476 . -1073) T) ((-1266 . -1048) 47573) ((-137 . -1073) T) ((-136 . -1073) T) ((-132 . -1073) T) ((-1027 . -38) 47557) ((-811 . -232) T) ((-811 . -242) 47536) ((-1266 . -111) 47501) ((-1246 . -711) 47398) ((-1239 . -711) 47239) ((-1227 . -230) 47223) ((-547 . -285) 47202) ((-1210 . -608) 47184) ((-1054 . -609) NIL) ((-601 . -93) T) ((-1054 . -608) 47166) ((-696 . -488) 47150) ((-664 . -93) T) ((-179 . -93) T) ((-160 . -93) T) ((-155 . -93) T) ((-153 . -93) T) ((-1218 . -711) 46946) ((-996 . -913) T) ((-696 . -608) 46915) ((-151 . -720) T) ((-1103 . -367) 46894) ((-997 . -512) NIL) ((-250 . -410) 46863) ((-249 . -410) 46832) ((-1017 . -25) T) ((-1017 . -21) T) ((-592 . -711) 46805) ((-591 . -711) 46702) ((-793 . -285) 46660) ((-126 . -102) 46638) ((-827 . -1031) 46534) ((-168 . -822) 46513) ((-318 . -641) 46410) ((-809 . -34) T) ((-708 . -102) T) ((-1168 . -611) 46263) ((-1110 . -1102) T) ((-1019 . -1205) T) ((-378 . -38) 46228) ((-353 . -25) T) ((-353 . -21) T) ((-186 . -102) T) ((-161 . -102) T) ((-248 . -102) T) ((-156 . -102) T) ((-354 . -1261) 46212) ((-351 . -1261) 46196) ((-343 . -1261) 46180) ((-168 . -348) 46159) ((-561 . -844) T) ((-493 . -844) T) ((-1110 . -23) T) ((-87 . -608) 46141) ((-694 . -306) T) ((-830 . -38) 46111) ((-821 . -38) 46081) ((-1266 . -611) 46023) ((-1240 . -130) T) ((-1140 . -287) 46002) ((-957 . -787) 45955) ((-957 . -788) 45908) ((-809 . -785) 45887) ((-116 . -306) T) ((-91 . -308) 45825) ((-668 . -34) T) ((-547 . -599) 45804) ((-48 . -25) T) ((-48 . -21) T) ((-809 . -788) 45755) ((-809 . -787) 45734) ((-694 . -1015) T) ((-646 . -1048) 45718) ((-957 . -720) 45617) ((-809 . -720) 45527) ((-957 . -471) 45480) ((-480 . -789) 45431) ((-480 . -786) 45382) ((-903 . -1261) 45369) ((-1168 . -1042) T) ((-646 . -111) 45348) ((-1168 . -325) 45325) ((-1191 . -102) 45303) ((-1091 . -608) 45285) ((-694 . -543) T) ((-810 . -1090) T) ((-1266 . -1042) T) ((-1125 . -488) 45266) ((-1211 . -102) T) ((-412 . -1090) T) ((-1125 . -608) 45232) ((-250 . -1049) 45162) ((-249 . -1049) 45092) ((-832 . -102) T) ((-288 . -641) 45079) ((-589 . -285) 45054) ((-682 . -680) 45012) ((-956 . -608) 44994) ((-865 . -102) T) ((-729 . -608) 44976) ((-709 . -608) 44958) ((-1246 . -171) 44909) ((-1239 . -171) 44840) ((-1218 . -171) 44771) ((-692 . -844) T) ((-997 . -289) T) ((-451 . -608) 44753) ((-622 . -720) T) ((-60 . -1090) 44731) ((-244 . -150) 44715) ((-907 . -289) T) ((-1017 . -1005) T) ((-622 . -471) T) ((-706 . -1209) 44694) ((-646 . -611) 44612) ((-592 . -171) 44591) ((-591 . -171) 44542) ((-1254 . -844) 44521) ((-706 . -553) 44432) ((-406 . -913) T) ((-406 . -814) 44411) ((-318 . -788) T) ((-963 . -611) 44392) ((-318 . -720) T) ((-417 . -608) 44374) ((-417 . -609) 44281) ((-638 . -1139) 44265) ((-110 . -644) 44247) ((-173 . -306) T) ((-126 . -308) 44185) ((-110 . -372) 44167) ((-397 . -1205) T) ((-315 . -130) 44038) ((-312 . -130) T) ((-69 . -394) T) ((-110 . -123) T) ((-518 . -487) 44022) ((-647 . -1102) T) ((-589 . -19) 44004) ((-61 . -439) T) ((-61 . -394) T) ((-818 . -1090) T) ((-589 . -599) 43979) ((-475 . -1031) 43939) ((-646 . -1042) T) ((-647 . -23) T) ((-1269 . -1090) T) ((-31 . -102) T) ((-810 . -711) 43788) ((-574 . -854) T) ((-117 . -844) NIL) ((-1162 . -410) 43772) ((-1115 . -410) 43756) ((-848 . -410) 43740) ((-866 . -102) 43691) ((-1238 . -102) T) ((-1218 . -512) 43460) ((-1217 . -102) T) ((-1191 . -308) 43398) ((-523 . -93) T) ((-1164 . -285) 43383) ((-311 . -608) 43365) ((-1163 . -285) 43350) ((-1092 . -1090) T) ((-1070 . -641) 43260) ((-682 . -608) 43192) ((-288 . -720) T) ((-108 . -902) NIL) ((-682 . -609) 43153) ((-596 . -608) 43135) ((-574 . -608) 43117) ((-547 . -609) NIL) ((-547 . -608) 43099) ((-527 . -608) 43081) ((-1157 . -285) 42929) ((-485 . -1048) 42879) ((-705 . -450) T) ((-509 . -507) 42858) ((-505 . -507) 42837) ((-216 . -1048) 42787) ((-358 . -641) 42739) ((-352 . -641) 42691) ((-224 . -842) T) ((-344 . -641) 42643) ((-597 . -102) 42593) ((-480 . -367) 42572) ((-108 . -641) 42522) ((-485 . -111) 42456) ((-239 . -487) 42440) ((-342 . -146) 42422) ((-342 . -144) T) ((-168 . -369) 42393) ((-936 . -1252) 42377) ((-216 . -111) 42311) ((-865 . -308) 42276) ((-936 . -1090) 42226) ((-793 . -609) 42187) ((-793 . -608) 42169) ((-712 . -102) T) ((-330 . -1090) T) ((-213 . -611) 42146) ((-1110 . -130) T) ((-708 . -38) 42116) ((-315 . -491) 42095) ((-498 . -1205) T) ((-1238 . -283) 42061) ((-1217 . -283) 42027) ((-326 . -150) 42011) ((-1054 . -287) 41986) ((-1269 . -711) 41956) ((-1149 . -34) T) ((-1278 . -1031) 41933) ((-466 . -608) 41915) ((-482 . -34) T) ((-380 . -1031) 41899) ((-1162 . -1049) T) ((-1115 . -1049) T) ((-848 . -1049) T) ((-1053 . -842) T) ((-485 . -611) 41849) ((-216 . -611) 41799) ((-810 . -171) 41710) ((-518 . -285) 41687) ((-1246 . -289) 41666) ((-1186 . -363) 41640) ((-1078 . -265) 41624) ((-664 . -488) 41605) ((-664 . -608) 41571) ((-601 . -488) 41552) ((-117 . -985) 41529) ((-601 . -608) 41479) ((-472 . -102) T) ((-179 . -488) 41460) ((-179 . -608) 41426) ((-160 . -488) 41407) ((-155 . -488) 41388) ((-153 . -488) 41369) ((-160 . -608) 41335) ((-155 . -608) 41301) ((-364 . -1090) T) ((-250 . -1090) T) ((-249 . -1090) T) ((-153 . -608) 41267) ((-1239 . -289) 41218) ((-1218 . -289) 41169) ((-865 . -1141) 41147) ((-1164 . -995) 41113) ((-603 . -363) 41053) ((-1163 . -995) 41019) ((-603 . -228) 40966) ((-589 . -608) 40948) ((-589 . -609) NIL) ((-687 . -844) T) ((-473 . -228) 40898) ((-485 . -1042) T) ((-1157 . -995) 40864) ((-88 . -438) T) ((-88 . -394) T) ((-216 . -1042) T) ((-1116 . -995) 40830) ((-1070 . -720) T) ((-706 . -1102) T) ((-592 . -289) 40809) ((-591 . -289) 40788) ((-485 . -242) T) ((-485 . -232) T) ((-216 . -242) T) ((-216 . -232) T) ((-1155 . -608) 40770) ((-865 . -38) 40722) ((-358 . -720) T) ((-352 . -720) T) ((-344 . -720) T) ((-108 . -788) T) ((-108 . -785) T) ((-706 . -23) T) ((-108 . -720) T) ((-518 . -1242) 40706) ((-1282 . -25) T) ((-472 . -283) 40672) ((-1282 . -21) T) ((-1217 . -308) 40611) ((-1166 . -102) T) ((-40 . -144) 40583) ((-40 . -146) 40555) ((-518 . -599) 40532) ((-1103 . -641) 40380) ((-597 . -308) 40318) ((-45 . -644) 40268) ((-45 . -659) 40218) ((-45 . -372) 40168) ((-1148 . -34) T) ((-864 . -842) NIL) ((-647 . -130) T) ((-483 . -608) 40150) ((-239 . -285) 40127) ((-185 . -1090) T) ((-640 . -34) T) ((-627 . -34) T) ((-1077 . -450) 40078) ((-810 . -512) 39952) ((-776 . -450) 39883) ((-774 . -450) 39834) ((-452 . -450) 39785) ((-945 . -410) 39769) ((-725 . -608) 39751) ((-250 . -711) 39693) ((-249 . -711) 39635) ((-725 . -609) 39496) ((-479 . -410) 39480) ((-338 . -301) T) ((-522 . -93) T) ((-350 . -913) T) ((-993 . -102) 39458) ((-1017 . -844) T) ((-60 . -512) 39391) ((-1217 . -1141) 39343) ((-997 . -285) NIL) ((-224 . -1049) T) ((-378 . -822) T) ((-1103 . -34) T) ((-578 . -450) T) ((-516 . -450) T) ((-1221 . -1083) 39327) ((-1221 . -1090) 39305) ((-239 . -599) 39282) ((-1221 . -1085) 39239) ((-1164 . -608) 39221) ((-1163 . -608) 39203) ((-1157 . -608) 39185) ((-1157 . -609) NIL) ((-1116 . -608) 39167) ((-865 . -399) 39151) ((-534 . -102) T) ((-1238 . -38) 38992) ((-1217 . -38) 38806) ((-863 . -146) T) ((-696 . -611) 38790) ((-578 . -401) T) ((-48 . -844) T) ((-516 . -401) T) ((-1250 . -102) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-1103 . -785) 38769) ((-1103 . -788) 38720) ((-1103 . -787) 38699) ((-986 . -1090) T) ((-1020 . -34) T) ((-856 . -1090) T) ((-1103 . -720) 38609) ((-657 . -102) T) ((-639 . -102) T) ((-547 . -287) 38588) ((-1178 . -102) T) ((-474 . -34) T) ((-461 . -34) T) ((-354 . -102) T) ((-351 . -102) T) ((-343 . -102) T) ((-263 . -102) T) ((-246 . -102) T) ((-475 . -306) T) ((-1053 . -1049) T) ((-945 . -1049) T) ((-315 . -634) 38494) ((-312 . -634) 38455) ((-479 . -1049) T) ((-477 . -102) T) ((-435 . -608) 38437) ((-1162 . -1090) T) ((-1115 . -1090) T) ((-848 . -1090) T) ((-1131 . -102) T) ((-810 . -289) 38368) ((-956 . -1048) 38251) ((-475 . -1015) T) ((-729 . -1048) 38221) ((-451 . -1048) 38191) ((-1137 . -1111) 38175) ((-1092 . -512) 38108) ((-956 . -111) 37977) ((-903 . -102) T) ((-729 . -111) 37942) ((-523 . -488) 37923) ((-523 . -608) 37889) ((-59 . -102) 37839) ((-518 . -609) 37800) ((-518 . -608) 37712) ((-517 . -102) 37690) ((-514 . -102) 37640) ((-495 . -102) 37618) ((-494 . -102) 37568) ((-451 . -111) 37531) ((-250 . -171) 37510) ((-249 . -171) 37489) ((-417 . -1048) 37463) ((-1199 . -966) 37425) ((-992 . -1102) T) ((-1125 . -611) 37406) ((-936 . -512) 37339) ((-485 . -789) T) ((-472 . -38) 37180) ((-417 . -111) 37147) ((-485 . -786) T) ((-993 . -308) 37085) ((-216 . -789) T) ((-216 . -786) T) ((-992 . -23) T) ((-706 . -130) T) ((-1217 . -399) 37055) ((-315 . -25) 36907) ((-168 . -410) 36891) ((-315 . -21) 36762) ((-312 . -25) T) ((-312 . -21) T) ((-858 . -367) T) ((-956 . -611) 36615) ((-110 . -34) T) ((-729 . -611) 36571) ((-709 . -611) 36553) ((-480 . -641) 36401) ((-864 . -1049) T) ((-589 . -287) 36376) ((-577 . -146) T) ((-561 . -146) T) ((-493 . -146) T) ((-1162 . -711) 36205) ((-1115 . -711) 36054) ((-1110 . -634) 36036) ((-848 . -711) 36006) ((-663 . -1205) T) ((-1 . -102) T) ((-417 . -611) 35914) ((-239 . -608) 35645) ((-1105 . -1090) T) ((-1227 . -410) 35629) ((-1178 . -308) 35433) ((-956 . -1042) T) ((-729 . -1042) T) ((-709 . -1042) T) ((-638 . -1090) 35383) ((-1046 . -641) 35367) ((-849 . -410) 35351) ((-509 . -102) T) ((-505 . -102) T) ((-246 . -308) 35338) ((-263 . -308) 35325) ((-956 . -325) 35304) ((-384 . -641) 35288) ((-477 . -308) 35092) ((-250 . -512) 35025) ((-663 . -1031) 34921) ((-249 . -512) 34854) ((-1131 . -308) 34780) ((-813 . -1090) T) ((-793 . -1048) 34764) ((-1246 . -285) 34749) ((-1239 . -285) 34734) ((-1218 . -285) 34582) ((-385 . -1090) T) ((-323 . -1090) T) ((-417 . -1042) T) ((-168 . -1049) T) ((-59 . -308) 34520) ((-793 . -111) 34499) ((-591 . -285) 34484) ((-517 . -308) 34422) ((-514 . -308) 34360) ((-495 . -308) 34298) ((-494 . -308) 34236) ((-417 . -232) 34215) ((-480 . -34) T) ((-997 . -609) 34145) ((-224 . -1090) T) ((-997 . -608) 34105) ((-964 . -608) 34065) ((-964 . -609) 34040) ((-907 . -608) 34022) ((-692 . -146) T) ((-694 . -913) T) ((-694 . -814) T) ((-426 . -608) 34004) ((-1110 . -21) T) ((-1110 . -25) T) ((-663 . -376) 33988) ((-116 . -913) T) ((-865 . -230) 33972) ((-78 . -1205) T) ((-126 . -125) 33956) ((-1046 . -34) T) ((-1276 . -1031) 33930) ((-1274 . -1031) 33887) ((-1227 . -1049) T) ((-849 . -1049) T) ((-480 . -785) 33866) ((-354 . -1141) 33845) ((-351 . -1141) 33824) ((-343 . -1141) 33803) ((-480 . -788) 33754) ((-480 . -787) 33733) ((-226 . -34) T) ((-480 . -720) 33643) ((-793 . -611) 33491) ((-60 . -487) 33475) ((-568 . -1049) T) ((-1162 . -171) 33366) ((-1115 . -171) 33277) ((-1053 . -1090) T) ((-1077 . -942) 33222) ((-945 . -1090) T) ((-811 . -641) 33173) ((-776 . -942) 33142) ((-707 . -1090) T) ((-774 . -942) 33109) ((-514 . -281) 33093) ((-663 . -893) 33052) ((-479 . -1090) T) ((-452 . -942) 33019) ((-79 . -1205) T) ((-354 . -38) 32984) ((-351 . -38) 32949) ((-343 . -38) 32914) ((-263 . -38) 32763) ((-246 . -38) 32612) ((-903 . -1141) T) ((-522 . -488) 32593) ((-618 . -146) 32572) ((-618 . -144) 32551) ((-522 . -608) 32517) ((-117 . -146) T) ((-117 . -144) NIL) ((-413 . -720) T) ((-793 . -1042) T) ((-342 . -450) T) ((-1246 . -995) 32483) ((-1239 . -995) 32449) ((-1218 . -995) 32415) ((-903 . -38) 32380) ((-224 . -711) 32345) ((-318 . -47) 32315) ((-40 . -408) 32287) ((-139 . -608) 32269) ((-992 . -130) T) ((-809 . -1205) T) ((-173 . -913) T) ((-546 . -367) T) ((-601 . -611) 32250) ((-342 . -401) T) ((-664 . -611) 32231) ((-179 . -611) 32212) ((-160 . -611) 32193) ((-155 . -611) 32174) ((-153 . -611) 32155) ((-518 . -287) 32132) ((-1217 . -230) 32102) ((-809 . -1031) 31929) ((-45 . -34) T) ((-674 . -102) T) ((-669 . -102) T) ((-655 . -102) T) ((-647 . -21) T) ((-647 . -25) T) ((-1092 . -487) 31913) ((-668 . -1205) T) ((-476 . -102) T) ((-244 . -102) 31863) ((-544 . -838) T) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-864 . -1090) T) ((-1168 . -641) 31788) ((-1053 . -711) 31775) ((-725 . -1048) 31618) ((-1162 . -512) 31565) ((-945 . -711) 31414) ((-1115 . -512) 31366) ((-1265 . -1090) T) ((-1264 . -1090) T) ((-479 . -711) 31215) ((-67 . -608) 31197) ((-725 . -111) 31026) ((-936 . -487) 31010) ((-1266 . -641) 30970) ((-811 . -720) T) ((-1164 . -1048) 30853) ((-1163 . -1048) 30688) ((-1157 . -1048) 30478) ((-1116 . -1048) 30361) ((-996 . -1209) T) ((-1084 . -102) 30339) ((-809 . -376) 30308) ((-576 . -608) 30290) ((-544 . -1090) T) ((-996 . -553) T) ((-1164 . -111) 30159) ((-1163 . -111) 29980) ((-1157 . -111) 29749) ((-1116 . -111) 29618) ((-1095 . -1093) 29582) ((-378 . -842) T) ((-1246 . -608) 29564) ((-1239 . -608) 29546) ((-1218 . -608) 29528) ((-1218 . -609) NIL) ((-239 . -287) 29505) ((-40 . -450) T) ((-224 . -171) T) ((-168 . -1090) T) ((-725 . -611) 29290) ((-687 . -146) T) ((-687 . -144) NIL) ((-592 . -608) 29272) ((-591 . -608) 29254) ((-891 . -1090) T) ((-835 . -1090) T) ((-802 . -1090) T) ((-763 . -1090) T) ((-651 . -846) 29238) ((-670 . -1090) T) ((-809 . -893) 29170) ((-1210 . -367) T) ((-40 . -401) NIL) ((-1164 . -611) 29052) ((-1110 . -654) T) ((-864 . -711) 28997) ((-250 . -487) 28981) ((-249 . -487) 28965) ((-1163 . -611) 28708) ((-1157 . -611) 28503) ((-706 . -634) 28451) ((-646 . -641) 28425) ((-1116 . -611) 28307) ((-294 . -34) T) ((-725 . -1042) T) ((-578 . -1261) 28294) ((-516 . -1261) 28271) ((-1227 . -1090) T) ((-1162 . -289) 28182) ((-1115 . -289) 28113) ((-1053 . -171) T) ((-849 . -1090) T) ((-945 . -171) 28024) ((-776 . -1230) 28008) ((-638 . -512) 27941) ((-77 . -608) 27923) ((-725 . -325) 27888) ((-1168 . -720) T) ((-568 . -1090) T) ((-479 . -171) 27799) ((-244 . -308) 27737) ((-1132 . -1102) T) ((-70 . -608) 27719) ((-1266 . -720) T) ((-1164 . -1042) T) ((-1163 . -1042) T) ((-326 . -102) 27669) ((-1157 . -1042) T) ((-1132 . -23) T) ((-1116 . -1042) T) ((-91 . -1111) 27653) ((-859 . -1102) T) ((-1164 . -232) 27612) ((-1163 . -242) 27591) ((-1163 . -232) 27543) ((-1157 . -232) 27430) ((-1157 . -242) 27409) ((-318 . -893) 27315) ((-859 . -23) T) ((-168 . -711) 27143) ((-406 . -1209) T) ((-1091 . -367) T) ((-1017 . -146) T) ((-996 . -362) T) ((-863 . -450) T) ((-936 . -285) 27120) ((-315 . -844) T) ((-312 . -844) NIL) ((-867 . -102) T) ((-706 . -25) T) ((-406 . -553) T) ((-706 . -21) T) ((-523 . -611) 27101) ((-353 . -146) 27083) ((-353 . -144) T) ((-1137 . -1090) 27061) ((-451 . -714) T) ((-75 . -608) 27043) ((-114 . -844) T) ((-244 . -281) 27027) ((-239 . -1048) 26924) ((-81 . -608) 26906) ((-729 . -367) 26859) ((-1166 . -822) T) ((-731 . -234) 26843) ((-1149 . -1205) T) ((-140 . -234) 26825) ((-239 . -111) 26715) ((-1227 . -711) 26544) ((-48 . -146) T) ((-864 . -171) T) ((-849 . -711) 26514) ((-482 . -1205) T) ((-945 . -512) 26461) ((-646 . -720) T) ((-568 . -711) 26448) ((-1027 . -1049) T) ((-479 . -512) 26391) ((-936 . -19) 26375) ((-936 . -599) 26352) ((-810 . -609) NIL) ((-810 . -608) 26334) ((-997 . -1048) 26284) ((-412 . -608) 26266) ((-250 . -285) 26243) ((-249 . -285) 26220) ((-485 . -902) NIL) ((-315 . -29) 26190) ((-108 . -1205) T) ((-996 . -1102) T) ((-216 . -902) NIL) ((-907 . -1048) 26142) ((-1070 . -1031) 26038) ((-997 . -111) 25972) ((-996 . -23) T) ((-731 . -688) 25956) ((-263 . -230) 25940) ((-426 . -1048) 25924) ((-378 . -1049) T) ((-239 . -611) 25654) ((-907 . -111) 25592) ((-687 . -1193) NIL) ((-485 . -641) 25542) ((-108 . -877) 25524) ((-108 . -879) 25506) ((-687 . -1190) NIL) ((-216 . -641) 25456) ((-358 . -1031) 25440) ((-352 . -1031) 25424) ((-326 . -308) 25362) ((-344 . -1031) 25346) ((-224 . -289) T) ((-426 . -111) 25325) ((-60 . -608) 25257) ((-168 . -171) T) ((-1110 . -844) T) ((-108 . -1031) 25217) ((-885 . -1090) T) ((-830 . -1049) T) ((-821 . -1049) T) ((-687 . -35) NIL) ((-687 . -95) NIL) ((-312 . -985) 25178) ((-182 . -102) T) ((-577 . -450) T) ((-561 . -450) T) ((-493 . -450) T) ((-406 . -362) T) ((-239 . -1042) 25108) ((-1140 . -34) T) ((-475 . -913) T) ((-992 . -634) 25056) ((-250 . -599) 25033) ((-249 . -599) 25010) ((-1070 . -376) 24994) ((-864 . -512) 24902) ((-239 . -232) 24854) ((-1148 . -1205) T) ((-997 . -611) 24804) ((-907 . -611) 24741) ((-818 . -608) 24723) ((-1277 . -1102) T) ((-1269 . -608) 24705) ((-1227 . -171) 24596) ((-426 . -611) 24565) ((-108 . -376) 24547) ((-108 . -337) 24529) ((-1053 . -289) T) ((-945 . -289) 24460) ((-793 . -367) 24439) ((-640 . -1205) T) ((-627 . -1205) T) ((-479 . -289) 24370) ((-568 . -171) T) ((-326 . -281) 24354) ((-1277 . -23) T) ((-1199 . -102) T) ((-1186 . -1090) T) ((-1078 . -1090) T) ((-1066 . -1090) T) ((-83 . -608) 24336) ((-1173 . -838) T) ((-1172 . -838) T) ((-705 . -102) T) ((-354 . -348) 24315) ((-603 . -1090) T) ((-351 . -348) 24294) ((-343 . -348) 24273) ((-473 . -1090) T) ((-1178 . -228) 24223) ((-263 . -252) 24185) ((-1132 . -130) T) ((-603 . -605) 24161) ((-1070 . -893) 24094) ((-997 . -1042) T) ((-907 . -1042) T) ((-473 . -605) 24073) ((-1157 . -786) NIL) ((-1157 . -789) NIL) ((-1092 . -609) 24034) ((-477 . -228) 23984) ((-1092 . -608) 23966) ((-997 . -242) T) ((-997 . -232) T) ((-426 . -1042) T) ((-951 . -1090) 23916) ((-907 . -242) T) ((-859 . -130) T) ((-692 . -450) T) ((-837 . -1102) 23895) ((-108 . -893) NIL) ((-1199 . -283) 23861) ((-865 . -842) 23840) ((-1103 . -1205) T) ((-898 . -720) T) ((-168 . -512) 23752) ((-992 . -25) T) ((-898 . -471) T) ((-406 . -1102) T) ((-485 . -788) T) ((-485 . -785) T) ((-903 . -348) T) ((-485 . -720) T) ((-216 . -788) T) ((-216 . -785) T) ((-992 . -21) T) ((-216 . -720) T) ((-837 . -23) 23704) ((-522 . -611) 23685) ((-1173 . -1090) T) ((-318 . -306) 23664) ((-1172 . -1090) T) ((-1028 . -234) 23610) ((-406 . -23) T) ((-936 . -609) 23571) ((-936 . -608) 23483) ((-638 . -487) 23467) ((-45 . -1003) 23417) ((-612 . -960) T) ((-489 . -102) T) ((-330 . -608) 23399) ((-1103 . -1031) 23226) ((-589 . -644) 23208) ((-128 . -1090) T) ((-589 . -372) 23190) ((-342 . -1261) 23167) ((-1020 . -1205) T) ((-864 . -289) T) ((-1227 . -512) 23114) ((-474 . -1205) T) ((-461 . -1205) T) ((-582 . -102) T) ((-1162 . -285) 23041) ((-618 . -450) 23020) ((-993 . -988) 23004) ((-1269 . -381) 22976) ((-515 . -1090) T) ((-117 . -450) T) ((-1185 . -102) T) ((-1082 . -1090) 22954) ((-1027 . -1090) T) ((-1105 . -93) T) ((-886 . -844) T) ((-350 . -1209) T) ((-1246 . -1048) 22837) ((-1103 . -376) 22806) ((-1239 . -1048) 22641) ((-1218 . -1048) 22431) ((-1246 . -111) 22300) ((-1239 . -111) 22121) ((-1218 . -111) 21890) ((-1199 . -308) 21877) ((-350 . -553) T) ((-364 . -608) 21859) ((-288 . -306) T) ((-592 . -1048) 21832) ((-591 . -1048) 21715) ((-360 . -1090) T) ((-321 . -1090) T) ((-250 . -608) 21676) ((-249 . -608) 21637) ((-996 . -130) T) ((-630 . -23) T) ((-687 . -408) 21604) ((-602 . -23) T) ((-651 . -102) T) ((-592 . -111) 21575) ((-591 . -111) 21444) ((-378 . -1090) T) ((-335 . -102) T) ((-168 . -289) 21355) ((-1217 . -842) 21308) ((-708 . -1049) T) ((-1137 . -512) 21241) ((-1103 . -893) 21173) ((-830 . -1090) T) ((-821 . -1090) T) ((-819 . -1090) T) ((-97 . -102) T) ((-143 . -844) T) ((-607 . -877) 21157) ((-110 . -1205) T) ((-1077 . -102) T) ((-1054 . -34) T) ((-776 . -102) T) ((-774 . -102) T) ((-1246 . -611) 21039) ((-1239 . -611) 20782) ((-459 . -102) T) ((-452 . -102) T) ((-1218 . -611) 20577) ((-239 . -789) 20528) ((-239 . -786) 20479) ((-642 . -102) T) ((-592 . -611) 20437) ((-591 . -611) 20319) ((-1227 . -289) 20230) ((-657 . -629) 20214) ((-185 . -608) 20196) ((-638 . -285) 20173) ((-1027 . -711) 20157) ((-568 . -289) T) ((-956 . -641) 20082) ((-1277 . -130) T) ((-729 . -641) 20042) ((-709 . -641) 20029) ((-274 . -102) T) ((-451 . -641) 19959) ((-50 . -102) T) ((-578 . -102) T) ((-516 . -102) T) ((-1246 . -1042) T) ((-1239 . -1042) T) ((-1218 . -1042) T) ((-1246 . -232) 19918) ((-321 . -711) 19900) ((-1239 . -242) 19879) ((-1239 . -232) 19831) ((-1218 . -232) 19718) ((-1218 . -242) 19697) ((-1199 . -38) 19594) ((-997 . -789) T) ((-592 . -1042) T) ((-591 . -1042) T) ((-997 . -786) T) ((-964 . -789) T) ((-964 . -786) T) ((-865 . -1049) T) ((-863 . -862) 19578) ((-109 . -608) 19560) ((-687 . -450) T) ((-378 . -711) 19525) ((-417 . -641) 19499) ((-706 . -844) 19478) ((-705 . -38) 19443) ((-591 . -232) 19402) ((-40 . -718) 19374) ((-350 . -328) 19351) ((-350 . -362) T) ((-1070 . -306) 19302) ((-293 . -1102) 19183) ((-1096 . -1205) T) ((-170 . -102) T) ((-1221 . -608) 19150) ((-837 . -130) 19102) ((-638 . -1242) 19086) ((-830 . -711) 19056) ((-821 . -711) 19026) ((-480 . -1205) T) ((-358 . -306) T) ((-352 . -306) T) ((-344 . -306) T) ((-638 . -599) 19003) ((-406 . -130) T) ((-518 . -659) 18987) ((-108 . -306) T) ((-293 . -23) 18870) ((-518 . -644) 18854) ((-687 . -401) NIL) ((-518 . -372) 18838) ((-290 . -608) 18820) ((-91 . -1090) 18798) ((-108 . -1015) T) ((-561 . -142) T) ((-1254 . -150) 18782) ((-480 . -1031) 18609) ((-1240 . -144) 18570) ((-1240 . -146) 18531) ((-1046 . -1205) T) ((-986 . -608) 18513) ((-856 . -608) 18495) ((-810 . -1048) 18338) ((-1265 . -93) T) ((-1264 . -93) T) ((-1162 . -609) NIL) ((-1086 . -1090) T) ((-1080 . -1090) T) ((-1077 . -308) 18325) ((-1064 . -1090) T) ((-226 . -1205) T) ((-1057 . -1090) T) ((-1029 . -1090) T) ((-1012 . -1090) T) ((-776 . -308) 18312) ((-774 . -308) 18299) ((-1162 . -608) 18281) ((-810 . -111) 18110) ((-1115 . -608) 18092) ((-621 . -1090) T) ((-574 . -172) T) ((-527 . -172) T) ((-452 . -308) 18079) ((-481 . -1090) T) ((-1115 . -609) 17827) ((-1027 . -171) T) ((-936 . -287) 17804) ((-217 . -1090) T) ((-848 . -608) 17786) ((-603 . -512) 17569) ((-81 . -611) 17510) ((-812 . -1031) 17494) ((-473 . -512) 17286) ((-956 . -720) T) ((-729 . -720) T) ((-709 . -720) T) ((-350 . -1102) T) ((-1169 . -608) 17268) ((-222 . -102) T) ((-480 . -376) 17237) ((-513 . -1090) T) ((-508 . -1090) T) ((-506 . -1090) T) ((-793 . -641) 17211) ((-1017 . -450) T) ((-951 . -512) 17144) ((-350 . -23) T) ((-630 . -130) T) ((-602 . -130) T) ((-353 . -450) T) ((-239 . -367) 17123) ((-378 . -171) T) ((-1238 . -1049) T) ((-1217 . -1049) T) ((-224 . -995) T) ((-810 . -611) 16860) ((-692 . -386) T) ((-417 . -720) T) ((-694 . -1209) T) ((-1132 . -634) 16808) ((-577 . -862) 16792) ((-1269 . -1048) 16776) ((-1149 . -1181) 16752) ((-694 . -553) T) ((-126 . -1090) 16730) ((-708 . -1090) T) ((-480 . -893) 16662) ((-248 . -1090) T) ((-186 . -1090) T) ((-651 . -38) 16632) ((-353 . -401) T) ((-315 . -146) 16611) ((-315 . -144) 16590) ((-128 . -512) NIL) ((-116 . -553) T) ((-312 . -146) 16546) ((-312 . -144) 16502) ((-48 . -450) T) ((-161 . -1090) T) ((-156 . -1090) T) ((-1149 . -107) 16449) ((-776 . -1141) 16427) ((-682 . -34) T) ((-1269 . -111) 16406) ((-547 . -34) T) ((-482 . -107) 16390) ((-250 . -287) 16367) ((-249 . -287) 16344) ((-864 . -285) 16295) ((-45 . -1205) T) ((-1211 . -838) T) ((-810 . -1042) T) ((-1168 . -47) 16272) ((-810 . -325) 16234) ((-1077 . -38) 16083) ((-810 . -232) 16062) ((-776 . -38) 15891) ((-774 . -38) 15740) ((-1105 . -488) 15721) ((-452 . -38) 15570) ((-1105 . -608) 15536) ((-1108 . -102) T) ((-638 . -609) 15497) ((-638 . -608) 15409) ((-578 . -1141) T) ((-516 . -1141) T) ((-1137 . -487) 15393) ((-1191 . -1090) 15371) ((-1132 . -25) T) ((-1132 . -21) T) ((-1269 . -611) 15320) ((-472 . -1049) T) ((-1211 . -1090) T) ((-1218 . -786) NIL) ((-1218 . -789) NIL) ((-992 . -844) 15299) ((-832 . -1090) T) ((-813 . -608) 15281) ((-859 . -21) T) ((-859 . -25) T) ((-793 . -720) T) ((-173 . -1209) T) ((-578 . -38) 15246) ((-516 . -38) 15211) ((-385 . -608) 15193) ((-323 . -608) 15175) ((-168 . -285) 15133) ((-63 . -1205) T) ((-112 . -102) T) ((-865 . -1090) T) ((-173 . -553) T) ((-708 . -711) 15103) ((-293 . -130) 14986) ((-224 . -608) 14968) ((-224 . -609) 14898) ((-996 . -634) 14837) ((-1269 . -1042) T) ((-1110 . -146) T) ((-627 . -1181) 14812) ((-725 . -902) 14791) ((-589 . -34) T) ((-640 . -107) 14775) ((-627 . -107) 14721) ((-1227 . -285) 14648) ((-725 . -641) 14573) ((-294 . -1205) T) ((-1168 . -1031) 14469) ((-936 . -613) 14446) ((-574 . -573) T) ((-574 . -525) T) ((-527 . -525) T) ((-1157 . -902) NIL) ((-1053 . -609) 14361) ((-1053 . -608) 14343) ((-945 . -608) 14325) ((-707 . -488) 14275) ((-342 . -102) T) ((-250 . -1048) 14172) ((-249 . -1048) 14069) ((-393 . -102) T) ((-31 . -1090) T) ((-945 . -609) 13930) ((-707 . -608) 13865) ((-1267 . -1198) 13834) ((-479 . -608) 13816) ((-479 . -609) 13677) ((-246 . -410) 13661) ((-263 . -410) 13645) ((-250 . -111) 13535) ((-249 . -111) 13425) ((-1164 . -641) 13350) ((-1163 . -641) 13247) ((-1157 . -641) 13099) ((-1116 . -641) 13024) ((-350 . -130) T) ((-82 . -439) T) ((-82 . -394) T) ((-996 . -25) T) ((-996 . -21) T) ((-866 . -1090) 12975) ((-865 . -711) 12927) ((-378 . -289) T) ((-168 . -995) 12879) ((-687 . -386) T) ((-992 . -990) 12863) ((-694 . -1102) T) ((-687 . -165) 12845) ((-1238 . -1090) T) ((-1217 . -1090) T) ((-315 . -1190) 12824) ((-315 . -1193) 12803) ((-1154 . -102) T) ((-315 . -952) 12782) ((-133 . -1102) T) ((-116 . -1102) T) ((-597 . -1252) 12766) ((-694 . -23) T) ((-597 . -1090) 12716) ((-315 . -95) 12695) ((-91 . -512) 12628) ((-173 . -362) T) ((-250 . -611) 12358) ((-249 . -611) 12088) ((-315 . -35) 12067) ((-603 . -487) 12001) ((-133 . -23) T) ((-116 . -23) T) ((-959 . -102) T) ((-712 . -1090) T) ((-473 . -487) 11938) ((-406 . -634) 11886) ((-646 . -1031) 11782) ((-951 . -487) 11766) ((-354 . -1049) T) ((-351 . -1049) T) ((-343 . -1049) T) ((-263 . -1049) T) ((-246 . -1049) T) ((-864 . -609) NIL) ((-864 . -608) 11748) ((-1265 . -488) 11729) ((-1264 . -488) 11710) ((-1277 . -21) T) ((-1265 . -608) 11676) ((-1264 . -608) 11642) ((-568 . -995) T) ((-725 . -720) T) ((-1277 . -25) T) ((-250 . -1042) 11572) ((-249 . -1042) 11502) ((-72 . -1205) T) ((-250 . -232) 11454) ((-249 . -232) 11406) ((-40 . -102) T) ((-903 . -1049) T) ((-128 . -487) 11388) ((-1171 . -102) T) ((-1164 . -720) T) ((-1163 . -720) T) ((-1157 . -720) T) ((-1157 . -785) NIL) ((-1157 . -788) NIL) ((-947 . -102) T) ((-914 . -102) T) ((-1116 . -720) T) ((-765 . -102) T) ((-665 . -102) T) ((-544 . -608) 11370) ((-472 . -1090) T) ((-338 . -1102) T) ((-173 . -1102) T) ((-318 . -913) 11349) ((-1238 . -711) 11190) ((-865 . -171) T) ((-1217 . -711) 11004) ((-837 . -21) 10956) ((-837 . -25) 10908) ((-244 . -1139) 10892) ((-126 . -512) 10825) ((-406 . -25) T) ((-406 . -21) T) ((-338 . -23) T) ((-168 . -609) 10591) ((-168 . -608) 10573) ((-173 . -23) T) ((-638 . -287) 10550) ((-518 . -34) T) ((-891 . -608) 10532) ((-89 . -1205) T) ((-835 . -608) 10514) ((-802 . -608) 10496) ((-763 . -608) 10478) ((-670 . -608) 10460) ((-239 . -641) 10308) ((-1166 . -1090) T) ((-1162 . -1048) 10131) ((-1140 . -1205) T) ((-1115 . -1048) 9974) ((-848 . -1048) 9958) ((-1221 . -613) 9942) ((-1162 . -111) 9751) ((-1115 . -111) 9580) ((-848 . -111) 9559) ((-1227 . -609) NIL) ((-1227 . -608) 9541) ((-342 . -1141) T) ((-849 . -608) 9523) ((-1066 . -285) 9502) ((-80 . -1205) T) ((-997 . -902) NIL) ((-603 . -285) 9478) ((-1191 . -512) 9411) ((-485 . -1205) T) ((-568 . -608) 9393) ((-473 . -285) 9372) ((-515 . -93) T) ((-216 . -1205) T) ((-1077 . -230) 9356) ((-997 . -641) 9306) ((-288 . -913) T) ((-811 . -306) 9285) ((-863 . -102) T) ((-776 . -230) 9269) ((-951 . -285) 9246) ((-907 . -641) 9198) ((-630 . -21) T) ((-630 . -25) T) ((-602 . -21) T) ((-545 . -102) T) ((-342 . -38) 9163) ((-687 . -718) 9130) ((-485 . -877) 9112) ((-485 . -879) 9094) ((-472 . -711) 8935) ((-216 . -877) 8917) ((-64 . -1205) T) ((-216 . -879) 8899) ((-602 . -25) T) ((-426 . -641) 8873) ((-1162 . -611) 8642) ((-485 . -1031) 8602) ((-865 . -512) 8514) ((-1115 . -611) 8306) ((-848 . -611) 8224) ((-216 . -1031) 8184) ((-239 . -34) T) ((-993 . -1090) 8162) ((-1238 . -171) 8093) ((-1217 . -171) 8024) ((-706 . -144) 8003) ((-706 . -146) 7982) ((-694 . -130) T) ((-135 . -463) 7959) ((-1137 . -608) 7891) ((-651 . -649) 7875) ((-128 . -285) 7850) ((-116 . -130) T) ((-475 . -1209) T) ((-603 . -599) 7826) ((-473 . -599) 7805) ((-335 . -334) 7774) ((-534 . -1090) T) ((-475 . -553) T) ((-1162 . -1042) T) ((-1115 . -1042) T) ((-848 . -1042) T) ((-239 . -785) 7753) ((-239 . -788) 7704) ((-239 . -787) 7683) ((-1162 . -325) 7660) ((-239 . -720) 7570) ((-951 . -19) 7554) ((-485 . -376) 7536) ((-485 . -337) 7518) ((-1115 . -325) 7490) ((-353 . -1261) 7467) ((-216 . -376) 7449) ((-216 . -337) 7431) ((-951 . -599) 7408) ((-1162 . -232) T) ((-657 . -1090) T) ((-639 . -1090) T) ((-1250 . -1090) T) ((-1178 . -1090) T) ((-1077 . -252) 7345) ((-354 . -1090) T) ((-351 . -1090) T) ((-343 . -1090) T) ((-263 . -1090) T) ((-246 . -1090) T) ((-84 . -1205) T) ((-127 . -102) 7323) ((-121 . -102) 7301) ((-1178 . -605) 7280) ((-477 . -1090) T) ((-1131 . -1090) T) ((-477 . -605) 7259) ((-250 . -789) 7210) ((-250 . -786) 7161) ((-249 . -789) 7112) ((-40 . -1141) NIL) ((-249 . -786) 7063) ((-1105 . -611) 7044) ((-128 . -19) 7026) ((-1070 . -913) 6977) ((-997 . -788) T) ((-997 . -785) T) ((-997 . -720) T) ((-964 . -788) T) ((-128 . -599) 6952) ((-907 . -720) T) ((-91 . -487) 6936) ((-485 . -893) NIL) ((-903 . -1090) T) ((-224 . -1048) 6901) ((-865 . -289) T) ((-216 . -893) NIL) ((-827 . -1102) 6880) ((-59 . -1090) 6830) ((-517 . -1090) 6808) ((-514 . -1090) 6758) ((-495 . -1090) 6736) ((-494 . -1090) 6686) ((-577 . -102) T) ((-561 . -102) T) ((-493 . -102) T) ((-472 . -171) 6617) ((-358 . -913) T) ((-352 . -913) T) ((-344 . -913) T) ((-224 . -111) 6573) ((-827 . -23) 6525) ((-426 . -720) T) ((-108 . -913) T) ((-40 . -38) 6470) ((-108 . -814) T) ((-578 . -348) T) ((-516 . -348) T) ((-1217 . -512) 6330) ((-315 . -450) 6309) ((-312 . -450) T) ((-885 . -608) 6291) ((-830 . -285) 6270) ((-338 . -130) T) ((-173 . -130) T) ((-293 . -25) 6134) ((-293 . -21) 6017) ((-45 . -1181) 5996) ((-66 . -608) 5978) ((-55 . -102) T) ((-597 . -512) 5911) ((-45 . -107) 5861) ((-813 . -611) 5845) ((-1092 . -424) 5829) ((-1092 . -367) 5808) ((-385 . -611) 5792) ((-323 . -611) 5776) ((-1054 . -1205) T) ((-1053 . -1048) 5763) ((-945 . -1048) 5606) ((-1255 . -102) T) ((-1254 . -102) 5556) ((-1053 . -111) 5541) ((-479 . -1048) 5384) ((-657 . -711) 5368) ((-945 . -111) 5197) ((-224 . -611) 5147) ((-475 . -362) T) ((-354 . -711) 5099) ((-351 . -711) 5051) ((-343 . -711) 5003) ((-263 . -711) 4852) ((-246 . -711) 4701) ((-1246 . -641) 4626) ((-1218 . -902) NIL) ((-1086 . -93) T) ((-1080 . -93) T) ((-936 . -644) 4610) ((-1064 . -93) T) ((-479 . -111) 4439) ((-1057 . -93) T) ((-1029 . -93) T) ((-936 . -372) 4423) ((-247 . -102) T) ((-1012 . -93) T) ((-74 . -608) 4405) ((-956 . -47) 4384) ((-704 . -102) T) ((-692 . -102) T) ((-1 . -1090) T) ((-616 . -1102) T) ((-1239 . -641) 4281) ((-621 . -93) T) ((-1186 . -608) 4263) ((-1078 . -608) 4245) ((-126 . -487) 4229) ((-481 . -93) T) ((-1066 . -608) 4211) ((-389 . -23) T) ((-87 . -1205) T) ((-217 . -93) T) ((-1218 . -641) 4063) ((-903 . -711) 4028) ((-616 . -23) T) ((-603 . -608) 4010) ((-603 . -609) NIL) ((-473 . -609) NIL) ((-473 . -608) 3992) ((-509 . -1090) T) ((-505 . -1090) T) ((-350 . -25) T) ((-350 . -21) T) ((-127 . -308) 3930) ((-121 . -308) 3868) ((-592 . -641) 3855) ((-224 . -1042) T) ((-591 . -641) 3780) ((-378 . -995) T) ((-224 . -242) T) ((-224 . -232) T) ((-1053 . -611) 3752) ((-1053 . -613) 3733) ((-951 . -609) 3694) ((-951 . -608) 3606) ((-945 . -611) 3395) ((-863 . -38) 3382) ((-707 . -611) 3332) ((-1238 . -289) 3283) ((-1217 . -289) 3234) ((-479 . -611) 3019) ((-1110 . -450) T) ((-500 . -844) T) ((-315 . -1129) 2998) ((-992 . -146) 2977) ((-992 . -144) 2956) ((-493 . -308) 2943) ((-294 . -1181) 2922) ((-1173 . -608) 2904) ((-1172 . -608) 2886) ((-864 . -1048) 2831) ((-475 . -1102) T) ((-138 . -829) 2813) ((-618 . -102) T) ((-1191 . -487) 2797) ((-250 . -367) 2776) ((-249 . -367) 2755) ((-1053 . -1042) T) ((-294 . -107) 2705) ((-128 . -609) NIL) ((-128 . -608) 2671) ((-117 . -102) T) ((-945 . -1042) T) ((-864 . -111) 2600) ((-475 . -23) T) ((-479 . -1042) T) ((-1053 . -232) T) ((-945 . -325) 2569) ((-479 . -325) 2526) ((-354 . -171) T) ((-351 . -171) T) ((-343 . -171) T) ((-263 . -171) 2437) ((-246 . -171) 2348) ((-956 . -1031) 2244) ((-515 . -488) 2225) ((-729 . -1031) 2196) ((-515 . -608) 2162) ((-1095 . -102) T) ((-1082 . -608) 2129) ((-1027 . -608) 2111) ((-1267 . -150) 2095) ((-1265 . -611) 2076) ((-1259 . -608) 2058) ((-1246 . -720) T) ((-1239 . -720) T) ((-1218 . -785) NIL) ((-1218 . -788) NIL) ((-168 . -1048) 1968) ((-903 . -171) T) ((-864 . -611) 1898) ((-1218 . -720) T) ((-1264 . -611) 1879) ((-996 . -341) 1853) ((-993 . -512) 1786) ((-837 . -844) 1765) ((-561 . -1141) T) ((-472 . -289) 1716) ((-592 . -720) T) ((-360 . -608) 1698) ((-321 . -608) 1680) ((-417 . -1031) 1576) ((-591 . -720) T) ((-406 . -844) 1527) ((-168 . -111) 1423) ((-827 . -130) 1375) ((-731 . -150) 1359) ((-1254 . -308) 1297) ((-485 . -306) T) ((-378 . -608) 1264) ((-518 . -1003) 1248) ((-378 . -609) 1162) ((-216 . -306) T) ((-140 . -150) 1144) ((-708 . -285) 1123) ((-485 . -1015) T) ((-577 . -38) 1110) ((-561 . -38) 1097) ((-493 . -38) 1062) ((-216 . -1015) T) ((-864 . -1042) T) ((-830 . -608) 1044) ((-821 . -608) 1026) ((-819 . -608) 1008) ((-810 . -902) 987) ((-1278 . -1102) T) ((-1227 . -1048) 810) ((-849 . -1048) 794) ((-864 . -242) T) ((-864 . -232) NIL) ((-682 . -1205) T) ((-1278 . -23) T) ((-810 . -641) 719) ((-547 . -1205) T) ((-417 . -337) 703) ((-568 . -1048) 690) ((-1227 . -111) 499) ((-694 . -634) 481) ((-849 . -111) 460) ((-380 . -23) T) ((-168 . -611) 238) ((-1178 . -512) 30) ((-655 . -1090) T) ((-674 . -1090) T) ((-669 . -1090) T)) \ No newline at end of file
+((($) . T))
+((((-857)) . T))
+((($) . T))
+((((-544)) . T))
+(((-1282 . -171) T) ((-1282 . -611) 162035) ((-1282 . -720) T) ((-1282 . -1102) T) ((-1282 . -1049) T) ((-1282 . -1042) T) ((-1282 . -641) 162022) ((-1282 . -130) T) ((-1282 . -25) T) ((-1282 . -102) T) ((-1282 . -608) 162004) ((-1282 . -1091) T) ((-1282 . -23) T) ((-1282 . -21) T) ((-1282 . -1048) 161991) ((-1282 . -111) 161976) ((-1282 . -367) T) ((-1282 . -609) 161958) ((-1282 . -1141) T) ((-1278 . -1276) 161937) ((-1278 . -1031) 161914) ((-1278 . -611) 161863) ((-1278 . -1042) T) ((-1278 . -1049) T) ((-1278 . -1102) T) ((-1278 . -720) T) ((-1278 . -21) T) ((-1278 . -23) T) ((-1278 . -1091) T) ((-1278 . -608) 161845) ((-1278 . -102) T) ((-1278 . -25) T) ((-1278 . -130) T) ((-1278 . -641) 161819) ((-1278 . -1268) 161803) ((-1278 . -711) 161773) ((-1278 . -1048) 161757) ((-1278 . -111) 161736) ((-1278 . -38) 161706) ((-1278 . -1273) 161685) ((-1277 . -1042) T) ((-1277 . -1049) T) ((-1277 . -1102) T) ((-1277 . -720) T) ((-1277 . -21) T) ((-1277 . -23) T) ((-1277 . -1091) T) ((-1277 . -608) 161667) ((-1277 . -102) T) ((-1277 . -25) T) ((-1277 . -130) T) ((-1277 . -641) 161641) ((-1277 . -611) 161597) ((-1277 . -1268) 161581) ((-1277 . -711) 161551) ((-1277 . -1048) 161535) ((-1277 . -111) 161514) ((-1277 . -38) 161484) ((-1277 . -383) 161463) ((-1277 . -1031) 161447) ((-1275 . -1276) 161423) ((-1275 . -1031) 161397) ((-1275 . -611) 161343) ((-1275 . -1042) T) ((-1275 . -1049) T) ((-1275 . -1102) T) ((-1275 . -720) T) ((-1275 . -21) T) ((-1275 . -23) T) ((-1275 . -1091) T) ((-1275 . -608) 161325) ((-1275 . -102) T) ((-1275 . -25) T) ((-1275 . -130) T) ((-1275 . -641) 161299) ((-1275 . -1268) 161283) ((-1275 . -711) 161253) ((-1275 . -1048) 161237) ((-1275 . -111) 161216) ((-1275 . -38) 161186) ((-1275 . -1273) 161162) ((-1274 . -1276) 161141) ((-1274 . -1031) 161098) ((-1274 . -611) 161027) ((-1274 . -1042) T) ((-1274 . -1049) T) ((-1274 . -1102) T) ((-1274 . -720) T) ((-1274 . -21) T) ((-1274 . -23) T) ((-1274 . -1091) T) ((-1274 . -608) 161009) ((-1274 . -102) T) ((-1274 . -25) T) ((-1274 . -130) T) ((-1274 . -641) 160983) ((-1274 . -1268) 160967) ((-1274 . -711) 160937) ((-1274 . -1048) 160921) ((-1274 . -111) 160900) ((-1274 . -38) 160870) ((-1274 . -1273) 160849) ((-1274 . -383) 160821) ((-1269 . -383) 160793) ((-1269 . -611) 160742) ((-1269 . -1031) 160719) ((-1269 . -711) 160689) ((-1269 . -641) 160663) ((-1269 . -130) T) ((-1269 . -25) T) ((-1269 . -102) T) ((-1269 . -608) 160645) ((-1269 . -1091) T) ((-1269 . -23) T) ((-1269 . -21) T) ((-1269 . -1048) 160629) ((-1269 . -111) 160608) ((-1269 . -1276) 160587) ((-1269 . -1042) T) ((-1269 . -1049) T) ((-1269 . -1102) T) ((-1269 . -720) T) ((-1269 . -1268) 160571) ((-1269 . -38) 160541) ((-1269 . -1273) 160520) ((-1267 . -1199) 160489) ((-1267 . -608) 160451) ((-1267 . -150) 160435) ((-1267 . -34) T) ((-1267 . -1204) T) ((-1267 . -308) 160373) ((-1267 . -512) 160306) ((-1267 . -1091) T) ((-1267 . -102) T) ((-1267 . -487) 160290) ((-1267 . -609) 160251) ((-1267 . -969) 160220) ((-1266 . -1042) T) ((-1266 . -1049) T) ((-1266 . -1102) T) ((-1266 . -720) T) ((-1266 . -21) T) ((-1266 . -23) T) ((-1266 . -1091) T) ((-1266 . -608) 160189) ((-1266 . -102) T) ((-1266 . -25) T) ((-1266 . -130) T) ((-1266 . -641) 160149) ((-1266 . -611) 160091) ((-1266 . -488) 160075) ((-1266 . -38) 160045) ((-1266 . -111) 160010) ((-1266 . -1048) 159980) ((-1266 . -711) 159950) ((-1265 . -1073) T) ((-1265 . -488) 159931) ((-1265 . -608) 159897) ((-1265 . -611) 159878) ((-1265 . -1091) T) ((-1265 . -102) T) ((-1265 . -93) T) ((-1264 . -1073) T) ((-1264 . -488) 159859) ((-1264 . -608) 159825) ((-1264 . -611) 159806) ((-1264 . -1091) T) ((-1264 . -102) T) ((-1264 . -93) T) ((-1259 . -608) 159788) ((-1257 . -1091) T) ((-1257 . -608) 159770) ((-1257 . -102) T) ((-1256 . -1091) T) ((-1256 . -608) 159752) ((-1256 . -102) T) ((-1253 . -1252) 159736) ((-1253 . -371) 159720) ((-1253 . -844) 159699) ((-1253 . -150) 159683) ((-1253 . -34) T) ((-1253 . -1204) T) ((-1253 . -608) 159595) ((-1253 . -308) 159533) ((-1253 . -512) 159466) ((-1253 . -1091) 159416) ((-1253 . -102) 159366) ((-1253 . -487) 159350) ((-1253 . -609) 159311) ((-1253 . -599) 159288) ((-1253 . -285) 159265) ((-1253 . -287) 159242) ((-1253 . -644) 159226) ((-1253 . -19) 159210) ((-1250 . -1091) T) ((-1250 . -608) 159176) ((-1250 . -102) T) ((-1243 . -1246) 159160) ((-1243 . -232) 159119) ((-1243 . -611) 159001) ((-1243 . -641) 158926) ((-1243 . -130) T) ((-1243 . -25) T) ((-1243 . -102) T) ((-1243 . -608) 158908) ((-1243 . -1091) T) ((-1243 . -23) T) ((-1243 . -21) T) ((-1243 . -720) T) ((-1243 . -1102) T) ((-1243 . -1049) T) ((-1243 . -1042) T) ((-1243 . -285) 158893) ((-1243 . -893) 158806) ((-1243 . -966) 158775) ((-1243 . -38) 158672) ((-1243 . -111) 158541) ((-1243 . -1048) 158424) ((-1243 . -711) 158321) ((-1243 . -144) 158300) ((-1243 . -146) 158279) ((-1243 . -171) 158230) ((-1243 . -554) 158209) ((-1243 . -289) 158188) ((-1243 . -47) 158165) ((-1243 . -1232) 158142) ((-1243 . -35) 158108) ((-1243 . -95) 158074) ((-1243 . -283) 158040) ((-1243 . -491) 158006) ((-1243 . -1193) 157972) ((-1243 . -1190) 157938) ((-1243 . -995) 157904) ((-1240 . -325) 157848) ((-1240 . -1031) 157814) ((-1240 . -411) 157780) ((-1240 . -38) 157672) ((-1240 . -611) 157546) ((-1240 . -641) 157451) ((-1240 . -720) T) ((-1240 . -1102) T) ((-1240 . -1049) T) ((-1240 . -1042) T) ((-1240 . -111) 157343) ((-1240 . -1048) 157248) ((-1240 . -21) T) ((-1240 . -23) T) ((-1240 . -1091) T) ((-1240 . -608) 157230) ((-1240 . -102) T) ((-1240 . -25) T) ((-1240 . -130) T) ((-1240 . -711) 157122) ((-1240 . -144) 157083) ((-1240 . -146) 157044) ((-1240 . -171) T) ((-1240 . -554) T) ((-1240 . -289) T) ((-1240 . -47) 156988) ((-1239 . -1238) 156967) ((-1239 . -362) 156946) ((-1239 . -1209) 156925) ((-1239 . -914) 156904) ((-1239 . -554) 156855) ((-1239 . -171) 156786) ((-1239 . -611) 156599) ((-1239 . -711) 156440) ((-1239 . -38) 156281) ((-1239 . -450) 156260) ((-1239 . -306) 156239) ((-1239 . -641) 156136) ((-1239 . -720) T) ((-1239 . -1102) T) ((-1239 . -1049) T) ((-1239 . -1042) T) ((-1239 . -111) 155957) ((-1239 . -1048) 155792) ((-1239 . -21) T) ((-1239 . -23) T) ((-1239 . -1091) T) ((-1239 . -608) 155774) ((-1239 . -102) T) ((-1239 . -25) T) ((-1239 . -130) T) ((-1239 . -289) 155725) ((-1239 . -242) 155704) ((-1239 . -995) 155670) ((-1239 . -1190) 155636) ((-1239 . -1193) 155602) ((-1239 . -491) 155568) ((-1239 . -283) 155534) ((-1239 . -95) 155500) ((-1239 . -35) 155466) ((-1239 . -1232) 155436) ((-1239 . -47) 155406) ((-1239 . -146) 155385) ((-1239 . -144) 155364) ((-1239 . -966) 155326) ((-1239 . -893) 155232) ((-1239 . -285) 155217) ((-1239 . -232) 155169) ((-1239 . -1236) 155153) ((-1239 . -1031) 155137) ((-1234 . -1238) 155098) ((-1234 . -362) 155077) ((-1234 . -1209) 155056) ((-1234 . -914) 155035) ((-1234 . -554) 154986) ((-1234 . -171) 154917) ((-1234 . -611) 154660) ((-1234 . -711) 154501) ((-1234 . -38) 154342) ((-1234 . -450) 154321) ((-1234 . -306) 154300) ((-1234 . -641) 154197) ((-1234 . -720) T) ((-1234 . -1102) T) ((-1234 . -1049) T) ((-1234 . -1042) T) ((-1234 . -111) 154018) ((-1234 . -1048) 153853) ((-1234 . -21) T) ((-1234 . -23) T) ((-1234 . -1091) T) ((-1234 . -608) 153835) ((-1234 . -102) T) ((-1234 . -25) T) ((-1234 . -130) T) ((-1234 . -289) 153786) ((-1234 . -242) 153765) ((-1234 . -995) 153731) ((-1234 . -1190) 153697) ((-1234 . -1193) 153663) ((-1234 . -491) 153629) ((-1234 . -283) 153595) ((-1234 . -95) 153561) ((-1234 . -35) 153527) ((-1234 . -1232) 153497) ((-1234 . -47) 153467) ((-1234 . -146) 153446) ((-1234 . -144) 153425) ((-1234 . -966) 153387) ((-1234 . -893) 153293) ((-1234 . -285) 153278) ((-1234 . -232) 153230) ((-1234 . -1236) 153214) ((-1234 . -1031) 153149) ((-1222 . -1229) 153133) ((-1222 . -1141) 153111) ((-1222 . -609) NIL) ((-1222 . -308) 153098) ((-1222 . -512) 153045) ((-1222 . -325) 153022) ((-1222 . -1031) 152902) ((-1222 . -411) 152886) ((-1222 . -38) 152715) ((-1222 . -111) 152524) ((-1222 . -1048) 152347) ((-1222 . -641) 152272) ((-1222 . -711) 152101) ((-1222 . -611) 151849) ((-1222 . -144) 151828) ((-1222 . -146) 151807) ((-1222 . -47) 151784) ((-1222 . -376) 151768) ((-1222 . -634) 151716) ((-1222 . -844) 151695) ((-1222 . -893) 151638) ((-1222 . -879) NIL) ((-1222 . -903) 151617) ((-1222 . -1209) 151596) ((-1222 . -943) 151565) ((-1222 . -914) 151544) ((-1222 . -554) 151455) ((-1222 . -289) 151366) ((-1222 . -171) 151257) ((-1222 . -450) 151188) ((-1222 . -306) 151167) ((-1222 . -285) 151094) ((-1222 . -232) T) ((-1222 . -130) T) ((-1222 . -25) T) ((-1222 . -102) T) ((-1222 . -608) 151076) ((-1222 . -1091) T) ((-1222 . -23) T) ((-1222 . -21) T) ((-1222 . -720) T) ((-1222 . -1102) T) ((-1222 . -1049) T) ((-1222 . -1042) T) ((-1222 . -230) 151060) ((-1220 . -1084) 151044) ((-1220 . -613) 151028) ((-1220 . -1091) 151006) ((-1220 . -608) 150973) ((-1220 . -102) 150951) ((-1220 . -1085) 150908) ((-1218 . -1217) 150887) ((-1218 . -995) 150853) ((-1218 . -1190) 150819) ((-1218 . -1193) 150785) ((-1218 . -491) 150751) ((-1218 . -283) 150717) ((-1218 . -95) 150683) ((-1218 . -35) 150649) ((-1218 . -1232) 150626) ((-1218 . -47) 150603) ((-1218 . -611) 150351) ((-1218 . -711) 150165) ((-1218 . -641) 150035) ((-1218 . -1048) 149843) ((-1218 . -111) 149632) ((-1218 . -38) 149446) ((-1218 . -966) 149415) ((-1218 . -285) 149335) ((-1218 . -1215) 149319) ((-1218 . -720) T) ((-1218 . -1102) T) ((-1218 . -1049) T) ((-1218 . -1042) T) ((-1218 . -21) T) ((-1218 . -23) T) ((-1218 . -1091) T) ((-1218 . -608) 149301) ((-1218 . -102) T) ((-1218 . -25) T) ((-1218 . -130) T) ((-1218 . -144) 149226) ((-1218 . -146) 149151) ((-1218 . -609) 148822) ((-1218 . -230) 148792) ((-1218 . -893) 148643) ((-1218 . -232) 148548) ((-1218 . -362) 148527) ((-1218 . -1209) 148506) ((-1218 . -914) 148485) ((-1218 . -554) 148436) ((-1218 . -171) 148367) ((-1218 . -450) 148346) ((-1218 . -306) 148325) ((-1218 . -289) 148276) ((-1218 . -242) 148255) ((-1218 . -337) 148225) ((-1218 . -512) 148085) ((-1218 . -308) 148024) ((-1218 . -376) 147994) ((-1218 . -634) 147902) ((-1218 . -399) 147872) ((-1218 . -1204) 147851) ((-1218 . -879) 147724) ((-1218 . -814) 147677) ((-1218 . -785) 147630) ((-1218 . -786) 147583) ((-1218 . -844) 147482) ((-1218 . -788) 147435) ((-1218 . -791) 147388) ((-1218 . -842) 147341) ((-1218 . -877) 147311) ((-1218 . -903) 147264) ((-1218 . -1013) 147216) ((-1218 . -1031) 147002) ((-1218 . -1141) 146954) ((-1218 . -984) 146924) ((-1213 . -1217) 146885) ((-1213 . -995) 146851) ((-1213 . -1190) 146817) ((-1213 . -1193) 146783) ((-1213 . -491) 146749) ((-1213 . -283) 146715) ((-1213 . -95) 146681) ((-1213 . -35) 146647) ((-1213 . -1232) 146624) ((-1213 . -47) 146601) ((-1213 . -611) 146396) ((-1213 . -711) 146192) ((-1213 . -641) 146044) ((-1213 . -1048) 145834) ((-1213 . -111) 145603) ((-1213 . -38) 145399) ((-1213 . -966) 145368) ((-1213 . -285) 145216) ((-1213 . -1215) 145200) ((-1213 . -720) T) ((-1213 . -1102) T) ((-1213 . -1049) T) ((-1213 . -1042) T) ((-1213 . -21) T) ((-1213 . -23) T) ((-1213 . -1091) T) ((-1213 . -608) 145182) ((-1213 . -102) T) ((-1213 . -25) T) ((-1213 . -130) T) ((-1213 . -144) 145089) ((-1213 . -146) 144996) ((-1213 . -609) NIL) ((-1213 . -230) 144948) ((-1213 . -893) 144781) ((-1213 . -232) 144668) ((-1213 . -362) 144647) ((-1213 . -1209) 144626) ((-1213 . -914) 144605) ((-1213 . -554) 144556) ((-1213 . -171) 144487) ((-1213 . -450) 144466) ((-1213 . -306) 144445) ((-1213 . -289) 144396) ((-1213 . -242) 144375) ((-1213 . -337) 144327) ((-1213 . -512) 144096) ((-1213 . -308) 143981) ((-1213 . -376) 143933) ((-1213 . -634) 143885) ((-1213 . -399) 143837) ((-1213 . -1204) 143816) ((-1213 . -879) NIL) ((-1213 . -814) NIL) ((-1213 . -785) NIL) ((-1213 . -786) NIL) ((-1213 . -844) NIL) ((-1213 . -788) NIL) ((-1213 . -791) NIL) ((-1213 . -842) NIL) ((-1213 . -877) 143768) ((-1213 . -903) NIL) ((-1213 . -1013) NIL) ((-1213 . -1031) 143734) ((-1213 . -1141) NIL) ((-1213 . -984) 143686) ((-1212 . -838) T) ((-1212 . -844) T) ((-1212 . -1091) T) ((-1212 . -608) 143668) ((-1212 . -102) T) ((-1212 . -367) T) ((-1211 . -838) T) ((-1211 . -844) T) ((-1211 . -1091) T) ((-1211 . -608) 143650) ((-1211 . -102) T) ((-1211 . -367) T) ((-1210 . -838) T) ((-1210 . -844) T) ((-1210 . -1091) T) ((-1210 . -608) 143632) ((-1210 . -102) T) ((-1210 . -367) T) ((-1205 . -1073) T) ((-1205 . -488) 143613) ((-1205 . -608) 143579) ((-1205 . -611) 143560) ((-1205 . -1091) T) ((-1205 . -102) T) ((-1205 . -93) T) ((-1202 . -488) 143537) ((-1202 . -608) 143449) ((-1202 . -611) 143426) ((-1202 . -1091) 143404) ((-1202 . -102) 143382) ((-1197 . -734) 143358) ((-1197 . -35) 143324) ((-1197 . -95) 143290) ((-1197 . -283) 143256) ((-1197 . -491) 143222) ((-1197 . -1193) 143188) ((-1197 . -1190) 143154) ((-1197 . -995) 143120) ((-1197 . -47) 143089) ((-1197 . -38) 142986) ((-1197 . -711) 142883) ((-1197 . -611) 142765) ((-1197 . -289) 142744) ((-1197 . -554) 142723) ((-1197 . -111) 142592) ((-1197 . -1048) 142475) ((-1197 . -171) 142426) ((-1197 . -146) 142405) ((-1197 . -144) 142384) ((-1197 . -641) 142309) ((-1197 . -966) 142271) ((-1197 . -1042) T) ((-1197 . -1049) T) ((-1197 . -1102) T) ((-1197 . -720) T) ((-1197 . -21) T) ((-1197 . -23) T) ((-1197 . -1091) T) ((-1197 . -608) 142253) ((-1197 . -102) T) ((-1197 . -25) T) ((-1197 . -130) T) ((-1197 . -893) 142234) ((-1197 . -512) 142201) ((-1197 . -308) 142188) ((-1191 . -1003) 142172) ((-1191 . -34) T) ((-1191 . -1204) T) ((-1191 . -608) 142104) ((-1191 . -308) 142042) ((-1191 . -512) 141975) ((-1191 . -1091) 141953) ((-1191 . -102) 141931) ((-1191 . -487) 141915) ((-1186 . -364) 141889) ((-1186 . -102) T) ((-1186 . -608) 141871) ((-1186 . -1091) T) ((-1184 . -1091) T) ((-1184 . -608) 141853) ((-1184 . -102) T) ((-1184 . -611) 141835) ((-1177 . -1181) 141814) ((-1177 . -228) 141764) ((-1177 . -107) 141714) ((-1177 . -308) 141518) ((-1177 . -512) 141310) ((-1177 . -487) 141247) ((-1177 . -150) 141197) ((-1177 . -609) NIL) ((-1177 . -234) 141147) ((-1177 . -605) 141126) ((-1177 . -287) 141105) ((-1177 . -285) 141084) ((-1177 . -102) T) ((-1177 . -1091) T) ((-1177 . -608) 141066) ((-1177 . -1204) T) ((-1177 . -34) T) ((-1177 . -599) 141045) ((-1173 . -838) T) ((-1173 . -844) T) ((-1173 . -1091) T) ((-1173 . -608) 141027) ((-1173 . -102) T) ((-1173 . -367) T) ((-1172 . -838) T) ((-1172 . -844) T) ((-1172 . -1091) T) ((-1172 . -608) 141009) ((-1172 . -102) T) ((-1172 . -367) T) ((-1171 . -1249) T) ((-1171 . -1091) T) ((-1171 . -608) 140976) ((-1171 . -102) T) ((-1171 . -1031) 140911) ((-1171 . -611) 140846) ((-1170 . -608) 140828) ((-1169 . -608) 140810) ((-1168 . -325) 140787) ((-1168 . -1031) 140683) ((-1168 . -411) 140667) ((-1168 . -38) 140564) ((-1168 . -611) 140417) ((-1168 . -641) 140342) ((-1168 . -720) T) ((-1168 . -1102) T) ((-1168 . -1049) T) ((-1168 . -1042) T) ((-1168 . -111) 140211) ((-1168 . -1048) 140094) ((-1168 . -21) T) ((-1168 . -23) T) ((-1168 . -1091) T) ((-1168 . -608) 140076) ((-1168 . -102) T) ((-1168 . -25) T) ((-1168 . -130) T) ((-1168 . -711) 139973) ((-1168 . -144) 139952) ((-1168 . -146) 139931) ((-1168 . -171) 139882) ((-1168 . -554) 139861) ((-1168 . -289) 139840) ((-1168 . -47) 139817) ((-1166 . -844) T) ((-1166 . -102) T) ((-1166 . -608) 139799) ((-1166 . -1091) T) ((-1166 . -609) 139721) ((-1166 . -815) T) ((-1166 . -611) 139702) ((-1166 . -879) 139669) ((-1165 . -608) 139651) ((-1164 . -1246) 139635) ((-1164 . -232) 139594) ((-1164 . -611) 139476) ((-1164 . -641) 139401) ((-1164 . -130) T) ((-1164 . -25) T) ((-1164 . -102) T) ((-1164 . -608) 139383) ((-1164 . -1091) T) ((-1164 . -23) T) ((-1164 . -21) T) ((-1164 . -720) T) ((-1164 . -1102) T) ((-1164 . -1049) T) ((-1164 . -1042) T) ((-1164 . -285) 139368) ((-1164 . -893) 139281) ((-1164 . -966) 139250) ((-1164 . -38) 139147) ((-1164 . -111) 139016) ((-1164 . -1048) 138899) ((-1164 . -711) 138796) ((-1164 . -144) 138775) ((-1164 . -146) 138754) ((-1164 . -171) 138705) ((-1164 . -554) 138684) ((-1164 . -289) 138663) ((-1164 . -47) 138640) ((-1164 . -1232) 138617) ((-1164 . -35) 138583) ((-1164 . -95) 138549) ((-1164 . -283) 138515) ((-1164 . -491) 138481) ((-1164 . -1193) 138447) ((-1164 . -1190) 138413) ((-1164 . -995) 138379) ((-1163 . -1238) 138340) ((-1163 . -362) 138319) ((-1163 . -1209) 138298) ((-1163 . -914) 138277) ((-1163 . -554) 138228) ((-1163 . -171) 138159) ((-1163 . -611) 137902) ((-1163 . -711) 137743) ((-1163 . -38) 137584) ((-1163 . -450) 137563) ((-1163 . -306) 137542) ((-1163 . -641) 137439) ((-1163 . -720) T) ((-1163 . -1102) T) ((-1163 . -1049) T) ((-1163 . -1042) T) ((-1163 . -111) 137260) ((-1163 . -1048) 137095) ((-1163 . -21) T) ((-1163 . -23) T) ((-1163 . -1091) T) ((-1163 . -608) 137077) ((-1163 . -102) T) ((-1163 . -25) T) ((-1163 . -130) T) ((-1163 . -289) 137028) ((-1163 . -242) 137007) ((-1163 . -995) 136973) ((-1163 . -1190) 136939) ((-1163 . -1193) 136905) ((-1163 . -491) 136871) ((-1163 . -283) 136837) ((-1163 . -95) 136803) ((-1163 . -35) 136769) ((-1163 . -1232) 136739) ((-1163 . -47) 136709) ((-1163 . -146) 136688) ((-1163 . -144) 136667) ((-1163 . -966) 136629) ((-1163 . -893) 136535) ((-1163 . -285) 136520) ((-1163 . -232) 136472) ((-1163 . -1236) 136456) ((-1163 . -1031) 136391) ((-1160 . -1229) 136375) ((-1160 . -1141) 136353) ((-1160 . -609) NIL) ((-1160 . -308) 136340) ((-1160 . -512) 136287) ((-1160 . -325) 136264) ((-1160 . -1031) 136144) ((-1160 . -411) 136128) ((-1160 . -38) 135957) ((-1160 . -111) 135766) ((-1160 . -1048) 135589) ((-1160 . -641) 135514) ((-1160 . -711) 135343) ((-1160 . -611) 135112) ((-1160 . -144) 135091) ((-1160 . -146) 135070) ((-1160 . -47) 135047) ((-1160 . -376) 135031) ((-1160 . -634) 134979) ((-1160 . -844) 134958) ((-1160 . -893) 134901) ((-1160 . -879) NIL) ((-1160 . -903) 134880) ((-1160 . -1209) 134859) ((-1160 . -943) 134828) ((-1160 . -914) 134807) ((-1160 . -554) 134718) ((-1160 . -289) 134629) ((-1160 . -171) 134520) ((-1160 . -450) 134451) ((-1160 . -306) 134430) ((-1160 . -285) 134357) ((-1160 . -232) T) ((-1160 . -130) T) ((-1160 . -25) T) ((-1160 . -102) T) ((-1160 . -608) 134339) ((-1160 . -1091) T) ((-1160 . -23) T) ((-1160 . -21) T) ((-1160 . -720) T) ((-1160 . -1102) T) ((-1160 . -1049) T) ((-1160 . -1042) T) ((-1160 . -230) 134323) ((-1157 . -1217) 134284) ((-1157 . -995) 134250) ((-1157 . -1190) 134216) ((-1157 . -1193) 134182) ((-1157 . -491) 134148) ((-1157 . -283) 134114) ((-1157 . -95) 134080) ((-1157 . -35) 134046) ((-1157 . -1232) 134023) ((-1157 . -47) 134000) ((-1157 . -611) 133795) ((-1157 . -711) 133591) ((-1157 . -641) 133443) ((-1157 . -1048) 133233) ((-1157 . -111) 133002) ((-1157 . -38) 132798) ((-1157 . -966) 132767) ((-1157 . -285) 132615) ((-1157 . -1215) 132599) ((-1157 . -720) T) ((-1157 . -1102) T) ((-1157 . -1049) T) ((-1157 . -1042) T) ((-1157 . -21) T) ((-1157 . -23) T) ((-1157 . -1091) T) ((-1157 . -608) 132581) ((-1157 . -102) T) ((-1157 . -25) T) ((-1157 . -130) T) ((-1157 . -144) 132488) ((-1157 . -146) 132395) ((-1157 . -609) NIL) ((-1157 . -230) 132347) ((-1157 . -893) 132180) ((-1157 . -232) 132067) ((-1157 . -362) 132046) ((-1157 . -1209) 132025) ((-1157 . -914) 132004) ((-1157 . -554) 131955) ((-1157 . -171) 131886) ((-1157 . -450) 131865) ((-1157 . -306) 131844) ((-1157 . -289) 131795) ((-1157 . -242) 131774) ((-1157 . -337) 131726) ((-1157 . -512) 131495) ((-1157 . -308) 131380) ((-1157 . -376) 131332) ((-1157 . -634) 131284) ((-1157 . -399) 131236) ((-1157 . -1204) 131215) ((-1157 . -879) NIL) ((-1157 . -814) NIL) ((-1157 . -785) NIL) ((-1157 . -786) NIL) ((-1157 . -844) NIL) ((-1157 . -788) NIL) ((-1157 . -791) NIL) ((-1157 . -842) NIL) ((-1157 . -877) 131167) ((-1157 . -903) NIL) ((-1157 . -1013) NIL) ((-1157 . -1031) 131133) ((-1157 . -1141) NIL) ((-1157 . -984) 131085) ((-1156 . -1073) T) ((-1156 . -488) 131066) ((-1156 . -608) 131032) ((-1156 . -611) 131013) ((-1156 . -1091) T) ((-1156 . -102) T) ((-1156 . -93) T) ((-1155 . -1091) T) ((-1155 . -608) 130995) ((-1155 . -102) T) ((-1154 . -1091) T) ((-1154 . -608) 130977) ((-1154 . -102) T) ((-1149 . -1181) 130953) ((-1149 . -228) 130900) ((-1149 . -107) 130847) ((-1149 . -308) 130642) ((-1149 . -512) 130425) ((-1149 . -487) 130359) ((-1149 . -150) 130306) ((-1149 . -609) NIL) ((-1149 . -234) 130253) ((-1149 . -605) 130229) ((-1149 . -287) 130205) ((-1149 . -285) 130181) ((-1149 . -102) T) ((-1149 . -1091) T) ((-1149 . -608) 130163) ((-1149 . -1204) T) ((-1149 . -34) T) ((-1149 . -599) 130139) ((-1148 . -1147) T) ((-1148 . -19) 130121) ((-1148 . -644) 130103) ((-1148 . -287) 130078) ((-1148 . -285) 130053) ((-1148 . -599) 130028) ((-1148 . -609) NIL) ((-1148 . -487) 130010) ((-1148 . -512) NIL) ((-1148 . -308) NIL) ((-1148 . -1204) T) ((-1148 . -34) T) ((-1148 . -150) 129992) ((-1148 . -844) T) ((-1148 . -371) 129974) ((-1148 . -1134) T) ((-1148 . -102) T) ((-1148 . -608) 129956) ((-1148 . -1091) T) ((-1148 . -815) T) ((-1143 . -667) 129940) ((-1143 . -644) 129924) ((-1143 . -287) 129901) ((-1143 . -285) 129878) ((-1143 . -599) 129855) ((-1143 . -609) 129816) ((-1143 . -487) 129800) ((-1143 . -102) 129778) ((-1143 . -1091) 129756) ((-1143 . -512) 129689) ((-1143 . -308) 129627) ((-1143 . -608) 129559) ((-1143 . -1204) T) ((-1143 . -34) T) ((-1143 . -150) 129543) ((-1143 . -1242) 129527) ((-1143 . -1003) 129511) ((-1143 . -1139) 129495) ((-1143 . -611) 129472) ((-1140 . -1181) 129451) ((-1140 . -228) 129401) ((-1140 . -107) 129351) ((-1140 . -308) 129155) ((-1140 . -512) 128947) ((-1140 . -487) 128884) ((-1140 . -150) 128834) ((-1140 . -609) NIL) ((-1140 . -234) 128784) ((-1140 . -605) 128763) ((-1140 . -287) 128742) ((-1140 . -285) 128721) ((-1140 . -102) T) ((-1140 . -1091) T) ((-1140 . -608) 128703) ((-1140 . -1204) T) ((-1140 . -34) T) ((-1140 . -599) 128682) ((-1137 . -1111) 128666) ((-1137 . -487) 128650) ((-1137 . -102) 128628) ((-1137 . -1091) 128606) ((-1137 . -512) 128539) ((-1137 . -308) 128477) ((-1137 . -608) 128409) ((-1137 . -1204) T) ((-1137 . -34) T) ((-1137 . -107) 128393) ((-1136 . -1099) 128362) ((-1136 . -1199) 128331) ((-1136 . -608) 128293) ((-1136 . -150) 128277) ((-1136 . -34) T) ((-1136 . -1204) T) ((-1136 . -308) 128215) ((-1136 . -512) 128148) ((-1136 . -1091) T) ((-1136 . -102) T) ((-1136 . -487) 128132) ((-1136 . -609) 128093) ((-1136 . -969) 128062) ((-1136 . -1062) 128031) ((-1132 . -1113) 127976) ((-1132 . -487) 127960) ((-1132 . -512) 127893) ((-1132 . -308) 127831) ((-1132 . -1204) T) ((-1132 . -34) T) ((-1132 . -1045) 127771) ((-1132 . -1031) 127667) ((-1132 . -611) 127585) ((-1132 . -411) 127569) ((-1132 . -634) 127517) ((-1132 . -376) 127501) ((-1132 . -232) 127480) ((-1132 . -893) 127439) ((-1132 . -230) 127423) ((-1132 . -711) 127355) ((-1132 . -641) 127329) ((-1132 . -130) T) ((-1132 . -25) T) ((-1132 . -102) T) ((-1132 . -608) 127291) ((-1132 . -1091) T) ((-1132 . -23) T) ((-1132 . -21) T) ((-1132 . -1048) 127275) ((-1132 . -111) 127254) ((-1132 . -1042) T) ((-1132 . -1049) T) ((-1132 . -1102) T) ((-1132 . -720) T) ((-1132 . -38) 127214) ((-1132 . -609) 127175) ((-1131 . -1003) 127146) ((-1131 . -34) T) ((-1131 . -1204) T) ((-1131 . -608) 127128) ((-1131 . -308) 127054) ((-1131 . -512) 126973) ((-1131 . -1091) T) ((-1131 . -102) T) ((-1131 . -487) 126944) ((-1130 . -1091) T) ((-1130 . -608) 126926) ((-1130 . -102) T) ((-1125 . -1127) T) ((-1125 . -1249) T) ((-1125 . -93) T) ((-1125 . -102) T) ((-1125 . -608) 126892) ((-1125 . -1091) T) ((-1125 . -611) 126873) ((-1125 . -488) 126854) ((-1125 . -1073) T) ((-1123 . -1124) 126838) ((-1123 . -102) T) ((-1123 . -608) 126820) ((-1123 . -1091) T) ((-1116 . -734) 126799) ((-1116 . -35) 126765) ((-1116 . -95) 126731) ((-1116 . -283) 126697) ((-1116 . -491) 126663) ((-1116 . -1193) 126629) ((-1116 . -1190) 126595) ((-1116 . -995) 126561) ((-1116 . -47) 126533) ((-1116 . -38) 126430) ((-1116 . -711) 126327) ((-1116 . -611) 126209) ((-1116 . -289) 126188) ((-1116 . -554) 126167) ((-1116 . -111) 126036) ((-1116 . -1048) 125919) ((-1116 . -171) 125870) ((-1116 . -146) 125849) ((-1116 . -144) 125828) ((-1116 . -641) 125753) ((-1116 . -966) 125720) ((-1116 . -1042) T) ((-1116 . -1049) T) ((-1116 . -1102) T) ((-1116 . -720) T) ((-1116 . -21) T) ((-1116 . -23) T) ((-1116 . -1091) T) ((-1116 . -608) 125702) ((-1116 . -102) T) ((-1116 . -25) T) ((-1116 . -130) T) ((-1116 . -893) 125686) ((-1116 . -512) 125656) ((-1116 . -308) 125643) ((-1115 . -943) 125610) ((-1115 . -611) 125402) ((-1115 . -1031) 125285) ((-1115 . -1209) 125264) ((-1115 . -903) 125243) ((-1115 . -879) 125102) ((-1115 . -893) 125086) ((-1115 . -844) 125065) ((-1115 . -512) 125017) ((-1115 . -450) 124968) ((-1115 . -634) 124916) ((-1115 . -376) 124900) ((-1115 . -47) 124872) ((-1115 . -38) 124721) ((-1115 . -711) 124570) ((-1115 . -289) 124501) ((-1115 . -554) 124432) ((-1115 . -111) 124261) ((-1115 . -1048) 124104) ((-1115 . -171) 124015) ((-1115 . -146) 123994) ((-1115 . -144) 123973) ((-1115 . -641) 123898) ((-1115 . -130) T) ((-1115 . -25) T) ((-1115 . -102) T) ((-1115 . -608) 123880) ((-1115 . -1091) T) ((-1115 . -23) T) ((-1115 . -21) T) ((-1115 . -1042) T) ((-1115 . -1049) T) ((-1115 . -1102) T) ((-1115 . -720) T) ((-1115 . -411) 123864) ((-1115 . -325) 123836) ((-1115 . -308) 123823) ((-1115 . -609) 123571) ((-1110 . -543) T) ((-1110 . -1209) T) ((-1110 . -1141) T) ((-1110 . -1031) 123553) ((-1110 . -609) 123468) ((-1110 . -1013) T) ((-1110 . -879) 123450) ((-1110 . -842) T) ((-1110 . -791) T) ((-1110 . -788) T) ((-1110 . -844) T) ((-1110 . -786) T) ((-1110 . -785) T) ((-1110 . -814) T) ((-1110 . -634) 123432) ((-1110 . -914) T) ((-1110 . -554) T) ((-1110 . -289) T) ((-1110 . -171) T) ((-1110 . -611) 123404) ((-1110 . -711) 123391) ((-1110 . -1048) 123378) ((-1110 . -111) 123363) ((-1110 . -38) 123350) ((-1110 . -450) T) ((-1110 . -306) T) ((-1110 . -232) T) ((-1110 . -142) T) ((-1110 . -1042) T) ((-1110 . -1049) T) ((-1110 . -1102) T) ((-1110 . -720) T) ((-1110 . -21) T) ((-1110 . -23) T) ((-1110 . -1091) T) ((-1110 . -608) 123332) ((-1110 . -102) T) ((-1110 . -25) T) ((-1110 . -130) T) ((-1110 . -641) 123319) ((-1110 . -146) T) ((-1110 . -838) T) ((-1110 . -367) T) ((-1110 . -655) T) ((-1110 . -815) T) ((-1106 . -1073) T) ((-1106 . -488) 123300) ((-1106 . -608) 123266) ((-1106 . -611) 123247) ((-1106 . -1091) T) ((-1106 . -102) T) ((-1106 . -93) T) ((-1105 . -1091) T) ((-1105 . -608) 123229) ((-1105 . -102) T) ((-1103 . -237) 123208) ((-1103 . -1261) 123178) ((-1103 . -785) 123157) ((-1103 . -842) 123136) ((-1103 . -791) 123087) ((-1103 . -788) 123038) ((-1103 . -844) 122989) ((-1103 . -786) 122940) ((-1103 . -787) 122919) ((-1103 . -287) 122896) ((-1103 . -285) 122873) ((-1103 . -487) 122857) ((-1103 . -512) 122790) ((-1103 . -308) 122728) ((-1103 . -1204) T) ((-1103 . -34) T) ((-1103 . -599) 122705) ((-1103 . -1031) 122532) ((-1103 . -611) 122262) ((-1103 . -411) 122231) ((-1103 . -634) 122137) ((-1103 . -376) 122106) ((-1103 . -367) 122085) ((-1103 . -232) 122037) ((-1103 . -893) 121969) ((-1103 . -230) 121938) ((-1103 . -111) 121828) ((-1103 . -1048) 121725) ((-1103 . -171) 121704) ((-1103 . -608) 121435) ((-1103 . -711) 121377) ((-1103 . -641) 121225) ((-1103 . -130) 121095) ((-1103 . -23) 120965) ((-1103 . -21) 120875) ((-1103 . -1042) 120805) ((-1103 . -1049) 120735) ((-1103 . -1102) 120645) ((-1103 . -720) 120555) ((-1103 . -38) 120525) ((-1103 . -1091) 120315) ((-1103 . -102) 120105) ((-1103 . -25) 119956) ((-1096 . -395) T) ((-1096 . -1204) T) ((-1096 . -608) 119938) ((-1095 . -1094) 119902) ((-1095 . -102) T) ((-1095 . -608) 119884) ((-1095 . -1091) T) ((-1095 . -613) 119799) ((-1093 . -1094) 119751) ((-1093 . -102) T) ((-1093 . -608) 119733) ((-1093 . -1091) T) ((-1093 . -613) 119636) ((-1092 . -367) T) ((-1092 . -102) T) ((-1092 . -608) 119618) ((-1092 . -1091) T) ((-1087 . -425) 119602) ((-1087 . -1089) 119586) ((-1087 . -367) 119565) ((-1087 . -234) 119549) ((-1087 . -609) 119510) ((-1087 . -150) 119494) ((-1087 . -487) 119478) ((-1087 . -102) T) ((-1087 . -1091) T) ((-1087 . -512) 119411) ((-1087 . -308) 119349) ((-1087 . -608) 119331) ((-1087 . -1204) T) ((-1087 . -34) T) ((-1087 . -107) 119315) ((-1087 . -228) 119299) ((-1086 . -1073) T) ((-1086 . -488) 119280) ((-1086 . -608) 119246) ((-1086 . -611) 119227) ((-1086 . -1091) T) ((-1086 . -102) T) ((-1086 . -93) T) ((-1082 . -1204) T) ((-1082 . -1091) 119205) ((-1082 . -608) 119172) ((-1082 . -102) 119150) ((-1081 . -1073) T) ((-1081 . -488) 119131) ((-1081 . -608) 119097) ((-1081 . -611) 119078) ((-1081 . -1091) T) ((-1081 . -102) T) ((-1081 . -93) T) ((-1079 . -1084) 119062) ((-1079 . -613) 119046) ((-1079 . -1091) 119024) ((-1079 . -608) 118991) ((-1079 . -102) 118969) ((-1079 . -1085) 118927) ((-1078 . -265) 118911) ((-1078 . -611) 118895) ((-1078 . -1031) 118879) ((-1078 . -1091) T) ((-1078 . -608) 118861) ((-1078 . -102) T) ((-1078 . -844) T) ((-1077 . -252) 118798) ((-1077 . -611) 118534) ((-1077 . -1031) 118361) ((-1077 . -609) NIL) ((-1077 . -325) 118322) ((-1077 . -411) 118306) ((-1077 . -38) 118155) ((-1077 . -111) 117984) ((-1077 . -1048) 117827) ((-1077 . -641) 117752) ((-1077 . -711) 117601) ((-1077 . -144) 117580) ((-1077 . -146) 117559) ((-1077 . -171) 117470) ((-1077 . -554) 117401) ((-1077 . -289) 117332) ((-1077 . -47) 117293) ((-1077 . -376) 117277) ((-1077 . -634) 117225) ((-1077 . -450) 117176) ((-1077 . -512) 117043) ((-1077 . -844) 117022) ((-1077 . -893) 116957) ((-1077 . -879) NIL) ((-1077 . -903) 116936) ((-1077 . -1209) 116915) ((-1077 . -943) 116860) ((-1077 . -308) 116847) ((-1077 . -232) 116826) ((-1077 . -130) T) ((-1077 . -25) T) ((-1077 . -102) T) ((-1077 . -608) 116808) ((-1077 . -1091) T) ((-1077 . -23) T) ((-1077 . -21) T) ((-1077 . -720) T) ((-1077 . -1102) T) ((-1077 . -1049) T) ((-1077 . -1042) T) ((-1077 . -230) 116792) ((-1075 . -608) 116774) ((-1072 . -844) T) ((-1072 . -102) T) ((-1072 . -608) 116756) ((-1072 . -1091) T) ((-1072 . -609) 116737) ((-1069 . -718) 116716) ((-1069 . -1031) 116612) ((-1069 . -411) 116596) ((-1069 . -634) 116544) ((-1069 . -376) 116528) ((-1069 . -369) 116507) ((-1069 . -146) 116486) ((-1069 . -611) 116304) ((-1069 . -711) 116172) ((-1069 . -641) 116082) ((-1069 . -1048) 115992) ((-1069 . -111) 115888) ((-1069 . -38) 115756) ((-1069 . -409) 115735) ((-1069 . -401) 115714) ((-1069 . -144) 115665) ((-1069 . -1141) 115644) ((-1069 . -349) 115623) ((-1069 . -367) 115574) ((-1069 . -242) 115525) ((-1069 . -289) 115476) ((-1069 . -306) 115427) ((-1069 . -450) 115378) ((-1069 . -554) 115329) ((-1069 . -914) 115280) ((-1069 . -1209) 115231) ((-1069 . -362) 115182) ((-1069 . -232) 115107) ((-1069 . -893) 115040) ((-1069 . -230) 115010) ((-1069 . -609) 114994) ((-1069 . -21) T) ((-1069 . -23) T) ((-1069 . -1091) T) ((-1069 . -608) 114976) ((-1069 . -102) T) ((-1069 . -25) T) ((-1069 . -130) T) ((-1069 . -1042) T) ((-1069 . -1049) T) ((-1069 . -1102) T) ((-1069 . -720) T) ((-1069 . -171) T) ((-1067 . -1091) T) ((-1067 . -608) 114958) ((-1067 . -102) T) ((-1067 . -285) 114937) ((-1066 . -1091) T) ((-1066 . -608) 114919) ((-1066 . -102) T) ((-1065 . -1091) T) ((-1065 . -608) 114901) ((-1065 . -102) T) ((-1065 . -285) 114880) ((-1065 . -1031) 114857) ((-1065 . -611) 114834) ((-1064 . -1073) T) ((-1064 . -488) 114815) ((-1064 . -608) 114781) ((-1064 . -611) 114762) ((-1064 . -1091) T) ((-1064 . -102) T) ((-1064 . -93) T) ((-1057 . -1073) T) ((-1057 . -488) 114743) ((-1057 . -608) 114709) ((-1057 . -611) 114690) ((-1057 . -1091) T) ((-1057 . -102) T) ((-1057 . -93) T) ((-1054 . -1181) 114665) ((-1054 . -228) 114611) ((-1054 . -107) 114557) ((-1054 . -308) 114408) ((-1054 . -512) 114252) ((-1054 . -487) 114183) ((-1054 . -150) 114129) ((-1054 . -609) NIL) ((-1054 . -234) 114075) ((-1054 . -605) 114050) ((-1054 . -287) 114025) ((-1054 . -285) 114000) ((-1054 . -102) T) ((-1054 . -1091) T) ((-1054 . -608) 113982) ((-1054 . -1204) T) ((-1054 . -34) T) ((-1054 . -599) 113957) ((-1053 . -543) T) ((-1053 . -1209) T) ((-1053 . -1141) T) ((-1053 . -1031) 113939) ((-1053 . -609) 113854) ((-1053 . -1013) T) ((-1053 . -879) 113836) ((-1053 . -842) T) ((-1053 . -791) T) ((-1053 . -788) T) ((-1053 . -844) T) ((-1053 . -786) T) ((-1053 . -785) T) ((-1053 . -814) T) ((-1053 . -634) 113818) ((-1053 . -914) T) ((-1053 . -554) T) ((-1053 . -289) T) ((-1053 . -171) T) ((-1053 . -611) 113790) ((-1053 . -711) 113777) ((-1053 . -1048) 113764) ((-1053 . -111) 113749) ((-1053 . -38) 113736) ((-1053 . -450) T) ((-1053 . -306) T) ((-1053 . -232) T) ((-1053 . -142) T) ((-1053 . -1042) T) ((-1053 . -1049) T) ((-1053 . -1102) T) ((-1053 . -720) T) ((-1053 . -21) T) ((-1053 . -23) T) ((-1053 . -1091) T) ((-1053 . -608) 113718) ((-1053 . -102) T) ((-1053 . -25) T) ((-1053 . -130) T) ((-1053 . -641) 113705) ((-1053 . -146) T) ((-1053 . -613) 113686) ((-1052 . -1059) 113665) ((-1052 . -102) T) ((-1052 . -608) 113647) ((-1052 . -1091) T) ((-1046 . -1045) 113587) ((-1046 . -711) 113529) ((-1046 . -34) T) ((-1046 . -1204) T) ((-1046 . -308) 113467) ((-1046 . -512) 113400) ((-1046 . -487) 113384) ((-1046 . -641) 113368) ((-1046 . -130) T) ((-1046 . -25) T) ((-1046 . -102) T) ((-1046 . -608) 113330) ((-1046 . -1091) T) ((-1046 . -23) T) ((-1046 . -21) T) ((-1046 . -1048) 113314) ((-1046 . -111) 113293) ((-1046 . -1261) 113263) ((-1046 . -609) 113224) ((-1039 . -1062) 113153) ((-1039 . -969) 113082) ((-1039 . -609) 113024) ((-1039 . -487) 112989) ((-1039 . -102) T) ((-1039 . -1091) T) ((-1039 . -512) 112890) ((-1039 . -308) 112798) ((-1039 . -608) 112741) ((-1039 . -1204) T) ((-1039 . -34) T) ((-1039 . -150) 112706) ((-1039 . -1199) 112635) ((-1029 . -1073) T) ((-1029 . -488) 112616) ((-1029 . -608) 112582) ((-1029 . -611) 112563) ((-1029 . -1091) T) ((-1029 . -102) T) ((-1029 . -93) T) ((-1028 . -1181) 112538) ((-1028 . -228) 112484) ((-1028 . -107) 112430) ((-1028 . -308) 112281) ((-1028 . -512) 112125) ((-1028 . -487) 112056) ((-1028 . -150) 112002) ((-1028 . -609) NIL) ((-1028 . -234) 111948) ((-1028 . -605) 111923) ((-1028 . -287) 111898) ((-1028 . -285) 111873) ((-1028 . -102) T) ((-1028 . -1091) T) ((-1028 . -608) 111855) ((-1028 . -1204) T) ((-1028 . -34) T) ((-1028 . -599) 111830) ((-1027 . -171) T) ((-1027 . -611) 111799) ((-1027 . -720) T) ((-1027 . -1102) T) ((-1027 . -1049) T) ((-1027 . -1042) T) ((-1027 . -641) 111773) ((-1027 . -130) T) ((-1027 . -25) T) ((-1027 . -102) T) ((-1027 . -608) 111755) ((-1027 . -1091) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -1048) 111729) ((-1027 . -111) 111696) ((-1027 . -38) 111680) ((-1027 . -711) 111664) ((-1020 . -1062) 111633) ((-1020 . -969) 111602) ((-1020 . -609) 111563) ((-1020 . -487) 111547) ((-1020 . -102) T) ((-1020 . -1091) T) ((-1020 . -512) 111480) ((-1020 . -308) 111418) ((-1020 . -608) 111380) ((-1020 . -1204) T) ((-1020 . -34) T) ((-1020 . -150) 111364) ((-1020 . -1199) 111333) ((-1019 . -1204) T) ((-1019 . -1091) 111311) ((-1019 . -608) 111278) ((-1019 . -102) 111256) ((-1017 . -1005) T) ((-1017 . -995) T) ((-1017 . -785) T) ((-1017 . -786) T) ((-1017 . -844) T) ((-1017 . -788) T) ((-1017 . -791) T) ((-1017 . -842) T) ((-1017 . -1031) 111136) ((-1017 . -411) 111098) ((-1017 . -242) T) ((-1017 . -289) T) ((-1017 . -306) T) ((-1017 . -450) T) ((-1017 . -38) 111035) ((-1017 . -711) 110972) ((-1017 . -611) 110909) ((-1017 . -554) T) ((-1017 . -914) T) ((-1017 . -1209) T) ((-1017 . -362) T) ((-1017 . -111) 110825) ((-1017 . -1048) 110762) ((-1017 . -171) T) ((-1017 . -146) T) ((-1017 . -641) 110699) ((-1017 . -130) T) ((-1017 . -25) T) ((-1017 . -102) T) ((-1017 . -608) 110681) ((-1017 . -1091) T) ((-1017 . -23) T) ((-1017 . -21) T) ((-1017 . -1042) T) ((-1017 . -1049) T) ((-1017 . -1102) T) ((-1017 . -720) T) ((-1012 . -1073) T) ((-1012 . -488) 110662) ((-1012 . -608) 110628) ((-1012 . -611) 110609) ((-1012 . -1091) T) ((-1012 . -102) T) ((-1012 . -93) T) ((-997 . -984) 110591) ((-997 . -1141) T) ((-997 . -611) 110541) ((-997 . -1031) 110501) ((-997 . -609) 110431) ((-997 . -1013) T) ((-997 . -903) NIL) ((-997 . -877) 110413) ((-997 . -842) T) ((-997 . -791) T) ((-997 . -788) T) ((-997 . -844) T) ((-997 . -786) T) ((-997 . -785) T) ((-997 . -814) T) ((-997 . -879) 110395) ((-997 . -1204) T) ((-997 . -399) 110377) ((-997 . -634) 110359) ((-997 . -376) 110341) ((-997 . -285) NIL) ((-997 . -308) NIL) ((-997 . -512) NIL) ((-997 . -337) 110323) ((-997 . -242) T) ((-997 . -111) 110257) ((-997 . -1048) 110207) ((-997 . -289) T) ((-997 . -711) 110157) ((-997 . -641) 110107) ((-997 . -38) 110057) ((-997 . -306) T) ((-997 . -450) T) ((-997 . -171) T) ((-997 . -554) T) ((-997 . -914) T) ((-997 . -1209) T) ((-997 . -362) T) ((-997 . -232) T) ((-997 . -893) NIL) ((-997 . -230) 110039) ((-997 . -146) T) ((-997 . -144) NIL) ((-997 . -130) T) ((-997 . -25) T) ((-997 . -102) T) ((-997 . -608) 109999) ((-997 . -1091) T) ((-997 . -23) T) ((-997 . -21) T) ((-997 . -1042) T) ((-997 . -1049) T) ((-997 . -1102) T) ((-997 . -720) T) ((-996 . -341) 109973) ((-996 . -171) T) ((-996 . -611) 109903) ((-996 . -720) T) ((-996 . -1102) T) ((-996 . -1049) T) ((-996 . -1042) T) ((-996 . -641) 109848) ((-996 . -130) T) ((-996 . -25) T) ((-996 . -102) T) ((-996 . -608) 109830) ((-996 . -1091) T) ((-996 . -23) T) ((-996 . -21) T) ((-996 . -1048) 109775) ((-996 . -111) 109704) ((-996 . -609) 109688) ((-996 . -230) 109665) ((-996 . -893) 109617) ((-996 . -232) 109589) ((-996 . -362) T) ((-996 . -1209) T) ((-996 . -914) T) ((-996 . -554) T) ((-996 . -711) 109534) ((-996 . -38) 109479) ((-996 . -450) T) ((-996 . -306) T) ((-996 . -289) T) ((-996 . -242) T) ((-996 . -367) NIL) ((-996 . -349) NIL) ((-996 . -1141) NIL) ((-996 . -144) 109451) ((-996 . -401) NIL) ((-996 . -409) 109423) ((-996 . -146) 109395) ((-996 . -369) 109367) ((-996 . -376) 109344) ((-996 . -634) 109283) ((-996 . -411) 109260) ((-996 . -1031) 109148) ((-996 . -718) 109120) ((-993 . -988) 109104) ((-993 . -487) 109088) ((-993 . -102) 109066) ((-993 . -1091) 109044) ((-993 . -512) 108977) ((-993 . -308) 108915) ((-993 . -608) 108847) ((-993 . -1204) T) ((-993 . -34) T) ((-993 . -107) 108831) ((-989 . -991) 108815) ((-989 . -844) 108794) ((-989 . -1031) 108690) ((-989 . -411) 108674) ((-989 . -634) 108622) ((-989 . -376) 108606) ((-989 . -285) 108564) ((-989 . -308) 108529) ((-989 . -512) 108441) ((-989 . -337) 108425) ((-989 . -38) 108373) ((-989 . -111) 108255) ((-989 . -1048) 108151) ((-989 . -641) 108089) ((-989 . -711) 108037) ((-989 . -611) 107927) ((-989 . -289) 107878) ((-989 . -242) 107857) ((-989 . -232) 107836) ((-989 . -893) 107795) ((-989 . -230) 107779) ((-989 . -609) 107740) ((-989 . -146) 107719) ((-989 . -144) 107698) ((-989 . -130) T) ((-989 . -25) T) ((-989 . -102) T) ((-989 . -608) 107680) ((-989 . -1091) T) ((-989 . -23) T) ((-989 . -21) T) ((-989 . -1042) T) ((-989 . -1049) T) ((-989 . -1102) T) ((-989 . -720) T) ((-987 . -1073) T) ((-987 . -488) 107661) ((-987 . -608) 107627) ((-987 . -611) 107608) ((-987 . -1091) T) ((-987 . -102) T) ((-987 . -93) T) ((-986 . -21) T) ((-986 . -23) T) ((-986 . -1091) T) ((-986 . -608) 107590) ((-986 . -102) T) ((-986 . -25) T) ((-986 . -130) T) ((-982 . -608) 107572) ((-979 . -1091) T) ((-979 . -608) 107554) ((-979 . -102) T) ((-964 . -791) T) ((-964 . -788) T) ((-964 . -844) T) ((-964 . -786) T) ((-964 . -23) T) ((-964 . -1091) T) ((-964 . -608) 107514) ((-964 . -102) T) ((-964 . -25) T) ((-964 . -130) T) ((-964 . -609) 107489) ((-963 . -1073) T) ((-963 . -488) 107470) ((-963 . -608) 107436) ((-963 . -611) 107417) ((-963 . -1091) T) ((-963 . -102) T) ((-963 . -93) T) ((-959 . -960) T) ((-959 . -102) T) ((-959 . -608) 107399) ((-959 . -1091) T) ((-958 . -608) 107381) ((-957 . -1091) T) ((-957 . -608) 107363) ((-957 . -102) T) ((-957 . -367) 107316) ((-957 . -720) 107215) ((-957 . -1102) 107114) ((-957 . -23) 106925) ((-957 . -25) 106736) ((-957 . -130) 106591) ((-957 . -471) 106544) ((-957 . -21) 106499) ((-957 . -787) 106452) ((-957 . -786) 106405) ((-957 . -844) 106304) ((-957 . -788) 106257) ((-957 . -791) 106210) ((-951 . -19) 106194) ((-951 . -644) 106178) ((-951 . -287) 106155) ((-951 . -285) 106132) ((-951 . -599) 106109) ((-951 . -609) 106070) ((-951 . -487) 106054) ((-951 . -102) 106004) ((-951 . -1091) 105954) ((-951 . -512) 105887) ((-951 . -308) 105825) ((-951 . -608) 105737) ((-951 . -1204) T) ((-951 . -34) T) ((-951 . -150) 105721) ((-951 . -844) 105700) ((-951 . -371) 105684) ((-949 . -325) 105663) ((-949 . -1031) 105559) ((-949 . -411) 105543) ((-949 . -38) 105440) ((-949 . -611) 105293) ((-949 . -641) 105218) ((-949 . -720) T) ((-949 . -1102) T) ((-949 . -1049) T) ((-949 . -1042) T) ((-949 . -111) 105087) ((-949 . -1048) 104970) ((-949 . -21) T) ((-949 . -23) T) ((-949 . -1091) T) ((-949 . -608) 104952) ((-949 . -102) T) ((-949 . -25) T) ((-949 . -130) T) ((-949 . -711) 104849) ((-949 . -144) 104828) ((-949 . -146) 104807) ((-949 . -171) 104758) ((-949 . -554) 104737) ((-949 . -289) 104716) ((-949 . -47) 104695) ((-947 . -1091) T) ((-947 . -608) 104661) ((-947 . -102) T) ((-939 . -943) 104622) ((-939 . -611) 104411) ((-939 . -1031) 104291) ((-939 . -1209) 104270) ((-939 . -903) 104249) ((-939 . -879) 104174) ((-939 . -893) 104155) ((-939 . -844) 104134) ((-939 . -512) 104081) ((-939 . -450) 104032) ((-939 . -634) 103980) ((-939 . -376) 103964) ((-939 . -47) 103933) ((-939 . -38) 103782) ((-939 . -711) 103631) ((-939 . -289) 103562) ((-939 . -554) 103493) ((-939 . -111) 103322) ((-939 . -1048) 103165) ((-939 . -171) 103076) ((-939 . -146) 103055) ((-939 . -144) 103034) ((-939 . -641) 102959) ((-939 . -130) T) ((-939 . -25) T) ((-939 . -102) T) ((-939 . -608) 102941) ((-939 . -1091) T) ((-939 . -23) T) ((-939 . -21) T) ((-939 . -1042) T) ((-939 . -1049) T) ((-939 . -1102) T) ((-939 . -720) T) ((-939 . -411) 102925) ((-939 . -325) 102894) ((-939 . -308) 102881) ((-939 . -609) 102742) ((-936 . -973) 102726) ((-936 . -19) 102710) ((-936 . -644) 102694) ((-936 . -287) 102671) ((-936 . -285) 102648) ((-936 . -599) 102625) ((-936 . -609) 102586) ((-936 . -487) 102570) ((-936 . -102) 102520) ((-936 . -1091) 102470) ((-936 . -512) 102403) ((-936 . -308) 102341) ((-936 . -608) 102253) ((-936 . -1204) T) ((-936 . -34) T) ((-936 . -150) 102237) ((-936 . -844) 102216) ((-936 . -371) 102200) ((-936 . -1252) 102184) ((-936 . -613) 102161) ((-920 . -967) T) ((-920 . -608) 102143) ((-918 . -948) T) ((-918 . -608) 102125) ((-912 . -788) T) ((-912 . -844) T) ((-912 . -1091) T) ((-912 . -608) 102107) ((-912 . -102) T) ((-912 . -25) T) ((-912 . -720) T) ((-912 . -1102) T) ((-907 . -362) T) ((-907 . -1209) T) ((-907 . -914) T) ((-907 . -554) T) ((-907 . -171) T) ((-907 . -611) 102044) ((-907 . -711) 101996) ((-907 . -38) 101948) ((-907 . -450) T) ((-907 . -306) T) ((-907 . -641) 101900) ((-907 . -720) T) ((-907 . -1102) T) ((-907 . -1049) T) ((-907 . -1042) T) ((-907 . -111) 101838) ((-907 . -1048) 101790) ((-907 . -21) T) ((-907 . -23) T) ((-907 . -1091) T) ((-907 . -608) 101772) ((-907 . -102) T) ((-907 . -25) T) ((-907 . -130) T) ((-907 . -289) T) ((-907 . -242) T) ((-899 . -349) T) ((-899 . -1141) T) ((-899 . -367) T) ((-899 . -144) T) ((-899 . -362) T) ((-899 . -1209) T) ((-899 . -914) T) ((-899 . -554) T) ((-899 . -171) T) ((-899 . -611) 101722) ((-899 . -711) 101687) ((-899 . -38) 101652) ((-899 . -450) T) ((-899 . -306) T) ((-899 . -111) 101608) ((-899 . -1048) 101573) ((-899 . -641) 101538) ((-899 . -289) T) ((-899 . -242) T) ((-899 . -401) T) ((-899 . -1042) T) ((-899 . -1049) T) ((-899 . -1102) T) ((-899 . -720) T) ((-899 . -21) T) ((-899 . -23) T) ((-899 . -1091) T) ((-899 . -608) 101520) ((-899 . -102) T) ((-899 . -25) T) ((-899 . -130) T) ((-899 . -232) T) ((-899 . -328) 101507) ((-899 . -146) 101489) ((-899 . -1031) 101476) ((-899 . -1261) 101463) ((-899 . -1272) 101450) ((-899 . -609) 101432) ((-898 . -1091) T) ((-898 . -608) 101414) ((-898 . -102) T) ((-895 . -897) 101398) ((-895 . -844) 101349) ((-895 . -720) T) ((-895 . -1091) T) ((-895 . -608) 101331) ((-895 . -102) T) ((-895 . -1102) T) ((-895 . -471) T) ((-894 . -119) 101315) ((-894 . -487) 101299) ((-894 . -102) 101277) ((-894 . -1091) 101255) ((-894 . -512) 101188) ((-894 . -308) 101126) ((-894 . -608) 101037) ((-894 . -1204) T) ((-894 . -34) T) ((-894 . -1003) 101021) ((-891 . -1091) T) ((-891 . -608) 101003) ((-891 . -102) T) ((-886 . -844) T) ((-886 . -102) T) ((-886 . -608) 100985) ((-886 . -1091) T) ((-886 . -1031) 100962) ((-886 . -611) 100939) ((-883 . -1091) T) ((-883 . -608) 100921) ((-883 . -102) T) ((-883 . -1031) 100889) ((-883 . -611) 100857) ((-881 . -1091) T) ((-881 . -608) 100839) ((-881 . -102) T) ((-878 . -1091) T) ((-878 . -608) 100821) ((-878 . -102) T) ((-867 . -1091) T) ((-867 . -608) 100803) ((-867 . -102) T) ((-866 . -1204) T) ((-866 . -608) 100675) ((-866 . -1091) 100626) ((-866 . -102) 100577) ((-865 . -984) 100561) ((-865 . -1141) 100539) ((-865 . -1031) 100405) ((-865 . -611) 100303) ((-865 . -609) 100110) ((-865 . -1013) 100088) ((-865 . -903) 100067) ((-865 . -877) 100051) ((-865 . -842) 100030) ((-865 . -791) 100009) ((-865 . -788) 99988) ((-865 . -844) 99939) ((-865 . -786) 99918) ((-865 . -785) 99897) ((-865 . -814) 99876) ((-865 . -879) 99801) ((-865 . -1204) T) ((-865 . -399) 99785) ((-865 . -634) 99733) ((-865 . -376) 99717) ((-865 . -285) 99675) ((-865 . -308) 99640) ((-865 . -512) 99552) ((-865 . -337) 99536) ((-865 . -242) T) ((-865 . -111) 99474) ((-865 . -1048) 99426) ((-865 . -289) T) ((-865 . -711) 99378) ((-865 . -641) 99330) ((-865 . -38) 99282) ((-865 . -306) T) ((-865 . -450) T) ((-865 . -171) T) ((-865 . -554) T) ((-865 . -914) T) ((-865 . -1209) T) ((-865 . -362) T) ((-865 . -232) 99261) ((-865 . -893) 99220) ((-865 . -230) 99204) ((-865 . -146) 99183) ((-865 . -144) 99162) ((-865 . -130) T) ((-865 . -25) T) ((-865 . -102) T) ((-865 . -608) 99144) ((-865 . -1091) T) ((-865 . -23) T) ((-865 . -21) T) ((-865 . -1042) T) ((-865 . -1049) T) ((-865 . -1102) T) ((-865 . -720) T) ((-864 . -984) 99121) ((-864 . -1141) NIL) ((-864 . -1031) 99098) ((-864 . -611) 99028) ((-864 . -609) NIL) ((-864 . -1013) NIL) ((-864 . -903) NIL) ((-864 . -877) 99005) ((-864 . -842) NIL) ((-864 . -791) NIL) ((-864 . -788) NIL) ((-864 . -844) NIL) ((-864 . -786) NIL) ((-864 . -785) NIL) ((-864 . -814) NIL) ((-864 . -879) NIL) ((-864 . -1204) T) ((-864 . -399) 98982) ((-864 . -634) 98959) ((-864 . -376) 98936) ((-864 . -285) 98887) ((-864 . -308) 98844) ((-864 . -512) 98752) ((-864 . -337) 98729) ((-864 . -242) T) ((-864 . -111) 98658) ((-864 . -1048) 98603) ((-864 . -289) T) ((-864 . -711) 98548) ((-864 . -641) 98493) ((-864 . -38) 98438) ((-864 . -306) T) ((-864 . -450) T) ((-864 . -171) T) ((-864 . -554) T) ((-864 . -914) T) ((-864 . -1209) T) ((-864 . -362) T) ((-864 . -232) NIL) ((-864 . -893) NIL) ((-864 . -230) 98415) ((-864 . -146) T) ((-864 . -144) NIL) ((-864 . -130) T) ((-864 . -25) T) ((-864 . -102) T) ((-864 . -608) 98397) ((-864 . -1091) T) ((-864 . -23) T) ((-864 . -21) T) ((-864 . -1042) T) ((-864 . -1049) T) ((-864 . -1102) T) ((-864 . -720) T) ((-862 . -863) 98381) ((-862 . -914) T) ((-862 . -554) T) ((-862 . -289) T) ((-862 . -171) T) ((-862 . -611) 98353) ((-862 . -711) 98340) ((-862 . -1048) 98327) ((-862 . -111) 98312) ((-862 . -38) 98299) ((-862 . -450) T) ((-862 . -306) T) ((-862 . -1042) T) ((-862 . -1049) T) ((-862 . -1102) T) ((-862 . -720) T) ((-862 . -21) T) ((-862 . -23) T) ((-862 . -1091) T) ((-862 . -608) 98281) ((-862 . -102) T) ((-862 . -25) T) ((-862 . -130) T) ((-862 . -641) 98268) ((-862 . -146) T) ((-859 . -1042) T) ((-859 . -1049) T) ((-859 . -1102) T) ((-859 . -720) T) ((-859 . -21) T) ((-859 . -23) T) ((-859 . -1091) T) ((-859 . -608) 98230) ((-859 . -102) T) ((-859 . -25) T) ((-859 . -130) T) ((-859 . -641) 98190) ((-859 . -611) 98125) ((-859 . -488) 98102) ((-859 . -38) 98072) ((-859 . -111) 98037) ((-859 . -1048) 98007) ((-859 . -711) 97977) ((-858 . -838) T) ((-858 . -844) T) ((-858 . -1091) T) ((-858 . -608) 97959) ((-858 . -102) T) ((-858 . -367) T) ((-858 . -609) 97881) ((-857 . -1091) T) ((-857 . -608) 97863) ((-857 . -102) T) ((-856 . -855) T) ((-856 . -172) T) ((-856 . -608) 97845) ((-852 . -844) T) ((-852 . -102) T) ((-852 . -608) 97827) ((-852 . -1091) T) ((-849 . -846) 97811) ((-849 . -1031) 97707) ((-849 . -611) 97604) ((-849 . -411) 97588) ((-849 . -711) 97558) ((-849 . -641) 97532) ((-849 . -130) T) ((-849 . -25) T) ((-849 . -102) T) ((-849 . -608) 97514) ((-849 . -1091) T) ((-849 . -23) T) ((-849 . -21) T) ((-849 . -1048) 97498) ((-849 . -111) 97477) ((-849 . -1042) T) ((-849 . -1049) T) ((-849 . -1102) T) ((-849 . -720) T) ((-849 . -38) 97447) ((-848 . -846) 97431) ((-848 . -1031) 97327) ((-848 . -611) 97245) ((-848 . -411) 97229) ((-848 . -711) 97199) ((-848 . -641) 97173) ((-848 . -130) T) ((-848 . -25) T) ((-848 . -102) T) ((-848 . -608) 97155) ((-848 . -1091) T) ((-848 . -23) T) ((-848 . -21) T) ((-848 . -1048) 97139) ((-848 . -111) 97118) ((-848 . -1042) T) ((-848 . -1049) T) ((-848 . -1102) T) ((-848 . -720) T) ((-848 . -38) 97088) ((-836 . -1091) T) ((-836 . -608) 97070) ((-836 . -102) T) ((-836 . -411) 97054) ((-836 . -611) 96922) ((-836 . -1031) 96818) ((-836 . -21) 96770) ((-836 . -23) 96722) ((-836 . -25) 96674) ((-836 . -130) 96626) ((-836 . -842) 96605) ((-836 . -641) 96578) ((-836 . -1049) 96557) ((-836 . -1042) 96536) ((-836 . -791) 96515) ((-836 . -788) 96494) ((-836 . -844) 96473) ((-836 . -786) 96452) ((-836 . -785) 96431) ((-836 . -1102) 96410) ((-836 . -720) 96389) ((-835 . -1091) T) ((-835 . -608) 96371) ((-835 . -102) T) ((-832 . -830) 96353) ((-832 . -102) T) ((-832 . -608) 96335) ((-832 . -1091) T) ((-828 . -1042) T) ((-828 . -1049) T) ((-828 . -1102) T) ((-828 . -720) T) ((-828 . -21) T) ((-828 . -23) T) ((-828 . -1091) T) ((-828 . -608) 96317) ((-828 . -102) T) ((-828 . -25) T) ((-828 . -130) T) ((-828 . -641) 96277) ((-828 . -611) 96231) ((-828 . -1031) 96200) ((-828 . -285) 96179) ((-828 . -146) 96158) ((-828 . -144) 96137) ((-828 . -38) 96107) ((-828 . -111) 96072) ((-828 . -1048) 96042) ((-828 . -711) 96012) ((-826 . -1091) T) ((-826 . -608) 95994) ((-826 . -102) T) ((-826 . -411) 95978) ((-826 . -611) 95846) ((-826 . -1031) 95742) ((-826 . -21) 95694) ((-826 . -23) 95646) ((-826 . -25) 95598) ((-826 . -130) 95550) ((-826 . -842) 95529) ((-826 . -641) 95502) ((-826 . -1049) 95481) ((-826 . -1042) 95460) ((-826 . -791) 95439) ((-826 . -788) 95418) ((-826 . -844) 95397) ((-826 . -786) 95376) ((-826 . -785) 95355) ((-826 . -1102) 95334) ((-826 . -720) 95313) ((-822 . -702) 95297) ((-822 . -611) 95252) ((-822 . -711) 95222) ((-822 . -641) 95196) ((-822 . -130) T) ((-822 . -25) T) ((-822 . -102) T) ((-822 . -608) 95178) ((-822 . -1091) T) ((-822 . -23) T) ((-822 . -21) T) ((-822 . -1048) 95162) ((-822 . -111) 95141) ((-822 . -1042) T) ((-822 . -1049) T) ((-822 . -1102) T) ((-822 . -720) T) ((-822 . -38) 95111) ((-822 . -232) 95090) ((-820 . -1091) T) ((-820 . -608) 95072) ((-820 . -102) T) ((-819 . -1091) T) ((-819 . -608) 95054) ((-819 . -102) T) ((-818 . -1091) T) ((-818 . -608) 95036) ((-818 . -102) T) ((-813 . -840) T) ((-813 . -844) T) ((-813 . -851) T) ((-813 . -1102) T) ((-813 . -102) T) ((-813 . -608) 95018) ((-813 . -1091) T) ((-813 . -720) T) ((-813 . -1031) 95002) ((-813 . -611) 94986) ((-812 . -265) 94970) ((-812 . -611) 94954) ((-812 . -1031) 94938) ((-812 . -1091) T) ((-812 . -608) 94920) ((-812 . -102) T) ((-812 . -844) T) ((-811 . -111) 94862) ((-811 . -1048) 94813) ((-811 . -21) T) ((-811 . -23) T) ((-811 . -1091) T) ((-811 . -608) 94782) ((-811 . -102) T) ((-811 . -25) T) ((-811 . -130) T) ((-811 . -641) 94733) ((-811 . -232) T) ((-811 . -611) 94647) ((-811 . -720) T) ((-811 . -1102) T) ((-811 . -1049) T) ((-811 . -1042) T) ((-811 . -488) 94631) ((-811 . -362) 94610) ((-811 . -1209) 94589) ((-811 . -914) 94568) ((-811 . -554) 94547) ((-811 . -171) 94526) ((-811 . -711) 94468) ((-811 . -38) 94410) ((-811 . -450) 94389) ((-811 . -306) 94368) ((-811 . -289) 94347) ((-811 . -242) 94326) ((-810 . -252) 94265) ((-810 . -611) 94002) ((-810 . -1031) 93830) ((-810 . -609) NIL) ((-810 . -325) 93792) ((-810 . -411) 93776) ((-810 . -38) 93625) ((-810 . -111) 93454) ((-810 . -1048) 93297) ((-810 . -641) 93222) ((-810 . -711) 93071) ((-810 . -144) 93050) ((-810 . -146) 93029) ((-810 . -171) 92940) ((-810 . -554) 92871) ((-810 . -289) 92802) ((-810 . -47) 92764) ((-810 . -376) 92748) ((-810 . -634) 92696) ((-810 . -450) 92647) ((-810 . -512) 92515) ((-810 . -844) 92494) ((-810 . -893) 92430) ((-810 . -879) NIL) ((-810 . -903) 92409) ((-810 . -1209) 92388) ((-810 . -943) 92335) ((-810 . -308) 92322) ((-810 . -232) 92301) ((-810 . -130) T) ((-810 . -25) T) ((-810 . -102) T) ((-810 . -608) 92283) ((-810 . -1091) T) ((-810 . -23) T) ((-810 . -21) T) ((-810 . -720) T) ((-810 . -1102) T) ((-810 . -1049) T) ((-810 . -1042) T) ((-810 . -230) 92267) ((-809 . -237) 92246) ((-809 . -1261) 92216) ((-809 . -785) 92195) ((-809 . -842) 92174) ((-809 . -791) 92125) ((-809 . -788) 92076) ((-809 . -844) 92027) ((-809 . -786) 91978) ((-809 . -787) 91957) ((-809 . -287) 91934) ((-809 . -285) 91911) ((-809 . -487) 91895) ((-809 . -512) 91828) ((-809 . -308) 91766) ((-809 . -1204) T) ((-809 . -34) T) ((-809 . -599) 91743) ((-809 . -1031) 91570) ((-809 . -611) 91300) ((-809 . -411) 91269) ((-809 . -634) 91175) ((-809 . -376) 91144) ((-809 . -367) 91123) ((-809 . -232) 91075) ((-809 . -893) 91007) ((-809 . -230) 90976) ((-809 . -111) 90866) ((-809 . -1048) 90763) ((-809 . -171) 90742) ((-809 . -608) 90473) ((-809 . -711) 90415) ((-809 . -641) 90263) ((-809 . -130) 90133) ((-809 . -23) 90003) ((-809 . -21) 89913) ((-809 . -1042) 89843) ((-809 . -1049) 89773) ((-809 . -1102) 89683) ((-809 . -720) 89593) ((-809 . -38) 89563) ((-809 . -1091) 89353) ((-809 . -102) 89143) ((-809 . -25) 88994) ((-802 . -1091) T) ((-802 . -608) 88976) ((-802 . -102) T) ((-792 . -790) 88960) ((-792 . -844) 88939) ((-792 . -1031) 88722) ((-792 . -611) 88570) ((-792 . -411) 88534) ((-792 . -285) 88492) ((-792 . -308) 88457) ((-792 . -512) 88369) ((-792 . -337) 88353) ((-792 . -367) 88332) ((-792 . -609) 88293) ((-792 . -146) 88272) ((-792 . -144) 88251) ((-792 . -711) 88235) ((-792 . -641) 88209) ((-792 . -130) T) ((-792 . -25) T) ((-792 . -102) T) ((-792 . -608) 88191) ((-792 . -1091) T) ((-792 . -23) T) ((-792 . -21) T) ((-792 . -1048) 88175) ((-792 . -111) 88154) ((-792 . -1042) T) ((-792 . -1049) T) ((-792 . -1102) T) ((-792 . -720) T) ((-792 . -38) 88138) ((-775 . -1229) 88122) ((-775 . -1141) 88100) ((-775 . -609) NIL) ((-775 . -308) 88087) ((-775 . -512) 88034) ((-775 . -325) 88011) ((-775 . -1031) 87870) ((-775 . -411) 87854) ((-775 . -38) 87683) ((-775 . -111) 87492) ((-775 . -1048) 87315) ((-775 . -641) 87240) ((-775 . -711) 87069) ((-775 . -611) 86817) ((-775 . -144) 86796) ((-775 . -146) 86775) ((-775 . -47) 86752) ((-775 . -376) 86736) ((-775 . -634) 86684) ((-775 . -844) 86663) ((-775 . -893) 86606) ((-775 . -879) NIL) ((-775 . -903) 86585) ((-775 . -1209) 86564) ((-775 . -943) 86533) ((-775 . -914) 86512) ((-775 . -554) 86423) ((-775 . -289) 86334) ((-775 . -171) 86225) ((-775 . -450) 86156) ((-775 . -306) 86135) ((-775 . -285) 86062) ((-775 . -232) T) ((-775 . -130) T) ((-775 . -25) T) ((-775 . -102) T) ((-775 . -608) 86023) ((-775 . -1091) T) ((-775 . -23) T) ((-775 . -21) T) ((-775 . -720) T) ((-775 . -1102) T) ((-775 . -1049) T) ((-775 . -1042) T) ((-775 . -230) 86007) ((-774 . -1056) 85974) ((-774 . -609) 85608) ((-774 . -308) 85595) ((-774 . -512) 85547) ((-774 . -325) 85519) ((-774 . -1031) 85376) ((-774 . -411) 85360) ((-774 . -38) 85209) ((-774 . -611) 84975) ((-774 . -641) 84900) ((-774 . -720) T) ((-774 . -1102) T) ((-774 . -1049) T) ((-774 . -1042) T) ((-774 . -111) 84729) ((-774 . -1048) 84572) ((-774 . -21) T) ((-774 . -23) T) ((-774 . -1091) T) ((-774 . -608) 84486) ((-774 . -102) T) ((-774 . -25) T) ((-774 . -130) T) ((-774 . -711) 84335) ((-774 . -144) 84314) ((-774 . -146) 84293) ((-774 . -171) 84204) ((-774 . -554) 84135) ((-774 . -289) 84066) ((-774 . -47) 84038) ((-774 . -376) 84022) ((-774 . -634) 83970) ((-774 . -450) 83921) ((-774 . -844) 83900) ((-774 . -893) 83884) ((-774 . -879) 83743) ((-774 . -903) 83722) ((-774 . -1209) 83701) ((-774 . -943) 83668) ((-767 . -1091) T) ((-767 . -608) 83650) ((-767 . -102) T) ((-765 . -787) T) ((-765 . -130) T) ((-765 . -25) T) ((-765 . -102) T) ((-765 . -608) 83632) ((-765 . -1091) T) ((-765 . -23) T) ((-765 . -786) T) ((-765 . -844) T) ((-765 . -788) T) ((-765 . -791) T) ((-765 . -720) T) ((-765 . -1102) T) ((-763 . -1091) T) ((-763 . -608) 83614) ((-763 . -102) T) ((-730 . -731) 83598) ((-730 . -1089) 83582) ((-730 . -234) 83566) ((-730 . -609) 83527) ((-730 . -150) 83511) ((-730 . -487) 83495) ((-730 . -102) T) ((-730 . -1091) T) ((-730 . -512) 83428) ((-730 . -308) 83366) ((-730 . -608) 83348) ((-730 . -1204) T) ((-730 . -34) T) ((-730 . -107) 83332) ((-730 . -688) 83316) ((-729 . -1042) T) ((-729 . -1049) T) ((-729 . -1102) T) ((-729 . -720) T) ((-729 . -21) T) ((-729 . -23) T) ((-729 . -1091) T) ((-729 . -608) 83298) ((-729 . -102) T) ((-729 . -25) T) ((-729 . -130) T) ((-729 . -641) 83258) ((-729 . -611) 83214) ((-729 . -1031) 83185) ((-729 . -146) 83164) ((-729 . -144) 83143) ((-729 . -38) 83113) ((-729 . -111) 83078) ((-729 . -1048) 83048) ((-729 . -711) 83018) ((-729 . -367) 82971) ((-725 . -943) 82924) ((-725 . -611) 82709) ((-725 . -1031) 82585) ((-725 . -1209) 82564) ((-725 . -903) 82543) ((-725 . -879) NIL) ((-725 . -893) 82520) ((-725 . -844) 82499) ((-725 . -512) 82442) ((-725 . -450) 82393) ((-725 . -634) 82341) ((-725 . -376) 82325) ((-725 . -47) 82290) ((-725 . -38) 82139) ((-725 . -711) 81988) ((-725 . -289) 81919) ((-725 . -554) 81850) ((-725 . -111) 81679) ((-725 . -1048) 81522) ((-725 . -171) 81433) ((-725 . -146) 81412) ((-725 . -144) 81391) ((-725 . -641) 81316) ((-725 . -130) T) ((-725 . -25) T) ((-725 . -102) T) ((-725 . -608) 81298) ((-725 . -1091) T) ((-725 . -23) T) ((-725 . -21) T) ((-725 . -1042) T) ((-725 . -1049) T) ((-725 . -1102) T) ((-725 . -720) T) ((-725 . -411) 81282) ((-725 . -325) 81247) ((-725 . -308) 81234) ((-725 . -609) 81095) ((-712 . -471) T) ((-712 . -1102) T) ((-712 . -102) T) ((-712 . -608) 81077) ((-712 . -1091) T) ((-712 . -720) T) ((-709 . -1042) T) ((-709 . -1049) T) ((-709 . -1102) T) ((-709 . -720) T) ((-709 . -21) T) ((-709 . -23) T) ((-709 . -1091) T) ((-709 . -608) 81059) ((-709 . -102) T) ((-709 . -25) T) ((-709 . -130) T) ((-709 . -641) 81046) ((-709 . -611) 81028) ((-708 . -1042) T) ((-708 . -1049) T) ((-708 . -1102) T) ((-708 . -720) T) ((-708 . -21) T) ((-708 . -23) T) ((-708 . -1091) T) ((-708 . -608) 81010) ((-708 . -102) T) ((-708 . -25) T) ((-708 . -130) T) ((-708 . -641) 80970) ((-708 . -611) 80924) ((-708 . -1031) 80893) ((-708 . -285) 80872) ((-708 . -146) 80851) ((-708 . -144) 80830) ((-708 . -38) 80800) ((-708 . -111) 80765) ((-708 . -1048) 80735) ((-708 . -711) 80705) ((-707 . -844) T) ((-707 . -102) T) ((-707 . -608) 80640) ((-707 . -1091) T) ((-707 . -488) 80590) ((-707 . -611) 80540) ((-706 . -1229) 80524) ((-706 . -1141) 80502) ((-706 . -609) NIL) ((-706 . -308) 80489) ((-706 . -512) 80436) ((-706 . -325) 80413) ((-706 . -1031) 80293) ((-706 . -411) 80277) ((-706 . -38) 80106) ((-706 . -111) 79915) ((-706 . -1048) 79738) ((-706 . -641) 79663) ((-706 . -711) 79492) ((-706 . -611) 79248) ((-706 . -144) 79227) ((-706 . -146) 79206) ((-706 . -47) 79183) ((-706 . -376) 79167) ((-706 . -634) 79115) ((-706 . -844) 79094) ((-706 . -893) 79037) ((-706 . -879) NIL) ((-706 . -903) 79016) ((-706 . -1209) 78995) ((-706 . -943) 78964) ((-706 . -914) 78943) ((-706 . -554) 78854) ((-706 . -289) 78765) ((-706 . -171) 78656) ((-706 . -450) 78587) ((-706 . -306) 78566) ((-706 . -285) 78493) ((-706 . -232) T) ((-706 . -130) T) ((-706 . -25) T) ((-706 . -102) T) ((-706 . -608) 78475) ((-706 . -1091) T) ((-706 . -23) T) ((-706 . -21) T) ((-706 . -720) T) ((-706 . -1102) T) ((-706 . -1049) T) ((-706 . -1042) T) ((-706 . -230) 78459) ((-706 . -367) 78438) ((-705 . -362) T) ((-705 . -1209) T) ((-705 . -914) T) ((-705 . -554) T) ((-705 . -171) T) ((-705 . -611) 78388) ((-705 . -711) 78353) ((-705 . -38) 78318) ((-705 . -450) T) ((-705 . -306) T) ((-705 . -641) 78283) ((-705 . -720) T) ((-705 . -1102) T) ((-705 . -1049) T) ((-705 . -1042) T) ((-705 . -111) 78239) ((-705 . -1048) 78204) ((-705 . -21) T) ((-705 . -23) T) ((-705 . -1091) T) ((-705 . -608) 78186) ((-705 . -102) T) ((-705 . -25) T) ((-705 . -130) T) ((-705 . -289) T) ((-705 . -242) T) ((-704 . -1091) T) ((-704 . -608) 78168) ((-704 . -102) T) ((-696 . -131) T) ((-696 . -1091) T) ((-696 . -608) 78137) ((-696 . -102) T) ((-696 . -844) T) ((-696 . -488) 78121) ((-696 . -611) 78105) ((-694 . -386) T) ((-694 . -1031) 78087) ((-694 . -844) T) ((-694 . -38) 78074) ((-694 . -611) 78046) ((-694 . -720) T) ((-694 . -1102) T) ((-694 . -1049) T) ((-694 . -1042) T) ((-694 . -111) 78031) ((-694 . -1048) 78018) ((-694 . -21) T) ((-694 . -23) T) ((-694 . -1091) T) ((-694 . -608) 78000) ((-694 . -102) T) ((-694 . -25) T) ((-694 . -130) T) ((-694 . -641) 77987) ((-694 . -711) 77974) ((-694 . -171) T) ((-694 . -289) T) ((-694 . -554) T) ((-694 . -543) T) ((-694 . -1209) T) ((-694 . -1141) T) ((-694 . -609) 77889) ((-694 . -1013) T) ((-694 . -879) 77871) ((-694 . -842) T) ((-694 . -791) T) ((-694 . -788) T) ((-694 . -786) T) ((-694 . -785) T) ((-694 . -814) T) ((-694 . -634) 77853) ((-694 . -914) T) ((-694 . -450) T) ((-694 . -306) T) ((-694 . -232) T) ((-694 . -142) T) ((-694 . -146) T) ((-692 . -403) T) ((-692 . -146) T) ((-692 . -611) 77788) ((-692 . -641) 77753) ((-692 . -130) T) ((-692 . -25) T) ((-692 . -102) T) ((-692 . -608) 77735) ((-692 . -1091) T) ((-692 . -23) T) ((-692 . -21) T) ((-692 . -720) T) ((-692 . -1102) T) ((-692 . -1049) T) ((-692 . -1042) T) ((-692 . -609) 77680) ((-692 . -362) T) ((-692 . -1209) T) ((-692 . -914) T) ((-692 . -554) T) ((-692 . -171) T) ((-692 . -711) 77645) ((-692 . -38) 77610) ((-692 . -450) T) ((-692 . -306) T) ((-692 . -111) 77566) ((-692 . -1048) 77531) ((-692 . -289) T) ((-692 . -242) T) ((-692 . -842) T) ((-692 . -791) T) ((-692 . -788) T) ((-692 . -844) T) ((-692 . -786) T) ((-692 . -785) T) ((-692 . -879) 77513) ((-692 . -995) T) ((-692 . -1013) T) ((-692 . -1031) 77458) ((-692 . -1051) T) ((-692 . -386) T) ((-687 . -386) T) ((-687 . -1031) 77403) ((-687 . -844) T) ((-687 . -38) 77353) ((-687 . -611) 77288) ((-687 . -720) T) ((-687 . -1102) T) ((-687 . -1049) T) ((-687 . -1042) T) ((-687 . -111) 77222) ((-687 . -1048) 77172) ((-687 . -21) T) ((-687 . -23) T) ((-687 . -1091) T) ((-687 . -608) 77154) ((-687 . -102) T) ((-687 . -25) T) ((-687 . -130) T) ((-687 . -641) 77104) ((-687 . -711) 77054) ((-687 . -171) T) ((-687 . -289) T) ((-687 . -554) T) ((-687 . -165) 77036) ((-687 . -35) NIL) ((-687 . -95) NIL) ((-687 . -283) NIL) ((-687 . -491) NIL) ((-687 . -1193) NIL) ((-687 . -1190) NIL) ((-687 . -995) NIL) ((-687 . -903) NIL) ((-687 . -609) 76944) ((-687 . -877) 76926) ((-687 . -367) NIL) ((-687 . -349) NIL) ((-687 . -1141) NIL) ((-687 . -401) NIL) ((-687 . -409) 76893) ((-687 . -369) 76860) ((-687 . -718) 76827) ((-687 . -411) 76809) ((-687 . -879) 76791) ((-687 . -1204) T) ((-687 . -399) 76773) ((-687 . -634) 76755) ((-687 . -376) 76737) ((-687 . -285) NIL) ((-687 . -308) NIL) ((-687 . -512) NIL) ((-687 . -337) 76719) ((-687 . -242) T) ((-687 . -1209) T) ((-687 . -362) T) ((-687 . -914) T) ((-687 . -450) T) ((-687 . -306) T) ((-687 . -232) NIL) ((-687 . -893) NIL) ((-687 . -230) 76701) ((-687 . -146) T) ((-687 . -144) NIL) ((-684 . -1249) T) ((-684 . -1031) 76685) ((-684 . -611) 76669) ((-684 . -608) 76651) ((-682 . -679) 76609) ((-682 . -487) 76593) ((-682 . -102) 76571) ((-682 . -1091) 76549) ((-682 . -512) 76482) ((-682 . -308) 76420) ((-682 . -608) 76352) ((-682 . -1204) T) ((-682 . -34) T) ((-682 . -57) 76310) ((-682 . -609) 76271) ((-674 . -1073) T) ((-674 . -488) 76252) ((-674 . -608) 76202) ((-674 . -611) 76183) ((-674 . -1091) T) ((-674 . -102) T) ((-674 . -93) T) ((-670 . -844) T) ((-670 . -102) T) ((-670 . -608) 76165) ((-670 . -1091) T) ((-670 . -1031) 76149) ((-670 . -611) 76133) ((-669 . -1073) T) ((-669 . -488) 76114) ((-669 . -608) 76080) ((-669 . -611) 76061) ((-669 . -1091) T) ((-669 . -102) T) ((-669 . -93) T) ((-668 . -487) 76045) ((-668 . -102) 76023) ((-668 . -1091) 76001) ((-668 . -512) 75934) ((-668 . -308) 75872) ((-668 . -608) 75804) ((-668 . -1204) T) ((-668 . -34) T) ((-665 . -844) T) ((-665 . -102) T) ((-665 . -608) 75786) ((-665 . -1091) T) ((-665 . -1031) 75770) ((-665 . -611) 75754) ((-664 . -1073) T) ((-664 . -488) 75735) ((-664 . -608) 75701) ((-664 . -611) 75682) ((-664 . -1091) T) ((-664 . -102) T) ((-664 . -93) T) ((-663 . -1113) 75627) ((-663 . -487) 75611) ((-663 . -512) 75544) ((-663 . -308) 75482) ((-663 . -1204) T) ((-663 . -34) T) ((-663 . -1045) 75422) ((-663 . -1031) 75318) ((-663 . -611) 75236) ((-663 . -411) 75220) ((-663 . -634) 75168) ((-663 . -376) 75152) ((-663 . -232) 75131) ((-663 . -893) 75090) ((-663 . -230) 75074) ((-663 . -711) 75058) ((-663 . -641) 75032) ((-663 . -130) T) ((-663 . -25) T) ((-663 . -102) T) ((-663 . -608) 74994) ((-663 . -1091) T) ((-663 . -23) T) ((-663 . -21) T) ((-663 . -1048) 74978) ((-663 . -111) 74957) ((-663 . -1042) T) ((-663 . -1049) T) ((-663 . -1102) T) ((-663 . -720) T) ((-663 . -38) 74917) ((-663 . -417) 74901) ((-663 . -738) 74885) ((-663 . -714) T) ((-663 . -755) T) ((-663 . -366) 74869) ((-657 . -373) 74848) ((-657 . -711) 74832) ((-657 . -641) 74816) ((-657 . -130) T) ((-657 . -25) T) ((-657 . -102) T) ((-657 . -608) 74798) ((-657 . -1091) T) ((-657 . -23) T) ((-657 . -21) T) ((-657 . -1048) 74782) ((-657 . -111) 74761) ((-657 . -630) 74745) ((-657 . -383) 74717) ((-657 . -611) 74694) ((-657 . -1031) 74671) ((-649 . -651) 74655) ((-649 . -38) 74625) ((-649 . -611) 74543) ((-649 . -641) 74517) ((-649 . -720) T) ((-649 . -1102) T) ((-649 . -1049) T) ((-649 . -1042) T) ((-649 . -111) 74496) ((-649 . -1048) 74480) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1091) T) ((-649 . -608) 74462) ((-649 . -102) T) ((-649 . -25) T) ((-649 . -130) T) ((-649 . -711) 74432) ((-649 . -411) 74416) ((-649 . -1031) 74312) ((-649 . -846) 74296) ((-649 . -285) 74257) ((-648 . -651) 74241) ((-648 . -38) 74211) ((-648 . -611) 74129) ((-648 . -641) 74103) ((-648 . -720) T) ((-648 . -1102) T) ((-648 . -1049) T) ((-648 . -1042) T) ((-648 . -111) 74082) ((-648 . -1048) 74066) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1091) T) ((-648 . -608) 74048) ((-648 . -102) T) ((-648 . -25) T) ((-648 . -130) T) ((-648 . -711) 74018) ((-648 . -411) 74002) ((-648 . -1031) 73898) ((-648 . -846) 73882) ((-648 . -285) 73861) ((-647 . -651) 73845) ((-647 . -38) 73815) ((-647 . -611) 73733) ((-647 . -641) 73707) ((-647 . -720) T) ((-647 . -1102) T) ((-647 . -1049) T) ((-647 . -1042) T) ((-647 . -111) 73686) ((-647 . -1048) 73670) ((-647 . -21) T) ((-647 . -23) T) ((-647 . -1091) T) ((-647 . -608) 73652) ((-647 . -102) T) ((-647 . -25) T) ((-647 . -130) T) ((-647 . -711) 73622) ((-647 . -411) 73606) ((-647 . -1031) 73502) ((-647 . -846) 73486) ((-647 . -285) 73465) ((-645 . -711) 73449) ((-645 . -641) 73433) ((-645 . -130) T) ((-645 . -25) T) ((-645 . -102) T) ((-645 . -608) 73415) ((-645 . -1091) T) ((-645 . -23) T) ((-645 . -21) T) ((-645 . -1048) 73399) ((-645 . -111) 73378) ((-645 . -785) 73357) ((-645 . -786) 73336) ((-645 . -844) 73315) ((-645 . -788) 73294) ((-645 . -791) 73273) ((-642 . -1091) T) ((-642 . -608) 73255) ((-642 . -102) T) ((-642 . -1031) 73239) ((-642 . -611) 73223) ((-640 . -688) 73207) ((-640 . -107) 73191) ((-640 . -34) T) ((-640 . -1204) T) ((-640 . -608) 73123) ((-640 . -308) 73061) ((-640 . -512) 72994) ((-640 . -1091) 72972) ((-640 . -102) 72950) ((-640 . -487) 72934) ((-640 . -150) 72918) ((-640 . -609) 72879) ((-640 . -234) 72863) ((-639 . -1073) T) ((-639 . -488) 72844) ((-639 . -608) 72797) ((-639 . -611) 72778) ((-639 . -1091) T) ((-639 . -102) T) ((-639 . -93) T) ((-635 . -659) 72762) ((-635 . -1242) 72746) ((-635 . -1003) 72730) ((-635 . -1139) 72714) ((-635 . -844) 72693) ((-635 . -371) 72677) ((-635 . -644) 72661) ((-635 . -287) 72638) ((-635 . -285) 72615) ((-635 . -599) 72592) ((-635 . -609) 72553) ((-635 . -487) 72537) ((-635 . -102) 72487) ((-635 . -1091) 72437) ((-635 . -512) 72370) ((-635 . -308) 72308) ((-635 . -608) 72220) ((-635 . -1204) T) ((-635 . -34) T) ((-635 . -150) 72204) ((-635 . -281) 72188) ((-635 . -815) 72167) ((-628 . -738) 72151) ((-628 . -714) T) ((-628 . -755) T) ((-628 . -111) 72130) ((-628 . -1048) 72114) ((-628 . -21) T) ((-628 . -23) T) ((-628 . -1091) T) ((-628 . -608) 72083) ((-628 . -102) T) ((-628 . -25) T) ((-628 . -130) T) ((-628 . -641) 72067) ((-628 . -711) 72051) ((-628 . -417) 72016) ((-628 . -366) 71948) ((-627 . -1181) 71923) ((-627 . -228) 71869) ((-627 . -107) 71815) ((-627 . -308) 71666) ((-627 . -512) 71510) ((-627 . -487) 71441) ((-627 . -150) 71387) ((-627 . -609) NIL) ((-627 . -234) 71333) ((-627 . -605) 71308) ((-627 . -287) 71283) ((-627 . -285) 71258) ((-627 . -102) T) ((-627 . -1091) T) ((-627 . -608) 71240) ((-627 . -1204) T) ((-627 . -34) T) ((-627 . -599) 71215) ((-622 . -471) T) ((-622 . -1102) T) ((-622 . -102) T) ((-622 . -608) 71197) ((-622 . -1091) T) ((-622 . -720) T) ((-621 . -1073) T) ((-621 . -488) 71178) ((-621 . -608) 71144) ((-621 . -611) 71125) ((-621 . -1091) T) ((-621 . -102) T) ((-621 . -93) T) ((-618 . -230) 71109) ((-618 . -893) 71068) ((-618 . -1042) T) ((-618 . -1049) T) ((-618 . -1102) T) ((-618 . -720) T) ((-618 . -21) T) ((-618 . -23) T) ((-618 . -1091) T) ((-618 . -608) 71050) ((-618 . -102) T) ((-618 . -25) T) ((-618 . -130) T) ((-618 . -641) 71037) ((-618 . -611) 70932) ((-618 . -232) 70911) ((-618 . -554) T) ((-618 . -289) T) ((-618 . -171) T) ((-618 . -711) 70898) ((-618 . -1048) 70885) ((-618 . -111) 70870) ((-618 . -38) 70857) ((-618 . -609) 70834) ((-618 . -411) 70818) ((-618 . -1031) 70701) ((-618 . -146) 70680) ((-618 . -144) 70659) ((-618 . -306) 70638) ((-618 . -450) 70617) ((-618 . -914) 70596) ((-614 . -38) 70580) ((-614 . -611) 70549) ((-614 . -641) 70523) ((-614 . -720) T) ((-614 . -1102) T) ((-614 . -1049) T) ((-614 . -1042) T) ((-614 . -111) 70502) ((-614 . -1048) 70486) ((-614 . -21) T) ((-614 . -23) T) ((-614 . -1091) T) ((-614 . -608) 70468) ((-614 . -102) T) ((-614 . -25) T) ((-614 . -130) T) ((-614 . -711) 70452) ((-614 . -842) 70431) ((-614 . -791) 70410) ((-614 . -788) 70389) ((-614 . -844) 70368) ((-614 . -786) 70347) ((-614 . -785) 70326) ((-612 . -960) T) ((-612 . -102) T) ((-612 . -608) 70308) ((-612 . -1091) T) ((-606 . -131) T) ((-606 . -1091) T) ((-606 . -608) 70290) ((-606 . -102) T) ((-606 . -844) T) ((-606 . -877) 70274) ((-606 . -609) 70135) ((-603 . -364) 70075) ((-603 . -102) T) ((-603 . -608) 70057) ((-603 . -1091) T) ((-603 . -1181) 70033) ((-603 . -228) 69980) ((-603 . -107) 69927) ((-603 . -308) 69722) ((-603 . -512) 69505) ((-603 . -487) 69439) ((-603 . -150) 69386) ((-603 . -609) NIL) ((-603 . -234) 69333) ((-603 . -605) 69309) ((-603 . -287) 69285) ((-603 . -285) 69261) ((-603 . -1204) T) ((-603 . -34) T) ((-603 . -599) 69237) ((-602 . -738) 69221) ((-602 . -714) T) ((-602 . -755) T) ((-602 . -111) 69200) ((-602 . -1048) 69184) ((-602 . -21) T) ((-602 . -23) T) ((-602 . -1091) T) ((-602 . -608) 69153) ((-602 . -102) T) ((-602 . -25) T) ((-602 . -130) T) ((-602 . -641) 69137) ((-602 . -711) 69121) ((-602 . -417) 69086) ((-602 . -366) 69018) ((-601 . -1073) T) ((-601 . -488) 68999) ((-601 . -608) 68949) ((-601 . -611) 68930) ((-601 . -1091) T) ((-601 . -102) T) ((-601 . -93) T) ((-600 . -608) 68897) ((-600 . -488) 68879) ((-600 . -611) 68861) ((-597 . -1252) 68845) ((-597 . -371) 68829) ((-597 . -844) 68808) ((-597 . -150) 68792) ((-597 . -34) T) ((-597 . -1204) T) ((-597 . -608) 68704) ((-597 . -308) 68642) ((-597 . -512) 68575) ((-597 . -1091) 68525) ((-597 . -102) 68475) ((-597 . -487) 68459) ((-597 . -609) 68420) ((-597 . -599) 68397) ((-597 . -285) 68374) ((-597 . -287) 68351) ((-597 . -644) 68335) ((-597 . -19) 68319) ((-596 . -608) 68301) ((-592 . -1042) T) ((-592 . -1049) T) ((-592 . -1102) T) ((-592 . -720) T) ((-592 . -21) T) ((-592 . -23) T) ((-592 . -1091) T) ((-592 . -608) 68283) ((-592 . -102) T) ((-592 . -25) T) ((-592 . -130) T) ((-592 . -641) 68270) ((-592 . -611) 68228) ((-592 . -554) 68207) ((-592 . -289) 68186) ((-592 . -171) 68165) ((-592 . -711) 68138) ((-592 . -1048) 68111) ((-592 . -111) 68082) ((-592 . -38) 68055) ((-591 . -1232) 68032) ((-591 . -47) 68009) ((-591 . -38) 67906) ((-591 . -711) 67803) ((-591 . -611) 67685) ((-591 . -289) 67664) ((-591 . -554) 67643) ((-591 . -111) 67512) ((-591 . -1048) 67395) ((-591 . -171) 67346) ((-591 . -146) 67325) ((-591 . -144) 67304) ((-591 . -641) 67229) ((-591 . -966) 67198) ((-591 . -893) 67111) ((-591 . -285) 67096) ((-591 . -1042) T) ((-591 . -1049) T) ((-591 . -1102) T) ((-591 . -720) T) ((-591 . -21) T) ((-591 . -23) T) ((-591 . -1091) T) ((-591 . -608) 67078) ((-591 . -102) T) ((-591 . -25) T) ((-591 . -130) T) ((-591 . -232) 67037) ((-589 . -1134) T) ((-589 . -371) 67019) ((-589 . -844) T) ((-589 . -150) 67001) ((-589 . -34) T) ((-589 . -1204) T) ((-589 . -608) 66983) ((-589 . -308) NIL) ((-589 . -512) NIL) ((-589 . -1091) T) ((-589 . -102) T) ((-589 . -487) 66965) ((-589 . -609) NIL) ((-589 . -599) 66940) ((-589 . -285) 66915) ((-589 . -287) 66890) ((-589 . -644) 66872) ((-589 . -19) 66854) ((-588 . -1073) T) ((-588 . -488) 66835) ((-588 . -608) 66801) ((-588 . -611) 66782) ((-588 . -1091) T) ((-588 . -102) T) ((-588 . -93) T) ((-580 . -711) 66757) ((-580 . -641) 66732) ((-580 . -130) T) ((-580 . -25) T) ((-580 . -102) T) ((-580 . -608) 66714) ((-580 . -1091) T) ((-580 . -23) T) ((-580 . -21) T) ((-580 . -1048) 66689) ((-580 . -111) 66657) ((-580 . -1031) 66641) ((-580 . -611) 66625) ((-578 . -349) T) ((-578 . -1141) T) ((-578 . -367) T) ((-578 . -144) T) ((-578 . -362) T) ((-578 . -1209) T) ((-578 . -914) T) ((-578 . -554) T) ((-578 . -171) T) ((-578 . -611) 66575) ((-578 . -711) 66540) ((-578 . -38) 66505) ((-578 . -450) T) ((-578 . -306) T) ((-578 . -111) 66461) ((-578 . -1048) 66426) ((-578 . -641) 66391) ((-578 . -289) T) ((-578 . -242) T) ((-578 . -401) T) ((-578 . -1042) T) ((-578 . -1049) T) ((-578 . -1102) T) ((-578 . -720) T) ((-578 . -21) T) ((-578 . -23) T) ((-578 . -1091) T) ((-578 . -608) 66373) ((-578 . -102) T) ((-578 . -25) T) ((-578 . -130) T) ((-578 . -232) T) ((-578 . -328) 66360) ((-578 . -146) 66342) ((-578 . -1031) 66329) ((-578 . -1261) 66316) ((-578 . -1272) 66303) ((-578 . -609) 66285) ((-577 . -863) 66269) ((-577 . -914) T) ((-577 . -554) T) ((-577 . -289) T) ((-577 . -171) T) ((-577 . -611) 66241) ((-577 . -711) 66228) ((-577 . -1048) 66215) ((-577 . -111) 66200) ((-577 . -38) 66187) ((-577 . -450) T) ((-577 . -306) T) ((-577 . -1042) T) ((-577 . -1049) T) ((-577 . -1102) T) ((-577 . -720) T) ((-577 . -21) T) ((-577 . -23) T) ((-577 . -1091) T) ((-577 . -608) 66169) ((-577 . -102) T) ((-577 . -25) T) ((-577 . -130) T) ((-577 . -641) 66156) ((-577 . -146) T) ((-576 . -1091) T) ((-576 . -608) 66138) ((-576 . -102) T) ((-575 . -1091) T) ((-575 . -608) 66120) ((-575 . -102) T) ((-574 . -573) T) ((-574 . -855) T) ((-574 . -172) T) ((-574 . -525) T) ((-574 . -608) 66102) ((-568 . -552) 66086) ((-568 . -35) T) ((-568 . -95) T) ((-568 . -283) T) ((-568 . -491) T) ((-568 . -1193) T) ((-568 . -1190) T) ((-568 . -1031) 66068) ((-568 . -995) T) ((-568 . -844) T) ((-568 . -554) T) ((-568 . -289) T) ((-568 . -171) T) ((-568 . -611) 66040) ((-568 . -711) 66027) ((-568 . -641) 66014) ((-568 . -130) T) ((-568 . -25) T) ((-568 . -102) T) ((-568 . -608) 65996) ((-568 . -1091) T) ((-568 . -23) T) ((-568 . -21) T) ((-568 . -1048) 65983) ((-568 . -111) 65968) ((-568 . -1042) T) ((-568 . -1049) T) ((-568 . -1102) T) ((-568 . -720) T) ((-568 . -38) 65955) ((-568 . -450) T) ((-548 . -1181) 65934) ((-548 . -228) 65884) ((-548 . -107) 65834) ((-548 . -308) 65638) ((-548 . -512) 65430) ((-548 . -487) 65367) ((-548 . -150) 65317) ((-548 . -609) NIL) ((-548 . -234) 65267) ((-548 . -605) 65246) ((-548 . -287) 65225) ((-548 . -285) 65204) ((-548 . -102) T) ((-548 . -1091) T) ((-548 . -608) 65186) ((-548 . -1204) T) ((-548 . -34) T) ((-548 . -599) 65165) ((-547 . -838) T) ((-547 . -844) T) ((-547 . -1091) T) ((-547 . -608) 65147) ((-547 . -102) T) ((-547 . -367) T) ((-546 . -838) T) ((-546 . -844) T) ((-546 . -1091) T) ((-546 . -608) 65129) ((-546 . -102) T) ((-546 . -367) T) ((-545 . -838) T) ((-545 . -844) T) ((-545 . -1091) T) ((-545 . -608) 65111) ((-545 . -102) T) ((-545 . -367) T) ((-544 . -543) T) ((-544 . -1209) T) ((-544 . -1141) T) ((-544 . -1031) 65093) ((-544 . -609) 64992) ((-544 . -1013) T) ((-544 . -879) 64974) ((-544 . -842) T) ((-544 . -791) T) ((-544 . -788) T) ((-544 . -844) T) ((-544 . -786) T) ((-544 . -785) T) ((-544 . -814) T) ((-544 . -634) 64956) ((-544 . -914) T) ((-544 . -554) T) ((-544 . -289) T) ((-544 . -171) T) ((-544 . -611) 64928) ((-544 . -711) 64915) ((-544 . -1048) 64902) ((-544 . -111) 64887) ((-544 . -38) 64874) ((-544 . -450) T) ((-544 . -306) T) ((-544 . -232) T) ((-544 . -142) T) ((-544 . -1042) T) ((-544 . -1049) T) ((-544 . -1102) T) ((-544 . -720) T) ((-544 . -21) T) ((-544 . -23) T) ((-544 . -1091) T) ((-544 . -608) 64856) ((-544 . -102) T) ((-544 . -25) T) ((-544 . -130) T) ((-544 . -641) 64843) ((-544 . -146) T) ((-544 . -815) T) ((-533 . -1094) 64795) ((-533 . -102) T) ((-533 . -608) 64777) ((-533 . -1091) T) ((-533 . -613) 64680) ((-533 . -609) 64661) ((-531 . -761) 64643) ((-531 . -525) T) ((-531 . -172) T) ((-531 . -855) T) ((-531 . -573) T) ((-531 . -608) 64625) ((-529 . -787) T) ((-529 . -130) T) ((-529 . -25) T) ((-529 . -102) T) ((-529 . -608) 64607) ((-529 . -1091) T) ((-529 . -23) T) ((-529 . -786) T) ((-529 . -844) T) ((-529 . -788) T) ((-529 . -791) T) ((-529 . -507) 64584) ((-527 . -525) T) ((-527 . -172) T) ((-527 . -608) 64566) ((-523 . -1073) T) ((-523 . -488) 64547) ((-523 . -608) 64513) ((-523 . -611) 64494) ((-523 . -1091) T) ((-523 . -102) T) ((-523 . -93) T) ((-522 . -1073) T) ((-522 . -488) 64475) ((-522 . -608) 64441) ((-522 . -611) 64422) ((-522 . -1091) T) ((-522 . -102) T) ((-522 . -93) T) ((-521 . -679) 64372) ((-521 . -487) 64356) ((-521 . -102) 64334) ((-521 . -1091) 64312) ((-521 . -512) 64245) ((-521 . -308) 64183) ((-521 . -608) 64115) ((-521 . -1204) T) ((-521 . -34) T) ((-521 . -57) 64065) ((-518 . -659) 64049) ((-518 . -1242) 64033) ((-518 . -1003) 64017) ((-518 . -1139) 64001) ((-518 . -844) 63980) ((-518 . -371) 63964) ((-518 . -644) 63948) ((-518 . -287) 63925) ((-518 . -285) 63902) ((-518 . -599) 63879) ((-518 . -609) 63840) ((-518 . -487) 63824) ((-518 . -102) 63774) ((-518 . -1091) 63724) ((-518 . -512) 63657) ((-518 . -308) 63595) ((-518 . -608) 63507) ((-518 . -1204) T) ((-518 . -34) T) ((-518 . -150) 63491) ((-518 . -281) 63475) ((-517 . -57) 63449) ((-517 . -34) T) ((-517 . -1204) T) ((-517 . -608) 63381) ((-517 . -308) 63319) ((-517 . -512) 63252) ((-517 . -1091) 63230) ((-517 . -102) 63208) ((-517 . -487) 63192) ((-516 . -328) 63169) ((-516 . -232) T) ((-516 . -367) T) ((-516 . -1141) T) ((-516 . -349) T) ((-516 . -146) 63151) ((-516 . -611) 63081) ((-516 . -641) 63026) ((-516 . -130) T) ((-516 . -25) T) ((-516 . -102) T) ((-516 . -608) 63008) ((-516 . -1091) T) ((-516 . -23) T) ((-516 . -21) T) ((-516 . -720) T) ((-516 . -1102) T) ((-516 . -1049) T) ((-516 . -1042) T) ((-516 . -362) T) ((-516 . -1209) T) ((-516 . -914) T) ((-516 . -554) T) ((-516 . -171) T) ((-516 . -711) 62953) ((-516 . -38) 62918) ((-516 . -450) T) ((-516 . -306) T) ((-516 . -111) 62847) ((-516 . -1048) 62792) ((-516 . -289) T) ((-516 . -242) T) ((-516 . -401) T) ((-516 . -144) T) ((-516 . -1031) 62769) ((-516 . -1261) 62746) ((-516 . -1272) 62723) ((-515 . -1073) T) ((-515 . -488) 62704) ((-515 . -608) 62670) ((-515 . -611) 62651) ((-515 . -1091) T) ((-515 . -102) T) ((-515 . -93) T) ((-514 . -19) 62635) ((-514 . -644) 62619) ((-514 . -287) 62596) ((-514 . -285) 62573) ((-514 . -599) 62550) ((-514 . -609) 62511) ((-514 . -487) 62495) ((-514 . -102) 62445) ((-514 . -1091) 62395) ((-514 . -512) 62328) ((-514 . -308) 62266) ((-514 . -608) 62178) ((-514 . -1204) T) ((-514 . -34) T) ((-514 . -150) 62162) ((-514 . -844) 62141) ((-514 . -371) 62125) ((-514 . -281) 62109) ((-513 . -322) 62088) ((-513 . -611) 62072) ((-513 . -1031) 62056) ((-513 . -23) T) ((-513 . -1091) T) ((-513 . -608) 62038) ((-513 . -102) T) ((-513 . -25) T) ((-513 . -130) T) ((-510 . -787) T) ((-510 . -130) T) ((-510 . -25) T) ((-510 . -102) T) ((-510 . -608) 62020) ((-510 . -1091) T) ((-510 . -23) T) ((-510 . -786) T) ((-510 . -844) T) ((-510 . -788) T) ((-510 . -791) T) ((-510 . -507) 61999) ((-509 . -786) T) ((-509 . -844) T) ((-509 . -788) T) ((-509 . -25) T) ((-509 . -102) T) ((-509 . -608) 61981) ((-509 . -1091) T) ((-509 . -23) T) ((-509 . -507) 61960) ((-508 . -507) 61939) ((-508 . -102) T) ((-508 . -608) 61921) ((-508 . -1091) T) ((-506 . -23) T) ((-506 . -1091) T) ((-506 . -608) 61903) ((-506 . -102) T) ((-506 . -25) T) ((-506 . -507) 61882) ((-505 . -21) T) ((-505 . -23) T) ((-505 . -1091) T) ((-505 . -608) 61864) ((-505 . -102) T) ((-505 . -25) T) ((-505 . -130) T) ((-505 . -507) 61843) ((-504 . -1091) T) ((-504 . -608) 61809) ((-504 . -102) T) ((-502 . -1091) T) ((-502 . -608) 61791) ((-502 . -102) T) ((-500 . -844) T) ((-500 . -102) T) ((-500 . -608) 61773) ((-500 . -1091) T) ((-498 . -123) T) ((-498 . -371) 61755) ((-498 . -844) T) ((-498 . -150) 61737) ((-498 . -34) T) ((-498 . -1204) T) ((-498 . -608) 61719) ((-498 . -308) NIL) ((-498 . -512) NIL) ((-498 . -1091) T) ((-498 . -487) 61701) ((-498 . -609) 61683) ((-498 . -599) 61658) ((-498 . -285) 61633) ((-498 . -287) 61608) ((-498 . -644) 61590) ((-498 . -19) 61572) ((-498 . -102) T) ((-498 . -655) T) ((-495 . -57) 61522) ((-495 . -34) T) ((-495 . -1204) T) ((-495 . -608) 61454) ((-495 . -308) 61392) ((-495 . -512) 61325) ((-495 . -1091) 61303) ((-495 . -102) 61281) ((-495 . -487) 61265) ((-494 . -19) 61249) ((-494 . -644) 61233) ((-494 . -287) 61210) ((-494 . -285) 61187) ((-494 . -599) 61164) ((-494 . -609) 61125) ((-494 . -487) 61109) ((-494 . -102) 61059) ((-494 . -1091) 61009) ((-494 . -512) 60942) ((-494 . -308) 60880) ((-494 . -608) 60792) ((-494 . -1204) T) ((-494 . -34) T) ((-494 . -150) 60776) ((-494 . -844) 60755) ((-494 . -371) 60739) ((-493 . -297) T) ((-493 . -611) 60672) ((-493 . -1031) 60615) ((-493 . -1091) T) ((-493 . -608) 60597) ((-493 . -102) T) ((-493 . -844) T) ((-493 . -512) 60563) ((-493 . -308) 60550) ((-493 . -27) T) ((-493 . -995) T) ((-493 . -242) T) ((-493 . -111) 60506) ((-493 . -1048) 60471) ((-493 . -289) T) ((-493 . -711) 60436) ((-493 . -641) 60401) ((-493 . -130) T) ((-493 . -25) T) ((-493 . -23) T) ((-493 . -21) T) ((-493 . -1042) T) ((-493 . -1049) T) ((-493 . -1102) T) ((-493 . -720) T) ((-493 . -38) 60366) ((-493 . -306) T) ((-493 . -450) T) ((-493 . -171) T) ((-493 . -554) T) ((-493 . -914) T) ((-493 . -1209) T) ((-493 . -362) T) ((-493 . -634) 60326) ((-493 . -1013) T) ((-493 . -609) 60271) ((-493 . -146) T) ((-493 . -232) T) ((-489 . -1091) T) ((-489 . -608) 60237) ((-489 . -102) T) ((-485 . -984) 60219) ((-485 . -1141) T) ((-485 . -611) 60169) ((-485 . -1031) 60129) ((-485 . -609) 60059) ((-485 . -1013) T) ((-485 . -903) NIL) ((-485 . -877) 60041) ((-485 . -842) T) ((-485 . -791) T) ((-485 . -788) T) ((-485 . -844) T) ((-485 . -786) T) ((-485 . -785) T) ((-485 . -814) T) ((-485 . -879) 60023) ((-485 . -1204) T) ((-485 . -399) 60005) ((-485 . -634) 59987) ((-485 . -376) 59969) ((-485 . -285) NIL) ((-485 . -308) NIL) ((-485 . -512) NIL) ((-485 . -337) 59951) ((-485 . -242) T) ((-485 . -111) 59885) ((-485 . -1048) 59835) ((-485 . -289) T) ((-485 . -711) 59785) ((-485 . -641) 59735) ((-485 . -38) 59685) ((-485 . -306) T) ((-485 . -450) T) ((-485 . -171) T) ((-485 . -554) T) ((-485 . -914) T) ((-485 . -1209) T) ((-485 . -362) T) ((-485 . -232) T) ((-485 . -893) NIL) ((-485 . -230) 59667) ((-485 . -146) T) ((-485 . -144) NIL) ((-485 . -130) T) ((-485 . -25) T) ((-485 . -102) T) ((-485 . -608) 59609) ((-485 . -1091) T) ((-485 . -23) T) ((-485 . -21) T) ((-485 . -1042) T) ((-485 . -1049) T) ((-485 . -1102) T) ((-485 . -720) T) ((-483 . -335) 59578) ((-483 . -130) T) ((-483 . -25) T) ((-483 . -102) T) ((-483 . -608) 59560) ((-483 . -1091) T) ((-483 . -23) T) ((-483 . -21) T) ((-482 . -961) 59544) ((-482 . -487) 59528) ((-482 . -102) 59506) ((-482 . -1091) 59484) ((-482 . -512) 59417) ((-482 . -308) 59355) ((-482 . -608) 59287) ((-482 . -1204) T) ((-482 . -34) T) ((-482 . -107) 59271) ((-481 . -1073) T) ((-481 . -488) 59252) ((-481 . -608) 59218) ((-481 . -611) 59199) ((-481 . -1091) T) ((-481 . -102) T) ((-481 . -93) T) ((-480 . -237) 59178) ((-480 . -1261) 59148) ((-480 . -785) 59127) ((-480 . -842) 59106) ((-480 . -791) 59057) ((-480 . -788) 59008) ((-480 . -844) 58959) ((-480 . -786) 58910) ((-480 . -787) 58889) ((-480 . -287) 58866) ((-480 . -285) 58843) ((-480 . -487) 58827) ((-480 . -512) 58760) ((-480 . -308) 58698) ((-480 . -1204) T) ((-480 . -34) T) ((-480 . -599) 58675) ((-480 . -1031) 58502) ((-480 . -611) 58232) ((-480 . -411) 58201) ((-480 . -634) 58107) ((-480 . -376) 58076) ((-480 . -367) 58055) ((-480 . -232) 58007) ((-480 . -893) 57939) ((-480 . -230) 57908) ((-480 . -111) 57798) ((-480 . -1048) 57695) ((-480 . -171) 57674) ((-480 . -608) 57405) ((-480 . -711) 57347) ((-480 . -641) 57195) ((-480 . -130) 57065) ((-480 . -23) 56935) ((-480 . -21) 56845) ((-480 . -1042) 56775) ((-480 . -1049) 56705) ((-480 . -1102) 56615) ((-480 . -720) 56525) ((-480 . -38) 56495) ((-480 . -1091) 56285) ((-480 . -102) 56075) ((-480 . -25) 55926) ((-479 . -943) 55871) ((-479 . -611) 55656) ((-479 . -1031) 55532) ((-479 . -1209) 55511) ((-479 . -903) 55490) ((-479 . -879) NIL) ((-479 . -893) 55467) ((-479 . -844) 55446) ((-479 . -512) 55389) ((-479 . -450) 55340) ((-479 . -634) 55288) ((-479 . -376) 55272) ((-479 . -47) 55229) ((-479 . -38) 55078) ((-479 . -711) 54927) ((-479 . -289) 54858) ((-479 . -554) 54789) ((-479 . -111) 54618) ((-479 . -1048) 54461) ((-479 . -171) 54372) ((-479 . -146) 54351) ((-479 . -144) 54330) ((-479 . -641) 54255) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -102) T) ((-479 . -608) 54237) ((-479 . -1091) T) ((-479 . -23) T) ((-479 . -21) T) ((-479 . -1042) T) ((-479 . -1049) T) ((-479 . -1102) T) ((-479 . -720) T) ((-479 . -411) 54221) ((-479 . -325) 54178) ((-479 . -308) 54165) ((-479 . -609) 54026) ((-477 . -1181) 54005) ((-477 . -228) 53955) ((-477 . -107) 53905) ((-477 . -308) 53709) ((-477 . -512) 53501) ((-477 . -487) 53438) ((-477 . -150) 53388) ((-477 . -609) NIL) ((-477 . -234) 53338) ((-477 . -605) 53317) ((-477 . -287) 53296) ((-477 . -285) 53275) ((-477 . -102) T) ((-477 . -1091) T) ((-477 . -608) 53257) ((-477 . -1204) T) ((-477 . -34) T) ((-477 . -599) 53236) ((-476 . -1073) T) ((-476 . -488) 53217) ((-476 . -608) 53183) ((-476 . -611) 53164) ((-476 . -1091) T) ((-476 . -102) T) ((-476 . -93) T) ((-475 . -362) T) ((-475 . -1209) T) ((-475 . -914) T) ((-475 . -554) T) ((-475 . -171) T) ((-475 . -611) 53114) ((-475 . -711) 53079) ((-475 . -38) 53044) ((-475 . -450) T) ((-475 . -306) T) ((-475 . -641) 53009) ((-475 . -720) T) ((-475 . -1102) T) ((-475 . -1049) T) ((-475 . -1042) T) ((-475 . -111) 52965) ((-475 . -1048) 52930) ((-475 . -21) T) ((-475 . -23) T) ((-475 . -1091) T) ((-475 . -608) 52882) ((-475 . -102) T) ((-475 . -25) T) ((-475 . -130) T) ((-475 . -289) T) ((-475 . -242) T) ((-475 . -146) T) ((-475 . -1031) 52842) ((-475 . -1013) T) ((-475 . -609) 52764) ((-474 . -1199) 52733) ((-474 . -608) 52695) ((-474 . -150) 52679) ((-474 . -34) T) ((-474 . -1204) T) ((-474 . -308) 52617) ((-474 . -512) 52550) ((-474 . -1091) T) ((-474 . -102) T) ((-474 . -487) 52534) ((-474 . -609) 52495) ((-474 . -969) 52464) ((-473 . -1181) 52443) ((-473 . -228) 52393) ((-473 . -107) 52343) ((-473 . -308) 52147) ((-473 . -512) 51939) ((-473 . -487) 51876) ((-473 . -150) 51826) ((-473 . -609) NIL) ((-473 . -234) 51776) ((-473 . -605) 51755) ((-473 . -287) 51734) ((-473 . -285) 51713) ((-473 . -102) T) ((-473 . -1091) T) ((-473 . -608) 51695) ((-473 . -1204) T) ((-473 . -34) T) ((-473 . -599) 51674) ((-472 . -1236) 51658) ((-472 . -232) 51610) ((-472 . -285) 51595) ((-472 . -893) 51501) ((-472 . -966) 51463) ((-472 . -38) 51304) ((-472 . -111) 51125) ((-472 . -1048) 50960) ((-472 . -641) 50857) ((-472 . -711) 50698) ((-472 . -611) 50524) ((-472 . -144) 50503) ((-472 . -146) 50482) ((-472 . -47) 50452) ((-472 . -1232) 50422) ((-472 . -35) 50388) ((-472 . -95) 50354) ((-472 . -283) 50320) ((-472 . -491) 50286) ((-472 . -1193) 50252) ((-472 . -1190) 50218) ((-472 . -995) 50184) ((-472 . -242) 50163) ((-472 . -289) 50114) ((-472 . -130) T) ((-472 . -25) T) ((-472 . -102) T) ((-472 . -608) 50096) ((-472 . -1091) T) ((-472 . -23) T) ((-472 . -21) T) ((-472 . -1042) T) ((-472 . -1049) T) ((-472 . -1102) T) ((-472 . -720) T) ((-472 . -306) 50075) ((-472 . -450) 50054) ((-472 . -171) 49985) ((-472 . -554) 49936) ((-472 . -914) 49915) ((-472 . -1209) 49894) ((-472 . -362) 49873) ((-466 . -1091) T) ((-466 . -608) 49855) ((-466 . -102) T) ((-461 . -969) 49824) ((-461 . -609) 49785) ((-461 . -487) 49769) ((-461 . -102) T) ((-461 . -1091) T) ((-461 . -512) 49702) ((-461 . -308) 49640) ((-461 . -608) 49602) ((-461 . -1204) T) ((-461 . -34) T) ((-461 . -150) 49586) ((-459 . -711) 49557) ((-459 . -641) 49528) ((-459 . -130) T) ((-459 . -25) T) ((-459 . -102) T) ((-459 . -608) 49510) ((-459 . -1091) T) ((-459 . -23) T) ((-459 . -21) T) ((-459 . -1048) 49481) ((-459 . -111) 49442) ((-452 . -943) 49409) ((-452 . -611) 49194) ((-452 . -1031) 49070) ((-452 . -1209) 49049) ((-452 . -903) 49028) ((-452 . -879) NIL) ((-452 . -893) 49005) ((-452 . -844) 48984) ((-452 . -512) 48927) ((-452 . -450) 48878) ((-452 . -634) 48826) ((-452 . -376) 48810) ((-452 . -47) 48789) ((-452 . -38) 48638) ((-452 . -711) 48487) ((-452 . -289) 48418) ((-452 . -554) 48349) ((-452 . -111) 48178) ((-452 . -1048) 48021) ((-452 . -171) 47932) ((-452 . -146) 47911) ((-452 . -144) 47890) ((-452 . -641) 47815) ((-452 . -130) T) ((-452 . -25) T) ((-452 . -102) T) ((-452 . -608) 47797) ((-452 . -1091) T) ((-452 . -23) T) ((-452 . -21) T) ((-452 . -1042) T) ((-452 . -1049) T) ((-452 . -1102) T) ((-452 . -720) T) ((-452 . -411) 47781) ((-452 . -325) 47760) ((-452 . -308) 47747) ((-452 . -609) 47608) ((-451 . -417) 47578) ((-451 . -738) 47548) ((-451 . -714) T) ((-451 . -755) T) ((-451 . -111) 47511) ((-451 . -1048) 47481) ((-451 . -21) T) ((-451 . -23) T) ((-451 . -1091) T) ((-451 . -608) 47463) ((-451 . -102) T) ((-451 . -25) T) ((-451 . -130) T) ((-451 . -641) 47393) ((-451 . -711) 47363) ((-451 . -366) 47333) ((-437 . -1091) T) ((-437 . -608) 47315) ((-437 . -102) T) ((-436 . -364) 47289) ((-436 . -102) T) ((-436 . -608) 47271) ((-436 . -1091) T) ((-435 . -1091) T) ((-435 . -608) 47253) ((-435 . -102) T) ((-433 . -608) 47235) ((-428 . -38) 47219) ((-428 . -611) 47188) ((-428 . -641) 47162) ((-428 . -720) T) ((-428 . -1102) T) ((-428 . -1049) T) ((-428 . -1042) T) ((-428 . -111) 47141) ((-428 . -1048) 47125) ((-428 . -21) T) ((-428 . -23) T) ((-428 . -1091) T) ((-428 . -608) 47107) ((-428 . -102) T) ((-428 . -25) T) ((-428 . -130) T) ((-428 . -711) 47091) ((-414 . -720) T) ((-414 . -1091) T) ((-414 . -608) 47073) ((-414 . -102) T) ((-414 . -1102) T) ((-412 . -471) T) ((-412 . -1102) T) ((-412 . -102) T) ((-412 . -608) 47055) ((-412 . -1091) T) ((-412 . -720) T) ((-406 . -984) 47039) ((-406 . -1141) 47017) ((-406 . -1031) 46883) ((-406 . -611) 46781) ((-406 . -609) 46588) ((-406 . -1013) 46566) ((-406 . -903) 46545) ((-406 . -877) 46529) ((-406 . -842) 46508) ((-406 . -791) 46487) ((-406 . -788) 46466) ((-406 . -844) 46417) ((-406 . -786) 46396) ((-406 . -785) 46375) ((-406 . -814) 46354) ((-406 . -879) 46279) ((-406 . -1204) T) ((-406 . -399) 46263) ((-406 . -634) 46211) ((-406 . -376) 46195) ((-406 . -285) 46153) ((-406 . -308) 46118) ((-406 . -512) 46030) ((-406 . -337) 46014) ((-406 . -242) T) ((-406 . -111) 45952) ((-406 . -1048) 45904) ((-406 . -289) T) ((-406 . -711) 45856) ((-406 . -641) 45808) ((-406 . -38) 45760) ((-406 . -306) T) ((-406 . -450) T) ((-406 . -171) T) ((-406 . -554) T) ((-406 . -914) T) ((-406 . -1209) T) ((-406 . -362) T) ((-406 . -232) 45739) ((-406 . -893) 45698) ((-406 . -230) 45682) ((-406 . -146) 45661) ((-406 . -144) 45640) ((-406 . -130) T) ((-406 . -25) T) ((-406 . -102) T) ((-406 . -608) 45622) ((-406 . -1091) T) ((-406 . -23) T) ((-406 . -21) T) ((-406 . -1042) T) ((-406 . -1049) T) ((-406 . -1102) T) ((-406 . -720) T) ((-406 . -815) 45575) ((-404 . -554) T) ((-404 . -289) T) ((-404 . -171) T) ((-404 . -611) 45483) ((-404 . -711) 45457) ((-404 . -641) 45431) ((-404 . -130) T) ((-404 . -25) T) ((-404 . -102) T) ((-404 . -608) 45413) ((-404 . -1091) T) ((-404 . -23) T) ((-404 . -21) T) ((-404 . -1048) 45387) ((-404 . -111) 45354) ((-404 . -1042) T) ((-404 . -1049) T) ((-404 . -1102) T) ((-404 . -720) T) ((-404 . -38) 45328) ((-404 . -230) 45312) ((-404 . -893) 45271) ((-404 . -232) 45250) ((-404 . -337) 45234) ((-404 . -512) 45076) ((-404 . -308) 45015) ((-404 . -285) 44943) ((-404 . -411) 44927) ((-404 . -1031) 44823) ((-404 . -450) 44773) ((-404 . -1013) 44751) ((-404 . -609) 44658) ((-404 . -1209) 44636) ((-398 . -1091) T) ((-398 . -608) 44618) ((-398 . -102) T) ((-398 . -609) 44595) ((-397 . -395) T) ((-397 . -1204) T) ((-397 . -608) 44577) ((-392 . -1091) T) ((-392 . -608) 44559) ((-392 . -102) T) ((-392 . -611) 44541) ((-389 . -738) 44525) ((-389 . -714) T) ((-389 . -755) T) ((-389 . -111) 44504) ((-389 . -1048) 44488) ((-389 . -21) T) ((-389 . -23) T) ((-389 . -1091) T) ((-389 . -608) 44470) ((-389 . -102) T) ((-389 . -25) T) ((-389 . -130) T) ((-389 . -641) 44454) ((-389 . -711) 44438) ((-387 . -388) T) ((-387 . -102) T) ((-387 . -608) 44404) ((-387 . -1091) T) ((-387 . -611) 44385) ((-387 . -488) 44366) ((-385 . -720) T) ((-385 . -1091) T) ((-385 . -608) 44348) ((-385 . -102) T) ((-385 . -1102) T) ((-385 . -1031) 44332) ((-385 . -611) 44316) ((-385 . -844) 44295) ((-381 . -383) 44274) ((-381 . -611) 44258) ((-381 . -1031) 44242) ((-381 . -711) 44212) ((-381 . -641) 44196) ((-381 . -130) T) ((-381 . -25) T) ((-381 . -102) T) ((-381 . -608) 44178) ((-381 . -1091) T) ((-381 . -23) T) ((-381 . -21) T) ((-381 . -1048) 44162) ((-381 . -111) 44141) ((-380 . -111) 44120) ((-380 . -1048) 44104) ((-380 . -21) T) ((-380 . -23) T) ((-380 . -1091) T) ((-380 . -608) 44086) ((-380 . -102) T) ((-380 . -25) T) ((-380 . -130) T) ((-380 . -641) 44070) ((-380 . -507) 44049) ((-380 . -711) 44019) ((-377 . -403) T) ((-377 . -146) T) ((-377 . -611) 43969) ((-377 . -641) 43934) ((-377 . -130) T) ((-377 . -25) T) ((-377 . -102) T) ((-377 . -608) 43901) ((-377 . -1091) T) ((-377 . -23) T) ((-377 . -21) T) ((-377 . -720) T) ((-377 . -1102) T) ((-377 . -1049) T) ((-377 . -1042) T) ((-377 . -609) 43815) ((-377 . -362) T) ((-377 . -1209) T) ((-377 . -914) T) ((-377 . -554) T) ((-377 . -171) T) ((-377 . -711) 43780) ((-377 . -38) 43745) ((-377 . -450) T) ((-377 . -306) T) ((-377 . -111) 43701) ((-377 . -1048) 43666) ((-377 . -289) T) ((-377 . -242) T) ((-377 . -842) T) ((-377 . -791) T) ((-377 . -788) T) ((-377 . -844) T) ((-377 . -786) T) ((-377 . -785) T) ((-377 . -879) 43648) ((-377 . -995) T) ((-377 . -1013) T) ((-377 . -1031) 43608) ((-377 . -1051) T) ((-377 . -232) T) ((-377 . -815) T) ((-377 . -1190) T) ((-377 . -1193) T) ((-377 . -491) T) ((-377 . -283) T) ((-377 . -95) T) ((-377 . -35) T) ((-377 . -613) 43590) ((-363 . -364) 43567) ((-363 . -102) T) ((-363 . -608) 43549) ((-363 . -1091) T) ((-360 . -471) T) ((-360 . -1102) T) ((-360 . -102) T) ((-360 . -608) 43531) ((-360 . -1091) T) ((-360 . -720) T) ((-360 . -1031) 43515) ((-360 . -611) 43499) ((-358 . -328) 43483) ((-358 . -232) 43462) ((-358 . -367) 43441) ((-358 . -1141) 43420) ((-358 . -349) 43399) ((-358 . -146) 43378) ((-358 . -611) 43315) ((-358 . -641) 43267) ((-358 . -130) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -608) 43249) ((-358 . -1091) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -720) T) ((-358 . -1102) T) ((-358 . -1049) T) ((-358 . -1042) T) ((-358 . -362) T) ((-358 . -1209) T) ((-358 . -914) T) ((-358 . -554) T) ((-358 . -171) T) ((-358 . -711) 43201) ((-358 . -38) 43166) ((-358 . -450) T) ((-358 . -306) T) ((-358 . -111) 43104) ((-358 . -1048) 43056) ((-358 . -289) T) ((-358 . -242) T) ((-358 . -401) 43007) ((-358 . -144) 42958) ((-358 . -1031) 42942) ((-358 . -1261) 42926) ((-358 . -1272) 42910) ((-354 . -328) 42894) ((-354 . -232) 42873) ((-354 . -367) 42852) ((-354 . -1141) 42831) ((-354 . -349) 42810) ((-354 . -146) 42789) ((-354 . -611) 42726) ((-354 . -641) 42678) ((-354 . -130) T) ((-354 . -25) T) ((-354 . -102) T) ((-354 . -608) 42660) ((-354 . -1091) T) ((-354 . -23) T) ((-354 . -21) T) ((-354 . -720) T) ((-354 . -1102) T) ((-354 . -1049) T) ((-354 . -1042) T) ((-354 . -362) T) ((-354 . -1209) T) ((-354 . -914) T) ((-354 . -554) T) ((-354 . -171) T) ((-354 . -711) 42612) ((-354 . -38) 42577) ((-354 . -450) T) ((-354 . -306) T) ((-354 . -111) 42515) ((-354 . -1048) 42467) ((-354 . -289) T) ((-354 . -242) T) ((-354 . -401) 42418) ((-354 . -144) 42369) ((-354 . -1031) 42353) ((-354 . -1261) 42337) ((-354 . -1272) 42321) ((-353 . -328) 42305) ((-353 . -232) 42284) ((-353 . -367) 42263) ((-353 . -1141) 42242) ((-353 . -349) 42221) ((-353 . -146) 42200) ((-353 . -611) 42137) ((-353 . -641) 42089) ((-353 . -130) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -608) 42071) ((-353 . -1091) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -720) T) ((-353 . -1102) T) ((-353 . -1049) T) ((-353 . -1042) T) ((-353 . -362) T) ((-353 . -1209) T) ((-353 . -914) T) ((-353 . -554) T) ((-353 . -171) T) ((-353 . -711) 42023) ((-353 . -38) 41988) ((-353 . -450) T) ((-353 . -306) T) ((-353 . -111) 41926) ((-353 . -1048) 41878) ((-353 . -289) T) ((-353 . -242) T) ((-353 . -401) 41829) ((-353 . -144) 41780) ((-353 . -1031) 41764) ((-353 . -1261) 41748) ((-353 . -1272) 41732) ((-352 . -328) 41716) ((-352 . -232) 41695) ((-352 . -367) 41674) ((-352 . -1141) 41653) ((-352 . -349) 41632) ((-352 . -146) 41611) ((-352 . -611) 41548) ((-352 . -641) 41500) ((-352 . -130) T) ((-352 . -25) T) ((-352 . -102) T) ((-352 . -608) 41482) ((-352 . -1091) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -720) T) ((-352 . -1102) T) ((-352 . -1049) T) ((-352 . -1042) T) ((-352 . -362) T) ((-352 . -1209) T) ((-352 . -914) T) ((-352 . -554) T) ((-352 . -171) T) ((-352 . -711) 41434) ((-352 . -38) 41399) ((-352 . -450) T) ((-352 . -306) T) ((-352 . -111) 41337) ((-352 . -1048) 41289) ((-352 . -289) T) ((-352 . -242) T) ((-352 . -401) 41240) ((-352 . -144) 41191) ((-352 . -1031) 41175) ((-352 . -1261) 41159) ((-352 . -1272) 41143) ((-351 . -328) 41120) ((-351 . -232) T) ((-351 . -367) T) ((-351 . -1141) T) ((-351 . -349) T) ((-351 . -146) 41102) ((-351 . -611) 41032) ((-351 . -641) 40977) ((-351 . -130) T) ((-351 . -25) T) ((-351 . -102) T) ((-351 . -608) 40959) ((-351 . -1091) T) ((-351 . -23) T) ((-351 . -21) T) ((-351 . -720) T) ((-351 . -1102) T) ((-351 . -1049) T) ((-351 . -1042) T) ((-351 . -362) T) ((-351 . -1209) T) ((-351 . -914) T) ((-351 . -554) T) ((-351 . -171) T) ((-351 . -711) 40904) ((-351 . -38) 40869) ((-351 . -450) T) ((-351 . -306) T) ((-351 . -111) 40798) ((-351 . -1048) 40743) ((-351 . -289) T) ((-351 . -242) T) ((-351 . -401) T) ((-351 . -144) T) ((-351 . -1031) 40720) ((-351 . -1261) 40697) ((-351 . -1272) 40674) ((-345 . -328) 40658) ((-345 . -232) 40637) ((-345 . -367) 40616) ((-345 . -1141) 40595) ((-345 . -349) 40574) ((-345 . -146) 40553) ((-345 . -611) 40490) ((-345 . -641) 40442) ((-345 . -130) T) ((-345 . -25) T) ((-345 . -102) T) ((-345 . -608) 40424) ((-345 . -1091) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -720) T) ((-345 . -1102) T) ((-345 . -1049) T) ((-345 . -1042) T) ((-345 . -362) T) ((-345 . -1209) T) ((-345 . -914) T) ((-345 . -554) T) ((-345 . -171) T) ((-345 . -711) 40376) ((-345 . -38) 40341) ((-345 . -450) T) ((-345 . -306) T) ((-345 . -111) 40279) ((-345 . -1048) 40231) ((-345 . -289) T) ((-345 . -242) T) ((-345 . -401) 40182) ((-345 . -144) 40133) ((-345 . -1031) 40117) ((-345 . -1261) 40101) ((-345 . -1272) 40085) ((-344 . -328) 40069) ((-344 . -232) 40048) ((-344 . -367) 40027) ((-344 . -1141) 40006) ((-344 . -349) 39985) ((-344 . -146) 39964) ((-344 . -611) 39901) ((-344 . -641) 39853) ((-344 . -130) T) ((-344 . -25) T) ((-344 . -102) T) ((-344 . -608) 39835) ((-344 . -1091) T) ((-344 . -23) T) ((-344 . -21) T) ((-344 . -720) T) ((-344 . -1102) T) ((-344 . -1049) T) ((-344 . -1042) T) ((-344 . -362) T) ((-344 . -1209) T) ((-344 . -914) T) ((-344 . -554) T) ((-344 . -171) T) ((-344 . -711) 39787) ((-344 . -38) 39752) ((-344 . -450) T) ((-344 . -306) T) ((-344 . -111) 39690) ((-344 . -1048) 39642) ((-344 . -289) T) ((-344 . -242) T) ((-344 . -401) 39593) ((-344 . -144) 39544) ((-344 . -1031) 39528) ((-344 . -1261) 39512) ((-344 . -1272) 39496) ((-343 . -328) 39473) ((-343 . -232) T) ((-343 . -367) T) ((-343 . -1141) T) ((-343 . -349) T) ((-343 . -146) 39455) ((-343 . -611) 39385) ((-343 . -641) 39330) ((-343 . -130) T) ((-343 . -25) T) ((-343 . -102) T) ((-343 . -608) 39312) ((-343 . -1091) T) ((-343 . -23) T) ((-343 . -21) T) ((-343 . -720) T) ((-343 . -1102) T) ((-343 . -1049) T) ((-343 . -1042) T) ((-343 . -362) T) ((-343 . -1209) T) ((-343 . -914) T) ((-343 . -554) T) ((-343 . -171) T) ((-343 . -711) 39257) ((-343 . -38) 39222) ((-343 . -450) T) ((-343 . -306) T) ((-343 . -111) 39151) ((-343 . -1048) 39096) ((-343 . -289) T) ((-343 . -242) T) ((-343 . -401) T) ((-343 . -144) T) ((-343 . -1031) 39073) ((-343 . -1261) 39050) ((-343 . -1272) 39027) ((-339 . -328) 39004) ((-339 . -232) T) ((-339 . -367) T) ((-339 . -1141) T) ((-339 . -349) T) ((-339 . -146) 38986) ((-339 . -611) 38916) ((-339 . -641) 38861) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -102) T) ((-339 . -608) 38843) ((-339 . -1091) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -720) T) ((-339 . -1102) T) ((-339 . -1049) T) ((-339 . -1042) T) ((-339 . -362) T) ((-339 . -1209) T) ((-339 . -914) T) ((-339 . -554) T) ((-339 . -171) T) ((-339 . -711) 38788) ((-339 . -38) 38753) ((-339 . -450) T) ((-339 . -306) T) ((-339 . -111) 38682) ((-339 . -1048) 38627) ((-339 . -289) T) ((-339 . -242) T) ((-339 . -401) T) ((-339 . -144) T) ((-339 . -1031) 38604) ((-339 . -1261) 38581) ((-339 . -1272) 38558) ((-338 . -297) T) ((-338 . -611) 38510) ((-338 . -1031) 38477) ((-338 . -1091) T) ((-338 . -608) 38459) ((-338 . -102) T) ((-338 . -844) T) ((-338 . -512) 38425) ((-338 . -308) 38412) ((-338 . -38) 38396) ((-338 . -641) 38370) ((-338 . -720) T) ((-338 . -1102) T) ((-338 . -1049) T) ((-338 . -1042) T) ((-338 . -111) 38349) ((-338 . -1048) 38333) ((-338 . -21) T) ((-338 . -23) T) ((-338 . -25) T) ((-338 . -130) T) ((-338 . -711) 38317) ((-338 . -893) 38298) ((-332 . -335) 38267) ((-332 . -130) T) ((-332 . -25) T) ((-332 . -102) T) ((-332 . -608) 38249) ((-332 . -1091) T) ((-332 . -23) T) ((-332 . -21) T) ((-330 . -844) T) ((-330 . -102) T) ((-330 . -608) 38231) ((-330 . -1091) T) ((-329 . -1091) T) ((-329 . -608) 38213) ((-329 . -102) T) ((-326 . -19) 38197) ((-326 . -644) 38181) ((-326 . -287) 38158) ((-326 . -285) 38135) ((-326 . -599) 38112) ((-326 . -609) 38073) ((-326 . -487) 38057) ((-326 . -102) 38007) ((-326 . -1091) 37957) ((-326 . -512) 37890) ((-326 . -308) 37828) ((-326 . -608) 37740) ((-326 . -1204) T) ((-326 . -34) T) ((-326 . -150) 37724) ((-326 . -844) 37703) ((-326 . -371) 37687) ((-326 . -281) 37671) ((-323 . -322) 37648) ((-323 . -611) 37632) ((-323 . -1031) 37616) ((-323 . -23) T) ((-323 . -1091) T) ((-323 . -608) 37598) ((-323 . -102) T) ((-323 . -25) T) ((-323 . -130) T) ((-321 . -21) T) ((-321 . -23) T) ((-321 . -1091) T) ((-321 . -608) 37580) ((-321 . -102) T) ((-321 . -25) T) ((-321 . -130) T) ((-321 . -711) 37562) ((-321 . -641) 37544) ((-321 . -1048) 37526) ((-321 . -111) 37501) ((-321 . -322) 37478) ((-321 . -611) 37462) ((-321 . -1031) 37446) ((-321 . -844) 37425) ((-318 . -1236) 37409) ((-318 . -232) 37361) ((-318 . -285) 37346) ((-318 . -893) 37252) ((-318 . -966) 37214) ((-318 . -38) 37055) ((-318 . -111) 36876) ((-318 . -1048) 36711) ((-318 . -641) 36608) ((-318 . -711) 36449) ((-318 . -611) 36275) ((-318 . -144) 36254) ((-318 . -146) 36233) ((-318 . -47) 36203) ((-318 . -1232) 36173) ((-318 . -35) 36139) ((-318 . -95) 36105) ((-318 . -283) 36071) ((-318 . -491) 36037) ((-318 . -1193) 36003) ((-318 . -1190) 35969) ((-318 . -995) 35935) ((-318 . -242) 35914) ((-318 . -289) 35865) ((-318 . -130) T) ((-318 . -25) T) ((-318 . -102) T) ((-318 . -608) 35847) ((-318 . -1091) T) ((-318 . -23) T) ((-318 . -21) T) ((-318 . -1042) T) ((-318 . -1049) T) ((-318 . -1102) T) ((-318 . -720) T) ((-318 . -306) 35826) ((-318 . -450) 35805) ((-318 . -171) 35736) ((-318 . -554) 35687) ((-318 . -914) 35666) ((-318 . -1209) 35645) ((-318 . -362) 35624) ((-318 . -786) T) ((-318 . -844) T) ((-318 . -788) T) ((-313 . -420) 35608) ((-313 . -611) 35172) ((-313 . -1031) 34835) ((-313 . -609) 34696) ((-313 . -877) 34680) ((-313 . -893) 34646) ((-313 . -471) 34625) ((-313 . -411) 34609) ((-313 . -879) 34534) ((-313 . -1204) T) ((-313 . -399) 34518) ((-313 . -634) 34424) ((-313 . -376) 34393) ((-313 . -242) 34372) ((-313 . -111) 34268) ((-313 . -1048) 34178) ((-313 . -289) 34157) ((-313 . -711) 34067) ((-313 . -641) 33888) ((-313 . -38) 33798) ((-313 . -306) 33777) ((-313 . -450) 33756) ((-313 . -171) 33735) ((-313 . -554) 33714) ((-313 . -914) 33693) ((-313 . -1209) 33672) ((-313 . -362) 33651) ((-313 . -308) 33638) ((-313 . -512) 33604) ((-313 . -844) T) ((-313 . -297) T) ((-313 . -146) 33583) ((-313 . -144) 33562) ((-313 . -1042) 33452) ((-313 . -1049) 33342) ((-313 . -1102) 33191) ((-313 . -720) 33040) ((-313 . -130) 32911) ((-313 . -25) 32763) ((-313 . -102) T) ((-313 . -608) 32745) ((-313 . -1091) T) ((-313 . -23) 32597) ((-313 . -21) 32468) ((-313 . -29) 32438) ((-313 . -995) 32417) ((-313 . -27) 32396) ((-313 . -1190) 32375) ((-313 . -1193) 32354) ((-313 . -491) 32333) ((-313 . -283) 32312) ((-313 . -95) 32291) ((-313 . -35) 32270) ((-313 . -159) 32249) ((-313 . -142) 32228) ((-313 . -625) 32207) ((-313 . -953) 32186) ((-313 . -1129) 32165) ((-312 . -984) 32126) ((-312 . -1141) NIL) ((-312 . -1031) 32056) ((-312 . -611) 31939) ((-312 . -609) NIL) ((-312 . -1013) NIL) ((-312 . -903) NIL) ((-312 . -877) 31900) ((-312 . -842) NIL) ((-312 . -791) NIL) ((-312 . -788) NIL) ((-312 . -844) NIL) ((-312 . -786) NIL) ((-312 . -785) NIL) ((-312 . -814) NIL) ((-312 . -879) NIL) ((-312 . -1204) T) ((-312 . -399) 31861) ((-312 . -634) 31822) ((-312 . -376) 31783) ((-312 . -285) 31718) ((-312 . -308) 31659) ((-312 . -512) 31551) ((-312 . -337) 31512) ((-312 . -242) T) ((-312 . -111) 31425) ((-312 . -1048) 31354) ((-312 . -289) T) ((-312 . -711) 31283) ((-312 . -641) 31212) ((-312 . -38) 31141) ((-312 . -306) T) ((-312 . -450) T) ((-312 . -171) T) ((-312 . -554) T) ((-312 . -914) T) ((-312 . -1209) T) ((-312 . -362) T) ((-312 . -232) NIL) ((-312 . -893) NIL) ((-312 . -230) 31102) ((-312 . -146) 31058) ((-312 . -144) 31014) ((-312 . -130) T) ((-312 . -25) T) ((-312 . -102) T) ((-312 . -608) 30996) ((-312 . -1091) T) ((-312 . -23) T) ((-312 . -21) T) ((-312 . -1042) T) ((-312 . -1049) T) ((-312 . -1102) T) ((-312 . -720) T) ((-311 . -1073) T) ((-311 . -488) 30977) ((-311 . -608) 30943) ((-311 . -611) 30924) ((-311 . -1091) T) ((-311 . -102) T) ((-311 . -93) T) ((-310 . -1091) T) ((-310 . -608) 30906) ((-310 . -102) T) ((-294 . -1181) 30885) ((-294 . -228) 30835) ((-294 . -107) 30785) ((-294 . -308) 30589) ((-294 . -512) 30381) ((-294 . -487) 30318) ((-294 . -150) 30268) ((-294 . -609) NIL) ((-294 . -234) 30218) ((-294 . -605) 30197) ((-294 . -287) 30176) ((-294 . -285) 30155) ((-294 . -102) T) ((-294 . -1091) T) ((-294 . -608) 30137) ((-294 . -1204) T) ((-294 . -34) T) ((-294 . -599) 30116) ((-292 . -1204) T) ((-292 . -512) 30065) ((-292 . -1091) 29847) ((-292 . -608) 29588) ((-292 . -102) 29370) ((-292 . -25) 29234) ((-292 . -21) 29117) ((-292 . -23) 29000) ((-292 . -130) 28883) ((-292 . -1102) 28764) ((-292 . -720) 28666) ((-292 . -471) 28645) ((-292 . -1042) 28587) ((-292 . -1049) 28529) ((-292 . -641) 28389) ((-292 . -611) 28320) ((-292 . -111) 28236) ((-292 . -1048) 28157) ((-292 . -711) 28099) ((-292 . -893) 28058) ((-292 . -1261) 28028) ((-290 . -608) 28010) ((-288 . -306) T) ((-288 . -450) T) ((-288 . -38) 27997) ((-288 . -611) 27969) ((-288 . -720) T) ((-288 . -1102) T) ((-288 . -1049) T) ((-288 . -1042) T) ((-288 . -111) 27954) ((-288 . -1048) 27941) ((-288 . -21) T) ((-288 . -23) T) ((-288 . -1091) T) ((-288 . -608) 27923) ((-288 . -102) T) ((-288 . -25) T) ((-288 . -130) T) ((-288 . -641) 27910) ((-288 . -711) 27897) ((-288 . -171) T) ((-288 . -289) T) ((-288 . -554) T) ((-288 . -914) T) ((-279 . -608) 27879) ((-278 . -976) 27863) ((-277 . -976) 27847) ((-274 . -844) T) ((-274 . -102) T) ((-274 . -608) 27829) ((-274 . -1091) T) ((-273 . -833) T) ((-273 . -102) T) ((-273 . -608) 27811) ((-273 . -1091) T) ((-272 . -833) T) ((-272 . -102) T) ((-272 . -608) 27793) ((-272 . -1091) T) ((-271 . -833) T) ((-271 . -102) T) ((-271 . -608) 27775) ((-271 . -1091) T) ((-270 . -833) T) ((-270 . -102) T) ((-270 . -608) 27757) ((-270 . -1091) T) ((-269 . -833) T) ((-269 . -102) T) ((-269 . -608) 27739) ((-269 . -1091) T) ((-268 . -833) T) ((-268 . -102) T) ((-268 . -608) 27721) ((-268 . -1091) T) ((-267 . -833) T) ((-267 . -102) T) ((-267 . -608) 27703) ((-267 . -1091) T) ((-263 . -252) 27665) ((-263 . -611) 27418) ((-263 . -1031) 27262) ((-263 . -609) 27010) ((-263 . -325) 26982) ((-263 . -411) 26966) ((-263 . -38) 26815) ((-263 . -111) 26644) ((-263 . -1048) 26487) ((-263 . -641) 26412) ((-263 . -711) 26261) ((-263 . -144) 26240) ((-263 . -146) 26219) ((-263 . -171) 26130) ((-263 . -554) 26061) ((-263 . -289) 25992) ((-263 . -47) 25964) ((-263 . -376) 25948) ((-263 . -634) 25896) ((-263 . -450) 25847) ((-263 . -512) 25732) ((-263 . -844) 25711) ((-263 . -893) 25657) ((-263 . -879) 25516) ((-263 . -903) 25495) ((-263 . -1209) 25474) ((-263 . -943) 25441) ((-263 . -308) 25428) ((-263 . -232) 25407) ((-263 . -130) T) ((-263 . -25) T) ((-263 . -102) T) ((-263 . -608) 25389) ((-263 . -1091) T) ((-263 . -23) T) ((-263 . -21) T) ((-263 . -720) T) ((-263 . -1102) T) ((-263 . -1049) T) ((-263 . -1042) T) ((-263 . -230) 25373) ((-260 . -1091) T) ((-260 . -608) 25355) ((-260 . -102) T) ((-250 . -237) 25334) ((-250 . -1261) 25304) ((-250 . -785) 25283) ((-250 . -842) 25262) ((-250 . -791) 25213) ((-250 . -788) 25164) ((-250 . -844) 25115) ((-250 . -786) 25066) ((-250 . -787) 25045) ((-250 . -287) 25022) ((-250 . -285) 24999) ((-250 . -487) 24983) ((-250 . -512) 24916) ((-250 . -308) 24854) ((-250 . -1204) T) ((-250 . -34) T) ((-250 . -599) 24831) ((-250 . -1031) 24658) ((-250 . -611) 24388) ((-250 . -411) 24357) ((-250 . -634) 24263) ((-250 . -376) 24232) ((-250 . -367) 24211) ((-250 . -232) 24163) ((-250 . -893) 24095) ((-250 . -230) 24064) ((-250 . -111) 23954) ((-250 . -1048) 23851) ((-250 . -171) 23830) ((-250 . -608) 23791) ((-250 . -711) 23733) ((-250 . -641) 23568) ((-250 . -130) T) ((-250 . -23) T) ((-250 . -21) T) ((-250 . -1042) 23498) ((-250 . -1049) 23428) ((-250 . -1102) 23338) ((-250 . -720) 23248) ((-250 . -38) 23218) ((-250 . -1091) T) ((-250 . -102) T) ((-250 . -25) T) ((-249 . -237) 23197) ((-249 . -1261) 23167) ((-249 . -785) 23146) ((-249 . -842) 23125) ((-249 . -791) 23076) ((-249 . -788) 23027) ((-249 . -844) 22978) ((-249 . -786) 22929) ((-249 . -787) 22908) ((-249 . -287) 22885) ((-249 . -285) 22862) ((-249 . -487) 22846) ((-249 . -512) 22779) ((-249 . -308) 22717) ((-249 . -1204) T) ((-249 . -34) T) ((-249 . -599) 22694) ((-249 . -1031) 22521) ((-249 . -611) 22251) ((-249 . -411) 22220) ((-249 . -634) 22126) ((-249 . -376) 22095) ((-249 . -367) 22074) ((-249 . -232) 22026) ((-249 . -893) 21958) ((-249 . -230) 21927) ((-249 . -111) 21817) ((-249 . -1048) 21714) ((-249 . -171) 21693) ((-249 . -608) 21654) ((-249 . -711) 21596) ((-249 . -641) 21418) ((-249 . -130) T) ((-249 . -23) T) ((-249 . -21) T) ((-249 . -1042) 21348) ((-249 . -1049) 21278) ((-249 . -1102) 21188) ((-249 . -720) 21098) ((-249 . -38) 21068) ((-249 . -1091) T) ((-249 . -102) T) ((-249 . -25) T) ((-248 . -185) T) ((-248 . -1091) T) ((-248 . -608) 21035) ((-248 . -102) T) ((-248 . -830) 21017) ((-247 . -1091) T) ((-247 . -608) 20999) ((-247 . -102) T) ((-246 . -943) 20944) ((-246 . -611) 20729) ((-246 . -1031) 20605) ((-246 . -1209) 20584) ((-246 . -903) 20563) ((-246 . -879) NIL) ((-246 . -893) 20540) ((-246 . -844) 20519) ((-246 . -512) 20462) ((-246 . -450) 20413) ((-246 . -634) 20361) ((-246 . -376) 20345) ((-246 . -47) 20302) ((-246 . -38) 20151) ((-246 . -711) 20000) ((-246 . -289) 19931) ((-246 . -554) 19862) ((-246 . -111) 19691) ((-246 . -1048) 19534) ((-246 . -171) 19445) ((-246 . -146) 19424) ((-246 . -144) 19403) ((-246 . -641) 19328) ((-246 . -130) T) ((-246 . -25) T) ((-246 . -102) T) ((-246 . -608) 19310) ((-246 . -1091) T) ((-246 . -23) T) ((-246 . -21) T) ((-246 . -1042) T) ((-246 . -1049) T) ((-246 . -1102) T) ((-246 . -720) T) ((-246 . -411) 19294) ((-246 . -325) 19251) ((-246 . -308) 19238) ((-246 . -609) 19099) ((-244 . -659) 19083) ((-244 . -1242) 19067) ((-244 . -1003) 19051) ((-244 . -1139) 19035) ((-244 . -844) 19014) ((-244 . -371) 18998) ((-244 . -644) 18982) ((-244 . -287) 18959) ((-244 . -285) 18936) ((-244 . -599) 18913) ((-244 . -609) 18874) ((-244 . -487) 18858) ((-244 . -102) 18808) ((-244 . -1091) 18758) ((-244 . -512) 18691) ((-244 . -308) 18629) ((-244 . -608) 18521) ((-244 . -1204) T) ((-244 . -34) T) ((-244 . -150) 18505) ((-244 . -281) 18489) ((-244 . -488) 18466) ((-244 . -611) 18443) ((-238 . -237) 18422) ((-238 . -1261) 18392) ((-238 . -785) 18371) ((-238 . -842) 18350) ((-238 . -791) 18301) ((-238 . -788) 18252) ((-238 . -844) 18203) ((-238 . -786) 18154) ((-238 . -787) 18133) ((-238 . -287) 18110) ((-238 . -285) 18087) ((-238 . -487) 18071) ((-238 . -512) 18004) ((-238 . -308) 17942) ((-238 . -1204) T) ((-238 . -34) T) ((-238 . -599) 17919) ((-238 . -1031) 17746) ((-238 . -611) 17476) ((-238 . -411) 17445) ((-238 . -634) 17351) ((-238 . -376) 17320) ((-238 . -367) 17299) ((-238 . -232) 17251) ((-238 . -893) 17183) ((-238 . -230) 17152) ((-238 . -111) 17042) ((-238 . -1048) 16939) ((-238 . -171) 16918) ((-238 . -608) 16649) ((-238 . -711) 16591) ((-238 . -641) 16439) ((-238 . -130) 16309) ((-238 . -23) 16179) ((-238 . -21) 16089) ((-238 . -1042) 16019) ((-238 . -1049) 15949) ((-238 . -1102) 15859) ((-238 . -720) 15769) ((-238 . -38) 15739) ((-238 . -1091) 15529) ((-238 . -102) 15319) ((-238 . -25) 15170) ((-226 . -679) 15128) ((-226 . -487) 15112) ((-226 . -102) 15090) ((-226 . -1091) 15068) ((-226 . -512) 15001) ((-226 . -308) 14939) ((-226 . -608) 14871) ((-226 . -1204) T) ((-226 . -34) T) ((-226 . -57) 14829) ((-224 . -403) T) ((-224 . -146) T) ((-224 . -611) 14779) ((-224 . -641) 14744) ((-224 . -130) T) ((-224 . -25) T) ((-224 . -102) T) ((-224 . -608) 14726) ((-224 . -1091) T) ((-224 . -23) T) ((-224 . -21) T) ((-224 . -720) T) ((-224 . -1102) T) ((-224 . -1049) T) ((-224 . -1042) T) ((-224 . -609) 14656) ((-224 . -362) T) ((-224 . -1209) T) ((-224 . -914) T) ((-224 . -554) T) ((-224 . -171) T) ((-224 . -711) 14621) ((-224 . -38) 14586) ((-224 . -450) T) ((-224 . -306) T) ((-224 . -111) 14542) ((-224 . -1048) 14507) ((-224 . -289) T) ((-224 . -242) T) ((-224 . -842) T) ((-224 . -791) T) ((-224 . -788) T) ((-224 . -844) T) ((-224 . -786) T) ((-224 . -785) T) ((-224 . -879) 14489) ((-224 . -995) T) ((-224 . -1013) T) ((-224 . -1031) 14449) ((-224 . -1051) T) ((-224 . -232) T) ((-224 . -815) T) ((-224 . -1190) T) ((-224 . -1193) T) ((-224 . -491) T) ((-224 . -283) T) ((-224 . -95) T) ((-224 . -35) T) ((-222 . -616) 14426) ((-222 . -611) 14388) ((-222 . -641) 14355) ((-222 . -720) T) ((-222 . -1102) T) ((-222 . -1049) T) ((-222 . -1042) T) ((-222 . -21) T) ((-222 . -23) T) ((-222 . -1091) T) ((-222 . -608) 14337) ((-222 . -102) T) ((-222 . -25) T) ((-222 . -130) T) ((-222 . -1031) 14314) ((-221 . -253) 14298) ((-221 . -1111) 14282) ((-221 . -107) 14266) ((-221 . -34) T) ((-221 . -1204) T) ((-221 . -608) 14198) ((-221 . -308) 14136) ((-221 . -512) 14069) ((-221 . -1091) 14047) ((-221 . -102) 14025) ((-221 . -487) 14009) ((-221 . -988) 13993) ((-217 . -1073) T) ((-217 . -488) 13974) ((-217 . -608) 13940) ((-217 . -611) 13921) ((-217 . -1091) T) ((-217 . -102) T) ((-217 . -93) T) ((-216 . -984) 13903) ((-216 . -1141) T) ((-216 . -611) 13853) ((-216 . -1031) 13813) ((-216 . -609) 13743) ((-216 . -1013) T) ((-216 . -903) NIL) ((-216 . -877) 13725) ((-216 . -842) T) ((-216 . -791) T) ((-216 . -788) T) ((-216 . -844) T) ((-216 . -786) T) ((-216 . -785) T) ((-216 . -814) T) ((-216 . -879) 13707) ((-216 . -1204) T) ((-216 . -399) 13689) ((-216 . -634) 13671) ((-216 . -376) 13653) ((-216 . -285) NIL) ((-216 . -308) NIL) ((-216 . -512) NIL) ((-216 . -337) 13635) ((-216 . -242) T) ((-216 . -111) 13569) ((-216 . -1048) 13519) ((-216 . -289) T) ((-216 . -711) 13469) ((-216 . -641) 13419) ((-216 . -38) 13369) ((-216 . -306) T) ((-216 . -450) T) ((-216 . -171) T) ((-216 . -554) T) ((-216 . -914) T) ((-216 . -1209) T) ((-216 . -362) T) ((-216 . -232) T) ((-216 . -893) NIL) ((-216 . -230) 13351) ((-216 . -146) T) ((-216 . -144) NIL) ((-216 . -130) T) ((-216 . -25) T) ((-216 . -102) T) ((-216 . -608) 13293) ((-216 . -1091) T) ((-216 . -23) T) ((-216 . -21) T) ((-216 . -1042) T) ((-216 . -1049) T) ((-216 . -1102) T) ((-216 . -720) T) ((-213 . -1091) T) ((-213 . -608) 13275) ((-213 . -102) T) ((-213 . -611) 13252) ((-212 . -1091) T) ((-212 . -608) 13234) ((-212 . -102) T) ((-211 . -888) T) ((-211 . -102) T) ((-211 . -608) 13216) ((-211 . -1091) T) ((-210 . -888) T) ((-210 . -102) T) ((-210 . -608) 13198) ((-210 . -1091) T) ((-208 . -794) T) ((-208 . -102) T) ((-208 . -608) 13180) ((-208 . -1091) T) ((-207 . -794) T) ((-207 . -102) T) ((-207 . -608) 13162) ((-207 . -1091) T) ((-206 . -794) T) ((-206 . -102) T) ((-206 . -608) 13144) ((-206 . -1091) T) ((-205 . -794) T) ((-205 . -102) T) ((-205 . -608) 13126) ((-205 . -1091) T) ((-202 . -781) T) ((-202 . -102) T) ((-202 . -608) 13108) ((-202 . -1091) T) ((-201 . -781) T) ((-201 . -102) T) ((-201 . -608) 13090) ((-201 . -1091) T) ((-200 . -781) T) ((-200 . -102) T) ((-200 . -608) 13072) ((-200 . -1091) T) ((-199 . -781) T) ((-199 . -102) T) ((-199 . -608) 13054) ((-199 . -1091) T) ((-198 . -781) T) ((-198 . -102) T) ((-198 . -608) 13036) ((-198 . -1091) T) ((-197 . -781) T) ((-197 . -102) T) ((-197 . -608) 13018) ((-197 . -1091) T) ((-196 . -781) T) ((-196 . -102) T) ((-196 . -608) 13000) ((-196 . -1091) T) ((-195 . -781) T) ((-195 . -102) T) ((-195 . -608) 12982) ((-195 . -1091) T) ((-194 . -781) T) ((-194 . -102) T) ((-194 . -608) 12964) ((-194 . -1091) T) ((-193 . -781) T) ((-193 . -102) T) ((-193 . -608) 12946) ((-193 . -1091) T) ((-192 . -781) T) ((-192 . -102) T) ((-192 . -608) 12928) ((-192 . -1091) T) ((-186 . -1091) T) ((-186 . -608) 12910) ((-186 . -102) T) ((-183 . -1091) T) ((-183 . -608) 12892) ((-183 . -102) T) ((-182 . -185) T) ((-182 . -1091) T) ((-182 . -608) 12874) ((-182 . -102) T) ((-182 . -830) 12856) ((-179 . -1073) T) ((-179 . -488) 12837) ((-179 . -608) 12803) ((-179 . -611) 12784) ((-179 . -1091) T) ((-179 . -102) T) ((-179 . -93) T) ((-174 . -608) 12766) ((-173 . -38) 12698) ((-173 . -611) 12615) ((-173 . -641) 12547) ((-173 . -720) T) ((-173 . -1102) T) ((-173 . -1049) T) ((-173 . -1042) T) ((-173 . -111) 12458) ((-173 . -1048) 12390) ((-173 . -21) T) ((-173 . -23) T) ((-173 . -1091) T) ((-173 . -608) 12372) ((-173 . -102) T) ((-173 . -25) T) ((-173 . -130) T) ((-173 . -711) 12304) ((-173 . -362) T) ((-173 . -1209) T) ((-173 . -914) T) ((-173 . -554) T) ((-173 . -171) T) ((-173 . -450) T) ((-173 . -306) T) ((-173 . -289) T) ((-173 . -242) T) ((-170 . -1091) T) ((-170 . -608) 12286) ((-170 . -102) T) ((-167 . -165) 12270) ((-167 . -35) 12248) ((-167 . -95) 12226) ((-167 . -283) 12204) ((-167 . -491) 12182) ((-167 . -1193) 12160) ((-167 . -1190) 12138) ((-167 . -995) 12090) ((-167 . -903) 12043) ((-167 . -609) 11804) ((-167 . -877) 11788) ((-167 . -844) 11767) ((-167 . -367) 11718) ((-167 . -349) 11697) ((-167 . -1141) 11676) ((-167 . -401) 11655) ((-167 . -409) 11626) ((-167 . -38) 11454) ((-167 . -111) 11350) ((-167 . -1048) 11260) ((-167 . -641) 11170) ((-167 . -711) 10998) ((-167 . -369) 10969) ((-167 . -718) 10940) ((-167 . -1031) 10836) ((-167 . -611) 10614) ((-167 . -411) 10598) ((-167 . -879) 10523) ((-167 . -1204) T) ((-167 . -399) 10507) ((-167 . -634) 10455) ((-167 . -376) 10439) ((-167 . -285) 10397) ((-167 . -308) 10362) ((-167 . -512) 10274) ((-167 . -337) 10258) ((-167 . -242) 10209) ((-167 . -1209) 10114) ((-167 . -362) 10065) ((-167 . -914) 9996) ((-167 . -554) 9907) ((-167 . -289) 9818) ((-167 . -450) 9749) ((-167 . -306) 9680) ((-167 . -232) 9631) ((-167 . -893) 9590) ((-167 . -230) 9574) ((-167 . -171) T) ((-167 . -146) 9553) ((-167 . -1042) T) ((-167 . -1049) T) ((-167 . -1102) T) ((-167 . -720) T) ((-167 . -21) T) ((-167 . -23) T) ((-167 . -1091) T) ((-167 . -608) 9535) ((-167 . -102) T) ((-167 . -25) T) ((-167 . -130) T) ((-167 . -144) 9486) ((-167 . -815) 9465) ((-161 . -1073) T) ((-161 . -488) 9446) ((-161 . -608) 9412) ((-161 . -611) 9393) ((-161 . -1091) T) ((-161 . -102) T) ((-161 . -93) T) ((-160 . -1091) T) ((-160 . -608) 9375) ((-160 . -102) T) ((-156 . -25) T) ((-156 . -102) T) ((-156 . -608) 9357) ((-156 . -1091) T) ((-155 . -1073) T) ((-155 . -488) 9338) ((-155 . -608) 9304) ((-155 . -611) 9285) ((-155 . -1091) T) ((-155 . -102) T) ((-155 . -93) T) ((-153 . -1073) T) ((-153 . -488) 9266) ((-153 . -608) 9232) ((-153 . -611) 9213) ((-153 . -1091) T) ((-153 . -102) T) ((-153 . -93) T) ((-151 . -1042) T) ((-151 . -1049) T) ((-151 . -1102) T) ((-151 . -720) T) ((-151 . -21) T) ((-151 . -23) T) ((-151 . -1091) T) ((-151 . -608) 9195) ((-151 . -102) T) ((-151 . -25) T) ((-151 . -130) T) ((-151 . -641) 9169) ((-151 . -611) 9138) ((-151 . -38) 9122) ((-151 . -111) 9101) ((-151 . -1048) 9085) ((-151 . -711) 9069) ((-151 . -1261) 9053) ((-143 . -838) T) ((-143 . -844) T) ((-143 . -1091) T) ((-143 . -608) 9035) ((-143 . -102) T) ((-143 . -367) T) ((-140 . -1091) T) ((-140 . -608) 9017) ((-140 . -102) T) ((-140 . -609) 8976) ((-140 . -425) 8958) ((-140 . -1089) 8940) ((-140 . -367) T) ((-140 . -234) 8922) ((-140 . -150) 8904) ((-140 . -487) 8886) ((-140 . -512) NIL) ((-140 . -308) NIL) ((-140 . -1204) T) ((-140 . -34) T) ((-140 . -107) 8868) ((-140 . -228) 8850) ((-139 . -608) 8832) ((-138 . -185) T) ((-138 . -1091) T) ((-138 . -608) 8799) ((-138 . -102) T) ((-138 . -830) 8781) ((-137 . -1073) T) ((-137 . -488) 8762) ((-137 . -608) 8728) ((-137 . -611) 8709) ((-137 . -1091) T) ((-137 . -102) T) ((-137 . -93) T) ((-136 . -1073) T) ((-136 . -488) 8690) ((-136 . -608) 8656) ((-136 . -611) 8637) ((-136 . -1091) T) ((-136 . -102) T) ((-136 . -93) T) ((-134 . -463) 8614) ((-134 . -611) 8598) ((-134 . -1031) 8582) ((-134 . -1091) T) ((-134 . -608) 8564) ((-134 . -102) T) ((-134 . -468) 8519) ((-133 . -844) T) ((-133 . -102) T) ((-133 . -608) 8501) ((-133 . -1091) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -720) T) ((-133 . -1102) T) ((-133 . -1031) 8483) ((-133 . -611) 8465) ((-132 . -1073) T) ((-132 . -488) 8446) ((-132 . -608) 8412) ((-132 . -611) 8393) ((-132 . -1091) T) ((-132 . -102) T) ((-132 . -93) T) ((-129 . -19) 8375) ((-129 . -644) 8357) ((-129 . -287) 8332) ((-129 . -285) 8307) ((-129 . -599) 8282) ((-129 . -609) NIL) ((-129 . -487) 8264) ((-129 . -102) T) ((-129 . -1091) T) ((-129 . -512) NIL) ((-129 . -308) NIL) ((-129 . -608) 8230) ((-129 . -1204) T) ((-129 . -34) T) ((-129 . -150) 8212) ((-129 . -844) T) ((-129 . -371) 8194) ((-128 . -838) T) ((-128 . -844) T) ((-128 . -1091) T) ((-128 . -608) 8161) ((-128 . -102) T) ((-128 . -367) T) ((-128 . -488) 8143) ((-128 . -611) 8125) ((-127 . -125) 8109) ((-127 . -1003) 8093) ((-127 . -34) T) ((-127 . -1204) T) ((-127 . -608) 8025) ((-127 . -308) 7963) ((-127 . -512) 7896) ((-127 . -1091) 7874) ((-127 . -102) 7852) ((-127 . -487) 7836) ((-127 . -119) 7820) ((-126 . -125) 7804) ((-126 . -1003) 7788) ((-126 . -34) T) ((-126 . -1204) T) ((-126 . -608) 7720) ((-126 . -308) 7658) ((-126 . -512) 7591) ((-126 . -1091) 7569) ((-126 . -102) 7547) ((-126 . -487) 7531) ((-126 . -119) 7515) ((-121 . -125) 7499) ((-121 . -1003) 7483) ((-121 . -34) T) ((-121 . -1204) T) ((-121 . -608) 7415) ((-121 . -308) 7353) ((-121 . -512) 7286) ((-121 . -1091) 7264) ((-121 . -102) 7242) ((-121 . -487) 7226) ((-121 . -119) 7210) ((-117 . -984) 7187) ((-117 . -1141) NIL) ((-117 . -1031) 7164) ((-117 . -611) 7094) ((-117 . -609) NIL) ((-117 . -1013) NIL) ((-117 . -903) NIL) ((-117 . -877) 7071) ((-117 . -842) NIL) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-117 . -844) NIL) ((-117 . -786) NIL) ((-117 . -785) NIL) ((-117 . -814) NIL) ((-117 . -879) NIL) ((-117 . -1204) T) ((-117 . -399) 7048) ((-117 . -634) 7025) ((-117 . -376) 7002) ((-117 . -285) 6953) ((-117 . -308) 6910) ((-117 . -512) 6818) ((-117 . -337) 6795) ((-117 . -242) T) ((-117 . -111) 6724) ((-117 . -1048) 6669) ((-117 . -289) T) ((-117 . -711) 6614) ((-117 . -641) 6559) ((-117 . -38) 6504) ((-117 . -306) T) ((-117 . -450) T) ((-117 . -171) T) ((-117 . -554) T) ((-117 . -914) T) ((-117 . -1209) T) ((-117 . -362) T) ((-117 . -232) NIL) ((-117 . -893) NIL) ((-117 . -230) 6481) ((-117 . -146) T) ((-117 . -144) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -102) T) ((-117 . -608) 6463) ((-117 . -1091) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1042) T) ((-117 . -1049) T) ((-117 . -1102) T) ((-117 . -720) T) ((-116 . -863) 6447) ((-116 . -914) T) ((-116 . -554) T) ((-116 . -289) T) ((-116 . -171) T) ((-116 . -611) 6419) ((-116 . -711) 6406) ((-116 . -1048) 6393) ((-116 . -111) 6378) ((-116 . -38) 6365) ((-116 . -450) T) ((-116 . -306) T) ((-116 . -1042) T) ((-116 . -1049) T) ((-116 . -1102) T) ((-116 . -720) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1091) T) ((-116 . -608) 6347) ((-116 . -102) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -641) 6334) ((-116 . -146) T) ((-113 . -844) T) ((-113 . -102) T) ((-113 . -608) 6316) ((-113 . -1091) T) ((-112 . -838) T) ((-112 . -844) T) ((-112 . -1091) T) ((-112 . -608) 6298) ((-112 . -102) T) ((-112 . -367) T) ((-112 . -655) T) ((-112 . -960) T) ((-112 . -609) 6280) ((-110 . -123) T) ((-110 . -371) 6262) ((-110 . -844) T) ((-110 . -150) 6244) ((-110 . -34) T) ((-110 . -1204) T) ((-110 . -608) 6226) ((-110 . -308) NIL) ((-110 . -512) NIL) ((-110 . -1091) T) ((-110 . -487) 6208) ((-110 . -609) 6190) ((-110 . -599) 6165) ((-110 . -285) 6140) ((-110 . -287) 6115) ((-110 . -644) 6097) ((-110 . -19) 6079) ((-110 . -102) T) ((-110 . -655) T) ((-109 . -608) 6061) ((-108 . -984) 6043) ((-108 . -1141) T) ((-108 . -611) 5993) ((-108 . -1031) 5953) ((-108 . -609) 5883) ((-108 . -1013) T) ((-108 . -903) NIL) ((-108 . -877) 5865) ((-108 . -842) T) ((-108 . -791) T) ((-108 . -788) T) ((-108 . -844) T) ((-108 . -786) T) ((-108 . -785) T) ((-108 . -814) T) ((-108 . -879) 5847) ((-108 . -1204) T) ((-108 . -399) 5829) ((-108 . -634) 5811) ((-108 . -376) 5793) ((-108 . -285) NIL) ((-108 . -308) NIL) ((-108 . -512) NIL) ((-108 . -337) 5775) ((-108 . -242) T) ((-108 . -111) 5709) ((-108 . -1048) 5659) ((-108 . -289) T) ((-108 . -711) 5609) ((-108 . -641) 5559) ((-108 . -38) 5509) ((-108 . -306) T) ((-108 . -450) T) ((-108 . -171) T) ((-108 . -554) T) ((-108 . -914) T) ((-108 . -1209) T) ((-108 . -362) T) ((-108 . -232) T) ((-108 . -893) NIL) ((-108 . -230) 5491) ((-108 . -146) T) ((-108 . -144) NIL) ((-108 . -130) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -608) 5434) ((-108 . -1091) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1042) T) ((-108 . -1049) T) ((-108 . -1102) T) ((-108 . -720) T) ((-105 . -1091) T) ((-105 . -608) 5416) ((-105 . -102) T) ((-103 . -125) 5400) ((-103 . -1003) 5384) ((-103 . -34) T) ((-103 . -1204) T) ((-103 . -608) 5316) ((-103 . -308) 5254) ((-103 . -512) 5187) ((-103 . -1091) 5165) ((-103 . -102) 5143) ((-103 . -487) 5127) ((-103 . -119) 5111) ((-99 . -471) T) ((-99 . -1102) T) ((-99 . -102) T) ((-99 . -608) 5093) ((-99 . -1091) T) ((-99 . -720) T) ((-99 . -285) 5072) ((-97 . -1091) T) ((-97 . -608) 5054) ((-97 . -102) T) ((-96 . -1073) T) ((-96 . -488) 5035) ((-96 . -608) 5001) ((-96 . -611) 4982) ((-96 . -1091) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1111) 4966) ((-91 . -487) 4950) ((-91 . -102) 4928) ((-91 . -1091) 4906) ((-91 . -512) 4839) ((-91 . -308) 4777) ((-91 . -608) 4709) ((-91 . -1204) T) ((-91 . -34) T) ((-91 . -107) 4693) ((-89 . -396) T) ((-89 . -608) 4675) ((-89 . -1204) T) ((-89 . -395) T) ((-88 . -384) T) ((-88 . -608) 4657) ((-88 . -1204) T) ((-88 . -395) T) ((-87 . -438) T) ((-87 . -608) 4639) ((-87 . -1204) T) ((-87 . -395) T) ((-86 . -439) T) ((-86 . -608) 4621) ((-86 . -1204) T) ((-86 . -395) T) ((-85 . -384) T) ((-85 . -608) 4603) ((-85 . -1204) T) ((-85 . -395) T) ((-84 . -384) T) ((-84 . -608) 4585) ((-84 . -1204) T) ((-84 . -395) T) ((-83 . -439) T) ((-83 . -608) 4567) ((-83 . -1204) T) ((-83 . -395) T) ((-82 . -439) T) ((-82 . -608) 4549) ((-82 . -1204) T) ((-82 . -395) T) ((-81 . -439) T) ((-81 . -608) 4531) ((-81 . -1204) T) ((-81 . -395) T) ((-81 . -611) 4472) ((-80 . -439) T) ((-80 . -608) 4454) ((-80 . -1204) T) ((-80 . -395) T) ((-79 . -439) T) ((-79 . -608) 4436) ((-79 . -1204) T) ((-79 . -395) T) ((-78 . -396) T) ((-78 . -608) 4418) ((-78 . -1204) T) ((-78 . -395) T) ((-77 . -439) T) ((-77 . -608) 4400) ((-77 . -1204) T) ((-77 . -395) T) ((-76 . -439) T) ((-76 . -608) 4382) ((-76 . -1204) T) ((-76 . -395) T) ((-75 . -396) T) ((-75 . -608) 4364) ((-75 . -1204) T) ((-75 . -395) T) ((-74 . -439) T) ((-74 . -608) 4346) ((-74 . -1204) T) ((-74 . -395) T) ((-73 . -382) T) ((-73 . -608) 4328) ((-73 . -1204) T) ((-73 . -395) T) ((-72 . -395) T) ((-72 . -1204) T) ((-72 . -608) 4310) ((-71 . -439) T) ((-71 . -608) 4292) ((-71 . -1204) T) ((-71 . -395) T) ((-70 . -382) T) ((-70 . -608) 4274) ((-70 . -1204) T) ((-70 . -395) T) ((-69 . -395) T) ((-69 . -1204) T) ((-69 . -608) 4256) ((-68 . -382) T) ((-68 . -608) 4238) ((-68 . -1204) T) ((-68 . -395) T) ((-67 . -382) T) ((-67 . -608) 4220) ((-67 . -1204) T) ((-67 . -395) T) ((-66 . -396) T) ((-66 . -608) 4202) ((-66 . -1204) T) ((-66 . -395) T) ((-65 . -384) T) ((-65 . -608) 4184) ((-65 . -1204) T) ((-65 . -395) T) ((-65 . -611) 4113) ((-64 . -439) T) ((-64 . -608) 4095) ((-64 . -1204) T) ((-64 . -395) T) ((-63 . -395) T) ((-63 . -1204) T) ((-63 . -608) 4077) ((-62 . -439) T) ((-62 . -608) 4059) ((-62 . -1204) T) ((-62 . -395) T) ((-61 . -396) T) ((-61 . -608) 4041) ((-61 . -1204) T) ((-61 . -395) T) ((-60 . -57) 4003) ((-60 . -34) T) ((-60 . -1204) T) ((-60 . -608) 3935) ((-60 . -308) 3873) ((-60 . -512) 3806) ((-60 . -1091) 3784) ((-60 . -102) 3762) ((-60 . -487) 3746) ((-58 . -19) 3730) ((-58 . -644) 3714) ((-58 . -287) 3691) ((-58 . -285) 3668) ((-58 . -599) 3645) ((-58 . -609) 3606) ((-58 . -487) 3590) ((-58 . -102) 3540) ((-58 . -1091) 3490) ((-58 . -512) 3423) ((-58 . -308) 3361) ((-58 . -608) 3273) ((-58 . -1204) T) ((-58 . -34) T) ((-58 . -150) 3257) ((-58 . -844) 3236) ((-58 . -371) 3220) ((-55 . -1091) T) ((-55 . -608) 3202) ((-55 . -102) T) ((-55 . -1031) 3184) ((-55 . -611) 3166) ((-51 . -1091) T) ((-51 . -608) 3148) ((-51 . -102) T) ((-50 . -616) 3132) ((-50 . -611) 3101) ((-50 . -641) 3075) ((-50 . -720) T) ((-50 . -1102) T) ((-50 . -1049) T) ((-50 . -1042) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1091) T) ((-50 . -608) 3057) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1031) 3041) ((-49 . -1091) T) ((-49 . -608) 3023) ((-49 . -102) T) ((-48 . -297) T) ((-48 . -611) 2956) ((-48 . -1031) 2899) ((-48 . -1091) T) ((-48 . -608) 2881) ((-48 . -102) T) ((-48 . -844) T) ((-48 . -512) 2847) ((-48 . -308) 2834) ((-48 . -27) T) ((-48 . -995) T) ((-48 . -242) T) ((-48 . -111) 2790) ((-48 . -1048) 2755) ((-48 . -289) T) ((-48 . -711) 2720) ((-48 . -641) 2685) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1042) T) ((-48 . -1049) T) ((-48 . -1102) T) ((-48 . -720) T) ((-48 . -38) 2650) ((-48 . -306) T) ((-48 . -450) T) ((-48 . -171) T) ((-48 . -554) T) ((-48 . -914) T) ((-48 . -1209) T) ((-48 . -362) T) ((-48 . -634) 2610) ((-48 . -1013) T) ((-48 . -609) 2555) ((-48 . -146) T) ((-48 . -232) T) ((-45 . -36) 2534) ((-45 . -599) 2459) ((-45 . -308) 2263) ((-45 . -512) 2055) ((-45 . -487) 1992) ((-45 . -285) 1917) ((-45 . -287) 1842) ((-45 . -605) 1821) ((-45 . -234) 1771) ((-45 . -107) 1721) ((-45 . -228) 1671) ((-45 . -1181) 1650) ((-45 . -281) 1600) ((-45 . -150) 1550) ((-45 . -34) T) ((-45 . -1204) T) ((-45 . -608) 1532) ((-45 . -1091) T) ((-45 . -102) T) ((-45 . -609) NIL) ((-45 . -644) 1482) ((-45 . -371) 1432) ((-45 . -844) NIL) ((-45 . -1139) 1382) ((-45 . -1003) 1332) ((-45 . -1242) 1282) ((-45 . -659) 1232) ((-44 . -417) 1216) ((-44 . -738) 1200) ((-44 . -714) T) ((-44 . -755) T) ((-44 . -111) 1179) ((-44 . -1048) 1163) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1091) T) ((-44 . -608) 1145) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -641) 1103) ((-44 . -711) 1087) ((-44 . -366) 1071) ((-40 . -341) 1045) ((-40 . -171) T) ((-40 . -611) 975) ((-40 . -720) T) ((-40 . -1102) T) ((-40 . -1049) T) ((-40 . -1042) T) ((-40 . -641) 920) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -608) 902) ((-40 . -1091) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1048) 847) ((-40 . -111) 776) ((-40 . -609) 760) ((-40 . -230) 737) ((-40 . -893) 689) ((-40 . -232) 661) ((-40 . -362) T) ((-40 . -1209) T) ((-40 . -914) T) ((-40 . -554) T) ((-40 . -711) 606) ((-40 . -38) 551) ((-40 . -450) T) ((-40 . -306) T) ((-40 . -289) T) ((-40 . -242) T) ((-40 . -367) NIL) ((-40 . -349) NIL) ((-40 . -1141) NIL) ((-40 . -144) 523) ((-40 . -401) NIL) ((-40 . -409) 495) ((-40 . -146) 467) ((-40 . -369) 439) ((-40 . -376) 416) ((-40 . -634) 355) ((-40 . -411) 332) ((-40 . -1031) 220) ((-40 . -718) 192) ((-31 . -1073) T) ((-31 . -488) 173) ((-31 . -608) 139) ((-31 . -611) 120) ((-31 . -1091) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -948) T) ((-30 . -608) 102) ((0 . |EnumerationCategory|) T) ((0 . -608) 84) ((0 . -1091) T) ((0 . -102) T) ((-1 . -1091) T) ((-1 . -608) 66) ((-1 . -102) T) ((-2 . |RecordCategory|) T) ((-2 . -608) 48) ((-2 . -1091) T) ((-2 . -102) T) ((-3 . |UnionCategory|) T) ((-3 . -608) 30) ((-3 . -1091) T) ((-3 . -102) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 96c0e49f..a2e84824 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,1139 +1,1006 @@
-(30 . 3440812766)
-(4402 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3442118605)
+(4403 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
- |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
- |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
- |AbelianSemiGroup| |AlgebraicallyClosedField&|
- |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&|
- |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst|
- |AlgebraicFunction| |Aggregate&| |Aggregate|
- |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&|
- |Algebra| |AlgFactor| |AlgebraicFunctionField|
+ |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
+ |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup|
+ |AlgebraicallyClosedField&| |AlgebraicallyClosedField|
+ |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace|
+ |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&|
+ |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate|
+ |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField|
|AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
- |AlgebraGivenByStructuralConstants| |AssociationList|
- |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
- |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any|
- |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity|
+ |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&|
+ |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any|
+ |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity|
|TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
- |OneDimensionalArrayFunctions2| |OneDimensionalArray|
- |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24|
- |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35|
- |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74|
- |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations|
- |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory|
- |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory|
- |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism|
- |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree|
- |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate|
- |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean|
- |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots|
- |BalancedPAdicInteger| |BalancedPAdicRational|
- |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate|
- |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate|
- |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
- |BinaryTree| |ByteBuffer| |Byte| |CancellationAbelianMonoid|
- |CachableSet| |CapsuleAst| |CardinalNumber|
- |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst|
- |CategoryConstructor| |Category| |CharacterClass| |CommonDenominator|
- |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero|
- |CharacteristicPolynomialPackage| |CharacteristicZero|
- |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation|
- |Collection&| |Collection| |CliffordAlgebra|
- |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage|
- |ColonAst| |Color| |CombinatorialFunction|
- |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst|
- |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory|
- |ComplexCategory&| |ComplexCategory| |ComplexFactorization|
- |ComplexFunctions2| |Complex| |ComplexPattern|
- |SubSpaceComponentProperty| |CommutativeRing| |Conduit|
- |ContinuedFraction| |Contour| |CoordinateSystems|
+ |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray|
+ |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30|
+ |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55|
+ |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9|
+ |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&|
+ |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&|
+ |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons|
+ |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&|
+ |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions|
+ |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |Bits| |BiModule|
+ |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots|
+ |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&|
+ |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&|
+ |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
+ |BinaryTree| |Byte| |ByteBuffer| |CancellationAbelianMonoid| |CachableSet|
+ |CapsuleAst| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2|
+ |CaseAst| |CategoryAst| |CategoryConstructor| |Category| |CharacterClass|
+ |CommonDenominator| |CombinatorialFunctionCategory| |Character|
+ |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero|
+ |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&|
+ |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst|
+ |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction|
+ |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator|
+ |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory|
+ |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex|
+ |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty|
+ |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |CoerceAst| |ComplexRootFindingPackage|
- |CyclicStreamTools| |ConstructorCall| |ConstructorCategory&|
- |ConstructorCategory| |ConstructorKind| |Constructor|
- |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
- |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
- |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
- |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType|
- |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
- |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType|
- |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage|
- |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database|
- |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion|
- |DefinitionAst| |ElementaryFunctionDefiniteIntegration|
- |RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
- |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
- |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
- |Dictionary| |DifferentialExtension&| |DifferentialExtension|
+ |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools|
+ |Constructor| |ConstructorCall| |ConstructorCategory&| |ConstructorCategory|
+ |ConstructorKind| |ComplexTrigonometricManipulations|
+ |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage|
+ |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType|
+ |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType|
+ |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
+ |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType|
+ |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType|
+ |d03fafAnnaType| |DataArray| |Database| |DoubleResultantPackage|
+ |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst|
+ |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration|
+ |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools|
+ |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix|
+ |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension|
|DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage|
- |DirectProductCategory&| |DirectProductCategory|
- |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
- |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
- |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
- |Domain| |DomainConstructor| |DirectProductMatrixModule|
- |DirectProductModule| |DifferentialPolynomialCategory&|
- |DifferentialPolynomialCategory| |DequeueAggregate|
+ |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&|
+ |DirectProductCategory| |DirectProduct| |DirectProductFunctions2|
+ |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate|
+ |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
+ |Domain| |DomainConstructor| |DirectProductMatrixModule| |DirectProductModule|
+ |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
+ |DequeueAggregate| |TopLevelDrawFunctions|
|TopLevelDrawFunctionsForCompiledFunctions|
- |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
- |DrawNumericHack| |TopLevelDrawFunctions|
- |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DrawOption|
- |DifferentialSparseMultivariatePolynomial|
+ |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack|
+ |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0|
+ |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial|
|DifferentialVariableCategory&| |DifferentialVariableCategory|
|e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
|e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|
- |ExtAlgBasis| |ElementaryFunction|
- |ElementaryFunctionStructurePackage|
+ |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage|
|ElementaryFunctionsUnivariateLaurentSeries|
|ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
|ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
|ElementaryFunctionCategory&| |ElementaryFunctionCategory|
- |EllipticFunctionsUnivariateTaylorSeries| |Eltable|
- |EltableAggregate&| |EltableAggregate| |EuclideanModularRing|
- |EntireRing| |Environment| |EigenPackage| |EquationFunctions2|
- |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1|
- |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1|
- |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace|
- |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2|
- |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain|
- |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit|
- |ExponentialExpansion| |ExpressionFunctions2|
- |ExpressionToUnivariatePowerSeries| |Expression|
- |ExpressionSpaceODESolver| |ExpressionTubePlot|
- |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions|
- |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory|
- |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
- |FiniteAbelianMonoidRing| |FlexibleArray|
- |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField|
- |FortranCode| |FourierComponent| |FortranCodePackage1|
- |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
- |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&|
- |FullyEvalableOver| |FortranExpression|
- |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&|
- |FunctionFieldCategory| |FiniteFieldCyclicGroup|
- |FiniteFieldCyclicGroupExtensionByPolynomial|
+ |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&|
+ |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment|
+ |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions|
+ |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1|
+ |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage|
+ |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage|
+ |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&|
+ |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
+ |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2|
+ |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver|
+ |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries|
+ |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup|
+ |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
+ |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&|
+ |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent|
+ |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2|
+ |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&|
+ |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&|
+ |FunctionFieldCategory| |FunctionFieldCategoryFunctions2|
+ |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial|
|FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
- |FiniteFieldHomomorphisms| |FiniteFieldCategory&|
- |FiniteFieldCategory| |FunctionFieldIntegralBasis|
- |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial|
- |FiniteFieldNormalBasisExtension| |FiniteField|
- |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2|
- |FiniteFieldPolynomialPackage|
+ |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory|
+ |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis|
+ |FiniteFieldNormalBasisExtensionByPolynomial|
+ |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial|
+ |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2|
|FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
- |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File|
- |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
- |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
- |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&|
- |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort|
- |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
- |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
- |FreeModuleCat| |FortranMatrixCategory|
- |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid|
- |FortranMachineTypeCategory| |FileName| |FileNameCategory|
- |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
- |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory|
- |FortranFunctionCategory| |FortranPackage| |FortranProgram|
- |FullPartialFractionExpansion| |FullyPatternMatchable|
- |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
- |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2|
- |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra|
- |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2|
- |FractionalIdeal| |FramedModule|
+ |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
+ |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite|
+ |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&|
+ |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra|
+ |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&|
+ |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage|
+ |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory|
+ |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid|
+ |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie|
+ |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat|
+ |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory|
+ |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion|
+ |FullyPatternMatchable| |FieldOfPrimeCharacteristic&|
+ |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem|
+ |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2|
+ |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo|
+ |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule|
|FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities|
- |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
- |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
- |FiniteSetAggregate&| |FiniteSetAggregate|
- |FunctionSpaceComplexIntegration| |FourierSeries|
- |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace|
+ |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&|
+ |FunctionSpace| |FunctionSpaceFunctions2|
+ |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries|
+ |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2|
+ |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration|
|FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
|FunctionSpaceReduce| |FortranScalarType|
- |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate|
- |FortranType| |FunctionCalled| |FortranVectorCategory|
- |FortranVectorFunctionCategory| |GaloisGroupFactorizer|
- |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
- |GaloisGroupUtilities| |GaussianFactorizationPackage|
+ |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate|
+ |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory|
+ |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities|
+ |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities|
+ |GaussianFactorizationPackage| |GroebnerPackage|
|EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
- |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain|
- |GenericNonAssociativeAlgebra|
- |GeneralDistributedMultivariatePolynomial| |GenExEuclid|
- |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
+ |GroebnerInternalPackage| |GcdDomain&| |GcdDomain|
+ |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial|
+ |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
|GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
- |GeneralModulePolynomial| |GosperSummationMethod|
- |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode|
- |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule|
- |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries|
- |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable|
- |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
- |HomogeneousDirectProduct| |HeadAst| |Heap|
- |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
- |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo|
- |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory|
- |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
+ |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet|
+ |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage|
+ |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group|
+ |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet|
+ |Pi| |HasAst| |HashTable| |HallBasis|
+ |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct|
+ |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
+ |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname|
+ |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor|
+ |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
|IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases|
- |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools|
- |IndexCard| |InnerCommonDenominator| |PolynomialIdeals|
- |IdealDecompositionPackage| |Identifier|
- |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid|
- |IndexedDirectProductCategory|
- |IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup|
- |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
- |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst|
- |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList|
- |InnerMatrixLinearAlgebraFunctions|
- |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst|
- |InAst| |InputByteConduit&| |InputByteConduit|
+ |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard|
+ |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage|
+ |Identifier| |IndexedDirectProductAbelianGroup|
+ |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
+ |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid|
+ |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable|
+ |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
+ |InnerIndexedTwoDimensionalArray| |IndexedList|
+ |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions|
+ |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit|
|InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps|
|IndexedExponents| |InnerNumericEigenPackage| |InetClientStreamSocket|
- |Infinity| |InputFormFunctions1| |InputForm|
+ |Infinity| |InputForm| |InputFormFunctions1|
|InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage|
|InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField|
|InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&|
- |IntegerNumberSystem| |Int16| |Int32| |Int8| |InnerTable|
- |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
- |IntervalCategory| |IntegralDomain&| |IntegralDomain|
- |ElementaryIntegration| |IntegerFactorizationPackage|
- |IntegrationFunctionsTable| |GenusZeroIntegration|
- |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
- |TranscendentalHermiteIntegration| |Integer|
+ |IntegerNumberSystem| |Integer| |Int16| |Int32| |Int8| |InnerTable|
+ |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory|
+ |IntegralDomain&| |IntegralDomain| |ElementaryIntegration|
+ |IntegerFactorizationPackage| |IntegrationFunctionsTable|
+ |GenusZeroIntegration| |IntegerNumberTheoryFunctions|
+ |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration|
|AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
|PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
|RationalFunctionIntegration| |Interval|
|IntegerSolveLinearPolynomialEquation| |IntegrationTools|
- |TranscendentalIntegration| |InverseLaplaceTransform|
- |InputOutputByteConduit| |InputOutputBinaryFile| |IOMode| |IP4Address|
- |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage|
- |IntegrationResultToFunction| |IntegrationResultFunctions2|
- |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField|
- |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
- |InternalRationalUnivariateRepresentationPackage| |IsAst|
- |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
- |InnerTaylorSeries| |InfiniteTupleFunctions2|
- |InfiniteTupleFunctions3| |InnerTrigonometricManipulations|
- |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate|
- |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile|
- |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel|
- |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom|
- |KleeneTrivalentLogic| |ConvertibleFrom| |LeftAlgebra&| |LeftAlgebra|
- |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial|
- |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst|
- |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory|
- |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&|
- |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
- |RationalFunctionLimitPackage| |LinearDependence|
- |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
- |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule|
- |ListMonoidOps| |LinearAggregate&| |LinearAggregate|
- |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
+ |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit|
+ |InputOutputBinaryFile| |IOMode| |IP4Address| |InnerPAdicInteger|
+ |InnerPrimeField| |InternalPrintPackage| |IntegrationResult|
+ |IntegrationResultFunctions2| |IntegrationResultToFunction| |IntegerRoots|
+ |IrredPolyOverFiniteField| |IntegrationResultRFToFunction|
+ |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage|
+ |IsAst| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
+ |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
+ |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector|
+ |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst|
+ |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&|
+ |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo|
+ |Kovacic| |CoercibleFrom| |KleeneTrivalentLogic| |ConvertibleFrom|
+ |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform|
+ |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination|
+ |LetAst| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction|
+ |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library|
+ |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage|
+ |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver|
+ |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal|
+ |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&|
+ |LinearAggregate| |Localize| |ElementaryFunctionLODESolver|
+ |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1|
|LinearOrdinaryDifferentialOperator2|
|LinearOrdinaryDifferentialOperatorCategory&|
|LinearOrdinaryDifferentialOperatorCategory|
|LinearOrdinaryDifferentialOperatorFactorizer|
- |LinearOrdinaryDifferentialOperator|
- |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize|
+ |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic|
|LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
- |ListAggregate| |LinearSystemMatrixPackage1|
- |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage|
- |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&|
- |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma|
- |MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
- |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1|
- |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2|
- |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions|
+ |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1|
+ |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord|
+ |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix|
+ |MacroAst| |Magma| |MappingPackageInternalHacks1|
+ |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst|
+ |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&|
+ |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions|
|Matrix| |StorageEfficientMatrixOperations| |Maybe|
- |MultiVariableCalculusFunctions| |MatrixCommonDenominator|
- |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer|
- |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
- |MachineFloat| |ModularHermitianRowReduction| |MachineInteger|
- |MakeBinaryCompiledFunction| |MakeCachableSet|
- |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
- |MakeUnaryCompiledFunction| |MultivariateLifting|
- |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField|
- |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&|
- |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&|
- |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&|
- |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2|
- |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial|
- |MPolyCatRationalFunctionFactorizer| |MRationalFactorize|
- |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset|
- |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory|
- |MultivariateFactorize| |MultivariateSquareFree|
- |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
+ |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex|
+ |MultiDictionary| |ModularDistinctDegreeFactorizer|
+ |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat|
+ |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction|
+ |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
+ |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator|
+ |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
+ |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&|
+ |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
+ |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools|
+ |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer|
+ |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer|
+ |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset|
+ |MultisetAggregate| |MoreSystemCommands| |MergeThing|
+ |MultivariateTaylorSeriesCategory| |MultivariateFactorize|
+ |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
|NagPolynomialRootsPackage| |NagRootFindingPackage|
|NagSeriesSummationPackage| |NagIntegrationPackage|
|NagOrdinaryDifferentialEquationsPackage|
|NagPartialDifferentialEquationsPackage| |NagInterpolationPackage|
- |NagFittingPackage| |NagOptimisationPackage|
- |NagMatrixOperationsPackage| |NagEigenPackage|
- |NagLinearEquationSolvingPackage| |NagLapack|
- |NagSpecialFunctionsPackage| |NAGLinkSupportPackage|
- |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&|
- |NonAssociativeRing| |NumericComplexEigenPackage|
- |NumericContinuedFraction| |NonCommutativeOperatorDivision|
- |NetworkClientSocket| |NumberFieldIntegralBasis|
- |NumericalIntegrationProblem| |NonLinearSolvePackage|
- |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1|
- |None| |NormInMonogenicAlgebra| |NormalizationPackage|
+ |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage|
+ |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack|
+ |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&|
+ |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing|
+ |NumericComplexEigenPackage| |NumericContinuedFraction|
+ |NonCommutativeOperatorDivision| |NetworkClientSocket|
+ |NumberFieldIntegralBasis| |NumericalIntegrationProblem|
+ |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver|
+ |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage|
|NormRetractPackage| |NPCoef| |NumericRealEigenPackage|
- |NewSparseMultivariatePolynomial|
- |NewSparseUnivariatePolynomialFunctions2|
- |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions|
+ |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial|
+ |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions|
|NormalizedTriangularSetCategory| |Numeric| |NumberFormats|
- |NumericalIntegrationCategory|
- |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature|
- |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid|
- |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
- |OrderedCancellationAbelianMonoid| |OctonionCategory&|
- |OctonionCategory| |OctonionCategoryFunctions2| |Octonion|
+ |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations|
+ |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup|
+ |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
+ |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid|
+ |Octonion| |OctonionCategoryFunctions2|
|OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE|
- |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
- |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage|
- |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem|
- |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE|
- |SystemODESolver| |ODETools| |OrderedDirectProduct|
+ |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration|
+ |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE|
+ |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE|
+ |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct|
|OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing|
- |OrderlyDifferentialVariable| |OrderedFreeMonoid|
- |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice|
- |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError|
- |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath|
- |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
- |OnePointCompletionFunctions2| |OnePointCompletion|
- |OperatorCategory&| |OperatorCategory| |Operator| |OperationsQuery|
+ |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain|
+ |OpenMath| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding|
+ |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath|
+ |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate|
+ |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2|
+ |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery|
|OperatorSignature| |NumericalOptimizationCategory|
|AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
- |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
- |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
- |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
- |UnivariateSkewPolynomialCategory|
- |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
- |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
- |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&|
- |OutputByteConduit| |OutputBinaryFile| |OutputForm| |OutputPackage|
- |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants|
- |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger|
- |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette|
- |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
- |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2|
- |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2|
- |ParametricSurface| |PartitionsAndPermutations| |Patternable|
- |PatternMatchListResult| |PatternMatchable| |PatternMatch|
- |PatternMatchResultFunctions2| |PatternMatchResult|
- |PatternFunctions1| |PatternFunctions2| |Pattern|
- |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
+ |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&|
+ |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps|
+ |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial|
+ |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts|
+ |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile|
+ |OutputForm| |OrderedVariableList| |OrdinaryWeightedPolynomials|
+ |PadeApproximants| |PadeApproximantPackage| |PAdicInteger|
+ |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair|
+ |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
+ |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve|
+ |Parser| |ParametricSurfaceFunctions2| |ParametricSurface|
+ |PartitionsAndPermutations| |Patternable| |PatternMatchListResult|
+ |PatternMatchable| |PatternMatch| |PatternMatchResult|
+ |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1|
+ |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
|PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
|AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
|PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree|
- |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
- |PolynomialFactorizationByRecursion|
+ |Permutation| |Permanent| |PermutationCategory| |PermutationGroup|
+ |PrimeField| |PolynomialFactorizationByRecursion|
|PolynomialFactorizationByRecursionUnivariate|
|PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
- |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational|
- |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage|
- |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner|
- |PiCoercions| |PrincipalIdealDomain| |PositiveInteger|
- |PolynomialInterpolationAlgorithms| |PolynomialInterpolation|
- |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot|
- |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions|
- |PatternMatchPushDown| |PatternMatchFunctionSpace|
+ |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools|
+ |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage|
+ |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions|
+ |PrincipalIdealDomain| |PolynomialInterpolation|
+ |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot|
+ |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions|
+ |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace|
|PatternMatchIntegerNumberSystem| |PatternMatchKernel|
|PatternMatchListAggregate| |PatternMatchPolynomialCategory|
- |FunctionSpaceAttachPredicates| |AttachPredicates|
- |PatternMatchQuotientFieldCategory| |PatternMatchSymbol|
- |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point|
- |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2|
- |PolynomialToUnivariatePolynomial| |PolynomialCategory&|
- |PolynomialCategory| |PolynomialCategoryQuotientFunctions|
- |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots|
- |PortNumber| |PlottablePlaneCurveCategory|
- |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2|
- |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement|
- |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product|
- |Property| |PropositionalFormula| |PropositionalLogic|
- |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst|
- |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
- |PlottableSpaceCurveCategory| |PolynomialSetCategory&|
- |PolynomialSetCategory| |PolynomialSetUtilitiesPackage|
- |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory|
- |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions|
- |PushVariables| |PAdicWildFunctionFieldIntegralBasis|
- |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage|
- |QueryEquation| |QuotientFieldCategoryFunctions2|
- |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm|
- |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&|
- |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion|
- |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField|
- |RadixExpansion| |RadixUtilities| |RandomNumberSource|
- |RationalFactorize| |RationalRetractions| |RecursiveAggregate&|
- |RecursiveAggregate| |RealClosedField&| |RealClosedField|
- |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE|
- |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor|
- |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant|
- |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference|
- |RegularTriangularSet| |RepresentationPackage1|
- |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage|
+ |AttachPredicates| |FunctionSpaceAttachPredicates|
+ |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools|
+ |PolynomialNumberTheoryFunctions| |Point| |PolToPol|
+ |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2|
+ |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory|
+ |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting|
+ |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing|
+ |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2|
+ |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
+ |PrintPackage| |Product| |Property| |PropositionalFormula|
+ |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence|
+ |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
+ |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory|
+ |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
+ |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage|
+ |PartialTranscendentalFunctions| |PushVariables|
+ |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2|
+ |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&|
+ |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm|
+ |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&|
+ |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&|
+ |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities|
+ |RandomNumberSource| |RationalFactorize| |RationalRetractions|
+ |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&|
+ |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem|
+ |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions|
+ |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage|
+ |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder|
+ |Reference| |RegularTriangularSet| |RadicalEigenPackage|
+ |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
|RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result|
|ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage|
- |RandomFloatDistributions| |RationalFunctionFactor|
- |RationalFunctionFactorizer| |RationalFunction| |RGBColorModel|
- |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&|
- |Ring| |RationalInterpolation| |RectangularMatrixCategory&|
- |RectangularMatrixCategory| |RectangularMatrix|
- |RectangularMatrixCategoryFunctions2| |RightModule| |Rng|
- |RealNumberSystem&| |RealNumberSystem|
- |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
- |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
+ |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor|
+ |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain|
+ |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation|
+ |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix|
+ |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&|
+ |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral|
+ |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
|RepeatAst| |RealRootCharacterizationCategory&|
|RealRootCharacterizationCategory| |RegularSetDecompositionPackage|
|RegularTriangularSetCategory&| |RegularTriangularSetCategory|
- |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled|
- |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage|
- |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
- |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet|
- |SpadSyntaxCategory| |SortedCache| |Scope|
+ |RegularTriangularSetGcdPackage| |RestrictAst| |RewriteRule| |RuleCalled|
+ |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension|
+ |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor|
+ |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope|
|StructuralConstantsPackage| |SequentialDifferentialPolynomial|
- |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst|
- |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
- |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&|
- |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
- |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
- |SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
- |SquareFreeRegularTriangularSetGcdPackage|
- |SquareFreeRegularTriangularSetCategory|
- |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
- |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst|
- |ElementaryFunctionSign| |RationalFunctionSign| |Signature|
- |SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
- |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
- |SmithNormalForm| |SparseMultivariatePolynomial|
- |SparseMultivariateTaylorSeries|
- |SquareFreeNormalizedTriangularSetCategory|
- |PolynomialSolveByFormulas| |RadicalSolvePackage|
- |TransSolvePackageService| |TransSolvePackage| |SortPackage|
- |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
+ |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst|
+ |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory|
+ |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate|
+ |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression|
+ |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram|
+ |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage|
+ |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions|
+ |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
+ |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign|
+ |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate|
+ |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm|
+ |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries|
+ |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas|
+ |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage|
+ |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
|SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory|
|SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
|StringAggregate| |SquareFreeRegularSetDecompositionPackage|
- |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
- |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
- |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
- |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
- |StreamTranscendentalFunctionsNonCommutative|
- |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
- |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries|
- |FunctionSpaceSum| |RationalFunctionSum|
- |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer|
- |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries|
+ |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate|
+ |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream|
+ |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory|
+ |String| |StringTable| |StreamTaylorSeriesOperations|
+ |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative|
+ |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst|
+ |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum|
+ |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2|
+ |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries|
|SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions|
- |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax|
- |SystemInteger| |SystemNonNegativeInteger| |SystemSolvePackage|
- |System| |TableauxBumpers| |Tableau| |Table| |TangentExpansions|
- |TableAggregate&| |TableAggregate| |TabulatedComputationPackage|
- |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign|
- |TopLevelThreeSpace| |TranscendentalFunctionCategory&|
- |TranscendentalFunctionCategory| |Tree|
+ |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger|
+ |SystemNonNegativeInteger| |SystemSolvePackage| |System| |TableauxBumpers|
+ |Table| |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate|
+ |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1|
+ |TextFile| |ToolsForSign| |TopLevelThreeSpace|
+ |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree|
|TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
|TrigonometricManipulations| |TriangularMatrixOperations|
- |TranscendentalManipulations| |TriangularSetCategory&|
- |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools|
- |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering|
- |UserDefinedVariableOrdering| |UniqueFactorizationDomain&|
- |UniqueFactorizationDomain| |UInt16| |UInt32| |UInt8|
- |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory|
+ |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&|
+ |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize|
+ |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
+ |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32|
+ |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2|
+ |UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
- |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
- |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment|
- |UnivariatePolynomialFunctions2|
- |UnivariatePolynomialCommonDenominator|
+ |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment|
+ |UniversalSegmentFunctions2| |UnivariatePolynomial|
+ |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator|
|UnivariatePolynomialDecompositionPackage|
|UnivariatePolynomialDivisionPackage|
- |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial|
- |UnivariatePolynomialCategoryFunctions2|
- |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory|
+ |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&|
+ |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2|
|UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
- |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2|
- |UnivariatePuiseuxSeriesCategory|
+ |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries|
+ |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory|
|UnivariatePuiseuxSeriesConstructorCategory&|
|UnivariatePuiseuxSeriesConstructorCategory|
- |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries|
- |UnivariatePuiseuxSeriesWithExponentialSingularity|
- |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate|
+ |UnivariatePuiseuxSeriesConstructor|
+ |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&|
+ |UnaryRecursiveAggregate| |UnivariateTaylorSeries|
|UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
- |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries|
- |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable|
- |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector|
- |TwoDimensionalViewport| |ThreeDimensionalViewport|
- |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&|
- |VectorSpace| |WeierstrassPreparation|
- |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst|
- |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra|
- |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra|
- |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat|
- |XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
+ |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver|
+ |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory|
+ |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport|
+ |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&|
+ |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis|
+ |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet|
+ |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&|
+ |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial|
+ |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
- |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |f04faf| |quotedOperators| |quickSort|
- |algebraicVariables| |create| |bindings| |hasHi| |s18aef| |surface|
- |useEisensteinCriterion?| |halfExtendedResultant2|
- |genericLeftTraceForm| |permutations| |enterPointData| |isOpen?|
- |over| |balancedFactorisation| |semiSubResultantGcdEuclidean1|
- |explicitlyEmpty?| |prevPrime| |An| |d02raf| |resetNew| |shufflein|
- |cosh2sech| |critT| |firstUncouplingMatrix| |rootNormalize| |cCos|
- |setColumn!| |separateDegrees| |sort| |diag| |tubeRadius|
- |sizeMultiplication| |factorials| |showAll?| |lfextlimint|
- |generalSqFr| |leftOne| |karatsubaOnce| |exprToXXP| |FormatArabic|
- |univariateSolve| |radicalRoots| |LiePolyIfCan| |pile| |fortran|
- |lookup| |leftFactor| |continuedFraction| |intersect| |subst|
- |setIntersection| |deleteProperty!| |freeOf?|
- |cyclotomicDecomposition| |s17dcf| |Ei| |cyclicCopy| |chvar| |e04jaf|
- |identityMatrix| |aQuadratic| |setUnion| |nthCoef| |fracPart|
- |coerceL| |minColIndex| |iicos| |powers| |leastAffineMultiple|
- |leftExactQuotient| |mappingAst| |viewport2D| |random| |apply|
- |leftUnits| |d01alf| |overlabel| |randomR| |mapExponents|
- |coerceListOfPairs| |currentEnv| |seriesSolve| |nthFlag| |generators|
- |nil| |cothIfCan| |e02ahf| |ellipticCylindrical| |showAllElements|
- |complexSolve| |makeprod| |monomial| |linearAssociatedLog|
- |fortranDoubleComplex| |vspace| |rotate!| |size| |extract!|
- |createThreeSpace| |call| |e02daf| |ignore?| |univcase| |multivariate|
- |BasicMethod| |subCase?| |nextPrimitivePoly| |lazyPrem| |binaryTree|
- |selectOrPolynomials| |quasiMonic?| |startTableGcd!| |printHeader|
- |sup| |saturate| |variables| |andOperands| |atanhIfCan| |approximate|
- |probablyZeroDim?| |objects| |function| |deleteRoutine!|
- |lastSubResultantElseSplit| |extractIndex| |selectIntegrationRoutines|
- |drawStyle| |complex| |id| |selectAndPolynomials| |tab| |divide|
- |orthonormalBasis| |base| |first| |twist| |someBasis| |rightMult|
- |fortranLiteralLine| |readByte!| |d01ajf| |complex?| |nthRootIfCan|
- |depth| |quadratic?| |mapBivariate| |eval| |rest| |vconcat|
- |multinomial| |solid?| |insertTop!| |lyndonIfCan| |leftRemainder|
- |clipPointsDefault| |logIfCan| |table| |normalizeAtInfinity| |modulus|
- |substitute| |close| RF2UTS |rationalApproximation|
- |halfExtendedSubResultantGcd1| |bumprow| |bumptab| |iidsum|
- |deepExpand| |new| |fTable| |presuper| |removeDuplicates| |obj|
- |magnitude| |c06eaf| |invertibleSet| |rootsOf| |setPrologue!| |search|
- |taylor| |tubeRadiusDefault| |Frobenius| |repSq| |getVariableOrder|
- |dualSignature| |remove| |iterationVar| |cache| |tanNa| |display|
- |constant?| |LagrangeInterpolation| |script| BY |laurent| |palgextint|
- |nullity| |pointColorPalette| |dmp2rfi| |generalizedEigenvector|
- |makingStats?| |cycleEntry| |intermediateResultsIF| |unmakeSUP|
- |constant| |tower| |puiseux| |nextPartition| |cosSinInfo|
- |tableForDiscreteLogarithm| |lazyVariations| |last| |pascalTriangle|
- |computeCycleEntry| |restorePrecision| |dioSolve| |leadingIndex|
- |point| |iitan| |selectODEIVPRoutines| |compactFraction| |chiSquare|
- |assoc| |swap| |infinityNorm| |fortranLiteral| |leftGcd| |f01rdf|
- |tex| |inv| |rubiksGroup| |seed| |minimumDegree| |Lazard|
- |readUInt32!| |viewpoint| |squareTop| |setTex!| |factorAndSplit|
- |d01akf| |ground?| |s17ajf| |strongGenerators| |difference|
- |makeViewport2D| |readUInt16!| |input| |possiblyNewVariety?|
- |harmonic| |coth2tanh| |expenseOfEvaluation| |symbol?| |ground|
- |series| |iisin| |listexp| |curveColor| |xCoord| |readInt32!|
- |library| |Beta| |showTypeInOutput| |limitedint| |f02agf| |mapmult|
- |setleft!| |maxIndex| |leadingMonomial| |index?| |complexNumeric|
- |e02baf| |region| |previous| |lcm| |readInt16!| |c06gqf| |connect|
- |sh| |unparse| |viewPosDefault| |updatD| |positiveRemainder|
- |leadingCoefficient| |selectOptimizationRoutines| |rules| |minus!|
- |factorFraction| |roughBase?| |minPoly| |character?|
- |resetAttributeButtons| UP2UTS |eq?| |kernels| |primitiveMonomials|
- |uniform01| |left| |expPot| |minimalPolynomial| |append| |replace|
- |setErrorBound| |viewPhiDefault| |rootProduct| |cyclicEntries|
- |atanIfCan| |univariate| |min| |reductum| |right| |startStats!|
- |postfix| |untab| |gcd| |neglist| |set| |reflect| |makeVariable|
- |dimensionOfIrreducibleRepresentation| |mainMonomials| |prem|
- |splitNodeOf!| |jacobi| |mainSquareFreePart| |false| |exponential1|
- |skewSFunction| |insert!| |rotatey| |rightLcm| |normalise| |sum|
- |LowTriBddDenomInv| |makeSeries| |complexEigenvalues|
- |resultantEuclideannaif| |contract| |squareFreePrim|
- |symmetricTensors| |ref| |internalSubPolSet?| |zeroVector|
- |expextendedint| |factor| |changeThreshhold| |newSubProgram| |imagI|
- |debug3D| |getBadValues| |noKaratsuba| |integralBasisAtInfinity|
- |monicRightFactorIfCan| |arguments| |sqrt| |roman| |exactQuotient!|
- |innerint| |trim| |maximumExponent| |LazardQuotient| |cyclic?|
- |LyndonBasis| |s17dlf| |basisOfRightAnnihilator| |gcdcofactprim|
- |real| |e02zaf| |maxrank| |imaginary| |sign| |explogs2trigs| |lp|
- |nullary| |removeSinhSq| |interReduce| |imag| |pseudoRemainder|
- |numericalIntegration| |semiSubResultantGcdEuclidean2| |ptree| |cAcos|
- |rotatex| |LyndonWordsList| |numericalOptimization| |cycle|
- |directProduct| |singular?| |completeHermite| |noLinearFactor?|
- |s18aff| |sort!| |setFieldInfo| |baseRDEsys| |getProperty| |integral|
- |showSummary| |factorsOfDegree| |c05adf| |branchPointAtInfinity?|
- |zoom| |clearTheSymbolTable| |iibinom| |whileLoop| |jacobian|
- |closed?| |rotatez| |number?| |brace| |iiacot| |lfinfieldint| |df2mf|
- |hash| |leftExtendedGcd| |isPower| |hdmpToDmp| |printStats!|
- |showAttributes| |destruct| |tableau| |makeSUP| |factorGroebnerBasis|
- |square?| |createNormalPoly| |show| |count| |acothIfCan| |decimal|
- |fi2df| |f04adf| |paren| |symbol| |objectOf| |LiePoly| = |lagrange|
- |decreasePrecision| |s19aaf| |sPol| |OMputEndObject| |algDsolve|
- |OMsupportsCD?| |expression| |bombieriNorm| |leastPower| |diff|
- |conical| |trace| |lo| |realZeros| |clearTheFTable|
- |numberOfImproperPartitions| |integer| |subSet| |infiniteProduct|
- |remainder| |unrankImproperPartitions0| < |internalAugment| |exquo|
- |sylvesterMatrix| |monomial?| |incr| |normal01| |doubleComplex?|
- |gderiv| |space| |powern| |outputSpacing| > |div| |extendedint|
- |limitedIntegrate| |OMgetEndObject| |rightUnit| |plotPolar| |integer?|
- |nextColeman| |goto| |collectQuasiMonic| |read!| <= |quo| |OMgetType|
- |operator| |crushedSet| |purelyAlgebraicLeadingMonomial?| |OMsend|
- |radicalEigenvalues| |iroot| |typeLists| |groebSolve| >= |label|
- |rootOfIrreduciblePoly| |positive?| |getRef| |internal?| |addiag|
- |readLine!| |fortranDouble| |eigenMatrix| |yCoordinates| |rem| |cSech|
- |root?| |numberOfIrreduciblePoly| |factorByRecursion| |limit| |trigs|
- |sumOfDivisors| |flexible?| |getDatabase| |setStatus|
- |rightFactorIfCan| |check| |resize| |upperCase!| |tanSum| |operation|
- |exprex| + |cCoth| |definingInequation| |algintegrate| |traverse|
- |generalizedContinuumHypothesisAssumed| |setEpilogue!| |overlap|
- |stronglyReduced?| - |parent| |getCode| |besselJ| |finiteBasis|
- |besselY| |integralCoordinates| |f01ref| |style| / |maxint|
- |preprocess| |lexico| |wholeRagits| |moebius| |satisfy?|
- |createLowComplexityNormalBasis| |showTheFTable| |principal?|
- |shiftRoots| |splitConstant| |push| |redPo| |OMputSymbol|
- |constructor| |unitNormal| |mathieu12| |swap!| |listLoops|
- |beauzamyBound| |component| |resultantReduit| |c06gbf| |c06gsf|
- |isAbsolutelyIrreducible?| |perfectNthPower?| |OMputString| |s14aaf|
- |removeZeroes| |option| |monomials| |element?| |totalLex| |Si|
- |closedCurve?| |fortranLinkerArgs| |OMgetEndAttr|
- |internalLastSubResultant| |primintegrate| |coefficients| |f02fjf|
- |indicialEquations| |jacobiIdentity?| |nothing| |singRicDE|
- |createMultiplicationTable| |subNodeOf?| |packageCall| |ratDsolve|
- |OMgetString| |lfunc| |listConjugateBases| |UP2ifCan| |rightRemainder|
- |latex| |subspace| |inverse| |tracePowMod| |iiacsch| |padicallyExpand|
- |screenResolution3D| |realElementary| |besselI| |normal?| |mapSolve|
- |kroneckerDelta| |nthExpon| |janko2| |highCommonTerms| |updateStatus!|
- |lyndon?| |removeCosSq| |cPower| |quoted?| |bag| |quadratic|
- |euclideanSize| |hitherPlane| |groebner| |pointSizeDefault|
- |prolateSpheroidal| |divergence| |outputList| |monicLeftDivide|
- |getMeasure| |rightTrim| |reverseLex| |numberOfDivisors|
- |boundOfCauchy| |asechIfCan| |trailingCoefficient| |e02gaf|
- |monomialIntPoly| |meshFun2Var| |e01daf| |mix| |euler| |leftTrim|
- |bivariatePolynomials| |aQuartic| |complexLimit| |commonDenominator|
- |distFact| |hspace| |rootSplit| |createIrreduciblePoly| |elliptic|
- |unvectorise| |subNode?| |partialNumerators| |newLine| |coordinate|
- |semiResultantEuclidean2| |readIfCan!| |singularAtInfinity?|
- |numberOfComputedEntries| |null?| |normalElement| |expandPower|
- |interval| |c06ecf| |socf2socdf| |shuffle| |leftTrace|
- |numberOfFractionalTerms| |select!| |generalizedEigenvectors|
- |OMopenString| |OMputEndAtp| |bat1| |acosIfCan| |quasiRegular|
- |sqfrFactor| |Lazard2| |solveLinearPolynomialEquation|
- |transcendentalDecompose| |delta| |OMreadFile| |internalZeroSetSplit|
- |ramifiedAtInfinity?| |denominator| |mapUnivariate| |callForm?|
- |choosemon| |quasiComponent| |move| |qelt| |genericRightDiscriminant|
- |li| |linear| |inR?| |areEquivalent?| |prepareDecompose| |fintegrate|
- |wordInStrongGenerators| |qsetelt| |torsion?| |term?|
- |makeYoungTableau| |submod| |makeResult| |f01qdf| |truncate|
- |pleskenSplit| |supersub| |mvar| |identity| |s17agf| |or?| |xRange|
- |antiCommutative?| |makeTerm| |polynomial| |gcdPolynomial| |basicSet|
- |arity| |bat| |binaryFunction| |axesColorDefault| |measure|
- |BumInSepFFE| |yRange| |lazyPquo| |curve?| |consnewpol| |graphState|
- |basisOfRightNucleus| |complexRoots| |blankSeparate| |linearMatrix|
- |iprint| |OMconnInDevice| |zRange| |recolor| |createRandomElement|
- |mapUp!| |besselK| |exists?| |frobenius| |leftScalarTimes!| |map!|
- |chineseRemainder| |Hausdorff| |bivariateSLPEBR| |largest| |realSolve|
- |hi| |cAcsch| |e02bdf| |has?| |maxPoints3D| |d03faf| |qsetelt!|
- |rootBound| |solve1| |numberOfMonomials| |fibonacci| |errorInfo|
- |lambda| |cycles| |collectUnder| |cycleElt| |tanhIfCan| |e01bhf| |po|
- |c05nbf| |scanOneDimSubspaces| |factorList| |quasiAlgebraicSet|
- |even?| |univariatePolynomials| |functionIsFracPolynomial?| |float?|
- |column| |upperCase?| |functionIsContinuousAtEndPoints| |cardinality|
- |keys| |outputForm| |tubePointsDefault| |f2df| |OMsetEncoding|
- |psolve| |norm| |tanh2trigh| |term| |exQuo| |conjugate|
- |principalAncestors| |prologue| |bipolar| |generalInfiniteProduct|
- |OMread| |quasiMonicPolynomials| |curve| |factorial|
- |rewriteIdealWithQuasiMonicGenerators| |deepestTail| |qfactor|
- |perspective| |quadraticNorm| |cAtan| |rischDE| |mainExpression|
- |iiacoth| |integralLastSubResultant| |useSingleFactorBound?|
- |tanh2coth| |sorted?| |pastel| |test| |diagonal?| |purelyAlgebraic?|
- |createPrimitiveElement| |clearTheIFTable| |lllp| |acscIfCan|
- |primextendedint| |insertMatch| |f04atf| |elements| |odd?|
- |setVariableOrder| |variationOfParameters| |diagonals| |moduloP|
- |OMputAttr| |simplifyExp| |polyred| |cycleLength| |outlineRender|
- |generate| |biRank| |clearTable!| |operators| |monomRDE| |content|
- |yellow| |fortranComplex| |squareFreePolynomial| |node?| |prefix|
- |semiResultantEuclideannaif| |multiEuclideanTree| |irreducible?|
- |reorder| |plus!| |antiAssociative?| |rightDiscriminant|
- |cRationalPower| |list?| |hexDigit?| |d02ejf|
- |inverseIntegralMatrixAtInfinity| |leftPower| |c06fqf| |OMgetEndAtp|
- |numFunEvals3D| |cAcsc| |s18def| |polyRicDE| |compiledFunction|
- |split!| |selectSumOfSquaresRoutines| |zeroOf| |rightExactQuotient|
- |polyPart| |genericLeftMinimalPolynomial| |stripCommentsAndBlanks|
- |groebner?| |f01qef| |retractable?| |npcoef| |nthFractionalTerm|
- |commaSeparate| |ScanFloatIgnoreSpaces| |abs| |polCase| |sech2cosh|
- |just| |sincos| |OMgetSymbol| |halfExtendedSubResultantGcd2|
- |numberOfHues| |primextintfrac| |null| |polygon?|
- |transcendenceDegree| |denomRicDE| |pair?| |quote| |f04jgf|
- |chebyshevT| |cyclicEqual?| |divisorCascade| |prepareSubResAlgo|
- |range| |not| |toseSquareFreePart| |alphanumeric?| |OMputVariable|
- |pack!| |rewriteIdealWithHeadRemainder| |dim| |OMserve|
- |monicDecomposeIfCan| |palginfieldint| |gradient| |ran| |and|
- |patternMatch| |quadraticForm| |oddintegers| |weakBiRank|
- |noncommutativeJordanAlgebra?| |OMreadStr| |roughBasicSet|
- |rischDEsys| |purelyTranscendental?| |or| |lazyPseudoDivide|
- |diagonal| |weight| |mainDefiningPolynomial|
- |semiDiscriminantEuclidean| |lifting1| |dmpToP| |subresultantSequence|
- |pop!| |extendedResultant| |branchIfCan| |tanQ| |expintegrate| |xor|
- |rk4| |currentCategoryFrame| |insertionSort!| |leviCivitaSymbol|
- |jordanAdmissible?| |trueEqual| |fortranCompilerName| |split|
- |signatureAst| |absolutelyIrreducible?| |f04mcf| |case|
- |rationalPower| |whitePoint| |slex| |extractIfCan| |bringDown|
- |d01anf| |separate| |insertBottom!| |e02ddf| |identitySquareMatrix|
- |hyperelliptic| |Zero| |mainVariable?| |toseInvertibleSet|
- |nextsubResultant2| |oddInfiniteProduct| |idealiserMatrix| |one?|
- |subTriSet?| |write!| |relativeApprox| |zeroDimensional?| |One|
- |degreeSubResultant| |fixPredicate| |graphStates| |/\\| |argscript|
- |startTable!| |algebraicOf| |hostPlatform| |firstSubsetGray|
- |dAndcExp| |elementary| |dimensionsOf| |rightOne| |swapColumns!|
- |basisOfRightNucloid| |\\/| |unitVector| |aLinear| |axes|
- |extractTop!| |mainCoefficients| |geometric| |composite| |maxPoints|
- |reduced?| |algebraicCoefficients?| |colorFunction| |key|
- |multiEuclidean| |f02abf| |zeroSquareMatrix| |merge!| |iiasec| |vark|
- |distdfact| |setProperty!| |mkPrim| |alphabetic?| |predicates|
- |logical?| |center| |iiatanh| |viewport3D| |backOldPos|
- |replaceKthElement| |mapCoef| |intPatternMatch| |lazyPremWithDefault|
- |brillhartTrials| |leadingBasisTerm| |filename| |numeric|
- |reduceByQuasiMonic| |zerosOf| |degreePartition|
- |linearAssociatedOrder| |complexIntegrate| |elt| |palgRDE0|
- |controlPanel| |selectPolynomials| |startPolynomial|
- |lazyPseudoQuotient| |not?| |second| |radical| |resultantEuclidean|
- |euclideanNormalForm| |rarrow| |symmetricDifference| |enumerate|
- |moduleSum| |matrixConcat3D| |quatern| |parse| |third| |cyclicGroup|
- |refine| |extendIfCan| |setfirst!| |iicosh| |lquo| |physicalLength|
- |duplicates| |compose| |equivOperands| |critBonD| |genericRightNorm|
- |att2Result| |selectsecond| |subscriptedVariables| |sn|
- |changeWeightLevel| |nullSpace| |pquo| |redPol| |mapUnivariateIfCan|
- |indices| |directSum| |power!| |pmComplexintegrate| |OMbindTCP|
- |indicialEquationAtInfinity| |firstDenom| |userOrdered?| |allRootsOf|
- |paraboloidal| |duplicates?| |radicalOfLeftTraceForm|
- |stoseLastSubResultant| |parts| |normalized?| |exponential| |trunc|
- |cSinh| |mainKernel| |f04mbf| |outputGeneral| |palglimint|
- |hasTopPredicate?| |isobaric?| |fractionFreeGauss!| |decomposeFunc|
- |setLabelValue| |expr| |stirling2| |maxdeg| |unit| |qualifier|
- |drawToScale| |coerceP| |mathieu22| |dimension| |explicitlyFinite?|
- |rischNormalize| |ScanArabic| |readInt8!| |resultant|
- |symmetricProduct| |functionIsOscillatory| |returns| |systemCommand|
- |generalTwoFactor| |kind| |lastSubResultantEuclidean| |iFTable|
- |monicModulo| |regularRepresentation| |equality| |bandedHessian|
- |iteratedInitials| |op| |gramschmidt| |entries| |mapdiv|
- |computeCycleLength| |Vectorise| |implies| |stack| |cCosh|
- |OMunhandledSymbol| |sturmSequence| |squareFreeLexTriangular|
- |variable| |minGbasis| |curry| |anticoord| |prime| |orbits| |multiset|
- |schema| |triangulate| |normal| |complexEigenvectors| |iterators|
- |selectfirst| |algebraicSort| |middle| |nextItem| |tanIfCan| |low|
- |insertRoot!| FG2F |raisePolynomial| |index| |fortranLogical|
- |triangular?| |setRealSteps| |f01bsf| |setMaxPoints3D| |concat!|
- |ceiling| |modTree| |internalSubQuasiComponent?|
- |clearFortranOutputStack| |cscIfCan| |fortranCarriageReturn|
- |coercePreimagesImages| |stopTableGcd!| |SturmHabicht| |OMgetBind|
- |finiteBound| |removeConstantTerm| |f01rcf| |loadNativeModule|
- |evaluateInverse| |constantIfCan| |increase| |medialSet| |child|
- |union| |prinshINFO| |pair| |removeZero| |transcendent?|
- |showIntensityFunctions| |binaryTournament| |maxRowIndex|
- |createNormalPrimitivePoly| |rightMinimalPolynomial| |updatF|
- |rdregime| |radix| |autoReduced?| |drawCurves| |cylindrical| |s15adf|
- |s18dcf| |makeEq| |zeroDimPrime?| |ptFunc| |genericRightTrace|
- |curryLeft| |e01sff| |key?| |computeInt| |ScanFloatIgnoreSpacesIfCan|
- |gethi| |rootOf| |systemSizeIF| |inconsistent?| |c02agf|
- |showTheIFTable| |lowerCase| |double| |optAttributes| |mathieu24|
- |groebnerIdeal| |value| |setMaxPoints| |empty?| |critMonD1| |e04dgf|
- |Aleph| |qPot| |leadingIdeal| |edf2ef| |perfectNthRoot| |OMgetEndBVar|
- |indicialEquation| |d03edf| |f07aef| |partitions| |setLength!|
- |toseInvertible?| |coshIfCan| |leftZero| |shiftRight| |checkForZero|
- |taylorIfCan| |integers| |external?| |s20acf| |binary| |baseRDE|
- |cAsin| |rightZero| |stopMusserTrials| |normInvertible?| |uniform|
- |primitivePart!| |linearlyDependent?| |isPlus| |associatorDependence|
- |palgint| |sequences| |spherical| |viewSizeDefault| |readable?|
- |leadingExponent| |evenInfiniteProduct| |OMmakeConn|
- |OMencodingBinary| |fractRagits| |child?| |d01gbf| |LyndonCoordinates|
- |shallowCopy| |generalPosition| |squareFreePart| |shallowExpand|
- |mainValue| |rule| |graphs| |nativeModuleExtension| |integrate| |say|
- |completeEval| |pseudoDivide| |intcompBasis| |hconcat| |fractionPart|
- |modifyPoint| |halfExtendedResultant1| |d01amf| |rational|
- |zeroMatrix| |radicalSolve| |declare!| |monomialIntegrate| |e01baf|
- |e04naf| |lazyIrreducibleFactors| |aromberg| |adaptive3D?|
- |gcdPrimitive| |subResultantsChain| |stoseInvertibleSetreg|
- |modularGcdPrimitive| |copy!| |wordsForStrongGenerators| |iisqrt3|
- |laguerre| |charpol| |SturmHabichtMultiple| |blue| |ocf2ocdf| |mulmod|
- |movedPoints| |mainVariables| |monicRightDivide|
- |nextNormalPrimitivePoly| |simpsono| |binarySearchTree| |solveLinear|
- |completeSmith| |Ci| |midpoints| |tablePow| |findBinding|
- |bezoutDiscriminant| |rootPoly| |startTableInvSet!| |permanent|
- |univariatePolynomial| |shiftLeft| |testModulus| |basis|
- |clipWithRanges| |rowEchelon| |groebnerFactorize| |commutative?|
- |argumentListOf| |d02bbf| |getOrder| |deepCopy| |torsionIfCan|
- |SturmHabichtCoefficients| |lfextendedint| |oddlambert| |s20adf|
- |quartic| |void| |ridHack1| |reset| |isOp| |createGenericMatrix|
- |direction| |setPosition| |componentUpperBound| |basisOfMiddleNucleus|
- |viewDeltaXDefault| |smith| |zeroDimPrimary?| |maxrow| |scale|
- |subPolSet?| |heapSort| |jordanAlgebra?| |cos2sec| |pointLists|
- |listOfMonoms| |segment| |convergents| |matrixGcd| |PDESolve| |write|
- |parseString| |equiv| |shellSort| |credPol| |reverse| |setOrder|
- |removeRedundantFactors| |characteristicSerie| |save| |directory|
- |tanintegrate| |atoms| |setEmpty!| |numberOfCycles| |numberOfChildren|
- |makeUnit| |normalDeriv| |constDsolve| |KrullNumber| |sample| |exp1|
- |outputBinaryFile| |entry| |complexElementary| |internalIntegrate|
- |setMinPoints3D| |printCode| |extendedEuclidean| |OMUnknownSymbol?|
- |size?| |s14baf| |B1solve| |outputArgs| |rightQuotient| |s21bcf|
- |presub| |showArrayValues| |s14abf| |listYoungTableaus| |double?|
- |unrankImproperPartitions1| |rightScalarTimes!| |separateFactors|
- |acotIfCan| |leftUnit| |resetVariableOrder| |applyRules| |adaptive|
- |comment| |kmax| |iipow| |atrapezoidal| |c06fpf| |ldf2lst|
- |extractClosed| |sizePascalTriangle| |safeFloor| |checkPrecision|
- |explimitedint| |weights| |setAdaptive3D| |denominators| |divideIfCan|
- |coord| |OMputEndBind| |complexNormalize| |OMUnknownCD?| |froot|
- |totalfract| |makeGraphImage| |prime?| F2FG |setsubMatrix!|
- |possiblyInfinite?| |iiacsc| |externalList| |eigenvector| |cyclotomic|
- |f02wef| |useNagFunctions| |squareFreeFactors| |s17aef| |changeBase|
- |idealiser| |complementaryBasis| |cAsech| |setright!| |subscript|
- |flatten| |nextPrime| |complexZeros| |imagj| |eigenvalues|
- |associator| |copies| |universe| |setPoly| |f01brf| |discriminant|
- |concat| |showClipRegion| |trigs2explogs| |minPoints3D|
- |initializeGroupForWordProblem| |cfirst| |parents| |elem?| |factors|
- |back| |interpolate| |top| |OMgetObject| |nand| |discreteLog|
- |horizConcat| |escape| |var1Steps| |bandedJacobian| |cSin| |argument|
- |multMonom| |rightDivide| |yCoord| |unitsColorDefault| |palgextint0|
- |overbar| |phiCoord| |firstNumer| |solveLinearlyOverQ|
- |fortranCharacter| |true| |closeComponent| |rowEch| |mergeDifference|
- |vedf2vef| |linSolve| |asecIfCan| |iiatan| |topPredicate|
- |extensionDegree| |badValues| |ord| |currentScope| |acoshIfCan|
- |dominantTerm| |compdegd| |vertConcat| |readLineIfCan!| |binomThmExpt|
- |definingEquations| |ffactor| |orOperands| |e04mbf| |pdct| |setvalue!|
- |associatedSystem| |vectorise| |integralMatrix| |rightGcd| |zeroDim?|
- |evenlambert| |polynomialZeros| |addMatch| |basisOfCenter|
- |basisOfCentroid| |colorDef| |acsch| |coefChoose|
- |removeRoughlyRedundantFactorsInPols| |aspFilename| |solveRetract|
- |c05pbf| |OMclose| |exprHasWeightCosWXorSinWX| |makeFR| |mainVariable|
- |edf2efi| |outerProduct| |basisOfLeftAnnihilator|
- |rewriteSetByReducingWithParticularGenerators| |headAst| |nodeOf?|
- |OMlistCDs| |signature| |equiv?| |OMputEndError| |antisymmetric?|
- |integerIfCan| |leftMult| |varList| |infLex?| |f01mcf| |super|
- |reopen!| |lexGroebner| |printInfo| |f07fdf| |cAcoth|
- |rectangularMatrix| |bytes| |signAround| |setProperty| |lowerCase!|
- |moebiusMu| |pointPlot| |bits| |meshPar1Var| |currentSubProgram|
- |unaryFunction| |localReal?| |root| |ParCondList|
- |reciprocalPolynomial| |perfectSqrt| |setMinPoints| |rombergo|
- |headReduced?| |semiDegreeSubResultantEuclidean| |cyclicParents|
- |btwFact| |normDeriv2| |euclideanGroebner| |nthr| |constantOperator|
- |copyInto!| |algint| |conditionP| |getIdentifier| |delete|
- |rowEchLocal| |linearPolynomials| |OMgetAtp| |matrix| |lexTriangular|
- |indiceSubResultant| |symbolTableOf| |semiIndiceSubResultantEuclidean|
- |triangSolve| |outputAsTex| |f04maf| |eyeDistance| |normalDenom|
- |antiCommutator| |leftRank| |cyclePartition| |bitTruth|
- |showTheRoutinesTable| |linear?| |headReduce| |trace2PowMod|
- |cschIfCan| |makeSketch| |innerSolve1| |screenResolution| |augment|
- |empty| |extendedSubResultantGcd| |fixedPointExquo| |parametersOf|
- |lprop| |optimize| |nsqfree| UTS2UP |increasePrecision| |thenBranch|
- |zero| |ratPoly| |HenselLift| |interpretString| |acschIfCan|
- |removeRedundantFactorsInPols| |LazardQuotient2| |toroidal|
- |fortranInteger| |mkcomm| |stiffnessAndStabilityFactor| |setleaves!|
- |linearDependenceOverZ| |brillhartIrreducible?| |airyAi| |comparison|
- |enqueue!| |outputFloating| |s13aaf| |printStatement|
- |lastSubResultant| |And| |mat| |completeEchelonBasis| |lazyGintegrate|
- |implies?| |numberOfNormalPoly| |setValue!| |charClass|
- |powerAssociative?| |edf2fi| |addPoint2| |Or| |linearAssociatedExp|
- |hMonic| |pToDmp| |setrest!| |decrease| |doublyTransitive?| |digit?|
- |leftTraceMatrix| |discriminantEuclidean| |cond| |leadingTerm| |Not|
- |removeSuperfluousCases| |pr2dmp| |intensity| |showRegion|
- |expintfldpoly| |quotient| |block| |sinh2csch| |wreath| |top!|
- |scaleRoots| |nonSingularModel| |useEisensteinCriterion|
- |OMconnOutDevice| |subtractIfCan| |identification| |plus|
- |setprevious!| |collect| |f01qcf| |resetBadValues| |cyclicSubmodule|
- |frst| |invertIfCan| |factorSquareFree| |getConstant| |iiGamma|
- |SFunction| |numberOfComposites| |internalDecompose|
- |differentialVariables| |minimize| |musserTrials| |outputAsScript|
- |color| |parametric?| |repeating| |cosh| |trapezoidalo| |OMputBind|
- |simpson| |computePowers| |exactQuotient|
- |stoseIntegralLastSubResultant| |log10| |genericPosition|
- |setFormula!| |unitCanonical| |radicalSimplify| |tanh| |iiperm|
- |extractPoint| |max| |lazyResidueClass| |iCompose| |constantLeft|
- |imagi| |pseudoQuotient| |UnVectorise| |bitand| |notOperand| |coth|
- |clearDenominator| |times| |problemPoints| |alternative?|
- |repeatUntilLoop| |isQuotient| |iisqrt2| |bitior| |factorPolynomial|
- |randomLC| |localAbs| |semiResultantReduitEuclidean| |sech|
- |predicate| |central?| |OMputError| |popFortranOutputStack|
- |stopTable!| |complexNumericIfCan| |prod| |commutator|
- |radicalEigenvectors| |flagFactor| |cAsinh| |subQuasiComponent?|
- |csch| |rationalPoint?| |alternatingGroup| |cubic| |fortranTypeOf|
- |numberOfPrimitivePoly| |htrigs| |doubleRank| |recur| |s19adf|
- |components| |rationalIfCan| |asinh| |module| |e02bbf|
- |initiallyReduced?| |twoFactor| |in?| |rotate| |contains?| |logGamma|
- |normalize| |forLoop| |bitLength| |acosh| |monom| |e02bef|
- |drawComplex| |solveLinearPolynomialEquationByRecursion| |d02cjf|
- |subResultantChain| |readUInt8!| |palgLODE| |modularGcd| |atanh|
- |setButtonValue| |nullary?| |numberOfOperations| |sin?|
- |genericRightMinimalPolynomial| |host| |height| |connectTo|
- |OMputEndAttr| |nor| |c06frf| |sylvesterSequence| |acoth|
- |mightHaveRoots| |polygamma| |cn| |sdf2lst| |ramified?| |rename|
- |moreAlgebraic?| |outputAsFortran| |lowerCase?| |common|
- |sturmVariationsOf| |inputBinaryFile| |d02gaf| |asech|
- |makeViewport3D| |createMultiplicationMatrix| |more?| |extension|
- |addMatchRestricted| |adaptive?| |revert| |fullPartialFraction| |tree|
- |OMgetEndBind| |diagonalProduct| |groebgen| |wholeRadix| |minset|
- |polygon| |OMgetApp| |rootDirectory| |setAttributeButtonStep| |crest|
- |byte| |parameters| |declare| |fglmIfCan| |multiple| |positiveSolve|
- |e01bff| |high| |ipow| |f04arf| |debug| |expenseOfEvaluationIF|
- |df2ef| |rightRankPolynomial| |monic?| |oneDimensionalArray| |head|
- |applyQuote| |f04asf| |perfectSquare?| |expIfCan| D |reseed| |cAtanh|
- |upDateBranches| |definingPolynomial| |changeVar| |option?|
- |RittWuCompare| |iilog| |unit?| |tail| |complexForm| |pmintegrate|
- |f07adf| |inGroundField?| |laurentRep|
- |zeroSetSplitIntoTriangularSystems| |countRealRoots|
- |rightAlternative?| |trapezoidal| |meshPar2Var| |s13acf| |reduce|
- |open?| |midpoint| |chiSquare1| |doubleResultant| |recoverAfterFail|
- |sequence| |computeBasis| |wordInGenerators| |ruleset| |bitCoef|
- |rightPower| |algSplitSimple| |s17dhf| |birth| |c02aff| |f01maf|
- |fill!| |generator| |numberOfFactors| |diophantineSystem|
- |setImagSteps| |lowerPolynomial| |createPrimitiveNormalPoly|
- |complexExpand| |cAcosh| |find| |bothWays| |rootSimp| |c06ebf| |critM|
- |pushdterm| |f02ajf| |OMReadError?| |binomial| |exptMod|
- |leadingCoefficientRicDE| |inHallBasis?| |myDegree| |changeName|
- |lflimitedint| |accuracyIF| |laplace| |goodnessOfFit| |suchThat|
- |pushucoef| |remove!| Y |genericLeftTrace| |conjugates|
- |extractSplittingLeaf| |pomopo!| |cTanh| |e04ucf| |rightTrace|
- |pToHdmp| |seriesToOutputForm| |points| |subMatrix| |cycleTail|
- |multiplyCoefficients| |pushNewContour|
- |removeIrreducibleRedundantFactors| |constantRight| |hcrf|
- |composites| |upperCase| |pointColorDefault| |cartesian| |elRow1!|
- |build| |standardBasisOfCyclicSubmodule| |shade| F |e02def|
- |pointData| |putGraph| |schwerpunkt| |padecf| |print| |scalarMatrix|
- |polarCoordinates| |headRemainder| |makeCos| |OMlistSymbols|
- |stoseInternalLastSubResultant| |tubePoints| |Nul|
- |stoseSquareFreePart| |lazyIntegrate| |resolve| |elColumn2!|
- |integralMatrixAtInfinity| |leastMonomial| |mathieu11| |negative?|
- |asimpson| |fixedPoint| |ode1| |bfKeys| |isExpt| |newTypeLists|
- |OMputFloat| |hasoln| |deepestInitial| |setlast!| |symmetricGroup|
- |corrPoly| |writeBytes!| |pushuconst| |defineProperty| |traceMatrix|
- |imagk| |partialFraction| |redmat| |tryFunctionalDecomposition|
- |leftFactorIfCan| |rewriteIdealWithRemainder| |dmpToHdmp| |cosIfCan|
- |enterInCache| |dihedral| |iiasinh| |removeDuplicates!| |e01saf|
- |removeSinSq| |bottom!| |realEigenvalues| |formula| |name|
- |rootKerSimp| |numerator| |typeList| |sub| |ode2|
- |conditionsForIdempotents| |e02aef| |dimensions|
- |reduceBasisAtInfinity| |removeSquaresIfCan| |body| |lex| |alphabetic|
- |e02bcf| |hypergeometric0F1| |create3Space| |const| |graphImage| |row|
- |minPoints| |derivative| |e01bef| |nthFactor|
- |nextPrimitiveNormalPoly| |tValues| |evaluate| |reducedQPowers|
- |belong?| |f2st| ** |linearDependence| |numerators| |graphCurves|
- |byteBuffer| |superscript| |createNormalElement| |stop| |invmultisect|
- ~ |getExplanations| |df2fi| |setchildren!| |getMultiplicationMatrix|
- |nrows| |insert| |superHeight| |iiabs| |PollardSmallFactor| |lift|
- |assign| |heap| |rationalPoints| |representationType| |lintgcd|
- LODO2FUN |ncols| |characteristicSet| |genericRightTraceForm|
- |patternVariable| |OMencodingSGML|
- |removeRoughlyRedundantFactorsInPol| EQ |open| |imports| |approxSqrt|
- |leftDivide| |condition| |legendre| |getStream| |summation|
- |represents| |factor1| |lazyPseudoRemainder| |patternMatchTimes|
- |adjoint| |contractSolve| |simplify| |level| |port| |totolex|
- |univariatePolynomialsGcds| |tan2trig| |nary?| |viewDeltaYDefault|
- |addPoint| |iomode| |withPredicates| |s19acf| |eq| |rquo| |lepol|
- |setelt!| |droot| |curveColorPalette| |rank|
- |irreducibleRepresentation| |box| |normalizeIfCan| |plot| |merge|
- |iter| |t| |leftRecip| |opeval| |shift| |FormatRoman| |pointColor|
- |ratpart| |resultantnaif| |cExp| |f02xef| |lifting| |mesh|
- |rangePascalTriangle| |symbolIfCan| |outputMeasure|
- |unprotectedRemoveRedundantFactors| |pushup| |radPoly| |plenaryPower|
- |complete| |e02akf| |hexDigit| |tubePlot| |readBytes!|
- |subResultantGcd| |queue| |csubst| |semiResultantEuclidean1| |sin2csc|
- |category| |tensorProduct| |irreducibleFactors| |nlde| |minordet|
- |leaf?| |divisors| |getMatch| |alphanumeric| |domain| |dn| |property|
- |createZechTable| |critMTonD1| |padicFraction| |overset?|
- |subResultantGcdEuclidean| |pow| |singularitiesOf|
- |selectNonFiniteRoutines| |var2Steps| |finite?| |package|
- |univariate?| |infieldint| |tab1| |leftMinimalPolynomial| |cotIfCan|
- |clikeUniv| |certainlySubVariety?| |setScreenResolution3D| |compound?|
- |clearCache| |mpsode| |capacity| |integralDerivationMatrix|
- |viewThetaDefault| |powmod| |expressIdealMember| |octon|
- |viewWriteDefault| |clip| |nextIrreduciblePoly| |lists| |inRadical?|
- |units| |exprToUPS| |s17acf| |conjug| |listOfLists| |exp| |iiacosh|
- |delay| |makeCrit| |tRange| |qroot| |permutationGroup| |ParCond|
- |radicalEigenvector| |genericLeftDiscriminant| |df2st| |virtualDegree|
- |associative?| |routines| |stoseInvertibleSetsqfreg| |minrank|
- |digamma| |orbit| |splitSquarefree| |lfintegrate| |hermite|
- |ricDsolve| |multiplyExponents| |monicCompleteDecompose| |d01gaf|
- |unexpand| |removeRedundantFactorsInContents| |coHeight| |bit?|
- |impliesOperands| |sqfree| |string?| |associatedEquations| |output|
- |bumptab1| |compile| |scan| |power| |changeNameToObjf|
- |LyndonWordsList1| |numFunEvals| |mkIntegral| |d01bbf| |code| |int|
- |symmetricPower| |f07fef| |s17def| |e02dcf| |cup|
- |toseLastSubResultant| |varselect| |s21bbf| |partialQuotients|
- |realRoots| |setClosed| |findCycle| |iiacos| |uncouplingMatrices|
- |setTopPredicate| |elliptic?| |fractRadix| |#| |isConnected?| |close!|
- |critpOrder| |squareFree| |ksec|
- |removeRoughlyRedundantFactorsInContents| |constantOpIfCan|
- |prindINFO| |diagonalMatrix| |e04fdf| |divideExponents| |solid|
- |partition| |bezoutResultant| |coleman| |bipolarCylindrical| |ranges|
- |dom| |epilogue| |safetyMargin| |factorSquareFreeByRecursion|
- |laurentIfCan| |incrementBy| |OMParseError?| |arbitrary|
- |resultantReduitEuclidean| |xn| |OMcloseConn| |palgintegrate|
- |palgLODE0| |rdHack1| |taylorRep| |buildSyntax| |expand|
- |inverseIntegralMatrix| |approxNthRoot| |rCoord| |getOperator| |node|
- |round| |initials| |pol| |lieAdmissible?| |filterWhile| |s17aff|
- |OMputBVar| |ideal| |polyRDE| |cSec| |primeFrobenius| |e04gcf| |rst|
- |quotientByP| |filterUntil| |basisOfNucleus| |rk4qc| |sumOfSquares|
- |legendreP| |getButtonValue| |tanAn| |sec2cos| |numericIfCan|
- |bracket| |select| |parabolicCylindrical| |bsolve| |rightTraceMatrix|
- |imagJ| |createPrimitivePoly| |title| |ldf2vmf| |wronskianMatrix|
- |linears| |cyclic| |options| |e02ajf| |structuralConstants| |logpart|
- |integerBound| |fillPascalTriangle| |bernoulliB| |printInfo!|
- |clipParametric| |alternating| |eigenvectors| |dot| |cot2trig|
- |semicolonSeparate| |integralBasis| |product| |outputFixed| |hue|
- |initiallyReduce| |reducedForm| |dictionary| |abelianGroup| |e|
- |initial| |dflist| |primes| |e02adf| |var1StepsDefault| |string|
- |iidprod| |expandTrigProducts| |iiasin| |minRowIndex| |fprindINFO|
- |plusInfinity| |mirror| |leftDiscriminant| |nextsousResultant2|
- |RemainderList| |eof?| |normalizedDivide| |romberg| |graeffe|
- |charthRoot| |minusInfinity| |rename!| |makeRecord|
- |semiLastSubResultantEuclidean| |measure2Result| |optpair|
- |singleFactorBound| |prinpolINFO| |OMgetEndError| |f04axf| |mainForm|
- |bezoutMatrix| |digits| |symmetricRemainder| |OMgetVariable|
- |safeCeiling| |less?| |quasiRegular?| |reduceLODE| |initTable!|
- |iicoth| |coerceImages| |variable?| |ode| |linkToFortran|
- |stoseInvertibleSet| |getProperties| |karatsuba| |e02agf|
- |drawComplexVectorField| |dequeue| |sizeLess?| |fullDisplay| |s18acf|
- |ScanRoman| |extend| |branchPoint?| |selectPDERoutines| |Is| |critB|
- |checkRur| |indiceSubResultantEuclidean| |inverseColeman| |airyBi|
- |symmetric?| |OMencodingUnknown| |part?| |irreducibleFactor| |any?|
- |physicalLength!| |numberOfVariables| |rightNorm| |UpTriBddDenomInv|
- |reducedSystem| |inspect| |cCot| |equation| |type| |supRittWu?|
- |nextSubsetGray| |f02adf| |exteriorDifferential| |bernoulli|
- |getSyntaxFormsFromFile| |makeFloatFunction| |redpps| |roughSubIdeal?|
- |c06gcf| |recip| |denomLODE| |hermiteH| |cross| |width| |OMgetEndApp|
- |OMputInteger| |zeroSetSplit| |meatAxe| |setnext!| |iifact|
- |characteristic| |simpleBounds?| |imagE| |particularSolution|
- |normalForm| |toScale| |coordinates| |qqq| |inverseLaplace| |list|
- |factorset| |setStatus!| |createLowComplexityTable|
- |countRealRootsMultiple| |oblateSpheroidal| |palgRDE| |makeMulti|
- |s01eaf| |entry?| |rightFactorCandidate| |car| |init| |degree|
- |fortranReal| |children| |eulerE| |OMputObject|
- |linearlyDependentOverZ?| |ip4Address| |digit| |leader| |cot2tan|
- |cdr| |setClipValue| |f02akf| |solveid| |arg1| |taylorQuoByVar|
- |permutation| |OMwrite| |transform| |lieAlgebra?| |exprToGenUPS|
- |setDifference| |constantKernel| |internalInfRittWu?| |arg2| |f02aef|
- |dihedralGroup| |makeSin| |addPointLast| |doubleFloatFormat| |lazy?|
- |mapDown!| |cCsch| |asinhIfCan| |push!| |llprop| |parabolic|
- |stopTableInvSet!| |clipBoolean| |modularFactor| |explicitEntries?|
- |bounds| |hessian| |mainPrimitivePart| |conditions| |optional|
- |unravel| |inf| |chebyshevU| |prinb| |setProperties| |laplacian|
- |hclf| |setPredicates| |match| |getCurve| |showScalarValues| |result|
- |mapMatrixIfCan| |totalDegree| |nextSublist| |eulerPhi|
- |integralAtInfinity?| |lazyEvaluate| |approximants|
- |selectFiniteRoutines| |substring?| |ratDenom| |properties| |s17dgf|
- |maxColIndex| |ReduceOrder| |internalIntegrate0| |bivariate?|
- |notelem| |getGoodPrime| |swapRows!| |messagePrint| |iisech|
- |relerror| |numberOfComponents| |translate| |multisect|
- |totalGroebner| |printingInfo?| |roughUnitIdeal?| |quoByVar|
- |subHeight| |subset?| |suffix?| |nextLatticePermutation| |calcRanges|
- |permutationRepresentation| |vector| |OMsupportsSymbol?|
- |selectMultiDimensionalRoutines| |nextNormalPoly| |deriv|
- |infieldIntegrate| |OMencodingXML| |pattern| |f04qaf|
- |exprHasAlgebraicWeight| |expint| |getlo| |stoseInvertible?|
- |nilFactor| |palgint0| |inrootof| |nonQsign| |prefix?| |rroot|
- |scopes| |changeMeasure| |sinIfCan| |collectUpper| |rightRecip|
- |derivationCoordinates| |sparsityIF| |totalDifferential|
- |setProperties!| GF2FG SEGMENT |doubleDisc| |wholePart|
- |primintfldpoly| |makeop| |bubbleSort!| |getMultiplicationTable|
- |innerSolve| |OMgetAttr| |d01apf| |e01sef| |pdf2ef| |cLog| |s15aef|
- |rootRadius| |showFortranOutputStack| |localUnquote| |minimumExponent|
- |message| |scalarTypeOf| |slash| |loopPoints| |isMult| |rur| |d03eef|
- |repeating?| |extractProperty| |rowEchelonLocal| |chainSubResultants|
- |polar| |atom?| |linGenPos| |differentiate| |elRow2!| |principalIdeal|
- |setAdaptive| |basisOfLeftNucloid| |getGraph| |infinite?|
- |modifyPointData| |writeLine!| |d02kef| |coefficient| |powerSum|
- |characteristicPolynomial| |basisOfCommutingElements|
- |stoseInvertible?sqfreg| |mesh?| |exponents| |s21bdf| |datalist|
- |infix?| |e02dff| |primitive?| |matrixDimensions|
- |constantToUnaryFunction| |interpret| |log2| |leaves| |rootPower|
- |minIndex| |contours| |returnType!| |mask| |fixedDivisor|
- |cyclotomicFactorization| |listRepresentation| |OMputEndBVar|
- |generalizedContinuumHypothesisAssumed?| |mathieu23| |fmecg| |poisson|
- |tube| |stosePrepareSubResAlgo| |iiasech| |HermiteIntegrate|
- |mantissa| |secIfCan| |appendPoint| |cons| |f02axf| |cycleRagits|
- |unary?| |failed?| |OMreceive| |gcdprim| |incrementKthElement|
- |every?| |goodPoint| |retract| |hdmpToP| |sinhcosh| |kovacic|
- |closedCurve| |error| |primitiveElement| |invmod| |lineColorDefault|
- |intChoose| |shanksDiscLogAlgorithm| |specialTrigs| |times!|
- |viewWriteAvailable| |iisinh| |setScreenResolution| |assert|
- |associates?| |optional?| |green| |status| |addBadValue| |bright|
- |integralRepresents| |setLegalFortranSourceExtensions| |pade|
- |completeHensel| |mainContent| |domainOf| |precision| |returnTypeOf|
- |cap| |mr| |removeCoshSq| |companionBlocks| |monomRDEsys|
- |simplifyLog| |sayLength| |imagK| |iicsch| |setRow!| |floor| |leftLcm|
- |stFunc1| |binding| |algebraic?| |linearPart| |reverse!| |order|
- |iisec| |nonLinearPart| |stFuncN| |OMconnectTCP| |pdf2df|
- |solveLinearPolynomialEquationByFractions| |source| |erf|
- |OMgetInteger| |splitLinear| |factorOfDegree|
- |stiffnessAndStabilityOfODEIF| NOT |qinterval| |primeFactor| |s18adf|
- |s17adf| |solveInField| |countable?| |reduction| |iitanh| |addmod| OR
- |sncndn| |categories| ~= |d02gbf| |sinhIfCan| |badNum| |gcdcofact|
- |d01aqf| |symFunc| |light| |retractIfCan| |argumentList!| AND |coerce|
- |writeByte!| |cAcot| |SturmHabichtSequence| |e01bgf| |stirling1|
- |mainCharacterization| |primlimitedint| |dilog| |reindex| |omError|
- |arrayStack| |dec| |numer| |construct| |rational?| |point?| |ODESolve|
- |dfRange| |shrinkable| |transpose| |sin| |bfEntry| |elseBranch|
- |denom| |stronglyReduce| |red| |mindeg| |nodes| |nthExponent|
- |innerEigenvectors| |target| |endOfFile?| |cos| |e01sbf| |s13adf|
- |mainMonomial| |basisOfLeftNucleus| |getZechTable| |rightRank|
- |laguerreL| |determinant| |tan| |limitPlus| |rightUnits| |s17ahf|
- |c06ekf| |pi| |leftAlternative?| |mkAnswer| |listBranches|
- |sortConstraints| |mergeFactors| |fixedPoints| |cot|
- |reducedContinuedFraction| |csc2sin| |continue| |infinity|
- |idealSimplify| |unitNormalize| |members| |dequeue!|
- |combineFeatureCompatibility| |Gamma| |leftQuotient| |sec|
- |extendedIntegrate| |d02bhf| |rk4f| |cAsec| |s19abf| |normFactors|
- |integral?| |flexibleArray| |isList| |csc| |f02awf| |OMputAtp|
- |wrregime| |increment| |pushdown| |youngGroup| |inc|
- |inputOutputBinaryFile| |OMgetError| |asin| |invertible?|
- |triangularSystems| |any| |kernel| |degreeSubResultantEuclidean|
- |normalizedAssociate| |setOfMinN| |hasSolution?| |ravel|
- |exportedOperators| |primaryDecomp| |acos| |rewriteSetWithReduction|
- |solve| |map| * |draw| |deref| |lSpaceBasis|
- |tryFunctionalDecomposition?| |homogeneous?| |reshape| |rspace|
- |isTimes| |atan| |factorSFBRlcUnit| |primPartElseUnitCanonical|
- |leftNorm| |generateIrredPoly| |multiple?| |exponent| |f02bbf|
- |s17akf| |acot| |processTemplate| |generalizedInverse| |dark| |is?|
- |splitDenominator| |factorsOfCyclicGroupSize| |minPol| |asec|
- |cycleSplit!| |sts2stst| |char| |rightRegularRepresentation| |genus|
- |relationsIdeal| |viewZoomDefault| |gbasis| |OMputApp| |acsc|
- |morphism| |aCubic| |testDim| |makeObject| |setelt|
- |leftRegularRepresentation| |asinIfCan| |coerceS| |complement|
- |eisensteinIrreducible?| |sinh| |trivialIdeal?| |scripted?| |convert|
- |prefixRagits| |rangeIsFinite| |weighted| |invertibleElseSplit?|
- |update| |compBound| |palglimint0| |mindegTerm| |copy| |coef|
- |OMgetBVar| |terms| |primitivePart| |writeUInt8!| |zCoord| |and?|
- |sechIfCan| |antisymmetricTensors| |commutativeEquality| |se2rfi|
- |front| |rightExtendedGcd| |nil?| |useSingleFactorBound|
- |squareMatrix| |float| |rationalFunction| |regime| |mdeg| |setref|
- |simplifyPower| |realEigenvectors| |putColorInfo| |pureLex| |mapGen|
- |autoCoerce| |lyndon| |validExponential| |viewDefaults| |failed|
- |usingTable?| |localIntegralBasis| |stoseInvertible?reg|
- |setCondition!| |decompose| |infix| |newReduc| |position!| |match?|
- |position| |writable?| |genericLeftNorm| |figureUnits| |rk4a|
- |tan2cot| |randnum| |cTan| |OMputEndApp| |extractBottom!|
- |hasPredicate?| |partialDenominators| |categoryFrame| |curryRight|
- |whatInfinity| |iExquo| |zag| |iicot| |reify| |lambert|
- |subresultantVector| |hex| |member?| |iiexp|
- |constantCoefficientRicDE| |leftRankPolynomial|
- |rightCharacteristicPolynomial| |distance| |f02aaf| |symmetricSquare|
- |d01asf| |GospersMethod| |expt| |ListOfTerms| |leadingSupport|
- |expandLog| |d01fcf| |primlimintfrac| |getOperands| |cCsc| |zero?|
- |comp| |lhs| GE |length| |karatsubaDivide| |OMgetFloat|
- |endSubProgram| |knownInfBasis| |writeInt8!| |supDimElseRittWu?|
- |algebraicDecompose| |symbolTable| |iflist2Result| GT
- |leftCharacteristicPolynomial| |rhs| |scripts| |real?| |f02aff|
- |clipSurface| |next| |factorSquareFreePolynomial| |printTypes|
- |sumSquares| |primPartElseUnitCanonical!| LE |anfactor| |separant|
- |delete!| |s21baf| |OMopenFile| |roughEqualIdeals?| |generalLambert|
- |exprHasLogarithmicWeights| |f02bjf| LT |nthRoot| |errorKind|
- |infRittWu?| |stFunc2| |lighting| |distribute| |ef2edf|
- |pushFortranOutputStack| |topFortranOutputStack| |generic|
- |coth2trigh| |henselFact| |sumOfKthPowerDivisors| |weierstrass|
- |e04ycf| |generic?| |edf2df| |divisor|
- |removeSuperfluousQuasiComponents| |monicDivide| |getPickedPoints|
- |log| |iicsc| |thetaCoord| |csch2sinh| |balancedBinaryTree|
- |var2StepsDefault| |divideIfCan!| |ddFact| |pole?|
- |reducedDiscriminant| |exponentialOrder| |unknown| |c06fuf| |lllip|
- |mapExpon| |showTheSymbolTable| |nil| |infinite| |arbitraryExponent|
- |approximate| |complex| |shallowMutable| |canonical| |noetherian|
- |central| |partiallyOrderedSet| |arbitraryPrecision|
+ |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record|
+ |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?|
+ |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom|
+ |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank|
+ |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements|
+ |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus|
+ |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter|
+ |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid|
+ |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf|
+ |any| |applyRules| |localUnquote| |arbitrary| |setColumn!| |setRow!|
+ |oneDimensionalArray| |associatedSystem| |uncouplingMatrices|
+ |associatedEquations| |arrayStack| |setButtonValue| |setAttributeButtonStep|
+ |resetAttributeButtons| |getButtonValue| |decrease| |increase| |morphism|
+ |balancedFactorisation| |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree|
+ |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant|
+ |bfEntry| |bfKeys| |inspect| |extract!| |bag| |binding| |test| |setProperties|
+ |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?|
+ |unary?| |nullary?| |properties| |derivative| |constantOperator|
+ |constantOpIfCan| |integerBound| |setright!| |setleft!|
+ |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!|
+ |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte|
+ |setLength!| |capacity| |byteBuffer| |subtractIfCan| |setPosition|
+ |generalizedContinuumHypothesisAssumed|
+ |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel|
+ |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |parents|
+ |principalAncestors| |exportedOperators| |alphanumeric| |alphabetic|
+ |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| |upperCase?|
+ |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| |mkIntegral|
+ |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| |find| |e|
+ |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| |iibinom|
+ |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial|
+ |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm|
+ |polarCoordinates| |complex| |imaginary| |solid| |solid?| |denominators|
+ |numerators| |convergents| |approximants| |reducedForm| |partialQuotients|
+ |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push|
+ |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic|
+ |parabolicCylindrical| |paraboloidal| |ellipticCylindrical|
+ |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical|
+ |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros|
+ |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius|
+ |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt|
+ |computeCycleLength| |computeCycleEntry| |findConstructor| |arguments|
+ |dualSignature| |kind| |package| |domain| |category| |coerceP| |powerSum|
+ |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath|
+ |SFunction| |skewSFunction| |cyclotomicDecomposition|
+ |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints|
+ |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX|
+ |exprHasAlgebraicWeight| |exprHasLogarithmicWeights|
+ |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor|
+ |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF|
+ |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?|
+ |elliptic?| |qsetelt| |doubleResultant| |distdfact| |separateDegrees|
+ |trace2PowMod| |tracePowMod| |irreducible?| |decimal| |innerint|
+ |exteriorDifferential| |totalDifferential| |homogeneous?| |leadingBasisTerm|
+ |ignore?| |computeInt| |checkForZero| |logGamma| |hypergeometric0F1| |rotatez|
+ |rotatey| |rotatex| |identity| |dictionary| |dioSolve| |directProduct|
+ |newLine| |copies| |say| |sayLength| |setnext!| |setprevious!| |next|
+ |previous| |datalist| |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify|
+ |constructor| |separant| |initial| |leader| |isobaric?| |weights|
+ |differentialVariables| |extractBottom!| |extractTop!| |insertBottom!|
+ |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| |drawComplex|
+ |drawComplexVectorField| |setRealSteps| |setImagSteps| |setClipValue| |draw|
+ |option?| |range| |colorFunction| |curveColor| |pointColor| |clip|
+ |clipBoolean| |style| |toScale| |pointColorPalette| |curveColorPalette|
+ |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| |option| |weight|
+ |makeVariable| |finiteBound| |sortConstraints| |sumOfSquares| |splitLinear|
+ |simpleBounds?| |linearMatrix| |linearPart| |nonLinearPart| |quadratic?|
+ |changeNameToObjf| |optAttributes| |Nul| |exponents| |iisqrt2| |iisqrt3|
+ |iiexp| |iilog| |iisin| |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin|
+ |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh|
+ |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| |iiatanh| |iiacoth| |iiasech|
+ |iiacsch| |specialTrigs| |localReal?| |rischNormalize| |realElementary|
+ |validExponential| |rootNormalize| |tanQ| |callForm?| |getIdentifier|
+ |getConstant| |type| |select!| |delete!| |sn| |cn| |dn| |sncndn| |qsetelt!|
+ |categoryFrame| |currentEnv| |setProperties!| |getProperties| |setProperty!|
+ |getProperty| |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector|
+ |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne|
+ |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower|
+ |kernels| |mainKernel| |distribute| |subst| |functionIsFracPolynomial?|
+ |problemPoints| |zerosOf| |singularitiesOf| |polynomialZeros| |f2df| |ef2edf|
+ |ocf2ocdf| |socf2socdf| |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation|
+ |numberOfOperations| |edf2efi| |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef|
+ |vedf2vef| |df2st| |f2st| |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure|
+ |measure2Result| |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef|
+ |fi2df| |mat| |neglist| |multiEuclidean| |extendedEuclidean| |euclideanSize|
+ |sizeLess?| |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction|
+ |tubePlot| |exponentialOrder| |completeEval| |lowerPolynomial|
+ |raisePolynomial| |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef|
+ |binomThmExpt| |pomopo!| |mapExponents| |linearAssociatedLog|
+ |linearAssociatedOrder| |linearAssociatedExp| |createNormalElement|
+ |setLabelValue| |getCode| |printCode| |code| |operation| |common|
+ |printStatement| |save| |stop| |block| |cond| |returns| |call| |comment|
+ |continue| |goto| |repeatUntilLoop| |whileLoop| |forLoop| |sin?| |zeroVector|
+ |zeroSquareMatrix| |identitySquareMatrix| |lSpaceBasis| |finiteBasis|
+ |principal?| |divisor| |useNagFunctions| |rationalPoints| |nonSingularModel|
+ |algSplitSimple| |hyperelliptic| |elliptic| |integralDerivationMatrix|
+ |integralRepresents| |integralCoordinates| |yCoordinates|
+ |inverseIntegralMatrixAtInfinity| |integralMatrixAtInfinity|
+ |inverseIntegralMatrix| |integralMatrix| |reduceBasisAtInfinity|
+ |normalizeAtInfinity| |complementaryBasis| |integral?| |integralAtInfinity?|
+ |integralBasisAtInfinity| |ramified?| |ramifiedAtInfinity?| |singular?|
+ |singularAtInfinity?| |branchPoint?| |branchPointAtInfinity?| |rationalPoint?|
+ |absolutelyIrreducible?| |genus| |getZechTable| |createZechTable|
+ |createMultiplicationTable| |createMultiplicationMatrix|
+ |createLowComplexityTable| |createLowComplexityNormalBasis|
+ |representationType| |createPrimitiveElement| |tableForDiscreteLogarithm|
+ |factorsOfCyclicGroupSize| |sizeMultiplication| |getMultiplicationMatrix|
+ |getMultiplicationTable| |primitive?| |numberOfIrreduciblePoly|
+ |numberOfPrimitivePoly| |numberOfNormalPoly| |createIrreduciblePoly|
+ |createPrimitivePoly| |createNormalPoly| |createNormalPrimitivePoly|
+ |createPrimitiveNormalPoly| |nextIrreduciblePoly| |nextPrimitivePoly|
+ |nextNormalPoly| |nextNormalPrimitivePoly| |nextPrimitiveNormalPoly|
+ |leastAffineMultiple| |reducedQPowers| |rootOfIrreduciblePoly| |write!|
+ |read!| |iomode| |close!| |reopen!| |open| |rightUnit| |leftUnit|
+ |rightMinimalPolynomial| |leftMinimalPolynomial| |associatorDependence|
+ |lieAlgebra?| |jordanAlgebra?| |noncommutativeJordanAlgebra?|
+ |jordanAdmissible?| |lieAdmissible?| |jacobiIdentity?| |powerAssociative?|
+ |alternative?| |flexible?| |rightAlternative?| |leftAlternative?|
+ |antiAssociative?| |associative?| |antiCommutative?| |commutative?|
+ |rightCharacteristicPolynomial| |leftCharacteristicPolynomial| |rightNorm|
+ |leftNorm| |rightTrace| |leftTrace| |someBasis| |sort!| |copyInto!| |sorted?|
+ |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral|
+ |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation|
+ |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |writable?|
+ |readable?| |exists?| |extension| |directory| |filename| |shallowExpand|
+ |deepExpand| |clearFortranOutputStack| |showFortranOutputStack|
+ |popFortranOutputStack| |pushFortranOutputStack| |topFortranOutputStack|
+ |setFormula!| |formula| |linkToFortran| |setLegalFortranSourceExtensions|
+ |fracPart| |polyPart| |fullPartialFraction| |primeFrobenius| |discreteLog|
+ |decreasePrecision| |increasePrecision| |bits| |unitNormalize| |unit|
+ |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| |nthExponent|
+ |irreducibleFactor| |nilFactor| |regularRepresentation| |traceMatrix|
+ |randomLC| |minimize| |module| |rightRegularRepresentation|
+ |leftRegularRepresentation| |rightTraceMatrix| |leftTraceMatrix|
+ |rightDiscriminant| |leftDiscriminant| |represents| |mergeFactors| |isMult|
+ |applyQuote| |ground| |ground?| |exprToXXP| |exprToUPS| |exprToGenUPS|
+ |localAbs| |universe| |complement| |cardinality| |internalIntegrate0|
+ |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| |newReduc| |logical?|
+ |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor|
+ |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex|
+ |fortranComplex| |fortranLogical| |fortranInteger| |fortranDouble|
+ |fortranReal| |external?| |scalarTypeOf| |fortranCarriageReturn|
+ |fortranLiteral| |fortranLiteralLine| |processTemplate| |makeFR|
+ |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor|
+ |useSingleFactorBound?| |useSingleFactorBound| |useEisensteinCriterion?|
+ |useEisensteinCriterion| |eisensteinIrreducible?|
+ |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact|
+ |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm|
+ |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree|
+ |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle|
+ |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares|
+ |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis|
+ |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB|
+ |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD|
+ |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO|
+ |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm|
+ |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm|
+ |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm|
+ |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial|
+ |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial|
+ |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow|
+ |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build|
+ |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray|
+ |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits|
+ |putColorInfo| |appendPoint| |component| |ranges| |pointLists|
+ |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc|
+ |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact|
+ |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host|
+ |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!|
+ |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate|
+ |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay|
+ |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal|
+ |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?|
+ |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp|
+ |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength|
+ |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports|
+ |sequence| |iterationVar| |readBytes!| |readUInt32!| |readInt32!|
+ |readUInt16!| |readInt16!| |readUInt8!| |readInt8!| |readByte!| |setFieldInfo|
+ |pol| |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis|
+ |normalElement| |minimalPolynomial| |position!| |eof?| |inputBinaryFile|
+ |increment| |incrementBy| |charpol| |solve1| |innerEigenvectors| |compile|
+ |declare| |parseString| |unparse| |flatten| |lambda| |binary| |packageCall|
+ |interpret| |innerSolve1| |innerSolve| |makeEq| |modularGcdPrimitive|
+ |modularGcd| |reduction| |signAround| |invmod| |powmod| |mulmod| |submod|
+ |addmod| |mask| |dec| |inc| |symmetricRemainder| |positiveRemainder| |bit?|
+ |algint| |algintegrate| |palgintegrate| |palginfieldint| |bitLength| |bitCoef|
+ |bitTruth| |contains?| |inf| |qinterval| |interval| |unit?| |associates?|
+ |unitCanonical| |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint|
+ |lfintegrate| |lfextlimint| |BasicMethod| |PollardSmallFactor| |showTheFTable|
+ |clearTheFTable| |fTable| |showAttributes| |entry| |palgint0| |palgextint0|
+ |palglimint0| |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi|
+ |fibonacci| |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors|
+ |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint|
+ |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate|
+ |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate|
+ |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax|
+ |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate|
+ |expintegrate| |tanintegrate| |primextendedint| |expextendedint|
+ |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac|
+ |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly|
+ |inverseLaplace| |inputOutputBinaryFile| |bothWays| |input| |resolve| |bytes|
+ |ip4Address| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer|
+ |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?|
+ |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand|
+ |complexIntegrate| |dimensionOfIrreducibleRepresentation|
+ |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh|
+ |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc|
+ |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos|
+ |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose|
+ |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG
+ |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?|
+ |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan|
+ |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |true|
+ |unknown| |false| |laplace| |trailingCoefficient| |normalizeIfCan| |polCase|
+ |distFact| |identification| |LyndonCoordinates| |LyndonBasis|
+ |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular|
+ |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei|
+ |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord|
+ |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit|
+ |limit| |linearlyDependent?| |linearDependence| |solveLinear| |reducedSystem|
+ |setDifference| |setIntersection| |setUnion| |append| |null| |nil|
+ |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality|
+ |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm|
+ |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1|
+ |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~
+ |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve|
+ |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?|
+ |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?|
+ |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D|
+ |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp|
+ |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag|
+ |curryRight| |curryLeft| |constantRight| |constantLeft| |twist|
+ |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat|
+ |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!|
+ |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!|
+ |rightScalarTimes!| |times!| |power!| |nothing| |just| |gradient| |divergence|
+ |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates|
+ |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod|
+ |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent|
+ |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal|
+ |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction|
+ |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction|
+ |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius|
+ |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index|
+ |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower|
+ |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom|
+ |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst|
+ |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference|
+ |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose|
+ |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf|
+ |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf|
+ |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf|
+ |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf|
+ |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf|
+ |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff|
+ |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf|
+ |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf|
+ |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf|
+ |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf|
+ |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef|
+ |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff|
+ |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf|
+ |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf|
+ |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf|
+ |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf|
+ |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf|
+ |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf|
+ |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf|
+ |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf|
+ |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf|
+ |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator|
+ |complexEigenvalues| |complexEigenvectors| |isConnected?| |connectTo| |shift|
+ |normalizedAssociate| |normalize| |outputArgs| |normInvertible?| |normFactors|
+ |npcoef| |listexp| |characteristicPolynomial| |realEigenvalues|
+ |realEigenvectors| |halfExtendedResultant2| |halfExtendedResultant1|
+ |extendedResultant| |subResultantsChain| |lazyPseudoQuotient|
+ |lazyPseudoRemainder| |bernoulliB| |eulerE| |numeric| |complexNumeric|
+ |numericIfCan| |complexNumericIfCan| |FormatArabic| |ScanArabic| |FormatRoman|
+ |ScanRoman| |ScanFloatIgnoreSpaces| |ScanFloatIgnoreSpacesIfCan|
+ |numericalIntegration| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson|
+ |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono|
+ |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon| |ODESolve|
+ |constDsolve| |showTheIFTable| |clearTheIFTable| |keys| |iFTable|
+ |showIntensityFunctions| |expint| |diff| |algDsolve| |denomLODE|
+ |indicialEquations| |indicialEquation| |denomRicDE| |leadingCoefficientRicDE|
+ |constantCoefficientRicDE| |changeVar| |ratDsolve|
+ |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve|
+ |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters|
+ |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn|
+ |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP|
+ |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp|
+ |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp|
+ |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError|
+ |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString|
+ |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar|
+ |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr|
+ |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger|
+ |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType|
+ |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown|
+ |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?|
+ |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile|
+ |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?|
+ |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop|
+ |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |arity| |getDatabase|
+ |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?|
+ |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex|
+ |min| |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient|
+ |rightRemainder| |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd|
+ |leftExactQuotient| |leftRemainder| |leftQuotient| |times| |apply|
+ |monicLeftDivide| |monicRightDivide| |leftDivide| |rightDivide| |hermiteH|
+ |laguerreL| |legendreP| |outputList| |writeBytes!| |writeUInt8!| |writeInt8!|
+ |writeByte!| |isOpen?| |outputBinaryFile| |quo| |rem| |div| >= > ~=
+ |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket|
+ |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub|
+ |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?|
+ |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace|
+ |superHeight| |subHeight| |height| |width| |doubleFloatFormat| |messagePrint|
+ |message| |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits|
+ |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark|
+ |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates|
+ |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult|
+ |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed|
+ |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?|
+ |topPredicate| |setTopPredicate| |patternVariable| |withPredicates|
+ |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?|
+ |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?|
+ |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |PDESolve|
+ |leftFactor| |rightFactorCandidate| |measure| D |ptree| |coerceImages|
+ |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition|
+ |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent|
+ |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints|
+ |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit|
+ |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base|
+ |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion|
+ |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit|
+ |charthRoot| |conditionP| |solveLinearPolynomialEquation|
+ |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial|
+ |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix|
+ |doubleDisc| |polyred| |padicFraction| |padicallyExpand|
+ |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom|
+ |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup|
+ |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11|
+ |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup|
+ |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember|
+ |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime|
+ |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve|
+ |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond|
+ |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive|
+ |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints|
+ |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D|
+ |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D|
+ |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D|
+ |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert|
+ |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes|
+ |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor|
+ |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP|
+ |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy|
+ |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials|
+ |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt|
+ |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix|
+ |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print|
+ |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?|
+ |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?|
+ |notOperand| |not?| |variable?| |term| |term?| |equiv| |implies| |or| |and|
+ |merge!| |max| |resultantEuclidean| |semiResultantEuclidean2|
+ |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean|
+ |semiIndiceSubResultantEuclidean| |degreeSubResultant|
+ |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean|
+ |lastSubResultantEuclidean| |semiLastSubResultantEuclidean|
+ |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2|
+ |semiSubResultantGcdEuclidean1| |discriminantEuclidean|
+ |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit|
+ |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard|
+ |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif|
+ |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?|
+ |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches|
+ |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder|
+ |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?|
+ |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect|
+ |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan|
+ |unprotectedRemoveRedundantFactors| |removeRedundantFactors|
+ |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?|
+ |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials|
+ |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?|
+ |linearPolynomials| |bivariate?| |bivariatePolynomials|
+ |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol|
+ |interReduce| |roughBasicSet| |crushedSet|
+ |rewriteSetByReducingWithParticularGenerators|
+ |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors|
+ |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents|
+ |removeRedundantFactorsInContents| |removeRedundantFactorsInPols|
+ |irreducibleFactors| |lazyIrreducibleFactors|
+ |removeIrreducibleRedundantFactors| |normalForm| |changeBase|
+ |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord|
+ |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan|
+ |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan|
+ |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan|
+ |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan|
+ |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup|
+ |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations|
+ |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator|
+ |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!|
+ |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue|
+ |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits|
+ |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?|
+ |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance|
+ |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial|
+ |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE|
+ |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint|
+ |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| =
+ |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector|
+ |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt|
+ |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix|
+ |symmetricTensors| |tensorProduct| |permutationRepresentation|
+ |completeEchelonBasis| |createRandomElement| |cyclicSubmodule|
+ |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?|
+ |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues|
+ |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate|
+ |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal|
+ |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue|
+ |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric|
+ |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column|
+ |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex|
+ |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix|
+ |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart|
+ |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right|
+ |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!|
+ |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold|
+ |selectMultiDimensionalRoutines| |selectNonFiniteRoutines|
+ |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines|
+ |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines|
+ |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent|
+ |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient|
+ |subResultantChain| |halfExtendedSubResultantGcd2|
+ |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!|
+ |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical|
+ |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide|
+ |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?|
+ |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial|
+ |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial|
+ |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators|
+ |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?|
+ |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit|
+ |invertibleSet| |invertible?| |invertibleElseSplit?|
+ |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?|
+ |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo|
+ |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant|
+ |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression|
+ |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create|
+ |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope|
+ |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates|
+ |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?|
+ |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex|
+ |hash| |delta| |member?| |enumerate| |setOfMinN| |elements|
+ |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer|
+ |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?|
+ |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?|
+ |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?|
+ |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?|
+ |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?|
+ |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!|
+ |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!|
+ |stosePrepareSubResAlgo| |stoseInternalLastSubResultant|
+ |stoseIntegralLastSubResultant| |stoseLastSubResultant|
+ |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg|
+ |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet|
+ |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus|
+ |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition|
+ |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0|
+ |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence|
+ |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots|
+ |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature|
+ |signatureAst| |Or| |And| |Not| |xor| |not| |depth| |top| |pop!| |push!|
+ |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix|
+ |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith|
+ |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear|
+ |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic|
+ |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise|
+ |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp|
+ |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve|
+ |curve?| |curve| |point?| |enterPointData| |composites| |components|
+ |numberOfComposites| |numberOfComponents| |create3Space| |parse|
+ |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma|
+ |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi|
+ |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!|
+ |copy| |status| |value| |empty?| |splitNodeOf!| |remove!| |remove|
+ |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!|
+ |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim|
+ |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?|
+ |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber|
+ |numberOfVariables| |algebraicDecompose| |transcendentalDecompose|
+ |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess|
+ |internalZeroSetSplit| |internalAugment| |stack| |possiblyInfinite?|
+ |explicitlyFinite?| |nextItem| |init| |infiniteProduct| |evenInfiniteProduct|
+ |oddInfiniteProduct| |generalInfiniteProduct| |filterUntil| |filterWhile|
+ |generate| |showAll?| |showAllElements| |output| |cons| |delay| |findCycle|
+ |repeating?| |repeating| |exquo| |recip| |integers| |oddintegers| |int|
+ |mapmult| |deriv| |gderiv| |compose| |addiag| |lazyIntegrate| |nlde| |powern|
+ |mapdiv| |lazyGintegrate| |power| |sincos| |sinhcosh| |asin| |acos| |atan|
+ |acot| |asec| |acsc| |sinh| |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh|
+ |atanh| |acoth| |asech| |acsch| |subresultantVector| |primitivePart|
+ |pointData| |parent| |level| |extractProperty| |extractClosed| |extractIndex|
+ |extractPoint| |traverse| |defineProperty| |closeComponent| |modifyPoint|
+ |addPointLast| |addPoint2| |addPoint| |merge| |deepCopy| |shallowCopy|
+ |numberOfChildren| |children| |child| |birth| |internal?| |root?| |leaf?|
+ |rhs| |lhs| |construct| |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT
+ LT |list| |string| |argscript| |superscript| |subscript| |script| |scripts|
+ |scripted?| |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf|
+ |returnTypeOf| |printHeader| |returnType!| |argumentList!| |endSubProgram|
+ |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable|
+ |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList|
+ |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case|
+ |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce|
+ |solve| |triangularSystems| |rootDirectory| |hostPlatform|
+ |nativeModuleExtension| |loadNativeModule| |bumprow| |bumptab| |bumptab1|
+ |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr|
+ |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!|
+ |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?|
+ |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString|
+ |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue|
+ |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!|
+ |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi|
+ |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?|
+ |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary|
+ |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv|
+ |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog|
+ |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh|
+ |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig|
+ |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq|
+ |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate|
+ |coefficient| |coHeight| |extendIfCan| |algebraicVariables|
+ |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic|
+ |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce|
+ |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?|
+ |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent|
+ |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?|
+ |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select|
+ |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?|
+ |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder|
+ |resetVariableOrder| |prime?| |sample| |bitior| |bitand| |rationalFunction|
+ |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree|
+ |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator|
+ |clearDenominator| |splitDenominator| |monicRightFactorIfCan|
+ |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan|
+ |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce|
+ |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite|
+ |subResultantGcd| |resultant| |discriminant| |pseudoRemainder| |shiftLeft|
+ |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| |unmakeSUP|
+ |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| |order|
+ |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents|
+ |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm|
+ |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!|
+ |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail|
+ |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert|
+ |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange|
+ |differentiate| |univariatePolynomial| |integrate| ** |polynomial|
+ |multiplyCoefficients| |quoByVar| |coefficients| |series| |stFunc1| |stFunc2|
+ |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP
+ LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| |outerProduct| |dot| -
+ |zero| + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show|
+ |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs|
+ |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints|
+ |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface|
+ |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective|
+ |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes|
+ |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options|
+ |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault|
+ |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault|
+ |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault|
+ |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults|
+ |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault|
+ |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst|
+ |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis|
+ |localIntegralBasis| |qualifier| |mainExpression| |condition|
+ |changeWeightLevel| |characteristicSerie| |characteristicSet| |medialSet|
+ |Hausdorff| |Frobenius| |transcendenceDegree| |extensionDegree|
+ |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| |mirror|
+ |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product|
+ |LiePolyIfCan| |coerce| |trunc| |degree| / |quasiRegular| |quasiRegular?|
+ |constant| |constant?| |coef| |mindeg| |maxdeg| |#| |map| |reductum| *
+ |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve|
+ |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?|
+ |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical|
+ |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision|
|canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
|additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
- |commutative|) \ No newline at end of file
+ |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index b7b45646..a829a7bf 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5287 +1,5287 @@
-(3193520 . 3440812790)
-((-2097 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1680 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4207 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-1221 (-561)) |#2|) 34)) (-4026 (($ $) 59)) (-3176 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-4266 (((-561) (-1 (-112) |#2|) $) 22) (((-561) |#2| $) NIL) (((-561) |#2| $ (-561)) 73)) (-2368 (((-638 |#2|) $) 13)) (-3405 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-2029 (($ (-1 |#2| |#2|) $) 29)) (-4165 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3350 (($ |#2| $ (-561)) NIL) (($ $ $ (-561)) 50)) (-3202 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-3977 (((-112) (-1 (-112) |#2|) $) 21)) (-2315 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) NIL) (($ $ (-1221 (-561))) 49)) (-2883 (($ $ (-561)) 56) (($ $ (-1221 (-561))) 55)) (-1714 (((-765) (-1 (-112) |#2|) $) 26) (((-765) |#2| $) NIL)) (-2879 (($ $ $ (-561)) 52)) (-4225 (($ $) 51)) (-4078 (($ (-638 |#2|)) 53)) (-2754 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-638 $)) 62)) (-4064 (((-856) $) 69)) (-3715 (((-112) (-1 (-112) |#2|) $) 20)) (-1723 (((-112) $ $) 72)) (-1746 (((-112) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2879 (|#1| |#1| |#1| (-561))) (-15 -2097 ((-112) |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -4266 ((-561) |#2| |#1| (-561))) (-15 -4266 ((-561) |#2| |#1|)) (-15 -4266 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4207 (|#2| |#1| (-1221 (-561)) |#2|)) (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -2883 (|#1| |#1| (-1221 (-561)))) (-15 -2883 (|#1| |#1| (-561))) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -3202 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2315 (|#2| |#1| (-561))) (-15 -2315 (|#2| |#1| (-561) |#2|)) (-15 -4207 (|#2| |#1| (-561) |#2|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -2368 ((-638 |#2|) |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1|))) (-19 |#2|) (-1205)) (T -18))
+(3183556 . 3442118626)
+((-1876 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1874 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4194 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-1220 (-544)) |#2|) 34)) (-2416 (($ $) 59)) (-4249 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3823 (((-544) (-1 (-112) |#2|) $) 22) (((-544) |#2| $) NIL) (((-544) |#2| $ (-544)) 73)) (-2096 (((-635 |#2|) $) 13)) (-3917 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-2100 (($ (-1 |#2| |#2|) $) 29)) (-4365 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2421 (($ |#2| $ (-544)) NIL) (($ $ $ (-544)) 50)) (-1425 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2098 (((-112) (-1 (-112) |#2|) $) 21)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) NIL) (($ $ (-1220 (-544))) 49)) (-2422 (($ $ (-544)) 56) (($ $ (-1220 (-544))) 55)) (-2097 (((-765) (-1 (-112) |#2|) $) 26) (((-765) |#2| $) NIL)) (-1875 (($ $ $ (-544)) 52)) (-3804 (($ $) 51)) (-3929 (($ (-635 |#2|)) 53)) (-4208 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-635 $)) 62)) (-4353 (((-857) $) 69)) (-2099 (((-112) (-1 (-112) |#2|) $) 20)) (-3437 (((-112) $ $) 72)) (-3067 (((-112) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -1876 ((-112) |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|))) (-19 |#2|) (-1204)) (T -18))
NIL
-(-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2879 (|#1| |#1| |#1| (-561))) (-15 -2097 ((-112) |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -4266 ((-561) |#2| |#1| (-561))) (-15 -4266 ((-561) |#2| |#1|)) (-15 -4266 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4207 (|#2| |#1| (-1221 (-561)) |#2|)) (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -2883 (|#1| |#1| (-1221 (-561)))) (-15 -2883 (|#1| |#1| (-561))) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -3202 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2315 (|#2| |#1| (-561))) (-15 -2315 (|#2| |#1| (-561) |#2|)) (-15 -4207 (|#2| |#1| (-561) |#2|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -2368 ((-638 |#2|) |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4400))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4400))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 58 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-4026 (($ $) 90 (|has| $ (-6 -4400)))) (-2659 (($ $) 100)) (-1461 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 51)) (-4266 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-1597 (($ $ $) 87 (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-3017 (($ $ $) 86 (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 42 (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3193 (($ $ |#1|) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1221 (-561))) 63)) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2879 (($ $ $ (-561)) 91 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 70)) (-2754 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1770 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-844)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-19 |#1|) (-139) (-1205)) (T -19))
+(-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -1876 ((-112) |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-19 |#1|) (-139) (-1204)) (T -19))
NIL
-(-13 (-372 |t#1|) (-10 -7 (-6 -4400)))
-(((-34) . T) ((-102) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T))
-((-2979 (((-3 $ "failed") $ $) 12)) (-1819 (($ $) NIL) (($ $ $) 9)) (* (($ (-914) $) NIL) (($ (-765) $) 16) (($ (-561) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2979 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-21)) (T -20))
+(-13 (-371 |t#1|) (-10 -7 (-6 -4401)))
+(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T))
+((-1391 (((-3 $ "failed") $ $) 12)) (-4244 (($ $) NIL) (($ $ $) 9)) (* (($ (-912) $) NIL) (($ (-765) $) 16) (($ (-544) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -1391 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2979 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20)))
+(-10 -8 (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -1391 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20)))
(((-21) (-139)) (T -21))
-((-1819 (*1 *1 *1) (-4 *1 (-21))) (-1819 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-561)))))
-(-13 (-130) (-10 -8 (-15 -1819 ($ $)) (-15 -1819 ($ $ $)) (-15 * ($ (-561) $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4306 (((-112) $) 10)) (-2674 (($) 15)) (* (($ (-914) $) 14) (($ (-765) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -2674 (|#1|)) (-15 * (|#1| (-914) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -2674 (|#1|)) (-15 * (|#1| (-914) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
+((-4244 (*1 *1 *1) (-4 *1 (-21))) (-4244 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-544)))))
+(-13 (-130) (-10 -8 (-15 -4244 ($ $)) (-15 -4244 ($ $ $)) (-15 * ($ (-544) $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-3589 (((-112) $) 10)) (-4131 (($) 15)) (* (($ (-912) $) 14) (($ (-765) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 * (|#1| (-912) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 * (|#1| (-912) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15)))
(((-23) (-139)) (T -23))
-((-2246 (*1 *1) (-4 *1 (-23))) (-2674 (*1 *1) (-4 *1 (-23))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-765)))))
-(-13 (-25) (-10 -8 (-15 (-2246) ($) -1494) (-15 -2674 ($) -1494) (-15 -4306 ((-112) $)) (-15 * ($ (-765) $))))
-(((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((* (($ (-914) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-914) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-914) |#1|)))
-((-4053 (((-112) $ $) 7)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13)))
+((-3040 (*1 *1) (-4 *1 (-23))) (-4131 (*1 *1) (-4 *1 (-23))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-765)))))
+(-13 (-25) (-10 -8 (-15 (-3040) ($) -4359) (-15 -4131 ($) -4359) (-15 -3589 ((-112) $)) (-15 * ($ (-765) $))))
+(((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((* (($ (-912) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-912) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-912) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13)))
(((-25) (-139)) (T -25))
-((-1810 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-914)))))
-(-13 (-1090) (-10 -8 (-15 -1810 ($ $ $)) (-15 * ($ (-914) $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-2311 (((-638 $) (-945 $)) 29) (((-638 $) (-1162 $)) 16) (((-638 $) (-1162 $) (-1166)) 20)) (-2153 (($ (-945 $)) 27) (($ (-1162 $)) 11) (($ (-1162 $) (-1166)) 54)) (-1466 (((-638 $) (-945 $)) 30) (((-638 $) (-1162 $)) 18) (((-638 $) (-1162 $) (-1166)) 19)) (-2496 (($ (-945 $)) 28) (($ (-1162 $)) 13) (($ (-1162 $) (-1166)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2311 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2311 ((-638 |#1|) (-1162 |#1|))) (-15 -2311 ((-638 |#1|) (-945 |#1|))) (-15 -2153 (|#1| (-1162 |#1|) (-1166))) (-15 -2153 (|#1| (-1162 |#1|))) (-15 -2153 (|#1| (-945 |#1|))) (-15 -1466 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -1466 ((-638 |#1|) (-1162 |#1|))) (-15 -1466 ((-638 |#1|) (-945 |#1|))) (-15 -2496 (|#1| (-1162 |#1|) (-1166))) (-15 -2496 (|#1| (-1162 |#1|))) (-15 -2496 (|#1| (-945 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2311 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2311 ((-638 |#1|) (-1162 |#1|))) (-15 -2311 ((-638 |#1|) (-945 |#1|))) (-15 -2153 (|#1| (-1162 |#1|) (-1166))) (-15 -2153 (|#1| (-1162 |#1|))) (-15 -2153 (|#1| (-945 |#1|))) (-15 -1466 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -1466 ((-638 |#1|) (-1162 |#1|))) (-15 -1466 ((-638 |#1|) (-945 |#1|))) (-15 -2496 (|#1| (-1162 |#1|) (-1166))) (-15 -2496 (|#1| (-1162 |#1|))) (-15 -2496 (|#1| (-945 |#1|))))
-((-4053 (((-112) $ $) 7)) (-2311 (((-638 $) (-945 $)) 81) (((-638 $) (-1162 $)) 80) (((-638 $) (-1162 $) (-1166)) 79)) (-2153 (($ (-945 $)) 84) (($ (-1162 $)) 83) (($ (-1162 $) (-1166)) 82)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-1643 (($ $) 93)) (-3698 (((-112) $ $) 60)) (-2674 (($) 17 T CONST)) (-1466 (((-638 $) (-945 $)) 87) (((-638 $) (-1162 $)) 86) (((-638 $) (-1162 $) (-1166)) 85)) (-2496 (($ (-945 $)) 90) (($ (-1162 $)) 89) (($ (-1162 $) (-1166)) 88)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2725 (((-112) $) 72)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 92)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 66)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 91)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
+((-4246 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-912)))))
+(-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ (-912) $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-1695 (((-635 $) (-939 $)) 29) (((-635 $) (-1160 $)) 16) (((-635 $) (-1160 $) (-1166)) 20)) (-1287 (($ (-939 $)) 27) (($ (-1160 $)) 11) (($ (-1160 $) (-1166)) 54)) (-1288 (((-635 $) (-939 $)) 30) (((-635 $) (-1160 $)) 18) (((-635 $) (-1160 $) (-1166)) 19)) (-3584 (($ (-939 $)) 28) (($ (-1160 $)) 13) (($ (-1160 $) (-1166)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|))))
+((-2947 (((-112) $ $) 7)) (-1695 (((-635 $) (-939 $)) 81) (((-635 $) (-1160 $)) 80) (((-635 $) (-1160 $) (-1166)) 79)) (-1287 (($ (-939 $)) 84) (($ (-1160 $)) 83) (($ (-1160 $) (-1166)) 82)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 93)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-1288 (((-635 $) (-939 $)) 87) (((-635 $) (-1160 $)) 86) (((-635 $) (-1160 $) (-1166)) 85)) (-3584 (($ (-939 $)) 90) (($ (-1160 $)) 89) (($ (-1160 $) (-1166)) 88)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 92)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 91)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68)))
(((-27) (-139)) (T -27))
-((-2496 (*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27)))) (-2496 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-2153 (*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) (-2153 (*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27)))) (-2153 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-638 *1)))))
-(-13 (-362) (-995) (-10 -8 (-15 -2496 ($ (-945 $))) (-15 -2496 ($ (-1162 $))) (-15 -2496 ($ (-1162 $) (-1166))) (-15 -1466 ((-638 $) (-945 $))) (-15 -1466 ((-638 $) (-1162 $))) (-15 -1466 ((-638 $) (-1162 $) (-1166))) (-15 -2153 ($ (-945 $))) (-15 -2153 ($ (-1162 $))) (-15 -2153 ($ (-1162 $) (-1166))) (-15 -2311 ((-638 $) (-945 $))) (-15 -2311 ((-638 $) (-1162 $))) (-15 -2311 ((-638 $) (-1162 $) (-1166)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-995) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
-((-2311 (((-638 $) (-945 $)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-1162 $) (-1166)) 50) (((-638 $) $) 19) (((-638 $) $ (-1166)) 41)) (-2153 (($ (-945 $)) NIL) (($ (-1162 $)) NIL) (($ (-1162 $) (-1166)) 52) (($ $) 17) (($ $ (-1166)) 37)) (-1466 (((-638 $) (-945 $)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-1162 $) (-1166)) 48) (((-638 $) $) 15) (((-638 $) $ (-1166)) 43)) (-2496 (($ (-945 $)) NIL) (($ (-1162 $)) NIL) (($ (-1162 $) (-1166)) NIL) (($ $) 12) (($ $ (-1166)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2311 ((-638 |#1|) |#1| (-1166))) (-15 -2153 (|#1| |#1| (-1166))) (-15 -2311 ((-638 |#1|) |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -1466 ((-638 |#1|) |#1| (-1166))) (-15 -2496 (|#1| |#1| (-1166))) (-15 -1466 ((-638 |#1|) |#1|)) (-15 -2496 (|#1| |#1|)) (-15 -2311 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2311 ((-638 |#1|) (-1162 |#1|))) (-15 -2311 ((-638 |#1|) (-945 |#1|))) (-15 -2153 (|#1| (-1162 |#1|) (-1166))) (-15 -2153 (|#1| (-1162 |#1|))) (-15 -2153 (|#1| (-945 |#1|))) (-15 -1466 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -1466 ((-638 |#1|) (-1162 |#1|))) (-15 -1466 ((-638 |#1|) (-945 |#1|))) (-15 -2496 (|#1| (-1162 |#1|) (-1166))) (-15 -2496 (|#1| (-1162 |#1|))) (-15 -2496 (|#1| (-945 |#1|)))) (-29 |#2|) (-13 (-844) (-553))) (T -28))
-NIL
-(-10 -8 (-15 -2311 ((-638 |#1|) |#1| (-1166))) (-15 -2153 (|#1| |#1| (-1166))) (-15 -2311 ((-638 |#1|) |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -1466 ((-638 |#1|) |#1| (-1166))) (-15 -2496 (|#1| |#1| (-1166))) (-15 -1466 ((-638 |#1|) |#1|)) (-15 -2496 (|#1| |#1|)) (-15 -2311 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2311 ((-638 |#1|) (-1162 |#1|))) (-15 -2311 ((-638 |#1|) (-945 |#1|))) (-15 -2153 (|#1| (-1162 |#1|) (-1166))) (-15 -2153 (|#1| (-1162 |#1|))) (-15 -2153 (|#1| (-945 |#1|))) (-15 -1466 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -1466 ((-638 |#1|) (-1162 |#1|))) (-15 -1466 ((-638 |#1|) (-945 |#1|))) (-15 -2496 (|#1| (-1162 |#1|) (-1166))) (-15 -2496 (|#1| (-1162 |#1|))) (-15 -2496 (|#1| (-945 |#1|))))
-((-4053 (((-112) $ $) 7)) (-2311 (((-638 $) (-945 $)) 81) (((-638 $) (-1162 $)) 80) (((-638 $) (-1162 $) (-1166)) 79) (((-638 $) $) 125) (((-638 $) $ (-1166)) 123)) (-2153 (($ (-945 $)) 84) (($ (-1162 $)) 83) (($ (-1162 $) (-1166)) 82) (($ $) 126) (($ $ (-1166)) 124)) (-4306 (((-112) $) 16)) (-1405 (((-638 (-1166)) $) 200)) (-1596 (((-406 (-1162 $)) $ (-607 $)) 232 (|has| |#1| (-553)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-1495 (((-638 (-607 $)) $) 163)) (-2979 (((-3 $ "failed") $ $) 19)) (-1339 (($ $ (-638 (-607 $)) (-638 $)) 153) (($ $ (-638 (-293 $))) 152) (($ $ (-293 $)) 151)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-1643 (($ $) 93)) (-3698 (((-112) $ $) 60)) (-2674 (($) 17 T CONST)) (-1466 (((-638 $) (-945 $)) 87) (((-638 $) (-1162 $)) 86) (((-638 $) (-1162 $) (-1166)) 85) (((-638 $) $) 129) (((-638 $) $ (-1166)) 127)) (-2496 (($ (-945 $)) 90) (($ (-1162 $)) 89) (($ (-1162 $) (-1166)) 88) (($ $) 130) (($ $ (-1166)) 128)) (-4061 (((-3 (-945 |#1|) "failed") $) 250 (|has| |#1| (-1042))) (((-3 (-406 (-945 |#1|)) "failed") $) 234 (|has| |#1| (-553))) (((-3 |#1| "failed") $) 196) (((-3 (-561) "failed") $) 193 (|has| |#1| (-1031 (-561)))) (((-3 (-1166) "failed") $) 187) (((-3 (-607 $) "failed") $) 138) (((-3 (-406 (-561)) "failed") $) 121 (-4050 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-3979 (((-945 |#1|) $) 249 (|has| |#1| (-1042))) (((-406 (-945 |#1|)) $) 233 (|has| |#1| (-553))) ((|#1| $) 195) (((-561) $) 194 (|has| |#1| (-1031 (-561)))) (((-1166) $) 186) (((-607 $) $) 137) (((-406 (-561)) $) 122 (-4050 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-1792 (($ $ $) 56)) (-3720 (((-682 |#1|) (-682 $)) 240 (|has| |#1| (-1042))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 239 (|has| |#1| (-1042))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 120 (-4050 (-2198 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (-2198 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (((-682 (-561)) (-682 $)) 119 (-4050 (-2198 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (-2198 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2725 (((-112) $) 72)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 192 (|has| |#1| (-879 (-378)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 191 (|has| |#1| (-879 (-561))))) (-1719 (($ (-638 $)) 157) (($ $) 156)) (-2123 (((-638 (-114)) $) 164)) (-1773 (((-114) (-114)) 165)) (-2252 (((-112) $) 31)) (-2110 (((-112) $) 185 (|has| $ (-1031 (-561))))) (-3307 (($ $) 217 (|has| |#1| (-1042)))) (-4077 (((-1115 |#1| (-607 $)) $) 216 (|has| |#1| (-1042)))) (-4343 (($ $ (-561)) 92)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1578 (((-1162 $) (-607 $)) 182 (|has| $ (-1042)))) (-1597 (($ $ $) 136)) (-3017 (($ $ $) 135)) (-4165 (($ (-1 $ $) (-607 $)) 171)) (-2373 (((-3 (-607 $) "failed") $) 161)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1583 (((-638 (-607 $)) $) 162)) (-4154 (($ (-114) (-638 $)) 170) (($ (-114) $) 169)) (-4174 (((-3 (-638 $) "failed") $) 211 (|has| |#1| (-1102)))) (-1703 (((-3 (-2 (|:| |val| $) (|:| -4181 (-561))) "failed") $) 220 (|has| |#1| (-1042)))) (-2540 (((-3 (-638 $) "failed") $) 213 (|has| |#1| (-25)))) (-3912 (((-3 (-2 (|:| -4226 (-561)) (|:| |var| (-607 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3276 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-1166)) 219 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-114)) 218 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $) 212 (|has| |#1| (-1102)))) (-4188 (((-112) $ (-1166)) 168) (((-112) $ (-114)) 167)) (-1519 (($ $) 71)) (-3093 (((-765) $) 160)) (-1701 (((-1110) $) 10)) (-1530 (((-112) $) 198)) (-1542 ((|#1| $) 199)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1342 (((-112) $ (-1166)) 173) (((-112) $ $) 172)) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-2058 (((-112) $) 184 (|has| $ (-1031 (-561))))) (-1436 (($ $ (-1166) (-765) (-1 $ $)) 224 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-638 $))) 223 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) 222 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) 221 (|has| |#1| (-1042))) (($ $ (-638 (-114)) (-638 $) (-1166)) 210 (|has| |#1| (-609 (-534)))) (($ $ (-114) $ (-1166)) 209 (|has| |#1| (-609 (-534)))) (($ $) 208 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166))) 207 (|has| |#1| (-609 (-534)))) (($ $ (-1166)) 206 (|has| |#1| (-609 (-534)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-638 $))) 180) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 179) (($ $ (-638 (-114)) (-638 (-1 $ $))) 178) (($ $ (-1166) (-1 $ $)) 177) (($ $ (-1166) (-1 $ (-638 $))) 176) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 175) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 174) (($ $ (-638 $) (-638 $)) 145) (($ $ $ $) 144) (($ $ (-293 $)) 143) (($ $ (-638 (-293 $))) 142) (($ $ (-638 (-607 $)) (-638 $)) 141) (($ $ (-607 $) $) 140)) (-1905 (((-765) $) 59)) (-2315 (($ (-114) (-638 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-4348 (($ $ $) 159) (($ $) 158)) (-3922 (($ $ (-1166)) 248 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 247 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 246 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) 245 (|has| |#1| (-1042)))) (-1969 (($ $) 227 (|has| |#1| (-553)))) (-4088 (((-1115 |#1| (-607 $)) $) 226 (|has| |#1| (-553)))) (-3158 (($ $) 183 (|has| $ (-1042)))) (-4216 (((-534) $) 254 (|has| |#1| (-609 (-534)))) (($ (-417 $)) 225 (|has| |#1| (-553))) (((-885 (-378)) $) 190 (|has| |#1| (-609 (-885 (-378))))) (((-885 (-561)) $) 189 (|has| |#1| (-609 (-885 (-561)))))) (-2076 (($ $ $) 253 (|has| |#1| (-471)))) (-3047 (($ $ $) 252 (|has| |#1| (-471)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ (-945 |#1|)) 251 (|has| |#1| (-1042))) (($ (-406 (-945 |#1|))) 235 (|has| |#1| (-553))) (($ (-406 (-945 (-406 |#1|)))) 231 (|has| |#1| (-553))) (($ (-945 (-406 |#1|))) 230 (|has| |#1| (-553))) (($ (-406 |#1|)) 229 (|has| |#1| (-553))) (($ (-1115 |#1| (-607 $))) 215 (|has| |#1| (-1042))) (($ |#1|) 197) (($ (-1166)) 188) (($ (-607 $)) 139)) (-3666 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-3402 (($ (-638 $)) 155) (($ $) 154)) (-3333 (((-112) (-114)) 166)) (-3996 (((-112) $ $) 40)) (-3150 (($ (-1166) (-638 $)) 205) (($ (-1166) $ $ $ $) 204) (($ (-1166) $ $ $) 203) (($ (-1166) $ $) 202) (($ (-1166) $) 201)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-1166)) 244 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 243 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 242 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) 241 (|has| |#1| (-1042)))) (-1781 (((-112) $ $) 133)) (-1758 (((-112) $ $) 132)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 134)) (-1746 (((-112) $ $) 131)) (-1828 (($ $ $) 66) (($ (-1115 |#1| (-607 $)) (-1115 |#1| (-607 $))) 228 (|has| |#1| (-553)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 91)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171)))))
-(((-29 |#1|) (-139) (-13 (-844) (-553))) (T -29))
-((-2496 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553))))) (-1466 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3)))) (-2496 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553))))) (-1466 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *4)))) (-2153 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553))))) (-2311 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3)))) (-2153 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553))))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-429 |t#1|) (-10 -8 (-15 -2496 ($ $)) (-15 -1466 ((-638 $) $)) (-15 -2496 ($ $ (-1166))) (-15 -1466 ((-638 $) $ (-1166))) (-15 -2153 ($ $)) (-15 -2311 ((-638 $) $)) (-15 -2153 ($ $ (-1166))) (-15 -2311 ((-638 $) $ (-1166)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 #1=(-406 (-945 |#1|))) |has| |#1| (-553)) ((-611 (-561)) . T) ((-611 #2=(-607 $)) . T) ((-611 #3=(-945 |#1|)) |has| |#1| (-1042)) ((-611 #4=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-301) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-429 |#1|) . T) ((-450) . T) ((-471) |has| |#1| (-471)) ((-512 (-607 $) $) . T) ((-512 $ $) . T) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) . T) ((-634 (-561)) -12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #0#) . T) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-913) . T) ((-995) . T) ((-1031 (-406 (-561))) -4050 (|has| |#1| (-1031 (-406 (-561)))) (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) ((-1031 #1#) |has| |#1| (-553)) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #2#) . T) ((-1031 #3#) |has| |#1| (-1042)) ((-1031 #4#) . T) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1205) . T) ((-1209) . T))
-((-2010 (((-1084 (-224)) $) NIL)) (-1998 (((-1084 (-224)) $) NIL)) (-2335 (($ $ (-224)) 125)) (-2906 (($ (-945 (-561)) (-1166) (-1166) (-1084 (-406 (-561))) (-1084 (-406 (-561)))) 82)) (-4114 (((-638 (-638 (-936 (-224)))) $) 137)) (-4064 (((-856) $) 149)))
-(((-30) (-13 (-948) (-10 -8 (-15 -2906 ($ (-945 (-561)) (-1166) (-1166) (-1084 (-406 (-561))) (-1084 (-406 (-561))))) (-15 -2335 ($ $ (-224)))))) (T -30))
-((-2906 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-945 (-561))) (-5 *3 (-1166)) (-5 *4 (-1084 (-406 (-561)))) (-5 *1 (-30)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))))
-(-13 (-948) (-10 -8 (-15 -2906 ($ (-945 (-561)) (-1166) (-1166) (-1084 (-406 (-561))) (-1084 (-406 (-561))))) (-15 -2335 ($ $ (-224)))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-1125) $) 11)) (-1423 (((-1125) $) 9)) (-1723 (((-112) $ $) NIL)))
-(((-31) (-13 (-1073) (-10 -8 (-15 -1423 ((-1125) $)) (-15 -3316 ((-1125) $))))) (T -31))
-((-1423 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))))
-(-13 (-1073) (-10 -8 (-15 -1423 ((-1125) $)) (-15 -3316 ((-1125) $))))
-((-2496 ((|#2| (-1162 |#2|) (-1166)) 43)) (-1773 (((-114) (-114)) 56)) (-1578 (((-1162 |#2|) (-607 |#2|)) 133 (|has| |#1| (-1031 (-561))))) (-1778 ((|#2| |#1| (-561)) 123 (|has| |#1| (-1031 (-561))))) (-3876 ((|#2| (-1162 |#2|) |#2|) 30)) (-3398 (((-856) (-638 |#2|)) 85)) (-3158 ((|#2| |#2|) 129 (|has| |#1| (-1031 (-561))))) (-3333 (((-112) (-114)) 18)) (** ((|#2| |#2| (-406 (-561))) 96 (|has| |#1| (-1031 (-561))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -2496 (|#2| (-1162 |#2|) (-1166))) (-15 -1773 ((-114) (-114))) (-15 -3333 ((-112) (-114))) (-15 -3876 (|#2| (-1162 |#2|) |#2|)) (-15 -3398 ((-856) (-638 |#2|))) (IF (|has| |#1| (-1031 (-561))) (PROGN (-15 ** (|#2| |#2| (-406 (-561)))) (-15 -1578 ((-1162 |#2|) (-607 |#2|))) (-15 -3158 (|#2| |#2|)) (-15 -1778 (|#2| |#1| (-561)))) |%noBranch|)) (-13 (-844) (-553)) (-429 |#1|)) (T -32))
-((-1778 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1031 *4)) (-4 *3 (-13 (-844) (-553))))) (-3158 (*1 *2 *2) (-12 (-4 *3 (-1031 (-561))) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1031 (-561))) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-1162 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-1031 (-561))) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-856)) (-5 *1 (-32 *4 *5)))) (-3876 (*1 *2 *3 *2) (-12 (-5 *3 (-1162 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-32 *4 *2)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-32 *3 *4)) (-4 *4 (-429 *3)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *2)) (-5 *4 (-1166)) (-4 *2 (-429 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-844) (-553))))))
-(-10 -7 (-15 -2496 (|#2| (-1162 |#2|) (-1166))) (-15 -1773 ((-114) (-114))) (-15 -3333 ((-112) (-114))) (-15 -3876 (|#2| (-1162 |#2|) |#2|)) (-15 -3398 ((-856) (-638 |#2|))) (IF (|has| |#1| (-1031 (-561))) (PROGN (-15 ** (|#2| |#2| (-406 (-561)))) (-15 -1578 ((-1162 |#2|) (-607 |#2|))) (-15 -3158 (|#2| |#2|)) (-15 -1778 (|#2| |#1| (-561)))) |%noBranch|))
-((-2684 (((-112) $ (-765)) 16)) (-2674 (($) 10)) (-3116 (((-112) $ (-765)) 15)) (-3683 (((-112) $ (-765)) 14)) (-1582 (((-112) $ $) 8)) (-2508 (((-112) $) 13)))
-(((-33 |#1|) (-10 -8 (-15 -2674 (|#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765))) (-15 -2508 ((-112) |#1|)) (-15 -1582 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -2674 (|#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765))) (-15 -2508 ((-112) |#1|)) (-15 -1582 ((-112) |#1| |#1|)))
-((-2684 (((-112) $ (-765)) 8)) (-2674 (($) 7 T CONST)) (-3116 (((-112) $ (-765)) 9)) (-3683 (((-112) $ (-765)) 10)) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-4225 (($ $) 13)) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
+((-3584 (*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27)))) (-3584 (*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27)))) (-3584 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1288 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1287 (*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27)))) (-1287 (*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27)))) (-1287 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1)))))
+(-13 (-362) (-995) (-10 -8 (-15 -3584 ($ (-939 $))) (-15 -3584 ($ (-1160 $))) (-15 -3584 ($ (-1160 $) (-1166))) (-15 -1288 ((-635 $) (-939 $))) (-15 -1288 ((-635 $) (-1160 $))) (-15 -1288 ((-635 $) (-1160 $) (-1166))) (-15 -1287 ($ (-939 $))) (-15 -1287 ($ (-1160 $))) (-15 -1287 ($ (-1160 $) (-1166))) (-15 -1695 ((-635 $) (-939 $))) (-15 -1695 ((-635 $) (-1160 $))) (-15 -1695 ((-635 $) (-1160 $) (-1166)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-995) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T))
+((-1695 (((-635 $) (-939 $)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-1160 $) (-1166)) 50) (((-635 $) $) 19) (((-635 $) $ (-1166)) 41)) (-1287 (($ (-939 $)) NIL) (($ (-1160 $)) NIL) (($ (-1160 $) (-1166)) 52) (($ $) 17) (($ $ (-1166)) 37)) (-1288 (((-635 $) (-939 $)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-1160 $) (-1166)) 48) (((-635 $) $) 15) (((-635 $) $ (-1166)) 43)) (-3584 (($ (-939 $)) NIL) (($ (-1160 $)) NIL) (($ (-1160 $) (-1166)) NIL) (($ $) 12) (($ $ (-1166)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1695 ((-635 |#1|) |#1| (-1166))) (-15 -1287 (|#1| |#1| (-1166))) (-15 -1695 ((-635 |#1|) |#1|)) (-15 -1287 (|#1| |#1|)) (-15 -1288 ((-635 |#1|) |#1| (-1166))) (-15 -3584 (|#1| |#1| (-1166))) (-15 -1288 ((-635 |#1|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|)))) (-29 |#2|) (-13 (-844) (-554))) (T -28))
+NIL
+(-10 -8 (-15 -1695 ((-635 |#1|) |#1| (-1166))) (-15 -1287 (|#1| |#1| (-1166))) (-15 -1695 ((-635 |#1|) |#1|)) (-15 -1287 (|#1| |#1|)) (-15 -1288 ((-635 |#1|) |#1| (-1166))) (-15 -3584 (|#1| |#1| (-1166))) (-15 -1288 ((-635 |#1|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|))))
+((-2947 (((-112) $ $) 7)) (-1695 (((-635 $) (-939 $)) 81) (((-635 $) (-1160 $)) 80) (((-635 $) (-1160 $) (-1166)) 79) (((-635 $) $) 125) (((-635 $) $ (-1166)) 123)) (-1287 (($ (-939 $)) 84) (($ (-1160 $)) 83) (($ (-1160 $) (-1166)) 82) (($ $) 126) (($ $ (-1166)) 124)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1166)) $) 200)) (-3469 (((-406 (-1160 $)) $ (-606 $)) 232 (|has| |#1| (-554)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1688 (((-635 (-606 $)) $) 163)) (-1391 (((-3 $ "failed") $ $) 19)) (-1692 (($ $ (-635 (-606 $)) (-635 $)) 153) (($ $ (-635 (-292 $))) 152) (($ $ (-292 $)) 151)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 93)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-1288 (((-635 $) (-939 $)) 87) (((-635 $) (-1160 $)) 86) (((-635 $) (-1160 $) (-1166)) 85) (((-635 $) $) 129) (((-635 $) $ (-1166)) 127)) (-3584 (($ (-939 $)) 90) (($ (-1160 $)) 89) (($ (-1160 $) (-1166)) 88) (($ $) 130) (($ $ (-1166)) 128)) (-3558 (((-3 (-939 |#1|) #1="failed") $) 250 (|has| |#1| (-1042))) (((-3 (-406 (-939 |#1|)) #1#) $) 234 (|has| |#1| (-554))) (((-3 |#1| #1#) $) 196) (((-3 (-544) #1#) $) 193 (|has| |#1| (-1031 (-544)))) (((-3 (-1166) #1#) $) 187) (((-3 (-606 $) #1#) $) 138) (((-3 (-406 (-544)) #1#) $) 121 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 (((-939 |#1|) $) 249 (|has| |#1| (-1042))) (((-406 (-939 |#1|)) $) 233 (|has| |#1| (-554))) ((|#1| $) 195) (((-544) $) 194 (|has| |#1| (-1031 (-544)))) (((-1166) $) 186) (((-606 $) $) 137) (((-406 (-544)) $) 122 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-2943 (($ $ $) 56)) (-2401 (((-682 |#1|) (-682 $)) 240 (|has| |#1| (-1042))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 239 (|has| |#1| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 120 (-3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (((-682 (-544)) (-682 $)) 119 (-3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 192 (|has| |#1| (-879 (-377)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 191 (|has| |#1| (-879 (-544))))) (-2952 (($ (-635 $)) 157) (($ $) 156)) (-1687 (((-635 (-113)) $) 164)) (-3430 (((-113) (-113)) 165)) (-2545 (((-112) $) 31)) (-3055 (((-112) $) 185 (|has| $ (-1031 (-544))))) (-3379 (($ $) 217 (|has| |#1| (-1042)))) (-3381 (((-1115 |#1| (-606 $)) $) 216 (|has| |#1| (-1042)))) (-3394 (($ $ (-544)) 92)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 53)) (-1685 (((-1160 $) (-606 $)) 182 (|has| $ (-1042)))) (-2913 (($ $ $) 136)) (-3242 (($ $ $) 135)) (-4365 (($ (-1 $ $) (-606 $)) 171)) (-1690 (((-3 (-606 $) "failed") $) 161)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-1689 (((-635 (-606 $)) $) 162)) (-2356 (($ (-113) (-635 $)) 170) (($ (-113) $) 169)) (-3205 (((-3 (-635 $) #3="failed") $) 211 (|has| |#1| (-1102)))) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) #3#) $) 220 (|has| |#1| (-1042)))) (-3204 (((-3 (-635 $) #3#) $) 213 (|has| |#1| (-25)))) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) #3#) $) 214 (|has| |#1| (-25)))) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-1166)) 219 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-113)) 218 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $) 212 (|has| |#1| (-1102)))) (-3013 (((-112) $ (-1166)) 168) (((-112) $ (-113)) 167)) (-2779 (($ $) 71)) (-2982 (((-765) $) 160)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 198)) (-1943 ((|#1| $) 199)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1686 (((-112) $ (-1166)) 173) (((-112) $ $) 172)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3056 (((-112) $) 184 (|has| $ (-1031 (-544))))) (-4174 (($ $ (-1166) (-765) (-1 $ $)) 224 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-635 $))) 223 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) 222 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) 221 (|has| |#1| (-1042))) (($ $ (-635 (-113)) (-635 $) (-1166)) 210 (|has| |#1| (-609 (-533)))) (($ $ (-113) $ (-1166)) 209 (|has| |#1| (-609 (-533)))) (($ $) 208 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166))) 207 (|has| |#1| (-609 (-533)))) (($ $ (-1166)) 206 (|has| |#1| (-609 (-533)))) (($ $ (-113) (-1 $ $)) 181) (($ $ (-113) (-1 $ (-635 $))) 180) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 179) (($ $ (-635 (-113)) (-635 (-1 $ $))) 178) (($ $ (-1166) (-1 $ $)) 177) (($ $ (-1166) (-1 $ (-635 $))) 176) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 175) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 174) (($ $ (-635 $) (-635 $)) 145) (($ $ $ $) 144) (($ $ (-292 $)) 143) (($ $ (-635 (-292 $))) 142) (($ $ (-635 (-606 $)) (-635 $)) 141) (($ $ (-606 $) $) 140)) (-1732 (((-765) $) 59)) (-4206 (($ (-113) (-635 $)) 150) (($ (-113) $ $ $ $) 149) (($ (-113) $ $ $) 148) (($ (-113) $ $) 147) (($ (-113) $) 146)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1691 (($ $ $) 159) (($ $) 158)) (-4217 (($ $ (-1166)) 248 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 247 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 246 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) 245 (|has| |#1| (-1042)))) (-3378 (($ $) 227 (|has| |#1| (-554)))) (-3380 (((-1115 |#1| (-606 $)) $) 226 (|has| |#1| (-554)))) (-3586 (($ $) 183 (|has| $ (-1042)))) (-4377 (((-533) $) 254 (|has| |#1| (-609 (-533)))) (($ (-404 $)) 225 (|has| |#1| (-554))) (((-883 (-377)) $) 190 (|has| |#1| (-609 (-883 (-377))))) (((-883 (-544)) $) 189 (|has| |#1| (-609 (-883 (-544)))))) (-3392 (($ $ $) 253 (|has| |#1| (-471)))) (-2729 (($ $ $) 252 (|has| |#1| (-471)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ (-939 |#1|)) 251 (|has| |#1| (-1042))) (($ (-406 (-939 |#1|))) 235 (|has| |#1| (-554))) (($ (-406 (-939 (-406 |#1|)))) 231 (|has| |#1| (-554))) (($ (-939 (-406 |#1|))) 230 (|has| |#1| (-554))) (($ (-406 |#1|)) 229 (|has| |#1| (-554))) (($ (-1115 |#1| (-606 $))) 215 (|has| |#1| (-1042))) (($ |#1|) 197) (($ (-1166)) 188) (($ (-606 $)) 139)) (-3084 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-2969 (($ (-635 $)) 155) (($ $) 154)) (-2377 (((-112) (-113)) 166)) (-2212 (((-112) $ $) 40)) (-1942 (($ (-1166) (-635 $)) 205) (($ (-1166) $ $ $ $) 204) (($ (-1166) $ $ $) 203) (($ (-1166) $ $) 202) (($ (-1166) $) 201)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1166)) 244 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 243 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 242 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) 241 (|has| |#1| (-1042)))) (-2945 (((-112) $ $) 133)) (-2946 (((-112) $ $) 132)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 134)) (-3067 (((-112) $ $) 131)) (-4356 (($ $ $) 66) (($ (-1115 |#1| (-606 $)) (-1115 |#1| (-606 $))) 228 (|has| |#1| (-554)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 91)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171)))))
+(((-29 |#1|) (-139) (-13 (-844) (-554))) (T -29))
+((-3584 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554))))) (-1288 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554))))) (-1288 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4)))) (-1287 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554))))) (-1695 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-1287 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554))))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-420 |t#1|) (-10 -8 (-15 -3584 ($ $)) (-15 -1288 ((-635 $) $)) (-15 -3584 ($ $ (-1166))) (-15 -1288 ((-635 $) $ (-1166))) (-15 -1287 ($ $)) (-15 -1695 ((-635 $) $)) (-15 -1287 ($ $ (-1166))) (-15 -1695 ((-635 $) $ (-1166)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 #2=(-406 (-939 |#1|))) |has| |#1| (-554)) ((-611 (-544)) . T) ((-611 #3=(-606 $)) . T) ((-611 #4=(-939 |#1|)) |has| |#1| (-1042)) ((-611 #5=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-297) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-411 |#1|) . T) ((-420 |#1|) . T) ((-450) . T) ((-471) |has| |#1| (-471)) ((-512 (-606 $) $) . T) ((-512 $ $) . T) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) . T) ((-634 (-544)) -12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #1#) . T) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-914) . T) ((-995) . T) ((-1031 (-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) ((-1031 #2#) |has| |#1| (-554)) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #3#) . T) ((-1031 #4#) |has| |#1| (-1042)) ((-1031 #5#) . T) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1204) . T) ((-1209) . T))
+((-3279 (((-1079 (-224)) $) NIL)) (-3280 (((-1079 (-224)) $) NIL)) (-3519 (($ $ (-224)) 125)) (-1289 (($ (-939 (-544)) (-1166) (-1166) (-1079 (-406 (-544))) (-1079 (-406 (-544)))) 82)) (-3281 (((-635 (-635 (-936 (-224)))) $) 137)) (-4353 (((-857) $) 149)))
+(((-30) (-13 (-948) (-10 -8 (-15 -1289 ($ (-939 (-544)) (-1166) (-1166) (-1079 (-406 (-544))) (-1079 (-406 (-544))))) (-15 -3519 ($ $ (-224)))))) (T -30))
+((-1289 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-939 (-544))) (-5 *3 (-1166)) (-5 *4 (-1079 (-406 (-544)))) (-5 *1 (-30)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))))
+(-13 (-948) (-10 -8 (-15 -1289 ($ (-939 (-544)) (-1166) (-1166) (-1079 (-406 (-544))) (-1079 (-406 (-544))))) (-15 -3519 ($ $ (-224)))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 11)) (-3076 (((-1125) $) 9)) (-3437 (((-112) $ $) NIL)))
+(((-31) (-13 (-1073) (-10 -8 (-15 -3076 ((-1125) $)) (-15 -3634 ((-1125) $))))) (T -31))
+((-3076 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))))
+(-13 (-1073) (-10 -8 (-15 -3076 ((-1125) $)) (-15 -3634 ((-1125) $))))
+((-3584 ((|#2| (-1160 |#2|) (-1166)) 43)) (-3430 (((-113) (-113)) 56)) (-1685 (((-1160 |#2|) (-606 |#2|)) 133 (|has| |#1| (-1031 (-544))))) (-1292 ((|#2| |#1| (-544)) 123 (|has| |#1| (-1031 (-544))))) (-1290 ((|#2| (-1160 |#2|) |#2|) 30)) (-1291 (((-857) (-635 |#2|)) 85)) (-3586 ((|#2| |#2|) 129 (|has| |#1| (-1031 (-544))))) (-2377 (((-112) (-113)) 18)) (** ((|#2| |#2| (-406 (-544))) 96 (|has| |#1| (-1031 (-544))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3584 (|#2| (-1160 |#2|) (-1166))) (-15 -3430 ((-113) (-113))) (-15 -2377 ((-112) (-113))) (-15 -1290 (|#2| (-1160 |#2|) |#2|)) (-15 -1291 ((-857) (-635 |#2|))) (IF (|has| |#1| (-1031 (-544))) (PROGN (-15 ** (|#2| |#2| (-406 (-544)))) (-15 -1685 ((-1160 |#2|) (-606 |#2|))) (-15 -3586 (|#2| |#2|)) (-15 -1292 (|#2| |#1| (-544)))) |%noBranch|)) (-13 (-844) (-554)) (-420 |#1|)) (T -32))
+((-1292 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-4 *2 (-420 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1031 *4)) (-4 *3 (-13 (-844) (-554))))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-1031 (-544))) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *2)) (-4 *2 (-420 *3)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-420 *4)) (-4 *4 (-1031 (-544))) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-1160 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-1031 (-544))) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-32 *4 *2)) (-4 *2 (-420 *4)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-857)) (-5 *1 (-32 *4 *5)))) (-1290 (*1 *2 *3 *2) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-32 *4 *2)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-420 *4)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *4)) (-4 *4 (-420 *3)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *2)) (-5 *4 (-1166)) (-4 *2 (-420 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-844) (-554))))))
+(-10 -7 (-15 -3584 (|#2| (-1160 |#2|) (-1166))) (-15 -3430 ((-113) (-113))) (-15 -2377 ((-112) (-113))) (-15 -1290 (|#2| (-1160 |#2|) |#2|)) (-15 -1291 ((-857) (-635 |#2|))) (IF (|has| |#1| (-1031 (-544))) (PROGN (-15 ** (|#2| |#2| (-406 (-544)))) (-15 -1685 ((-1160 |#2|) (-606 |#2|))) (-15 -3586 (|#2| |#2|)) (-15 -1292 (|#2| |#1| (-544)))) |%noBranch|))
+((-1293 (((-112) $ (-765)) 16)) (-4131 (($) 10)) (-4126 (((-112) $ (-765)) 15)) (-4123 (((-112) $ (-765)) 14)) (-1294 (((-112) $ $) 8)) (-3807 (((-112) $) 13)))
+(((-33 |#1|) (-10 -8 (-15 -4131 (|#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3807 ((-112) |#1|)) (-15 -1294 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -4131 (|#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3807 ((-112) |#1|)) (-15 -1294 ((-112) |#1| |#1|)))
+((-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-4126 (((-112) $ (-765)) 9)) (-4123 (((-112) $ (-765)) 10)) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3804 (($ $) 13)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
(((-34) (-139)) (T -34))
-((-1582 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4225 (*1 *1 *1) (-4 *1 (-34))) (-2910 (*1 *1) (-4 *1 (-34))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-3116 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-2684 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-2674 (*1 *1) (-4 *1 (-34))) (-3548 (*1 *2 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-34)) (-5 *2 (-765)))))
-(-13 (-1205) (-10 -8 (-15 -1582 ((-112) $ $)) (-15 -4225 ($ $)) (-15 -2910 ($)) (-15 -2508 ((-112) $)) (-15 -3683 ((-112) $ (-765))) (-15 -3116 ((-112) $ (-765))) (-15 -2684 ((-112) $ (-765))) (-15 -2674 ($) -1494) (IF (|has| $ (-6 -4399)) (-15 -3548 ((-765) $)) |%noBranch|)))
-(((-1205) . T))
-((-3086 (($ $) 11)) (-3064 (($ $) 10)) (-3113 (($ $) 9)) (-2821 (($ $) 8)) (-3099 (($ $) 7)) (-3076 (($ $) 6)))
+((-1294 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3804 (*1 *1 *1) (-4 *1 (-34))) (-3972 (*1 *1) (-4 *1 (-34))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4123 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-1293 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-4131 (*1 *1) (-4 *1 (-34))) (-4364 (*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-34)) (-5 *2 (-765)))))
+(-13 (-1204) (-10 -8 (-15 -1294 ((-112) $ $)) (-15 -3804 ($ $)) (-15 -3972 ($)) (-15 -3807 ((-112) $)) (-15 -4123 ((-112) $ (-765))) (-15 -4126 ((-112) $ (-765))) (-15 -1293 ((-112) $ (-765))) (-15 -4131 ($) -4359) (IF (|has| $ (-6 -4400)) (-15 -4364 ((-765) $)) |%noBranch|)))
+(((-1204) . T))
+((-3897 (($ $) 11)) (-3895 (($ $) 10)) (-3899 (($ $) 9)) (-3900 (($ $) 8)) (-3898 (($ $) 7)) (-3896 (($ $) 6)))
(((-35) (-139)) (T -35))
-((-3086 (*1 *1 *1) (-4 *1 (-35))) (-3064 (*1 *1 *1) (-4 *1 (-35))) (-3113 (*1 *1 *1) (-4 *1 (-35))) (-2821 (*1 *1 *1) (-4 *1 (-35))) (-3099 (*1 *1 *1) (-4 *1 (-35))) (-3076 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3076 ($ $)) (-15 -3099 ($ $)) (-15 -2821 ($ $)) (-15 -3113 ($ $)) (-15 -3064 ($ $)) (-15 -3086 ($ $))))
-((-4053 (((-112) $ $) 19 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-2506 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 125)) (-2333 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 148)) (-3164 (($ $) 146)) (-1446 (($) 72) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 71)) (-1846 (((-1259) $ |#1| |#1|) 99 (|has| $ (-6 -4400))) (((-1259) $ (-561) (-561)) 178 (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) 159 (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1680 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 200 (|has| $ (-6 -4400))) (($ $) 199 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)) (|has| $ (-6 -4400))))) (-1318 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-2684 (((-112) $ (-765)) 8)) (-2809 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 134 (|has| $ (-6 -4400)))) (-2956 (($ $ $) 155 (|has| $ (-6 -4400)))) (-3281 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 157 (|has| $ (-6 -4400)))) (-2337 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 153 (|has| $ (-6 -4400)))) (-4207 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 189 (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-1221 (-561)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 160 (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "last" (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 158 (|has| $ (-6 -4400))) (($ $ "rest" $) 156 (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "first" (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 154 (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "value" (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 133 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 132 (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 45 (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 216)) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 55 (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 175 (|has| $ (-6 -4399)))) (-2322 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 147)) (-1468 (((-3 |#2| "failed") |#1| $) 61)) (-2674 (($) 7 T CONST)) (-4026 (($ $) 201 (|has| $ (-6 -4400)))) (-2659 (($ $) 211)) (-1437 (($ $ (-765)) 142) (($ $) 140)) (-3299 (($ $) 214 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1461 (($ $) 58 (-4050 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399))) (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 46 (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 220) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 215 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 54 (|has| $ (-6 -4399))) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 174 (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 56 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 53 (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 52 (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 176 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 173 (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 172 (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 190 (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) 88) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) 188)) (-2728 (((-112) $) 192)) (-4266 (((-561) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 208) (((-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 207 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) (((-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) 206 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 30 (|has| $ (-6 -4399))) (((-638 |#2|) $) 79 (|has| $ (-6 -4399))) (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 114 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 123)) (-2129 (((-112) $ $) 131 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1458 (($ (-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 169)) (-3116 (((-112) $ (-765)) 9)) (-3950 ((|#1| $) 96 (|has| |#1| (-844))) (((-561) $) 180 (|has| (-561) (-844)))) (-1597 (($ $ $) 198 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-2289 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-3405 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 29 (|has| $ (-6 -4399))) (((-638 |#2|) $) 80 (|has| $ (-6 -4399))) (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 115 (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399)))) (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399))))) (-1556 ((|#1| $) 95 (|has| |#1| (-844))) (((-561) $) 181 (|has| (-561) (-844)))) (-3017 (($ $ $) 197 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 34 (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4400))) (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 110 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 109)) (-3755 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 225)) (-3683 (((-112) $ (-765)) 10)) (-3948 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 128)) (-3441 (((-112) $) 124)) (-1883 (((-1148) $) 22 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1501 (($ $ (-765)) 145) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 143)) (-2066 (((-638 |#1|) $) 63)) (-2492 (((-112) |#1| $) 64)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 39)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 40) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) 219) (($ $ $ (-561)) 218)) (-3350 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) 162) (($ $ $ (-561)) 161)) (-2355 (((-638 |#1|) $) 93) (((-638 (-561)) $) 183)) (-1558 (((-112) |#1| $) 92) (((-112) (-561) $) 184)) (-1701 (((-1110) $) 21 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1424 ((|#2| $) 97 (|has| |#1| (-844))) (($ $ (-765)) 139) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 137)) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 51) (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 171)) (-3193 (($ $ |#2|) 98 (|has| $ (-6 -4400))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 179 (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 41)) (-2391 (((-112) $) 191)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 32 (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 112 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) 26 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 25 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 24 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 23 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 121 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 120 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 119 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) 118 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 182 (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-2411 (((-638 |#2|) $) 91) (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 185)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 187) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) 186) (($ $ (-1221 (-561))) 165) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "first") 138) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "value") 126)) (-4293 (((-561) $ $) 129)) (-3643 (($) 49) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 48)) (-4335 (($ $ (-561)) 222) (($ $ (-1221 (-561))) 221)) (-2883 (($ $ (-561)) 164) (($ $ (-1221 (-561))) 163)) (-1650 (((-112) $) 127)) (-3235 (($ $) 151)) (-4193 (($ $) 152 (|has| $ (-6 -4400)))) (-2118 (((-765) $) 150)) (-1491 (($ $) 149)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 31 (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 113 (|has| $ (-6 -4399)))) (-2879 (($ $ $ (-561)) 202 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534)))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 50) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 170)) (-2448 (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 224) (($ $ $) 223)) (-2754 (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 168) (($ (-638 $)) 167) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 136) (($ $ $) 135)) (-4064 (((-856) $) 18 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856)))))) (-3770 (((-638 $) $) 122)) (-2552 (((-112) $ $) 130 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 42)) (-1512 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") |#1| $) 108)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 33 (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 111 (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) 195 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1758 (((-112) $ $) 194 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1723 (((-112) $ $) 20 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1770 (((-112) $ $) 196 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1746 (((-112) $ $) 193 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-36 |#1| |#2|) (-139) (-1090) (-1090)) (T -36))
-((-1512 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| -2285 *3) (|:| -2677 *4))))))
-(-13 (-1181 |t#1| |t#2|) (-659 (-2 (|:| -2285 |t#1|) (|:| -2677 |t#2|))) (-10 -8 (-15 -1512 ((-3 (-2 (|:| -2285 |t#1|) (|:| -2677 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((-102) -4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844))) ((-608 (-856)) -4050 (|has| |#2| (-1090)) (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856)))) ((-150 #1=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((-609 (-534)) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 #2=(-561) #1#) . T) ((-285 |#1| |#2|) . T) ((-287 #2# #1#) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-281 #1#) . T) ((-372 #1#) . T) ((-487 #1#) . T) ((-487 |#2|) . T) ((-599 #2# #1#) . T) ((-599 |#1| |#2|) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-605 |#1| |#2|) . T) ((-644 #1#) . T) ((-659 #1#) . T) ((-844) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)) ((-1003 #1#) . T) ((-1090) -4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844))) ((-1139 #1#) . T) ((-1181 |#1| |#2|) . T) ((-1205) . T) ((-1242 #1#) . T))
-((-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-38 |#2|) (-171)) (T -37))
-NIL
-(-10 -8 (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3897 (*1 *1 *1) (-4 *1 (-35))) (-3895 (*1 *1 *1) (-4 *1 (-35))) (-3899 (*1 *1 *1) (-4 *1 (-35))) (-3900 (*1 *1 *1) (-4 *1 (-35))) (-3898 (*1 *1 *1) (-4 *1 (-35))) (-3896 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3896 ($ $)) (-15 -3898 ($ $)) (-15 -3900 ($ $)) (-15 -3899 ($ $)) (-15 -3895 ($ $)) (-15 -3897 ($ $))))
+((-2947 (((-112) $ $) 19 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3806 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 125)) (-4201 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 148)) (-4203 (($ $) 146)) (-4004 (($) 72) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 71)) (-2344 (((-1259) $ |#1| |#1|) 99 (|has| $ (-6 -4401))) (((-1259) $ (-544) (-544)) 178 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 159 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1874 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 200 (|has| $ (-6 -4401))) (($ $) 199 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1293 (((-112) $ (-765)) 8)) (-3408 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 134 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 155 (|has| $ (-6 -4401)))) (-4192 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 157 (|has| $ (-6 -4401)))) (-4195 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 153 (|has| $ (-6 -4401)))) (-4194 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 189 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-1220 (-544)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 160 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1="last" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 158 (|has| $ (-6 -4401))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3="first" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 154 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4="value" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 133 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 132 (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 45 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 216)) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 55 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 175 (|has| $ (-6 -4400)))) (-4202 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 147)) (-2353 (((-3 |#2| #5="failed") |#1| $) 61)) (-4131 (($) 7 T CONST)) (-2416 (($ $) 201 (|has| $ (-6 -4401)))) (-2417 (($ $) 211)) (-4205 (($ $ (-765)) 142) (($ $) 140)) (-2498 (($ $) 214 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1424 (($ $) 58 (-3936 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))) (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 46 (|has| $ (-6 -4400))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 220) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 215 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 54 (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 174 (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 56 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 53 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 52 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 176 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 173 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 172 (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 190 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 88) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 188)) (-3846 (((-112) $) 192)) (-3823 (((-544) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 208) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 207 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 206 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 30 (|has| $ (-6 -4400))) (((-635 |#2|) $) 79 (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 114 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 123)) (-3410 (((-112) $ $) 131 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-4021 (($ (-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 169)) (-4126 (((-112) $ (-765)) 9)) (-2346 ((|#1| $) 96 (|has| |#1| (-844))) (((-544) $) 180 (|has| (-544) (-844)))) (-2913 (($ $ $) 198 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3241 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3917 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 29 (|has| $ (-6 -4400))) (((-635 |#2|) $) 80 (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 115 (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-2347 ((|#1| $) 95 (|has| |#1| (-844))) (((-544) $) 181 (|has| (-544) (-844)))) (-3242 (($ $ $) 197 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 34 (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4401))) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 110 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 109)) (-3941 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 225)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 128)) (-3926 (((-112) $) 124)) (-3643 (((-1148) $) 22 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4204 (($ $ (-765)) 145) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 143)) (-2789 (((-635 |#1|) $) 63)) (-2354 (((-112) |#1| $) 64)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 39)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 40) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 219) (($ $ $ (-544)) 218)) (-2421 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 162) (($ $ $ (-544)) 161)) (-2349 (((-635 |#1|) $) 93) (((-635 (-544)) $) 183)) (-2350 (((-112) |#1| $) 92) (((-112) (-544) $) 184)) (-3644 (((-1110) $) 21 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4207 ((|#2| $) 97 (|has| |#1| (-844))) (($ $ (-765)) 139) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 137)) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 51) (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6#) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 171)) (-2345 (($ $ |#2|) 98 (|has| $ (-6 -4401))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 179 (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 41)) (-3847 (((-112) $) 191)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 32 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 112 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 26 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 25 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 24 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 23 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 121 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 120 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 119 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 118 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 182 (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2351 (((-635 |#2|) $) 91) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 185)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 187) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 186) (($ $ (-1220 (-544))) 165) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3#) 138) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4#) 126)) (-3412 (((-544) $ $) 129)) (-1550 (($) 49) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 48)) (-1660 (($ $ (-544)) 222) (($ $ (-1220 (-544))) 221)) (-2422 (($ $ (-544)) 164) (($ $ (-1220 (-544))) 163)) (-4040 (((-112) $) 127)) (-4198 (($ $) 151)) (-4196 (($ $) 152 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 150)) (-4200 (($ $) 149)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 31 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 113 (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) 202 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533)))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 50) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 170)) (-4197 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 224) (($ $ $) 223)) (-4208 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 168) (($ (-635 $)) 167) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 136) (($ $ $) 135)) (-4353 (((-857) $) 18 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857)))))) (-3921 (((-635 $) $) 122)) (-3411 (((-112) $ $) 130 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 42)) (-1295 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") |#1| $) 108)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 33 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 111 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 195 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2946 (((-112) $ $) 194 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3437 (((-112) $ $) 20 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3066 (((-112) $ $) 196 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3067 (((-112) $ $) 193 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-36 |#1| |#2|) (-139) (-1091) (-1091)) (T -36))
+((-1295 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-2 (|:| -4267 *3) (|:| -2226 *4))))))
+(-13 (-1181 |t#1| |t#2|) (-659 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|))) (-10 -8 (-15 -1295 ((-3 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-102) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| |#2| (-1091))) ((-608 (-857)) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-1091)) (|has| |#2| (-608 (-857)))) ((-150 #2=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-609 (-533)) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) ((-228 #1#) . T) ((-234 #1#) . T) ((-285 #3=(-544) #2#) . T) ((-285 |#1| |#2|) . T) ((-287 #3# #2#) . T) ((-287 |#1| |#2|) . T) ((-308 #2#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-281 #2#) . T) ((-371 #2#) . T) ((-487 #2#) . T) ((-487 |#2|) . T) ((-599 #3# #2#) . T) ((-599 |#1| |#2|) . T) ((-512 #2# #2#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-605 |#1| |#2|) . T) ((-644 #2#) . T) ((-659 #2#) . T) ((-844) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) ((-1003 #2#) . T) ((-1091) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| |#2| (-1091))) ((-1139 #2#) . T) ((-1181 |#1| |#2|) . T) ((-1204) . T) ((-1242 #2#) . T))
+((-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-38 |#2|) (-171)) (T -37))
+NIL
+(-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-38 |#1|) (-139) (-171)) (T -38))
NIL
(-13 (-1042) (-711 |t#1|) (-611 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-2230 (((-417 |#1|) |#1|) 41)) (-1633 (((-417 |#1|) |#1|) 30) (((-417 |#1|) |#1| (-638 (-48))) 33)) (-2958 (((-112) |#1|) 56)))
-(((-39 |#1|) (-10 -7 (-15 -1633 ((-417 |#1|) |#1| (-638 (-48)))) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2230 ((-417 |#1|) |#1|)) (-15 -2958 ((-112) |#1|))) (-1230 (-48))) (T -39))
-((-2958 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1230 (-48))))) (-2230 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1230 (-48))))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1230 (-48))))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1230 (-48))))))
-(-10 -7 (-15 -1633 ((-417 |#1|) |#1| (-638 (-48)))) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2230 ((-417 |#1|) |#1|)) (-15 -2958 ((-112) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1791 (((-2 (|:| |num| (-1254 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-3012 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3163 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-3287 (((-682 (-406 |#2|)) (-1254 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-1736 (((-406 |#2|) $) NIL)) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-406 |#2|) (-348)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3552 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3698 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1386 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-1943 (((-112)) NIL)) (-1676 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-406 |#2|) $) NIL)) (-3376 (($ (-1254 (-406 |#2|)) (-1254 $)) NIL) (($ (-1254 (-406 |#2|))) 57) (($ (-1254 |#2|) |#2|) 125)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1792 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2405 (((-682 (-406 |#2|)) $ (-1254 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-406 |#2|))) (|:| |vec| (-1254 (-406 |#2|)))) (-682 $) (-1254 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-3314 (((-1254 $) (-1254 $)) NIL)) (-3176 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3735 (((-3 $ "failed") $) NIL)) (-3357 (((-638 (-638 |#1|))) NIL (|has| |#1| (-367)))) (-3053 (((-112) |#1| |#1|) NIL)) (-3400 (((-914)) NIL)) (-1362 (($) NIL (|has| (-406 |#2|) (-367)))) (-1968 (((-112)) NIL)) (-3104 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1771 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| (-406 |#2|) (-362)))) (-4229 (($ $) NIL)) (-3985 (($) NIL (|has| (-406 |#2|) (-348)))) (-3943 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-3598 (($ $ (-765)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2725 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4027 (((-914) $) NIL (|has| (-406 |#2|) (-348))) (((-827 (-914)) $) NIL (|has| (-406 |#2|) (-348)))) (-2252 (((-112) $) NIL)) (-3848 (((-765)) NIL)) (-1447 (((-1254 $) (-1254 $)) 102)) (-2072 (((-406 |#2|) $) NIL)) (-2976 (((-638 (-945 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-2436 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1588 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-1335 (((-914) $) NIL (|has| (-406 |#2|) (-367)))) (-3354 ((|#3| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1883 (((-1148) $) NIL)) (-4314 (((-1259) (-765)) 79)) (-2142 (((-682 (-406 |#2|))) 51)) (-3583 (((-682 (-406 |#2|))) 44)) (-1519 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4002 (($ (-1254 |#2|) |#2|) 126)) (-3268 (((-682 (-406 |#2|))) 45)) (-2812 (((-682 (-406 |#2|))) 43)) (-3471 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1825 (((-2 (|:| |num| (-1254 |#2|)) (|:| |den| |#2|)) $) 64)) (-1640 (((-1254 $)) 42)) (-3637 (((-1254 $)) 41)) (-3830 (((-112) $) NIL)) (-4137 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3767 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2442 (($ (-914)) NIL (|has| (-406 |#2|) (-367)))) (-2245 (((-3 |#2| "failed")) NIL)) (-1701 (((-1110) $) NIL)) (-4197 (((-765)) NIL)) (-3194 (($) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| (-406 |#2|) (-362)))) (-1603 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| (-406 |#2|) (-348)))) (-1633 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1748 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1905 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-2315 ((|#1| $ |#1| |#1|) NIL)) (-1935 (((-3 |#2| "failed")) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2753 (((-406 |#2|) (-1254 $)) NIL) (((-406 |#2|)) 39)) (-2768 (((-765) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-3922 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-3885 (((-682 (-406 |#2|)) (-1254 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3158 ((|#3|) 50)) (-2102 (($) NIL (|has| (-406 |#2|) (-348)))) (-3752 (((-1254 (-406 |#2|)) $ (-1254 $)) NIL) (((-682 (-406 |#2|)) (-1254 $) (-1254 $)) NIL) (((-1254 (-406 |#2|)) $) 58) (((-682 (-406 |#2|)) (-1254 $)) 103)) (-4216 (((-1254 (-406 |#2|)) $) NIL) (($ (-1254 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-348)))) (-2739 (((-1254 $) (-1254 $)) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-561))) NIL (-4050 (|has| (-406 |#2|) (-1031 (-406 (-561)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3666 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-3934 ((|#3| $) NIL)) (-3746 (((-765)) NIL)) (-1688 (((-112)) 37)) (-3703 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-2615 (((-1254 $)) 93)) (-3996 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3188 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2232 (((-112)) NIL)) (-2246 (($) 16 T CONST)) (-2257 (($) 26 T CONST)) (-3154 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-561)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-561))) NIL (|has| (-406 |#2|) (-362)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -4314 ((-1259) (-765))))) (-362) (-1230 |#1|) (-1230 (-406 |#2|)) |#3|) (T -40))
-((-4314 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1230 *4)) (-5 *2 (-1259)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1230 (-406 *5))) (-14 *7 *6))))
-(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -4314 ((-1259) (-765)))))
-((-1933 ((|#2| |#2|) 48)) (-3204 ((|#2| |#2|) 119 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-1593 ((|#2| |#2|) 86 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-3949 ((|#2| |#2|) 87 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-3306 ((|#2| (-114) |#2| (-765)) 115 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-2921 (((-1162 |#2|) |#2|) 45)) (-3835 ((|#2| |#2| (-638 (-607 |#2|))) 18) ((|#2| |#2| (-638 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1933 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3835 (|#2| |#2| |#2|)) (-15 -3835 (|#2| |#2| (-638 |#2|))) (-15 -3835 (|#2| |#2| (-638 (-607 |#2|)))) (-15 -2921 ((-1162 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-561))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -3949 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3204 (|#2| |#2|)) (-15 -3306 (|#2| (-114) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-553) (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 |#1| (-607 $)) $)) (-15 -4088 ((-1115 |#1| (-607 $)) $)) (-15 -4064 ($ (-1115 |#1| (-607 $))))))) (T -41))
-((-3306 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844)) (-4 *5 (-1031 (-561))) (-4 *5 (-553)) (-5 *1 (-41 *5 *2)) (-4 *2 (-429 *5)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *5 (-607 $)) $)) (-15 -4088 ((-1115 *5 (-607 $)) $)) (-15 -4064 ($ (-1115 *5 (-607 $))))))))) (-3204 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561))) (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $)) (-15 -4088 ((-1115 *3 (-607 $)) $)) (-15 -4064 ($ (-1115 *3 (-607 $))))))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561))) (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $)) (-15 -4088 ((-1115 *3 (-607 $)) $)) (-15 -4064 ($ (-1115 *3 (-607 $))))))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561))) (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $)) (-15 -4088 ((-1115 *3 (-607 $)) $)) (-15 -4064 ($ (-1115 *3 (-607 $))))))))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-1162 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *4 (-607 $)) $)) (-15 -4088 ((-1115 *4 (-607 $)) $)) (-15 -4064 ($ (-1115 *4 (-607 $))))))))) (-3835 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-607 *2))) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *4 (-607 $)) $)) (-15 -4088 ((-1115 *4 (-607 $)) $)) (-15 -4064 ($ (-1115 *4 (-607 $))))))) (-4 *4 (-553)) (-5 *1 (-41 *4 *2)))) (-3835 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *4 (-607 $)) $)) (-15 -4088 ((-1115 *4 (-607 $)) $)) (-15 -4064 ($ (-1115 *4 (-607 $))))))) (-4 *4 (-553)) (-5 *1 (-41 *4 *2)))) (-3835 (*1 *2 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $)) (-15 -4088 ((-1115 *3 (-607 $)) $)) (-15 -4064 ($ (-1115 *3 (-607 $))))))))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $)) (-15 -4088 ((-1115 *3 (-607 $)) $)) (-15 -4064 ($ (-1115 *3 (-607 $))))))))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $)) (-15 -4088 ((-1115 *3 (-607 $)) $)) (-15 -4064 ($ (-1115 *3 (-607 $))))))))))
-(-10 -7 (-15 -1933 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3835 (|#2| |#2| |#2|)) (-15 -3835 (|#2| |#2| (-638 |#2|))) (-15 -3835 (|#2| |#2| (-638 (-607 |#2|)))) (-15 -2921 ((-1162 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-561))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -3949 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3204 (|#2| |#2|)) (-15 -3306 (|#2| (-114) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1633 (((-417 (-1162 |#3|)) (-1162 |#3|) (-638 (-48))) 23) (((-417 |#3|) |#3| (-638 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1633 ((-417 |#3|) |#3| (-638 (-48)))) (-15 -1633 ((-417 (-1162 |#3|)) (-1162 |#3|) (-638 (-48))))) (-844) (-787) (-942 (-48) |#2| |#1|)) (T -42))
-((-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *7 (-942 (-48) *6 *5)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-942 (-48) *6 *5)))))
-(-10 -7 (-15 -1633 ((-417 |#3|) |#3| (-638 (-48)))) (-15 -1633 ((-417 (-1162 |#3|)) (-1162 |#3|) (-638 (-48)))))
-((-2202 (((-765) |#2|) 65)) (-4103 (((-765) |#2|) 68)) (-2366 (((-638 |#2|)) 33)) (-2898 (((-765) |#2|) 67)) (-3059 (((-765) |#2|) 64)) (-2121 (((-765) |#2|) 66)) (-2272 (((-638 (-682 |#1|))) 60)) (-2015 (((-638 |#2|)) 55)) (-1653 (((-638 |#2|) |#2|) 43)) (-3603 (((-638 |#2|)) 57)) (-2638 (((-638 |#2|)) 56)) (-3926 (((-638 (-682 |#1|))) 48)) (-4101 (((-638 |#2|)) 54)) (-2833 (((-638 |#2|) |#2|) 42)) (-3935 (((-638 |#2|)) 50)) (-2819 (((-638 (-682 |#1|))) 61)) (-2818 (((-638 |#2|)) 59)) (-2615 (((-1254 |#2|) (-1254 |#2|)) 83 (|has| |#1| (-306)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -2898 ((-765) |#2|)) (-15 -4103 ((-765) |#2|)) (-15 -3059 ((-765) |#2|)) (-15 -2202 ((-765) |#2|)) (-15 -2121 ((-765) |#2|)) (-15 -3935 ((-638 |#2|))) (-15 -2833 ((-638 |#2|) |#2|)) (-15 -1653 ((-638 |#2|) |#2|)) (-15 -4101 ((-638 |#2|))) (-15 -2015 ((-638 |#2|))) (-15 -2638 ((-638 |#2|))) (-15 -3603 ((-638 |#2|))) (-15 -2818 ((-638 |#2|))) (-15 -3926 ((-638 (-682 |#1|)))) (-15 -2272 ((-638 (-682 |#1|)))) (-15 -2819 ((-638 (-682 |#1|)))) (-15 -2366 ((-638 |#2|))) (IF (|has| |#1| (-306)) (-15 -2615 ((-1254 |#2|) (-1254 |#2|))) |%noBranch|)) (-553) (-416 |#1|)) (T -43))
-((-2615 (*1 *2 *2) (-12 (-5 *2 (-1254 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) (-4 *3 (-553)) (-5 *1 (-43 *3 *4)))) (-2366 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2819 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2272 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3926 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2818 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3603 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2638 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2015 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-4101 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1653 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-3935 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2202 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-4103 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2898 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))))
-(-10 -7 (-15 -2898 ((-765) |#2|)) (-15 -4103 ((-765) |#2|)) (-15 -3059 ((-765) |#2|)) (-15 -2202 ((-765) |#2|)) (-15 -2121 ((-765) |#2|)) (-15 -3935 ((-638 |#2|))) (-15 -2833 ((-638 |#2|) |#2|)) (-15 -1653 ((-638 |#2|) |#2|)) (-15 -4101 ((-638 |#2|))) (-15 -2015 ((-638 |#2|))) (-15 -2638 ((-638 |#2|))) (-15 -3603 ((-638 |#2|))) (-15 -2818 ((-638 |#2|))) (-15 -3926 ((-638 (-682 |#1|)))) (-15 -2272 ((-638 (-682 |#1|)))) (-15 -2819 ((-638 (-682 |#1|)))) (-15 -2366 ((-638 |#2|))) (IF (|has| |#1| (-306)) (-15 -2615 ((-1254 |#2|) (-1254 |#2|))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2385 (((-3 $ "failed")) NIL (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-3625 (((-1254 (-682 |#1|)) (-1254 $)) NIL) (((-1254 (-682 |#1|))) 24)) (-1426 (((-1254 $)) 51)) (-2674 (($) NIL T CONST)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (|has| |#1| (-553)))) (-1763 (((-3 $ "failed")) NIL (|has| |#1| (-553)))) (-3615 (((-682 |#1|) (-1254 $)) NIL) (((-682 |#1|)) NIL)) (-3230 ((|#1| $) NIL)) (-4196 (((-682 |#1|) $ (-1254 $)) NIL) (((-682 |#1|) $) NIL)) (-3884 (((-3 $ "failed") $) NIL (|has| |#1| (-553)))) (-3146 (((-1162 (-945 |#1|))) NIL (|has| |#1| (-362)))) (-3187 (($ $ (-914)) NIL)) (-3718 ((|#1| $) NIL)) (-2477 (((-1162 |#1|) $) NIL (|has| |#1| (-553)))) (-2137 ((|#1| (-1254 $)) NIL) ((|#1|) NIL)) (-4292 (((-1162 |#1|) $) NIL)) (-3172 (((-112)) 87)) (-3376 (($ (-1254 |#1|) (-1254 $)) NIL) (($ (-1254 |#1|)) NIL)) (-3735 (((-3 $ "failed") $) 14 (|has| |#1| (-553)))) (-3400 (((-914)) 52)) (-2949 (((-112)) NIL)) (-3425 (($ $ (-914)) NIL)) (-2203 (((-112)) NIL)) (-3787 (((-112)) NIL)) (-3591 (((-112)) 89)) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (|has| |#1| (-553)))) (-2699 (((-3 $ "failed")) NIL (|has| |#1| (-553)))) (-2960 (((-682 |#1|) (-1254 $)) NIL) (((-682 |#1|)) NIL)) (-1952 ((|#1| $) NIL)) (-4208 (((-682 |#1|) $ (-1254 $)) NIL) (((-682 |#1|) $) NIL)) (-3408 (((-3 $ "failed") $) NIL (|has| |#1| (-553)))) (-4291 (((-1162 (-945 |#1|))) NIL (|has| |#1| (-362)))) (-2143 (($ $ (-914)) NIL)) (-4178 ((|#1| $) NIL)) (-3462 (((-1162 |#1|) $) NIL (|has| |#1| (-553)))) (-3659 ((|#1| (-1254 $)) NIL) ((|#1|) NIL)) (-4321 (((-1162 |#1|) $) NIL)) (-4112 (((-112)) 86)) (-1883 (((-1148) $) NIL)) (-2646 (((-112)) 93)) (-2227 (((-112)) 92)) (-1871 (((-112)) 94)) (-1701 (((-1110) $) NIL)) (-1800 (((-112)) 88)) (-2315 ((|#1| $ (-561)) 54)) (-3752 (((-1254 |#1|) $ (-1254 $)) 48) (((-682 |#1|) (-1254 $) (-1254 $)) NIL) (((-1254 |#1|) $) 28) (((-682 |#1|) (-1254 $)) NIL)) (-4216 (((-1254 |#1|) $) NIL) (($ (-1254 |#1|)) NIL)) (-3311 (((-638 (-945 |#1|)) (-1254 $)) NIL) (((-638 (-945 |#1|))) NIL)) (-3047 (($ $ $) NIL)) (-2619 (((-112)) 84)) (-4064 (((-856) $) 69) (($ (-1254 |#1|)) 22)) (-2615 (((-1254 $)) 45)) (-2541 (((-638 (-1254 |#1|))) NIL (|has| |#1| (-553)))) (-2748 (($ $ $ $) NIL)) (-3498 (((-112)) 82)) (-1363 (($ (-682 |#1|) $) 18)) (-2897 (($ $ $) NIL)) (-1999 (((-112)) 85)) (-2136 (((-112)) 83)) (-3030 (((-112)) 81)) (-2246 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1132 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-416 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4064 ($ (-1254 |#1|))))) (-362) (-914) (-638 (-1166)) (-1254 (-682 |#1|))) (T -44))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-362)) (-14 *6 (-1254 (-682 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))))))
-(-13 (-416 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4064 ($ (-1254 |#1|)))))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2506 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2333 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-3164 (($ $) NIL)) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1846 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4400))) (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1680 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844))))) (-1318 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-2809 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400)))) (-2956 (($ $ $) 27 (|has| $ (-6 -4400)))) (-3281 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400)))) (-2337 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 29 (|has| $ (-6 -4400)))) (-4207 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-1221 (-561)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "last" (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400))) (($ $ "rest" $) NIL (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "first" (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "value" (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2322 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1468 (((-3 |#2| "failed") |#1| $) 37)) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1437 (($ $ (-765)) NIL) (($ $) 24)) (-3299 (($ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4400))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) NIL)) (-2728 (((-112) $) NIL)) (-4266 (((-561) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (((-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) (((-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 18 (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399))) (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 18 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1458 (($ (-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 ((|#1| $) NIL (|has| |#1| (-844))) (((-561) $) 32 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-2289 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-3405 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399))) (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1556 ((|#1| $) NIL (|has| |#1| (-844))) (((-561) $) 34 (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3755 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-3948 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3441 (((-112) $) NIL)) (-1883 (((-1148) $) 41 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1501 (($ $ (-765)) NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2066 (((-638 |#1|) $) 20)) (-2492 (((-112) |#1| $) NIL)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-3350 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 |#1|) $) NIL) (((-638 (-561)) $) NIL)) (-1558 (((-112) |#1| $) NIL) (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#2| $) NIL (|has| |#1| (-844))) (($ $ (-765)) NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 23)) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2391 (((-112) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-2411 (((-638 |#2|) $) NIL) (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 17)) (-2508 (((-112) $) 16)) (-2910 (($) 13)) (-2315 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ (-561)) NIL) (($ $ (-1221 (-561))) NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "first") NIL) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $ "value") NIL)) (-4293 (((-561) $ $) NIL)) (-3643 (($) 12) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-4335 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1650 (((-112) $) NIL)) (-3235 (($ $) NIL)) (-4193 (($ $) NIL (|has| $ (-6 -4400)))) (-2118 (((-765) $) NIL)) (-1491 (($ $) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-2448 (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL) (($ $ $) NIL)) (-2754 (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL) (($ (-638 $)) NIL) (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 25) (($ $ $) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1512 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") |#1| $) 43)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1770 (((-112) $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-844)))) (-3548 (((-765) $) 22 (|has| $ (-6 -4399)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1090) (-1090)) (T -45))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-3822 (((-404 |#1|) |#1|) 41)) (-4139 (((-404 |#1|) |#1|) 30) (((-404 |#1|) |#1| (-635 (-48))) 33)) (-1296 (((-112) |#1|) 56)))
+(((-39 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1| (-635 (-48)))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3822 ((-404 |#1|) |#1|)) (-15 -1296 ((-112) |#1|))) (-1229 (-48))) (T -39))
+((-1296 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-3822 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))))
+(-10 -7 (-15 -4139 ((-404 |#1|) |#1| (-635 (-48)))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3822 ((-404 |#1|) |#1|)) (-15 -1296 ((-112) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1791 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2213 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2211 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1929 (((-682 (-406 |#2|)) (-1253 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-3734 (((-406 |#2|) $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-406 |#2|) (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4376 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1733 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3521 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-1805 (((-112)) NIL)) (-1804 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-3 (-406 |#2|) #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-406 |#2|) $) NIL)) (-1939 (($ (-1253 (-406 |#2|)) (-1253 $)) NIL) (($ (-1253 (-406 |#2|))) 57) (($ (-1253 |#2|) |#2|) 125)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-349)))) (-2943 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1928 (((-682 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-1796 (((-1253 $) (-1253 $)) NIL)) (-4249 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-1783 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-1808 (((-112) |#1| |#1|) NIL)) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| (-406 |#2|) (-367)))) (-1803 (((-112)) NIL)) (-1802 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2942 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-3902 (($ $) NIL)) (-3215 (($) NIL (|has| (-406 |#2|) (-349)))) (-1824 (((-112) $) NIL (|has| (-406 |#2|) (-349)))) (-1914 (($ $ (-765)) NIL (|has| (-406 |#2|) (-349))) (($ $) NIL (|has| (-406 |#2|) (-349)))) (-4130 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4178 (((-912) $) NIL (|has| (-406 |#2|) (-349))) (((-826 (-912)) $) NIL (|has| (-406 |#2|) (-349)))) (-2545 (((-112) $) NIL)) (-3781 (((-765)) NIL)) (-1797 (((-1253 $) (-1253 $)) 102)) (-3517 (((-406 |#2|) $) NIL)) (-1784 (((-635 (-939 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2164 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-2160 (((-912) $) NIL (|has| (-406 |#2|) (-367)))) (-3463 ((|#3| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3643 (((-1148) $) NIL)) (-1297 (((-1259) (-765)) 79)) (-1792 (((-682 (-406 |#2|))) 51)) (-1794 (((-682 (-406 |#2|))) 44)) (-2779 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1789 (($ (-1253 |#2|) |#2|) 126)) (-1793 (((-682 (-406 |#2|))) 45)) (-1795 (((-682 (-406 |#2|))) 43)) (-1788 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1790 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 64)) (-1801 (((-1253 $)) 42)) (-4325 (((-1253 $)) 41)) (-1800 (((-112) $) NIL)) (-1799 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3849 (($) NIL (|has| (-406 |#2|) (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| (-406 |#2|) (-367)))) (-1786 (((-3 |#2| #3="failed")) NIL)) (-3644 (((-1110) $) NIL)) (-1810 (((-765)) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| (-406 |#2|) (-362)))) (-3545 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-406 |#2|) (-349)))) (-4139 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1732 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-4206 ((|#1| $ |#1| |#1|) NIL)) (-1787 (((-3 |#2| #3#)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-4164 (((-406 |#2|) (-1253 $)) NIL) (((-406 |#2|)) 39)) (-1915 (((-765) $) NIL (|has| (-406 |#2|) (-349))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-349)))) (-4217 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-2543 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3586 ((|#3|) 50)) (-1818 (($) NIL (|has| (-406 |#2|) (-349)))) (-3625 (((-1253 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 |#2|)) $) 58) (((-682 (-406 |#2|)) (-1253 $)) 103)) (-4377 (((-1253 (-406 |#2|)) $) NIL) (($ (-1253 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-349)))) (-1798 (((-1253 $) (-1253 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-544)))))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3084 (($ $) NIL (|has| (-406 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2743 ((|#3| $) NIL)) (-3511 (((-765)) NIL)) (-1807 (((-112)) 37)) (-1806 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-2162 (((-1253 $)) 93)) (-2212 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1785 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1809 (((-112)) NIL)) (-3040 (($) 16 T CONST)) (-3046 (($) 26 T CONST)) (-3051 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-544)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-544))) NIL (|has| (-406 |#2|) (-362)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -1297 ((-1259) (-765))))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) |#3|) (T -40))
+((-1297 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *2 (-1259)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1229 (-406 *5))) (-14 *7 *6))))
+(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -1297 ((-1259) (-765)))))
+((-1298 ((|#2| |#2|) 48)) (-1303 ((|#2| |#2|) 119 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1302 ((|#2| |#2|) 86 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1301 ((|#2| |#2|) 87 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1304 ((|#2| (-113) |#2| (-765)) 115 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1300 (((-1160 |#2|) |#2|) 45)) (-1299 ((|#2| |#2| (-635 (-606 |#2|))) 18) ((|#2| |#2| (-635 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1298 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| (-635 |#2|))) (-15 -1299 (|#2| |#2| (-635 (-606 |#2|)))) (-15 -1300 ((-1160 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-544))) (IF (|has| |#2| (-420 |#1|)) (PROGN (-15 -1301 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -1304 (|#2| (-113) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-554) (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 |#1| (-606 $)) $)) (-15 -3380 ((-1115 |#1| (-606 $)) $)) (-15 -4353 ($ (-1115 |#1| (-606 $))))))) (T -41))
+((-1304 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844)) (-4 *5 (-1031 (-544))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) (-4 *2 (-420 *5)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *5 (-606 $)) $)) (-15 -3380 ((-1115 *5 (-606 $)) $)) (-15 -4353 ($ (-1115 *5 (-606 $))))))))) (-1303 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1302 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1301 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1300 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1160 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) (-15 -3380 ((-1115 *4 (-606 $)) $)) (-15 -4353 ($ (-1115 *4 (-606 $))))))))) (-1299 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-606 *2))) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) (-15 -3380 ((-1115 *4 (-606 $)) $)) (-15 -4353 ($ (-1115 *4 (-606 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-1299 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) (-15 -3380 ((-1115 *4 (-606 $)) $)) (-15 -4353 ($ (-1115 *4 (-606 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-1299 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1299 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1298 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))))
+(-10 -7 (-15 -1298 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| (-635 |#2|))) (-15 -1299 (|#2| |#2| (-635 (-606 |#2|)))) (-15 -1300 ((-1160 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-544))) (IF (|has| |#2| (-420 |#1|)) (PROGN (-15 -1301 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -1304 (|#2| (-113) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4139 (((-404 (-1160 |#3|)) (-1160 |#3|) (-635 (-48))) 23) (((-404 |#3|) |#3| (-635 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-404 |#3|) |#3| (-635 (-48)))) (-15 -4139 ((-404 (-1160 |#3|)) (-1160 |#3|) (-635 (-48))))) (-844) (-787) (-943 (-48) |#2| |#1|)) (T -42))
+((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *7 (-943 (-48) *6 *5)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-943 (-48) *6 *5)))))
+(-10 -7 (-15 -4139 ((-404 |#3|) |#3| (-635 (-48)))) (-15 -4139 ((-404 (-1160 |#3|)) (-1160 |#3|) (-635 (-48)))))
+((-1308 (((-765) |#2|) 65)) (-1306 (((-765) |#2|) 68)) (-1321 (((-635 |#2|)) 33)) (-1305 (((-765) |#2|) 67)) (-1307 (((-765) |#2|) 64)) (-1309 (((-765) |#2|) 66)) (-1319 (((-635 (-682 |#1|))) 60)) (-1314 (((-635 |#2|)) 55)) (-1312 (((-635 |#2|) |#2|) 43)) (-1316 (((-635 |#2|)) 57)) (-1315 (((-635 |#2|)) 56)) (-1318 (((-635 (-682 |#1|))) 48)) (-1313 (((-635 |#2|)) 54)) (-1311 (((-635 |#2|) |#2|) 42)) (-1310 (((-635 |#2|)) 50)) (-1320 (((-635 (-682 |#1|))) 61)) (-1317 (((-635 |#2|)) 59)) (-2162 (((-1253 |#2|) (-1253 |#2|)) 83 (|has| |#1| (-306)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1305 ((-765) |#2|)) (-15 -1306 ((-765) |#2|)) (-15 -1307 ((-765) |#2|)) (-15 -1308 ((-765) |#2|)) (-15 -1309 ((-765) |#2|)) (-15 -1310 ((-635 |#2|))) (-15 -1311 ((-635 |#2|) |#2|)) (-15 -1312 ((-635 |#2|) |#2|)) (-15 -1313 ((-635 |#2|))) (-15 -1314 ((-635 |#2|))) (-15 -1315 ((-635 |#2|))) (-15 -1316 ((-635 |#2|))) (-15 -1317 ((-635 |#2|))) (-15 -1318 ((-635 (-682 |#1|)))) (-15 -1319 ((-635 (-682 |#1|)))) (-15 -1320 ((-635 (-682 |#1|)))) (-15 -1321 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2162 ((-1253 |#2|) (-1253 |#2|))) |%noBranch|)) (-554) (-417 |#1|)) (T -43))
+((-2162 (*1 *2 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-417 *3)) (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-43 *3 *4)))) (-1321 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1320 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1319 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1318 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1317 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1316 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1315 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1314 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1313 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1312 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1311 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1310 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1309 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1308 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1307 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1305 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(-10 -7 (-15 -1305 ((-765) |#2|)) (-15 -1306 ((-765) |#2|)) (-15 -1307 ((-765) |#2|)) (-15 -1308 ((-765) |#2|)) (-15 -1309 ((-765) |#2|)) (-15 -1310 ((-635 |#2|))) (-15 -1311 ((-635 |#2|) |#2|)) (-15 -1312 ((-635 |#2|) |#2|)) (-15 -1313 ((-635 |#2|))) (-15 -1314 ((-635 |#2|))) (-15 -1315 ((-635 |#2|))) (-15 -1316 ((-635 |#2|))) (-15 -1317 ((-635 |#2|))) (-15 -1318 ((-635 (-682 |#1|)))) (-15 -1319 ((-635 (-682 |#1|)))) (-15 -1320 ((-635 (-682 |#1|)))) (-15 -1321 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2162 ((-1253 |#2|) (-1253 |#2|))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#1|)) (-1253 $)) NIL) (((-1253 (-682 |#1|))) 24)) (-1873 (((-1253 $)) 51)) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#1| (-554)))) (-1847 (((-3 $ #1#)) NIL (|has| |#1| (-554)))) (-1935 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-1871 ((|#1| $) NIL)) (-1933 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2539 (((-3 $ #1#) $) NIL (|has| |#1| (-554)))) (-2050 (((-1160 (-939 |#1|))) NIL (|has| |#1| (-362)))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#1| $) NIL)) (-1849 (((-1160 |#1|) $) NIL (|has| |#1| (-554)))) (-1937 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1867 (((-1160 |#1|) $) NIL)) (-1861 (((-112)) 87)) (-1939 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) NIL)) (-3866 (((-3 $ #1#) $) 14 (|has| |#1| (-554)))) (-3494 (((-912)) 52)) (-1858 (((-112)) NIL)) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL)) (-1852 (((-112)) NIL)) (-1856 (((-112)) 89)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#1| (-554)))) (-1848 (((-3 $ #1#)) NIL (|has| |#1| (-554)))) (-1936 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-1872 ((|#1| $) NIL)) (-1934 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2540 (((-3 $ #1#) $) NIL (|has| |#1| (-554)))) (-2054 (((-1160 (-939 |#1|))) NIL (|has| |#1| (-362)))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#1| $) NIL)) (-1850 (((-1160 |#1|) $) NIL (|has| |#1| (-554)))) (-1938 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1868 (((-1160 |#1|) $) NIL)) (-1862 (((-112)) 86)) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) 93)) (-1855 (((-112)) 92)) (-1857 (((-112)) 94)) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) 88)) (-4206 ((|#1| $ (-544)) 54)) (-3625 (((-1253 |#1|) $ (-1253 $)) 48) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) 28) (((-682 |#1|) (-1253 $)) NIL)) (-4377 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL)) (-2042 (((-635 (-939 |#1|)) (-1253 $)) NIL) (((-635 (-939 |#1|))) NIL)) (-2729 (($ $ $) NIL)) (-1866 (((-112)) 84)) (-4353 (((-857) $) 69) (($ (-1253 |#1|)) 22)) (-2162 (((-1253 $)) 45)) (-1851 (((-635 (-1253 |#1|))) NIL (|has| |#1| (-554)))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) 82)) (-2927 (($ (-682 |#1|) $) 18)) (-2728 (($ $ $) NIL)) (-1865 (((-112)) 85)) (-1863 (((-112)) 83)) (-1859 (((-112)) 81)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1132 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4353 ($ (-1253 |#1|))))) (-362) (-912) (-635 (-1166)) (-1253 (-682 |#1|))) (T -44))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-14 *6 (-1253 (-682 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))))))
+(-13 (-417 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4353 ($ (-1253 |#1|)))))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-3806 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4201 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4203 (($ $) NIL)) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401))) (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1874 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844))))) (-3292 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-3408 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) 27 (|has| $ (-6 -4401)))) (-4192 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-4195 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 29 (|has| $ (-6 -4401)))) (-4194 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-1220 (-544)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1="last" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3="first" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4="value" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4202 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2353 (((-3 |#2| #5="failed") |#1| $) 37)) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-4205 (($ $ (-765)) NIL) (($ $) 24)) (-2498 (($ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #5#) |#1| $) 47) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 18 (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 18 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-4021 (($ (-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844))) (((-544) $) 32 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3241 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3917 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844))) (((-544) $) 34 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-3941 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) 41 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4204 (($ $ (-765)) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2789 (((-635 |#1|) $) 20)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2421 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 |#1|) $) NIL) (((-635 (-544)) $) NIL)) (-2350 (((-112) |#1| $) NIL) (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844))) (($ $ (-765)) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 23)) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6#) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2351 (((-635 |#2|) $) NIL) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 17)) (-3807 (((-112) $) 16)) (-3972 (($) 13)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL) (($ $ (-1220 (-544))) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3#) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4#) NIL)) (-3412 (((-544) $ $) NIL)) (-1550 (($) 12) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-1660 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4040 (((-112) $) NIL)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4197 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL) (($ $ $) NIL)) (-4208 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL) (($ (-635 $)) NIL) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 25) (($ $ $) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-1295 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") |#1| $) 43)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-3066 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-4364 (((-765) $) 22 (|has| $ (-6 -4400)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1091) (-1091)) (T -45))
NIL
(-36 |#1| |#2|)
-((-1750 (((-112) $) 12)) (-4165 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-561)) $) 25) (($ $ (-406 (-561))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -1750 ((-112) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-47 |#2| |#3|) (-1042) (-786)) (T -46))
+((-4344 (((-112) $) 12)) (-4365 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-544)) $) 25) (($ $ (-406 (-544))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4344 ((-112) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-47 |#2| |#3|) (-1042) (-786)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -1750 ((-112) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1750 (((-112) $) 65)) (-1381 (($ |#1| |#2|) 64)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3768 ((|#2| $) 67)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3932 ((|#1| $ |#2|) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4344 ((-112) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4355 ((|#2| $) 67)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
(((-47 |#1| |#2|) (-139) (-1042) (-786)) (T -47))
-((-1572 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-1557 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-1381 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-1598 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-3932 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-1828 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-362)))))
-(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (-15 -1572 (|t#1| $)) (-15 -1557 ($ $)) (-15 -3768 (|t#2| $)) (-15 -4165 ($ (-1 |t#1| |t#1|) $)) (-15 -1750 ((-112) $)) (-15 -1381 ($ |t#1| |t#2|)) (-15 -1598 ($ $)) (-15 -3932 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -1828 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-553)) (-6 (-553)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (-6 (-38 (-406 (-561)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-289) |has| |#1| (-553)) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-2311 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-2153 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-4306 (((-112) $) 11)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-1495 (((-638 (-607 $)) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1339 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1643 (($ $) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-1466 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-2496 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-4061 (((-3 (-607 $) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL)) (-3979 (((-607 $) $) NIL) (((-561) $) NIL) (((-406 (-561)) $) NIL)) (-1792 (($ $ $) NIL)) (-3720 (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-406 (-561)))) (|:| |vec| (-1254 (-406 (-561))))) (-682 $) (-1254 $)) NIL) (((-682 (-406 (-561))) (-682 $)) NIL)) (-3176 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1719 (($ $) NIL) (($ (-638 $)) NIL)) (-2123 (((-638 (-114)) $) NIL)) (-1773 (((-114) (-114)) NIL)) (-2252 (((-112) $) 14)) (-2110 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-4077 (((-1115 (-561) (-607 $)) $) NIL)) (-4343 (($ $ (-561)) NIL)) (-2072 (((-1162 $) (-1162 $) (-607 $)) NIL) (((-1162 $) (-1162 $) (-638 (-607 $))) NIL) (($ $ (-607 $)) NIL) (($ $ (-638 (-607 $))) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1578 (((-1162 $) (-607 $)) NIL (|has| $ (-1042)))) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 $ $) (-607 $)) NIL)) (-2373 (((-3 (-607 $) "failed") $) NIL)) (-1563 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1583 (((-638 (-607 $)) $) NIL)) (-4154 (($ (-114) $) NIL) (($ (-114) (-638 $)) NIL)) (-4188 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) NIL)) (-1519 (($ $) NIL)) (-3093 (((-765) $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1342 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2058 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1436 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1905 (((-765) $) NIL)) (-2315 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-4348 (($ $) NIL) (($ $ $) NIL)) (-3922 (($ $ (-765)) NIL) (($ $) NIL)) (-4088 (((-1115 (-561) (-607 $)) $) NIL)) (-3158 (($ $) NIL (|has| $ (-1042)))) (-4216 (((-378) $) NIL) (((-224) $) NIL) (((-168 (-378)) $) NIL)) (-4064 (((-856) $) NIL) (($ (-607 $)) NIL) (($ (-406 (-561))) NIL) (($ $) NIL) (($ (-561)) NIL) (($ (-1115 (-561) (-607 $))) NIL)) (-3746 (((-765)) NIL)) (-3402 (($ $) NIL) (($ (-638 $)) NIL)) (-3333 (((-112) (-114)) NIL)) (-3996 (((-112) $ $) NIL)) (-2246 (($) 7 T CONST)) (-2257 (($) 12 T CONST)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 16)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL)) (-1819 (($ $ $) 15) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-406 (-561))) NIL) (($ $ (-561)) NIL) (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ $ $) NIL) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
-(((-48) (-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4064 ($ (-1115 (-561) (-607 $)))) (-15 -4077 ((-1115 (-561) (-607 $)) $)) (-15 -4088 ((-1115 (-561) (-607 $)) $)) (-15 -3176 ($ $)) (-15 -2072 ((-1162 $) (-1162 $) (-607 $))) (-15 -2072 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -2072 ($ $ (-607 $))) (-15 -2072 ($ $ (-638 (-607 $))))))) (T -48))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48)))) (-3176 (*1 *1 *1) (-5 *1 (-48))) (-2072 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-607 (-48))) (-5 *1 (-48)))) (-2072 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-638 (-607 (-48)))) (-5 *1 (-48)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-48))) (-5 *1 (-48)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-48)))) (-5 *1 (-48)))))
-(-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4064 ($ (-1115 (-561) (-607 $)))) (-15 -4077 ((-1115 (-561) (-607 $)) $)) (-15 -4088 ((-1115 (-561) (-607 $)) $)) (-15 -3176 ($ $)) (-15 -2072 ((-1162 $) (-1162 $) (-607 $))) (-15 -2072 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -2072 ($ $ (-607 $))) (-15 -2072 ($ $ (-638 (-607 $))))))
-((-4053 (((-112) $ $) NIL)) (-3134 (((-638 (-1166)) $) 17)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 7)) (-3316 (((-1171) $) 18)) (-1723 (((-112) $ $) NIL)))
-(((-49) (-13 (-1090) (-10 -8 (-15 -3134 ((-638 (-1166)) $)) (-15 -3316 ((-1171) $))))) (T -49))
-((-3134 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-49)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49)))))
-(-13 (-1090) (-10 -8 (-15 -3134 ((-638 (-1166)) $)) (-15 -3316 ((-1171) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 61)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-2160 (((-112) $) 20)) (-4061 (((-3 |#1| "failed") $) 23)) (-3979 ((|#1| $) 24)) (-1598 (($ $) 28)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1572 ((|#1| $) 21)) (-2307 (($ $) 50)) (-1883 (((-1148) $) NIL)) (-4171 (((-112) $) 30)) (-1701 (((-1110) $) NIL)) (-3194 (($ (-765)) 48)) (-3486 (($ (-638 (-561))) 49)) (-3768 (((-765) $) 31)) (-4064 (((-856) $) 64) (($ (-561)) 45) (($ |#1|) 43)) (-3932 ((|#1| $ $) 19)) (-3746 (((-765)) 47)) (-2246 (($) 32 T CONST)) (-2257 (($) 14 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 40)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-50 |#1| |#2|) (-13 (-615 |#1|) (-1031 |#1|) (-10 -8 (-15 -1572 (|#1| $)) (-15 -2307 ($ $)) (-15 -1598 ($ $)) (-15 -3932 (|#1| $ $)) (-15 -3194 ($ (-765))) (-15 -3486 ($ (-638 (-561)))) (-15 -4171 ((-112) $)) (-15 -2160 ((-112) $)) (-15 -3768 ((-765) $)) (-15 -4165 ($ (-1 |#1| |#1|) $)))) (-1042) (-638 (-1166))) (T -50))
-((-1572 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166))))) (-2307 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166))))) (-1598 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166))))) (-3932 (*1 *2 *1 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166))))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-3486 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-50 *3 *4)) (-14 *4 (-638 (-1166))))))
-(-13 (-615 |#1|) (-1031 |#1|) (-10 -8 (-15 -1572 (|#1| $)) (-15 -2307 ($ $)) (-15 -1598 ($ $)) (-15 -3932 (|#1| $ $)) (-15 -3194 ($ (-765))) (-15 -3486 ($ (-638 (-561)))) (-15 -4171 ((-112) $)) (-15 -2160 ((-112) $)) (-15 -3768 ((-765) $)) (-15 -4165 ($ (-1 |#1| |#1|) $))))
-((-2160 (((-112) (-52)) 13)) (-4061 (((-3 |#1| "failed") (-52)) 21)) (-3979 ((|#1| (-52)) 22)) (-4064 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -4064 ((-52) |#1|)) (-15 -4061 ((-3 |#1| "failed") (-52))) (-15 -2160 ((-112) (-52))) (-15 -3979 (|#1| (-52)))) (-1205)) (T -51))
-((-3979 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1205)))) (-4061 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205)))) (-4064 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1205)))))
-(-10 -7 (-15 -4064 ((-52) |#1|)) (-15 -4061 ((-3 |#1| "failed") (-52))) (-15 -2160 ((-112) (-52))) (-15 -3979 (|#1| (-52))))
-((-4053 (((-112) $ $) NIL)) (-1551 (((-1148) (-112)) 25)) (-1721 (((-856) $) 24)) (-1462 (((-768) $) 12)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4007 (((-856) $) 16)) (-3566 (((-1094) $) 14)) (-4064 (((-856) $) 32)) (-4153 (($ (-1094) (-768)) 33)) (-1723 (((-112) $ $) 18)))
-(((-52) (-13 (-1090) (-10 -8 (-15 -4153 ($ (-1094) (-768))) (-15 -4007 ((-856) $)) (-15 -1721 ((-856) $)) (-15 -3566 ((-1094) $)) (-15 -1462 ((-768) $)) (-15 -1551 ((-1148) (-112)))))) (T -52))
-((-4153 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-768)) (-5 *1 (-52)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-52)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-52)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-52)))))
-(-13 (-1090) (-10 -8 (-15 -4153 ($ (-1094) (-768))) (-15 -4007 ((-856) $)) (-15 -1721 ((-856) $)) (-15 -3566 ((-1094) $)) (-15 -1462 ((-768) $)) (-15 -1551 ((-1148) (-112)))))
-((-1363 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1363 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1042) (-641 |#1|) (-846 |#1|)) (T -53))
-((-1363 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5)))))
-(-10 -7 (-15 -1363 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-3906 ((|#3| |#3| (-638 (-1166))) 35)) (-2701 ((|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3| (-914)) 22) ((|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3|) 20)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2701 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3|)) (-15 -2701 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3| (-914))) (-15 -3906 (|#3| |#3| (-638 (-1166))))) (-1090) (-13 (-1042) (-879 |#1|) (-844) (-609 (-885 |#1|))) (-13 (-429 |#2|) (-879 |#1|) (-609 (-885 |#1|)))) (T -54))
-((-3906 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))) (-2701 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-638 (-1066 *5 *6 *2))) (-5 *4 (-914)) (-4 *5 (-1090)) (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-885 *5)))) (-4 *2 (-13 (-429 *6) (-879 *5) (-609 (-885 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2701 (*1 *2 *3 *2) (-12 (-5 *3 (-638 (-1066 *4 *5 *2))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -2701 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3|)) (-15 -2701 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3| (-914))) (-15 -3906 (|#3| |#3| (-638 (-1166)))))
-((-4053 (((-112) $ $) NIL)) (-4061 (((-3 (-765) "failed") $) 22)) (-3979 (((-765) $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) 9)) (-4064 (((-856) $) 16) (($ (-765)) 20)) (-3573 (($) 7 T CONST)) (-1723 (((-112) $ $) 11)))
-(((-55) (-13 (-1090) (-1031 (-765)) (-10 -8 (-15 -3573 ($) -1494)))) (T -55))
-((-3573 (*1 *1) (-5 *1 (-55))))
-(-13 (-1090) (-1031 (-765)) (-10 -8 (-15 -3573 ($) -1494)))
-((-2684 (((-112) $ (-765)) 23)) (-4019 (($ $ (-561) |#3|) 47)) (-1316 (($ $ (-561) |#4|) 51)) (-3324 ((|#3| $ (-561)) 60)) (-2368 (((-638 |#2|) $) 30)) (-3116 (((-112) $ (-765)) 25)) (-4288 (((-112) |#2| $) 55)) (-2029 (($ (-1 |#2| |#2|) $) 38)) (-4165 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3683 (((-112) $ (-765)) 24)) (-3193 (($ $ |#2|) 35)) (-3977 (((-112) (-1 (-112) |#2|) $) 19)) (-2315 ((|#2| $ (-561) (-561)) NIL) ((|#2| $ (-561) (-561) |#2|) 27)) (-1714 (((-765) (-1 (-112) |#2|) $) 28) (((-765) |#2| $) 57)) (-4225 (($ $) 34)) (-2062 ((|#4| $ (-561)) 63)) (-4064 (((-856) $) 69)) (-3715 (((-112) (-1 (-112) |#2|) $) 18)) (-1723 (((-112) $ $) 54)) (-3548 (((-765) $) 26)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1316 (|#1| |#1| (-561) |#4|)) (-15 -4019 (|#1| |#1| (-561) |#3|)) (-15 -2368 ((-638 |#2|) |#1|)) (-15 -2062 (|#4| |#1| (-561))) (-15 -3324 (|#3| |#1| (-561))) (-15 -2315 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) (-561))) (-15 -3193 (|#1| |#1| |#2|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -4288 ((-112) |#2| |#1|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765))) (-15 -4225 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1205) (-372 |#2|) (-372 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1316 (|#1| |#1| (-561) |#4|)) (-15 -4019 (|#1| |#1| (-561) |#3|)) (-15 -2368 ((-638 |#2|) |#1|)) (-15 -2062 (|#4| |#1| (-561))) (-15 -3324 (|#3| |#1| (-561))) (-15 -2315 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) (-561))) (-15 -3193 (|#1| |#1| |#2|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -4288 ((-112) |#2| |#1|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765))) (-15 -4225 (|#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#1| $ (-561) (-561) |#1|) 44)) (-4019 (($ $ (-561) |#2|) 42)) (-1316 (($ $ (-561) |#3|) 41)) (-2674 (($) 7 T CONST)) (-3324 ((|#2| $ (-561)) 46)) (-2041 ((|#1| $ (-561) (-561) |#1|) 43)) (-1975 ((|#1| $ (-561) (-561)) 48)) (-2368 (((-638 |#1|) $) 30)) (-3349 (((-765) $) 51)) (-1458 (($ (-765) (-765) |#1|) 57)) (-3361 (((-765) $) 50)) (-3116 (((-112) $ (-765)) 9)) (-3655 (((-561) $) 55)) (-1355 (((-561) $) 53)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2475 (((-561) $) 54)) (-3838 (((-561) $) 52)) (-2029 (($ (-1 |#1| |#1|) $) 34)) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) 56)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) (-561)) 49) ((|#1| $ (-561) (-561) |#1|) 47)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-2062 ((|#3| $ (-561)) 45)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-57 |#1| |#2| |#3|) (-139) (-1205) (-372 |t#1|) (-372 |t#1|)) (T -57))
-((-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1458 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1205)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3193 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1205)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-765)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-765)))) (-2315 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1205)))) (-1975 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1205)))) (-2315 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-3324 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1205)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2062 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1205)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-638 *3)))) (-4207 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-2041 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-4019 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1205)) (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1205)) (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))) (-2029 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4165 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(-13 (-487 |t#1|) (-10 -8 (-6 -4400) (-6 -4399) (-15 -1458 ($ (-765) (-765) |t#1|)) (-15 -3193 ($ $ |t#1|)) (-15 -3655 ((-561) $)) (-15 -2475 ((-561) $)) (-15 -1355 ((-561) $)) (-15 -3838 ((-561) $)) (-15 -3349 ((-765) $)) (-15 -3361 ((-765) $)) (-15 -2315 (|t#1| $ (-561) (-561))) (-15 -1975 (|t#1| $ (-561) (-561))) (-15 -2315 (|t#1| $ (-561) (-561) |t#1|)) (-15 -3324 (|t#2| $ (-561))) (-15 -2062 (|t#3| $ (-561))) (-15 -2368 ((-638 |t#1|) $)) (-15 -4207 (|t#1| $ (-561) (-561) |t#1|)) (-15 -2041 (|t#1| $ (-561) (-561) |t#1|)) (-15 -4019 ($ $ (-561) |t#2|)) (-15 -1316 ($ $ (-561) |t#3|)) (-15 -4165 ($ (-1 |t#1| |t#1|) $)) (-15 -2029 ($ (-1 |t#1| |t#1|) $)) (-15 -4165 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4165 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-3522 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3176 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4165 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -3522 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4165 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1205) (-1205)) (T -58))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-58 *5 *2)))) (-3522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -3522 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4165 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) |#1|) 11 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3148 (($ (-638 |#1|)) 13) (($ (-765) |#1|) 14)) (-1458 (($ (-765) |#1|) 9)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 7)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3148 ($ (-638 |#1|))) (-15 -3148 ($ (-765) |#1|)))) (-1205)) (T -59))
-((-3148 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-59 *3)))) (-3148 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-59 *3)) (-4 *3 (-1205)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3148 ($ (-638 |#1|))) (-15 -3148 ($ (-765) |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) (-561) |#1|) NIL)) (-4019 (($ $ (-561) (-59 |#1|)) NIL)) (-1316 (($ $ (-561) (-59 |#1|)) NIL)) (-2674 (($) NIL T CONST)) (-3324 (((-59 |#1|) $ (-561)) NIL)) (-2041 ((|#1| $ (-561) (-561) |#1|) NIL)) (-1975 ((|#1| $ (-561) (-561)) NIL)) (-2368 (((-638 |#1|) $) NIL)) (-3349 (((-765) $) NIL)) (-1458 (($ (-765) (-765) |#1|) NIL)) (-3361 (((-765) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3655 (((-561) $) NIL)) (-1355 (((-561) $) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2475 (((-561) $) NIL)) (-3838 (((-561) $) NIL)) (-2029 (($ (-1 |#1| |#1|) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-2062 (((-59 |#1|) $ (-561)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4400))) (-1205)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4400)))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 74) (((-3 $ "failed") (-1254 (-315 (-561)))) 63) (((-3 $ "failed") (-1254 (-945 (-378)))) 94) (((-3 $ "failed") (-1254 (-945 (-561)))) 84) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 52) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 39)) (-3979 (($ (-1254 (-315 (-378)))) 70) (($ (-1254 (-315 (-561)))) 59) (($ (-1254 (-945 (-378)))) 90) (($ (-1254 (-945 (-561)))) 80) (($ (-1254 (-406 (-945 (-378))))) 48) (($ (-1254 (-406 (-945 (-561))))) 32)) (-3107 (((-1259) $) 120)) (-4064 (((-856) $) 113) (($ (-638 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 101) (($ (-1254 (-338 (-4078 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4078) (-692)))) 31)))
-(((-61 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4078) (-692))))))) (-1166)) (T -61))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4078) (-692)))) (-5 *1 (-61 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4078) (-692)))))))
-((-3107 (((-1259) $) 53) (((-1259)) 54)) (-4064 (((-856) $) 50)))
-(((-62 |#1|) (-13 (-394) (-10 -7 (-15 -3107 ((-1259))))) (-1166)) (T -62))
-((-3107 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-62 *3)) (-14 *3 (-1166)))))
-(-13 (-394) (-10 -7 (-15 -3107 ((-1259)))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 145) (((-3 $ "failed") (-1254 (-315 (-561)))) 135) (((-3 $ "failed") (-1254 (-945 (-378)))) 165) (((-3 $ "failed") (-1254 (-945 (-561)))) 155) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 124) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 112)) (-3979 (($ (-1254 (-315 (-378)))) 141) (($ (-1254 (-315 (-561)))) 131) (($ (-1254 (-945 (-378)))) 161) (($ (-1254 (-945 (-561)))) 151) (($ (-1254 (-406 (-945 (-378))))) 120) (($ (-1254 (-406 (-945 (-561))))) 105)) (-3107 (((-1259) $) 98)) (-4064 (((-856) $) 92) (($ (-638 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 32) (($ (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692)))) 90)))
-(((-63 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692))))))) (-1166)) (T -63))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692)))) (-5 *1 (-63 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692)))))))
-((-4061 (((-3 $ "failed") (-315 (-378))) 41) (((-3 $ "failed") (-315 (-561))) 46) (((-3 $ "failed") (-945 (-378))) 50) (((-3 $ "failed") (-945 (-561))) 54) (((-3 $ "failed") (-406 (-945 (-378)))) 36) (((-3 $ "failed") (-406 (-945 (-561)))) 29)) (-3979 (($ (-315 (-378))) 39) (($ (-315 (-561))) 44) (($ (-945 (-378))) 48) (($ (-945 (-561))) 52) (($ (-406 (-945 (-378)))) 34) (($ (-406 (-945 (-561)))) 26)) (-3107 (((-1259) $) 76)) (-4064 (((-856) $) 69) (($ (-638 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 64) (($ (-338 (-4078 (QUOTE X)) (-4078) (-692))) 25)))
-(((-64 |#1|) (-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078 (QUOTE X)) (-4078) (-692)))))) (-1166)) (T -64))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-338 (-4078 (QUOTE X)) (-4078) (-692))) (-5 *1 (-64 *3)) (-14 *3 (-1166)))))
-(-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078 (QUOTE X)) (-4078) (-692))))))
-((-4061 (((-3 $ "failed") (-682 (-315 (-378)))) 109) (((-3 $ "failed") (-682 (-315 (-561)))) 97) (((-3 $ "failed") (-682 (-945 (-378)))) 131) (((-3 $ "failed") (-682 (-945 (-561)))) 120) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 85) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 71)) (-3979 (($ (-682 (-315 (-378)))) 105) (($ (-682 (-315 (-561)))) 93) (($ (-682 (-945 (-378)))) 127) (($ (-682 (-945 (-561)))) 116) (($ (-682 (-406 (-945 (-378))))) 81) (($ (-682 (-406 (-945 (-561))))) 64)) (-3107 (((-1259) $) 139)) (-4064 (((-856) $) 133) (($ (-638 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 31) (($ (-682 (-338 (-4078) (-4078 (QUOTE X) (QUOTE HESS)) (-692)))) 54)))
-(((-65 |#1|) (-13 (-383) (-611 (-682 (-338 (-4078) (-4078 (QUOTE X) (QUOTE HESS)) (-692))))) (-1166)) (T -65))
-NIL
-(-13 (-383) (-611 (-682 (-338 (-4078) (-4078 (QUOTE X) (QUOTE HESS)) (-692)))))
-((-4061 (((-3 $ "failed") (-315 (-378))) 59) (((-3 $ "failed") (-315 (-561))) 64) (((-3 $ "failed") (-945 (-378))) 68) (((-3 $ "failed") (-945 (-561))) 72) (((-3 $ "failed") (-406 (-945 (-378)))) 54) (((-3 $ "failed") (-406 (-945 (-561)))) 47)) (-3979 (($ (-315 (-378))) 57) (($ (-315 (-561))) 62) (($ (-945 (-378))) 66) (($ (-945 (-561))) 70) (($ (-406 (-945 (-378)))) 52) (($ (-406 (-945 (-561)))) 44)) (-3107 (((-1259) $) 81)) (-4064 (((-856) $) 75) (($ (-638 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 31) (($ (-338 (-4078) (-4078 (QUOTE XC)) (-692))) 39)))
-(((-66 |#1|) (-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078) (-4078 (QUOTE XC)) (-692)))))) (-1166)) (T -66))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-338 (-4078) (-4078 (QUOTE XC)) (-692))) (-5 *1 (-66 *3)) (-14 *3 (-1166)))))
-(-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078) (-4078 (QUOTE XC)) (-692))))))
-((-3107 (((-1259) $) 63)) (-4064 (((-856) $) 57) (($ (-682 (-692))) 49) (($ (-638 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 53)))
+((-3575 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-3276 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-362)))))
+(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (-15 -3575 (|t#1| $)) (-15 -3277 ($ $)) (-15 -4355 (|t#2| $)) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -4344 ((-112) $)) (-15 -3276 ($ |t#1| |t#2|)) (-15 -4366 ($ $)) (-15 -4084 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -4356 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-554)) (-6 (-554)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (-6 (-38 (-406 (-544)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-1695 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-1287 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3589 (((-112) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1688 (((-635 (-606 $)) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-1288 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-3584 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-606 $) $) NIL) (((-544) $) NIL) (((-406 (-544)) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-406 (-544)))) (|:| |vec| (-1253 (-406 (-544))))) (-682 $) (-1253 $)) NIL) (((-682 (-406 (-544))) (-682 $)) NIL)) (-4249 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) NIL)) (-2545 (((-112) $) 14)) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-3381 (((-1115 (-544) (-606 $)) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3517 (((-1160 $) (-1160 $) (-606 $)) NIL) (((-1160 $) (-1160 $) (-635 (-606 $))) NIL) (($ $ (-606 $)) NIL) (($ $ (-635 (-606 $))) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-1685 (((-1160 $) (-606 $)) NIL (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) NIL)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) NIL)) (-2356 (($ (-113) $) NIL) (($ (-113) (-635 $)) NIL)) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) NIL)) (-2779 (($ $) NIL)) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1732 (((-765) $) NIL)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-3380 (((-1115 (-544) (-606 $)) $) NIL)) (-3586 (($ $) NIL (|has| $ (-1042)))) (-4377 (((-377) $) NIL) (((-224) $) NIL) (((-167 (-377)) $) NIL)) (-4353 (((-857) $) NIL) (($ (-606 $)) NIL) (($ (-406 (-544))) NIL) (($ $) NIL) (($ (-544)) NIL) (($ (-1115 (-544) (-606 $))) NIL)) (-3511 (((-765)) NIL)) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-2377 (((-112) (-113)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 7 T CONST)) (-3046 (($) 12 T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 16)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $ $) 15) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-406 (-544))) NIL) (($ $ (-544)) NIL) (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ $ $) NIL) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL)))
+(((-48) (-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $))))))) (T -48))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) (-4249 (*1 *1 *1) (-5 *1 (-48))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-606 (-48))) (-5 *1 (-48)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-635 (-606 (-48)))) (-5 *1 (-48)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-48))) (-5 *1 (-48)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-48)))) (-5 *1 (-48)))))
+(-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $))))))
+((-2947 (((-112) $ $) NIL)) (-2088 (((-635 (-1166)) $) 17)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 7)) (-3634 (((-1171) $) 18)) (-3437 (((-112) $ $) NIL)))
+(((-49) (-13 (-1091) (-10 -8 (-15 -2088 ((-635 (-1166)) $)) (-15 -3634 ((-1171) $))))) (T -49))
+((-2088 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-49)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49)))))
+(-13 (-1091) (-10 -8 (-15 -2088 ((-635 (-1166)) $)) (-15 -3634 ((-1171) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 61)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3044 (((-112) $) 20)) (-3558 (((-3 |#1| "failed") $) 23)) (-3557 ((|#1| $) 24)) (-4366 (($ $) 28)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3575 ((|#1| $) 21)) (-1540 (($ $) 50)) (-3643 (((-1148) $) NIL)) (-1539 (((-112) $) 30)) (-3644 (((-1110) $) NIL)) (-2544 (($ (-765)) 48)) (-4350 (($ (-635 (-544))) 49)) (-4355 (((-765) $) 31)) (-4353 (((-857) $) 64) (($ (-544)) 45) (($ |#1|) 43)) (-4084 ((|#1| $ $) 19)) (-3511 (((-765)) 47)) (-3040 (($) 32 T CONST)) (-3046 (($) 14 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 40)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-50 |#1| |#2|) (-13 (-616 |#1|) (-1031 |#1|) (-10 -8 (-15 -3575 (|#1| $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 (|#1| $ $)) (-15 -2544 ($ (-765))) (-15 -4350 ($ (-635 (-544)))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-765) $)) (-15 -4365 ($ (-1 |#1| |#1|) $)))) (-1042) (-635 (-1166))) (T -50))
+((-3575 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166))))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))))) (-4084 (*1 *2 *1 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166))))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-4350 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-50 *3 *4)) (-14 *4 (-635 (-1166))))))
+(-13 (-616 |#1|) (-1031 |#1|) (-10 -8 (-15 -3575 (|#1| $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 (|#1| $ $)) (-15 -2544 ($ (-765))) (-15 -4350 ($ (-635 (-544)))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-765) $)) (-15 -4365 ($ (-1 |#1| |#1|) $))))
+((-2947 (((-112) $ $) NIL)) (-1322 (((-1148) (-112)) 25)) (-1325 (((-857) $) 24)) (-1323 (((-767) $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1326 (((-857) $) 16)) (-1324 (((-1093) $) 14)) (-4353 (((-857) $) 32)) (-1327 (($ (-1093) (-767)) 33)) (-3437 (((-112) $ $) 18)))
+(((-51) (-13 (-1091) (-10 -8 (-15 -1327 ($ (-1093) (-767))) (-15 -1326 ((-857) $)) (-15 -1325 ((-857) $)) (-15 -1324 ((-1093) $)) (-15 -1323 ((-767) $)) (-15 -1322 ((-1148) (-112)))))) (T -51))
+((-1327 (*1 *1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *3 (-767)) (-5 *1 (-51)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-51)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-51)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-51)))))
+(-13 (-1091) (-10 -8 (-15 -1327 ($ (-1093) (-767))) (-15 -1326 ((-857) $)) (-15 -1325 ((-857) $)) (-15 -1324 ((-1093) $)) (-15 -1323 ((-767) $)) (-15 -1322 ((-1148) (-112)))))
+((-3044 (((-112) (-51)) 13)) (-3558 (((-3 |#1| "failed") (-51)) 21)) (-3557 ((|#1| (-51)) 22)) (-4353 (((-51) |#1|) 18)))
+(((-52 |#1|) (-10 -7 (-15 -4353 ((-51) |#1|)) (-15 -3558 ((-3 |#1| "failed") (-51))) (-15 -3044 ((-112) (-51))) (-15 -3557 (|#1| (-51)))) (-1204)) (T -52))
+((-3557 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1204)))) (-3558 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1204)))))
+(-10 -7 (-15 -4353 ((-51) |#1|)) (-15 -3558 ((-3 |#1| "failed") (-51))) (-15 -3044 ((-112) (-51))) (-15 -3557 (|#1| (-51))))
+((-2927 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2927 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1042) (-641 |#1|) (-846 |#1|)) (T -53))
+((-2927 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5)))))
+(-10 -7 (-15 -2927 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1329 ((|#3| |#3| (-635 (-1166))) 35)) (-1328 ((|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3| (-912)) 22) ((|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3|) 20)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3|)) (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3| (-912))) (-15 -1329 (|#3| |#3| (-635 (-1166))))) (-1091) (-13 (-1042) (-879 |#1|) (-844) (-609 (-883 |#1|))) (-13 (-420 |#2|) (-879 |#1|) (-609 (-883 |#1|)))) (T -54))
+((-1329 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) (-1328 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 (-1065 *5 *6 *2))) (-5 *4 (-912)) (-4 *5 (-1091)) (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-883 *5)))) (-4 *2 (-13 (-420 *6) (-879 *5) (-609 (-883 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1328 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-1065 *4 *5 *2))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3|)) (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3| (-912))) (-15 -1329 (|#3| |#3| (-635 (-1166)))))
+((-2947 (((-112) $ $) NIL)) (-3558 (((-3 (-765) "failed") $) 22)) (-3557 (((-765) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) 9)) (-4353 (((-857) $) 16) (($ (-765)) 20)) (-1330 (($) 7 T CONST)) (-3437 (((-112) $ $) 11)))
+(((-55) (-13 (-1091) (-1031 (-765)) (-10 -8 (-15 -1330 ($) -4359)))) (T -55))
+((-1330 (*1 *1) (-5 *1 (-55))))
+(-13 (-1091) (-1031 (-765)) (-10 -8 (-15 -1330 ($) -4359)))
+((-1293 (((-112) $ (-765)) 23)) (-1332 (($ $ (-544) |#3|) 47)) (-1331 (($ $ (-544) |#4|) 51)) (-3497 ((|#3| $ (-544)) 60)) (-2096 (((-635 |#2|) $) 30)) (-4126 (((-112) $ (-765)) 25)) (-3646 (((-112) |#2| $) 55)) (-2100 (($ (-1 |#2| |#2|) $) 38)) (-4365 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4123 (((-112) $ (-765)) 24)) (-2345 (($ $ |#2|) 35)) (-2098 (((-112) (-1 (-112) |#2|) $) 19)) (-4206 ((|#2| $ (-544) (-544)) NIL) ((|#2| $ (-544) (-544) |#2|) 27)) (-2097 (((-765) (-1 (-112) |#2|) $) 28) (((-765) |#2| $) 57)) (-3804 (($ $) 34)) (-3496 ((|#4| $ (-544)) 63)) (-4353 (((-857) $) 69)) (-2099 (((-112) (-1 (-112) |#2|) $) 18)) (-3437 (((-112) $ $) 54)) (-4364 (((-765) $) 26)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1331 (|#1| |#1| (-544) |#4|)) (-15 -1332 (|#1| |#1| (-544) |#3|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -3496 (|#4| |#1| (-544))) (-15 -3497 (|#3| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3804 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1204) (-371 |#2|) (-371 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1331 (|#1| |#1| (-544) |#4|)) (-15 -1332 (|#1| |#1| (-544) |#3|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -3496 (|#4| |#1| (-544))) (-15 -3497 (|#3| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3804 (|#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) (-544) |#1|) 44)) (-1332 (($ $ (-544) |#2|) 42)) (-1331 (($ $ (-544) |#3|) 41)) (-4131 (($) 7 T CONST)) (-3497 ((|#2| $ (-544)) 46)) (-1665 ((|#1| $ (-544) (-544) |#1|) 43)) (-3498 ((|#1| $ (-544) (-544)) 48)) (-2096 (((-635 |#1|) $) 30)) (-3500 (((-765) $) 51)) (-4021 (($ (-765) (-765) |#1|) 57)) (-3499 (((-765) $) 50)) (-4126 (((-112) $ (-765)) 9)) (-3504 (((-544) $) 55)) (-3502 (((-544) $) 53)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 54)) (-3501 (((-544) $) 52)) (-2100 (($ (-1 |#1| |#1|) $) 34)) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) 56)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) (-544)) 49) ((|#1| $ (-544) (-544) |#1|) 47)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-3496 ((|#3| $ (-544)) 45)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-57 |#1| |#2| |#3|) (-139) (-1204) (-371 |t#1|) (-371 |t#1|)) (T -57))
+((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4021 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1204)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2345 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-765)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-765)))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-1204)))) (-3498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) (-4 *2 (-371 *4)))) (-3496 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) (-4 *2 (-371 *4)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-635 *3)))) (-4194 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)))) (-1665 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)))) (-1332 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-371 *4)) (-4 *5 (-371 *4)))) (-1331 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) (-4 *3 (-371 *4)))) (-2100 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4365 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))))
+(-13 (-487 |t#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -4021 ($ (-765) (-765) |t#1|)) (-15 -2345 ($ $ |t#1|)) (-15 -3504 ((-544) $)) (-15 -3503 ((-544) $)) (-15 -3502 ((-544) $)) (-15 -3501 ((-544) $)) (-15 -3500 ((-765) $)) (-15 -3499 ((-765) $)) (-15 -4206 (|t#1| $ (-544) (-544))) (-15 -3498 (|t#1| $ (-544) (-544))) (-15 -4206 (|t#1| $ (-544) (-544) |t#1|)) (-15 -3497 (|t#2| $ (-544))) (-15 -3496 (|t#3| $ (-544))) (-15 -2096 ((-635 |t#1|) $)) (-15 -4194 (|t#1| $ (-544) (-544) |t#1|)) (-15 -1665 (|t#1| $ (-544) (-544) |t#1|)) (-15 -1332 ($ $ (-544) |t#2|)) (-15 -1331 ($ $ (-544) |t#3|)) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -2100 ($ (-1 |t#1| |t#1|) $)) (-15 -4365 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4365 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 11 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-1333 (($ (-635 |#1|)) 13) (($ (-765) |#1|) 14)) (-4021 (($ (-765) |#1|) 9)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 7)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1333 ($ (-635 |#1|))) (-15 -1333 ($ (-765) |#1|)))) (-1204)) (T -58))
+((-1333 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-58 *3)))) (-1333 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-58 *3)) (-4 *3 (-1204)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1333 ($ (-635 |#1|))) (-15 -1333 ($ (-765) |#1|))))
+((-4248 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-4365 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13)))
+(((-59 |#1| |#2|) (-10 -7 (-15 -4248 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4365 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1204) (-1204)) (T -59))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-59 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
+(-10 -7 (-15 -4248 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4365 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL)) (-1332 (($ $ (-544) (-58 |#1|)) NIL)) (-1331 (($ $ (-544) (-58 |#1|)) NIL)) (-4131 (($) NIL T CONST)) (-3497 (((-58 |#1|) $ (-544)) NIL)) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-58 |#1|) $ (-544)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4401))) (-1204)) (T -60))
+NIL
+(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4401)))
+((-3558 (((-3 $ #1="failed") (-313 (-377))) 41) (((-3 $ #1#) (-313 (-544))) 46) (((-3 $ #1#) (-939 (-377))) 50) (((-3 $ #1#) (-939 (-544))) 54) (((-3 $ #1#) (-406 (-939 (-377)))) 36) (((-3 $ #1#) (-406 (-939 (-544)))) 29)) (-3557 (($ (-313 (-377))) 39) (($ (-313 (-544))) 44) (($ (-939 (-377))) 48) (($ (-939 (-544))) 52) (($ (-406 (-939 (-377)))) 34) (($ (-406 (-939 (-544)))) 26)) (-3784 (((-1259) $) 76)) (-4353 (((-857) $) 69) (($ (-635 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 64) (($ (-338 (-3929 (QUOTE X)) (-3929) (-692))) 25)))
+(((-61 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929) (-692)))))) (-1166)) (T -61))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929 (QUOTE X)) (-3929) (-692))) (-5 *1 (-61 *3)) (-14 *3 (-1166)))))
+(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929) (-692))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 74) (((-3 $ #1#) (-1253 (-313 (-544)))) 63) (((-3 $ #1#) (-1253 (-939 (-377)))) 94) (((-3 $ #1#) (-1253 (-939 (-544)))) 84) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 52) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 39)) (-3557 (($ (-1253 (-313 (-377)))) 70) (($ (-1253 (-313 (-544)))) 59) (($ (-1253 (-939 (-377)))) 90) (($ (-1253 (-939 (-544)))) 80) (($ (-1253 (-406 (-939 (-377))))) 48) (($ (-1253 (-406 (-939 (-544))))) 32)) (-3784 (((-1259) $) 120)) (-4353 (((-857) $) 113) (($ (-635 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 101) (($ (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692)))) 31)))
+(((-62 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692))))))) (-1166)) (T -62))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692)))) (-5 *1 (-62 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692)))))))
+((-3784 (((-1259) $) 53) (((-1259)) 54)) (-4353 (((-857) $) 50)))
+(((-63 |#1|) (-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) (-1166)) (T -63))
+((-3784 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-63 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -7 (-15 -3784 ((-1259)))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 145) (((-3 $ #1#) (-1253 (-313 (-544)))) 135) (((-3 $ #1#) (-1253 (-939 (-377)))) 165) (((-3 $ #1#) (-1253 (-939 (-544)))) 155) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 124) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 112)) (-3557 (($ (-1253 (-313 (-377)))) 141) (($ (-1253 (-313 (-544)))) 131) (($ (-1253 (-939 (-377)))) 161) (($ (-1253 (-939 (-544)))) 151) (($ (-1253 (-406 (-939 (-377))))) 120) (($ (-1253 (-406 (-939 (-544))))) 105)) (-3784 (((-1259) $) 98)) (-4353 (((-857) $) 92) (($ (-635 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 32) (($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) 90)))
+(((-64 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692))))))) (-1166)) (T -64))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) (-5 *1 (-64 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 109) (((-3 $ #1#) (-682 (-313 (-544)))) 97) (((-3 $ #1#) (-682 (-939 (-377)))) 131) (((-3 $ #1#) (-682 (-939 (-544)))) 120) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 85) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 71)) (-3557 (($ (-682 (-313 (-377)))) 105) (($ (-682 (-313 (-544)))) 93) (($ (-682 (-939 (-377)))) 127) (($ (-682 (-939 (-544)))) 116) (($ (-682 (-406 (-939 (-377))))) 81) (($ (-682 (-406 (-939 (-544))))) 64)) (-3784 (((-1259) $) 139)) (-4353 (((-857) $) 133) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 31) (($ (-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692)))) 54)))
+(((-65 |#1|) (-13 (-384) (-611 (-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692))))) (-1166)) (T -65))
+NIL
+(-13 (-384) (-611 (-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692)))))
+((-3558 (((-3 $ #1="failed") (-313 (-377))) 59) (((-3 $ #1#) (-313 (-544))) 64) (((-3 $ #1#) (-939 (-377))) 68) (((-3 $ #1#) (-939 (-544))) 72) (((-3 $ #1#) (-406 (-939 (-377)))) 54) (((-3 $ #1#) (-406 (-939 (-544)))) 47)) (-3557 (($ (-313 (-377))) 57) (($ (-313 (-544))) 62) (($ (-939 (-377))) 66) (($ (-939 (-544))) 70) (($ (-406 (-939 (-377)))) 52) (($ (-406 (-939 (-544)))) 44)) (-3784 (((-1259) $) 81)) (-4353 (((-857) $) 75) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 31) (($ (-338 (-3929) (-3929 (QUOTE XC)) (-692))) 39)))
+(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE XC)) (-692)))))) (-1166)) (T -66))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929) (-3929 (QUOTE XC)) (-692))) (-5 *1 (-66 *3)) (-14 *3 (-1166)))))
+(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE XC)) (-692))))))
+((-3784 (((-1259) $) 63)) (-4353 (((-857) $) 57) (($ (-682 (-692))) 49) (($ (-635 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 53)))
(((-67 |#1|) (-382) (-1166)) (T -67))
NIL
(-382)
-((-3107 (((-1259) $) 64)) (-4064 (((-856) $) 58) (($ (-682 (-692))) 50) (($ (-638 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 55)))
+((-3784 (((-1259) $) 64)) (-4353 (((-857) $) 58) (($ (-682 (-692))) 50) (($ (-635 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 55)))
(((-68 |#1|) (-382) (-1166)) (T -68))
NIL
(-382)
-((-3107 (((-1259) $) NIL) (((-1259)) 32)) (-4064 (((-856) $) NIL)))
-(((-69 |#1|) (-13 (-394) (-10 -7 (-15 -3107 ((-1259))))) (-1166)) (T -69))
-((-3107 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-69 *3)) (-14 *3 (-1166)))))
-(-13 (-394) (-10 -7 (-15 -3107 ((-1259)))))
-((-3107 (((-1259) $) 73)) (-4064 (((-856) $) 67) (($ (-682 (-692))) 59) (($ (-638 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 58)))
+((-3784 (((-1259) $) NIL) (((-1259)) 32)) (-4353 (((-857) $) NIL)))
+(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) (-1166)) (T -69))
+((-3784 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-69 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -7 (-15 -3784 ((-1259)))))
+((-3784 (((-1259) $) 73)) (-4353 (((-857) $) 67) (($ (-682 (-692))) 59) (($ (-635 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 58)))
(((-70 |#1|) (-382) (-1166)) (T -70))
NIL
(-382)
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 103) (((-3 $ "failed") (-1254 (-315 (-561)))) 92) (((-3 $ "failed") (-1254 (-945 (-378)))) 123) (((-3 $ "failed") (-1254 (-945 (-561)))) 113) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 81) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 68)) (-3979 (($ (-1254 (-315 (-378)))) 99) (($ (-1254 (-315 (-561)))) 88) (($ (-1254 (-945 (-378)))) 119) (($ (-1254 (-945 (-561)))) 109) (($ (-1254 (-406 (-945 (-378))))) 77) (($ (-1254 (-406 (-945 (-561))))) 61)) (-3107 (((-1259) $) 136)) (-4064 (((-856) $) 130) (($ (-638 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 53) (($ (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692)))) 54)))
-(((-71 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692))))))) (-1166)) (T -71))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692)))) (-5 *1 (-71 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692)))))))
-((-3107 (((-1259) $) 32) (((-1259)) 31)) (-4064 (((-856) $) 35)))
-(((-72 |#1|) (-13 (-394) (-10 -7 (-15 -3107 ((-1259))))) (-1166)) (T -72))
-((-3107 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-72 *3)) (-14 *3 (-1166)))))
-(-13 (-394) (-10 -7 (-15 -3107 ((-1259)))))
-((-3107 (((-1259) $) 63)) (-4064 (((-856) $) 57) (($ (-682 (-692))) 49) (($ (-638 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 48)))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 103) (((-3 $ #1#) (-1253 (-313 (-544)))) 92) (((-3 $ #1#) (-1253 (-939 (-377)))) 123) (((-3 $ #1#) (-1253 (-939 (-544)))) 113) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 81) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 68)) (-3557 (($ (-1253 (-313 (-377)))) 99) (($ (-1253 (-313 (-544)))) 88) (($ (-1253 (-939 (-377)))) 119) (($ (-1253 (-939 (-544)))) 109) (($ (-1253 (-406 (-939 (-377))))) 77) (($ (-1253 (-406 (-939 (-544))))) 61)) (-3784 (((-1259) $) 136)) (-4353 (((-857) $) 130) (($ (-635 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 53) (($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) 54)))
+(((-71 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))))))) (-1166)) (T -71))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) (-5 *1 (-71 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))))))
+((-3784 (((-1259) $) 32) (((-1259)) 31)) (-4353 (((-857) $) 35)))
+(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) (-1166)) (T -72))
+((-3784 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-72 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -7 (-15 -3784 ((-1259)))))
+((-3784 (((-1259) $) 63)) (-4353 (((-857) $) 57) (($ (-682 (-692))) 49) (($ (-635 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 48)))
(((-73 |#1|) (-382) (-1166)) (T -73))
NIL
(-382)
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 125) (((-3 $ "failed") (-1254 (-315 (-561)))) 115) (((-3 $ "failed") (-1254 (-945 (-378)))) 145) (((-3 $ "failed") (-1254 (-945 (-561)))) 135) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 105) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 93)) (-3979 (($ (-1254 (-315 (-378)))) 121) (($ (-1254 (-315 (-561)))) 111) (($ (-1254 (-945 (-378)))) 141) (($ (-1254 (-945 (-561)))) 131) (($ (-1254 (-406 (-945 (-378))))) 101) (($ (-1254 (-406 (-945 (-561))))) 86)) (-3107 (((-1259) $) 78)) (-4064 (((-856) $) 27) (($ (-638 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 71) (($ (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))) 65)))
-(((-74 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692))))))) (-1166)) (T -74))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))) (-5 *1 (-74 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 130) (((-3 $ "failed") (-1254 (-315 (-561)))) 119) (((-3 $ "failed") (-1254 (-945 (-378)))) 150) (((-3 $ "failed") (-1254 (-945 (-561)))) 140) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 108) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 95)) (-3979 (($ (-1254 (-315 (-378)))) 126) (($ (-1254 (-315 (-561)))) 115) (($ (-1254 (-945 (-378)))) 146) (($ (-1254 (-945 (-561)))) 136) (($ (-1254 (-406 (-945 (-378))))) 104) (($ (-1254 (-406 (-945 (-561))))) 88)) (-3107 (((-1259) $) 79)) (-4064 (((-856) $) 71) (($ (-638 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) NIL) (($ (-1254 (-338 (-4078 (QUOTE X) (QUOTE EPS)) (-4078 (QUOTE -3223)) (-692)))) 66)))
-(((-75 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X) (QUOTE EPS)) (-4078 (QUOTE -3223)) (-692))))))) (-1166) (-1166) (-1166)) (T -75))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078 (QUOTE X) (QUOTE EPS)) (-4078 (QUOTE -3223)) (-692)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X) (QUOTE EPS)) (-4078 (QUOTE -3223)) (-692)))))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 134) (((-3 $ "failed") (-1254 (-315 (-561)))) 123) (((-3 $ "failed") (-1254 (-945 (-378)))) 154) (((-3 $ "failed") (-1254 (-945 (-561)))) 144) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 112) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 99)) (-3979 (($ (-1254 (-315 (-378)))) 130) (($ (-1254 (-315 (-561)))) 119) (($ (-1254 (-945 (-378)))) 150) (($ (-1254 (-945 (-561)))) 140) (($ (-1254 (-406 (-945 (-378))))) 108) (($ (-1254 (-406 (-945 (-561))))) 92)) (-3107 (((-1259) $) 83)) (-4064 (((-856) $) 75) (($ (-638 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) NIL) (($ (-1254 (-338 (-4078 (QUOTE EPS)) (-4078 (QUOTE YA) (QUOTE YB)) (-692)))) 70)))
-(((-76 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE EPS)) (-4078 (QUOTE YA) (QUOTE YB)) (-692))))))) (-1166) (-1166) (-1166)) (T -76))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078 (QUOTE EPS)) (-4078 (QUOTE YA) (QUOTE YB)) (-692)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE EPS)) (-4078 (QUOTE YA) (QUOTE YB)) (-692)))))))
-((-4061 (((-3 $ "failed") (-315 (-378))) 82) (((-3 $ "failed") (-315 (-561))) 87) (((-3 $ "failed") (-945 (-378))) 91) (((-3 $ "failed") (-945 (-561))) 95) (((-3 $ "failed") (-406 (-945 (-378)))) 77) (((-3 $ "failed") (-406 (-945 (-561)))) 70)) (-3979 (($ (-315 (-378))) 80) (($ (-315 (-561))) 85) (($ (-945 (-378))) 89) (($ (-945 (-561))) 93) (($ (-406 (-945 (-378)))) 75) (($ (-406 (-945 (-561)))) 67)) (-3107 (((-1259) $) 62)) (-4064 (((-856) $) 50) (($ (-638 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 54) (($ (-338 (-4078) (-4078 (QUOTE X)) (-692))) 47)))
-(((-77 |#1|) (-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078) (-4078 (QUOTE X)) (-692)))))) (-1166)) (T -77))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-338 (-4078) (-4078 (QUOTE X)) (-692))) (-5 *1 (-77 *3)) (-14 *3 (-1166)))))
-(-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078) (-4078 (QUOTE X)) (-692))))))
-((-4061 (((-3 $ "failed") (-315 (-378))) 46) (((-3 $ "failed") (-315 (-561))) 51) (((-3 $ "failed") (-945 (-378))) 55) (((-3 $ "failed") (-945 (-561))) 59) (((-3 $ "failed") (-406 (-945 (-378)))) 41) (((-3 $ "failed") (-406 (-945 (-561)))) 34)) (-3979 (($ (-315 (-378))) 44) (($ (-315 (-561))) 49) (($ (-945 (-378))) 53) (($ (-945 (-561))) 57) (($ (-406 (-945 (-378)))) 39) (($ (-406 (-945 (-561)))) 31)) (-3107 (((-1259) $) 80)) (-4064 (((-856) $) 74) (($ (-638 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 69) (($ (-338 (-4078) (-4078 (QUOTE X)) (-692))) 30)))
-(((-78 |#1|) (-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078) (-4078 (QUOTE X)) (-692)))))) (-1166)) (T -78))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-338 (-4078) (-4078 (QUOTE X)) (-692))) (-5 *1 (-78 *3)) (-14 *3 (-1166)))))
-(-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078) (-4078 (QUOTE X)) (-692))))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 89) (((-3 $ "failed") (-1254 (-315 (-561)))) 78) (((-3 $ "failed") (-1254 (-945 (-378)))) 109) (((-3 $ "failed") (-1254 (-945 (-561)))) 99) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 67) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 54)) (-3979 (($ (-1254 (-315 (-378)))) 85) (($ (-1254 (-315 (-561)))) 74) (($ (-1254 (-945 (-378)))) 105) (($ (-1254 (-945 (-561)))) 95) (($ (-1254 (-406 (-945 (-378))))) 63) (($ (-1254 (-406 (-945 (-561))))) 47)) (-3107 (((-1259) $) 125)) (-4064 (((-856) $) 119) (($ (-638 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 115) (($ (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692)))) 38)))
-(((-79 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692))))))) (-1166)) (T -79))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692)))) (-5 *1 (-79 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE XC)) (-692)))))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 143) (((-3 $ "failed") (-1254 (-315 (-561)))) 133) (((-3 $ "failed") (-1254 (-945 (-378)))) 163) (((-3 $ "failed") (-1254 (-945 (-561)))) 153) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 123) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 111)) (-3979 (($ (-1254 (-315 (-378)))) 139) (($ (-1254 (-315 (-561)))) 129) (($ (-1254 (-945 (-378)))) 159) (($ (-1254 (-945 (-561)))) 149) (($ (-1254 (-406 (-945 (-378))))) 119) (($ (-1254 (-406 (-945 (-561))))) 104)) (-3107 (((-1259) $) 97)) (-4064 (((-856) $) 91) (($ (-638 (-329))) 82) (($ (-329)) 89) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 87) (($ (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))) 83)))
-(((-80 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692))))))) (-1166)) (T -80))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))) (-5 *1 (-80 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 78) (((-3 $ "failed") (-1254 (-315 (-561)))) 67) (((-3 $ "failed") (-1254 (-945 (-378)))) 98) (((-3 $ "failed") (-1254 (-945 (-561)))) 88) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 56) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 43)) (-3979 (($ (-1254 (-315 (-378)))) 74) (($ (-1254 (-315 (-561)))) 63) (($ (-1254 (-945 (-378)))) 94) (($ (-1254 (-945 (-561)))) 84) (($ (-1254 (-406 (-945 (-378))))) 52) (($ (-1254 (-406 (-945 (-561))))) 36)) (-3107 (((-1259) $) 124)) (-4064 (((-856) $) 118) (($ (-638 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 113) (($ (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))) 35)))
-(((-81 |#1|) (-13 (-439) (-611 (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692))))) (-1166)) (T -81))
-NIL
-(-13 (-439) (-611 (-1254 (-338 (-4078) (-4078 (QUOTE X)) (-692)))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 95) (((-3 $ "failed") (-1254 (-315 (-561)))) 84) (((-3 $ "failed") (-1254 (-945 (-378)))) 115) (((-3 $ "failed") (-1254 (-945 (-561)))) 105) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 73) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 60)) (-3979 (($ (-1254 (-315 (-378)))) 91) (($ (-1254 (-315 (-561)))) 80) (($ (-1254 (-945 (-378)))) 111) (($ (-1254 (-945 (-561)))) 101) (($ (-1254 (-406 (-945 (-378))))) 69) (($ (-1254 (-406 (-945 (-561))))) 53)) (-3107 (((-1259) $) 45)) (-4064 (((-856) $) 39) (($ (-638 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 35) (($ (-1254 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692)))) 30)))
-(((-82 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692))))))) (-1166)) (T -82))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692)))) (-5 *1 (-82 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692)))))))
-((-4061 (((-3 $ "failed") (-682 (-315 (-378)))) 115) (((-3 $ "failed") (-682 (-315 (-561)))) 104) (((-3 $ "failed") (-682 (-945 (-378)))) 137) (((-3 $ "failed") (-682 (-945 (-561)))) 126) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 93) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 80)) (-3979 (($ (-682 (-315 (-378)))) 111) (($ (-682 (-315 (-561)))) 100) (($ (-682 (-945 (-378)))) 133) (($ (-682 (-945 (-561)))) 122) (($ (-682 (-406 (-945 (-378))))) 89) (($ (-682 (-406 (-945 (-561))))) 73)) (-3107 (((-1259) $) 63)) (-4064 (((-856) $) 50) (($ (-638 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 55) (($ (-682 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692)))) 47)))
-(((-83 |#1|) (-13 (-383) (-10 -8 (-15 -4064 ($ (-682 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692))))))) (-1166)) (T -83))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692)))) (-5 *1 (-83 *3)) (-14 *3 (-1166)))))
-(-13 (-383) (-10 -8 (-15 -4064 ($ (-682 (-338 (-4078 (QUOTE X) (QUOTE -3223)) (-4078) (-692)))))))
-((-4061 (((-3 $ "failed") (-682 (-315 (-378)))) 112) (((-3 $ "failed") (-682 (-315 (-561)))) 100) (((-3 $ "failed") (-682 (-945 (-378)))) 134) (((-3 $ "failed") (-682 (-945 (-561)))) 123) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 88) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 74)) (-3979 (($ (-682 (-315 (-378)))) 108) (($ (-682 (-315 (-561)))) 96) (($ (-682 (-945 (-378)))) 130) (($ (-682 (-945 (-561)))) 119) (($ (-682 (-406 (-945 (-378))))) 84) (($ (-682 (-406 (-945 (-561))))) 67)) (-3107 (((-1259) $) 59)) (-4064 (((-856) $) 53) (($ (-638 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 44) (($ (-682 (-338 (-4078 (QUOTE X)) (-4078) (-692)))) 45)))
-(((-84 |#1|) (-13 (-383) (-10 -8 (-15 -4064 ($ (-682 (-338 (-4078 (QUOTE X)) (-4078) (-692))))))) (-1166)) (T -84))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-4078 (QUOTE X)) (-4078) (-692)))) (-5 *1 (-84 *3)) (-14 *3 (-1166)))))
-(-13 (-383) (-10 -8 (-15 -4064 ($ (-682 (-338 (-4078 (QUOTE X)) (-4078) (-692)))))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 104) (((-3 $ "failed") (-1254 (-315 (-561)))) 93) (((-3 $ "failed") (-1254 (-945 (-378)))) 124) (((-3 $ "failed") (-1254 (-945 (-561)))) 114) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 82) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 69)) (-3979 (($ (-1254 (-315 (-378)))) 100) (($ (-1254 (-315 (-561)))) 89) (($ (-1254 (-945 (-378)))) 120) (($ (-1254 (-945 (-561)))) 110) (($ (-1254 (-406 (-945 (-378))))) 78) (($ (-1254 (-406 (-945 (-561))))) 62)) (-3107 (((-1259) $) 46)) (-4064 (((-856) $) 40) (($ (-638 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 52) (($ (-1254 (-338 (-4078 (QUOTE X)) (-4078) (-692)))) 37)))
-(((-85 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X)) (-4078) (-692))))))) (-1166)) (T -85))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078 (QUOTE X)) (-4078) (-692)))) (-5 *1 (-85 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X)) (-4078) (-692)))))))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 79) (((-3 $ "failed") (-1254 (-315 (-561)))) 68) (((-3 $ "failed") (-1254 (-945 (-378)))) 99) (((-3 $ "failed") (-1254 (-945 (-561)))) 89) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 57) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 44)) (-3979 (($ (-1254 (-315 (-378)))) 75) (($ (-1254 (-315 (-561)))) 64) (($ (-1254 (-945 (-378)))) 95) (($ (-1254 (-945 (-561)))) 85) (($ (-1254 (-406 (-945 (-378))))) 53) (($ (-1254 (-406 (-945 (-561))))) 37)) (-3107 (((-1259) $) 125)) (-4064 (((-856) $) 119) (($ (-638 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 114) (($ (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692)))) 36)))
-(((-86 |#1|) (-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692))))))) (-1166)) (T -86))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692)))) (-5 *1 (-86 *3)) (-14 *3 (-1166)))))
-(-13 (-439) (-10 -8 (-15 -4064 ($ (-1254 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692)))))))
-((-4061 (((-3 $ "failed") (-682 (-315 (-378)))) 113) (((-3 $ "failed") (-682 (-315 (-561)))) 101) (((-3 $ "failed") (-682 (-945 (-378)))) 135) (((-3 $ "failed") (-682 (-945 (-561)))) 124) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 89) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 75)) (-3979 (($ (-682 (-315 (-378)))) 109) (($ (-682 (-315 (-561)))) 97) (($ (-682 (-945 (-378)))) 131) (($ (-682 (-945 (-561)))) 120) (($ (-682 (-406 (-945 (-378))))) 85) (($ (-682 (-406 (-945 (-561))))) 68)) (-3107 (((-1259) $) 59)) (-4064 (((-856) $) 53) (($ (-638 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 48) (($ (-682 (-338 (-4078 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4078) (-692)))) 44)))
-(((-87 |#1|) (-13 (-383) (-10 -8 (-15 -4064 ($ (-682 (-338 (-4078 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4078) (-692))))))) (-1166)) (T -87))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-4078 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4078) (-692)))) (-5 *1 (-87 *3)) (-14 *3 (-1166)))))
-(-13 (-383) (-10 -8 (-15 -4064 ($ (-682 (-338 (-4078 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4078) (-692)))))))
-((-3107 (((-1259) $) 44)) (-4064 (((-856) $) 38) (($ (-1254 (-692))) 93) (($ (-638 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 33)))
-(((-88 |#1|) (-438) (-1166)) (T -88))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 125) (((-3 $ #1#) (-1253 (-313 (-544)))) 115) (((-3 $ #1#) (-1253 (-939 (-377)))) 145) (((-3 $ #1#) (-1253 (-939 (-544)))) 135) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 105) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 93)) (-3557 (($ (-1253 (-313 (-377)))) 121) (($ (-1253 (-313 (-544)))) 111) (($ (-1253 (-939 (-377)))) 141) (($ (-1253 (-939 (-544)))) 131) (($ (-1253 (-406 (-939 (-377))))) 101) (($ (-1253 (-406 (-939 (-544))))) 86)) (-3784 (((-1259) $) 78)) (-4353 (((-857) $) 27) (($ (-635 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 71) (($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) 65)))
+(((-74 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))))) (-1166)) (T -74))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) (-5 *1 (-74 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-313 (-377))) 46) (((-3 $ #1#) (-313 (-544))) 51) (((-3 $ #1#) (-939 (-377))) 55) (((-3 $ #1#) (-939 (-544))) 59) (((-3 $ #1#) (-406 (-939 (-377)))) 41) (((-3 $ #1#) (-406 (-939 (-544)))) 34)) (-3557 (($ (-313 (-377))) 44) (($ (-313 (-544))) 49) (($ (-939 (-377))) 53) (($ (-939 (-544))) 57) (($ (-406 (-939 (-377)))) 39) (($ (-406 (-939 (-544)))) 31)) (-3784 (((-1259) $) 80)) (-4353 (((-857) $) 74) (($ (-635 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 69) (($ (-338 (-3929) (-3929 (QUOTE X)) (-692))) 30)))
+(((-75 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692)))))) (-1166)) (T -75))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929) (-3929 (QUOTE X)) (-692))) (-5 *1 (-75 *3)) (-14 *3 (-1166)))))
+(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 130) (((-3 $ #1#) (-1253 (-313 (-544)))) 119) (((-3 $ #1#) (-1253 (-939 (-377)))) 150) (((-3 $ #1#) (-1253 (-939 (-544)))) 140) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 108) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 95)) (-3557 (($ (-1253 (-313 (-377)))) 126) (($ (-1253 (-313 (-544)))) 115) (($ (-1253 (-939 (-377)))) 146) (($ (-1253 (-939 (-544)))) 136) (($ (-1253 (-406 (-939 (-377))))) 104) (($ (-1253 (-406 (-939 (-544))))) 88)) (-3784 (((-1259) $) 79)) (-4353 (((-857) $) 71) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) NIL) (($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692)))) 66)))
+(((-76 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692))))))) (-1166) (-1166) (-1166)) (T -76))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 134) (((-3 $ #1#) (-1253 (-313 (-544)))) 123) (((-3 $ #1#) (-1253 (-939 (-377)))) 154) (((-3 $ #1#) (-1253 (-939 (-544)))) 144) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 112) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 99)) (-3557 (($ (-1253 (-313 (-377)))) 130) (($ (-1253 (-313 (-544)))) 119) (($ (-1253 (-939 (-377)))) 150) (($ (-1253 (-939 (-544)))) 140) (($ (-1253 (-406 (-939 (-377))))) 108) (($ (-1253 (-406 (-939 (-544))))) 92)) (-3784 (((-1259) $) 83)) (-4353 (((-857) $) 75) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) NIL) (($ (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692)))) 70)))
+(((-77 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692))))))) (-1166) (-1166) (-1166)) (T -77))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-313 (-377))) 82) (((-3 $ #1#) (-313 (-544))) 87) (((-3 $ #1#) (-939 (-377))) 91) (((-3 $ #1#) (-939 (-544))) 95) (((-3 $ #1#) (-406 (-939 (-377)))) 77) (((-3 $ #1#) (-406 (-939 (-544)))) 70)) (-3557 (($ (-313 (-377))) 80) (($ (-313 (-544))) 85) (($ (-939 (-377))) 89) (($ (-939 (-544))) 93) (($ (-406 (-939 (-377)))) 75) (($ (-406 (-939 (-544)))) 67)) (-3784 (((-1259) $) 62)) (-4353 (((-857) $) 50) (($ (-635 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 54) (($ (-338 (-3929) (-3929 (QUOTE X)) (-692))) 47)))
+(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692)))))) (-1166)) (T -78))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929) (-3929 (QUOTE X)) (-692))) (-5 *1 (-78 *3)) (-14 *3 (-1166)))))
+(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 89) (((-3 $ #1#) (-1253 (-313 (-544)))) 78) (((-3 $ #1#) (-1253 (-939 (-377)))) 109) (((-3 $ #1#) (-1253 (-939 (-544)))) 99) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 67) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 54)) (-3557 (($ (-1253 (-313 (-377)))) 85) (($ (-1253 (-313 (-544)))) 74) (($ (-1253 (-939 (-377)))) 105) (($ (-1253 (-939 (-544)))) 95) (($ (-1253 (-406 (-939 (-377))))) 63) (($ (-1253 (-406 (-939 (-544))))) 47)) (-3784 (((-1259) $) 125)) (-4353 (((-857) $) 119) (($ (-635 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 115) (($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) 38)))
+(((-79 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692))))))) (-1166)) (T -79))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) (-5 *1 (-79 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 143) (((-3 $ #1#) (-1253 (-313 (-544)))) 133) (((-3 $ #1#) (-1253 (-939 (-377)))) 163) (((-3 $ #1#) (-1253 (-939 (-544)))) 153) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 123) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 111)) (-3557 (($ (-1253 (-313 (-377)))) 139) (($ (-1253 (-313 (-544)))) 129) (($ (-1253 (-939 (-377)))) 159) (($ (-1253 (-939 (-544)))) 149) (($ (-1253 (-406 (-939 (-377))))) 119) (($ (-1253 (-406 (-939 (-544))))) 104)) (-3784 (((-1259) $) 97)) (-4353 (((-857) $) 91) (($ (-635 (-329))) 82) (($ (-329)) 89) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 87) (($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) 83)))
+(((-80 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))))) (-1166)) (T -80))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) (-5 *1 (-80 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 78) (((-3 $ #1#) (-1253 (-313 (-544)))) 67) (((-3 $ #1#) (-1253 (-939 (-377)))) 98) (((-3 $ #1#) (-1253 (-939 (-544)))) 88) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 56) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 43)) (-3557 (($ (-1253 (-313 (-377)))) 74) (($ (-1253 (-313 (-544)))) 63) (($ (-1253 (-939 (-377)))) 94) (($ (-1253 (-939 (-544)))) 84) (($ (-1253 (-406 (-939 (-377))))) 52) (($ (-1253 (-406 (-939 (-544))))) 36)) (-3784 (((-1259) $) 124)) (-4353 (((-857) $) 118) (($ (-635 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 113) (($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) 35)))
+(((-81 |#1|) (-13 (-439) (-611 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))) (-1166)) (T -81))
+NIL
+(-13 (-439) (-611 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 79) (((-3 $ #1#) (-1253 (-313 (-544)))) 68) (((-3 $ #1#) (-1253 (-939 (-377)))) 99) (((-3 $ #1#) (-1253 (-939 (-544)))) 89) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 57) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 44)) (-3557 (($ (-1253 (-313 (-377)))) 75) (($ (-1253 (-313 (-544)))) 64) (($ (-1253 (-939 (-377)))) 95) (($ (-1253 (-939 (-544)))) 85) (($ (-1253 (-406 (-939 (-377))))) 53) (($ (-1253 (-406 (-939 (-544))))) 37)) (-3784 (((-1259) $) 125)) (-4353 (((-857) $) 119) (($ (-635 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 114) (($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) 36)))
+(((-82 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))))))) (-1166)) (T -82))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) (-5 *1 (-82 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 95) (((-3 $ #1#) (-1253 (-313 (-544)))) 84) (((-3 $ #1#) (-1253 (-939 (-377)))) 115) (((-3 $ #1#) (-1253 (-939 (-544)))) 105) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 73) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 60)) (-3557 (($ (-1253 (-313 (-377)))) 91) (($ (-1253 (-313 (-544)))) 80) (($ (-1253 (-939 (-377)))) 111) (($ (-1253 (-939 (-544)))) 101) (($ (-1253 (-406 (-939 (-377))))) 69) (($ (-1253 (-406 (-939 (-544))))) 53)) (-3784 (((-1259) $) 45)) (-4353 (((-857) $) 39) (($ (-635 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 35) (($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) 30)))
+(((-83 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692))))))) (-1166)) (T -83))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) (-5 *1 (-83 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 115) (((-3 $ #1#) (-682 (-313 (-544)))) 104) (((-3 $ #1#) (-682 (-939 (-377)))) 137) (((-3 $ #1#) (-682 (-939 (-544)))) 126) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 93) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 80)) (-3557 (($ (-682 (-313 (-377)))) 111) (($ (-682 (-313 (-544)))) 100) (($ (-682 (-939 (-377)))) 133) (($ (-682 (-939 (-544)))) 122) (($ (-682 (-406 (-939 (-377))))) 89) (($ (-682 (-406 (-939 (-544))))) 73)) (-3784 (((-1259) $) 63)) (-4353 (((-857) $) 50) (($ (-635 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 55) (($ (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) 47)))
+(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692))))))) (-1166)) (T -84))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) (-5 *1 (-84 *3)) (-14 *3 (-1166)))))
+(-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 112) (((-3 $ #1#) (-682 (-313 (-544)))) 100) (((-3 $ #1#) (-682 (-939 (-377)))) 134) (((-3 $ #1#) (-682 (-939 (-544)))) 123) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 88) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 74)) (-3557 (($ (-682 (-313 (-377)))) 108) (($ (-682 (-313 (-544)))) 96) (($ (-682 (-939 (-377)))) 130) (($ (-682 (-939 (-544)))) 119) (($ (-682 (-406 (-939 (-377))))) 84) (($ (-682 (-406 (-939 (-544))))) 67)) (-3784 (((-1259) $) 59)) (-4353 (((-857) $) 53) (($ (-635 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 44) (($ (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) 45)))
+(((-85 |#1|) (-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692))))))) (-1166)) (T -85))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) (-5 *1 (-85 *3)) (-14 *3 (-1166)))))
+(-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 104) (((-3 $ #1#) (-1253 (-313 (-544)))) 93) (((-3 $ #1#) (-1253 (-939 (-377)))) 124) (((-3 $ #1#) (-1253 (-939 (-544)))) 114) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 82) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 69)) (-3557 (($ (-1253 (-313 (-377)))) 100) (($ (-1253 (-313 (-544)))) 89) (($ (-1253 (-939 (-377)))) 120) (($ (-1253 (-939 (-544)))) 110) (($ (-1253 (-406 (-939 (-377))))) 78) (($ (-1253 (-406 (-939 (-544))))) 62)) (-3784 (((-1259) $) 46)) (-4353 (((-857) $) 40) (($ (-635 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 52) (($ (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) 37)))
+(((-86 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692))))))) (-1166)) (T -86))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) (-5 *1 (-86 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692)))))))
+((-3784 (((-1259) $) 44)) (-4353 (((-857) $) 38) (($ (-1253 (-692))) 93) (($ (-635 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 33)))
+(((-87 |#1|) (-438) (-1166)) (T -87))
NIL
(-438)
-((-4061 (((-3 $ "failed") (-315 (-378))) 47) (((-3 $ "failed") (-315 (-561))) 52) (((-3 $ "failed") (-945 (-378))) 56) (((-3 $ "failed") (-945 (-561))) 60) (((-3 $ "failed") (-406 (-945 (-378)))) 42) (((-3 $ "failed") (-406 (-945 (-561)))) 35)) (-3979 (($ (-315 (-378))) 45) (($ (-315 (-561))) 50) (($ (-945 (-378))) 54) (($ (-945 (-561))) 58) (($ (-406 (-945 (-378)))) 40) (($ (-406 (-945 (-561)))) 32)) (-3107 (((-1259) $) 90)) (-4064 (((-856) $) 84) (($ (-638 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 76) (($ (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692))) 31)))
-(((-89 |#1|) (-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692)))))) (-1166)) (T -89))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692))) (-5 *1 (-89 *3)) (-14 *3 (-1166)))))
-(-13 (-395) (-10 -8 (-15 -4064 ($ (-338 (-4078 (QUOTE X)) (-4078 (QUOTE -3223)) (-692))))))
-((-3544 (((-1254 (-682 |#1|)) (-682 |#1|)) 54)) (-2810 (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 (-638 (-914))))) |#2| (-914)) 44)) (-3518 (((-2 (|:| |minor| (-638 (-914))) (|:| -3394 |#2|) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 |#2|))) |#2| (-914)) 65 (|has| |#1| (-362)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -2810 ((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 (-638 (-914))))) |#2| (-914))) (-15 -3544 ((-1254 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -3518 ((-2 (|:| |minor| (-638 (-914))) (|:| -3394 |#2|) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 |#2|))) |#2| (-914))) |%noBranch|)) (-553) (-649 |#1|)) (T -90))
-((-3518 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |minor| (-638 (-914))) (|:| -3394 *3) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))) (-3544 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-1254 (-682 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-682 *4)) (-4 *5 (-649 *4)))) (-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-553)) (-5 *2 (-2 (|:| -2942 (-682 *5)) (|:| |vec| (-1254 (-638 (-914)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))))
-(-10 -7 (-15 -2810 ((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 (-638 (-914))))) |#2| (-914))) (-15 -3544 ((-1254 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -3518 ((-2 (|:| |minor| (-638 (-914))) (|:| -3394 |#2|) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 |#2|))) |#2| (-914))) |%noBranch|))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2765 ((|#1| $) 35)) (-2684 (((-112) $ (-765)) NIL)) (-2674 (($) NIL T CONST)) (-3802 ((|#1| |#1| $) 30)) (-2217 ((|#1| $) 28)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3721 ((|#1| $) NIL)) (-1617 (($ |#1| $) 31)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1387 ((|#1| $) 29)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 16)) (-2910 (($) 39)) (-1433 (((-765) $) 26)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 15)) (-4064 (((-856) $) 25 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) NIL)) (-4075 (($ (-638 |#1|)) 37)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 13 (|has| |#1| (-1090)))) (-3548 (((-765) $) 10 (|has| $ (-6 -4399)))))
-(((-91 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -4075 ($ (-638 |#1|))))) (-1090)) (T -91))
-((-4075 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-91 *3)))))
-(-13 (-1111 |#1|) (-10 -8 (-15 -4075 ($ (-638 |#1|)))))
-((-4064 (((-856) $) 13) (($ (-1171)) 9) (((-1171) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -4064 ((-1171) |#1|)) (-15 -4064 (|#1| (-1171))) (-15 -4064 ((-856) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -4064 ((-1171) |#1|)) (-15 -4064 (|#1| (-1171))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-1723 (((-112) $ $) 6)))
+((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 113) (((-3 $ #1#) (-682 (-313 (-544)))) 101) (((-3 $ #1#) (-682 (-939 (-377)))) 135) (((-3 $ #1#) (-682 (-939 (-544)))) 124) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 89) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 75)) (-3557 (($ (-682 (-313 (-377)))) 109) (($ (-682 (-313 (-544)))) 97) (($ (-682 (-939 (-377)))) 131) (($ (-682 (-939 (-544)))) 120) (($ (-682 (-406 (-939 (-377))))) 85) (($ (-682 (-406 (-939 (-544))))) 68)) (-3784 (((-1259) $) 59)) (-4353 (((-857) $) 53) (($ (-635 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 48) (($ (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692)))) 44)))
+(((-88 |#1|) (-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692))))))) (-1166)) (T -88))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692)))) (-5 *1 (-88 *3)) (-14 *3 (-1166)))))
+(-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692)))))))
+((-3558 (((-3 $ #1="failed") (-313 (-377))) 47) (((-3 $ #1#) (-313 (-544))) 52) (((-3 $ #1#) (-939 (-377))) 56) (((-3 $ #1#) (-939 (-544))) 60) (((-3 $ #1#) (-406 (-939 (-377)))) 42) (((-3 $ #1#) (-406 (-939 (-544)))) 35)) (-3557 (($ (-313 (-377))) 45) (($ (-313 (-544))) 50) (($ (-939 (-377))) 54) (($ (-939 (-544))) 58) (($ (-406 (-939 (-377)))) 40) (($ (-406 (-939 (-544)))) 32)) (-3784 (((-1259) $) 90)) (-4353 (((-857) $) 84) (($ (-635 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 76) (($ (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))) 31)))
+(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))))) (-1166)) (T -89))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))) (-5 *1 (-89 *3)) (-14 *3 (-1166)))))
+(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))))))
+((-1335 (((-1253 (-682 |#1|)) (-682 |#1|)) 54)) (-1334 (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 (-635 (-912))))) |#2| (-912)) 44)) (-1336 (((-2 (|:| |minor| (-635 (-912))) (|:| -3667 |#2|) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 |#2|))) |#2| (-912)) 65 (|has| |#1| (-362)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -1334 ((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 (-635 (-912))))) |#2| (-912))) (-15 -1335 ((-1253 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -1336 ((-2 (|:| |minor| (-635 (-912))) (|:| -3667 |#2|) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 |#2|))) |#2| (-912))) |%noBranch|)) (-554) (-651 |#1|)) (T -90))
+((-1336 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |minor| (-635 (-912))) (|:| -3667 *3) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5)))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-682 *4)) (-4 *5 (-651 *4)))) (-1334 (*1 *2 *3 *4) (-12 (-4 *5 (-554)) (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 (-635 (-912)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5)))))
+(-10 -7 (-15 -1334 ((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 (-635 (-912))))) |#2| (-912))) (-15 -1335 ((-1253 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -1336 ((-2 (|:| |minor| (-635 (-912))) (|:| -3667 |#2|) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 |#2|))) |#2| (-912))) |%noBranch|))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3728 ((|#1| $) 35)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3730 ((|#1| |#1| $) 30)) (-3729 ((|#1| $) 28)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) NIL)) (-4014 (($ |#1| $) 31)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1357 ((|#1| $) 29)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 39)) (-3727 (((-765) $) 26)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 15)) (-4353 (((-857) $) 25 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) NIL)) (-1337 (($ (-635 |#1|)) 37)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 13 (|has| |#1| (-1091)))) (-4364 (((-765) $) 10 (|has| $ (-6 -4400)))))
+(((-91 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -1337 ($ (-635 |#1|))))) (-1091)) (T -91))
+((-1337 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-91 *3)))))
+(-13 (-1111 |#1|) (-10 -8 (-15 -1337 ($ (-635 |#1|)))))
+((-4353 (((-857) $) 13) (($ (-1171)) 9) (((-1171) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -4353 ((-1171) |#1|)) (-15 -4353 (|#1| (-1171))) (-15 -4353 ((-857) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -4353 ((-1171) |#1|)) (-15 -4353 (|#1| (-1171))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-3437 (((-112) $ $) 6)))
(((-93) (-139)) (T -93))
NIL
-(-13 (-1090) (-488 (-1171)))
-(((-102) . T) ((-611 #0=(-1171)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T))
-((-4192 (($ $) 10)) (-4202 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4192 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1091) (-488 (-1171)))
+(((-102) . T) ((-611 #1=(-1171)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T))
+((-3887 (($ $) 10)) (-3888 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4192 (|#1| |#1|)))
-((-4175 (($ $) 11)) (-4150 (($ $) 10)) (-4192 (($ $) 9)) (-4202 (($ $) 8)) (-4184 (($ $) 7)) (-4162 (($ $) 6)))
+(-10 -8 (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)))
+((-3885 (($ $) 11)) (-3883 (($ $) 10)) (-3887 (($ $) 9)) (-3888 (($ $) 8)) (-3886 (($ $) 7)) (-3884 (($ $) 6)))
(((-95) (-139)) (T -95))
-((-4175 (*1 *1 *1) (-4 *1 (-95))) (-4150 (*1 *1 *1) (-4 *1 (-95))) (-4192 (*1 *1 *1) (-4 *1 (-95))) (-4202 (*1 *1 *1) (-4 *1 (-95))) (-4184 (*1 *1 *1) (-4 *1 (-95))) (-4162 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -4162 ($ $)) (-15 -4184 ($ $)) (-15 -4202 ($ $)) (-15 -4192 ($ $)) (-15 -4150 ($ $)) (-15 -4175 ($ $))))
-((-4053 (((-112) $ $) NIL)) (-3305 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-96) (-13 (-1073) (-10 -8 (-15 -3305 ((-1125) $))))) (T -96))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-96)))))
-(-13 (-1073) (-10 -8 (-15 -3305 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-3087 (((-378) (-1148) (-378)) 42) (((-378) (-1148) (-1148) (-378)) 41)) (-3131 (((-378) (-378)) 33)) (-1580 (((-1259)) 36)) (-1883 (((-1148) $) NIL)) (-2465 (((-378) (-1148) (-1148)) 46) (((-378) (-1148)) 48)) (-1701 (((-1110) $) NIL)) (-3607 (((-378) (-1148) (-1148)) 47)) (-2957 (((-378) (-1148) (-1148)) 49) (((-378) (-1148)) 50)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-97) (-13 (-1090) (-10 -7 (-15 -2465 ((-378) (-1148) (-1148))) (-15 -2465 ((-378) (-1148))) (-15 -2957 ((-378) (-1148) (-1148))) (-15 -2957 ((-378) (-1148))) (-15 -3607 ((-378) (-1148) (-1148))) (-15 -1580 ((-1259))) (-15 -3131 ((-378) (-378))) (-15 -3087 ((-378) (-1148) (-378))) (-15 -3087 ((-378) (-1148) (-1148) (-378))) (-6 -4399)))) (T -97))
-((-2465 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2957 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3607 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1580 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-97)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))) (-3087 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97)))) (-3087 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97)))))
-(-13 (-1090) (-10 -7 (-15 -2465 ((-378) (-1148) (-1148))) (-15 -2465 ((-378) (-1148))) (-15 -2957 ((-378) (-1148) (-1148))) (-15 -2957 ((-378) (-1148))) (-15 -3607 ((-378) (-1148) (-1148))) (-15 -1580 ((-1259))) (-15 -3131 ((-378) (-378))) (-15 -3087 ((-378) (-1148) (-378))) (-15 -3087 ((-378) (-1148) (-1148) (-378))) (-6 -4399)))
+((-3885 (*1 *1 *1) (-4 *1 (-95))) (-3883 (*1 *1 *1) (-4 *1 (-95))) (-3887 (*1 *1 *1) (-4 *1 (-95))) (-3888 (*1 *1 *1) (-4 *1 (-95))) (-3886 (*1 *1 *1) (-4 *1 (-95))) (-3884 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -3884 ($ $)) (-15 -3886 ($ $)) (-15 -3888 ($ $)) (-15 -3887 ($ $)) (-15 -3883 ($ $)) (-15 -3885 ($ $))))
+((-2947 (((-112) $ $) NIL)) (-3949 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-96) (-13 (-1073) (-10 -8 (-15 -3949 ((-1125) $))))) (T -96))
+((-3949 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-96)))))
+(-13 (-1073) (-10 -8 (-15 -3949 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-1338 (((-377) (-1148) (-377)) 42) (((-377) (-1148) (-1148) (-377)) 41)) (-1339 (((-377) (-377)) 33)) (-1340 (((-1259)) 36)) (-3643 (((-1148) $) NIL)) (-1343 (((-377) (-1148) (-1148)) 46) (((-377) (-1148)) 48)) (-3644 (((-1110) $) NIL)) (-1341 (((-377) (-1148) (-1148)) 47)) (-1342 (((-377) (-1148) (-1148)) 49) (((-377) (-1148)) 50)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-97) (-13 (-1091) (-10 -7 (-15 -1343 ((-377) (-1148) (-1148))) (-15 -1343 ((-377) (-1148))) (-15 -1342 ((-377) (-1148) (-1148))) (-15 -1342 ((-377) (-1148))) (-15 -1341 ((-377) (-1148) (-1148))) (-15 -1340 ((-1259))) (-15 -1339 ((-377) (-377))) (-15 -1338 ((-377) (-1148) (-377))) (-15 -1338 ((-377) (-1148) (-1148) (-377))) (-6 -4400)))) (T -97))
+((-1343 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1342 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1341 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1340 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-97)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-97)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97)))) (-1338 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97)))))
+(-13 (-1091) (-10 -7 (-15 -1343 ((-377) (-1148) (-1148))) (-15 -1343 ((-377) (-1148))) (-15 -1342 ((-377) (-1148) (-1148))) (-15 -1342 ((-377) (-1148))) (-15 -1341 ((-377) (-1148) (-1148))) (-15 -1340 ((-1259))) (-15 -1339 ((-377) (-377))) (-15 -1338 ((-377) (-1148) (-377))) (-15 -1338 ((-377) (-1148) (-1148) (-377))) (-6 -4400)))
NIL
(((-98) (-139)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4399) (-6 (-4401 "*")) (-6 -4400) (-6 -4396) (-6 -4394) (-6 -4393) (-6 -4392) (-6 -4397) (-6 -4391) (-6 -4390) (-6 -4389) (-6 -4388) (-6 -4387) (-6 -4395) (-6 -4398) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4386)))
-((-4053 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-4203 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-561))) 22)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 14)) (-1701 (((-1110) $) NIL)) (-2315 ((|#1| $ |#1|) 11)) (-2076 (($ $ $) NIL)) (-3047 (($ $ $) NIL)) (-4064 (((-856) $) 20)) (-2257 (($) 8 T CONST)) (-1723 (((-112) $ $) 10)) (-1828 (($ $ $) NIL)) (** (($ $ (-914)) 27) (($ $ (-765)) NIL) (($ $ (-561)) 16)) (* (($ $ $) 28)))
-(((-99 |#1|) (-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -4203 ($ (-1 |#1| |#1|))) (-15 -4203 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4203 ($ (-1 |#1| |#1| (-561)))))) (-1042)) (T -99))
-((-4203 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-4203 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-99 *3)))))
-(-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -4203 ($ (-1 |#1| |#1|))) (-15 -4203 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4203 ($ (-1 |#1| |#1| (-561))))))
-((-1303 (((-417 |#2|) |#2| (-638 |#2|)) 10) (((-417 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -1303 ((-417 |#2|) |#2| |#2|)) (-15 -1303 ((-417 |#2|) |#2| (-638 |#2|)))) (-13 (-450) (-146)) (-1230 |#1|)) (T -100))
-((-1303 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-1303 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -1303 ((-417 |#2|) |#2| |#2|)) (-15 -1303 ((-417 |#2|) |#2| (-638 |#2|))))
-((-4053 (((-112) $ $) 9)))
-(((-101 |#1|) (-10 -8 (-15 -4053 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -4053 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-1723 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4400) (-6 (-4402 "*")) (-6 -4401) (-6 -4397) (-6 -4395) (-6 -4394) (-6 -4393) (-6 -4398) (-6 -4392) (-6 -4391) (-6 -4390) (-6 -4389) (-6 -4388) (-6 -4396) (-6 -4399) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4387)))
+((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-1344 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-544))) 22)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 14)) (-3644 (((-1110) $) NIL)) (-4206 ((|#1| $ |#1|) 11)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 20)) (-3046 (($) 8 T CONST)) (-3437 (((-112) $ $) 10)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) 27) (($ $ (-765)) NIL) (($ $ (-544)) 16)) (* (($ $ $) 28)))
+(((-99 |#1|) (-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -1344 ($ (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1| (-544)))))) (-1042)) (T -99))
+((-1344 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-1344 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-99 *3)))))
+(-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -1344 ($ (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1| (-544))))))
+((-1345 (((-404 |#2|) |#2| (-635 |#2|)) 10) (((-404 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -1345 ((-404 |#2|) |#2| |#2|)) (-15 -1345 ((-404 |#2|) |#2| (-635 |#2|)))) (-13 (-450) (-146)) (-1229 |#1|)) (T -100))
+((-1345 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-13 (-450) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-100 *5 *3)))) (-1345 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -1345 ((-404 |#2|) |#2| |#2|)) (-15 -1345 ((-404 |#2|) |#2| (-635 |#2|))))
+((-2947 (((-112) $ $) 9)))
+(((-101 |#1|) (-10 -8 (-15 -2947 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2947 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3437 (((-112) $ $) 6)))
(((-102) (-139)) (T -102))
-((-4053 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1723 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -1723 ((-112) $ $)) (-15 -4053 ((-112) $ $))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) 13 (|has| $ (-6 -4400)))) (-2741 (($ $ $) NIL (|has| $ (-6 -4400)))) (-1555 (($ $ $) NIL (|has| $ (-6 -4400)))) (-2931 (($ $ (-638 |#1|)) 15)) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) (($ $ "left" $) NIL (|has| $ (-6 -4400))) (($ $ "right" $) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-1599 (($ $) 11)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3587 (($ $ |#1| $) 17)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2024 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3799 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-638 |#1|) |#1| |#1| |#1|)) 35)) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1586 (($ $) 10)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) 12)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 9)) (-2910 (($) 16)) (-2315 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4293 (((-561) $ $) NIL)) (-1650 (((-112) $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-4368 (($ (-765) |#1|) 19)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4399) (-6 -4400) (-15 -4368 ($ (-765) |#1|)) (-15 -2931 ($ $ (-638 |#1|))) (-15 -2024 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2024 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3799 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3799 ($ $ |#1| (-1 (-638 |#1|) |#1| |#1| |#1|))))) (-1090)) (T -103))
-((-4368 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1090)))) (-2931 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3)))) (-2024 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1090)))) (-2024 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3)))) (-3799 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-103 *2)))) (-3799 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-638 *2) *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4399) (-6 -4400) (-15 -4368 ($ (-765) |#1|)) (-15 -2931 ($ $ (-638 |#1|))) (-15 -2024 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2024 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3799 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3799 ($ $ |#1| (-1 (-638 |#1|) |#1| |#1| |#1|)))))
-((-1749 ((|#3| |#2| |#2|) 28)) (-3562 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4401 "*"))))) (-3678 ((|#3| |#2| |#2|) 29)) (-2608 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4401 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1749 (|#3| |#2| |#2|)) (-15 -3678 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4401 "*"))) (PROGN (-15 -3562 (|#1| |#2| |#2|)) (-15 -2608 (|#1| |#2|))) |%noBranch|)) (-1042) (-1230 |#1|) (-680 |#1| |#4| |#5|) (-372 |#1|) (-372 |#1|)) (T -104))
-((-2608 (*1 *2 *3) (-12 (|has| *2 (-6 (-4401 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1230 *2)) (-4 *4 (-680 *2 *5 *6)))) (-3562 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4401 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1230 *2)) (-4 *4 (-680 *2 *5 *6)))) (-3678 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1230 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))) (-1749 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1230 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))))
-(-10 -7 (-15 -1749 (|#3| |#2| |#2|)) (-15 -3678 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4401 "*"))) (PROGN (-15 -3562 (|#1| |#2| |#2|)) (-15 -2608 (|#1| |#2|))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-3275 (((-638 (-1166))) 33)) (-4086 (((-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224)))) (-1166)) 35)) (-1723 (((-112) $ $) NIL)))
-(((-105) (-13 (-1090) (-10 -7 (-15 -3275 ((-638 (-1166)))) (-15 -4086 ((-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224)))) (-1166))) (-6 -4399)))) (T -105))
-((-3275 (*1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-105)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224))))) (-5 *1 (-105)))))
-(-13 (-1090) (-10 -7 (-15 -3275 ((-638 (-1166)))) (-15 -4086 ((-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224)))) (-1166))) (-6 -4399)))
-((-1903 (($ (-638 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -1903 (|#1| (-638 |#2|)))) (-107 |#2|) (-1205)) (T -106))
-NIL
-(-10 -8 (-15 -1903 (|#1| (-638 |#2|))))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-2674 (($) 7 T CONST)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-107 |#1|) (-139) (-1205)) (T -107))
-((-1903 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-107 *3)))) (-1387 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))) (-1617 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))))
-(-13 (-487 |t#1|) (-10 -8 (-6 -4400) (-15 -1903 ($ (-638 |t#1|))) (-15 -1387 (|t#1| $)) (-15 -1617 ($ |t#1| $)) (-15 -3721 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 (((-561) $) NIL (|has| (-561) (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| (-561) (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-561) (-1031 (-561))))) (-3979 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-561) (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| (-561) (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 (((-561) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-3271 (((-112) $) NIL (|has| (-561) (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-561) (-844)))) (-4165 (($ (-1 (-561) (-561)) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-561) (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) NIL)) (-4020 (((-561) $) NIL (|has| (-561) (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-1905 (((-765) $) NIL)) (-2315 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1969 (($ $) NIL)) (-4088 (((-561) $) NIL)) (-4216 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 8) (($ (-561)) NIL) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL) (((-997 2) $) 10)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-3746 (((-765)) NIL)) (-2449 (((-561) $) NIL (|has| (-561) (-543)))) (-2531 (($ (-406 (-561))) 9)) (-3996 (((-112) $ $) NIL)) (-2165 (($ $) NIL (|has| (-561) (-814)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1828 (($ $ $) NIL) (($ (-561) (-561)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL)))
-(((-108) (-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 2)) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -2531 ($ (-406 (-561))))))) (T -108))
-((-2569 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108)))))
-(-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 2)) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -2531 ($ (-406 (-561))))))
-((-3836 (((-638 (-958)) $) 14)) (-3305 (((-1166) $) 10)) (-4064 (((-856) $) 23)) (-4023 (($ (-1166) (-638 (-958))) 15)))
-(((-109) (-13 (-608 (-856)) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -3836 ((-638 (-958)) $)) (-15 -4023 ($ (-1166) (-638 (-958))))))) (T -109))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-109)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-638 (-958))) (-5 *1 (-109)))) (-4023 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-109)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -3836 ((-638 (-958)) $)) (-15 -4023 ($ (-1166) (-638 (-958))))))
-((-4053 (((-112) $ $) NIL)) (-3344 (($ $) NIL)) (-2222 (($ $ $) NIL)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1680 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-1318 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-4207 (((-112) $ (-1221 (-561)) (-112)) NIL (|has| $ (-6 -4400))) (((-112) $ (-561) (-112)) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-1475 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-3176 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-2041 (((-112) $ (-561) (-112)) NIL (|has| $ (-6 -4400)))) (-1975 (((-112) $ (-561)) NIL)) (-4266 (((-561) (-112) $ (-561)) NIL (|has| (-112) (-1090))) (((-561) (-112) $) NIL (|has| (-112) (-1090))) (((-561) (-1 (-112) (-112)) $) NIL)) (-2368 (((-638 (-112)) $) NIL (|has| $ (-6 -4399)))) (-2208 (($ $ $) NIL)) (-2186 (($ $) NIL)) (-3096 (($ $ $) NIL)) (-1458 (($ (-765) (-112)) 8)) (-2767 (($ $ $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4125 (((-638 (-112)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL)) (-2029 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-3350 (($ $ $ (-561)) NIL) (($ (-112) $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-112) $) NIL (|has| (-561) (-844)))) (-3202 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3193 (($ $ (-112)) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-112)) (-638 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-638 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-2411 (((-638 (-112)) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 (($ $ (-1221 (-561))) NIL) (((-112) $ (-561)) NIL) (((-112) $ (-561) (-112)) NIL)) (-2883 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-1714 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-112) (-609 (-534))))) (-4078 (($ (-638 (-112))) NIL)) (-2754 (($ (-638 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4064 (((-856) $) NIL)) (-2860 (($ (-765) (-112)) 9)) (-3715 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-2198 (($ $ $) NIL)) (-2273 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-2261 (($ $ $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -2860 ($ (-765) (-112)))))) (T -110))
-((-2860 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -2860 ($ (-765) (-112)))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+((-2947 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3437 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -3437 ((-112) $ $)) (-15 -2947 ((-112) $ $))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) 13 (|has| $ (-6 -4401)))) (-1375 (($ $ $) NIL (|has| $ (-6 -4401)))) (-1376 (($ $ $) NIL (|has| $ (-6 -4401)))) (-1348 (($ $ (-635 |#1|)) 15)) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 11)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 17)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1347 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1346 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|)) 35)) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 10)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) 12)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 9)) (-3972 (($) 16)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1349 (($ (-765) |#1|) 19)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -1349 ($ (-765) |#1|)) (-15 -1348 ($ $ (-635 |#1|))) (-15 -1347 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1347 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|))))) (-1091)) (T -103))
+((-1349 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1091)))) (-1348 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3)))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1091)))) (-1347 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3)))) (-1346 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2)))) (-1346 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -1349 ($ (-765) |#1|)) (-15 -1348 ($ $ (-635 |#1|))) (-15 -1347 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1347 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|)))))
+((-1350 ((|#3| |#2| |#2|) 28)) (-1352 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4402 #1="*"))))) (-1351 ((|#3| |#2| |#2|) 29)) (-1353 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4402 #1#))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1350 (|#3| |#2| |#2|)) (-15 -1351 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4402 "*"))) (PROGN (-15 -1352 (|#1| |#2| |#2|)) (-15 -1353 (|#1| |#2|))) |%noBranch|)) (-1042) (-1229 |#1|) (-679 |#1| |#4| |#5|) (-371 |#1|) (-371 |#1|)) (T -104))
+((-1353 (*1 *2 *3) (-12 (|has| *2 (-6 (-4402 #1="*"))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) (-4 *4 (-679 *2 *5 *6)))) (-1352 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4402 #1#))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) (-4 *4 (-679 *2 *5 *6)))) (-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)))) (-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)))))
+(-10 -7 (-15 -1350 (|#3| |#2| |#2|)) (-15 -1351 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4402 "*"))) (PROGN (-15 -1352 (|#1| |#2| |#2|)) (-15 -1353 (|#1| |#2|))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-1355 (((-635 (-1166))) 33)) (-1354 (((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1166)) 35)) (-3437 (((-112) $ $) NIL)))
+(((-105) (-13 (-1091) (-10 -7 (-15 -1355 ((-635 (-1166)))) (-15 -1354 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1166))) (-6 -4400)))) (T -105))
+((-1355 (*1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-105)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224))))) (-5 *1 (-105)))))
+(-13 (-1091) (-10 -7 (-15 -1355 ((-635 (-1166)))) (-15 -1354 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1166))) (-6 -4400)))
+((-1358 (($ (-635 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -1358 (|#1| (-635 |#2|)))) (-107 |#2|) (-1204)) (T -106))
+NIL
+(-10 -8 (-15 -1358 (|#1| (-635 |#2|))))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-107 |#1|) (-139) (-1204)) (T -107))
+((-1358 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-107 *3)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))) (-4014 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))))
+(-13 (-487 |t#1|) (-10 -8 (-6 -4401) (-15 -1358 ($ (-635 |t#1|))) (-15 -1357 (|t#1| $)) (-15 -4014 ($ |t#1| $)) (-15 -1356 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-544) $) NIL (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) NIL)) (-3515 (((-544) $) NIL (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 8) (($ (-544)) NIL) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL) (((-997 2) $) 10)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-544) $) NIL (|has| (-544) (-543)))) (-2179 (($ (-406 (-544))) 9)) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-544) (-844)))) (-4356 (($ $ $) NIL) (($ (-544) (-544)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL)))
+(((-108) (-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 2)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2179 ($ (-406 (-544))))))) (T -108))
+((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108)))))
+(-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 2)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2179 ($ (-406 (-544))))))
+((-1370 (((-635 (-958)) $) 14)) (-3949 (((-1166) $) 10)) (-4353 (((-857) $) 23)) (-1359 (($ (-1166) (-635 (-958))) 15)))
+(((-109) (-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-635 (-958)) $)) (-15 -1359 ($ (-1166) (-635 (-958))))))) (T -109))
+((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-109)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-635 (-958))) (-5 *1 (-109)))) (-1359 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-109)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-635 (-958)) $)) (-15 -1359 ($ (-1166) (-635 (-958))))))
+((-2947 (((-112) $ $) NIL)) (-2430 (($ $) NIL)) (-3725 (($ $ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-112) $ (-1220 (-544)) (-112)) NIL (|has| $ (-6 -4401))) (((-112) $ (-544) (-112)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-3810 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-4249 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-1665 (((-112) $ (-544) (-112)) NIL (|has| $ (-6 -4401)))) (-3498 (((-112) $ (-544)) NIL)) (-3823 (((-544) (-112) $ (-544)) NIL (|has| (-112) (-1091))) (((-544) (-112) $) NIL (|has| (-112) (-1091))) (((-544) (-1 (-112) (-112)) $) NIL)) (-2096 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3239 (($ $ $) NIL)) (-3726 (($ $) NIL)) (-1382 (($ $ $) NIL)) (-4021 (($ (-765) (-112)) 8)) (-1383 (($ $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL)) (-3917 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2554 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL)) (-2100 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ (-112) $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-112) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2345 (($ $ (-112)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-292 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-635 (-292 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2351 (((-635 (-112)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (($ $ (-1220 (-544))) NIL) (((-112) $ (-544)) NIL) (((-112) $ (-544) (-112)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2097 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-112) (-609 (-533))))) (-3929 (($ (-635 (-112))) NIL)) (-4208 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4353 (((-857) $) NIL)) (-1918 (($ (-765) (-112)) 9)) (-2099 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-3240 (($ $ $) NIL)) (-2428 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-2429 (($ $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -1918 ($ (-765) (-112)))))) (T -110))
+((-1918 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -1918 ($ (-765) (-112)))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
(((-111 |#1| |#2|) (-139) (-1042) (-1042)) (T -111))
NIL
-(-13 (-641 |t#1|) (-1048 |t#2|) (-10 -7 (-6 -4394) (-6 -4393)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-1048 |#2|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-3344 (($ $) 10)) (-2222 (($ $ $) 15)) (-2785 (($) 7 T CONST)) (-2099 (($ $) 6)) (-1386 (((-765)) 24)) (-1362 (($) 30)) (-2208 (($ $ $) 13)) (-2186 (($ $) 9)) (-3096 (($ $ $) 16)) (-2767 (($ $ $) 17)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) 29)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) 28)) (-2415 (($ $ $) 20)) (-1701 (((-1110) $) NIL)) (-1614 (($) 8 T CONST)) (-2656 (($ $ $) 21)) (-4216 (((-534) $) 36)) (-4064 (((-856) $) 39)) (-2198 (($ $ $) 11)) (-2273 (($ $ $) 14)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 19)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 22)) (-2261 (($ $ $) 12)))
-(((-112) (-13 (-838) (-654) (-960) (-609 (-534)) (-10 -8 (-15 -2785 ($) -1494) (-15 -1614 ($) -1494) (-15 -2222 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -2099 ($ $))))) (T -112))
-((-2785 (*1 *1) (-5 *1 (-112))) (-1614 (*1 *1) (-5 *1 (-112))) (-2222 (*1 *1 *1 *1) (-5 *1 (-112))) (-2767 (*1 *1 *1 *1) (-5 *1 (-112))) (-3096 (*1 *1 *1 *1) (-5 *1 (-112))) (-2099 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-838) (-654) (-960) (-609 (-534)) (-10 -8 (-15 -2785 ($) -1494) (-15 -1614 ($) -1494) (-15 -2222 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -2099 ($ $))))
-((-3331 (((-3 (-1 |#1| (-638 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-638 |#1|))) 11) (((-3 |#1| "failed") (-114) (-638 |#1|)) 21)) (-3326 (((-3 (-638 (-1 |#1| (-638 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-638 (-1 |#1| (-638 |#1|)))) 26)) (-2878 (((-114) |#1|) 55 (|has| |#1| (-844)))) (-3555 (((-3 |#1| "failed") (-114)) 49 (|has| |#1| (-844)))))
-(((-113 |#1|) (-10 -7 (-15 -3331 ((-3 |#1| "failed") (-114) (-638 |#1|))) (-15 -3331 ((-114) (-114) (-1 |#1| (-638 |#1|)))) (-15 -3331 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3331 ((-3 (-1 |#1| (-638 |#1|)) "failed") (-114))) (-15 -3326 ((-114) (-114) (-638 (-1 |#1| (-638 |#1|))))) (-15 -3326 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3326 ((-3 (-638 (-1 |#1| (-638 |#1|))) "failed") (-114))) (IF (|has| |#1| (-844)) (PROGN (-15 -2878 ((-114) |#1|)) (-15 -3555 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1090)) (T -113))
-((-3555 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1090)) (-4 *2 (-844)) (-5 *1 (-113 *2)))) (-2878 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-844)) (-4 *3 (-1090)))) (-3326 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-1 *4 (-638 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1090)))) (-3326 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-3326 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 (-1 *4 (-638 *4)))) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-3331 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-638 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1090)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-638 *4))) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-3331 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-638 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1090)))))
-(-10 -7 (-15 -3331 ((-3 |#1| "failed") (-114) (-638 |#1|))) (-15 -3331 ((-114) (-114) (-1 |#1| (-638 |#1|)))) (-15 -3331 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3331 ((-3 (-1 |#1| (-638 |#1|)) "failed") (-114))) (-15 -3326 ((-114) (-114) (-638 (-1 |#1| (-638 |#1|))))) (-15 -3326 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3326 ((-3 (-638 (-1 |#1| (-638 |#1|))) "failed") (-114))) (IF (|has| |#1| (-844)) (PROGN (-15 -2878 ((-114) |#1|)) (-15 -3555 ((-3 |#1| "failed") (-114)))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-2211 (((-765) $) 72) (($ $ (-765)) 30)) (-3972 (((-112) $) 32)) (-2856 (($ $ (-1148) (-768)) 26)) (-3818 (($ $ (-45 (-1148) (-768))) 15)) (-3447 (((-3 (-768) "failed") $ (-1148)) 25)) (-3836 (((-45 (-1148) (-768)) $) 14)) (-1773 (($ (-1166)) 17) (($ (-1166) (-765)) 22)) (-3088 (((-112) $) 31)) (-3388 (((-112) $) 33)) (-3305 (((-1166) $) 8)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-4188 (((-112) $ (-1166)) 10)) (-1536 (($ $ (-1 (-534) (-638 (-534)))) 52) (((-3 (-1 (-534) (-638 (-534))) "failed") $) 56)) (-1701 (((-1110) $) NIL)) (-2038 (((-112) $ (-1148)) 29)) (-2406 (($ $ (-1 (-112) $ $)) 35)) (-1479 (((-3 (-1 (-856) (-638 (-856))) "failed") $) 54) (($ $ (-1 (-856) (-638 (-856)))) 41) (($ $ (-1 (-856) (-856))) 43)) (-1341 (($ $ (-1148)) 45)) (-4225 (($ $) 63)) (-2935 (($ $ (-1 (-112) $ $)) 36)) (-4064 (((-856) $) 48)) (-3995 (($ $ (-1148)) 27)) (-2004 (((-3 (-765) "failed") $) 58)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 71)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 78)))
-(((-114) (-13 (-844) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -3836 ((-45 (-1148) (-768)) $)) (-15 -4225 ($ $)) (-15 -1773 ($ (-1166))) (-15 -1773 ($ (-1166) (-765))) (-15 -2004 ((-3 (-765) "failed") $)) (-15 -3088 ((-112) $)) (-15 -3972 ((-112) $)) (-15 -3388 ((-112) $)) (-15 -2211 ((-765) $)) (-15 -2211 ($ $ (-765))) (-15 -2406 ($ $ (-1 (-112) $ $))) (-15 -2935 ($ $ (-1 (-112) $ $))) (-15 -1479 ((-3 (-1 (-856) (-638 (-856))) "failed") $)) (-15 -1479 ($ $ (-1 (-856) (-638 (-856))))) (-15 -1479 ($ $ (-1 (-856) (-856)))) (-15 -1536 ($ $ (-1 (-534) (-638 (-534))))) (-15 -1536 ((-3 (-1 (-534) (-638 (-534))) "failed") $)) (-15 -4188 ((-112) $ (-1166))) (-15 -2038 ((-112) $ (-1148))) (-15 -3995 ($ $ (-1148))) (-15 -1341 ($ $ (-1148))) (-15 -3447 ((-3 (-768) "failed") $ (-1148))) (-15 -2856 ($ $ (-1148) (-768))) (-15 -3818 ($ $ (-45 (-1148) (-768))))))) (T -114))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-114)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))) (-4225 (*1 *1 *1) (-5 *1 (-114))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-114)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-114)))) (-2004 (*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-114)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-114)))) (-2211 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-114)))) (-2406 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2935 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1479 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114)))) (-1479 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114)))) (-1479 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-856))) (-5 *1 (-114)))) (-1536 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114)))) (-1536 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2038 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3995 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114)))) (-1341 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114)))) (-3447 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-768)) (-5 *1 (-114)))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-768)) (-5 *1 (-114)))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))))
-(-13 (-844) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -3836 ((-45 (-1148) (-768)) $)) (-15 -4225 ($ $)) (-15 -1773 ($ (-1166))) (-15 -1773 ($ (-1166) (-765))) (-15 -2004 ((-3 (-765) "failed") $)) (-15 -3088 ((-112) $)) (-15 -3972 ((-112) $)) (-15 -3388 ((-112) $)) (-15 -2211 ((-765) $)) (-15 -2211 ($ $ (-765))) (-15 -2406 ($ $ (-1 (-112) $ $))) (-15 -2935 ($ $ (-1 (-112) $ $))) (-15 -1479 ((-3 (-1 (-856) (-638 (-856))) "failed") $)) (-15 -1479 ($ $ (-1 (-856) (-638 (-856))))) (-15 -1479 ($ $ (-1 (-856) (-856)))) (-15 -1536 ($ $ (-1 (-534) (-638 (-534))))) (-15 -1536 ((-3 (-1 (-534) (-638 (-534))) "failed") $)) (-15 -4188 ((-112) $ (-1166))) (-15 -2038 ((-112) $ (-1148))) (-15 -3995 ($ $ (-1148))) (-15 -1341 ($ $ (-1148))) (-15 -3447 ((-3 (-768) "failed") $ (-1148))) (-15 -2856 ($ $ (-1148) (-768))) (-15 -3818 ($ $ (-45 (-1148) (-768))))))
-((-3627 (((-561) |#2|) 37)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -3627 ((-561) |#2|))) (-13 (-362) (-1031 (-406 (-561)))) (-1230 |#1|)) (T -115))
-((-3627 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-561)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -3627 ((-561) |#2|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $ (-561)) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-2865 (($ (-1162 (-561)) (-561)) NIL)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3601 (($ $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-4027 (((-765) $) NIL)) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1448 (((-561)) NIL)) (-2114 (((-561) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3702 (($ $ (-561)) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3679 (((-1146 (-561)) $) NIL)) (-3426 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL)) (-3746 (((-765)) NIL)) (-3996 (((-112) $ $) NIL)) (-1408 (((-561) $ (-561)) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-862 |#1|) (-561)) (T -116))
-NIL
-(-862 |#1|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| (-116 |#1|) (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-116 |#1|) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-116 |#1|) (-1031 (-561))))) (-3979 (((-116 |#1|) $) NIL) (((-1166) $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-116 |#1|) (-1031 (-561)))) (((-561) $) NIL (|has| (-116 |#1|) (-1031 (-561))))) (-1857 (($ $) NIL) (($ (-561) $) NIL)) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-116 |#1|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-116 |#1|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-116 |#1|))) (|:| |vec| (-1254 (-116 |#1|)))) (-682 $) (-1254 $)) NIL) (((-682 (-116 |#1|)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-116 |#1|) (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-116 |#1|) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-116 |#1|) (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 (((-116 |#1|) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1141)))) (-3271 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-3017 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-4165 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-116 |#1|) (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-4020 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 (-116 |#1|)) (-638 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-293 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-638 (-293 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-638 (-1166)) (-638 (-116 |#1|))) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|)))) (($ $ (-1166) (-116 |#1|)) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|))))) (-1905 (((-765) $) NIL)) (-2315 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1969 (($ $) NIL)) (-4088 (((-116 |#1|) $) NIL)) (-4216 (((-885 (-561)) $) NIL (|has| (-116 |#1|) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-116 |#1|) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-116 |#1|) (-609 (-534)))) (((-378) $) NIL (|has| (-116 |#1|) (-1015))) (((-224) $) NIL (|has| (-116 |#1|) (-1015)))) (-1337 (((-173 (-406 (-561))) $) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-116 |#1|)) NIL) (($ (-1166)) NIL (|has| (-116 |#1|) (-1031 (-1166))))) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-902))) (|has| (-116 |#1|) (-144))))) (-3746 (((-765)) NIL)) (-2449 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-3996 (((-112) $ $) NIL)) (-1408 (((-406 (-561)) $ (-561)) NIL)) (-2165 (($ $) NIL (|has| (-116 |#1|) (-814)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1828 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-985 (-116 |#1|)) (-10 -8 (-15 -1408 ((-406 (-561)) $ (-561))) (-15 -1337 ((-173 (-406 (-561))) $)) (-15 -1857 ($ $)) (-15 -1857 ($ (-561) $)))) (-561)) (T -117))
-((-1408 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-561)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-117 *3)) (-14 *3 (-561)))) (-1857 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-561)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-985 (-116 |#1|)) (-10 -8 (-15 -1408 ((-406 (-561)) $ (-561))) (-15 -1337 ((-173 (-406 (-561))) $)) (-15 -1857 ($ $)) (-15 -1857 ($ (-561) $))))
-((-4207 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-4092 (((-638 $) $) 27)) (-2129 (((-112) $ $) 32)) (-4288 (((-112) |#2| $) 36)) (-3948 (((-638 |#2|) $) 22)) (-3441 (((-112) $) 16)) (-2315 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1650 (((-112) $) 45)) (-4064 (((-856) $) 41)) (-3770 (((-638 $) $) 28)) (-1723 (((-112) $ $) 34)) (-3548 (((-765) $) 43)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -4207 (|#1| |#1| "right" |#1|)) (-15 -4207 (|#1| |#1| "left" |#1|)) (-15 -2315 (|#1| |#1| "right")) (-15 -2315 (|#1| |#1| "left")) (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -2129 ((-112) |#1| |#1|)) (-15 -3948 ((-638 |#2|) |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -2315 (|#2| |#1| "value")) (-15 -3441 ((-112) |#1|)) (-15 -4092 ((-638 |#1|) |#1|)) (-15 -3770 ((-638 |#1|) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -4288 ((-112) |#2| |#1|)) (-15 -3548 ((-765) |#1|))) (-119 |#2|) (-1205)) (T -118))
-NIL
-(-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -4207 (|#1| |#1| "right" |#1|)) (-15 -4207 (|#1| |#1| "left" |#1|)) (-15 -2315 (|#1| |#1| "right")) (-15 -2315 (|#1| |#1| "left")) (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -2129 ((-112) |#1| |#1|)) (-15 -3948 ((-638 |#2|) |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -2315 (|#2| |#1| "value")) (-15 -3441 ((-112) |#1|)) (-15 -4092 ((-638 |#1|) |#1|)) (-15 -3770 ((-638 |#1|) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -4288 ((-112) |#2| |#1|)) (-15 -3548 ((-765) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-2741 (($ $ $) 52 (|has| $ (-6 -4400)))) (-1555 (($ $ $) 54 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400))) (($ $ "left" $) 55 (|has| $ (-6 -4400))) (($ $ "right" $) 53 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-2674 (($) 7 T CONST)) (-1599 (($ $) 57)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1586 (($ $) 59)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4293 (((-561) $ $) 44)) (-1650 (((-112) $) 46)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-119 |#1|) (-139) (-1205)) (T -119))
-((-1586 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-1599 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-4207 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4400)) (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-1555 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))) (-4207 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4400)) (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-2741 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))))
-(-13 (-1003 |t#1|) (-10 -8 (-15 -1586 ($ $)) (-15 -2315 ($ $ "left")) (-15 -1599 ($ $)) (-15 -2315 ($ $ "right")) (IF (|has| $ (-6 -4400)) (PROGN (-15 -4207 ($ $ "left" $)) (-15 -1555 ($ $ $)) (-15 -4207 ($ $ "right" $)) (-15 -2741 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-1678 (((-112) |#1|) 24)) (-2306 (((-765) (-765)) 23) (((-765)) 22)) (-2933 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
-(((-120 |#1|) (-10 -7 (-15 -2933 ((-112) |#1|)) (-15 -2933 ((-112) |#1| (-112))) (-15 -2306 ((-765))) (-15 -2306 ((-765) (-765))) (-15 -1678 ((-112) |#1|))) (-1230 (-561))) (T -120))
-((-1678 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))) (-2306 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))) (-2933 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))) (-2933 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))))
-(-10 -7 (-15 -2933 ((-112) |#1|)) (-15 -2933 ((-112) |#1| (-112))) (-15 -2306 ((-765))) (-15 -2306 ((-765) (-765))) (-15 -1678 ((-112) |#1|)))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) 15)) (-2230 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2741 (($ $ $) 18 (|has| $ (-6 -4400)))) (-1555 (($ $ $) 20 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) (($ $ "left" $) NIL (|has| $ (-6 -4400))) (($ $ "right" $) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-1599 (($ $) 17)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3587 (($ $ |#1| $) 23)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1586 (($ $) 19)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-2439 (($ |#1| $) 24)) (-1617 (($ |#1| $) 10)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 14)) (-2910 (($) 8)) (-2315 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4293 (((-561) $ $) NIL)) (-1650 (((-112) $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2601 (($ (-638 |#1|)) 12)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4400) (-6 -4399) (-15 -2601 ($ (-638 |#1|))) (-15 -1617 ($ |#1| $)) (-15 -2439 ($ |#1| $)) (-15 -2230 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-844)) (T -121))
-((-2601 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3)))) (-1617 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-2439 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-2230 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-844)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4400) (-6 -4399) (-15 -2601 ($ (-638 |#1|))) (-15 -1617 ($ |#1| $)) (-15 -2439 ($ |#1| $)) (-15 -2230 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-3344 (($ $) 12)) (-2186 (($ $) 10)) (-3096 (($ $ $) 22)) (-2767 (($ $ $) 20)) (-2273 (($ $ $) 18)) (-2261 (($ $ $) 16)))
-(((-122 |#1|) (-10 -8 (-15 -3096 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -2273 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -3096 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -2273 (|#1| |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-3344 (($ $) 103)) (-2222 (($ $ $) 25)) (-1846 (((-1259) $ (-561) (-561)) 66 (|has| $ (-6 -4400)))) (-2097 (((-112) $) 98 (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1680 (($ $) 102 (-12 (|has| (-112) (-844)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4400)))) (-1318 (($ $) 97 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2684 (((-112) $ (-765)) 37)) (-4207 (((-112) $ (-1221 (-561)) (-112)) 88 (|has| $ (-6 -4400))) (((-112) $ (-561) (-112)) 54 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4399)))) (-2674 (($) 38 T CONST)) (-4026 (($ $) 100 (|has| $ (-6 -4400)))) (-2659 (($ $) 90)) (-1461 (($ $) 68 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4399))) (($ (-112) $) 69 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4399))))) (-3176 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4399))))) (-2041 (((-112) $ (-561) (-112)) 53 (|has| $ (-6 -4400)))) (-1975 (((-112) $ (-561)) 55)) (-4266 (((-561) (-112) $ (-561)) 95 (|has| (-112) (-1090))) (((-561) (-112) $) 94 (|has| (-112) (-1090))) (((-561) (-1 (-112) (-112)) $) 93)) (-2368 (((-638 (-112)) $) 45 (|has| $ (-6 -4399)))) (-2208 (($ $ $) 26)) (-2186 (($ $) 30)) (-3096 (($ $ $) 28)) (-1458 (($ (-765) (-112)) 77)) (-2767 (($ $ $) 29)) (-3116 (((-112) $ (-765)) 36)) (-3950 (((-561) $) 63 (|has| (-561) (-844)))) (-1597 (($ $ $) 13)) (-3405 (($ $ $) 96 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-4125 (((-638 (-112)) $) 46 (|has| $ (-6 -4399)))) (-4288 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 62 (|has| (-561) (-844)))) (-3017 (($ $ $) 14)) (-2029 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-3683 (((-112) $ (-765)) 35)) (-1883 (((-1148) $) 9)) (-3350 (($ $ $ (-561)) 87) (($ (-112) $ (-561)) 86)) (-2355 (((-638 (-561)) $) 60)) (-1558 (((-112) (-561) $) 59)) (-1701 (((-1110) $) 10)) (-1424 (((-112) $) 64 (|has| (-561) (-844)))) (-3202 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3193 (($ $ (-112)) 65 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-112)) (-638 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-293 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-638 (-293 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))))) (-1582 (((-112) $ $) 31)) (-3764 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-2411 (((-638 (-112)) $) 58)) (-2508 (((-112) $) 34)) (-2910 (($) 33)) (-2315 (($ $ (-1221 (-561))) 83) (((-112) $ (-561)) 57) (((-112) $ (-561) (-112)) 56)) (-2883 (($ $ (-1221 (-561))) 85) (($ $ (-561)) 84)) (-1714 (((-765) (-112) $) 47 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4399)))) (-2879 (($ $ $ (-561)) 99 (|has| $ (-6 -4400)))) (-4225 (($ $) 32)) (-4216 (((-534) $) 67 (|has| (-112) (-609 (-534))))) (-4078 (($ (-638 (-112))) 76)) (-2754 (($ (-638 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4064 (((-856) $) 11)) (-3715 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4399)))) (-2198 (($ $ $) 27)) (-2273 (($ $ $) 105)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-2261 (($ $ $) 104)) (-3548 (((-765) $) 39 (|has| $ (-6 -4399)))))
+(-13 (-641 |t#1|) (-1048 |t#2|) (-10 -7 (-6 -4395) (-6 -4394)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-1048 |#2|) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-2430 (($ $) 10)) (-3725 (($ $ $) 15)) (-2361 (($) 7 T CONST)) (-1360 (($ $) 6)) (-3521 (((-765)) 24)) (-3377 (($) 30)) (-3239 (($ $ $) 13)) (-3726 (($ $) 9)) (-1382 (($ $ $) 16)) (-1383 (($ $ $) 17)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) 29)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 28)) (-3238 (($ $ $) 20)) (-3644 (((-1110) $) NIL)) (-2363 (($) 8 T CONST)) (-3237 (($ $ $) 21)) (-4377 (((-533) $) 36)) (-4353 (((-857) $) 39)) (-3240 (($ $ $) 11)) (-2428 (($ $ $) 14)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 19)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 22)) (-2429 (($ $ $) 12)))
+(((-112) (-13 (-838) (-655) (-960) (-609 (-533)) (-10 -8 (-15 -2361 ($) -4359) (-15 -2363 ($) -4359) (-15 -3725 ($ $ $)) (-15 -1383 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -1360 ($ $))))) (T -112))
+((-2361 (*1 *1) (-5 *1 (-112))) (-2363 (*1 *1) (-5 *1 (-112))) (-3725 (*1 *1 *1 *1) (-5 *1 (-112))) (-1383 (*1 *1 *1 *1) (-5 *1 (-112))) (-1382 (*1 *1 *1 *1) (-5 *1 (-112))) (-1360 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-838) (-655) (-960) (-609 (-533)) (-10 -8 (-15 -2361 ($) -4359) (-15 -2363 ($) -4359) (-15 -3725 ($ $ $)) (-15 -1383 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -1360 ($ $))))
+((-2947 (((-112) $ $) NIL)) (-1605 (((-765) $) 72) (($ $ (-765)) 30)) (-1368 (((-112) $) 32)) (-1362 (($ $ (-1148) (-767)) 26)) (-1361 (($ $ (-45 (-1148) (-767))) 15)) (-3223 (((-3 (-767) "failed") $ (-1148)) 25)) (-1370 (((-45 (-1148) (-767)) $) 14)) (-3430 (($ (-1166)) 17) (($ (-1166) (-765)) 22)) (-1369 (((-112) $) 31)) (-1367 (((-112) $) 33)) (-3949 (((-1166) $) 8)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3013 (((-112) $ (-1166)) 10)) (-2282 (($ $ (-1 (-533) (-635 (-533)))) 52) (((-3 (-1 (-533) (-635 (-533))) "failed") $) 56)) (-3644 (((-1110) $) NIL)) (-1364 (((-112) $ (-1148)) 29)) (-1366 (($ $ (-1 (-112) $ $)) 35)) (-4024 (((-3 (-1 (-857) (-635 (-857))) "failed") $) 54) (($ $ (-1 (-857) (-635 (-857)))) 41) (($ $ (-1 (-857) (-857))) 43)) (-1363 (($ $ (-1148)) 45)) (-3804 (($ $) 63)) (-1365 (($ $ (-1 (-112) $ $)) 36)) (-4353 (((-857) $) 48)) (-3174 (($ $ (-1148)) 27)) (-2900 (((-3 (-765) "failed") $) 58)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 71)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 78)))
+(((-113) (-13 (-844) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-45 (-1148) (-767)) $)) (-15 -3804 ($ $)) (-15 -3430 ($ (-1166))) (-15 -3430 ($ (-1166) (-765))) (-15 -2900 ((-3 (-765) "failed") $)) (-15 -1369 ((-112) $)) (-15 -1368 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1605 ((-765) $)) (-15 -1605 ($ $ (-765))) (-15 -1366 ($ $ (-1 (-112) $ $))) (-15 -1365 ($ $ (-1 (-112) $ $))) (-15 -4024 ((-3 (-1 (-857) (-635 (-857))) "failed") $)) (-15 -4024 ($ $ (-1 (-857) (-635 (-857))))) (-15 -4024 ($ $ (-1 (-857) (-857)))) (-15 -2282 ($ $ (-1 (-533) (-635 (-533))))) (-15 -2282 ((-3 (-1 (-533) (-635 (-533))) "failed") $)) (-15 -3013 ((-112) $ (-1166))) (-15 -1364 ((-112) $ (-1148))) (-15 -3174 ($ $ (-1148))) (-15 -1363 ($ $ (-1148))) (-15 -3223 ((-3 (-767) "failed") $ (-1148))) (-15 -1362 ($ $ (-1148) (-767))) (-15 -1361 ($ $ (-45 (-1148) (-767))))))) (T -113))
+((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-113)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113)))) (-3804 (*1 *1 *1) (-5 *1 (-113))) (-3430 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-113)))) (-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-113)))) (-2900 (*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-113)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-113)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-113)))) (-1366 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1365 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-4024 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-113)))) (-2282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113)))) (-2282 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1364 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113)))) (-3223 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-767)) (-5 *1 (-113)))) (-1362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-767)) (-5 *1 (-113)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113)))))
+(-13 (-844) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-45 (-1148) (-767)) $)) (-15 -3804 ($ $)) (-15 -3430 ($ (-1166))) (-15 -3430 ($ (-1166) (-765))) (-15 -2900 ((-3 (-765) "failed") $)) (-15 -1369 ((-112) $)) (-15 -1368 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1605 ((-765) $)) (-15 -1605 ($ $ (-765))) (-15 -1366 ($ $ (-1 (-112) $ $))) (-15 -1365 ($ $ (-1 (-112) $ $))) (-15 -4024 ((-3 (-1 (-857) (-635 (-857))) "failed") $)) (-15 -4024 ($ $ (-1 (-857) (-635 (-857))))) (-15 -4024 ($ $ (-1 (-857) (-857)))) (-15 -2282 ($ $ (-1 (-533) (-635 (-533))))) (-15 -2282 ((-3 (-1 (-533) (-635 (-533))) "failed") $)) (-15 -3013 ((-112) $ (-1166))) (-15 -1364 ((-112) $ (-1148))) (-15 -3174 ($ $ (-1148))) (-15 -1363 ($ $ (-1148))) (-15 -3223 ((-3 (-767) "failed") $ (-1148))) (-15 -1362 ($ $ (-1148) (-767))) (-15 -1361 ($ $ (-45 (-1148) (-767))))))
+((-2897 (((-3 (-1 |#1| (-635 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-635 |#1|))) 11) (((-3 |#1| "failed") (-113) (-635 |#1|)) 21)) (-1371 (((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-635 (-1 |#1| (-635 |#1|)))) 26)) (-1372 (((-113) |#1|) 55 (|has| |#1| (-844)))) (-1373 (((-3 |#1| "failed") (-113)) 49 (|has| |#1| (-844)))))
+(((-114 |#1|) (-10 -7 (-15 -2897 ((-3 |#1| "failed") (-113) (-635 |#1|))) (-15 -2897 ((-113) (-113) (-1 |#1| (-635 |#1|)))) (-15 -2897 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2897 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-113))) (-15 -1371 ((-113) (-113) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1371 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1371 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-113))) (IF (|has| |#1| (-844)) (PROGN (-15 -1372 ((-113) |#1|)) (-15 -1373 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1091)) (T -114))
+((-1373 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1091)) (-4 *2 (-844)) (-5 *1 (-114 *2)))) (-1372 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-844)) (-4 *3 (-1091)))) (-1371 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-1 *4 (-635 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1091)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-2897 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-635 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1091)))) (-2897 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-2897 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-2897 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-635 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1091)))))
+(-10 -7 (-15 -2897 ((-3 |#1| "failed") (-113) (-635 |#1|))) (-15 -2897 ((-113) (-113) (-1 |#1| (-635 |#1|)))) (-15 -2897 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2897 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-113))) (-15 -1371 ((-113) (-113) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1371 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1371 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-113))) (IF (|has| |#1| (-844)) (PROGN (-15 -1372 ((-113) |#1|)) (-15 -1373 ((-3 |#1| "failed") (-113)))) |%noBranch|))
+((-1374 (((-544) |#2|) 37)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -1374 ((-544) |#2|))) (-13 (-362) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -115))
+((-1374 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-544)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -1374 ((-544) |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ (-544)) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2989 (($ (-1160 (-544)) (-544)) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2990 (($ $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4178 (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 (((-544)) NIL)) (-2991 (((-544) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4175 (($ $ (-544)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-1143 (-544)) $) NIL)) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-4176 (((-544) $ (-544)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-863 |#1|) (-544)) (T -116))
+NIL
+(-863 |#1|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-116 |#1|) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-116 |#1|) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-116 |#1|) (-1031 (-544))))) (-3557 (((-116 |#1|) $) NIL) (((-1166) $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-116 |#1|) (-1031 (-544)))) (((-544) $) NIL (|has| (-116 |#1|) (-1031 (-544))))) (-4137 (($ $) NIL) (($ (-544) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-116 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-116 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-116 |#1|))) (|:| |vec| (-1253 (-116 |#1|)))) (-682 $) (-1253 $)) NIL) (((-682 (-116 |#1|)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-116 |#1|) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-116 |#1|) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-116 |#1|) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-116 |#1|) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1141)))) (-3588 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-3242 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-4365 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-116 |#1|) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-3515 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-116 |#1|)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-292 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-292 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-1166)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|)))) (($ $ (-1166) (-116 |#1|)) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-116 |#1|) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-116 |#1|) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-116 |#1|) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-116 |#1|) (-609 (-533)))) (((-377) $) NIL (|has| (-116 |#1|) (-1013))) (((-224) $) NIL (|has| (-116 |#1|) (-1013)))) (-2994 (((-173 (-406 (-544))) $) NIL)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-116 |#1|)) NIL) (($ (-1166)) NIL (|has| (-116 |#1|) (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-903))) (|has| (-116 |#1|) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ (-544)) NIL)) (-3787 (($ $) NIL (|has| (-116 |#1|) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-4356 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-984 (-116 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) (-544)) (T -117))
+((-4176 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-544)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-117 *3)) (-14 *3 (-544)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-544)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-984 (-116 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $))))
+((-4194 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3414 (((-635 $) $) 27)) (-3410 (((-112) $ $) 32)) (-3646 (((-112) |#2| $) 36)) (-3413 (((-635 |#2|) $) 22)) (-3926 (((-112) $) 16)) (-4206 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4040 (((-112) $) 45)) (-4353 (((-857) $) 41)) (-3921 (((-635 $) $) 28)) (-3437 (((-112) $ $) 34)) (-4364 (((-765) $) 43)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4194 (|#1| |#1| "right" |#1|)) (-15 -4194 (|#1| |#1| "left" |#1|)) (-15 -4206 (|#1| |#1| "right")) (-15 -4206 (|#1| |#1| "left")) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3413 ((-635 |#2|) |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -4364 ((-765) |#1|))) (-119 |#2|) (-1204)) (T -118))
+NIL
+(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4194 (|#1| |#1| "right" |#1|)) (-15 -4194 (|#1| |#1| "left" |#1|)) (-15 -4206 (|#1| |#1| "right")) (-15 -4206 (|#1| |#1| "left")) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3413 ((-635 |#2|) |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -4364 ((-765) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 52 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 54 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) (($ $ "left" $) 55 (|has| $ (-6 -4401))) (($ $ "right" $) 53 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-3522 (($ $) 57)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3523 (($ $) 59)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-119 |#1|) (-139) (-1204)) (T -119))
+((-3523 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-4194 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-1376 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204)))) (-4194 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-1375 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204)))))
+(-13 (-1003 |t#1|) (-10 -8 (-15 -3523 ($ $)) (-15 -4206 ($ $ "left")) (-15 -3522 ($ $)) (-15 -4206 ($ $ "right")) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4194 ($ $ "left" $)) (-15 -1376 ($ $ $)) (-15 -4194 ($ $ "right" $)) (-15 -1375 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-1379 (((-112) |#1|) 24)) (-1378 (((-765) (-765)) 23) (((-765)) 22)) (-1377 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
+(((-120 |#1|) (-10 -7 (-15 -1377 ((-112) |#1|)) (-15 -1377 ((-112) |#1| (-112))) (-15 -1378 ((-765))) (-15 -1378 ((-765) (-765))) (-15 -1379 ((-112) |#1|))) (-1229 (-544))) (T -120))
+((-1379 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1378 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1377 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))))
+(-10 -7 (-15 -1377 ((-112) |#1|)) (-15 -1377 ((-112) |#1| (-112))) (-15 -1378 ((-765))) (-15 -1378 ((-765) (-765))) (-15 -1379 ((-112) |#1|)))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 15)) (-3822 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-1375 (($ $ $) 18 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 20 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 17)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 23)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 19)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1380 (($ |#1| $) 24)) (-4014 (($ |#1| $) 10)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 14)) (-3972 (($) 8)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1381 (($ (-635 |#1|)) 12)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -1381 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $)) (-15 -1380 ($ |#1| $)) (-15 -3822 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-844)) (T -121))
+((-1381 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3)))) (-4014 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-1380 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-3822 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-844)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -1381 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $)) (-15 -1380 ($ |#1| $)) (-15 -3822 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2430 (($ $) 12)) (-3726 (($ $) 10)) (-1382 (($ $ $) 22)) (-1383 (($ $ $) 20)) (-2428 (($ $ $) 18)) (-2429 (($ $ $) 16)))
+(((-122 |#1|) (-10 -8 (-15 -1382 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -3726 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -1382 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -3726 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-2430 (($ $) 103)) (-3725 (($ $ $) 25)) (-2344 (((-1259) $ (-544) (-544)) 66 (|has| $ (-6 -4401)))) (-1876 (((-112) $) 98 (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1874 (($ $) 102 (-12 (|has| (-112) (-844)) (|has| $ (-6 -4401)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4401)))) (-3292 (($ $) 97 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1293 (((-112) $ (-765)) 37)) (-4194 (((-112) $ (-1220 (-544)) (-112)) 88 (|has| $ (-6 -4401))) (((-112) $ (-544) (-112)) 54 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4400)))) (-4131 (($) 38 T CONST)) (-2416 (($ $) 100 (|has| $ (-6 -4401)))) (-2417 (($ $) 90)) (-1424 (($ $) 68 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4400))) (($ (-112) $) 69 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-4249 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-1665 (((-112) $ (-544) (-112)) 53 (|has| $ (-6 -4401)))) (-3498 (((-112) $ (-544)) 55)) (-3823 (((-544) (-112) $ (-544)) 95 (|has| (-112) (-1091))) (((-544) (-112) $) 94 (|has| (-112) (-1091))) (((-544) (-1 (-112) (-112)) $) 93)) (-2096 (((-635 (-112)) $) 45 (|has| $ (-6 -4400)))) (-3239 (($ $ $) 26)) (-3726 (($ $) 30)) (-1382 (($ $ $) 28)) (-4021 (($ (-765) (-112)) 77)) (-1383 (($ $ $) 29)) (-4126 (((-112) $ (-765)) 36)) (-2346 (((-544) $) 63 (|has| (-544) (-844)))) (-2913 (($ $ $) 13)) (-3917 (($ $ $) 96 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2554 (((-635 (-112)) $) 46 (|has| $ (-6 -4400)))) (-3646 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 62 (|has| (-544) (-844)))) (-3242 (($ $ $) 14)) (-2100 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4123 (((-112) $ (-765)) 35)) (-3643 (((-1148) $) 9)) (-2421 (($ $ $ (-544)) 87) (($ (-112) $ (-544)) 86)) (-2349 (((-635 (-544)) $) 60)) (-2350 (((-112) (-544) $) 59)) (-3644 (((-1110) $) 10)) (-4207 (((-112) $) 64 (|has| (-544) (-844)))) (-1425 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2345 (($ $ (-112)) 65 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-112)) (-635 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-292 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-635 (-292 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))))) (-1294 (((-112) $ $) 31)) (-2348 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2351 (((-635 (-112)) $) 58)) (-3807 (((-112) $) 34)) (-3972 (($) 33)) (-4206 (($ $ (-1220 (-544))) 83) (((-112) $ (-544)) 57) (((-112) $ (-544) (-112)) 56)) (-2422 (($ $ (-1220 (-544))) 85) (($ $ (-544)) 84)) (-2097 (((-765) (-112) $) 47 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) 99 (|has| $ (-6 -4401)))) (-3804 (($ $) 32)) (-4377 (((-533) $) 67 (|has| (-112) (-609 (-533))))) (-3929 (($ (-635 (-112))) 76)) (-4208 (($ (-635 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4353 (((-857) $) 11)) (-2099 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4400)))) (-3240 (($ $ $) 27)) (-2428 (($ $ $) 105)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-2429 (($ $ $) 104)) (-4364 (((-765) $) 39 (|has| $ (-6 -4400)))))
(((-123) (-139)) (T -123))
-((-2186 (*1 *1 *1) (-4 *1 (-123))) (-2767 (*1 *1 *1 *1) (-4 *1 (-123))) (-3096 (*1 *1 *1 *1) (-4 *1 (-123))) (-2198 (*1 *1 *1 *1) (-4 *1 (-123))) (-2208 (*1 *1 *1 *1) (-4 *1 (-123))) (-2222 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-844) (-654) (-19 (-112)) (-10 -8 (-15 -2186 ($ $)) (-15 -2767 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -2198 ($ $ $)) (-15 -2208 ($ $ $)) (-15 -2222 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 #0=(-112)) . T) ((-609 (-534)) |has| (-112) (-609 (-534))) ((-285 #1=(-561) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))) ((-372 #0#) . T) ((-487 #0#) . T) ((-599 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))) ((-644 #0#) . T) ((-654) . T) ((-19 #0#) . T) ((-844) . T) ((-1090) . T) ((-1205) . T))
-((-2029 (($ (-1 |#2| |#2|) $) 22)) (-4225 (($ $) 16)) (-3548 (((-765) $) 24)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -4225 (|#1| |#1|))) (-125 |#2|) (-1090)) (T -124))
-NIL
-(-10 -8 (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -4225 (|#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-2741 (($ $ $) 52 (|has| $ (-6 -4400)))) (-1555 (($ $ $) 54 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400))) (($ $ "left" $) 55 (|has| $ (-6 -4400))) (($ $ "right" $) 53 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-2674 (($) 7 T CONST)) (-1599 (($ $) 57)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3587 (($ $ |#1| $) 60)) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1586 (($ $) 59)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4293 (((-561) $ $) 44)) (-1650 (((-112) $) 46)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-125 |#1|) (-139) (-1090)) (T -125))
-((-3587 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1090)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4400) (-6 -4399) (-15 -3587 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-119 |#1|) . T) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) 15)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) 19 (|has| $ (-6 -4400)))) (-2741 (($ $ $) 20 (|has| $ (-6 -4400)))) (-1555 (($ $ $) 18 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) (($ $ "left" $) NIL (|has| $ (-6 -4400))) (($ $ "right" $) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-1599 (($ $) 21)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3587 (($ $ |#1| $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1586 (($ $) NIL)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1617 (($ |#1| $) 10)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 14)) (-2910 (($) 8)) (-2315 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4293 (((-561) $ $) NIL)) (-1650 (((-112) $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 17)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2474 (($ (-638 |#1|)) 12)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4400) (-15 -2474 ($ (-638 |#1|))) (-15 -1617 ($ |#1| $)))) (-844)) (T -126))
-((-2474 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3)))) (-1617 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4400) (-15 -2474 ($ (-638 |#1|))) (-15 -1617 ($ |#1| $))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) 24)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) 26 (|has| $ (-6 -4400)))) (-2741 (($ $ $) 30 (|has| $ (-6 -4400)))) (-1555 (($ $ $) 28 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) (($ $ "left" $) NIL (|has| $ (-6 -4400))) (($ $ "right" $) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-1599 (($ $) 20)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3587 (($ $ |#1| $) 15)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1586 (($ $) 19)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) 21)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 18)) (-2910 (($) 11)) (-2315 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4293 (((-561) $ $) NIL)) (-1650 (((-112) $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1398 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 10 (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1398 ($ |#1|)) (-15 -1398 ($ $ |#1| $)))) (-1090)) (T -127))
-((-1398 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090)))) (-1398 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -1398 ($ |#1|)) (-15 -1398 ($ $ |#1| $))))
-((-4053 (((-112) $ $) NIL (|has| (-129) (-1090)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-844)))) (-1680 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-129) (-844))))) (-1318 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 (((-129) $ (-561) (-129)) 17 (|has| $ (-6 -4400))) (((-129) $ (-1221 (-561)) (-129)) NIL (|has| $ (-6 -4400)))) (-2521 (((-765) $ (-765)) 7)) (-3612 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-129) (-1090))))) (-1475 (($ (-129) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-129) (-1090)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4399)) (|has| (-129) (-1090)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4399))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4399)))) (-2041 (((-129) $ (-561) (-129)) 16 (|has| $ (-6 -4400)))) (-1975 (((-129) $ (-561)) 13)) (-4266 (((-561) (-1 (-112) (-129)) $) NIL) (((-561) (-129) $) NIL (|has| (-129) (-1090))) (((-561) (-129) $ (-561)) NIL (|has| (-129) (-1090)))) (-2368 (((-638 (-129)) $) NIL (|has| $ (-6 -4399)))) (-1458 (($ (-765) (-129)) 11)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 18 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| (-129) (-844)))) (-3405 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-844)))) (-4125 (((-638 (-129)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-129) (-1090))))) (-1556 (((-561) $) 19 (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-129) (-844)))) (-2029 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| (-129) (-1090)))) (-3350 (($ (-129) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| (-129) (-1090)))) (-1424 (((-129) $) NIL (|has| (-561) (-844)))) (-3202 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3193 (($ $ (-129)) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-129)))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090)))) (($ $ (-293 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090)))) (($ $ (-638 (-129)) (-638 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-129) (-1090))))) (-2411 (((-638 (-129)) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 9)) (-2315 (((-129) $ (-561) (-129)) NIL) (((-129) $ (-561)) 15) (($ $ (-1221 (-561))) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4399))) (((-765) (-129) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-129) (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-129) (-609 (-534))))) (-4078 (($ (-638 (-129))) 29)) (-2754 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-638 $)) NIL)) (-4064 (((-1148) $) 27) (((-856) $) NIL (|has| (-129) (-608 (-856))))) (-3470 (((-765) $) 14)) (-3339 (($ (-765)) 8)) (-3715 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| (-129) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-129) (-844)))) (-1723 (((-112) $ $) 22 (|has| (-129) (-1090)))) (-1770 (((-112) $ $) NIL (|has| (-129) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-129) (-844)))) (-3548 (((-765) $) 20)))
-(((-128) (-13 (-19 (-129)) (-608 (-1148)) (-10 -8 (-15 -3339 ($ (-765))) (-15 -3548 ((-765) $)) (-15 -3470 ((-765) $)) (-15 -2521 ((-765) $ (-765)))))) (T -128))
-((-3339 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-2521 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-608 (-1148)) (-10 -8 (-15 -3339 ($ (-765))) (-15 -3548 ((-765) $)) (-15 -3470 ((-765) $)) (-15 -2521 ((-765) $ (-765)))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-2674 (($) NIL)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) 15 T CONST)) (-3017 (($ $ $) NIL) (($) 16 T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL) (($ (-143)) 9) (((-143) $) 11)) (-3133 (($ (-765)) 6)) (-3034 (($ $ $) 18)) (-3024 (($ $ $) 17)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 13)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 14)))
-(((-129) (-13 (-838) (-488 (-143)) (-10 -8 (-15 -3133 ($ (-765))) (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))) (T -129))
-((-3133 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-3024 (*1 *1 *1 *1) (-5 *1 (-129))) (-3034 (*1 *1 *1 *1) (-5 *1 (-129))) (-2674 (*1 *1) (-5 *1 (-129))))
-(-13 (-838) (-488 (-143)) (-10 -8 (-15 -3133 ($ (-765))) (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))
+((-3726 (*1 *1 *1) (-4 *1 (-123))) (-1383 (*1 *1 *1 *1) (-4 *1 (-123))) (-1382 (*1 *1 *1 *1) (-4 *1 (-123))) (-3240 (*1 *1 *1 *1) (-4 *1 (-123))) (-3239 (*1 *1 *1 *1) (-4 *1 (-123))) (-3725 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-844) (-655) (-19 (-112)) (-10 -8 (-15 -3726 ($ $)) (-15 -1383 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3725 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 #1=(-112)) . T) ((-609 (-533)) |has| (-112) (-609 (-533))) ((-285 #2=(-544) #1#) . T) ((-287 #2# #1#) . T) ((-308 #1#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))) ((-371 #1#) . T) ((-487 #1#) . T) ((-599 #2# #1#) . T) ((-512 #1# #1#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))) ((-644 #1#) . T) ((-655) . T) ((-19 #1#) . T) ((-844) . T) ((-1091) . T) ((-1204) . T))
+((-2100 (($ (-1 |#2| |#2|) $) 22)) (-3804 (($ $) 16)) (-4364 (((-765) $) 24)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -3804 (|#1| |#1|))) (-125 |#2|) (-1091)) (T -124))
+NIL
+(-10 -8 (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -3804 (|#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 52 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 54 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) (($ $ #2="left" $) 55 (|has| $ (-6 -4401))) (($ $ #3="right" $) 53 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-3522 (($ $) 57)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 60)) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3523 (($ $) 59)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-125 |#1|) (-139) (-1091)) (T -125))
+((-1384 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1091)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -1384 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-119 |#1|) . T) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 15)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) 19 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 20 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 18 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 21)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4014 (($ |#1| $) 10)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 14)) (-3972 (($) 8)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 17)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1385 (($ (-635 |#1|)) 12)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4401) (-15 -1385 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $)))) (-844)) (T -126))
+((-1385 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3)))) (-4014 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4401) (-15 -1385 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 24)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) 26 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 30 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 28 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 20)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 15)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 19)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) 21)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 18)) (-3972 (($) 11)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1386 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 10 (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1386 ($ |#1|)) (-15 -1386 ($ $ |#1| $)))) (-1091)) (T -127))
+((-1386 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091)))) (-1386 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -1386 ($ |#1|)) (-15 -1386 ($ $ |#1| $))))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) 15 T CONST)) (-3242 (($ $ $) NIL) (($) 16 T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-143)) 9) (((-143) $) 11)) (-1387 (($ (-765)) 6)) (-4132 (($ $ $) 18)) (-4133 (($ $ $) 17)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 13)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 14)))
+(((-128) (-13 (-838) (-488 (-143)) (-10 -8 (-15 -1387 ($ (-765))) (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -128))
+((-1387 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-4133 (*1 *1 *1 *1) (-5 *1 (-128))) (-4132 (*1 *1 *1 *1) (-5 *1 (-128))) (-4131 (*1 *1) (-5 *1 (-128))))
+(-13 (-838) (-488 (-143)) (-10 -8 (-15 -1387 ($ (-765))) (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))
((|NonNegativeInteger|) (< |#1| 256))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
+((-2947 (((-112) $ $) NIL (|has| (-128) (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-844)))) (-1874 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-128) (-844))))) (-3292 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-128) $ (-544) (-128)) 17 (|has| $ (-6 -4401))) (((-128) $ (-1220 (-544)) (-128)) NIL (|has| $ (-6 -4401)))) (-1388 (((-765) $ (-765)) 7)) (-4117 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-3810 (($ (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4400))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-128) $ (-544) (-128)) 16 (|has| $ (-6 -4401)))) (-3498 (((-128) $ (-544)) 13)) (-3823 (((-544) (-1 (-112) (-128)) $) NIL) (((-544) (-128) $) NIL (|has| (-128) (-1091))) (((-544) (-128) $ (-544)) NIL (|has| (-128) (-1091)))) (-2096 (((-635 (-128)) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-128)) 11)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 18 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-128) (-844)))) (-3917 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-844)))) (-2554 (((-635 (-128)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-2347 (((-544) $) 19 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-128) (-844)))) (-2100 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| (-128) (-1091)))) (-2421 (($ (-128) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| (-128) (-1091)))) (-4207 (((-128) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2345 (($ $ (-128)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-128)))) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091)))) (($ $ (-292 (-128))) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091)))) (($ $ (-635 (-128)) (-635 (-128))) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-2351 (((-635 (-128)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 9)) (-4206 (((-128) $ (-544) (-128)) NIL) (((-128) $ (-544)) 15) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400))) (((-765) (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-128) (-609 (-533))))) (-3929 (($ (-635 (-128))) 29)) (-4208 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 30) (($ (-635 $)) NIL)) (-4353 (((-1148) $) 27) (((-857) $) NIL (|has| (-128) (-608 (-857))))) (-1389 (((-765) $) 14)) (-1390 (($ (-765)) 8)) (-2099 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| (-128) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-128) (-844)))) (-3437 (((-112) $ $) 22 (|has| (-128) (-1091)))) (-3066 (((-112) $ $) NIL (|has| (-128) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-128) (-844)))) (-4364 (((-765) $) 20)))
+(((-129) (-13 (-19 (-128)) (-608 (-1148)) (-10 -8 (-15 -1390 ($ (-765))) (-15 -4364 ((-765) $)) (-15 -1389 ((-765) $)) (-15 -1388 ((-765) $ (-765)))))) (T -129))
+((-1390 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-1388 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))))
+(-13 (-19 (-128)) (-608 (-1148)) (-10 -8 (-15 -1390 ($ (-765))) (-15 -4364 ((-765) $)) (-15 -1389 ((-765) $)) (-15 -1388 ((-765) $ (-765)))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15)))
(((-130) (-139)) (T -130))
-((-2979 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(-13 (-23) (-10 -8 (-15 -2979 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-2636 (((-1259) $ (-765)) 19)) (-4266 (((-765) $) 20)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
+((-1391 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(-13 (-23) (-10 -8 (-15 -1391 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-1392 (((-1259) $ (-765)) 19)) (-3823 (((-765) $) 20)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)))
(((-131) (-139)) (T -131))
-((-4266 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1259)))))
-(-13 (-844) (-10 -8 (-15 -4266 ((-765) $)) (-15 -2636 ((-1259) $ (-765)))))
-(((-102) . T) ((-608 (-856)) . T) ((-844) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-638 (-1125)) $) 10)) (-1723 (((-112) $ $) NIL)))
-(((-132) (-13 (-1073) (-10 -8 (-15 -3316 ((-638 (-1125)) $))))) (T -132))
-((-3316 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-132)))))
-(-13 (-1073) (-10 -8 (-15 -3316 ((-638 (-1125)) $))))
-((-4053 (((-112) $ $) 34)) (-4306 (((-112) $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-765) "failed") $) 41)) (-3979 (((-765) $) 39)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) 27)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3958 (((-112)) 42)) (-1815 (((-112) (-112)) 44)) (-3457 (((-112) $) 24)) (-4046 (((-112) $) 38)) (-4064 (((-856) $) 22) (($ (-765)) 14)) (-2246 (($) 11 T CONST)) (-2257 (($) 12 T CONST)) (-2511 (($ (-765)) 15)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 25)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 26)) (-1819 (((-3 $ "failed") $ $) 30)) (-1810 (($ $ $) 28)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL) (($ $ $) 37)) (* (($ (-765) $) 33) (($ (-914) $) NIL) (($ $ $) 31)))
-(((-133) (-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4401 "*")) (-15 -1819 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2511 ($ (-765))) (-15 -3457 ((-112) $)) (-15 -4046 ((-112) $)) (-15 -3958 ((-112))) (-15 -1815 ((-112) (-112)))))) (T -133))
-((-1819 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1815 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4401 "*")) (-15 -1819 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2511 ($ (-765))) (-15 -3457 ((-112) $)) (-15 -4046 ((-112) $)) (-15 -3958 ((-112))) (-15 -1815 ((-112) (-112)))))
-((-4172 (((-135 |#1| |#2| |#4|) (-638 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4165 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
-(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4172 ((-135 |#1| |#2| |#4|) (-638 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4165 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-561) (-765) (-171) (-171)) (T -134))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4172 ((-135 |#1| |#2| |#4|) (-638 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4165 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
-((-4053 (((-112) $ $) NIL)) (-3814 (($ (-638 |#3|)) 40)) (-4084 (($ $) 99) (($ $ (-561) (-561)) 98)) (-2674 (($) 17)) (-4061 (((-3 |#3| "failed") $) 60)) (-3979 ((|#3| $) NIL)) (-4073 (($ $ (-638 (-561))) 100)) (-4159 (((-638 |#3|) $) 36)) (-3400 (((-765) $) 44)) (-3638 (($ $ $) 93)) (-2226 (($) 43)) (-1883 (((-1148) $) NIL)) (-1894 (($) 16)) (-1701 (((-1110) $) NIL)) (-2315 ((|#3| $) 46) ((|#3| $ (-561)) 47) ((|#3| $ (-561) (-561)) 48) ((|#3| $ (-561) (-561) (-561)) 49) ((|#3| $ (-561) (-561) (-561) (-561)) 50) ((|#3| $ (-638 (-561))) 52)) (-3768 (((-765) $) 45)) (-1626 (($ $ (-561) $ (-561)) 94) (($ $ (-561) (-561)) 96)) (-4064 (((-856) $) 67) (($ |#3|) 68) (($ (-239 |#2| |#3|)) 75) (($ (-1132 |#2| |#3|)) 78) (($ (-638 |#3|)) 53) (($ (-638 $)) 58)) (-2246 (($) 69 T CONST)) (-2257 (($) 70 T CONST)) (-1723 (((-112) $ $) 80)) (-1819 (($ $) 86) (($ $ $) 84)) (-1810 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-561)) 89) (($ (-561) $) 88) (($ $ $) 95)))
-(((-135 |#1| |#2| |#3|) (-13 (-463 |#3| (-765)) (-468 (-561) (-765)) (-10 -8 (-15 -4064 ($ (-239 |#2| |#3|))) (-15 -4064 ($ (-1132 |#2| |#3|))) (-15 -4064 ($ (-638 |#3|))) (-15 -4064 ($ (-638 $))) (-15 -3400 ((-765) $)) (-15 -2315 (|#3| $)) (-15 -2315 (|#3| $ (-561))) (-15 -2315 (|#3| $ (-561) (-561))) (-15 -2315 (|#3| $ (-561) (-561) (-561))) (-15 -2315 (|#3| $ (-561) (-561) (-561) (-561))) (-15 -2315 (|#3| $ (-638 (-561)))) (-15 -3638 ($ $ $)) (-15 * ($ $ $)) (-15 -1626 ($ $ (-561) $ (-561))) (-15 -1626 ($ $ (-561) (-561))) (-15 -4084 ($ $)) (-15 -4084 ($ $ (-561) (-561))) (-15 -4073 ($ $ (-638 (-561)))) (-15 -1894 ($)) (-15 -2226 ($)) (-15 -4159 ((-638 |#3|) $)) (-15 -3814 ($ (-638 |#3|))) (-15 -2674 ($)))) (-561) (-765) (-171)) (T -135))
-((-3638 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1132 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 *2) (-4 *5 (-171)))) (-2315 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-561)) (-14 *4 (-765)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2315 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2315 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2315 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-638 (-561))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-561)) (-14 *5 (-765)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-1626 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-1626 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-4084 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-4084 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1894 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-2226 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-638 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)))) (-2674 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))))
-(-13 (-463 |#3| (-765)) (-468 (-561) (-765)) (-10 -8 (-15 -4064 ($ (-239 |#2| |#3|))) (-15 -4064 ($ (-1132 |#2| |#3|))) (-15 -4064 ($ (-638 |#3|))) (-15 -4064 ($ (-638 $))) (-15 -3400 ((-765) $)) (-15 -2315 (|#3| $)) (-15 -2315 (|#3| $ (-561))) (-15 -2315 (|#3| $ (-561) (-561))) (-15 -2315 (|#3| $ (-561) (-561) (-561))) (-15 -2315 (|#3| $ (-561) (-561) (-561) (-561))) (-15 -2315 (|#3| $ (-638 (-561)))) (-15 -3638 ($ $ $)) (-15 * ($ $ $)) (-15 -1626 ($ $ (-561) $ (-561))) (-15 -1626 ($ $ (-561) (-561))) (-15 -4084 ($ $)) (-15 -4084 ($ $ (-561) (-561))) (-15 -4073 ($ $ (-638 (-561)))) (-15 -1894 ($)) (-15 -2226 ($)) (-15 -4159 ((-638 |#3|) $)) (-15 -3814 ($ (-638 |#3|))) (-15 -2674 ($))))
-((-4053 (((-112) $ $) NIL)) (-4322 (((-1125) $) 11)) (-4308 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-136) (-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))) (T -136))
-((-4308 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))))
-(-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-2401 (((-1166) $) 10)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-638 (-1125)) $) 12)) (-1723 (((-112) $ $) NIL)))
-(((-137) (-13 (-1073) (-10 -8 (-15 -2401 ((-1166) $)) (-15 -3316 ((-638 (-1125)) $))))) (T -137))
-((-2401 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-137)))))
-(-13 (-1073) (-10 -8 (-15 -2401 ((-1166) $)) (-15 -3316 ((-638 (-1125)) $))))
-((-4053 (((-112) $ $) NIL)) (-3305 (((-504) $) NIL)) (-1883 (((-1148) $) NIL)) (-2401 (((-185) $) NIL)) (-1701 (((-1110) $) NIL)) (-1474 (((-638 (-112)) $) NIL)) (-4064 (((-856) $) NIL) (((-186) $) 6)) (-2004 (((-55) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-138) (-13 (-184) (-608 (-186)))) (T -138))
-NIL
-(-13 (-184) (-608 (-186)))
-((-2077 (((-638 (-182)) $) 13)) (-2760 (((-638 (-182)) $) 14)) (-4160 (((-638 (-832)) $) 10)) (-1843 (((-138) $) 7)) (-4064 (((-856) $) 16)))
-(((-139) (-13 (-608 (-856)) (-10 -8 (-15 -1843 ((-138) $)) (-15 -4160 ((-638 (-832)) $)) (-15 -2077 ((-638 (-182)) $)) (-15 -2760 ((-638 (-182)) $))))) (T -139))
-((-1843 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-638 (-832))) (-5 *1 (-139)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -1843 ((-138) $)) (-15 -4160 ((-638 (-832)) $)) (-15 -2077 ((-638 (-182)) $)) (-15 -2760 ((-638 (-182)) $))))
-((-4053 (((-112) $ $) NIL)) (-3242 (($) 15 T CONST)) (-2750 (($) NIL (|has| (-143) (-367)))) (-2468 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-2327 (($ $ $) NIL)) (-3856 (((-112) $ $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-1386 (((-765)) NIL (|has| (-143) (-367)))) (-1605 (($) NIL) (($ (-638 (-143))) NIL)) (-1954 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-3222 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399))) (($ (-143) $) 51 (|has| $ (-6 -4399)))) (-1475 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-3176 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4399))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4399))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-1362 (($) NIL (|has| (-143) (-367)))) (-2368 (((-638 (-143)) $) 60 (|has| $ (-6 -4399)))) (-3713 (((-112) $ $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-1597 (((-143) $) NIL (|has| (-143) (-844)))) (-4125 (((-638 (-143)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-3017 (((-143) $) NIL (|has| (-143) (-844)))) (-2029 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-143) (-143)) $) 55)) (-2501 (($) 16 T CONST)) (-1335 (((-914) $) NIL (|has| (-143) (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1338 (($ $ $) 29)) (-3721 (((-143) $) 52)) (-1617 (($ (-143) $) 50)) (-2442 (($ (-914)) NIL (|has| (-143) (-367)))) (-3428 (($) 14 T CONST)) (-1701 (((-1110) $) NIL)) (-3202 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-1387 (((-143) $) 53)) (-3977 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-143)) (-638 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 48)) (-3775 (($) 13 T CONST)) (-1533 (($ $ $) 31) (($ $ (-143)) NIL)) (-3643 (($ (-638 (-143))) NIL) (($) NIL)) (-1714 (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090)))) (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-1148) $) 36) (((-534) $) NIL (|has| (-143) (-609 (-534)))) (((-638 (-143)) $) 34)) (-4078 (($ (-638 (-143))) NIL)) (-4211 (($ $) 32 (|has| (-143) (-367)))) (-4064 (((-856) $) 46)) (-2948 (($ (-1148)) 12) (($ (-638 (-143))) 43)) (-2065 (((-765) $) NIL)) (-1697 (($) 49) (($ (-638 (-143))) NIL)) (-1903 (($ (-638 (-143))) NIL)) (-3715 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-3444 (($) 19 T CONST)) (-3318 (($) 18 T CONST)) (-1723 (((-112) $ $) 22)) (-3548 (((-765) $) 47 (|has| $ (-6 -4399)))))
-(((-140) (-13 (-1090) (-609 (-1148)) (-424 (-143)) (-609 (-638 (-143))) (-10 -8 (-15 -2948 ($ (-1148))) (-15 -2948 ($ (-638 (-143)))) (-15 -3775 ($) -1494) (-15 -3428 ($) -1494) (-15 -3242 ($) -1494) (-15 -2501 ($) -1494) (-15 -3318 ($) -1494) (-15 -3444 ($) -1494)))) (T -140))
-((-2948 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140)))) (-2948 (*1 *1 *2) (-12 (-5 *2 (-638 (-143))) (-5 *1 (-140)))) (-3775 (*1 *1) (-5 *1 (-140))) (-3428 (*1 *1) (-5 *1 (-140))) (-3242 (*1 *1) (-5 *1 (-140))) (-2501 (*1 *1) (-5 *1 (-140))) (-3318 (*1 *1) (-5 *1 (-140))) (-3444 (*1 *1) (-5 *1 (-140))))
-(-13 (-1090) (-609 (-1148)) (-424 (-143)) (-609 (-638 (-143))) (-10 -8 (-15 -2948 ($ (-1148))) (-15 -2948 ($ (-638 (-143)))) (-15 -3775 ($) -1494) (-15 -3428 ($) -1494) (-15 -3242 ($) -1494) (-15 -2501 ($) -1494) (-15 -3318 ($) -1494) (-15 -3444 ($) -1494)))
-((-4189 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1930 ((|#1| |#3|) 9)) (-3027 ((|#3| |#3|) 15)))
-(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -1930 (|#1| |#3|)) (-15 -3027 (|#3| |#3|)) (-15 -4189 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-553) (-985 |#1|) (-372 |#2|)) (T -141))
-((-4189 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-372 *5)))) (-3027 (*1 *2 *2) (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-372 *4)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-372 *4)))))
-(-10 -7 (-15 -1930 (|#1| |#3|)) (-15 -3027 (|#3| |#3|)) (-15 -4189 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3784 (($ $ $) 8)) (-2084 (($ $) 7)) (-3210 (($ $ $) 6)))
+((-3823 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765)))) (-1392 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1259)))))
+(-13 (-844) (-10 -8 (-15 -3823 ((-765) $)) (-15 -1392 ((-1259) $ (-765)))))
+(((-102) . T) ((-608 (-857)) . T) ((-844) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 10)) (-3437 (((-112) $ $) NIL)))
+(((-132) (-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $))))) (T -132))
+((-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-132)))))
+(-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $))))
+((-2947 (((-112) $ $) 34)) (-3589 (((-112) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-765) "failed") $) 41)) (-3557 (((-765) $) 39)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) 27)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1394 (((-112)) 42)) (-1393 (((-112) (-112)) 44)) (-2907 (((-112) $) 24)) (-1395 (((-112) $) 38)) (-4353 (((-857) $) 22) (($ (-765)) 14)) (-3040 (($) 11 T CONST)) (-3046 (($) 12 T CONST)) (-1396 (($ (-765)) 15)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 25)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 26)) (-4244 (((-3 $ "failed") $ $) 30)) (-4246 (($ $ $) 28)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL) (($ $ $) 37)) (* (($ (-765) $) 33) (($ (-912) $) NIL) (($ $ $) 31)))
+(((-133) (-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4402 "*")) (-15 -4244 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1396 ($ (-765))) (-15 -2907 ((-112) $)) (-15 -1395 ((-112) $)) (-15 -1394 ((-112))) (-15 -1393 ((-112) (-112)))))) (T -133))
+((-4244 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1394 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4402 "*")) (-15 -4244 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1396 ($ (-765))) (-15 -2907 ((-112) $)) (-15 -1395 ((-112) $)) (-15 -1394 ((-112))) (-15 -1393 ((-112) (-112)))))
+((-2947 (((-112) $ $) NIL)) (-1397 (($ (-635 |#3|)) 40)) (-3818 (($ $) 99) (($ $ (-544) (-544)) 98)) (-4131 (($) 17)) (-3558 (((-3 |#3| "failed") $) 60)) (-3557 ((|#3| $) NIL)) (-1401 (($ $ (-635 (-544))) 100)) (-1398 (((-635 |#3|) $) 36)) (-3494 (((-765) $) 44)) (-4351 (($ $ $) 93)) (-1399 (($) 43)) (-3643 (((-1148) $) NIL)) (-1400 (($) 16)) (-3644 (((-1110) $) NIL)) (-4206 ((|#3| $) 46) ((|#3| $ (-544)) 47) ((|#3| $ (-544) (-544)) 48) ((|#3| $ (-544) (-544) (-544)) 49) ((|#3| $ (-544) (-544) (-544) (-544)) 50) ((|#3| $ (-635 (-544))) 52)) (-4355 (((-765) $) 45)) (-2133 (($ $ (-544) $ (-544)) 94) (($ $ (-544) (-544)) 96)) (-4353 (((-857) $) 67) (($ |#3|) 68) (($ (-238 |#2| |#3|)) 75) (($ (-1132 |#2| |#3|)) 78) (($ (-635 |#3|)) 53) (($ (-635 $)) 58)) (-3040 (($) 69 T CONST)) (-3046 (($) 70 T CONST)) (-3437 (((-112) $ $) 80)) (-4244 (($ $) 86) (($ $ $) 84)) (-4246 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-544)) 89) (($ (-544) $) 88) (($ $ $) 95)))
+(((-134 |#1| |#2| |#3|) (-13 (-463 |#3| (-765)) (-468 (-544) (-765)) (-10 -8 (-15 -4353 ($ (-238 |#2| |#3|))) (-15 -4353 ($ (-1132 |#2| |#3|))) (-15 -4353 ($ (-635 |#3|))) (-15 -4353 ($ (-635 $))) (-15 -3494 ((-765) $)) (-15 -4206 (|#3| $)) (-15 -4206 (|#3| $ (-544))) (-15 -4206 (|#3| $ (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-635 (-544)))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 -2133 ($ $ (-544) $ (-544))) (-15 -2133 ($ $ (-544) (-544))) (-15 -3818 ($ $)) (-15 -3818 ($ $ (-544) (-544))) (-15 -1401 ($ $ (-635 (-544)))) (-15 -1400 ($)) (-15 -1399 ($)) (-15 -1398 ((-635 |#3|) $)) (-15 -1397 ($ (-635 |#3|))) (-15 -4131 ($)))) (-544) (-765) (-171)) (T -134))
+((-4351 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-238 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1132 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 *2) (-4 *5 (-171)))) (-4206 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-544)) (-14 *4 (-765)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-544))) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-544)) (-14 *5 (-765)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-2133 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-2133 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-3818 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1400 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-1399 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-635 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)))) (-4131 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))))
+(-13 (-463 |#3| (-765)) (-468 (-544) (-765)) (-10 -8 (-15 -4353 ($ (-238 |#2| |#3|))) (-15 -4353 ($ (-1132 |#2| |#3|))) (-15 -4353 ($ (-635 |#3|))) (-15 -4353 ($ (-635 $))) (-15 -3494 ((-765) $)) (-15 -4206 (|#3| $)) (-15 -4206 (|#3| $ (-544))) (-15 -4206 (|#3| $ (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-635 (-544)))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 -2133 ($ $ (-544) $ (-544))) (-15 -2133 ($ $ (-544) (-544))) (-15 -3818 ($ $)) (-15 -3818 ($ $ (-544) (-544))) (-15 -1401 ($ $ (-635 (-544)))) (-15 -1400 ($)) (-15 -1399 ($)) (-15 -1398 ((-635 |#3|) $)) (-15 -1397 ($ (-635 |#3|))) (-15 -4131 ($))))
+((-2548 (((-134 |#1| |#2| |#4|) (-635 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4365 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 ((-134 |#1| |#2| |#4|) (-635 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4365 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-544) (-765) (-171) (-171)) (T -135))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2548 ((-134 |#1| |#2| |#4|) (-635 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4365 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|))))
+((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-136) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -136))
+((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))))
+(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-1493 (((-1166) $) 10)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 12)) (-3437 (((-112) $ $) NIL)))
+(((-137) (-13 (-1073) (-10 -8 (-15 -1493 ((-1166) $)) (-15 -3634 ((-635 (-1125)) $))))) (T -137))
+((-1493 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-137)))))
+(-13 (-1073) (-10 -8 (-15 -1493 ((-1166) $)) (-15 -3634 ((-635 (-1125)) $))))
+((-2947 (((-112) $ $) NIL)) (-3949 (((-504) $) NIL)) (-3643 (((-1148) $) NIL)) (-1493 (((-186) $) NIL)) (-3644 (((-1110) $) NIL)) (-1492 (((-635 (-112)) $) NIL)) (-4353 (((-857) $) NIL) (((-182) $) 6)) (-2900 (((-55) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-138) (-13 (-185) (-608 (-182)))) (T -138))
+NIL
+(-13 (-185) (-608 (-182)))
+((-1403 (((-635 (-183)) $) 13)) (-1402 (((-635 (-183)) $) 14)) (-1404 (((-635 (-832)) $) 10)) (-1566 (((-138) $) 7)) (-4353 (((-857) $) 16)))
+(((-139) (-13 (-608 (-857)) (-10 -8 (-15 -1566 ((-138) $)) (-15 -1404 ((-635 (-832)) $)) (-15 -1403 ((-635 (-183)) $)) (-15 -1402 ((-635 (-183)) $))))) (T -139))
+((-1566 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-635 (-832))) (-5 *1 (-139)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -1566 ((-138) $)) (-15 -1404 ((-635 (-832)) $)) (-15 -1403 ((-635 (-183)) $)) (-15 -1402 ((-635 (-183)) $))))
+((-2947 (((-112) $ $) NIL)) (-3831 (($) 15 T CONST)) (-1949 (($) NIL (|has| (-143) (-367)))) (-3635 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-3637 (($ $ $) NIL)) (-3636 (((-112) $ $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| (-143) (-367)))) (-3640 (($) NIL) (($ (-635 (-143))) NIL)) (-1659 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3809 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (($ (-143) $) 51 (|has| $ (-6 -4400)))) (-3810 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3377 (($) NIL (|has| (-143) (-367)))) (-2096 (((-635 (-143)) $) 60 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2913 (((-143) $) NIL (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3242 (((-143) $) NIL (|has| (-143) (-844)))) (-2100 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) 55)) (-3833 (($) 16 T CONST)) (-2160 (((-912) $) NIL (|has| (-143) (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 29)) (-1356 (((-143) $) 52)) (-4014 (($ (-143) $) 50)) (-2535 (($ (-912)) NIL (|has| (-143) (-367)))) (-1407 (($) 14 T CONST)) (-3644 (((-1110) $) NIL)) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-1357 (((-143) $) 53)) (-2098 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-292 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 48)) (-1408 (($) 13 T CONST)) (-3638 (($ $ $) 31) (($ $ (-143)) NIL)) (-1550 (($ (-635 (-143))) NIL) (($) NIL)) (-2097 (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-1148) $) 36) (((-533) $) NIL (|has| (-143) (-609 (-533)))) (((-635 (-143)) $) 34)) (-3929 (($ (-635 (-143))) NIL)) (-1950 (($ $) 32 (|has| (-143) (-367)))) (-4353 (((-857) $) 46)) (-1409 (($ (-1148)) 12) (($ (-635 (-143))) 43)) (-1951 (((-765) $) NIL)) (-3641 (($) 49) (($ (-635 (-143))) NIL)) (-1358 (($ (-635 (-143))) NIL)) (-2099 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-1405 (($) 19 T CONST)) (-1406 (($) 18 T CONST)) (-3437 (((-112) $ $) 22)) (-4364 (((-765) $) 47 (|has| $ (-6 -4400)))))
+(((-140) (-13 (-1091) (-609 (-1148)) (-425 (-143)) (-609 (-635 (-143))) (-10 -8 (-15 -1409 ($ (-1148))) (-15 -1409 ($ (-635 (-143)))) (-15 -1408 ($) -4359) (-15 -1407 ($) -4359) (-15 -3831 ($) -4359) (-15 -3833 ($) -4359) (-15 -1406 ($) -4359) (-15 -1405 ($) -4359)))) (T -140))
+((-1409 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140)))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140)))) (-1408 (*1 *1) (-5 *1 (-140))) (-1407 (*1 *1) (-5 *1 (-140))) (-3831 (*1 *1) (-5 *1 (-140))) (-3833 (*1 *1) (-5 *1 (-140))) (-1406 (*1 *1) (-5 *1 (-140))) (-1405 (*1 *1) (-5 *1 (-140))))
+(-13 (-1091) (-609 (-1148)) (-425 (-143)) (-609 (-635 (-143))) (-10 -8 (-15 -1409 ($ (-1148))) (-15 -1409 ($ (-635 (-143)))) (-15 -1408 ($) -4359) (-15 -1407 ($) -4359) (-15 -3831 ($) -4359) (-15 -3833 ($) -4359) (-15 -1406 ($) -4359) (-15 -1405 ($) -4359)))
+((-4148 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4146 ((|#1| |#3|) 9)) (-4147 ((|#3| |#3|) 15)))
+(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-984 |#1|) (-371 |#2|)) (T -141))
+((-4148 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-371 *5)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-371 *4)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-371 *4)))))
+(-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1440 (($ $ $) 8)) (-1438 (($ $) 7)) (-3487 (($ $ $) 6)))
(((-142) (-139)) (T -142))
-((-3784 (*1 *1 *1 *1) (-4 *1 (-142))) (-2084 (*1 *1 *1) (-4 *1 (-142))) (-3210 (*1 *1 *1 *1) (-4 *1 (-142))))
-(-13 (-10 -8 (-15 -3210 ($ $ $)) (-15 -2084 ($ $)) (-15 -3784 ($ $ $))))
-((-4053 (((-112) $ $) NIL)) (-2063 (((-112) $) 30)) (-3242 (($ $) 43)) (-1755 (($) 17)) (-1386 (((-765)) 10)) (-1362 (($) 16)) (-2179 (($) 18)) (-2796 (((-765) $) 14)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-3108 (((-112) $) 32)) (-2501 (($ $) 44)) (-1335 (((-914) $) 15)) (-1883 (((-1148) $) 38)) (-2442 (($ (-914)) 13)) (-2140 (((-112) $) 28)) (-1701 (((-1110) $) NIL)) (-2770 (($) 19)) (-2959 (((-112) $) 26)) (-4064 (((-856) $) 21)) (-4195 (($ (-765)) 11) (($ (-1148)) 42)) (-2188 (((-112) $) 36)) (-2295 (((-112) $) 34)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 7)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 8)))
-(((-143) (-13 (-838) (-10 -8 (-15 -2796 ((-765) $)) (-15 -4195 ($ (-765))) (-15 -4195 ($ (-1148))) (-15 -1755 ($)) (-15 -2179 ($)) (-15 -2770 ($)) (-15 -3242 ($ $)) (-15 -2501 ($ $)) (-15 -2959 ((-112) $)) (-15 -2140 ((-112) $)) (-15 -2295 ((-112) $)) (-15 -2063 ((-112) $)) (-15 -3108 ((-112) $)) (-15 -2188 ((-112) $))))) (T -143))
-((-2796 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143)))) (-1755 (*1 *1) (-5 *1 (-143))) (-2179 (*1 *1) (-5 *1 (-143))) (-2770 (*1 *1) (-5 *1 (-143))) (-3242 (*1 *1 *1) (-5 *1 (-143))) (-2501 (*1 *1 *1) (-5 *1 (-143))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(-13 (-838) (-10 -8 (-15 -2796 ((-765) $)) (-15 -4195 ($ (-765))) (-15 -4195 ($ (-1148))) (-15 -1755 ($)) (-15 -2179 ($)) (-15 -2770 ($)) (-15 -3242 ($ $)) (-15 -2501 ($ $)) (-15 -2959 ((-112) $)) (-15 -2140 ((-112) $)) (-15 -2295 ((-112) $)) (-15 -2063 ((-112) $)) (-15 -3108 ((-112) $)) (-15 -2188 ((-112) $))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3666 (((-3 $ "failed") $) 35)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-1440 (*1 *1 *1 *1) (-4 *1 (-142))) (-1438 (*1 *1 *1) (-4 *1 (-142))) (-3487 (*1 *1 *1 *1) (-4 *1 (-142))))
+(-13 (-10 -8 (-15 -3487 ($ $ $)) (-15 -1438 ($ $)) (-15 -1440 ($ $ $))))
+((-2947 (((-112) $ $) NIL)) (-1412 (((-112) $) 30)) (-3831 (($ $) 43)) (-1601 (($) 17)) (-3521 (((-765)) 10)) (-3377 (($) 16)) (-2958 (($) 18)) (-1418 (((-765) $) 14)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-1411 (((-112) $) 32)) (-3833 (($ $) 44)) (-2160 (((-912) $) 15)) (-3643 (((-1148) $) 38)) (-2535 (($ (-912)) 13)) (-1414 (((-112) $) 28)) (-3644 (((-1110) $) NIL)) (-1416 (($) 19)) (-1415 (((-112) $) 26)) (-4353 (((-857) $) 21)) (-1417 (($ (-765)) 11) (($ (-1148)) 42)) (-1410 (((-112) $) 36)) (-1413 (((-112) $) 34)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 7)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 8)))
+(((-143) (-13 (-838) (-10 -8 (-15 -1418 ((-765) $)) (-15 -1417 ($ (-765))) (-15 -1417 ($ (-1148))) (-15 -1601 ($)) (-15 -2958 ($)) (-15 -1416 ($)) (-15 -3831 ($ $)) (-15 -3833 ($ $)) (-15 -1415 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -1413 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112) $))))) (T -143))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-1417 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-1417 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143)))) (-1601 (*1 *1) (-5 *1 (-143))) (-2958 (*1 *1) (-5 *1 (-143))) (-1416 (*1 *1) (-5 *1 (-143))) (-3831 (*1 *1 *1) (-5 *1 (-143))) (-3833 (*1 *1 *1) (-5 *1 (-143))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(-13 (-838) (-10 -8 (-15 -1418 ((-765) $)) (-15 -1417 ($ (-765))) (-15 -1417 ($ (-1148))) (-15 -1601 ($)) (-15 -2958 ($)) (-15 -1416 ($)) (-15 -3831 ($ $)) (-15 -3833 ($ $)) (-15 -1415 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -1413 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112) $))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3084 (((-3 $ "failed") $) 35)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-144) (-139)) (T -144))
-((-3666 (*1 *1 *1) (|partial| -4 *1 (-144))))
-(-13 (-1042) (-10 -8 (-15 -3666 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3934 ((|#1| (-682 |#1|) |#1|) 19)))
-(((-145 |#1|) (-10 -7 (-15 -3934 (|#1| (-682 |#1|) |#1|))) (-171)) (T -145))
-((-3934 (*1 *2 *3 *2) (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))))
-(-10 -7 (-15 -3934 (|#1| (-682 |#1|) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-3084 (*1 *1 *1) (|partial| -4 *1 (-144))))
+(-13 (-1042) (-10 -8 (-15 -3084 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2743 ((|#1| (-682 |#1|) |#1|) 19)))
+(((-145 |#1|) (-10 -7 (-15 -2743 (|#1| (-682 |#1|) |#1|))) (-171)) (T -145))
+((-2743 (*1 *2 *3 *2) (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))))
+(-10 -7 (-15 -2743 (|#1| (-682 |#1|) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-146) (-139)) (T -146))
NIL
(-13 (-1042))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-2609 (((-2 (|:| -4181 (-765)) (|:| -4226 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765)) 69)) (-3424 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|) 51)) (-3527 (((-2 (|:| -4226 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-3978 ((|#1| |#3| |#3|) 39)) (-1436 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-1347 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|) 48)))
-(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -3527 ((-2 (|:| -4226 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3424 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -2609 ((-2 (|:| -4181 (-765)) (|:| -4226 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -3978 (|#1| |#3| |#3|)) (-15 -1436 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1347 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|))) (-1209) (-1230 |#1|) (-1230 (-406 |#2|))) (T -147))
-((-1347 (*1 *2 *3 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1230 (-406 *5))))) (-1436 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1230 *3)))) (-3978 (*1 *2 *3 *3) (-12 (-4 *4 (-1230 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1230 (-406 *4))))) (-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1230 *5)) (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1230 *3)))) (-3424 (*1 *2 *3) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1230 (-406 *5))))) (-3527 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| -4226 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1230 (-406 *5))))))
-(-10 -7 (-15 -3527 ((-2 (|:| -4226 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3424 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -2609 ((-2 (|:| -4181 (-765)) (|:| -4226 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -3978 (|#1| |#3| |#3|)) (-15 -1436 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1347 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|)))
-((-1963 (((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|)) 31)))
-(((-148 |#1| |#2|) (-10 -7 (-15 -1963 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|)))) (-543) (-165 |#1|)) (T -148))
-((-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5)) (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5)))))
-(-10 -7 (-15 -1963 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|))))
-((-3612 (($ (-1 (-112) |#2|) $) 29)) (-1461 (($ $) 36)) (-1475 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-3176 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3202 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-3977 (((-112) (-1 (-112) |#2|) $) 16)) (-1714 (((-765) (-1 (-112) |#2|) $) 14) (((-765) |#2| $) NIL)) (-3715 (((-112) (-1 (-112) |#2|) $) 15)) (-3548 (((-765) $) 11)))
-(((-149 |#1| |#2|) (-10 -8 (-15 -1461 (|#1| |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3612 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3202 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-765) |#1|))) (-150 |#2|) (-1205)) (T -149))
-NIL
-(-10 -8 (-15 -1461 (|#1| |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3612 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3202 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-765) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-3612 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-1461 (($ $) 41 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4399))) (($ |#1| $) 42 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 40 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 49)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-150 |#1|) (-139) (-1205)) (T -150))
-((-4078 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-150 *3)))) (-3202 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-3176 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-3176 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *3)) (-4 *3 (-1205)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *3)) (-4 *3 (-1205)))) (-3176 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-1475 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-150 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))) (-1461 (*1 *1 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-150 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))))
-(-13 (-487 |t#1|) (-10 -8 (-15 -4078 ($ (-638 |t#1|))) (-15 -3202 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4399)) (PROGN (-15 -3176 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3176 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1475 ($ (-1 (-112) |t#1|) $)) (-15 -3612 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3176 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1475 ($ |t#1| $)) (-15 -1461 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) 85)) (-2252 (((-112) $) NIL)) (-1381 (($ |#2| (-638 (-914))) 55)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3645 (($ (-914)) 47)) (-2390 (((-133)) 23)) (-4064 (((-856) $) 68) (($ (-561)) 45) (($ |#2|) 46)) (-3932 ((|#2| $ (-638 (-914))) 58)) (-3746 (((-765)) 20)) (-2246 (($) 40 T CONST)) (-2257 (($) 43 T CONST)) (-1723 (((-112) $ $) 26)) (-1828 (($ $ |#2|) NIL)) (-1819 (($ $) 34) (($ $ $) 32)) (-1810 (($ $ $) 30)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-151 |#1| |#2| |#3|) (-13 (-1042) (-38 |#2|) (-1261 |#2|) (-10 -8 (-15 -3645 ($ (-914))) (-15 -1381 ($ |#2| (-638 (-914)))) (-15 -3932 (|#2| $ (-638 (-914)))) (-15 -3735 ((-3 $ "failed") $)))) (-914) (-362) (-986 |#1| |#2|)) (T -151))
-((-3735 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-914)) (-4 *3 (-362)) (-14 *4 (-986 *2 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-986 *3 *4)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-914))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-914)) (-4 *2 (-362)) (-14 *5 (-986 *4 *2)))) (-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-638 (-914))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-914)) (-14 *5 (-986 *4 *2)))))
-(-13 (-1042) (-38 |#2|) (-1261 |#2|) (-10 -8 (-15 -3645 ($ (-914))) (-15 -1381 ($ |#2| (-638 (-914)))) (-15 -3932 (|#2| $ (-638 (-914)))) (-15 -3735 ((-3 $ "failed") $))))
-((-2616 (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-3631 (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561))) 64) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920)) 65)) (-3477 (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224))))) 68) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-936 (-224)))) 67) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561))) 59) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920)) 60)))
-(((-152) (-10 -7 (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -3631 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -3631 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -2616 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-936 (-224))))) (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))))))) (T -152))
-((-3477 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 (-224))))))) (-3477 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)) (-5 *3 (-638 (-936 (-224)))))) (-2616 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 *4)))) (|:| |xValues| (-1084 *4)) (|:| |yValues| (-1084 *4)))) (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 *4)))))) (-3631 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561))) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-920)) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))) (-3477 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561))) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-920)) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))))
-(-10 -7 (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -3631 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -3631 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -2616 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-936 (-224))))) (-15 -3477 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-2432 (((-638 (-1125)) $) 15)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-1125) $) 9)) (-1723 (((-112) $ $) NIL)))
-(((-153) (-13 (-1073) (-10 -8 (-15 -2432 ((-638 (-1125)) $)) (-15 -3316 ((-1125) $))))) (T -153))
-((-2432 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-153)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153)))))
-(-13 (-1073) (-10 -8 (-15 -2432 ((-638 (-1125)) $)) (-15 -3316 ((-1125) $))))
-((-2745 (((-638 (-168 |#2|)) |#1| |#2|) 45)))
-(((-154 |#1| |#2|) (-10 -7 (-15 -2745 ((-638 (-168 |#2|)) |#1| |#2|))) (-1230 (-168 (-561))) (-13 (-362) (-842))) (T -154))
-((-2745 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-168 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1230 (-168 (-561)))) (-4 *4 (-13 (-362) (-842))))))
-(-10 -7 (-15 -2745 ((-638 (-168 |#2|)) |#1| |#2|)))
-((-4053 (((-112) $ $) NIL)) (-4322 (((-1204) $) 12)) (-4308 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-155) (-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1204) $))))) (T -155))
-((-4308 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-155)))))
-(-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1204) $))))
-((-4053 (((-112) $ $) NIL)) (-2126 (($) 15)) (-4090 (($) 14)) (-2172 (((-914)) 22)) (-1883 (((-1148) $) NIL)) (-3640 (((-561) $) 19)) (-1701 (((-1110) $) NIL)) (-3998 (($) 16)) (-2999 (($ (-561)) 23)) (-4064 (((-856) $) 29)) (-2593 (($) 17)) (-1723 (((-112) $ $) 13)) (-1810 (($ $ $) 11)) (* (($ (-914) $) 21) (($ (-224) $) 8)))
-(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-914) $)) (-15 * ($ (-224) $)) (-15 -1810 ($ $ $)) (-15 -4090 ($)) (-15 -2126 ($)) (-15 -3998 ($)) (-15 -2593 ($)) (-15 -3640 ((-561) $)) (-15 -2172 ((-914))) (-15 -2999 ($ (-561)))))) (T -156))
-((-1810 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-4090 (*1 *1) (-5 *1 (-156))) (-2126 (*1 *1) (-5 *1 (-156))) (-3998 (*1 *1) (-5 *1 (-156))) (-2593 (*1 *1) (-5 *1 (-156))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-156)))) (-2172 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-156)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-156)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-914) $)) (-15 * ($ (-224) $)) (-15 -1810 ($ $ $)) (-15 -4090 ($)) (-15 -2126 ($)) (-15 -3998 ($)) (-15 -2593 ($)) (-15 -3640 ((-561) $)) (-15 -2172 ((-914))) (-15 -2999 ($ (-561)))))
-((-3375 ((|#2| |#2| (-1082 |#2|)) 88) ((|#2| |#2| (-1166)) 68)) (-3638 ((|#2| |#2| (-1082 |#2|)) 87) ((|#2| |#2| (-1166)) 67)) (-3784 ((|#2| |#2| |#2|) 27)) (-1773 (((-114) (-114)) 99)) (-3141 ((|#2| (-638 |#2|)) 117)) (-2705 ((|#2| (-638 |#2|)) 135)) (-3015 ((|#2| (-638 |#2|)) 125)) (-3745 ((|#2| |#2|) 123)) (-1456 ((|#2| (-638 |#2|)) 111)) (-3652 ((|#2| (-638 |#2|)) 112)) (-1691 ((|#2| (-638 |#2|)) 133)) (-1322 ((|#2| |#2| (-1166)) 56) ((|#2| |#2|) 55)) (-2084 ((|#2| |#2|) 23)) (-3210 ((|#2| |#2| |#2|) 26)) (-3333 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-157 |#1| |#2|) (-10 -7 (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3210 (|#2| |#2| |#2|)) (-15 -3784 (|#2| |#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1322 (|#2| |#2| (-1166))) (-15 -3375 (|#2| |#2| (-1166))) (-15 -3375 (|#2| |#2| (-1082 |#2|))) (-15 -3638 (|#2| |#2| (-1166))) (-15 -3638 (|#2| |#2| (-1082 |#2|))) (-15 -3745 (|#2| |#2|)) (-15 -1691 (|#2| (-638 |#2|))) (-15 -3015 (|#2| (-638 |#2|))) (-15 -2705 (|#2| (-638 |#2|))) (-15 -1456 (|#2| (-638 |#2|))) (-15 -3652 (|#2| (-638 |#2|))) (-15 -3141 (|#2| (-638 |#2|)))) (-13 (-844) (-553)) (-429 |#1|)) (T -157))
-((-3141 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3638 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)))) (-3638 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-1322 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3784 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3210 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *4)) (-4 *4 (-429 *3)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4)))))
-(-10 -7 (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3210 (|#2| |#2| |#2|)) (-15 -3784 (|#2| |#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1322 (|#2| |#2| (-1166))) (-15 -3375 (|#2| |#2| (-1166))) (-15 -3375 (|#2| |#2| (-1082 |#2|))) (-15 -3638 (|#2| |#2| (-1166))) (-15 -3638 (|#2| |#2| (-1082 |#2|))) (-15 -3745 (|#2| |#2|)) (-15 -1691 (|#2| (-638 |#2|))) (-15 -3015 (|#2| (-638 |#2|))) (-15 -2705 (|#2| (-638 |#2|))) (-15 -1456 (|#2| (-638 |#2|))) (-15 -3652 (|#2| (-638 |#2|))) (-15 -3141 (|#2| (-638 |#2|))))
-((-2383 ((|#1| |#1| |#1|) 53)) (-4069 ((|#1| |#1| |#1|) 50)) (-3784 ((|#1| |#1| |#1|) 44)) (-3561 ((|#1| |#1|) 35)) (-1439 ((|#1| |#1| (-638 |#1|)) 43)) (-2084 ((|#1| |#1|) 37)) (-3210 ((|#1| |#1| |#1|) 40)))
-(((-158 |#1|) (-10 -7 (-15 -3210 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -1439 (|#1| |#1| (-638 |#1|))) (-15 -3561 (|#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|))) (-543)) (T -158))
-((-2383 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-4069 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3784 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3561 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))) (-2084 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3210 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(-10 -7 (-15 -3210 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -1439 (|#1| |#1| (-638 |#1|))) (-15 -3561 (|#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)))
-((-3375 (($ $ (-1166)) 12) (($ $ (-1082 $)) 11)) (-3638 (($ $ (-1166)) 10) (($ $ (-1082 $)) 9)) (-3784 (($ $ $) 8)) (-1322 (($ $) 14) (($ $ (-1166)) 13)) (-2084 (($ $) 7)) (-3210 (($ $ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-1421 (((-2 (|:| -2536 (-765)) (|:| -4361 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765)) 69)) (-1420 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|) 51)) (-1419 (((-2 (|:| -4361 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1422 ((|#1| |#3| |#3|) 39)) (-4174 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-1423 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|) 48)))
+(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -1419 ((-2 (|:| -4361 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1420 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -1421 ((-2 (|:| -2536 (-765)) (|:| -4361 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -1422 (|#1| |#3| |#3|)) (-15 -4174 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1423 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|))) (-1209) (-1229 |#1|) (-1229 (-406 |#2|))) (T -147))
+((-1423 (*1 *2 *3 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))) (-4174 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1229 *3)))) (-1422 (*1 *2 *3 *3) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1229 *3)))) (-1420 (*1 *2 *3) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))) (-1419 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -4361 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))))
+(-10 -7 (-15 -1419 ((-2 (|:| -4361 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1420 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -1421 ((-2 (|:| -2536 (-765)) (|:| -4361 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -1422 (|#1| |#3| |#3|)) (-15 -4174 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1423 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|)))
+((-3086 (((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|)) 31)))
+(((-148 |#1| |#2|) (-10 -7 (-15 -3086 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|)))) (-543) (-165 |#1|)) (T -148))
+((-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5)) (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5)))))
+(-10 -7 (-15 -3086 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|))))
+((-4117 (($ (-1 (-112) |#2|) $) 29)) (-1424 (($ $) 36)) (-3810 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4249 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1425 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2098 (((-112) (-1 (-112) |#2|) $) 16)) (-2097 (((-765) (-1 (-112) |#2|) $) 14) (((-765) |#2| $) NIL)) (-2099 (((-112) (-1 (-112) |#2|) $) 15)) (-4364 (((-765) $) 11)))
+(((-149 |#1| |#2|) (-10 -8 (-15 -1424 (|#1| |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|))) (-150 |#2|) (-1204)) (T -149))
+NIL
+(-10 -8 (-15 -1424 (|#1| |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4117 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 41 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400))) (($ |#1| $) 42 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 40 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 49)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-150 |#1|) (-139) (-1204)) (T -150))
+((-3929 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-150 *3)))) (-1425 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-4249 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-4249 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3)) (-4 *3 (-1204)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3)) (-4 *3 (-1204)))) (-4249 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-3810 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) (-1424 (*1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))))
+(-13 (-487 |t#1|) (-10 -8 (-15 -3929 ($ (-635 |t#1|))) (-15 -1425 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4400)) (PROGN (-15 -4249 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4249 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3810 ($ (-1 (-112) |t#1|) $)) (-15 -4117 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -4249 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3810 ($ |t#1| $)) (-15 -1424 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) 85)) (-2545 (((-112) $) NIL)) (-3276 (($ |#2| (-635 (-912))) 55)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1426 (($ (-912)) 47)) (-4318 (((-133)) 23)) (-4353 (((-857) $) 68) (($ (-544)) 45) (($ |#2|) 46)) (-4084 ((|#2| $ (-635 (-912))) 58)) (-3511 (((-765)) 20)) (-3040 (($) 40 T CONST)) (-3046 (($) 43 T CONST)) (-3437 (((-112) $ $) 26)) (-4356 (($ $ |#2|) NIL)) (-4244 (($ $) 34) (($ $ $) 32)) (-4246 (($ $ $) 30)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-151 |#1| |#2| |#3|) (-13 (-1042) (-38 |#2|) (-1261 |#2|) (-10 -8 (-15 -1426 ($ (-912))) (-15 -3276 ($ |#2| (-635 (-912)))) (-15 -4084 (|#2| $ (-635 (-912)))) (-15 -3866 ((-3 $ "failed") $)))) (-912) (-362) (-986 |#1| |#2|)) (T -151))
+((-3866 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-912)) (-4 *3 (-362)) (-14 *4 (-986 *2 *3)))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-986 *3 *4)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-912))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-912)) (-4 *2 (-362)) (-14 *5 (-986 *4 *2)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-912))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-912)) (-14 *5 (-986 *4 *2)))))
+(-13 (-1042) (-38 |#2|) (-1261 |#2|) (-10 -8 (-15 -1426 ($ (-912))) (-15 -3276 ($ |#2| (-635 (-912)))) (-15 -4084 (|#2| $ (-635 (-912)))) (-15 -3866 ((-3 $ "failed") $))))
+((-1428 (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-1427 (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544))) 64) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918)) 65)) (-1593 (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224))))) 68) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-936 (-224)))) 67) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544))) 59) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918)) 60)))
+(((-152) (-10 -7 (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1428 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-936 (-224))))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))))))) (T -152))
+((-1593 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 (-224))))))) (-1593 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-936 (-224)))))) (-1428 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 *4)))) (|:| |xValues| (-1079 *4)) (|:| |yValues| (-1079 *4)))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 *4)))))) (-1427 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)))) (-1593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)))))
+(-10 -7 (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1428 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-936 (-224))))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3582 (((-635 (-1125)) $) 15)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 9)) (-3437 (((-112) $ $) NIL)))
+(((-153) (-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $))))) (T -153))
+((-3582 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-153)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153)))))
+(-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $))))
+((-1478 (((-635 (-167 |#2|)) |#1| |#2|) 45)))
+(((-154 |#1| |#2|) (-10 -7 (-15 -1478 ((-635 (-167 |#2|)) |#1| |#2|))) (-1229 (-167 (-544))) (-13 (-362) (-842))) (T -154))
+((-1478 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-167 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1229 (-167 (-544)))) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -1478 ((-635 (-167 |#2|)) |#1| |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3927 (((-1205) $) 12)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-155) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1205) $))))) (T -155))
+((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-155)))))
+(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1205) $))))
+((-2947 (((-112) $ $) NIL)) (-1430 (($) 15)) (-3484 (($) 14)) (-1429 (((-912)) 22)) (-3643 (((-1148) $) NIL)) (-3339 (((-544) $) 19)) (-3644 (((-1110) $) NIL)) (-3483 (($) 16)) (-3338 (($ (-544)) 23)) (-4353 (((-857) $) 29)) (-3482 (($) 17)) (-3437 (((-112) $ $) 13)) (-4246 (($ $ $) 11)) (* (($ (-912) $) 21) (($ (-224) $) 8)))
+(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-912) $)) (-15 * ($ (-224) $)) (-15 -4246 ($ $ $)) (-15 -3484 ($)) (-15 -1430 ($)) (-15 -3483 ($)) (-15 -3482 ($)) (-15 -3339 ((-544) $)) (-15 -1429 ((-912))) (-15 -3338 ($ (-544)))))) (T -156))
+((-4246 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-3484 (*1 *1) (-5 *1 (-156))) (-1430 (*1 *1) (-5 *1 (-156))) (-3483 (*1 *1) (-5 *1 (-156))) (-3482 (*1 *1) (-5 *1 (-156))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-156)))) (-1429 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-156)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-156)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-912) $)) (-15 * ($ (-224) $)) (-15 -4246 ($ $ $)) (-15 -3484 ($)) (-15 -1430 ($)) (-15 -3483 ($)) (-15 -3482 ($)) (-15 -3339 ((-544) $)) (-15 -1429 ((-912))) (-15 -3338 ($ (-544)))))
+((-1443 ((|#2| |#2| (-1082 |#2|)) 88) ((|#2| |#2| (-1166)) 68)) (-4351 ((|#2| |#2| (-1082 |#2|)) 87) ((|#2| |#2| (-1166)) 67)) (-1440 ((|#2| |#2| |#2|) 27)) (-3430 (((-113) (-113)) 99)) (-1437 ((|#2| (-635 |#2|)) 117)) (-1434 ((|#2| (-635 |#2|)) 135)) (-1433 ((|#2| (-635 |#2|)) 125)) (-1431 ((|#2| |#2|) 123)) (-1435 ((|#2| (-635 |#2|)) 111)) (-1436 ((|#2| (-635 |#2|)) 112)) (-1432 ((|#2| (-635 |#2|)) 133)) (-1444 ((|#2| |#2| (-1166)) 56) ((|#2| |#2|) 55)) (-1438 ((|#2| |#2|) 23)) (-3487 ((|#2| |#2| |#2|) 26)) (-2377 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-157 |#1| |#2|) (-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3487 (|#2| |#2| |#2|)) (-15 -1440 (|#2| |#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -1444 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1082 |#2|))) (-15 -4351 (|#2| |#2| (-1166))) (-15 -4351 (|#2| |#2| (-1082 |#2|))) (-15 -1431 (|#2| |#2|)) (-15 -1432 (|#2| (-635 |#2|))) (-15 -1433 (|#2| (-635 |#2|))) (-15 -1434 (|#2| (-635 |#2|))) (-15 -1435 (|#2| (-635 |#2|))) (-15 -1436 (|#2| (-635 |#2|))) (-15 -1437 (|#2| (-635 |#2|)))) (-13 (-844) (-554)) (-420 |#1|)) (T -157))
+((-1437 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-4351 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)))) (-4351 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-420 *4)))) (-1443 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)))) (-1443 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-420 *4)))) (-1444 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-420 *4)))) (-1444 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-1438 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-1440 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-3487 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *4)) (-4 *4 (-420 *3)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-420 *4)))))
+(-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3487 (|#2| |#2| |#2|)) (-15 -1440 (|#2| |#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -1444 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1082 |#2|))) (-15 -4351 (|#2| |#2| (-1166))) (-15 -4351 (|#2| |#2| (-1082 |#2|))) (-15 -1431 (|#2| |#2|)) (-15 -1432 (|#2| (-635 |#2|))) (-15 -1433 (|#2| (-635 |#2|))) (-15 -1434 (|#2| (-635 |#2|))) (-15 -1435 (|#2| (-635 |#2|))) (-15 -1436 (|#2| (-635 |#2|))) (-15 -1437 (|#2| (-635 |#2|))))
+((-1442 ((|#1| |#1| |#1|) 53)) (-1441 ((|#1| |#1| |#1|) 50)) (-1440 ((|#1| |#1| |#1|) 44)) (-3273 ((|#1| |#1|) 35)) (-1439 ((|#1| |#1| (-635 |#1|)) 43)) (-1438 ((|#1| |#1|) 37)) (-3487 ((|#1| |#1| |#1|) 40)))
+(((-158 |#1|) (-10 -7 (-15 -3487 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -1439 (|#1| |#1| (-635 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1441 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|))) (-543)) (T -158))
+((-1442 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1441 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1440 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3273 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))) (-1438 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3487 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(-10 -7 (-15 -3487 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -1439 (|#1| |#1| (-635 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1441 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)))
+((-1443 (($ $ (-1166)) 12) (($ $ (-1082 $)) 11)) (-4351 (($ $ (-1166)) 10) (($ $ (-1082 $)) 9)) (-1440 (($ $ $) 8)) (-1444 (($ $) 14) (($ $ (-1166)) 13)) (-1438 (($ $) 7)) (-3487 (($ $ $) 6)))
(((-159) (-139)) (T -159))
-((-1322 (*1 *1 *1) (-4 *1 (-159))) (-1322 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-3375 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-3375 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))) (-3638 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-3638 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))))
-(-13 (-142) (-10 -8 (-15 -1322 ($ $)) (-15 -1322 ($ $ (-1166))) (-15 -3375 ($ $ (-1166))) (-15 -3375 ($ $ (-1082 $))) (-15 -3638 ($ $ (-1166))) (-15 -3638 ($ $ (-1082 $)))))
+((-1444 (*1 *1 *1) (-4 *1 (-159))) (-1444 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-1443 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-1443 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))) (-4351 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-4351 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))))
+(-13 (-142) (-10 -8 (-15 -1444 ($ $)) (-15 -1444 ($ $ (-1166))) (-15 -1443 ($ $ (-1166))) (-15 -1443 ($ $ (-1082 $))) (-15 -4351 ($ $ (-1166))) (-15 -4351 ($ $ (-1082 $)))))
(((-142) . T))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-638 (-1125)) $) 9)) (-1723 (((-112) $ $) NIL)))
-(((-160) (-13 (-1073) (-10 -8 (-15 -3316 ((-638 (-1125)) $))))) (T -160))
-((-3316 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-160)))))
-(-13 (-1073) (-10 -8 (-15 -3316 ((-638 (-1125)) $))))
-((-4053 (((-112) $ $) NIL)) (-2929 (($ (-561)) 13) (($ $ $) 14)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 17)) (-1723 (((-112) $ $) 9)))
-(((-161) (-13 (-1090) (-10 -8 (-15 -2929 ($ (-561))) (-15 -2929 ($ $ $))))) (T -161))
-((-2929 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-161)))) (-2929 (*1 *1 *1 *1) (-5 *1 (-161))))
-(-13 (-1090) (-10 -8 (-15 -2929 ($ (-561))) (-15 -2929 ($ $ $))))
-((-1773 (((-114) (-1166)) 97)))
-(((-162) (-10 -7 (-15 -1773 ((-114) (-1166))))) (T -162))
-((-1773 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-114)) (-5 *1 (-162)))))
-(-10 -7 (-15 -1773 ((-114) (-1166))))
-((-1513 ((|#3| |#3|) 19)))
-(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -1513 (|#3| |#3|))) (-1042) (-1230 |#1|) (-1230 |#2|)) (T -163))
-((-1513 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-1230 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1230 *4)))))
-(-10 -7 (-15 -1513 (|#3| |#3|)))
-((-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 216)) (-1736 ((|#2| $) 95)) (-3014 (($ $) 246)) (-4106 (($ $) 240)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 39)) (-4213 (($ $) 244)) (-4085 (($ $) 238)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3979 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 138)) (-1792 (($ $ $) 221)) (-3720 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) 154) (((-682 |#2|) (-682 $)) 148)) (-3176 (($ (-1162 |#2|)) 118) (((-3 $ "failed") (-406 (-1162 |#2|))) NIL)) (-3735 (((-3 $ "failed") $) 208)) (-3063 (((-3 (-406 (-561)) "failed") $) 198)) (-4079 (((-112) $) 193)) (-2573 (((-406 (-561)) $) 196)) (-3400 (((-914)) 88)) (-1771 (($ $ $) 223)) (-3257 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-4111 (($) 235)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 185) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 190)) (-2072 ((|#2| $) 93)) (-1588 (((-1162 |#2|) $) 120)) (-4165 (($ (-1 |#2| |#2|) $) 101)) (-4364 (($ $) 237)) (-3354 (((-1162 |#2|) $) 119)) (-1519 (($ $) 201)) (-1658 (($) 96)) (-4328 (((-417 (-1162 $)) (-1162 $)) 87)) (-3035 (((-417 (-1162 $)) (-1162 $)) 56)) (-1748 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3486 (($ $) 236)) (-1905 (((-765) $) 218)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 228)) (-2753 ((|#2| (-1254 $)) NIL) ((|#2|) 90)) (-3922 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3158 (((-1162 |#2|)) 113)) (-3002 (($ $) 245)) (-4097 (($ $) 239)) (-3752 (((-1254 |#2|) $ (-1254 $)) 127) (((-682 |#2|) (-1254 $) (-1254 $)) NIL) (((-1254 |#2|) $) 109) (((-682 |#2|) (-1254 $)) NIL)) (-4216 (((-1254 |#2|) $) NIL) (($ (-1254 |#2|)) NIL) (((-1162 |#2|) $) NIL) (($ (-1162 |#2|)) NIL) (((-885 (-561)) $) 176) (((-885 (-378)) $) 180) (((-168 (-378)) $) 166) (((-168 (-224)) $) 161) (((-534) $) 172)) (-2076 (($ $) 97)) (-4064 (((-856) $) 137) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-406 (-561))) NIL) (($ $) NIL)) (-3934 (((-1162 |#2|) $) 23)) (-3746 (((-765)) 99)) (-3086 (($ $) 249)) (-4175 (($ $) 243)) (-3064 (($ $) 247)) (-4150 (($ $) 241)) (-2774 ((|#2| $) 232)) (-3076 (($ $) 248)) (-4162 (($ $) 242)) (-2165 (($ $) 156)) (-1723 (((-112) $ $) 103)) (-1746 (((-112) $ $) 192)) (-1819 (($ $) 105) (($ $ $) NIL)) (-1810 (($ $ $) 104)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-561))) 266) (($ $ $) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL)))
-(((-164 |#1| |#2|) (-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -4064 (|#1| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1844 ((-2 (|:| -2385 |#1|) (|:| -4386 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -1905 ((-765) |#1|)) (-15 -1421 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1792 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4216 ((-168 (-224)) |#1|)) (-15 -4216 ((-168 (-378)) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4162 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3086 (|#1| |#1|)) (-15 -4364 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4111 (|#1|)) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -3035 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -4328 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -3257 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2774 (|#2| |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2076 (|#1| |#1|)) (-15 -1658 (|#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3176 ((-3 |#1| "failed") (-406 (-1162 |#2|)))) (-15 -3354 ((-1162 |#2|) |#1|)) (-15 -4216 (|#1| (-1162 |#2|))) (-15 -3176 (|#1| (-1162 |#2|))) (-15 -3158 ((-1162 |#2|))) (-15 -3720 ((-682 |#2|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4216 ((-1162 |#2|) |#1|)) (-15 -2753 (|#2|)) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -1588 ((-1162 |#2|) |#1|)) (-15 -3934 ((-1162 |#2|) |#1|)) (-15 -2753 (|#2| (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -2072 (|#2| |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -3400 ((-914))) (-15 -4064 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164))
-((-3746 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-3400 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-914)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-2753 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-3158 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1162 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))))
-(-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -4064 (|#1| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1844 ((-2 (|:| -2385 |#1|) (|:| -4386 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -1905 ((-765) |#1|)) (-15 -1421 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1792 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4216 ((-168 (-224)) |#1|)) (-15 -4216 ((-168 (-378)) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4162 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3086 (|#1| |#1|)) (-15 -4364 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4111 (|#1|)) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -3035 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -4328 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -3257 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2774 (|#2| |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2076 (|#1| |#1|)) (-15 -1658 (|#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3176 ((-3 |#1| "failed") (-406 (-1162 |#2|)))) (-15 -3354 ((-1162 |#2|) |#1|)) (-15 -4216 (|#1| (-1162 |#2|))) (-15 -3176 (|#1| (-1162 |#2|))) (-15 -3158 ((-1162 |#2|))) (-15 -3720 ((-682 |#2|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4216 ((-1162 |#2|) |#1|)) (-15 -2753 (|#2|)) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -1588 ((-1162 |#2|) |#1|)) (-15 -3934 ((-1162 |#2|) |#1|)) (-15 -2753 (|#2| (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -2072 (|#2| |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -3400 ((-914))) (-15 -4064 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 93 (-4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3012 (($ $) 94 (-4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3163 (((-112) $) 96 (-4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3287 (((-682 |#1|) (-1254 $)) 47) (((-682 |#1|)) 62)) (-1736 ((|#1| $) 53)) (-3014 (($ $) 227 (|has| |#1| (-1190)))) (-4106 (($ $) 210 (|has| |#1| (-1190)))) (-1499 (((-1178 (-914) (-765)) (-561)) 146 (|has| |#1| (-348)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2128 (((-417 (-1162 $)) (-1162 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-2557 (($ $) 113 (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3552 (((-417 $) $) 114 (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-1643 (($ $) 240 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-3698 (((-112) $ $) 104 (|has| |#1| (-306)))) (-1386 (((-765)) 87 (|has| |#1| (-367)))) (-4213 (($ $) 226 (|has| |#1| (-1190)))) (-4085 (($ $) 211 (|has| |#1| (-1190)))) (-3039 (($ $) 225 (|has| |#1| (-1190)))) (-4130 (($ $) 212 (|has| |#1| (-1190)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 169 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 167 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 164)) (-3979 (((-561) $) 168 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 166 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 165)) (-3376 (($ (-1254 |#1|) (-1254 $)) 49) (($ (-1254 |#1|)) 65)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1792 (($ $ $) 108 (|has| |#1| (-306)))) (-2405 (((-682 |#1|) $ (-1254 $)) 54) (((-682 |#1|) $) 60)) (-3720 (((-682 (-561)) (-682 $)) 163 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 162 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-3176 (($ (-1162 |#1|)) 157) (((-3 $ "failed") (-406 (-1162 |#1|))) 154 (|has| |#1| (-362)))) (-3735 (((-3 $ "failed") $) 33)) (-1655 ((|#1| $) 252)) (-3063 (((-3 (-406 (-561)) "failed") $) 245 (|has| |#1| (-543)))) (-4079 (((-112) $) 247 (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) 246 (|has| |#1| (-543)))) (-3400 (((-914)) 55)) (-1362 (($) 90 (|has| |#1| (-367)))) (-1771 (($ $ $) 107 (|has| |#1| (-306)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 102 (|has| |#1| (-306)))) (-3985 (($) 148 (|has| |#1| (-348)))) (-3943 (((-112) $) 149 (|has| |#1| (-348)))) (-3598 (($ $ (-765)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2725 (((-112) $) 115 (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3257 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4111 (($) 237 (|has| |#1| (-1190)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 260 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 259 (|has| |#1| (-879 (-378))))) (-4027 (((-914) $) 151 (|has| |#1| (-348))) (((-827 (-914)) $) 137 (|has| |#1| (-348)))) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 239 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-2072 ((|#1| $) 52)) (-2436 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 111 (|has| |#1| (-306)))) (-1588 (((-1162 |#1|) $) 45 (|has| |#1| (-362)))) (-1597 (($ $ $) 206 (|has| |#1| (-844)))) (-3017 (($ $ $) 205 (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) 261)) (-1335 (((-914) $) 89 (|has| |#1| (-367)))) (-4364 (($ $) 234 (|has| |#1| (-1190)))) (-3354 (((-1162 |#1|) $) 155)) (-1563 (($ (-638 $)) 100 (-4050 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (($ $ $) 99 (-4050 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-1883 (((-1148) $) 9)) (-1519 (($ $) 116 (|has| |#1| (-362)))) (-3767 (($) 142 (|has| |#1| (-348)) CONST)) (-2442 (($ (-914)) 88 (|has| |#1| (-367)))) (-1658 (($) 256)) (-1665 ((|#1| $) 253)) (-1701 (((-1110) $) 10)) (-3194 (($) 159)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 101 (-4050 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-1603 (($ (-638 $)) 98 (-4050 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (($ $ $) 97 (-4050 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 145 (|has| |#1| (-348)))) (-4328 (((-417 (-1162 $)) (-1162 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-3035 (((-417 (-1162 $)) (-1162 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1633 (((-417 $) $) 112 (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 109 (|has| |#1| (-306)))) (-1748 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 92 (-4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 103 (|has| |#1| (-306)))) (-3486 (($ $) 235 (|has| |#1| (-1190)))) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 263 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 262 (|has| |#1| (-512 (-1166) |#1|)))) (-1905 (((-765) $) 105 (|has| |#1| (-306)))) (-2315 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 106 (|has| |#1| (-306)))) (-2753 ((|#1| (-1254 $)) 48) ((|#1|) 61)) (-2768 (((-765) $) 150 (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-348)))) (-3922 (($ $ (-1 |#1| |#1|) (-765)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-638 (-1166)) (-638 (-765))) 129 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 130 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 131 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 132 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 134 (-4050 (-2198 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2198 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-4050 (-2198 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2198 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-3885 (((-682 |#1|) (-1254 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3158 (((-1162 |#1|)) 158)) (-3052 (($ $) 224 (|has| |#1| (-1190)))) (-4140 (($ $) 213 (|has| |#1| (-1190)))) (-2102 (($) 147 (|has| |#1| (-348)))) (-3026 (($ $) 223 (|has| |#1| (-1190)))) (-4118 (($ $) 214 (|has| |#1| (-1190)))) (-3002 (($ $) 222 (|has| |#1| (-1190)))) (-4097 (($ $) 215 (|has| |#1| (-1190)))) (-3752 (((-1254 |#1|) $ (-1254 $)) 51) (((-682 |#1|) (-1254 $) (-1254 $)) 50) (((-1254 |#1|) $) 67) (((-682 |#1|) (-1254 $)) 66)) (-4216 (((-1254 |#1|) $) 64) (($ (-1254 |#1|)) 63) (((-1162 |#1|) $) 170) (($ (-1162 |#1|)) 156) (((-885 (-561)) $) 258 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 257 (|has| |#1| (-609 (-885 (-378))))) (((-168 (-378)) $) 209 (|has| |#1| (-1015))) (((-168 (-224)) $) 208 (|has| |#1| (-1015))) (((-534) $) 207 (|has| |#1| (-609 (-534))))) (-2076 (($ $) 255)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 144 (-4050 (-2198 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (|has| |#1| (-348))))) (-1417 (($ |#1| |#1|) 254)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ (-406 (-561))) 86 (-4050 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) 91 (-4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3666 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (-4050 (-2198 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (|has| |#1| (-144))))) (-3934 (((-1162 |#1|) $) 46)) (-3746 (((-765)) 28)) (-2615 (((-1254 $)) 68)) (-3086 (($ $) 233 (|has| |#1| (-1190)))) (-4175 (($ $) 221 (|has| |#1| (-1190)))) (-3996 (((-112) $ $) 95 (-4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3064 (($ $) 232 (|has| |#1| (-1190)))) (-4150 (($ $) 220 (|has| |#1| (-1190)))) (-3113 (($ $) 231 (|has| |#1| (-1190)))) (-4192 (($ $) 219 (|has| |#1| (-1190)))) (-2774 ((|#1| $) 249 (|has| |#1| (-1190)))) (-2821 (($ $) 230 (|has| |#1| (-1190)))) (-4202 (($ $) 218 (|has| |#1| (-1190)))) (-3099 (($ $) 229 (|has| |#1| (-1190)))) (-4184 (($ $) 217 (|has| |#1| (-1190)))) (-3076 (($ $) 228 (|has| |#1| (-1190)))) (-4162 (($ $) 216 (|has| |#1| (-1190)))) (-2165 (($ $) 250 (|has| |#1| (-1051)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-1 |#1| |#1|) (-765)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-638 (-1166)) (-638 (-765))) 125 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 126 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 127 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 128 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 133 (-4050 (-2198 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2198 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-4050 (-2198 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2198 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-1781 (((-112) $ $) 203 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 202 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 204 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 201 (|has| |#1| (-844)))) (-1828 (($ $ $) 120 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-406 (-561))) 238 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) 236 (|has| |#1| (-1190))) (($ $ (-561)) 117 (|has| |#1| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-561)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-561))) 118 (|has| |#1| (-362)))))
+((-2947 (((-112) $ $) NIL)) (-1445 (($ (-544)) 13) (($ $ $) 14)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17)) (-3437 (((-112) $ $) 9)))
+(((-160) (-13 (-1091) (-10 -8 (-15 -1445 ($ (-544))) (-15 -1445 ($ $ $))))) (T -160))
+((-1445 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-160)))) (-1445 (*1 *1 *1 *1) (-5 *1 (-160))))
+(-13 (-1091) (-10 -8 (-15 -1445 ($ (-544))) (-15 -1445 ($ $ $))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 9)) (-3437 (((-112) $ $) NIL)))
+(((-161) (-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $))))) (T -161))
+((-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-161)))))
+(-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $))))
+((-3430 (((-113) (-1166)) 97)))
+(((-162) (-10 -7 (-15 -3430 ((-113) (-1166))))) (T -162))
+((-3430 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-113)) (-5 *1 (-162)))))
+(-10 -7 (-15 -3430 ((-113) (-1166))))
+((-1683 ((|#3| |#3|) 19)))
+(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -1683 (|#3| |#3|))) (-1042) (-1229 |#1|) (-1229 |#2|)) (T -163))
+((-1683 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-1229 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1229 *4)))))
+(-10 -7 (-15 -1683 (|#3| |#3|)))
+((-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 216)) (-3734 ((|#2| $) 95)) (-3891 (($ $) 246)) (-4046 (($ $) 240)) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 39)) (-3889 (($ $) 244)) (-4045 (($ $) 238)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 140)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 138)) (-2943 (($ $ $) 221)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 154) (((-682 |#2|) (-682 $)) 148)) (-4249 (($ (-1160 |#2|)) 118) (((-3 $ "failed") (-406 (-1160 |#2|))) NIL)) (-3866 (((-3 $ "failed") $) 208)) (-3407 (((-3 (-406 (-544)) "failed") $) 198)) (-3406 (((-112) $) 193)) (-3405 (((-406 (-544)) $) 196)) (-3494 (((-912)) 88)) (-2942 (($ $ $) 223)) (-1446 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-4034 (($) 235)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 185) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 190)) (-3517 ((|#2| $) 93)) (-2164 (((-1160 |#2|) $) 120)) (-4365 (($ (-1 |#2| |#2|) $) 101)) (-4349 (($ $) 237)) (-3463 (((-1160 |#2|) $) 119)) (-2779 (($ $) 201)) (-1448 (($) 96)) (-3087 (((-404 (-1160 $)) (-1160 $)) 87)) (-3088 (((-404 (-1160 $)) (-1160 $)) 56)) (-3865 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-4350 (($ $) 236)) (-1732 (((-765) $) 218)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 228)) (-4164 ((|#2| (-1253 $)) NIL) ((|#2|) 90)) (-4217 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3586 (((-1160 |#2|)) 113)) (-3890 (($ $) 245)) (-4041 (($ $) 239)) (-3625 (((-1253 |#2|) $ (-1253 $)) 127) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 109) (((-682 |#2|) (-1253 $)) NIL)) (-4377 (((-1253 |#2|) $) NIL) (($ (-1253 |#2|)) NIL) (((-1160 |#2|) $) NIL) (($ (-1160 |#2|)) NIL) (((-883 (-544)) $) 176) (((-883 (-377)) $) 180) (((-167 (-377)) $) 166) (((-167 (-224)) $) 161) (((-533) $) 172)) (-3392 (($ $) 97)) (-4353 (((-857) $) 137) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-406 (-544))) NIL) (($ $) NIL)) (-2743 (((-1160 |#2|) $) 23)) (-3511 (((-765)) 99)) (-3897 (($ $) 249)) (-3885 (($ $) 243)) (-3895 (($ $) 247)) (-3883 (($ $) 241)) (-2357 ((|#2| $) 232)) (-3896 (($ $) 248)) (-3884 (($ $) 242)) (-3787 (($ $) 156)) (-3437 (((-112) $ $) 103)) (-3067 (((-112) $ $) 192)) (-4244 (($ $) 105) (($ $ $) NIL)) (-4246 (($ $ $) 104)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-544))) 266) (($ $ $) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL)))
+(((-164 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4353 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-167 (-224)) |#1|)) (-15 -4377 ((-167 (-377)) |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4034 (|#1|)) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -1446 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2357 (|#2| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3392 (|#1| |#1|)) (-15 -1448 (|#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4249 ((-3 |#1| "failed") (-406 (-1160 |#2|)))) (-15 -3463 ((-1160 |#2|) |#1|)) (-15 -4377 (|#1| (-1160 |#2|))) (-15 -4249 (|#1| (-1160 |#2|))) (-15 -3586 ((-1160 |#2|))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -2743 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3517 (|#2| |#1|)) (-15 -3734 (|#2| |#1|)) (-15 -3494 ((-912))) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164))
+((-3511 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-3494 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-912)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-4164 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-3586 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1160 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))))
+(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4353 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-167 (-224)) |#1|)) (-15 -4377 ((-167 (-377)) |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4034 (|#1|)) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -1446 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2357 (|#2| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3392 (|#1| |#1|)) (-15 -1448 (|#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4249 ((-3 |#1| "failed") (-406 (-1160 |#2|)))) (-15 -3463 ((-1160 |#2|) |#1|)) (-15 -4377 (|#1| (-1160 |#2|))) (-15 -4249 (|#1| (-1160 |#2|))) (-15 -3586 ((-1160 |#2|))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -2743 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3517 (|#2| |#1|)) (-15 -3734 (|#2| |#1|)) (-15 -3494 ((-912))) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 93 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-2213 (($ $) 94 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-2211 (((-112) $) 96 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-1929 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-3734 ((|#1| $) 53)) (-3891 (($ $) 227 (|has| |#1| (-1190)))) (-4046 (($ $) 210 (|has| |#1| (-1190)))) (-1819 (((-1177 (-912) (-765)) (-544)) 146 (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4181 (($ $) 113 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-4376 (((-404 $) $) 114 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-3420 (($ $) 240 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-1733 (((-112) $ $) 104 (|has| |#1| (-306)))) (-3521 (((-765)) 87 (|has| |#1| (-367)))) (-3889 (($ $) 226 (|has| |#1| (-1190)))) (-4045 (($ $) 211 (|has| |#1| (-1190)))) (-3893 (($ $) 225 (|has| |#1| (-1190)))) (-4044 (($ $) 212 (|has| |#1| (-1190)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 169 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 167 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 164)) (-3557 (((-544) $) 168 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 166 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 165)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-2943 (($ $ $) 108 (|has| |#1| (-306)))) (-1928 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-2401 (((-682 (-544)) (-682 $)) 163 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 162 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-4249 (($ (-1160 |#1|)) 157) (((-3 $ "failed") (-406 (-1160 |#1|))) 154 (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) 33)) (-4050 ((|#1| $) 252)) (-3407 (((-3 (-406 (-544)) "failed") $) 245 (|has| |#1| (-543)))) (-3406 (((-112) $) 247 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 246 (|has| |#1| (-543)))) (-3494 (((-912)) 55)) (-3377 (($) 90 (|has| |#1| (-367)))) (-2942 (($ $ $) 107 (|has| |#1| (-306)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 102 (|has| |#1| (-306)))) (-3215 (($) 148 (|has| |#1| (-349)))) (-1824 (((-112) $) 149 (|has| |#1| (-349)))) (-1914 (($ $ (-765)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4130 (((-112) $) 115 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1446 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4034 (($) 237 (|has| |#1| (-1190)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 260 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 259 (|has| |#1| (-879 (-377))))) (-4178 (((-912) $) 151 (|has| |#1| (-349))) (((-826 (-912)) $) 137 (|has| |#1| (-349)))) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 239 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3517 ((|#1| $) 52)) (-3848 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 111 (|has| |#1| (-306)))) (-2164 (((-1160 |#1|) $) 45 (|has| |#1| (-362)))) (-2913 (($ $ $) 206 (|has| |#1| (-844)))) (-3242 (($ $ $) 205 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 261)) (-2160 (((-912) $) 89 (|has| |#1| (-367)))) (-4349 (($ $) 234 (|has| |#1| (-1190)))) (-3463 (((-1160 |#1|) $) 155)) (-2041 (($ (-635 $)) 100 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (($ $ $) 99 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 116 (|has| |#1| (-362)))) (-3849 (($) 142 (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) 88 (|has| |#1| (-367)))) (-1448 (($) 256)) (-4051 ((|#1| $) 253)) (-3644 (((-1110) $) 10)) (-2544 (($) 159)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 101 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3545 (($ (-635 $)) 98 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (($ $ $) 97 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 145 (|has| |#1| (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4139 (((-404 $) $) 112 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 109 (|has| |#1| (-306)))) (-3865 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 92 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-306)))) (-4350 (($ $) 235 (|has| |#1| (-1190)))) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 263 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 262 (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) 105 (|has| |#1| (-306)))) (-4206 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106 (|has| |#1| (-306)))) (-4164 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-1915 (((-765) $) 150 (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-349)))) (-4217 (($ $ (-1 |#1| |#1|) (-765)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-635 (-1166)) (-635 (-765))) 129 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 130 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 131 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 132 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 134 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3586 (((-1160 |#1|)) 158)) (-3894 (($ $) 224 (|has| |#1| (-1190)))) (-4043 (($ $) 213 (|has| |#1| (-1190)))) (-1818 (($) 147 (|has| |#1| (-349)))) (-3892 (($ $) 223 (|has| |#1| (-1190)))) (-4042 (($ $) 214 (|has| |#1| (-1190)))) (-3890 (($ $) 222 (|has| |#1| (-1190)))) (-4041 (($ $) 215 (|has| |#1| (-1190)))) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4377 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63) (((-1160 |#1|) $) 170) (($ (-1160 |#1|)) 156) (((-883 (-544)) $) 258 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 257 (|has| |#1| (-609 (-883 (-377))))) (((-167 (-377)) $) 209 (|has| |#1| (-1013))) (((-167 (-224)) $) 208 (|has| |#1| (-1013))) (((-533) $) 207 (|has| |#1| (-609 (-533))))) (-3392 (($ $) 255)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 144 (-3936 (-3240 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (|has| |#1| (-349))))) (-1447 (($ |#1| |#1|) 254)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ (-406 (-544))) 86 (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) 91 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3084 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-3936 (-3240 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (|has| |#1| (-144))))) (-2743 (((-1160 |#1|) $) 46)) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 68)) (-3897 (($ $) 233 (|has| |#1| (-1190)))) (-3885 (($ $) 221 (|has| |#1| (-1190)))) (-2212 (((-112) $ $) 95 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3895 (($ $) 232 (|has| |#1| (-1190)))) (-3883 (($ $) 220 (|has| |#1| (-1190)))) (-3899 (($ $) 231 (|has| |#1| (-1190)))) (-3887 (($ $) 219 (|has| |#1| (-1190)))) (-2357 ((|#1| $) 249 (|has| |#1| (-1190)))) (-3900 (($ $) 230 (|has| |#1| (-1190)))) (-3888 (($ $) 218 (|has| |#1| (-1190)))) (-3898 (($ $) 229 (|has| |#1| (-1190)))) (-3886 (($ $) 217 (|has| |#1| (-1190)))) (-3896 (($ $) 228 (|has| |#1| (-1190)))) (-3884 (($ $) 216 (|has| |#1| (-1190)))) (-3787 (($ $) 250 (|has| |#1| (-1051)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#1| |#1|) (-765)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-635 (-1166)) (-635 (-765))) 125 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 126 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 127 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 128 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 133 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2945 (((-112) $ $) 203 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 202 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 204 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 201 (|has| |#1| (-844)))) (-4356 (($ $ $) 120 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-406 (-544))) 238 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) 236 (|has| |#1| (-1190))) (($ $ (-544)) 117 (|has| |#1| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-544)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-544))) 118 (|has| |#1| (-362)))))
(((-165 |#1|) (-139) (-171)) (T -165))
-((-2072 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1658 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2076 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1417 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1748 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-2165 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-3063 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))))
-(-13 (-718 |t#1| (-1162 |t#1|)) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-877 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -1658 ($)) (-15 -2076 ($ $)) (-15 -1417 ($ |t#1| |t#1|)) (-15 -1665 (|t#1| $)) (-15 -1655 (|t#1| $)) (-15 -2072 (|t#1| $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-6 (-553)) (-15 -1748 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4398)) (-6 -4398) |%noBranch|) (IF (|has| |t#1| (-6 -4395)) (-6 -4395) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-609 (-168 (-224)))) (-6 (-609 (-168 (-378))))) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -2165 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1190)) (PROGN (-6 (-1190)) (-15 -2774 (|t#1| $)) (IF (|has| |t#1| (-995)) (-6 (-995)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3257 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-306)) (-6 (-902)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1190)) ((-95) |has| |#1| (-1190)) ((-102) . T) ((-111 #0# #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4050 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-608 (-856)) . T) ((-171) . T) ((-609 (-168 (-224))) |has| |#1| (-1015)) ((-609 (-168 (-378))) |has| |#1| (-1015)) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-609 #1=(-1162 |#1|)) . T) ((-230 |#1|) . T) ((-232) -4050 (|has| |#1| (-348)) (|has| |#1| (-232))) ((-242) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1190)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4050 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -4050 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4050 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| #1#) . T) ((-408 |#1| #1#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) -4050 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-491) |has| |#1| (-1190)) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-553) -4050 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-641 #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-718 |#1| #1#) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-902) -12 (|has| |#1| (-306)) (|has| |#1| (-902))) ((-913) -4050 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-995) -12 (|has| |#1| (-995)) (|has| |#1| (-1190))) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-348)) ((-1190) |has| |#1| (-1190)) ((-1193) |has| |#1| (-1190)) ((-1205) . T) ((-1209) -4050 (|has| |#1| (-348)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))
-((-1633 (((-417 |#2|) |#2|) 63)))
-(((-166 |#1| |#2|) (-10 -7 (-15 -1633 ((-417 |#2|) |#2|))) (-306) (-1230 (-168 |#1|))) (T -166))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1230 (-168 *4))))))
-(-10 -7 (-15 -1633 ((-417 |#2|) |#2|)))
-((-4165 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -4165 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-171) (-171)) (T -167))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6)))))
-(-10 -7 (-15 -4165 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 33)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3012 (($ $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3163 (((-112) $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3287 (((-682 |#1|) (-1254 $)) NIL) (((-682 |#1|)) NIL)) (-1736 ((|#1| $) NIL)) (-3014 (($ $) NIL (|has| |#1| (-1190)))) (-4106 (($ $) NIL (|has| |#1| (-1190)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-348)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-2557 (($ $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3552 (((-417 $) $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-1643 (($ $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-306)))) (-1386 (((-765)) NIL (|has| |#1| (-367)))) (-4213 (($ $) NIL (|has| |#1| (-1190)))) (-4085 (($ $) NIL (|has| |#1| (-1190)))) (-3039 (($ $) NIL (|has| |#1| (-1190)))) (-4130 (($ $) NIL (|has| |#1| (-1190)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-3376 (($ (-1254 |#1|) (-1254 $)) NIL) (($ (-1254 |#1|)) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1792 (($ $ $) NIL (|has| |#1| (-306)))) (-2405 (((-682 |#1|) $ (-1254 $)) NIL) (((-682 |#1|) $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3176 (($ (-1162 |#1|)) NIL) (((-3 $ "failed") (-406 (-1162 |#1|))) NIL (|has| |#1| (-362)))) (-3735 (((-3 $ "failed") $) NIL)) (-1655 ((|#1| $) 13)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-543)))) (-4079 (((-112) $) NIL (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) NIL (|has| |#1| (-543)))) (-3400 (((-914)) NIL)) (-1362 (($) NIL (|has| |#1| (-367)))) (-1771 (($ $ $) NIL (|has| |#1| (-306)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-306)))) (-3985 (($) NIL (|has| |#1| (-348)))) (-3943 (((-112) $) NIL (|has| |#1| (-348)))) (-3598 (($ $ (-765)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2725 (((-112) $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3257 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4111 (($) NIL (|has| |#1| (-1190)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| |#1| (-879 (-378))))) (-4027 (((-914) $) NIL (|has| |#1| (-348))) (((-827 (-914)) $) NIL (|has| |#1| (-348)))) (-2252 (((-112) $) 35)) (-4343 (($ $ (-561)) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-2072 ((|#1| $) 46)) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-306)))) (-1588 (((-1162 |#1|) $) NIL (|has| |#1| (-362)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1335 (((-914) $) NIL (|has| |#1| (-367)))) (-4364 (($ $) NIL (|has| |#1| (-1190)))) (-3354 (((-1162 |#1|) $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-3767 (($) NIL (|has| |#1| (-348)) CONST)) (-2442 (($ (-914)) NIL (|has| |#1| (-367)))) (-1658 (($) NIL)) (-1665 ((|#1| $) 15)) (-1701 (((-1110) $) NIL)) (-3194 (($) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-306)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| |#1| (-348)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1633 (((-417 $) $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-306)))) (-1748 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 47 (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-306)))) (-3486 (($ $) NIL (|has| |#1| (-1190)))) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-1905 (((-765) $) NIL (|has| |#1| (-306)))) (-2315 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-306)))) (-2753 ((|#1| (-1254 $)) NIL) ((|#1|) NIL)) (-2768 (((-765) $) NIL (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-348)))) (-3922 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-3885 (((-682 |#1|) (-1254 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3158 (((-1162 |#1|)) NIL)) (-3052 (($ $) NIL (|has| |#1| (-1190)))) (-4140 (($ $) NIL (|has| |#1| (-1190)))) (-2102 (($) NIL (|has| |#1| (-348)))) (-3026 (($ $) NIL (|has| |#1| (-1190)))) (-4118 (($ $) NIL (|has| |#1| (-1190)))) (-3002 (($ $) NIL (|has| |#1| (-1190)))) (-4097 (($ $) NIL (|has| |#1| (-1190)))) (-3752 (((-1254 |#1|) $ (-1254 $)) NIL) (((-682 |#1|) (-1254 $) (-1254 $)) NIL) (((-1254 |#1|) $) NIL) (((-682 |#1|) (-1254 $)) NIL)) (-4216 (((-1254 |#1|) $) NIL) (($ (-1254 |#1|)) NIL) (((-1162 |#1|) $) NIL) (($ (-1162 |#1|)) NIL) (((-885 (-561)) $) NIL (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#1| (-609 (-885 (-378))))) (((-168 (-378)) $) NIL (|has| |#1| (-1015))) (((-168 (-224)) $) NIL (|has| |#1| (-1015))) (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-2076 (($ $) 45)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-348))))) (-1417 (($ |#1| |#1|) 37)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) 36) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3666 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3934 (((-1162 |#1|) $) NIL)) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL)) (-3086 (($ $) NIL (|has| |#1| (-1190)))) (-4175 (($ $) NIL (|has| |#1| (-1190)))) (-3996 (((-112) $ $) NIL (-4050 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3064 (($ $) NIL (|has| |#1| (-1190)))) (-4150 (($ $) NIL (|has| |#1| (-1190)))) (-3113 (($ $) NIL (|has| |#1| (-1190)))) (-4192 (($ $) NIL (|has| |#1| (-1190)))) (-2774 ((|#1| $) NIL (|has| |#1| (-1190)))) (-2821 (($ $) NIL (|has| |#1| (-1190)))) (-4202 (($ $) NIL (|has| |#1| (-1190)))) (-3099 (($ $) NIL (|has| |#1| (-1190)))) (-4184 (($ $) NIL (|has| |#1| (-1190)))) (-3076 (($ $) NIL (|has| |#1| (-1190)))) (-4162 (($ $) NIL (|has| |#1| (-1190)))) (-2165 (($ $) NIL (|has| |#1| (-1051)))) (-2246 (($) 28 T CONST)) (-2257 (($) 30 T CONST)) (-3785 (((-1148) $) 23 (|has| |#1| (-822))) (((-1148) $ (-112)) 25 (|has| |#1| (-822))) (((-1259) (-816) $) 26 (|has| |#1| (-822))) (((-1259) (-816) $ (-112)) 27 (|has| |#1| (-822)))) (-3154 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 39)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-561))) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) NIL (|has| |#1| (-1190))) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-561))) NIL (|has| |#1| (-362)))))
-(((-168 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|))) (-171)) (T -168))
-NIL
-(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|)))
-((-4216 (((-885 |#1|) |#3|) 22)))
-(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -4216 ((-885 |#1|) |#3|))) (-1090) (-13 (-609 (-885 |#1|)) (-171)) (-165 |#2|)) (T -169))
-((-4216 (*1 *2 *3) (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-885 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1090)) (-4 *3 (-165 *5)))))
-(-10 -7 (-15 -4216 ((-885 |#1|) |#3|)))
-((-4053 (((-112) $ $) NIL)) (-1440 (((-112) $) 9)) (-3560 (((-112) $ (-112)) 11)) (-1458 (($) 12)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4225 (($ $) 13)) (-4064 (((-856) $) 17)) (-1694 (((-112) $) 8)) (-1450 (((-112) $ (-112)) 10)) (-1723 (((-112) $ $) NIL)))
-(((-170) (-13 (-1090) (-10 -8 (-15 -1458 ($)) (-15 -1694 ((-112) $)) (-15 -1440 ((-112) $)) (-15 -1450 ((-112) $ (-112))) (-15 -3560 ((-112) $ (-112))) (-15 -4225 ($ $))))) (T -170))
-((-1458 (*1 *1) (-5 *1 (-170))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1450 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3560 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-4225 (*1 *1 *1) (-5 *1 (-170))))
-(-13 (-1090) (-10 -8 (-15 -1458 ($)) (-15 -1694 ((-112) $)) (-15 -1440 ((-112) $)) (-15 -1450 ((-112) $ (-112))) (-15 -3560 ((-112) $ (-112))) (-15 -4225 ($ $))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-3517 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1448 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3392 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1447 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-3787 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))))
+(-13 (-718 |t#1| (-1160 |t#1|)) (-411 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-877 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -1448 ($)) (-15 -3392 ($ $)) (-15 -1447 ($ |t#1| |t#1|)) (-15 -4051 (|t#1| $)) (-15 -4050 (|t#1| $)) (-15 -3517 (|t#1| $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-554)) (-15 -3865 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |t#1| (-6 -4396)) (-6 -4396) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1013)) (PROGN (-6 (-609 (-167 (-224)))) (-6 (-609 (-167 (-377))))) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3787 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1190)) (PROGN (-6 (-1190)) (-15 -2357 (|t#1| $)) (IF (|has| |t#1| (-995)) (-6 (-995)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -1446 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-903)) (IF (|has| |t#1| (-306)) (-6 (-903)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1190)) ((-95) |has| |#1| (-1190)) ((-102) . T) ((-111 #1# #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-349)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-349)) (|has| |#1| (-362))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-608 (-857)) . T) ((-171) . T) ((-609 (-167 (-224))) |has| |#1| (-1013)) ((-609 (-167 (-377))) |has| |#1| (-1013)) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-609 #2=(-1160 |#1|)) . T) ((-230 |#1|) . T) ((-232) -3936 (|has| |#1| (-349)) (|has| |#1| (-232))) ((-242) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1190)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-401) |has| |#1| (-349)) ((-367) -3936 (|has| |#1| (-349)) (|has| |#1| (-367))) ((-349) |has| |#1| (-349)) ((-369 |#1| #2#) . T) ((-409 |#1| #2#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-491) |has| |#1| (-1190)) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-641 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-718 |#1| #2#) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-903) -12 (|has| |#1| (-306)) (|has| |#1| (-903))) ((-914) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-995) -12 (|has| |#1| (-995)) (|has| |#1| (-1190))) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-349)) ((-1190) |has| |#1| (-1190)) ((-1193) |has| |#1| (-1190)) ((-1204) . T) ((-1209) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))
+((-4139 (((-404 |#2|) |#2|) 63)))
+(((-166 |#1| |#2|) (-10 -7 (-15 -4139 ((-404 |#2|) |#2|))) (-306) (-1229 (-167 |#1|))) (T -166))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1229 (-167 *4))))))
+(-10 -7 (-15 -4139 ((-404 |#2|) |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 33)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-2213 (($ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-2211 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-1929 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-3734 ((|#1| $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-1190)))) (-4046 (($ $) NIL (|has| |#1| (-1190)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4181 (($ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-4376 (((-404 $) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-3420 (($ $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-306)))) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-3889 (($ $) NIL (|has| |#1| (-1190)))) (-4045 (($ $) NIL (|has| |#1| (-1190)))) (-3893 (($ $) NIL (|has| |#1| (-1190)))) (-4044 (($ $) NIL (|has| |#1| (-1190)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2943 (($ $ $) NIL (|has| |#1| (-306)))) (-1928 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-4249 (($ (-1160 |#1|)) NIL) (((-3 $ "failed") (-406 (-1160 |#1|))) NIL (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-4050 ((|#1| $) 13)) (-3407 (((-3 (-406 (-544)) #3="failed") $) NIL (|has| |#1| (-543)))) (-3406 (((-112) $) NIL (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| |#1| (-543)))) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL (|has| |#1| (-306)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-306)))) (-3215 (($) NIL (|has| |#1| (-349)))) (-1824 (((-112) $) NIL (|has| |#1| (-349)))) (-1914 (($ $ (-765)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4130 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1446 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4034 (($) NIL (|has| |#1| (-1190)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| |#1| (-879 (-377))))) (-4178 (((-912) $) NIL (|has| |#1| (-349))) (((-826 (-912)) $) NIL (|has| |#1| (-349)))) (-2545 (((-112) $) 35)) (-3394 (($ $ (-544)) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3517 ((|#1| $) 46)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #4="failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-2164 (((-1160 |#1|) $) NIL (|has| |#1| (-362)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-4349 (($ $) NIL (|has| |#1| (-1190)))) (-3463 (((-1160 |#1|) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-3849 (($) NIL (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-1448 (($) NIL)) (-4051 ((|#1| $) 15)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-306)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4139 (((-404 $) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-306)))) (-3865 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 47 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-4350 (($ $) NIL (|has| |#1| (-1190)))) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) NIL (|has| |#1| (-306)))) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-306)))) (-4164 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-349)))) (-4217 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3586 (((-1160 |#1|)) NIL)) (-3894 (($ $) NIL (|has| |#1| (-1190)))) (-4043 (($ $) NIL (|has| |#1| (-1190)))) (-1818 (($) NIL (|has| |#1| (-349)))) (-3892 (($ $) NIL (|has| |#1| (-1190)))) (-4042 (($ $) NIL (|has| |#1| (-1190)))) (-3890 (($ $) NIL (|has| |#1| (-1190)))) (-4041 (($ $) NIL (|has| |#1| (-1190)))) (-3625 (((-1253 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-4377 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL) (((-1160 |#1|) $) NIL) (($ (-1160 |#1|)) NIL) (((-883 (-544)) $) NIL (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#1| (-609 (-883 (-377))))) (((-167 (-377)) $) NIL (|has| |#1| (-1013))) (((-167 (-224)) $) NIL (|has| |#1| (-1013))) (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3392 (($ $) 45)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-349))))) (-1447 (($ |#1| |#1|) 37)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) 36) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-3084 (($ $) NIL (|has| |#1| (-349))) (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-2743 (((-1160 |#1|) $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL)) (-3897 (($ $) NIL (|has| |#1| (-1190)))) (-3885 (($ $) NIL (|has| |#1| (-1190)))) (-2212 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-3895 (($ $) NIL (|has| |#1| (-1190)))) (-3883 (($ $) NIL (|has| |#1| (-1190)))) (-3899 (($ $) NIL (|has| |#1| (-1190)))) (-3887 (($ $) NIL (|has| |#1| (-1190)))) (-2357 ((|#1| $) NIL (|has| |#1| (-1190)))) (-3900 (($ $) NIL (|has| |#1| (-1190)))) (-3888 (($ $) NIL (|has| |#1| (-1190)))) (-3898 (($ $) NIL (|has| |#1| (-1190)))) (-3886 (($ $) NIL (|has| |#1| (-1190)))) (-3896 (($ $) NIL (|has| |#1| (-1190)))) (-3884 (($ $) NIL (|has| |#1| (-1190)))) (-3787 (($ $) NIL (|has| |#1| (-1051)))) (-3040 (($) 28 T CONST)) (-3046 (($) 30 T CONST)) (-2879 (((-1148) $) 23 (|has| |#1| (-815))) (((-1148) $ (-112)) 25 (|has| |#1| (-815))) (((-1259) (-817) $) 26 (|has| |#1| (-815))) (((-1259) (-817) $ (-112)) 27 (|has| |#1| (-815)))) (-3051 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 39)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-544))) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) NIL (|has| |#1| (-1190))) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-544))) NIL (|has| |#1| (-362)))))
+(((-167 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-171)) (T -167))
+NIL
+(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|)))
+((-4365 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -4365 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-171) (-171)) (T -168))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-167 *6)) (-5 *1 (-168 *5 *6)))))
+(-10 -7 (-15 -4365 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|))))
+((-4377 (((-883 |#1|) |#3|) 22)))
+(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -4377 ((-883 |#1|) |#3|))) (-1091) (-13 (-609 (-883 |#1|)) (-171)) (-165 |#2|)) (T -169))
+((-4377 (*1 *2 *3) (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-883 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1091)) (-4 *3 (-165 *5)))))
+(-10 -7 (-15 -4377 ((-883 |#1|) |#3|)))
+((-2947 (((-112) $ $) NIL)) (-1450 (((-112) $) 9)) (-1449 (((-112) $ (-112)) 11)) (-4021 (($) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3804 (($ $) 13)) (-4353 (((-857) $) 17)) (-4109 (((-112) $) 8)) (-4268 (((-112) $ (-112)) 10)) (-3437 (((-112) $ $) NIL)))
+(((-170) (-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -4109 ((-112) $)) (-15 -1450 ((-112) $)) (-15 -4268 ((-112) $ (-112))) (-15 -1449 ((-112) $ (-112))) (-15 -3804 ($ $))))) (T -170))
+((-4021 (*1 *1) (-5 *1 (-170))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-4268 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1449 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3804 (*1 *1 *1) (-5 *1 (-170))))
+(-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -4109 ((-112) $)) (-15 -1450 ((-112) $)) (-15 -4268 ((-112) $ (-112))) (-15 -1449 ((-112) $ (-112))) (-15 -3804 ($ $))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-171) (-139)) (T -171))
NIL
-(-13 (-1042) (-111 $ $) (-10 -7 (-6 (-4401 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3550 (($ $) 6)))
+(-13 (-1042) (-111 $ $) (-10 -7 (-6 (-4402 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-1844 (($ $) 6)))
(((-172) (-139)) (T -172))
-((-3550 (*1 *1 *1) (-4 *1 (-172))))
-(-13 (-10 -8 (-15 -3550 ($ $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 ((|#1| $) 74)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) NIL)) (-3642 (($ $) 19)) (-4119 (($ |#1| (-1146 |#1|)) 47)) (-3735 (((-3 $ "failed") $) 116)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-3539 (((-1146 |#1|) $) 81)) (-1938 (((-1146 |#1|) $) 78)) (-4277 (((-1146 |#1|) $) 79)) (-2252 (((-112) $) NIL)) (-3337 (((-1146 |#1|) $) 87)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1563 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL)) (-3702 (($ $ (-561)) 90)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2716 (((-1146 |#1|) $) 88)) (-2651 (((-1146 (-406 |#1|)) $) 14)) (-1337 (($ (-406 |#1|)) 17) (($ |#1| (-1146 |#1|) (-1146 |#1|)) 37)) (-3426 (($ $) 92)) (-4064 (((-856) $) 126) (($ (-561)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-561))) NIL) (($ $) NIL)) (-3746 (((-765)) 63)) (-3996 (((-112) $ $) NIL)) (-3832 (((-1146 (-406 |#1|)) $) 18)) (-2246 (($) 25 T CONST)) (-2257 (($) 28 T CONST)) (-1723 (((-112) $ $) 34)) (-1828 (($ $ $) 114)) (-1819 (($ $) 105) (($ $ $) 102)) (-1810 (($ $ $) 100)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL)))
-(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -1337 ($ (-406 |#1|))) (-15 -1337 ($ |#1| (-1146 |#1|) (-1146 |#1|))) (-15 -4119 ($ |#1| (-1146 |#1|))) (-15 -1938 ((-1146 |#1|) $)) (-15 -4277 ((-1146 |#1|) $)) (-15 -3539 ((-1146 |#1|) $)) (-15 -3892 (|#1| $)) (-15 -3642 ($ $)) (-15 -3832 ((-1146 (-406 |#1|)) $)) (-15 -2651 ((-1146 (-406 |#1|)) $)) (-15 -3337 ((-1146 |#1|) $)) (-15 -2716 ((-1146 |#1|) $)) (-15 -3702 ($ $ (-561))) (-15 -3426 ($ $)))) (-306)) (T -173))
-((-1337 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-1337 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-4119 (*1 *1 *2 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3892 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-3642 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3426 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
-(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -1337 ($ (-406 |#1|))) (-15 -1337 ($ |#1| (-1146 |#1|) (-1146 |#1|))) (-15 -4119 ($ |#1| (-1146 |#1|))) (-15 -1938 ((-1146 |#1|) $)) (-15 -4277 ((-1146 |#1|) $)) (-15 -3539 ((-1146 |#1|) $)) (-15 -3892 (|#1| $)) (-15 -3642 ($ $)) (-15 -3832 ((-1146 (-406 |#1|)) $)) (-15 -2651 ((-1146 (-406 |#1|)) $)) (-15 -3337 ((-1146 |#1|) $)) (-15 -2716 ((-1146 |#1|) $)) (-15 -3702 ($ $ (-561))) (-15 -3426 ($ $))))
-((-1840 (($ (-109) $) 13)) (-2607 (((-3 (-109) "failed") (-1166) $) 12)) (-4064 (((-856) $) 16)) (-1292 (((-638 (-109)) $) 8)))
-(((-174) (-13 (-608 (-856)) (-10 -8 (-15 -1292 ((-638 (-109)) $)) (-15 -1840 ($ (-109) $)) (-15 -2607 ((-3 (-109) "failed") (-1166) $))))) (T -174))
-((-1292 (*1 *2 *1) (-12 (-5 *2 (-638 (-109))) (-5 *1 (-174)))) (-1840 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-2607 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -1292 ((-638 (-109)) $)) (-15 -1840 ($ (-109) $)) (-15 -2607 ((-3 (-109) "failed") (-1166) $))))
-((-2927 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 40)) (-2544 (((-936 |#1|) (-936 |#1|)) 19)) (-1909 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 36)) (-3919 (((-936 |#1|) (-936 |#1|)) 17)) (-2364 (((-936 |#1|) (-936 |#1|)) 25)) (-3613 (((-936 |#1|) (-936 |#1|)) 24)) (-3804 (((-936 |#1|) (-936 |#1|)) 23)) (-3760 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 37)) (-1377 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 35)) (-1935 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 34)) (-2483 (((-936 |#1|) (-936 |#1|)) 18)) (-1735 (((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|) 43)) (-3244 (((-936 |#1|) (-936 |#1|)) 8)) (-3564 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 39)) (-2079 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 38)))
-(((-175 |#1|) (-10 -7 (-15 -3244 ((-936 |#1|) (-936 |#1|))) (-15 -3919 ((-936 |#1|) (-936 |#1|))) (-15 -2483 ((-936 |#1|) (-936 |#1|))) (-15 -2544 ((-936 |#1|) (-936 |#1|))) (-15 -3804 ((-936 |#1|) (-936 |#1|))) (-15 -3613 ((-936 |#1|) (-936 |#1|))) (-15 -2364 ((-936 |#1|) (-936 |#1|))) (-15 -1935 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1377 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1909 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3760 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2079 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3564 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2927 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1735 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|))) (-13 (-362) (-1190) (-995))) (T -175))
-((-1735 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-2927 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-3564 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-2079 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-3760 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1909 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1935 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-2544 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))))
-(-10 -7 (-15 -3244 ((-936 |#1|) (-936 |#1|))) (-15 -3919 ((-936 |#1|) (-936 |#1|))) (-15 -2483 ((-936 |#1|) (-936 |#1|))) (-15 -2544 ((-936 |#1|) (-936 |#1|))) (-15 -3804 ((-936 |#1|) (-936 |#1|))) (-15 -3613 ((-936 |#1|) (-936 |#1|))) (-15 -2364 ((-936 |#1|) (-936 |#1|))) (-15 -1935 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1377 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1909 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3760 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2079 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3564 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2927 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1735 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|)))
-((-3934 ((|#2| |#3|) 27)))
-(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -3934 (|#2| |#3|))) (-171) (-1230 |#1|) (-718 |#1| |#2|)) (T -176))
-((-3934 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1230 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-718 *4 *2)))))
-(-10 -7 (-15 -3934 (|#2| |#3|)))
-((-2199 (((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)) 47 (|has| (-945 |#2|) (-879 |#1|)))))
-(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-945 |#2|) (-879 |#1|)) (-15 -2199 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) |%noBranch|)) (-1090) (-13 (-879 |#1|) (-171)) (-165 |#2|)) (T -177))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *3 (-165 *6)) (-4 (-945 *6) (-879 *5)) (-4 *6 (-13 (-879 *5) (-171))) (-5 *1 (-177 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-945 |#2|) (-879 |#1|)) (-15 -2199 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) |%noBranch|))
-((-2132 (((-638 |#1|) (-638 |#1|) |#1|) 38)) (-2450 (((-638 |#1|) |#1| (-638 |#1|)) 19)) (-2030 (((-638 |#1|) (-638 (-638 |#1|)) (-638 |#1|)) 33) ((|#1| (-638 |#1|) (-638 |#1|)) 31)))
-(((-178 |#1|) (-10 -7 (-15 -2450 ((-638 |#1|) |#1| (-638 |#1|))) (-15 -2030 (|#1| (-638 |#1|) (-638 |#1|))) (-15 -2030 ((-638 |#1|) (-638 (-638 |#1|)) (-638 |#1|))) (-15 -2132 ((-638 |#1|) (-638 |#1|) |#1|))) (-306)) (T -178))
-((-2132 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-2030 (*1 *2 *3 *2) (-12 (-5 *3 (-638 (-638 *4))) (-5 *2 (-638 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-2030 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-2450 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
-(-10 -7 (-15 -2450 ((-638 |#1|) |#1| (-638 |#1|))) (-15 -2030 (|#1| (-638 |#1|) (-638 |#1|))) (-15 -2030 ((-638 |#1|) (-638 (-638 |#1|)) (-638 |#1|))) (-15 -2132 ((-638 |#1|) (-638 |#1|) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4095 (((-1204) $) 13)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1731 (((-1125) $) 10)) (-4064 (((-856) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-179) (-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -4095 ((-1204) $))))) (T -179))
-((-1731 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-179)))))
-(-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -4095 ((-1204) $))))
-((-2319 (((-2 (|:| |start| |#2|) (|:| -2762 (-417 |#2|))) |#2|) 61)) (-1591 ((|#1| |#1|) 54)) (-3253 (((-168 |#1|) |#2|) 84)) (-3904 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-2867 ((|#2| |#2|) 83)) (-1992 (((-417 |#2|) |#2| |#1|) 114) (((-417 |#2|) |#2| |#1| (-112)) 81)) (-2072 ((|#1| |#2|) 113)) (-3665 ((|#2| |#2|) 120)) (-1633 (((-417 |#2|) |#2|) 135) (((-417 |#2|) |#2| |#1|) 32) (((-417 |#2|) |#2| |#1| (-112)) 134)) (-2183 (((-638 (-2 (|:| -2762 (-638 |#2|)) (|:| -3984 |#1|))) |#2| |#2|) 133) (((-638 (-2 (|:| -2762 (-638 |#2|)) (|:| -3984 |#1|))) |#2| |#2| (-112)) 76)) (-2745 (((-638 (-168 |#1|)) |#2| |#1|) 40) (((-638 (-168 |#1|)) |#2|) 41)))
-(((-180 |#1| |#2|) (-10 -7 (-15 -2745 ((-638 (-168 |#1|)) |#2|)) (-15 -2745 ((-638 (-168 |#1|)) |#2| |#1|)) (-15 -2183 ((-638 (-2 (|:| -2762 (-638 |#2|)) (|:| -3984 |#1|))) |#2| |#2| (-112))) (-15 -2183 ((-638 (-2 (|:| -2762 (-638 |#2|)) (|:| -3984 |#1|))) |#2| |#2|)) (-15 -1633 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1633 ((-417 |#2|) |#2| |#1|)) (-15 -1633 ((-417 |#2|) |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -2072 (|#1| |#2|)) (-15 -1992 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1992 ((-417 |#2|) |#2| |#1|)) (-15 -2867 (|#2| |#2|)) (-15 -3904 (|#1| |#2| |#1|)) (-15 -3904 (|#1| |#2|)) (-15 -3253 ((-168 |#1|) |#2|)) (-15 -1591 (|#1| |#1|)) (-15 -2319 ((-2 (|:| |start| |#2|) (|:| -2762 (-417 |#2|))) |#2|))) (-13 (-362) (-842)) (-1230 (-168 |#1|))) (T -180))
-((-2319 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-2 (|:| |start| *3) (|:| -2762 (-417 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-1591 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1230 (-168 *2))))) (-3253 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-842))) (-4 *3 (-1230 *2)))) (-3904 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1230 (-168 *2))))) (-3904 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1230 (-168 *2))))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1230 (-168 *3))))) (-1992 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-1992 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-2072 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1230 (-168 *2))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1230 (-168 *3))))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-1633 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-2183 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-2 (|:| -2762 (-638 *3)) (|:| -3984 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-2183 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842))) (-5 *2 (-638 (-2 (|:| -2762 (-638 *3)) (|:| -3984 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1230 (-168 *5))))) (-2745 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))))
-(-10 -7 (-15 -2745 ((-638 (-168 |#1|)) |#2|)) (-15 -2745 ((-638 (-168 |#1|)) |#2| |#1|)) (-15 -2183 ((-638 (-2 (|:| -2762 (-638 |#2|)) (|:| -3984 |#1|))) |#2| |#2| (-112))) (-15 -2183 ((-638 (-2 (|:| -2762 (-638 |#2|)) (|:| -3984 |#1|))) |#2| |#2|)) (-15 -1633 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1633 ((-417 |#2|) |#2| |#1|)) (-15 -1633 ((-417 |#2|) |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -2072 (|#1| |#2|)) (-15 -1992 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1992 ((-417 |#2|) |#2| |#1|)) (-15 -2867 (|#2| |#2|)) (-15 -3904 (|#1| |#2| |#1|)) (-15 -3904 (|#1| |#2|)) (-15 -3253 ((-168 |#1|) |#2|)) (-15 -1591 (|#1| |#1|)) (-15 -2319 ((-2 (|:| |start| |#2|) (|:| -2762 (-417 |#2|))) |#2|)))
-((-2050 (((-3 |#2| "failed") |#2|) 14)) (-2413 (((-765) |#2|) 16)) (-1503 ((|#2| |#2| |#2|) 18)))
-(((-181 |#1| |#2|) (-10 -7 (-15 -2050 ((-3 |#2| "failed") |#2|)) (-15 -2413 ((-765) |#2|)) (-15 -1503 (|#2| |#2| |#2|))) (-1205) (-667 |#1|)) (T -181))
-((-1503 (*1 *2 *2 *2) (-12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))) (-2413 (*1 *2 *3) (-12 (-4 *4 (-1205)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3)) (-4 *3 (-667 *4)))) (-2050 (*1 *2 *2) (|partial| -12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))))
-(-10 -7 (-15 -2050 ((-3 |#2| "failed") |#2|)) (-15 -2413 ((-765) |#2|)) (-15 -1503 (|#2| |#2| |#2|)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1843 (((-186) $) 7)) (-4064 (((-856) $) 14)) (-1642 (((-638 (-1171)) $) 10)) (-1723 (((-112) $ $) 12)))
-(((-182) (-13 (-1090) (-10 -8 (-15 -1843 ((-186) $)) (-15 -1642 ((-638 (-1171)) $))))) (T -182))
-((-1843 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-182)))))
-(-13 (-1090) (-10 -8 (-15 -1843 ((-186) $)) (-15 -1642 ((-638 (-1171)) $))))
-((-2401 (((-185) $) 8)) (-1474 (((-638 (-112)) $) 13)) (-2004 (((-55) $) 10)))
-(((-183 |#1|) (-10 -8 (-15 -1474 ((-638 (-112)) |#1|)) (-15 -2401 ((-185) |#1|)) (-15 -2004 ((-55) |#1|))) (-184)) (T -183))
-NIL
-(-10 -8 (-15 -1474 ((-638 (-112)) |#1|)) (-15 -2401 ((-185) |#1|)) (-15 -2004 ((-55) |#1|)))
-((-4053 (((-112) $ $) 7)) (-3305 (((-504) $) 14)) (-1883 (((-1148) $) 9)) (-2401 (((-185) $) 18)) (-1701 (((-1110) $) 10)) (-1474 (((-638 (-112)) $) 17)) (-4064 (((-856) $) 11)) (-2004 (((-55) $) 13)) (-1723 (((-112) $ $) 6)))
-(((-184) (-139)) (T -184))
-((-2401 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-638 (-112))))))
-(-13 (-829 (-504)) (-10 -8 (-15 -2401 ((-185) $)) (-15 -1474 ((-638 (-112)) $))))
-(((-102) . T) ((-608 (-856)) . T) ((-829 (-504)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-8 (($) 7 T CONST)) (-4064 (((-856) $) 12)) (-9 (($) 6 T CONST)) (-1723 (((-112) $ $) 10)))
-(((-185) (-13 (-1090) (-10 -8 (-15 -9 ($) -1494) (-15 -8 ($) -1494) (-15 -7 ($) -1494)))) (T -185))
-((-9 (*1 *1) (-5 *1 (-185))) (-8 (*1 *1) (-5 *1 (-185))) (-7 (*1 *1) (-5 *1 (-185))))
-(-13 (-1090) (-10 -8 (-15 -9 ($) -1494) (-15 -8 ($) -1494) (-15 -7 ($) -1494)))
-((-4053 (((-112) $ $) NIL)) (-3305 (((-504) $) 8)) (-1883 (((-1148) $) NIL)) (-2401 (((-185) $) 10)) (-1701 (((-1110) $) NIL)) (-1474 (((-638 (-112)) $) NIL)) (-4064 (((-856) $) NIL)) (-2004 (((-55) $) 12)) (-1723 (((-112) $ $) NIL)))
-(((-186) (-184)) (T -186))
-NIL
-(-184)
-((-1798 ((|#2| |#2|) 28)) (-4324 (((-112) |#2|) 19)) (-1655 (((-315 |#1|) |#2|) 12)) (-1665 (((-315 |#1|) |#2|) 14)) (-2720 ((|#2| |#2| (-1166)) 68) ((|#2| |#2|) 69)) (-3165 (((-168 (-315 |#1|)) |#2|) 10)) (-2678 ((|#2| |#2| (-1166)) 65) ((|#2| |#2|) 59)))
-(((-187 |#1| |#2|) (-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2720 (|#2| |#2| (-1166))) (-15 -2678 (|#2| |#2|)) (-15 -2678 (|#2| |#2| (-1166))) (-15 -1655 ((-315 |#1|) |#2|)) (-15 -1665 ((-315 |#1|) |#2|)) (-15 -4324 ((-112) |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -3165 ((-168 (-315 |#1|)) |#2|))) (-13 (-553) (-844) (-1031 (-561))) (-13 (-27) (-1190) (-429 (-168 |#1|)))) (T -187))
-((-3165 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-1798 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3)))))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-1665 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-1655 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-2678 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3)))))) (-2720 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3)))))))
-(-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2720 (|#2| |#2| (-1166))) (-15 -2678 (|#2| |#2|)) (-15 -2678 (|#2| |#2| (-1166))) (-15 -1655 ((-315 |#1|) |#2|)) (-15 -1665 ((-315 |#1|) |#2|)) (-15 -4324 ((-112) |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -3165 ((-168 (-315 |#1|)) |#2|)))
-((-2388 (((-1254 (-682 (-945 |#1|))) (-1254 (-682 |#1|))) 24)) (-4064 (((-1254 (-682 (-406 (-945 |#1|)))) (-1254 (-682 |#1|))) 33)))
-(((-188 |#1|) (-10 -7 (-15 -2388 ((-1254 (-682 (-945 |#1|))) (-1254 (-682 |#1|)))) (-15 -4064 ((-1254 (-682 (-406 (-945 |#1|)))) (-1254 (-682 |#1|))))) (-171)) (T -188))
-((-4064 (*1 *2 *3) (-12 (-5 *3 (-1254 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1254 (-682 (-406 (-945 *4))))) (-5 *1 (-188 *4)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-1254 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1254 (-682 (-945 *4)))) (-5 *1 (-188 *4)))))
-(-10 -7 (-15 -2388 ((-1254 (-682 (-945 |#1|))) (-1254 (-682 |#1|)))) (-15 -4064 ((-1254 (-682 (-406 (-945 |#1|)))) (-1254 (-682 |#1|)))))
-((-2973 (((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561)))) 66)) (-1616 (((-1168 (-406 (-561))) (-638 (-561)) (-638 (-561))) 75)) (-3933 (((-1168 (-406 (-561))) (-561)) 40)) (-2561 (((-1168 (-406 (-561))) (-561)) 52)) (-1436 (((-406 (-561)) (-1168 (-406 (-561)))) 62)) (-2268 (((-1168 (-406 (-561))) (-561)) 32)) (-3297 (((-1168 (-406 (-561))) (-561)) 48)) (-3622 (((-1168 (-406 (-561))) (-561)) 46)) (-3535 (((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561)))) 60)) (-3426 (((-1168 (-406 (-561))) (-561)) 25)) (-4010 (((-406 (-561)) (-1168 (-406 (-561))) (-1168 (-406 (-561)))) 64)) (-3632 (((-1168 (-406 (-561))) (-561)) 30)) (-2992 (((-1168 (-406 (-561))) (-638 (-561))) 72)))
-(((-189) (-10 -7 (-15 -3426 ((-1168 (-406 (-561))) (-561))) (-15 -3933 ((-1168 (-406 (-561))) (-561))) (-15 -2268 ((-1168 (-406 (-561))) (-561))) (-15 -3632 ((-1168 (-406 (-561))) (-561))) (-15 -3622 ((-1168 (-406 (-561))) (-561))) (-15 -3297 ((-1168 (-406 (-561))) (-561))) (-15 -2561 ((-1168 (-406 (-561))) (-561))) (-15 -4010 ((-406 (-561)) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -3535 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -1436 ((-406 (-561)) (-1168 (-406 (-561))))) (-15 -2973 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -2992 ((-1168 (-406 (-561))) (-638 (-561)))) (-15 -1616 ((-1168 (-406 (-561))) (-638 (-561)) (-638 (-561)))))) (T -189))
-((-1616 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-2973 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561))) (-5 *1 (-189)))) (-3535 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-4010 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561))) (-5 *1 (-189)))) (-2561 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3297 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3632 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-2268 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3426 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
-(-10 -7 (-15 -3426 ((-1168 (-406 (-561))) (-561))) (-15 -3933 ((-1168 (-406 (-561))) (-561))) (-15 -2268 ((-1168 (-406 (-561))) (-561))) (-15 -3632 ((-1168 (-406 (-561))) (-561))) (-15 -3622 ((-1168 (-406 (-561))) (-561))) (-15 -3297 ((-1168 (-406 (-561))) (-561))) (-15 -2561 ((-1168 (-406 (-561))) (-561))) (-15 -4010 ((-406 (-561)) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -3535 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -1436 ((-406 (-561)) (-1168 (-406 (-561))))) (-15 -2973 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -2992 ((-1168 (-406 (-561))) (-638 (-561)))) (-15 -1616 ((-1168 (-406 (-561))) (-638 (-561)) (-638 (-561)))))
-((-3955 (((-417 (-1162 (-561))) (-561)) 28)) (-1343 (((-638 (-1162 (-561))) (-561)) 23)) (-2732 (((-1162 (-561)) (-561)) 21)))
-(((-190) (-10 -7 (-15 -1343 ((-638 (-1162 (-561))) (-561))) (-15 -2732 ((-1162 (-561)) (-561))) (-15 -3955 ((-417 (-1162 (-561))) (-561))))) (T -190))
-((-3955 (*1 *2 *3) (-12 (-5 *2 (-417 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))) (-2732 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-190)) (-5 *3 (-561)))) (-1343 (*1 *2 *3) (-12 (-5 *2 (-638 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))))
-(-10 -7 (-15 -1343 ((-638 (-1162 (-561))) (-561))) (-15 -2732 ((-1162 (-561)) (-561))) (-15 -3955 ((-417 (-1162 (-561))) (-561))))
-((-3454 (((-1146 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 103)) (-3103 (((-638 (-1148)) (-1146 (-224))) NIL)) (-4218 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 79)) (-3029 (((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224)))) NIL)) (-2708 (((-638 (-1148)) (-638 (-224))) NIL)) (-3872 (((-224) (-1084 (-837 (-224)))) 24)) (-2495 (((-224) (-1084 (-837 (-224)))) 25)) (-2397 (((-378) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 96)) (-2064 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-3496 (((-1148) (-224)) NIL)) (-2163 (((-1148) (-638 (-1148))) 20)) (-3215 (((-1028) (-1166) (-1166) (-1028)) 13)))
-(((-191) (-10 -7 (-15 -4218 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2064 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3872 ((-224) (-1084 (-837 (-224))))) (-15 -2495 ((-224) (-1084 (-837 (-224))))) (-15 -2397 ((-378) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3029 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -3454 ((-1146 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3496 ((-1148) (-224))) (-15 -2708 ((-638 (-1148)) (-638 (-224)))) (-15 -3103 ((-638 (-1148)) (-1146 (-224)))) (-15 -2163 ((-1148) (-638 (-1148)))) (-15 -3215 ((-1028) (-1166) (-1166) (-1028))))) (T -191))
-((-3215 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-191)))) (-3029 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166)) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-191)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-191)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191)))))
-(-10 -7 (-15 -4218 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2064 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3872 ((-224) (-1084 (-837 (-224))))) (-15 -2495 ((-224) (-1084 (-837 (-224))))) (-15 -2397 ((-378) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3029 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -3454 ((-1146 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3496 ((-1148) (-224))) (-15 -2708 ((-638 (-1148)) (-638 (-224)))) (-15 -3103 ((-638 (-1148)) (-1146 (-224)))) (-15 -2163 ((-1148) (-638 (-1148)))) (-15 -3215 ((-1028) (-1166) (-1166) (-1028))))
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 55) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-1844 (*1 *1 *1) (-4 *1 (-172))))
+(-13 (-10 -8 (-15 -1844 ($ $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 ((|#1| $) 74)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-1455 (($ $) 19)) (-1459 (($ |#1| (-1143 |#1|)) 47)) (-3866 (((-3 $ "failed") $) 116)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-1456 (((-1143 |#1|) $) 81)) (-1458 (((-1143 |#1|) $) 78)) (-1457 (((-1143 |#1|) $) 79)) (-2545 (((-112) $) NIL)) (-1452 (((-1143 |#1|) $) 87)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-4175 (($ $ (-544)) 90)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1451 (((-1143 |#1|) $) 88)) (-1453 (((-1143 (-406 |#1|)) $) 14)) (-2994 (($ (-406 |#1|)) 17) (($ |#1| (-1143 |#1|) (-1143 |#1|)) 37)) (-3274 (($ $) 92)) (-4353 (((-857) $) 126) (($ (-544)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-544))) NIL) (($ $) NIL)) (-3511 (((-765)) 63)) (-2212 (((-112) $ $) NIL)) (-1454 (((-1143 (-406 |#1|)) $) 18)) (-3040 (($) 25 T CONST)) (-3046 (($) 28 T CONST)) (-3437 (((-112) $ $) 34)) (-4356 (($ $ $) 114)) (-4244 (($ $) 105) (($ $ $) 102)) (-4246 (($ $ $) 100)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL)))
+(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -2994 ($ (-406 |#1|))) (-15 -2994 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -1459 ($ |#1| (-1143 |#1|))) (-15 -1458 ((-1143 |#1|) $)) (-15 -1457 ((-1143 |#1|) $)) (-15 -1456 ((-1143 |#1|) $)) (-15 -3514 (|#1| $)) (-15 -1455 ($ $)) (-15 -1454 ((-1143 (-406 |#1|)) $)) (-15 -1453 ((-1143 (-406 |#1|)) $)) (-15 -1452 ((-1143 |#1|) $)) (-15 -1451 ((-1143 |#1|) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $)))) (-306)) (T -173))
+((-2994 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-2994 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1459 (*1 *1 *2 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3514 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3274 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -2994 ($ (-406 |#1|))) (-15 -2994 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -1459 ($ |#1| (-1143 |#1|))) (-15 -1458 ((-1143 |#1|) $)) (-15 -1457 ((-1143 |#1|) $)) (-15 -1456 ((-1143 |#1|) $)) (-15 -3514 (|#1| $)) (-15 -1455 ($ $)) (-15 -1454 ((-1143 (-406 |#1|)) $)) (-15 -1453 ((-1143 (-406 |#1|)) $)) (-15 -1452 ((-1143 |#1|) $)) (-15 -1451 ((-1143 |#1|) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $))))
+((-1460 (($ (-109) $) 13)) (-3622 (((-3 (-109) "failed") (-1166) $) 12)) (-4353 (((-857) $) 16)) (-1461 (((-635 (-109)) $) 8)))
+(((-174) (-13 (-608 (-857)) (-10 -8 (-15 -1461 ((-635 (-109)) $)) (-15 -1460 ($ (-109) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $))))) (T -174))
+((-1461 (*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174)))) (-1460 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-3622 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -1461 ((-635 (-109)) $)) (-15 -1460 ($ (-109) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $))))
+((-1474 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 40)) (-1465 (((-936 |#1|) (-936 |#1|)) 19)) (-1470 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 36)) (-1463 (((-936 |#1|) (-936 |#1|)) 17)) (-1468 (((-936 |#1|) (-936 |#1|)) 25)) (-1467 (((-936 |#1|) (-936 |#1|)) 24)) (-1466 (((-936 |#1|) (-936 |#1|)) 23)) (-1471 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 37)) (-1469 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 35)) (-1787 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 34)) (-1464 (((-936 |#1|) (-936 |#1|)) 18)) (-1475 (((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|) 43)) (-1462 (((-936 |#1|) (-936 |#1|)) 8)) (-1473 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 39)) (-1472 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 38)))
+(((-175 |#1|) (-10 -7 (-15 -1462 ((-936 |#1|) (-936 |#1|))) (-15 -1463 ((-936 |#1|) (-936 |#1|))) (-15 -1464 ((-936 |#1|) (-936 |#1|))) (-15 -1465 ((-936 |#1|) (-936 |#1|))) (-15 -1466 ((-936 |#1|) (-936 |#1|))) (-15 -1467 ((-936 |#1|) (-936 |#1|))) (-15 -1468 ((-936 |#1|) (-936 |#1|))) (-15 -1787 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1469 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1470 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1471 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1472 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1473 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1474 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1475 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|))) (-13 (-362) (-1190) (-995))) (T -175))
+((-1475 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1471 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1469 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1787 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1466 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1464 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1463 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))))
+(-10 -7 (-15 -1462 ((-936 |#1|) (-936 |#1|))) (-15 -1463 ((-936 |#1|) (-936 |#1|))) (-15 -1464 ((-936 |#1|) (-936 |#1|))) (-15 -1465 ((-936 |#1|) (-936 |#1|))) (-15 -1466 ((-936 |#1|) (-936 |#1|))) (-15 -1467 ((-936 |#1|) (-936 |#1|))) (-15 -1468 ((-936 |#1|) (-936 |#1|))) (-15 -1787 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1469 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1470 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1471 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1472 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1473 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1474 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1475 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|)))
+((-2743 ((|#2| |#3|) 27)))
+(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -2743 (|#2| |#3|))) (-171) (-1229 |#1|) (-718 |#1| |#2|)) (T -176))
+((-2743 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1229 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-718 *4 *2)))))
+(-10 -7 (-15 -2743 (|#2| |#3|)))
+((-3178 (((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)) 47 (|has| (-939 |#2|) (-879 |#1|)))))
+(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-939 |#2|) (-879 |#1|)) (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) |%noBranch|)) (-1091) (-13 (-879 |#1|) (-171)) (-165 |#2|)) (T -177))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *3 (-165 *6)) (-4 (-939 *6) (-879 *5)) (-4 *6 (-13 (-879 *5) (-171))) (-5 *1 (-177 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-939 |#2|) (-879 |#1|)) (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) |%noBranch|))
+((-1477 (((-635 |#1|) (-635 |#1|) |#1|) 38)) (-1476 (((-635 |#1|) |#1| (-635 |#1|)) 19)) (-2232 (((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|)) 33) ((|#1| (-635 |#1|) (-635 |#1|)) 31)))
+(((-178 |#1|) (-10 -7 (-15 -1476 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2232 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2232 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -1477 ((-635 |#1|) (-635 |#1|) |#1|))) (-306)) (T -178))
+((-1477 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-2232 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-2232 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-1476 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(-10 -7 (-15 -1476 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2232 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2232 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -1477 ((-635 |#1|) (-635 |#1|) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 10)) (-4353 (((-857) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-179) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))) (T -179))
+((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-179)))))
+(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))
+((-1486 (((-2 (|:| |start| |#2|) (|:| -2812 (-404 |#2|))) |#2|) 61)) (-1485 ((|#1| |#1|) 54)) (-1484 (((-167 |#1|) |#2|) 84)) (-1483 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-1482 ((|#2| |#2|) 83)) (-1481 (((-404 |#2|) |#2| |#1|) 114) (((-404 |#2|) |#2| |#1| (-112)) 81)) (-3517 ((|#1| |#2|) 113)) (-1480 ((|#2| |#2|) 120)) (-4139 (((-404 |#2|) |#2|) 135) (((-404 |#2|) |#2| |#1|) 32) (((-404 |#2|) |#2| |#1| (-112)) 134)) (-1479 (((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2|) 133) (((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2| (-112)) 76)) (-1478 (((-635 (-167 |#1|)) |#2| |#1|) 40) (((-635 (-167 |#1|)) |#2|) 41)))
+(((-180 |#1| |#2|) (-10 -7 (-15 -1478 ((-635 (-167 |#1|)) |#2|)) (-15 -1478 ((-635 (-167 |#1|)) |#2| |#1|)) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2| (-112))) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2|)) (-15 -4139 ((-404 |#2|) |#2| |#1| (-112))) (-15 -4139 ((-404 |#2|) |#2| |#1|)) (-15 -4139 ((-404 |#2|) |#2|)) (-15 -1480 (|#2| |#2|)) (-15 -3517 (|#1| |#2|)) (-15 -1481 ((-404 |#2|) |#2| |#1| (-112))) (-15 -1481 ((-404 |#2|) |#2| |#1|)) (-15 -1482 (|#2| |#2|)) (-15 -1483 (|#1| |#2| |#1|)) (-15 -1483 (|#1| |#2|)) (-15 -1484 ((-167 |#1|) |#2|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 ((-2 (|:| |start| |#2|) (|:| -2812 (-404 |#2|))) |#2|))) (-13 (-362) (-842)) (-1229 (-167 |#1|))) (T -180))
+((-1486 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-2 (|:| |start| *3) (|:| -2812 (-404 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1485 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1484 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-842))) (-4 *3 (-1229 *2)))) (-1483 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1483 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1229 (-167 *3))))) (-1481 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1481 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-3517 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1229 (-167 *3))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-4139 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1479 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1479 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842))) (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1229 (-167 *5))))) (-1478 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))))
+(-10 -7 (-15 -1478 ((-635 (-167 |#1|)) |#2|)) (-15 -1478 ((-635 (-167 |#1|)) |#2| |#1|)) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2| (-112))) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2|)) (-15 -4139 ((-404 |#2|) |#2| |#1| (-112))) (-15 -4139 ((-404 |#2|) |#2| |#1|)) (-15 -4139 ((-404 |#2|) |#2|)) (-15 -1480 (|#2| |#2|)) (-15 -3517 (|#1| |#2|)) (-15 -1481 ((-404 |#2|) |#2| |#1| (-112))) (-15 -1481 ((-404 |#2|) |#2| |#1|)) (-15 -1482 (|#2| |#2|)) (-15 -1483 (|#1| |#2| |#1|)) (-15 -1483 (|#1| |#2|)) (-15 -1484 ((-167 |#1|) |#2|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 ((-2 (|:| |start| |#2|) (|:| -2812 (-404 |#2|))) |#2|)))
+((-1487 (((-3 |#2| "failed") |#2|) 14)) (-1488 (((-765) |#2|) 16)) (-1489 ((|#2| |#2| |#2|) 18)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -1487 ((-3 |#2| "failed") |#2|)) (-15 -1488 ((-765) |#2|)) (-15 -1489 (|#2| |#2| |#2|))) (-1204) (-667 |#1|)) (T -181))
+((-1489 (*1 *2 *2 *2) (-12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-1204)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3)) (-4 *3 (-667 *4)))) (-1487 (*1 *2 *2) (|partial| -12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))))
+(-10 -7 (-15 -1487 ((-3 |#2| "failed") |#2|)) (-15 -1488 ((-765) |#2|)) (-15 -1489 (|#2| |#2| |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3949 (((-504) $) 8)) (-3643 (((-1148) $) NIL)) (-1493 (((-186) $) 10)) (-3644 (((-1110) $) NIL)) (-1490 (((-684 $) (-1166)) 18)) (-1492 (((-635 (-112)) $) NIL)) (-4353 (((-857) $) NIL)) (-2900 (((-55) $) 12)) (-3437 (((-112) $ $) NIL)))
+(((-182) (-13 (-185) (-10 -8 (-15 -1490 ((-684 $) (-1166)))))) (T -182))
+((-1490 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-684 (-182))) (-5 *1 (-182)))))
+(-13 (-185) (-10 -8 (-15 -1490 ((-684 $) (-1166)))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1566 (((-182) $) 7)) (-4353 (((-857) $) 14)) (-1491 (((-635 (-1171)) $) 10)) (-3437 (((-112) $ $) 12)))
+(((-183) (-13 (-1091) (-10 -8 (-15 -1566 ((-182) $)) (-15 -1491 ((-635 (-1171)) $))))) (T -183))
+((-1566 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-183)))))
+(-13 (-1091) (-10 -8 (-15 -1566 ((-182) $)) (-15 -1491 ((-635 (-1171)) $))))
+((-1493 (((-186) $) 8)) (-1492 (((-635 (-112)) $) 13)) (-2900 (((-55) $) 10)))
+(((-184 |#1|) (-10 -8 (-15 -1492 ((-635 (-112)) |#1|)) (-15 -1493 ((-186) |#1|)) (-15 -2900 ((-55) |#1|))) (-185)) (T -184))
+NIL
+(-10 -8 (-15 -1492 ((-635 (-112)) |#1|)) (-15 -1493 ((-186) |#1|)) (-15 -2900 ((-55) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3949 (((-504) $) 14)) (-3643 (((-1148) $) 9)) (-1493 (((-186) $) 18)) (-3644 (((-1110) $) 10)) (-1492 (((-635 (-112)) $) 17)) (-4353 (((-857) $) 11)) (-2900 (((-55) $) 13)) (-3437 (((-112) $ $) 6)))
+(((-185) (-139)) (T -185))
+((-1493 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-635 (-112))))))
+(-13 (-830 (-504)) (-10 -8 (-15 -1493 ((-186) $)) (-15 -1492 ((-635 (-112)) $))))
+(((-102) . T) ((-608 (-857)) . T) ((-830 (-504)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-8 (($) 7 T CONST)) (-4353 (((-857) $) 12)) (-9 (($) 6 T CONST)) (-3437 (((-112) $ $) 10)))
+(((-186) (-13 (-1091) (-10 -8 (-15 -9 ($) -4359) (-15 -8 ($) -4359) (-15 -7 ($) -4359)))) (T -186))
+((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186))))
+(-13 (-1091) (-10 -8 (-15 -9 ($) -4359) (-15 -8 ($) -4359) (-15 -7 ($) -4359)))
+((-4049 ((|#2| |#2|) 28)) (-4052 (((-112) |#2|) 19)) (-4050 (((-313 |#1|) |#2|) 12)) (-4051 (((-313 |#1|) |#2|) 14)) (-4047 ((|#2| |#2| (-1166)) 68) ((|#2| |#2|) 69)) (-4053 (((-167 (-313 |#1|)) |#2|) 10)) (-4048 ((|#2| |#2| (-1166)) 65) ((|#2| |#2|) 59)))
+(((-187 |#1| |#2|) (-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4050 ((-313 |#1|) |#2|)) (-15 -4051 ((-313 |#1|) |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4053 ((-167 (-313 |#1|)) |#2|))) (-13 (-554) (-844) (-1031 (-544))) (-13 (-27) (-1190) (-420 (-167 |#1|)))) (T -187))
+((-4053 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-167 (-313 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4050 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4048 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))) (-4047 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))))
+(-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4050 ((-313 |#1|) |#2|)) (-15 -4051 ((-313 |#1|) |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4053 ((-167 (-313 |#1|)) |#2|)))
+((-1497 (((-1253 (-682 (-939 |#1|))) (-1253 (-682 |#1|))) 24)) (-4353 (((-1253 (-682 (-406 (-939 |#1|)))) (-1253 (-682 |#1|))) 33)))
+(((-188 |#1|) (-10 -7 (-15 -1497 ((-1253 (-682 (-939 |#1|))) (-1253 (-682 |#1|)))) (-15 -4353 ((-1253 (-682 (-406 (-939 |#1|)))) (-1253 (-682 |#1|))))) (-171)) (T -188))
+((-4353 (*1 *2 *3) (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1253 (-682 (-406 (-939 *4))))) (-5 *1 (-188 *4)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1253 (-682 (-939 *4)))) (-5 *1 (-188 *4)))))
+(-10 -7 (-15 -1497 ((-1253 (-682 (-939 |#1|))) (-1253 (-682 |#1|)))) (-15 -4353 ((-1253 (-682 (-406 (-939 |#1|)))) (-1253 (-682 |#1|)))))
+((-1505 (((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544)))) 66)) (-1507 (((-1168 (-406 (-544))) (-635 (-544)) (-635 (-544))) 75)) (-1498 (((-1168 (-406 (-544))) (-544)) 40)) (-4261 (((-1168 (-406 (-544))) (-544)) 52)) (-4174 (((-406 (-544)) (-1168 (-406 (-544)))) 62)) (-1499 (((-1168 (-406 (-544))) (-544)) 32)) (-1502 (((-1168 (-406 (-544))) (-544)) 48)) (-1501 (((-1168 (-406 (-544))) (-544)) 46)) (-1504 (((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544)))) 60)) (-3274 (((-1168 (-406 (-544))) (-544)) 25)) (-1503 (((-406 (-544)) (-1168 (-406 (-544))) (-1168 (-406 (-544)))) 64)) (-1500 (((-1168 (-406 (-544))) (-544)) 30)) (-1506 (((-1168 (-406 (-544))) (-635 (-544))) 72)))
+(((-189) (-10 -7 (-15 -3274 ((-1168 (-406 (-544))) (-544))) (-15 -1498 ((-1168 (-406 (-544))) (-544))) (-15 -1499 ((-1168 (-406 (-544))) (-544))) (-15 -1500 ((-1168 (-406 (-544))) (-544))) (-15 -1501 ((-1168 (-406 (-544))) (-544))) (-15 -1502 ((-1168 (-406 (-544))) (-544))) (-15 -4261 ((-1168 (-406 (-544))) (-544))) (-15 -1503 ((-406 (-544)) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1504 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -4174 ((-406 (-544)) (-1168 (-406 (-544))))) (-15 -1505 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1506 ((-1168 (-406 (-544))) (-635 (-544)))) (-15 -1507 ((-1168 (-406 (-544))) (-635 (-544)) (-635 (-544)))))) (T -189))
+((-1507 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-1505 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189)))) (-1504 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-1503 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189)))) (-4261 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1502 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1501 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1499 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1498 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-3274 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))))
+(-10 -7 (-15 -3274 ((-1168 (-406 (-544))) (-544))) (-15 -1498 ((-1168 (-406 (-544))) (-544))) (-15 -1499 ((-1168 (-406 (-544))) (-544))) (-15 -1500 ((-1168 (-406 (-544))) (-544))) (-15 -1501 ((-1168 (-406 (-544))) (-544))) (-15 -1502 ((-1168 (-406 (-544))) (-544))) (-15 -4261 ((-1168 (-406 (-544))) (-544))) (-15 -1503 ((-406 (-544)) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1504 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -4174 ((-406 (-544)) (-1168 (-406 (-544))))) (-15 -1505 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1506 ((-1168 (-406 (-544))) (-635 (-544)))) (-15 -1507 ((-1168 (-406 (-544))) (-635 (-544)) (-635 (-544)))))
+((-1509 (((-404 (-1160 (-544))) (-544)) 28)) (-1508 (((-635 (-1160 (-544))) (-544)) 23)) (-3183 (((-1160 (-544)) (-544)) 21)))
+(((-190) (-10 -7 (-15 -1508 ((-635 (-1160 (-544))) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -1509 ((-404 (-1160 (-544))) (-544))))) (T -190))
+((-1509 (*1 *2 *3) (-12 (-5 *2 (-404 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544)))) (-3183 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-190)) (-5 *3 (-544)))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-635 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544)))))
+(-10 -7 (-15 -1508 ((-635 (-1160 (-544))) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -1509 ((-404 (-1160 (-544))) (-544))))
+((-1696 (((-1143 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 103)) (-1717 (((-635 (-1148)) (-1143 (-224))) NIL)) (-1510 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 79)) (-1694 (((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224)))) NIL)) (-1716 (((-635 (-1148)) (-635 (-224))) NIL)) (-1718 (((-224) (-1079 (-836 (-224)))) 24)) (-1719 (((-224) (-1079 (-836 (-224)))) 25)) (-1512 (((-377) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 96)) (-1511 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-1714 (((-1148) (-224)) NIL)) (-2950 (((-1148) (-635 (-1148))) 20)) (-1513 (((-1028) (-1166) (-1166) (-1028)) 13)))
+(((-191) (-10 -7 (-15 -1510 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1511 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1512 ((-377) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -2950 ((-1148) (-635 (-1148)))) (-15 -1513 ((-1028) (-1166) (-1166) (-1028))))) (T -191))
+((-1513 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-191)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-191)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-191)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191)))))
+(-10 -7 (-15 -1510 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1511 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1512 ((-377) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -2950 ((-1148) (-635 (-1148)))) (-15 -1513 ((-1028) (-1166) (-1166) (-1028))))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 55) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-192) (-781)) (T -192))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 60) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 60) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-193) (-781)) (T -193))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 69) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 69) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-194) (-781)) (T -194))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 56) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 56) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-195) (-781)) (T -195))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 67) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 67) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-196) (-781)) (T -196))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 73) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 73) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-197) (-781)) (T -197))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 80) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 80) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-198) (-781)) (T -198))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 70) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 70) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-199) (-781)) (T -199))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 65)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 65)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-200) (-781)) (T -200))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 63)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 63)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-201) (-781)) (T -201))
NIL
(-781)
-((-4053 (((-112) $ $) NIL)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 90) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 90) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-202) (-781)) (T -202))
NIL
(-781)
-((-2828 (((-3 (-2 (|:| -2409 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-4340 (((-561) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-3870 (((-3 (-638 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73)))
-(((-203) (-10 -7 (-15 -2828 ((-3 (-2 (|:| -2409 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3870 ((-3 (-638 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4340 ((-561) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203))
-((-4340 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-561)) (-5 *1 (-203)))) (-3870 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-203)))) (-2828 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2409 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
-(-10 -7 (-15 -2828 ((-3 (-2 (|:| -2409 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3870 ((-3 (-638 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4340 ((-561) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-2497 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-4039 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-2930 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-682 (-315 (-224)))) 87)) (-3886 (((-378) (-682 (-315 (-224)))) 111)) (-1693 (((-682 (-315 (-224))) (-1254 (-315 (-224))) (-638 (-1166))) 108)) (-1492 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-3144 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-1436 (((-682 (-315 (-224))) (-682 (-315 (-224))) (-638 (-1166)) (-1254 (-315 (-224)))) 100)) (-4127 (((-378) (-378) (-638 (-378))) 105) (((-378) (-378) (-378)) 103)) (-3217 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36)))
-(((-204) (-10 -7 (-15 -4127 ((-378) (-378) (-378))) (-15 -4127 ((-378) (-378) (-638 (-378)))) (-15 -3886 ((-378) (-682 (-315 (-224))))) (-15 -1693 ((-682 (-315 (-224))) (-1254 (-315 (-224))) (-638 (-1166)))) (-15 -1436 ((-682 (-315 (-224))) (-682 (-315 (-224))) (-638 (-1166)) (-1254 (-315 (-224))))) (-15 -2930 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-682 (-315 (-224))))) (-15 -4039 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2497 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3144 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3217 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1492 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204))
-((-1492 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-682 (-315 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-1436 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-682 (-315 (-224)))) (-5 *3 (-638 (-1166))) (-5 *4 (-1254 (-315 (-224)))) (-5 *1 (-204)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *4 (-638 (-1166))) (-5 *2 (-682 (-315 (-224)))) (-5 *1 (-204)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-682 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4127 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4127 (*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204)))))
-(-10 -7 (-15 -4127 ((-378) (-378) (-378))) (-15 -4127 ((-378) (-378) (-638 (-378)))) (-15 -3886 ((-378) (-682 (-315 (-224))))) (-15 -1693 ((-682 (-315 (-224))) (-1254 (-315 (-224))) (-638 (-1166)))) (-15 -1436 ((-682 (-315 (-224))) (-682 (-315 (-224))) (-638 (-1166)) (-1254 (-315 (-224))))) (-15 -2930 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-682 (-315 (-224))))) (-15 -4039 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2497 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3144 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3217 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1492 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-4053 (((-112) $ $) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-4081 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-1723 (((-112) $ $) NIL)))
+((-1514 (((-3 (-2 (|:| -2881 (-113)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-1516 (((-544) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-1515 (((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73)))
+(((-203) (-10 -7 (-15 -1514 ((-3 (-2 (|:| -2881 (-113)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1515 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1516 ((-544) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203))
+((-1516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-544)) (-5 *1 (-203)))) (-1515 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-203)))) (-1514 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2881 (-113)) (|:| |w| (-224)))) (-5 *1 (-203)))))
+(-10 -7 (-15 -1514 ((-3 (-2 (|:| -2881 (-113)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1515 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1516 ((-544) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-1521 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-1520 (((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-1519 (((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-682 (-313 (-224)))) 87)) (-1518 (((-377) (-682 (-313 (-224)))) 111)) (-2495 (((-682 (-313 (-224))) (-1253 (-313 (-224))) (-635 (-1166))) 108)) (-1524 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-1522 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-4174 (((-682 (-313 (-224))) (-682 (-313 (-224))) (-635 (-1166)) (-1253 (-313 (-224)))) 100)) (-1517 (((-377) (-377) (-635 (-377))) 105) (((-377) (-377) (-377)) 103)) (-1523 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36)))
+(((-204) (-10 -7 (-15 -1517 ((-377) (-377) (-377))) (-15 -1517 ((-377) (-377) (-635 (-377)))) (-15 -1518 ((-377) (-682 (-313 (-224))))) (-15 -2495 ((-682 (-313 (-224))) (-1253 (-313 (-224))) (-635 (-1166)))) (-15 -4174 ((-682 (-313 (-224))) (-682 (-313 (-224))) (-635 (-1166)) (-1253 (-313 (-224))))) (-15 -1519 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-682 (-313 (-224))))) (-15 -1520 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1521 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1522 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1523 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1524 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204))
+((-1524 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377)))) (-5 *1 (-204)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-682 (-313 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377)))) (-5 *1 (-204)))) (-4174 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-682 (-313 (-224)))) (-5 *3 (-635 (-1166))) (-5 *4 (-1253 (-313 (-224)))) (-5 *1 (-204)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166))) (-5 *2 (-682 (-313 (-224)))) (-5 *1 (-204)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-682 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1517 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-377))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1517 (*1 *2 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-204)))))
+(-10 -7 (-15 -1517 ((-377) (-377) (-377))) (-15 -1517 ((-377) (-377) (-635 (-377)))) (-15 -1518 ((-377) (-682 (-313 (-224))))) (-15 -2495 ((-682 (-313 (-224))) (-1253 (-313 (-224))) (-635 (-1166)))) (-15 -4174 ((-682 (-313 (-224))) (-682 (-313 (-224))) (-635 (-1166)) (-1253 (-313 (-224))))) (-15 -1519 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-682 (-313 (-224))))) (-15 -1520 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1521 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1522 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1523 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1524 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-3437 (((-112) $ $) NIL)))
(((-205) (-794)) (T -205))
NIL
(-794)
-((-4053 (((-112) $ $) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-4081 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-3437 (((-112) $ $) NIL)))
(((-206) (-794)) (T -206))
NIL
(-794)
-((-4053 (((-112) $ $) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-4081 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-3437 (((-112) $ $) NIL)))
(((-207) (-794)) (T -207))
NIL
(-794)
-((-4053 (((-112) $ $) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-4081 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-3437 (((-112) $ $) NIL)))
(((-208) (-794)) (T -208))
NIL
(-794)
-((-2844 (((-638 (-1166)) (-1166) (-765)) 23)) (-2348 (((-315 (-224)) (-315 (-224))) 31)) (-3546 (((-112) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 73)) (-3041 (((-112) (-224) (-224) (-638 (-315 (-224)))) 44)))
-(((-209) (-10 -7 (-15 -2844 ((-638 (-1166)) (-1166) (-765))) (-15 -2348 ((-315 (-224)) (-315 (-224)))) (-15 -3041 ((-112) (-224) (-224) (-638 (-315 (-224))))) (-15 -3546 ((-112) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))) (T -209))
-((-3546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-3041 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-638 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-638 (-1166))) (-5 *1 (-209)) (-5 *3 (-1166)))))
-(-10 -7 (-15 -2844 ((-638 (-1166)) (-1166) (-765))) (-15 -2348 ((-315 (-224)) (-315 (-224)))) (-15 -3041 ((-112) (-224) (-224) (-638 (-315 (-224))))) (-15 -3546 ((-112) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))
-((-4053 (((-112) $ $) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 26)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-2653 (((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 57)) (-1723 (((-112) $ $) NIL)))
+((-4341 (((-635 (-1166)) (-1166) (-765)) 23)) (-1525 (((-313 (-224)) (-313 (-224))) 31)) (-1527 (((-112) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 73)) (-1526 (((-112) (-224) (-224) (-635 (-313 (-224)))) 44)))
+(((-209) (-10 -7 (-15 -4341 ((-635 (-1166)) (-1166) (-765))) (-15 -1525 ((-313 (-224)) (-313 (-224)))) (-15 -1526 ((-112) (-224) (-224) (-635 (-313 (-224))))) (-15 -1527 ((-112) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))) (T -209))
+((-1527 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-1526 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-635 (-313 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-209)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-635 (-1166))) (-5 *1 (-209)) (-5 *3 (-1166)))))
+(-10 -7 (-15 -4341 ((-635 (-1166)) (-1166) (-765))) (-15 -1525 ((-313 (-224)) (-313 (-224)))) (-15 -1526 ((-112) (-224) (-224) (-635 (-313 (-224))))) (-15 -1527 ((-112) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))
+((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 26)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3047 (((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 57)) (-3437 (((-112) $ $) NIL)))
(((-210) (-888)) (T -210))
NIL
(-888)
-((-4053 (((-112) $ $) NIL)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 21)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-2653 (((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3047 (((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) NIL)) (-3437 (((-112) $ $) NIL)))
(((-211) (-888)) (T -211))
NIL
(-888)
-((-4053 (((-112) $ $) NIL)) (-1984 ((|#2| $ (-765) |#2|) 11)) (-1975 ((|#2| $ (-765)) 10)) (-1458 (($) 8)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 18)) (-1723 (((-112) $ $) 13)))
-(((-212 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -1458 ($)) (-15 -1975 (|#2| $ (-765))) (-15 -1984 (|#2| $ (-765) |#2|)))) (-914) (-1090)) (T -212))
-((-1458 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1090)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-1090)) (-5 *1 (-212 *4 *2)) (-14 *4 (-914)))) (-1984 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-914)) (-4 *2 (-1090)))))
-(-13 (-1090) (-10 -8 (-15 -1458 ($)) (-15 -1975 (|#2| $ (-765))) (-15 -1984 (|#2| $ (-765) |#2|))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3699 (((-1259) $) 36) (((-1259) $ (-914) (-914)) 38)) (-2315 (($ $ (-982)) 19) (((-244 (-1148)) $ (-1166)) 15)) (-1479 (((-1259) $) 34)) (-4064 (((-856) $) 31) (($ (-638 |#1|)) 8)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $ $) 27)) (-1810 (($ $ $) 22)))
-(((-213 |#1|) (-13 (-1090) (-611 (-638 |#1|)) (-10 -8 (-15 -2315 ($ $ (-982))) (-15 -2315 ((-244 (-1148)) $ (-1166))) (-15 -1810 ($ $ $)) (-15 -1819 ($ $ $)) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $)) (-15 -3699 ((-1259) $ (-914) (-914))))) (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $))))) (T -213))
-((-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-982)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $))))))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ *3)) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $))))))) (-1810 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $))))))) (-1819 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $))))))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 (*2 $)) (-15 -3699 (*2 $))))))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 (*2 $)) (-15 -3699 (*2 $))))))) (-3699 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1259)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 (*2 $)) (-15 -3699 (*2 $))))))))
-(-13 (-1090) (-611 (-638 |#1|)) (-10 -8 (-15 -2315 ($ $ (-982))) (-15 -2315 ((-244 (-1148)) $ (-1166))) (-15 -1810 ($ $ $)) (-15 -1819 ($ $ $)) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $)) (-15 -3699 ((-1259) $ (-914) (-914)))))
-((-3180 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3180 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214))
-((-3180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1230 (-406 *2))) (-4 *2 (-1230 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6)))))
-(-10 -7 (-15 -3180 (|#2| |#4| (-1 |#2| |#2|))))
-((-1886 ((|#2| |#2| (-765) |#2|) 42)) (-2904 ((|#2| |#2| (-765) |#2|) 38)) (-2697 (((-638 |#2|) (-638 (-2 (|:| |deg| (-765)) (|:| -3046 |#2|)))) 56)) (-1317 (((-638 (-2 (|:| |deg| (-765)) (|:| -3046 |#2|))) |#2|) 52)) (-2133 (((-112) |#2|) 49)) (-2989 (((-417 |#2|) |#2|) 76)) (-1633 (((-417 |#2|) |#2|) 75)) (-3211 ((|#2| |#2| (-765) |#2|) 36)) (-2292 (((-2 (|:| |cont| |#1|) (|:| -2762 (-638 (-2 (|:| |irr| |#2|) (|:| -3453 (-561)))))) |#2| (-112)) 68)))
-(((-215 |#1| |#2|) (-10 -7 (-15 -1633 ((-417 |#2|) |#2|)) (-15 -2989 ((-417 |#2|) |#2|)) (-15 -2292 ((-2 (|:| |cont| |#1|) (|:| -2762 (-638 (-2 (|:| |irr| |#2|) (|:| -3453 (-561)))))) |#2| (-112))) (-15 -1317 ((-638 (-2 (|:| |deg| (-765)) (|:| -3046 |#2|))) |#2|)) (-15 -2697 ((-638 |#2|) (-638 (-2 (|:| |deg| (-765)) (|:| -3046 |#2|))))) (-15 -3211 (|#2| |#2| (-765) |#2|)) (-15 -2904 (|#2| |#2| (-765) |#2|)) (-15 -1886 (|#2| |#2| (-765) |#2|)) (-15 -2133 ((-112) |#2|))) (-348) (-1230 |#1|)) (T -215))
-((-2133 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1230 *4)))) (-1886 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1230 *4)))) (-2904 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1230 *4)))) (-3211 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1230 *4)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |deg| (-765)) (|:| -3046 *5)))) (-4 *5 (-1230 *4)) (-4 *4 (-348)) (-5 *2 (-638 *5)) (-5 *1 (-215 *4 *5)))) (-1317 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -3046 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1230 *4)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1230 *5)))) (-2989 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1230 *4)))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -1633 ((-417 |#2|) |#2|)) (-15 -2989 ((-417 |#2|) |#2|)) (-15 -2292 ((-2 (|:| |cont| |#1|) (|:| -2762 (-638 (-2 (|:| |irr| |#2|) (|:| -3453 (-561)))))) |#2| (-112))) (-15 -1317 ((-638 (-2 (|:| |deg| (-765)) (|:| -3046 |#2|))) |#2|)) (-15 -2697 ((-638 |#2|) (-638 (-2 (|:| |deg| (-765)) (|:| -3046 |#2|))))) (-15 -3211 (|#2| |#2| (-765) |#2|)) (-15 -2904 (|#2| |#2| (-765) |#2|)) (-15 -1886 (|#2| |#2| (-765) |#2|)) (-15 -2133 ((-112) |#2|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 (((-561) $) NIL (|has| (-561) (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| (-561) (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-561) (-1031 (-561))))) (-3979 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-561) (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| (-561) (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 (((-561) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-3271 (((-112) $) NIL (|has| (-561) (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-561) (-844)))) (-4165 (($ (-1 (-561) (-561)) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-561) (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) NIL)) (-4020 (((-561) $) NIL (|has| (-561) (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-1905 (((-765) $) NIL)) (-2315 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1969 (($ $) NIL)) (-4088 (((-561) $) NIL)) (-1716 (($ (-406 (-561))) 9)) (-4216 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 8) (($ (-561)) NIL) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL) (((-997 10) $) 10)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-3746 (((-765)) NIL)) (-2449 (((-561) $) NIL (|has| (-561) (-543)))) (-3996 (((-112) $ $) NIL)) (-2165 (($ $) NIL (|has| (-561) (-814)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1828 (($ $ $) NIL) (($ (-561) (-561)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL)))
-(((-216) (-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 10)) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -1716 ($ (-406 (-561))))))) (T -216))
-((-2569 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216)))))
-(-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 10)) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -1716 ($ (-406 (-561))))))
-((-4053 (((-112) $ $) NIL)) (-2838 (((-1108) $) 13)) (-1883 (((-1148) $) NIL)) (-3149 (((-481) $) 10)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 25) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-1125) $) 15)) (-1723 (((-112) $ $) NIL)))
-(((-217) (-13 (-1073) (-10 -8 (-15 -3149 ((-481) $)) (-15 -2838 ((-1108) $)) (-15 -3316 ((-1125) $))))) (T -217))
-((-3149 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-217)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217)))))
-(-13 (-1073) (-10 -8 (-15 -3149 ((-481) $)) (-15 -2838 ((-1108) $)) (-15 -3316 ((-1125) $))))
-((-2563 (((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)) (-1148)) 28) (((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|))) 24)) (-1646 (((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1166) (-837 |#2|) (-837 |#2|) (-112)) 17)))
-(((-218 |#1| |#2|) (-10 -7 (-15 -2563 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)))) (-15 -2563 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)) (-1148))) (-15 -1646 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1166) (-837 |#2|) (-837 |#2|) (-112)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-29 |#1|))) (T -218))
-((-1646 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1166)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-4 *3 (-13 (-1190) (-952) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-837 *3)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-837 *3))) (-5 *5 (-1148)) (-4 *3 (-13 (-1190) (-952) (-29 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *6 *3)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-837 *3))) (-4 *3 (-13 (-1190) (-952) (-29 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *5 *3)))))
-(-10 -7 (-15 -2563 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)))) (-15 -2563 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)) (-1148))) (-15 -1646 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1166) (-837 |#2|) (-837 |#2|) (-112))))
-((-2563 (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))) (-1148)) 46) (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|))))) 43) (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))) (-1148)) 47) (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|)))) 20)))
-(((-219 |#1|) (-10 -7 (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))))) (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))) (-1148))) (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))))) (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))) (-1148)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (T -219))
-((-2563 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-837 (-406 (-945 *6))))) (-5 *5 (-1148)) (-5 *3 (-406 (-945 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-837 (-406 (-945 *5))))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1082 (-837 (-315 *6)))) (-5 *5 (-1148)) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1082 (-837 (-315 *5)))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))))
-(-10 -7 (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))))) (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))) (-1148))) (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))))) (-15 -2563 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))) (-1148))))
-((-3176 (((-2 (|:| -3590 (-1162 |#1|)) (|:| |deg| (-914))) (-1162 |#1|)) 21)) (-3582 (((-638 (-315 |#2|)) (-315 |#2|) (-914)) 42)))
-(((-220 |#1| |#2|) (-10 -7 (-15 -3176 ((-2 (|:| -3590 (-1162 |#1|)) (|:| |deg| (-914))) (-1162 |#1|))) (-15 -3582 ((-638 (-315 |#2|)) (-315 |#2|) (-914)))) (-1042) (-13 (-553) (-844))) (T -220))
-((-3582 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *6 (-13 (-553) (-844))) (-5 *2 (-638 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1042)))) (-3176 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-2 (|:| -3590 (-1162 *4)) (|:| |deg| (-914)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1162 *4)) (-4 *5 (-13 (-553) (-844))))))
-(-10 -7 (-15 -3176 ((-2 (|:| -3590 (-1162 |#1|)) (|:| |deg| (-914))) (-1162 |#1|))) (-15 -3582 ((-638 (-315 |#2|)) (-315 |#2|) (-914))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2974 ((|#1| $) NIL)) (-2765 ((|#1| $) 25)) (-2684 (((-112) $ (-765)) NIL)) (-2674 (($) NIL T CONST)) (-1385 (($ $) NIL)) (-4026 (($ $) 31)) (-3802 ((|#1| |#1| $) NIL)) (-2217 ((|#1| $) NIL)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-4310 (((-765) $) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3721 ((|#1| $) NIL)) (-1441 ((|#1| |#1| $) 28)) (-2242 ((|#1| |#1| $) 30)) (-1617 (($ |#1| $) NIL)) (-3093 (((-765) $) 27)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-4237 ((|#1| $) NIL)) (-2277 ((|#1| $) 26)) (-4275 ((|#1| $) 24)) (-1387 ((|#1| $) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2936 ((|#1| |#1| $) NIL)) (-2508 (((-112) $) 9)) (-2910 (($) NIL)) (-4126 ((|#1| $) NIL)) (-3697 (($) NIL) (($ (-638 |#1|)) 16)) (-1433 (((-765) $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3302 ((|#1| $) 13)) (-1903 (($ (-638 |#1|)) NIL)) (-2763 ((|#1| $) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -3697 ($ (-638 |#1|))))) (-1090)) (T -221))
-((-3697 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-221 *3)))))
-(-13 (-253 |#1|) (-10 -8 (-15 -3697 ($ (-638 |#1|)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3887 (($ (-315 |#1|)) 23)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-2160 (((-112) $) NIL)) (-4061 (((-3 (-315 |#1|) "failed") $) NIL)) (-3979 (((-315 |#1|) $) NIL)) (-1598 (($ $) 31)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-4165 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-1572 (((-315 |#1|) $) NIL)) (-2307 (($ $) 30)) (-1883 (((-1148) $) NIL)) (-4171 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-3194 (($ (-765)) NIL)) (-3728 (($ $) 32)) (-3768 (((-561) $) NIL)) (-4064 (((-856) $) 57) (($ (-561)) NIL) (($ (-315 |#1|)) NIL)) (-3932 (((-315 |#1|) $ $) NIL)) (-3746 (((-765)) NIL)) (-2246 (($) 25 T CONST)) (-2257 (($) 50 T CONST)) (-1723 (((-112) $ $) 28)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 19)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 24) (($ (-315 |#1|) $) 18)))
-(((-222 |#1| |#2|) (-13 (-615 (-315 |#1|)) (-1031 (-315 |#1|)) (-10 -8 (-15 -1572 ((-315 |#1|) $)) (-15 -2307 ($ $)) (-15 -1598 ($ $)) (-15 -3932 ((-315 |#1|) $ $)) (-15 -3194 ($ (-765))) (-15 -4171 ((-112) $)) (-15 -2160 ((-112) $)) (-15 -3768 ((-561) $)) (-15 -4165 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -3887 ($ (-315 |#1|))) (-15 -3728 ($ $)))) (-13 (-1042) (-844)) (-638 (-1166))) (T -222))
-((-1572 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-2307 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-638 (-1166))))) (-1598 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-638 (-1166))))) (-3932 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166))))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166))))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-638 (-1166))))))
-(-13 (-615 (-315 |#1|)) (-1031 (-315 |#1|)) (-10 -8 (-15 -1572 ((-315 |#1|) $)) (-15 -2307 ($ $)) (-15 -1598 ($ $)) (-15 -3932 ((-315 |#1|) $ $)) (-15 -3194 ($ (-765))) (-15 -4171 ((-112) $)) (-15 -2160 ((-112) $)) (-15 -3768 ((-561) $)) (-15 -4165 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -3887 ($ (-315 |#1|))) (-15 -3728 ($ $))))
-((-1391 (((-112) (-1148)) 22)) (-2493 (((-3 (-837 |#2|) "failed") (-607 |#2|) |#2| (-837 |#2|) (-837 |#2|) (-112)) 32)) (-2526 (((-3 (-112) "failed") (-1162 |#2|) (-837 |#2|) (-837 |#2|) (-112)) 73) (((-3 (-112) "failed") (-945 |#1|) (-1166) (-837 |#2|) (-837 |#2|) (-112)) 74)))
-(((-223 |#1| |#2|) (-10 -7 (-15 -1391 ((-112) (-1148))) (-15 -2493 ((-3 (-837 |#2|) "failed") (-607 |#2|) |#2| (-837 |#2|) (-837 |#2|) (-112))) (-15 -2526 ((-3 (-112) "failed") (-945 |#1|) (-1166) (-837 |#2|) (-837 |#2|) (-112))) (-15 -2526 ((-3 (-112) "failed") (-1162 |#2|) (-837 |#2|) (-837 |#2|) (-112)))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-29 |#1|))) (T -223))
-((-2526 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1162 *6)) (-5 *4 (-837 *6)) (-4 *6 (-13 (-1190) (-29 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-223 *5 *6)))) (-2526 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-945 *6)) (-5 *4 (-1166)) (-5 *5 (-837 *7)) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-2493 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-837 *4)) (-5 *3 (-607 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1190) (-29 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-223 *6 *4)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4))))))
-(-10 -7 (-15 -1391 ((-112) (-1148))) (-15 -2493 ((-3 (-837 |#2|) "failed") (-607 |#2|) |#2| (-837 |#2|) (-837 |#2|) (-112))) (-15 -2526 ((-3 (-112) "failed") (-945 |#1|) (-1166) (-837 |#2|) (-837 |#2|) (-112))) (-15 -2526 ((-3 (-112) "failed") (-1162 |#2|) (-837 |#2|) (-837 |#2|) (-112))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 87)) (-3892 (((-561) $) 98)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-1991 (($ $) NIL)) (-3014 (($ $) 75)) (-4106 (($ $) 63)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1643 (($ $) 54)) (-3698 (((-112) $ $) NIL)) (-4213 (($ $) 73)) (-4085 (($ $) 61)) (-1659 (((-561) $) 115)) (-3039 (($ $) 78)) (-4130 (($ $) 65)) (-2674 (($) NIL T CONST)) (-3588 (($ $) NIL)) (-4061 (((-3 (-561) "failed") $) 114) (((-3 (-406 (-561)) "failed") $) 111)) (-3979 (((-561) $) 112) (((-406 (-561)) $) 109)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) 91)) (-1452 (((-406 (-561)) $ (-765)) 107) (((-406 (-561)) $ (-765) (-765)) 106)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-4008 (((-914)) 27) (((-914) (-914)) NIL (|has| $ (-6 -4390)))) (-1784 (((-112) $) NIL)) (-4111 (($) 37)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL)) (-4027 (((-561) $) 33)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL)) (-2072 (($ $) NIL)) (-3271 (((-112) $) 86)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) 51) (($) 32 (-12 (-2186 (|has| $ (-6 -4382))) (-2186 (|has| $ (-6 -4390)))))) (-3017 (($ $ $) 50) (($) 31 (-12 (-2186 (|has| $ (-6 -4382))) (-2186 (|has| $ (-6 -4390)))))) (-3966 (((-561) $) 25)) (-3947 (($ $) 28)) (-3009 (($ $) 55)) (-4364 (($ $) 60)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-2918 (((-914) (-561)) NIL (|has| $ (-6 -4390)))) (-1701 (((-1110) $) 89)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL)) (-4020 (($ $) NIL)) (-4242 (($ (-561) (-561)) NIL) (($ (-561) (-561) (-914)) 99)) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-4181 (((-561) $) 26)) (-2675 (($) 36)) (-3486 (($ $) 59)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3679 (((-914)) NIL) (((-914) (-914)) NIL (|has| $ (-6 -4390)))) (-3922 (($ $ (-765)) NIL) (($ $) 92)) (-1725 (((-914) (-561)) NIL (|has| $ (-6 -4390)))) (-3052 (($ $) 76)) (-4140 (($ $) 66)) (-3026 (($ $) 77)) (-4118 (($ $) 64)) (-3002 (($ $) 74)) (-4097 (($ $) 62)) (-4216 (((-378) $) 103) (((-224) $) 100) (((-885 (-378)) $) NIL) (((-534) $) 43)) (-4064 (((-856) $) 40) (($ (-561)) 58) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-561)) 58) (($ (-406 (-561))) NIL)) (-3746 (((-765)) NIL)) (-2449 (($ $) NIL)) (-2860 (((-914)) 30) (((-914) (-914)) NIL (|has| $ (-6 -4390)))) (-1423 (((-914)) 23)) (-3086 (($ $) 81)) (-4175 (($ $) 69) (($ $ $) 108)) (-3996 (((-112) $ $) NIL)) (-3064 (($ $) 79)) (-4150 (($ $) 67)) (-3113 (($ $) 84)) (-4192 (($ $) 72)) (-2821 (($ $) 82)) (-4202 (($ $) 70)) (-3099 (($ $) 83)) (-4184 (($ $) 71)) (-3076 (($ $) 80)) (-4162 (($ $) 68)) (-2165 (($ $) 116)) (-2246 (($) 34 T CONST)) (-2257 (($) 35 T CONST)) (-3785 (((-1148) $) 17) (((-1148) $ (-112)) 19) (((-1259) (-816) $) 20) (((-1259) (-816) $ (-112)) 21)) (-4128 (($ $) 95)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1550 (($ $ $) 97)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 52)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 44)) (-1828 (($ $ $) 85) (($ $ (-561)) 53)) (-1819 (($ $) 45) (($ $ $) 47)) (-1810 (($ $ $) 46)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 56) (($ $ (-406 (-561))) 127) (($ $ $) 57)) (* (($ (-914) $) 29) (($ (-765) $) NIL) (($ (-561) $) 49) (($ $ $) 48) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-224) (-13 (-403) (-232) (-822) (-1190) (-609 (-534)) (-10 -8 (-15 -1828 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -2675 ($)) (-15 -3947 ($ $)) (-15 -3009 ($ $)) (-15 -4175 ($ $ $)) (-15 -4128 ($ $)) (-15 -1550 ($ $ $)) (-15 -1452 ((-406 (-561)) $ (-765))) (-15 -1452 ((-406 (-561)) $ (-765) (-765)))))) (T -224))
-((** (*1 *1 *1 *1) (-5 *1 (-224))) (-1828 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-224)))) (-2675 (*1 *1) (-5 *1 (-224))) (-3947 (*1 *1 *1) (-5 *1 (-224))) (-3009 (*1 *1 *1) (-5 *1 (-224))) (-4175 (*1 *1 *1 *1) (-5 *1 (-224))) (-4128 (*1 *1 *1) (-5 *1 (-224))) (-1550 (*1 *1 *1 *1) (-5 *1 (-224))) (-1452 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224)))) (-1452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224)))))
-(-13 (-403) (-232) (-822) (-1190) (-609 (-534)) (-10 -8 (-15 -1828 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -2675 ($)) (-15 -3947 ($ $)) (-15 -3009 ($ $)) (-15 -4175 ($ $ $)) (-15 -4128 ($ $)) (-15 -1550 ($ $ $)) (-15 -1452 ((-406 (-561)) $ (-765))) (-15 -1452 ((-406 (-561)) $ (-765) (-765)))))
-((-3101 (((-168 (-224)) (-765) (-168 (-224))) 11) (((-224) (-765) (-224)) 12)) (-3072 (((-168 (-224)) (-168 (-224))) 13) (((-224) (-224)) 14)) (-3320 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 19) (((-224) (-224) (-224)) 22)) (-3502 (((-168 (-224)) (-168 (-224))) 25) (((-224) (-224)) 24)) (-1824 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 43) (((-224) (-224) (-224)) 35)) (-2025 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 48) (((-224) (-224) (-224)) 45)) (-1822 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 15) (((-224) (-224) (-224)) 16)) (-1891 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 17) (((-224) (-224) (-224)) 18)) (-3710 (((-168 (-224)) (-168 (-224))) 60) (((-224) (-224)) 59)) (-2934 (((-224) (-224)) 54) (((-168 (-224)) (-168 (-224))) 58)) (-4128 (((-168 (-224)) (-168 (-224))) 8) (((-224) (-224)) 9)) (-1550 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 30) (((-224) (-224) (-224)) 26)))
-(((-225) (-10 -7 (-15 -4128 ((-224) (-224))) (-15 -4128 ((-168 (-224)) (-168 (-224)))) (-15 -1550 ((-224) (-224) (-224))) (-15 -1550 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3072 ((-224) (-224))) (-15 -3072 ((-168 (-224)) (-168 (-224)))) (-15 -3502 ((-224) (-224))) (-15 -3502 ((-168 (-224)) (-168 (-224)))) (-15 -3101 ((-224) (-765) (-224))) (-15 -3101 ((-168 (-224)) (-765) (-168 (-224)))) (-15 -1822 ((-224) (-224) (-224))) (-15 -1822 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1824 ((-224) (-224) (-224))) (-15 -1824 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1891 ((-224) (-224) (-224))) (-15 -1891 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2025 ((-224) (-224) (-224))) (-15 -2025 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2934 ((-168 (-224)) (-168 (-224)))) (-15 -2934 ((-224) (-224))) (-15 -3710 ((-224) (-224))) (-15 -3710 ((-168 (-224)) (-168 (-224)))) (-15 -3320 ((-224) (-224) (-224))) (-15 -3320 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))) (T -225))
-((-3320 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3320 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2025 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2025 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1891 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1891 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1824 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1824 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1822 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1822 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3101 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-224))) (-5 *3 (-765)) (-5 *1 (-225)))) (-3101 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1550 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1550 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))))
-(-10 -7 (-15 -4128 ((-224) (-224))) (-15 -4128 ((-168 (-224)) (-168 (-224)))) (-15 -1550 ((-224) (-224) (-224))) (-15 -1550 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3072 ((-224) (-224))) (-15 -3072 ((-168 (-224)) (-168 (-224)))) (-15 -3502 ((-224) (-224))) (-15 -3502 ((-168 (-224)) (-168 (-224)))) (-15 -3101 ((-224) (-765) (-224))) (-15 -3101 ((-168 (-224)) (-765) (-168 (-224)))) (-15 -1822 ((-224) (-224) (-224))) (-15 -1822 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1824 ((-224) (-224) (-224))) (-15 -1824 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1891 ((-224) (-224) (-224))) (-15 -1891 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2025 ((-224) (-224) (-224))) (-15 -2025 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2934 ((-168 (-224)) (-168 (-224)))) (-15 -2934 ((-224) (-224))) (-15 -3710 ((-224) (-224))) (-15 -3710 ((-168 (-224)) (-168 (-224)))) (-15 -3320 ((-224) (-224) (-224))) (-15 -3320 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2920 (($ (-765) (-765)) NIL)) (-2801 (($ $ $) NIL)) (-4084 (($ (-1254 |#1|)) NIL) (($ $) NIL)) (-3849 (($ |#1| |#1| |#1|) 32)) (-3711 (((-112) $) NIL)) (-3844 (($ $ (-561) (-561)) NIL)) (-2271 (($ $ (-561) (-561)) NIL)) (-3234 (($ $ (-561) (-561) (-561) (-561)) NIL)) (-1526 (($ $) NIL)) (-1711 (((-112) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2727 (($ $ (-561) (-561) $) NIL)) (-4207 ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) NIL)) (-4019 (($ $ (-561) (-1254 |#1|)) NIL)) (-1316 (($ $ (-561) (-1254 |#1|)) NIL)) (-2643 (($ |#1| |#1| |#1|) 31)) (-3256 (($ (-765) |#1|) NIL)) (-2674 (($) NIL T CONST)) (-2617 (($ $) NIL (|has| |#1| (-306)))) (-3324 (((-1254 |#1|) $ (-561)) NIL)) (-1695 (($ |#1|) 30)) (-1618 (($ |#1|) 29)) (-1671 (($ |#1|) 28)) (-3400 (((-765) $) NIL (|has| |#1| (-553)))) (-2041 ((|#1| $ (-561) (-561) |#1|) NIL)) (-1975 ((|#1| $ (-561) (-561)) NIL)) (-2368 (((-638 |#1|) $) NIL)) (-1486 (((-765) $) NIL (|has| |#1| (-553)))) (-2351 (((-638 (-1254 |#1|)) $) NIL (|has| |#1| (-553)))) (-3349 (((-765) $) NIL)) (-1458 (($ (-765) (-765) |#1|) NIL)) (-3361 (((-765) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3440 ((|#1| $) NIL (|has| |#1| (-6 (-4401 "*"))))) (-3655 (((-561) $) NIL)) (-1355 (((-561) $) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2475 (((-561) $) NIL)) (-3838 (((-561) $) NIL)) (-2887 (($ (-638 (-638 |#1|))) 11)) (-2029 (($ (-1 |#1| |#1|) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3485 (((-638 (-638 |#1|)) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1885 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-1995 (($) 12)) (-2769 (($ $ $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) NIL)) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561))) NIL)) (-3557 (($ (-638 |#1|)) NIL) (($ (-638 $)) NIL)) (-2100 (((-112) $) NIL)) (-4105 ((|#1| $) NIL (|has| |#1| (-6 (-4401 "*"))))) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-2062 (((-1254 |#1|) $ (-561)) NIL)) (-4064 (($ (-1254 |#1|)) NIL) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2841 (((-112) $) NIL)) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $ $) NIL) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-561) $) NIL) (((-1254 |#1|) $ (-1254 |#1|)) 15) (((-1254 |#1|) (-1254 |#1|) $) NIL) (((-936 |#1|) $ (-936 |#1|)) 20)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-226 |#1|) (-13 (-680 |#1| (-1254 |#1|) (-1254 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -1995 ($)) (-15 -1671 ($ |#1|)) (-15 -1618 ($ |#1|)) (-15 -1695 ($ |#1|)) (-15 -2643 ($ |#1| |#1| |#1|)) (-15 -3849 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1190))) (T -226))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190))) (-5 *1 (-226 *3)))) (-1995 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1671 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1618 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1695 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-2643 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-3849 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
-(-13 (-680 |#1| (-1254 |#1|) (-1254 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -1995 ($)) (-15 -1671 ($ |#1|)) (-15 -1618 ($ |#1|)) (-15 -1695 ($ |#1|)) (-15 -2643 ($ |#1| |#1| |#1|)) (-15 -3849 ($ |#1| |#1| |#1|))))
-((-1954 (($ (-1 (-112) |#2|) $) 15)) (-3222 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-3643 (($) NIL) (($ (-638 |#2|)) 11)) (-1723 (((-112) $ $) 22)))
-(((-227 |#1| |#2|) (-10 -8 (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3222 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3222 (|#1| |#2| |#1|)) (-15 -3643 (|#1| (-638 |#2|))) (-15 -3643 (|#1|)) (-15 -1723 ((-112) |#1| |#1|))) (-228 |#2|) (-1090)) (T -227))
-NIL
-(-10 -8 (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3222 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3222 (|#1| |#2| |#1|)) (-15 -3643 (|#1| (-638 |#2|))) (-15 -3643 (|#1|)) (-15 -1723 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-1954 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-1461 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ |#1| $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-3643 (($) 49) (($ (-638 |#1|)) 48)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 50)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-228 |#1|) (-139) (-1090)) (T -228))
+((-2947 (((-112) $ $) NIL)) (-1528 ((|#2| $ (-765) |#2|) 11)) (-3498 ((|#2| $ (-765)) 10)) (-4021 (($) 8)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18)) (-3437 (((-112) $ $) 13)))
+(((-212 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -3498 (|#2| $ (-765))) (-15 -1528 (|#2| $ (-765) |#2|)))) (-912) (-1091)) (T -212))
+((-4021 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1091)))) (-3498 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-1091)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912)))) (-1528 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912)) (-4 *2 (-1091)))))
+(-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -3498 (|#2| $ (-765))) (-15 -1528 (|#2| $ (-765) |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2115 (((-1259) $) 36) (((-1259) $ (-912) (-912)) 38)) (-4206 (($ $ (-982)) 19) (((-244 (-1148)) $ (-1166)) 15)) (-4024 (((-1259) $) 34)) (-4353 (((-857) $) 31) (($ (-635 |#1|)) 8)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $ $) 27)) (-4246 (($ $ $) 22)))
+(((-213 |#1|) (-13 (-1091) (-611 (-635 |#1|)) (-10 -8 (-15 -4206 ($ $ (-982))) (-15 -4206 ((-244 (-1148)) $ (-1166))) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -2115 ((-1259) $ (-912) (-912))))) (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))) (T -213))
+((-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-982)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ *3)) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4246 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4244 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) (-15 -2115 (*2 $))))))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) (-15 -2115 (*2 $))))))) (-2115 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) (-15 -2115 (*2 $))))))))
+(-13 (-1091) (-611 (-635 |#1|)) (-10 -8 (-15 -4206 ($ $ (-982))) (-15 -4206 ((-244 (-1148)) $ (-1166))) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -2115 ((-1259) $ (-912) (-912)))))
+((-1529 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1529 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214))
+((-1529 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1229 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6)))))
+(-10 -7 (-15 -1529 (|#2| |#4| (-1 |#2| |#2|))))
+((-1533 ((|#2| |#2| (-765) |#2|) 42)) (-1532 ((|#2| |#2| (-765) |#2|) 38)) (-2501 (((-635 |#2|) (-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|)))) 56)) (-1531 (((-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))) |#2|) 52)) (-1534 (((-112) |#2|) 49)) (-4140 (((-404 |#2|) |#2|) 76)) (-4139 (((-404 |#2|) |#2|) 75)) (-2502 ((|#2| |#2| (-765) |#2|) 36)) (-1530 (((-2 (|:| |cont| |#1|) (|:| -2812 (-635 (-2 (|:| |irr| |#2|) (|:| -2530 (-544)))))) |#2| (-112)) 68)))
+(((-215 |#1| |#2|) (-10 -7 (-15 -4139 ((-404 |#2|) |#2|)) (-15 -4140 ((-404 |#2|) |#2|)) (-15 -1530 ((-2 (|:| |cont| |#1|) (|:| -2812 (-635 (-2 (|:| |irr| |#2|) (|:| -2530 (-544)))))) |#2| (-112))) (-15 -1531 ((-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))) |#2|)) (-15 -2501 ((-635 |#2|) (-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))))) (-15 -2502 (|#2| |#2| (-765) |#2|)) (-15 -1532 (|#2| |#2| (-765) |#2|)) (-15 -1533 (|#2| |#2| (-765) |#2|)) (-15 -1534 ((-112) |#2|))) (-349) (-1229 |#1|)) (T -215))
+((-1534 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-1533 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-1532 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-2502 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *5)))) (-4 *5 (-1229 *4)) (-4 *4 (-349)) (-5 *2 (-635 *5)) (-5 *1 (-215 *4 *5)))) (-1531 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1229 *5)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -4139 ((-404 |#2|) |#2|)) (-15 -4140 ((-404 |#2|) |#2|)) (-15 -1530 ((-2 (|:| |cont| |#1|) (|:| -2812 (-635 (-2 (|:| |irr| |#2|) (|:| -2530 (-544)))))) |#2| (-112))) (-15 -1531 ((-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))) |#2|)) (-15 -2501 ((-635 |#2|) (-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))))) (-15 -2502 (|#2| |#2| (-765) |#2|)) (-15 -1532 (|#2| |#2| (-765) |#2|)) (-15 -1533 (|#2| |#2| (-765) |#2|)) (-15 -1534 ((-112) |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-544) $) NIL (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) NIL)) (-3515 (((-544) $) NIL (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) NIL)) (-1535 (($ (-406 (-544))) 9)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 8) (($ (-544)) NIL) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL) (((-997 10) $) 10)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-544) $) NIL (|has| (-544) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-544) (-844)))) (-4356 (($ $ $) NIL) (($ (-544) (-544)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL)))
+(((-216) (-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 10)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -1535 ($ (-406 (-544))))))) (T -216))
+((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216)))) (-1535 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216)))))
+(-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 10)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -1535 ($ (-406 (-544))))))
+((-2947 (((-112) $ $) NIL)) (-3720 (((-1105) $) 13)) (-3643 (((-1148) $) NIL)) (-3579 (((-481) $) 10)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 25) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 15)) (-3437 (((-112) $ $) NIL)))
+(((-217) (-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3720 ((-1105) $)) (-15 -3634 ((-1125) $))))) (T -217))
+((-3579 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217)))))
+(-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3720 ((-1105) $)) (-15 -3634 ((-1125) $))))
+((-4219 (((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1082 (-836 |#2|)) (-1148)) 28) (((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1082 (-836 |#2|))) 24)) (-1536 (((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1166) (-836 |#2|) (-836 |#2|) (-112)) 17)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1082 (-836 |#2|)))) (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1082 (-836 |#2|)) (-1148))) (-15 -1536 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1166) (-836 |#2|) (-836 |#2|) (-112)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-29 |#1|))) (T -218))
+((-1536 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1166)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-4 *3 (-13 (-1190) (-953) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-836 *3)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-836 *3))) (-5 *5 (-1148)) (-4 *3 (-13 (-1190) (-953) (-29 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-218 *6 *3)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-836 *3))) (-4 *3 (-13 (-1190) (-953) (-29 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-218 *5 *3)))))
+(-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1082 (-836 |#2|)))) (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1082 (-836 |#2|)) (-1148))) (-15 -1536 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1166) (-836 |#2|) (-836 |#2|) (-112))))
+((-4219 (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))) (-1148)) 46) (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|))))) 43) (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))) (-1148)) 47) (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|)))) 20)))
+(((-219 |#1|) (-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))) (-1148))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))) (-1148)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (T -219))
+((-4219 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-836 (-406 (-939 *6))))) (-5 *5 (-1148)) (-5 *3 (-406 (-939 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-219 *6)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-836 (-406 (-939 *5))))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *5)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1082 (-836 (-313 *6)))) (-5 *5 (-1148)) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *6)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1082 (-836 (-313 *5)))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *5)))))
+(-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))) (-1148))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))) (-1148))))
+((-4249 (((-2 (|:| -2154 (-1160 |#1|)) (|:| |deg| (-912))) (-1160 |#1|)) 21)) (-4370 (((-635 (-313 |#2|)) (-313 |#2|) (-912)) 42)))
+(((-220 |#1| |#2|) (-10 -7 (-15 -4249 ((-2 (|:| -2154 (-1160 |#1|)) (|:| |deg| (-912))) (-1160 |#1|))) (-15 -4370 ((-635 (-313 |#2|)) (-313 |#2|) (-912)))) (-1042) (-13 (-554) (-844))) (T -220))
+((-4370 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *6 (-13 (-554) (-844))) (-5 *2 (-635 (-313 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-313 *6)) (-4 *5 (-1042)))) (-4249 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-2 (|:| -2154 (-1160 *4)) (|:| |deg| (-912)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1160 *4)) (-4 *5 (-13 (-554) (-844))))))
+(-10 -7 (-15 -4249 ((-2 (|:| -2154 (-1160 |#1|)) (|:| |deg| (-912))) (-1160 |#1|))) (-15 -4370 ((-635 (-313 |#2|)) (-313 |#2|) (-912))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1578 ((|#1| $) NIL)) (-3728 ((|#1| $) 25)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3385 (($ $) NIL)) (-2416 (($ $) 31)) (-3730 ((|#1| |#1| $) NIL)) (-3729 ((|#1| $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-4240 (((-765) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) NIL)) (-1576 ((|#1| |#1| $) 28)) (-1575 ((|#1| |#1| $) 30)) (-4014 (($ |#1| $) NIL)) (-2982 (((-765) $) 27)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3384 ((|#1| $) NIL)) (-1574 ((|#1| $) 26)) (-1573 ((|#1| $) 24)) (-1357 ((|#1| $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3387 ((|#1| |#1| $) NIL)) (-3807 (((-112) $) 9)) (-3972 (($) NIL)) (-3386 ((|#1| $) NIL)) (-1579 (($) NIL) (($ (-635 |#1|)) 16)) (-3727 (((-765) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-1577 ((|#1| $) 13)) (-1358 (($ (-635 |#1|)) NIL)) (-3383 ((|#1| $) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -1579 ($ (-635 |#1|))))) (-1091)) (T -221))
+((-1579 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-221 *3)))))
+(-13 (-253 |#1|) (-10 -8 (-15 -1579 ($ (-635 |#1|)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1538 (($ (-313 |#1|)) 23)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3044 (((-112) $) NIL)) (-3558 (((-3 (-313 |#1|) "failed") $) NIL)) (-3557 (((-313 |#1|) $) NIL)) (-4366 (($ $) 31)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-4365 (($ (-1 (-313 |#1|) (-313 |#1|)) $) NIL)) (-3575 (((-313 |#1|) $) NIL)) (-1540 (($ $) 30)) (-3643 (((-1148) $) NIL)) (-1539 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($ (-765)) NIL)) (-1537 (($ $) 32)) (-4355 (((-544) $) NIL)) (-4353 (((-857) $) 57) (($ (-544)) NIL) (($ (-313 |#1|)) NIL)) (-4084 (((-313 |#1|) $ $) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) 25 T CONST)) (-3046 (($) 50 T CONST)) (-3437 (((-112) $ $) 28)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 19)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 24) (($ (-313 |#1|) $) 18)))
+(((-222 |#1| |#2|) (-13 (-616 (-313 |#1|)) (-1031 (-313 |#1|)) (-10 -8 (-15 -3575 ((-313 |#1|) $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 ((-313 |#1|) $ $)) (-15 -2544 ($ (-765))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4365 ($ (-1 (-313 |#1|) (-313 |#1|)) $)) (-15 -1538 ($ (-313 |#1|))) (-15 -1537 ($ $)))) (-13 (-1042) (-844)) (-635 (-1166))) (T -222))
+((-3575 (*1 *2 *1) (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-635 (-1166))))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-635 (-1166))))) (-4084 (*1 *2 *1 *1) (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-313 *3) (-313 *3))) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1166))))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-313 *3)) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1166))))) (-1537 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-635 (-1166))))))
+(-13 (-616 (-313 |#1|)) (-1031 (-313 |#1|)) (-10 -8 (-15 -3575 ((-313 |#1|) $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 ((-313 |#1|) $ $)) (-15 -2544 ($ (-765))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4365 ($ (-1 (-313 |#1|) (-313 |#1|)) $)) (-15 -1538 ($ (-313 |#1|))) (-15 -1537 ($ $))))
+((-1541 (((-112) (-1148)) 22)) (-1542 (((-3 (-836 |#2|) "failed") (-606 |#2|) |#2| (-836 |#2|) (-836 |#2|) (-112)) 32)) (-1543 (((-3 (-112) "failed") (-1160 |#2|) (-836 |#2|) (-836 |#2|) (-112)) 73) (((-3 (-112) "failed") (-939 |#1|) (-1166) (-836 |#2|) (-836 |#2|) (-112)) 74)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -1541 ((-112) (-1148))) (-15 -1542 ((-3 (-836 |#2|) "failed") (-606 |#2|) |#2| (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-939 |#1|) (-1166) (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-1160 |#2|) (-836 |#2|) (-836 |#2|) (-112)))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-29 |#1|))) (T -223))
+((-1543 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1160 *6)) (-5 *4 (-836 *6)) (-4 *6 (-13 (-1190) (-29 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-223 *5 *6)))) (-1543 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-939 *6)) (-5 *4 (-1166)) (-5 *5 (-836 *7)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-1542 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-836 *4)) (-5 *3 (-606 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1190) (-29 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-223 *6 *4)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4))))))
+(-10 -7 (-15 -1541 ((-112) (-1148))) (-15 -1542 ((-3 (-836 |#2|) "failed") (-606 |#2|) |#2| (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-939 |#1|) (-1166) (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-1160 |#2|) (-836 |#2|) (-836 |#2|) (-112))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 87)) (-3514 (((-544) $) 98)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4177 (($ $) NIL)) (-3891 (($ $) 75)) (-4046 (($ $) 63)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) 54)) (-1733 (((-112) $ $) NIL)) (-3889 (($ $) 73)) (-4045 (($ $) 61)) (-4030 (((-544) $) 115)) (-3893 (($ $) 78)) (-4044 (($ $) 65)) (-4131 (($) NIL T CONST)) (-3512 (($ $) NIL)) (-3558 (((-3 (-544) #1="failed") $) 114) (((-3 (-406 (-544)) #1#) $) 111)) (-3557 (((-544) $) 112) (((-406 (-544)) $) 109)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 91)) (-1888 (((-406 (-544)) $ (-765)) 107) (((-406 (-544)) $ (-765) (-765)) 106)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2509 (((-912)) 27) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-3587 (((-112) $) NIL)) (-4034 (($) 37)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL)) (-4178 (((-544) $) 33)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3517 (($ $) NIL)) (-3588 (((-112) $) 86)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2913 (($ $ $) 51) (($) 32 (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-3242 (($ $ $) 50) (($) 31 (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2510 (((-544) $) 25)) (-1887 (($ $) 28)) (-1886 (($ $) 55)) (-4349 (($ $) 60)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-1917 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-3644 (((-1110) $) 89)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL)) (-3515 (($ $) NIL)) (-3655 (($ (-544) (-544)) NIL) (($ (-544) (-544) (-912)) 99)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2536 (((-544) $) 26)) (-1885 (($) 36)) (-4350 (($ $) 59)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-912)) NIL) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-4217 (($ $ (-765)) NIL) (($ $) 92)) (-1916 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-3894 (($ $) 76)) (-4043 (($ $) 66)) (-3892 (($ $) 77)) (-4042 (($ $) 64)) (-3890 (($ $) 74)) (-4041 (($ $) 62)) (-4377 (((-377) $) 103) (((-224) $) 100) (((-883 (-377)) $) NIL) (((-533) $) 43)) (-4353 (((-857) $) 40) (($ (-544)) 58) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-544)) 58) (($ (-406 (-544))) NIL)) (-3511 (((-765)) NIL)) (-3516 (($ $) NIL)) (-1918 (((-912)) 30) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-3076 (((-912)) 23)) (-3897 (($ $) 81)) (-3885 (($ $) 69) (($ $ $) 108)) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) 79)) (-3883 (($ $) 67)) (-3899 (($ $) 84)) (-3887 (($ $) 72)) (-3900 (($ $) 82)) (-3888 (($ $) 70)) (-3898 (($ $) 83)) (-3886 (($ $) 71)) (-3896 (($ $) 80)) (-3884 (($ $) 68)) (-3787 (($ $) 116)) (-3040 (($) 34 T CONST)) (-3046 (($) 35 T CONST)) (-2879 (((-1148) $) 17) (((-1148) $ (-112)) 19) (((-1259) (-817) $) 20) (((-1259) (-817) $ (-112)) 21)) (-3791 (($ $) 95)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3788 (($ $ $) 97)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 52)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 44)) (-4356 (($ $ $) 85) (($ $ (-544)) 53)) (-4244 (($ $) 45) (($ $ $) 47)) (-4246 (($ $ $) 46)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 56) (($ $ (-406 (-544))) 127) (($ $ $) 57)) (* (($ (-912) $) 29) (($ (-765) $) NIL) (($ (-544) $) 49) (($ $ $) 48) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-224) (-13 (-403) (-232) (-815) (-1190) (-609 (-533)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -1885 ($)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -3885 ($ $ $)) (-15 -3791 ($ $)) (-15 -3788 ($ $ $)) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765)))))) (T -224))
+((** (*1 *1 *1 *1) (-5 *1 (-224))) (-4356 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-224)))) (-1885 (*1 *1) (-5 *1 (-224))) (-1887 (*1 *1 *1) (-5 *1 (-224))) (-1886 (*1 *1 *1) (-5 *1 (-224))) (-3885 (*1 *1 *1 *1) (-5 *1 (-224))) (-3791 (*1 *1 *1) (-5 *1 (-224))) (-3788 (*1 *1 *1 *1) (-5 *1 (-224))) (-1888 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224)))) (-1888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224)))))
+(-13 (-403) (-232) (-815) (-1190) (-609 (-533)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -1885 ($)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -3885 ($ $ $)) (-15 -3791 ($ $)) (-15 -3788 ($ $ $)) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765)))))
+((-3790 (((-167 (-224)) (-765) (-167 (-224))) 11) (((-224) (-765) (-224)) 12)) (-1544 (((-167 (-224)) (-167 (-224))) 13) (((-224) (-224)) 14)) (-1545 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 19) (((-224) (-224) (-224)) 22)) (-3789 (((-167 (-224)) (-167 (-224))) 25) (((-224) (-224)) 24)) (-3793 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 43) (((-224) (-224) (-224)) 35)) (-3795 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 48) (((-224) (-224) (-224)) 45)) (-3792 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 15) (((-224) (-224) (-224)) 16)) (-3794 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 17) (((-224) (-224) (-224)) 18)) (-3797 (((-167 (-224)) (-167 (-224))) 60) (((-224) (-224)) 59)) (-3796 (((-224) (-224)) 54) (((-167 (-224)) (-167 (-224))) 58)) (-3791 (((-167 (-224)) (-167 (-224))) 8) (((-224) (-224)) 9)) (-3788 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 30) (((-224) (-224) (-224)) 26)))
+(((-225) (-10 -7 (-15 -3791 ((-224) (-224))) (-15 -3791 ((-167 (-224)) (-167 (-224)))) (-15 -3788 ((-224) (-224) (-224))) (-15 -3788 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -1544 ((-224) (-224))) (-15 -1544 ((-167 (-224)) (-167 (-224)))) (-15 -3789 ((-224) (-224))) (-15 -3789 ((-167 (-224)) (-167 (-224)))) (-15 -3790 ((-224) (-765) (-224))) (-15 -3790 ((-167 (-224)) (-765) (-167 (-224)))) (-15 -3792 ((-224) (-224) (-224))) (-15 -3792 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3793 ((-224) (-224) (-224))) (-15 -3793 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3794 ((-224) (-224) (-224))) (-15 -3794 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3795 ((-224) (-224) (-224))) (-15 -3795 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3796 ((-167 (-224)) (-167 (-224)))) (-15 -3796 ((-224) (-224))) (-15 -3797 ((-224) (-224))) (-15 -3797 ((-167 (-224)) (-167 (-224)))) (-15 -1545 ((-224) (-224) (-224))) (-15 -1545 ((-167 (-224)) (-167 (-224)) (-167 (-224)))))) (T -225))
+((-1545 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-1545 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3794 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3794 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3790 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-224))) (-5 *3 (-765)) (-5 *1 (-225)))) (-3790 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))))
+(-10 -7 (-15 -3791 ((-224) (-224))) (-15 -3791 ((-167 (-224)) (-167 (-224)))) (-15 -3788 ((-224) (-224) (-224))) (-15 -3788 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -1544 ((-224) (-224))) (-15 -1544 ((-167 (-224)) (-167 (-224)))) (-15 -3789 ((-224) (-224))) (-15 -3789 ((-167 (-224)) (-167 (-224)))) (-15 -3790 ((-224) (-765) (-224))) (-15 -3790 ((-167 (-224)) (-765) (-167 (-224)))) (-15 -3792 ((-224) (-224) (-224))) (-15 -3792 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3793 ((-224) (-224) (-224))) (-15 -3793 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3794 ((-224) (-224) (-224))) (-15 -3794 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3795 ((-224) (-224) (-224))) (-15 -3795 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3796 ((-167 (-224)) (-167 (-224)))) (-15 -3796 ((-224) (-224))) (-15 -3797 ((-224) (-224))) (-15 -3797 ((-167 (-224)) (-167 (-224)))) (-15 -1545 ((-224) (-224) (-224))) (-15 -1545 ((-167 (-224)) (-167 (-224)) (-167 (-224)))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) NIL)) (-2473 (($ $ $) NIL)) (-3818 (($ (-1253 |#1|)) NIL) (($ $) NIL)) (-4280 (($ |#1| |#1| |#1|) 32)) (-3506 (((-112) $) NIL)) (-2472 (($ $ (-544) (-544)) NIL)) (-2471 (($ $ (-544) (-544)) NIL)) (-2470 (($ $ (-544) (-544) (-544) (-544)) NIL)) (-2475 (($ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-2469 (($ $ (-544) (-544) $) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) NIL)) (-1332 (($ $ (-544) (-1253 |#1|)) NIL)) (-1331 (($ $ (-544) (-1253 |#1|)) NIL)) (-4254 (($ |#1| |#1| |#1|) 31)) (-3737 (($ (-765) |#1|) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) NIL (|has| |#1| (-306)))) (-3497 (((-1253 |#1|) $ (-544)) NIL)) (-1546 (($ |#1|) 30)) (-1547 (($ |#1|) 29)) (-1548 (($ |#1|) 28)) (-3494 (((-765) $) NIL (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3493 (((-765) $) NIL (|has| |#1| (-554)))) (-3492 (((-635 (-1253 |#1|)) $) NIL (|has| |#1| (-554)))) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#1| $) NIL (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#1|))) 11)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4000 (((-635 (-635 |#1|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3996 (((-3 $ #2="failed") $) NIL (|has| |#1| (-362)))) (-1549 (($) 12)) (-2474 (($ $ $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-3865 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544))) NIL)) (-3736 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-3507 (((-112) $) NIL)) (-3732 ((|#1| $) NIL (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-1253 |#1|) $ (-544)) NIL)) (-4353 (($ (-1253 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-544) $) NIL) (((-1253 |#1|) $ (-1253 |#1|)) 15) (((-1253 |#1|) (-1253 |#1|) $) NIL) (((-936 |#1|) $ (-936 |#1|)) 20)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-226 |#1|) (-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -1549 ($)) (-15 -1548 ($ |#1|)) (-15 -1547 ($ |#1|)) (-15 -1546 ($ |#1|)) (-15 -4254 ($ |#1| |#1| |#1|)) (-15 -4280 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1190))) (T -226))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190))) (-5 *1 (-226 *3)))) (-1549 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1548 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1547 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1546 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-4254 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-4280 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -1549 ($)) (-15 -1548 ($ |#1|)) (-15 -1547 ($ |#1|)) (-15 -1546 ($ |#1|)) (-15 -4254 ($ |#1| |#1| |#1|)) (-15 -4280 ($ |#1| |#1| |#1|))))
+((-1659 (($ (-1 (-112) |#2|) $) 15)) (-3809 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-1550 (($) NIL) (($ (-635 |#2|)) 11)) (-3437 (((-112) $ $) 22)))
+(((-227 |#1| |#2|) (-10 -8 (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-228 |#2|) (-1091)) (T -227))
+NIL
+(-10 -8 (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3437 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-228 |#1|) (-139) (-1091)) (T -228))
NIL
(-13 (-234 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-3922 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) 11) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) 19) (($ $ (-765)) NIL) (($ $) 16)) (-3154 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-765)) 14) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)))
-(((-229 |#1| |#2|) (-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3154 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3154 (|#1| |#1| (-1166))) (-15 -3154 (|#1| |#1| (-638 (-1166)))) (-15 -3154 (|#1| |#1| (-1166) (-765))) (-15 -3154 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3154 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3154 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1042)) (T -229))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-4217 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) 11) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) 19) (($ $ (-765)) NIL) (($ $) 16)) (-3051 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-765)) 14) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)))
+(((-229 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1166))) (-15 -3051 (|#1| |#1| (-635 (-1166)))) (-15 -3051 (|#1| |#1| (-1166) (-765))) (-15 -3051 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1042)) (T -229))
NIL
-(-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3154 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3154 (|#1| |#1| (-1166))) (-15 -3154 (|#1| |#1| (-638 (-1166)))) (-15 -3154 (|#1| |#1| (-1166) (-765))) (-15 -3154 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3154 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3154 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3922 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-765)) 51) (($ $ (-638 (-1166)) (-638 (-765))) 44 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 42 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-765)) 49) (($ $ (-638 (-1166)) (-638 (-765))) 48 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 46 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1166))) (-15 -3051 (|#1| |#1| (-635 (-1166)))) (-15 -3051 (|#1| |#1| (-1166) (-765))) (-15 -3051 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-765)) 51) (($ $ (-635 (-1166)) (-635 (-765))) 44 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 42 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-765)) 49) (($ $ (-635 (-1166)) (-635 (-765))) 48 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 46 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-230 |#1|) (-139) (-1042)) (T -230))
-((-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-3922 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))))
-(-13 (-1042) (-10 -8 (-15 -3922 ($ $ (-1 |t#1| |t#1|))) (-15 -3922 ($ $ (-1 |t#1| |t#1|) (-765))) (-15 -3154 ($ $ (-1 |t#1| |t#1|))) (-15 -3154 ($ $ (-1 |t#1| |t#1|) (-765))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-232) |has| |#1| (-232)) ((-641 $) . T) ((-720) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3922 (($ $) NIL) (($ $ (-765)) 10)) (-3154 (($ $) 8) (($ $ (-765)) 12)))
-(((-231 |#1|) (-10 -8 (-15 -3154 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3154 (|#1| |#1|)) (-15 -3922 (|#1| |#1|))) (-232)) (T -231))
-NIL
-(-10 -8 (-15 -3154 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3154 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3922 (($ $) 38) (($ $ (-765)) 36)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $) 37) (($ $ (-765)) 35)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-3051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))))
+(-13 (-1042) (-10 -8 (-15 -4217 ($ $ (-1 |t#1| |t#1|))) (-15 -4217 ($ $ (-1 |t#1| |t#1|) (-765))) (-15 -3051 ($ $ (-1 |t#1| |t#1|))) (-15 -3051 ($ $ (-1 |t#1| |t#1|) (-765))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-232) |has| |#1| (-232)) ((-641 $) . T) ((-720) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-4217 (($ $) NIL) (($ $ (-765)) 10)) (-3051 (($ $) 8) (($ $ (-765)) 12)))
+(((-231 |#1|) (-10 -8 (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1|))) (-232)) (T -231))
+NIL
+(-10 -8 (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $) 38) (($ $ (-765)) 36)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 37) (($ $ (-765)) 35)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-232) (-139)) (T -232))
-((-3922 (*1 *1 *1) (-4 *1 (-232))) (-3154 (*1 *1 *1) (-4 *1 (-232))) (-3922 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))))
-(-13 (-1042) (-10 -8 (-15 -3922 ($ $)) (-15 -3154 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -3154 ($ $ (-765)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3643 (($) 12) (($ (-638 |#2|)) NIL)) (-4225 (($ $) 14)) (-4078 (($ (-638 |#2|)) 10)) (-4064 (((-856) $) 21)))
-(((-233 |#1| |#2|) (-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -3643 (|#1| (-638 |#2|))) (-15 -3643 (|#1|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -4225 (|#1| |#1|))) (-234 |#2|) (-1090)) (T -233))
-NIL
-(-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -3643 (|#1| (-638 |#2|))) (-15 -3643 (|#1|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -4225 (|#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-1954 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-1461 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ |#1| $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-3643 (($) 49) (($ (-638 |#1|)) 48)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 50)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-234 |#1|) (-139) (-1090)) (T -234))
-((-3643 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1090)))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-234 *3)))) (-3222 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-234 *2)) (-4 *2 (-1090)))) (-3222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-234 *3)) (-4 *3 (-1090)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-234 *3)) (-4 *3 (-1090)))))
-(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -3643 ($)) (-15 -3643 ($ (-638 |t#1|))) (IF (|has| $ (-6 -4399)) (PROGN (-15 -3222 ($ |t#1| $)) (-15 -3222 ($ (-1 (-112) |t#1|) $)) (-15 -1954 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-1505 (((-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1254 (-765))) "failed")) (|:| |hom| (-638 (-1254 (-765))))) (-293 (-945 (-561)))) 27)))
-(((-235) (-10 -7 (-15 -1505 ((-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1254 (-765))) "failed")) (|:| |hom| (-638 (-1254 (-765))))) (-293 (-945 (-561))))))) (T -235))
-((-1505 (*1 *2 *3) (-12 (-5 *3 (-293 (-945 (-561)))) (-5 *2 (-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1254 (-765))) "failed")) (|:| |hom| (-638 (-1254 (-765)))))) (-5 *1 (-235)))))
-(-10 -7 (-15 -1505 ((-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1254 (-765))) "failed")) (|:| |hom| (-638 (-1254 (-765))))) (-293 (-945 (-561))))))
-((-1386 (((-765)) 51)) (-3720 (((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 $) (-1254 $)) 49) (((-682 |#3|) (-682 $)) 41) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-2390 (((-133)) 57)) (-3922 (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-4064 (((-1254 |#3|) $) NIL) (($ |#3|) NIL) (((-856) $) NIL) (($ (-561)) 12) (($ (-406 (-561))) NIL)) (-3746 (((-765)) 15)) (-1828 (($ $ |#3|) 54)))
-(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)) (-15 -3746 ((-765))) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -4064 (|#1| |#3|)) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3720 ((-682 |#3|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 |#1|) (-1254 |#1|))) (-15 -1386 ((-765))) (-15 -1828 (|#1| |#1| |#3|)) (-15 -2390 ((-133))) (-15 -4064 ((-1254 |#3|) |#1|))) (-237 |#2| |#3|) (-765) (-1205)) (T -236))
-((-2390 (*1 *2) (-12 (-14 *4 (-765)) (-4 *5 (-1205)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-1386 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-3746 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))))
-(-10 -8 (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)) (-15 -3746 ((-765))) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -4064 (|#1| |#3|)) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3720 ((-682 |#3|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 |#1|) (-1254 |#1|))) (-15 -1386 ((-765))) (-15 -1828 (|#1| |#1| |#3|)) (-15 -2390 ((-133))) (-15 -4064 ((-1254 |#3|) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#2| (-1090)))) (-4306 (((-112) $) 72 (|has| |#2| (-130)))) (-2274 (($ (-914)) 125 (|has| |#2| (-1042)))) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-1403 (($ $ $) 121 (|has| |#2| (-787)))) (-2979 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-2684 (((-112) $ (-765)) 8)) (-1386 (((-765)) 107 (|has| |#2| (-367)))) (-1659 (((-561) $) 119 (|has| |#2| (-842)))) (-4207 ((|#2| $ (-561) |#2|) 52 (|has| $ (-6 -4400)))) (-2674 (($) 7 T CONST)) (-4061 (((-3 (-561) "failed") $) 67 (-2198 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) 64 (-2198 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1090)))) (-3979 (((-561) $) 66 (-2198 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) 63 (-2198 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) 62 (|has| |#2| (-1090)))) (-3720 (((-682 (-561)) (-682 $)) 106 (-2198 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 105 (-2198 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) 104 (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) 103 (|has| |#2| (-1042)))) (-3735 (((-3 $ "failed") $) 79 (|has| |#2| (-720)))) (-1362 (($) 110 (|has| |#2| (-367)))) (-2041 ((|#2| $ (-561) |#2|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#2| $ (-561)) 51)) (-1784 (((-112) $) 117 (|has| |#2| (-842)))) (-2368 (((-638 |#2|) $) 30 (|has| $ (-6 -4399)))) (-2252 (((-112) $) 81 (|has| |#2| (-720)))) (-3271 (((-112) $) 118 (|has| |#2| (-842)))) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-1597 (($ $ $) 116 (-4050 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-4125 (((-638 |#2|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-3017 (($ $ $) 115 (-4050 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2029 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2|) $) 35)) (-1335 (((-914) $) 109 (|has| |#2| (-367)))) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#2| (-1090)))) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-2442 (($ (-914)) 108 (|has| |#2| (-367)))) (-1701 (((-1110) $) 21 (|has| |#2| (-1090)))) (-1424 ((|#2| $) 42 (|has| (-561) (-844)))) (-3193 (($ $ |#2|) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#2| $ (-561) |#2|) 50) ((|#2| $ (-561)) 49)) (-3634 ((|#2| $ $) 124 (|has| |#2| (-1042)))) (-1675 (($ (-1254 |#2|)) 126)) (-2390 (((-133)) 123 (|has| |#2| (-362)))) (-3922 (($ $) 98 (-2198 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 96 (-2198 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 94 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) 93 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 92 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) 91 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 84 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1042)))) (-1714 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4399))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-1254 |#2|) $) 127) (($ (-561)) 68 (-4050 (-2198 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) 65 (-2198 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) 60 (|has| |#2| (-1090))) (((-856) $) 18 (|has| |#2| (-608 (-856))))) (-3746 (((-765)) 102 (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4399)))) (-2165 (($ $) 120 (|has| |#2| (-842)))) (-2246 (($) 71 (|has| |#2| (-130)) CONST)) (-2257 (($) 82 (|has| |#2| (-720)) CONST)) (-3154 (($ $) 97 (-2198 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 95 (-2198 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 90 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) 89 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 88 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) 87 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 86 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1042)))) (-1781 (((-112) $ $) 113 (-4050 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1758 (((-112) $ $) 112 (-4050 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1723 (((-112) $ $) 20 (|has| |#2| (-1090)))) (-1770 (((-112) $ $) 114 (-4050 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1746 (((-112) $ $) 111 (-4050 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1828 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-1819 (($ $ $) 100 (|has| |#2| (-1042))) (($ $) 99 (|has| |#2| (-1042)))) (-1810 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-765)) 80 (|has| |#2| (-720))) (($ $ (-914)) 77 (|has| |#2| (-720)))) (* (($ (-561) $) 101 (|has| |#2| (-1042))) (($ $ $) 78 (|has| |#2| (-720))) (($ $ |#2|) 76 (|has| |#2| (-720))) (($ |#2| $) 75 (|has| |#2| (-720))) (($ (-765) $) 73 (|has| |#2| (-130))) (($ (-914) $) 70 (|has| |#2| (-25)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-237 |#1| |#2|) (-139) (-765) (-1205)) (T -237))
-((-1675 (*1 *1 *2) (-12 (-5 *2 (-1254 *4)) (-4 *4 (-1205)) (-4 *1 (-237 *3 *4)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042)) (-4 *4 (-1205)))) (-3634 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))))
-(-13 (-599 (-561) |t#2|) (-608 (-1254 |t#2|)) (-10 -8 (-6 -4399) (-15 -1675 ($ (-1254 |t#2|))) (IF (|has| |t#2| (-1090)) (-6 (-410 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1042)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -2274 ($ (-914))) (-15 -3634 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-720)) (PROGN (-6 (-720)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4396)) (-6 -4396) |%noBranch|) (IF (|has| |t#2| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1261 |t#2|)) |%noBranch|)))
-(((-21) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -4050 (|has| |#2| (-1090)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4050 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-611 #0=(-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))) ((-611 (-561)) -4050 (|has| |#2| (-1042)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-611 |#2|) -4050 (|has| |#2| (-1090)) (|has| |#2| (-171))) ((-608 (-856)) -4050 (|has| |#2| (-1090)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-608 (-856))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-608 (-1254 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1042)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1042))) ((-285 #1=(-561) |#2|) . T) ((-287 #1# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1042)) ((-410 |#2|) |has| |#2| (-1090)) ((-487 |#2|) . T) ((-599 #1# |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-641 |#2|) -4050 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-641 $) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-634 (-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))) ((-634 |#2|) |has| |#2| (-1042)) ((-711 |#2|) -4050 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-720) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-785) |has| |#2| (-842)) ((-786) -4050 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-787) |has| |#2| (-787)) ((-788) -4050 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-789) -4050 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-842) |has| |#2| (-842)) ((-844) -4050 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-893 (-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))) ((-1031 #0#) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))) ((-1031 (-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) ((-1031 |#2|) |has| |#2| (-1090)) ((-1048 |#2|) -4050 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1048 $) |has| |#2| (-171)) ((-1042) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1049) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1102) -4050 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-1090) -4050 (|has| |#2| (-1090)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1205) . T) ((-1261 |#2|) |has| |#2| (-362)))
-((-3522 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-3176 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-4165 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18)))
-(((-238 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3176 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4165 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-765) (-1205) (-1205)) (T -238))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-5 *2 (-239 *5 *7)) (-5 *1 (-238 *5 *6 *7)))) (-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1205)) (-4 *2 (-1205)) (-5 *1 (-238 *5 *6 *2)))) (-3522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-765)) (-4 *7 (-1205)) (-4 *5 (-1205)) (-5 *2 (-239 *6 *5)) (-5 *1 (-238 *6 *7 *5)))))
-(-10 -7 (-15 -3522 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3176 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4165 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|))))
-((-4053 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-4306 (((-112) $) NIL (|has| |#2| (-130)))) (-2274 (($ (-914)) 56 (|has| |#2| (-1042)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-1403 (($ $ $) 60 (|has| |#2| (-787)))) (-2979 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-2684 (((-112) $ (-765)) 17)) (-1386 (((-765)) NIL (|has| |#2| (-367)))) (-1659 (((-561) $) NIL (|has| |#2| (-842)))) (-4207 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1090)))) (-3979 (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) 27 (|has| |#2| (-1090)))) (-3720 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3735 (((-3 $ "failed") $) 53 (|has| |#2| (-720)))) (-1362 (($) NIL (|has| |#2| (-367)))) (-2041 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ (-561)) 51)) (-1784 (((-112) $) NIL (|has| |#2| (-842)))) (-2368 (((-638 |#2|) $) 15 (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL (|has| |#2| (-720)))) (-3271 (((-112) $) NIL (|has| |#2| (-842)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 20 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4125 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 (((-561) $) 50 (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2029 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2|) $) 41)) (-1335 (((-914) $) NIL (|has| |#2| (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#2| (-1090)))) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-2442 (($ (-914)) NIL (|has| |#2| (-367)))) (-1701 (((-1110) $) NIL (|has| |#2| (-1090)))) (-1424 ((|#2| $) NIL (|has| (-561) (-844)))) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) 21)) (-3634 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1675 (($ (-1254 |#2|)) 18)) (-2390 (((-133)) NIL (|has| |#2| (-362)))) (-3922 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1714 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-1254 |#2|) $) 10) (($ (-561)) NIL (-4050 (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) 13 (|has| |#2| (-1090))) (((-856) $) NIL (|has| |#2| (-608 (-856))))) (-3746 (((-765)) NIL (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-2165 (($ $) NIL (|has| |#2| (-842)))) (-2246 (($) 35 (|has| |#2| (-130)) CONST)) (-2257 (($) 38 (|has| |#2| (-720)) CONST)) (-3154 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1781 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1758 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1723 (((-112) $ $) 26 (|has| |#2| (-1090)))) (-1770 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1746 (((-112) $ $) 58 (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-1810 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-914)) NIL (|has| |#2| (-720)))) (* (($ (-561) $) NIL (|has| |#2| (-1042))) (($ $ $) 44 (|has| |#2| (-720))) (($ $ |#2|) 42 (|has| |#2| (-720))) (($ |#2| $) 43 (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-914) $) NIL (|has| |#2| (-25)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-239 |#1| |#2|) (-237 |#1| |#2|) (-765) (-1205)) (T -239))
+((-4217 (*1 *1 *1) (-4 *1 (-232))) (-3051 (*1 *1 *1) (-4 *1 (-232))) (-4217 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))))
+(-13 (-1042) (-10 -8 (-15 -4217 ($ $)) (-15 -3051 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -3051 ($ $ (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-1550 (($) 12) (($ (-635 |#2|)) NIL)) (-3804 (($ $) 14)) (-3929 (($ (-635 |#2|)) 10)) (-4353 (((-857) $) 21)))
+(((-233 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -3804 (|#1| |#1|))) (-234 |#2|) (-1091)) (T -233))
+NIL
+(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -3804 (|#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-234 |#1|) (-139) (-1091)) (T -234))
+((-1550 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1091)))) (-1550 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-234 *3)))) (-3809 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-234 *2)) (-4 *2 (-1091)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3)) (-4 *3 (-1091)))) (-1659 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3)) (-4 *3 (-1091)))))
+(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -1550 ($)) (-15 -1550 ($ (-635 |t#1|))) (IF (|has| $ (-6 -4400)) (PROGN (-15 -3809 ($ |t#1| $)) (-15 -3809 ($ (-1 (-112) |t#1|) $)) (-15 -1659 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-1551 (((-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765))))) (-292 (-939 (-544)))) 27)))
+(((-235) (-10 -7 (-15 -1551 ((-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765))))) (-292 (-939 (-544))))))) (T -235))
+((-1551 (*1 *2 *3) (-12 (-5 *3 (-292 (-939 (-544)))) (-5 *2 (-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765)))))) (-5 *1 (-235)))))
+(-10 -7 (-15 -1551 ((-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765))))) (-292 (-939 (-544))))))
+((-3521 (((-765)) 51)) (-2401 (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) 49) (((-682 |#3|) (-682 $)) 41) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-4318 (((-133)) 57)) (-4217 (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-4353 (((-1253 |#3|) $) NIL) (($ |#3|) NIL) (((-857) $) NIL) (($ (-544)) 12) (($ (-406 (-544))) NIL)) (-3511 (((-765)) 15)) (-4356 (($ $ |#3|) 54)))
+(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)) (-15 -3511 ((-765))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -3521 ((-765))) (-15 -4356 (|#1| |#1| |#3|)) (-15 -4318 ((-133))) (-15 -4353 ((-1253 |#3|) |#1|))) (-237 |#2| |#3|) (-765) (-1204)) (T -236))
+((-4318 (*1 *2) (-12 (-14 *4 (-765)) (-4 *5 (-1204)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-3521 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-3511 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))))
+(-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)) (-15 -3511 ((-765))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -3521 ((-765))) (-15 -4356 (|#1| |#1| |#3|)) (-15 -4318 ((-133))) (-15 -4353 ((-1253 |#3|) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#2| (-1091)))) (-3589 (((-112) $) 72 (|has| |#2| (-130)))) (-4114 (($ (-912)) 125 (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-2778 (($ $ $) 121 (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) 8)) (-3521 (((-765)) 107 (|has| |#2| (-367)))) (-4030 (((-544) $) 119 (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) 52 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 67 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) 64 (-3240 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1091)))) (-3557 (((-544) $) 66 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) 63 (-3240 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) 62 (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) 106 (-3240 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 105 (-3240 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 104 (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) 103 (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) 79 (|has| |#2| (-720)))) (-3377 (($) 110 (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) 51)) (-3587 (((-112) $) 117 (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) 30 (|has| $ (-6 -4400)))) (-2545 (((-112) $) 81 (|has| |#2| (-720)))) (-3588 (((-112) $) 118 (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 116 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2554 (((-635 |#2|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 115 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2100 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) 35)) (-2160 (((-912) $) 109 (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-2535 (($ (-912)) 108 (|has| |#2| (-367)))) (-3644 (((-1110) $) 21 (|has| |#2| (-1091)))) (-4207 ((|#2| $) 42 (|has| (-544) (-844)))) (-2345 (($ $ |#2|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ (-544) |#2|) 50) ((|#2| $ (-544)) 49)) (-4243 ((|#2| $ $) 124 (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) 126)) (-4318 (((-133)) 123 (|has| |#2| (-362)))) (-4217 (($ $) 98 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 96 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 94 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) 93 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 92 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) 91 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 84 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4400))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-1253 |#2|) $) 127) (($ (-544)) 68 (-3936 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) 65 (-3240 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) 60 (|has| |#2| (-1091))) (((-857) $) 18 (|has| |#2| (-608 (-857))))) (-3511 (((-765)) 102 (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4400)))) (-3787 (($ $) 120 (|has| |#2| (-842)))) (-3040 (($) 71 (|has| |#2| (-130)) CONST)) (-3046 (($) 82 (|has| |#2| (-720)) CONST)) (-3051 (($ $) 97 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 95 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 90 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) 89 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 88 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) 87 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 86 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1042)))) (-2945 (((-112) $ $) 113 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2946 (((-112) $ $) 112 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-3437 (((-112) $ $) 20 (|has| |#2| (-1091)))) (-3066 (((-112) $ $) 114 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-3067 (((-112) $ $) 111 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-4356 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-4244 (($ $ $) 100 (|has| |#2| (-1042))) (($ $) 99 (|has| |#2| (-1042)))) (-4246 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-765)) 80 (|has| |#2| (-720))) (($ $ (-912)) 77 (|has| |#2| (-720)))) (* (($ (-544) $) 101 (|has| |#2| (-1042))) (($ $ $) 78 (|has| |#2| (-720))) (($ $ |#2|) 76 (|has| |#2| (-720))) (($ |#2| $) 75 (|has| |#2| (-720))) (($ (-765) $) 73 (|has| |#2| (-130))) (($ (-912) $) 70 (|has| |#2| (-25)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-237 |#1| |#2|) (-139) (-765) (-1204)) (T -237))
+((-1552 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1204)) (-4 *1 (-237 *3 *4)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042)) (-4 *4 (-1204)))) (-4243 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))))
+(-13 (-599 (-544) |t#2|) (-608 (-1253 |t#2|)) (-10 -8 (-6 -4400) (-15 -1552 ($ (-1253 |t#2|))) (IF (|has| |t#2| (-1091)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1042)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -4114 ($ (-912))) (-15 -4243 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-720)) (PROGN (-6 (-720)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4397)) (-6 -4397) |%noBranch|) (IF (|has| |t#2| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1261 |t#2|)) |%noBranch|)))
+(((-21) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -3936 (|has| |#2| (-1091)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3936 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-611 #1=(-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))) ((-611 (-544)) -3936 (|has| |#2| (-1042)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-611 |#2|) -3936 (|has| |#2| (-1091)) (|has| |#2| (-171))) ((-608 (-857)) -3936 (|has| |#2| (-1091)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-608 (-857))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-608 (-1253 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1042)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1042))) ((-285 #2=(-544) |#2|) . T) ((-287 #2# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1042)) ((-411 |#2|) |has| |#2| (-1091)) ((-487 |#2|) . T) ((-599 #2# |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-641 |#2|) -3936 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-641 $) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-634 (-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042))) ((-634 |#2|) |has| |#2| (-1042)) ((-711 |#2|) -3936 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-720) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-785) |has| |#2| (-842)) ((-786) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-787) |has| |#2| (-787)) ((-788) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-791) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-842) |has| |#2| (-842)) ((-844) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-893 (-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))) ((-1031 #1#) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))) ((-1031 (-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) ((-1031 |#2|) |has| |#2| (-1091)) ((-1048 |#2|) -3936 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1048 $) |has| |#2| (-171)) ((-1042) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1049) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1102) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-1091) -3936 (|has| |#2| (-1091)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1204) . T) ((-1261 |#2|) |has| |#2| (-362)))
+((-2947 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3589 (((-112) $) NIL (|has| |#2| (-130)))) (-4114 (($ (-912)) 56 (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) 60 (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) 17)) (-3521 (((-765)) NIL (|has| |#2| (-367)))) (-4030 (((-544) $) NIL (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) 27 (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) 53 (|has| |#2| (-720)))) (-3377 (($) NIL (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) 51)) (-3587 (((-112) $) NIL (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) 15 (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#2| (-720)))) (-3588 (((-112) $) NIL (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 20 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 (((-544) $) 50 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) 41)) (-2160 (((-912) $) NIL (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#2| (-367)))) (-3644 (((-1110) $) NIL (|has| |#2| (-1091)))) (-4207 ((|#2| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) 21)) (-4243 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) 18)) (-4318 (((-133)) NIL (|has| |#2| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#2|) $) 10) (($ (-544)) NIL (-3936 (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) 13 (|has| |#2| (-1091))) (((-857) $) NIL (|has| |#2| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#2| (-842)))) (-3040 (($) 35 (|has| |#2| (-130)) CONST)) (-3046 (($) 38 (|has| |#2| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3437 (((-112) $ $) 26 (|has| |#2| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3067 (((-112) $ $) 58 (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-4246 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-912)) NIL (|has| |#2| (-720)))) (* (($ (-544) $) NIL (|has| |#2| (-1042))) (($ $ $) 44 (|has| |#2| (-720))) (($ $ |#2|) 42 (|has| |#2| (-720))) (($ |#2| $) 43 (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-912) $) NIL (|has| |#2| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-238 |#1| |#2|) (-237 |#1| |#2|) (-765) (-1204)) (T -238))
NIL
(-237 |#1| |#2|)
-((-4016 (((-561) (-638 (-1148))) 24) (((-561) (-1148)) 19)) (-2564 (((-1259) (-638 (-1148))) 29) (((-1259) (-1148)) 28)) (-1939 (((-1148)) 14)) (-2749 (((-1148) (-561) (-1148)) 16)) (-2298 (((-638 (-1148)) (-638 (-1148)) (-561) (-1148)) 25) (((-1148) (-1148) (-561) (-1148)) 23)) (-4001 (((-638 (-1148)) (-638 (-1148))) 13) (((-638 (-1148)) (-1148)) 11)))
-(((-240) (-10 -7 (-15 -4001 ((-638 (-1148)) (-1148))) (-15 -4001 ((-638 (-1148)) (-638 (-1148)))) (-15 -1939 ((-1148))) (-15 -2749 ((-1148) (-561) (-1148))) (-15 -2298 ((-1148) (-1148) (-561) (-1148))) (-15 -2298 ((-638 (-1148)) (-638 (-1148)) (-561) (-1148))) (-15 -2564 ((-1259) (-1148))) (-15 -2564 ((-1259) (-638 (-1148)))) (-15 -4016 ((-561) (-1148))) (-15 -4016 ((-561) (-638 (-1148)))))) (T -240))
-((-4016 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-561)) (-5 *1 (-240)))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-240)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1259)) (-5 *1 (-240)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-240)))) (-2298 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-638 (-1148))) (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *1 (-240)))) (-2298 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240)))) (-2749 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240)))) (-1939 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240)))) (-4001 (*1 *2 *3) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148)))))
-(-10 -7 (-15 -4001 ((-638 (-1148)) (-1148))) (-15 -4001 ((-638 (-1148)) (-638 (-1148)))) (-15 -1939 ((-1148))) (-15 -2749 ((-1148) (-561) (-1148))) (-15 -2298 ((-1148) (-1148) (-561) (-1148))) (-15 -2298 ((-638 (-1148)) (-638 (-1148)) (-561) (-1148))) (-15 -2564 ((-1259) (-1148))) (-15 -2564 ((-1259) (-638 (-1148)))) (-15 -4016 ((-561) (-1148))) (-15 -4016 ((-561) (-638 (-1148)))))
-((** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 16)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ (-406 (-561)) $) 23) (($ $ (-406 (-561))) NIL)))
-(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-242)) (T -241))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 40)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 44)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 41)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ (-406 (-561)) $) 43) (($ $ (-406 (-561))) 42)))
+((-4248 (((-238 |#1| |#3|) (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|) 21)) (-4249 ((|#3| (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|) 23)) (-4365 (((-238 |#1| |#3|) (-1 |#3| |#2|) (-238 |#1| |#2|)) 18)))
+(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -4248 ((-238 |#1| |#3|) (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4249 (|#3| (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4365 ((-238 |#1| |#3|) (-1 |#3| |#2|) (-238 |#1| |#2|)))) (-765) (-1204) (-1204)) (T -239))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-5 *2 (-238 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1204)) (-4 *2 (-1204)) (-5 *1 (-239 *5 *6 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-238 *6 *7)) (-14 *6 (-765)) (-4 *7 (-1204)) (-4 *5 (-1204)) (-5 *2 (-238 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
+(-10 -7 (-15 -4248 ((-238 |#1| |#3|) (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4249 (|#3| (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4365 ((-238 |#1| |#3|) (-1 |#3| |#2|) (-238 |#1| |#2|))))
+((-1556 (((-544) (-635 (-1148))) 24) (((-544) (-1148)) 19)) (-1555 (((-1259) (-635 (-1148))) 29) (((-1259) (-1148)) 28)) (-1553 (((-1148)) 14)) (-1554 (((-1148) (-544) (-1148)) 16)) (-4179 (((-635 (-1148)) (-635 (-1148)) (-544) (-1148)) 25) (((-1148) (-1148) (-544) (-1148)) 23)) (-2998 (((-635 (-1148)) (-635 (-1148))) 13) (((-635 (-1148)) (-1148)) 11)))
+(((-240) (-10 -7 (-15 -2998 ((-635 (-1148)) (-1148))) (-15 -2998 ((-635 (-1148)) (-635 (-1148)))) (-15 -1553 ((-1148))) (-15 -1554 ((-1148) (-544) (-1148))) (-15 -4179 ((-1148) (-1148) (-544) (-1148))) (-15 -4179 ((-635 (-1148)) (-635 (-1148)) (-544) (-1148))) (-15 -1555 ((-1259) (-1148))) (-15 -1555 ((-1259) (-635 (-1148)))) (-15 -1556 ((-544) (-1148))) (-15 -1556 ((-544) (-635 (-1148)))))) (T -240))
+((-1556 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-544)) (-5 *1 (-240)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-240)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1259)) (-5 *1 (-240)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-240)))) (-4179 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 (-1148))) (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *1 (-240)))) (-4179 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240)))) (-1554 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240)))) (-1553 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240)))) (-2998 (*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240)))) (-2998 (*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148)))))
+(-10 -7 (-15 -2998 ((-635 (-1148)) (-1148))) (-15 -2998 ((-635 (-1148)) (-635 (-1148)))) (-15 -1553 ((-1148))) (-15 -1554 ((-1148) (-544) (-1148))) (-15 -4179 ((-1148) (-1148) (-544) (-1148))) (-15 -4179 ((-635 (-1148)) (-635 (-1148)) (-544) (-1148))) (-15 -1555 ((-1259) (-1148))) (-15 -1555 ((-1259) (-635 (-1148)))) (-15 -1556 ((-544) (-1148))) (-15 -1556 ((-544) (-635 (-1148)))))
+((** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 16)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ (-406 (-544)) $) 23) (($ $ (-406 (-544))) NIL)))
+(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-242)) (T -241))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 40)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 44)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 41)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ (-406 (-544)) $) 43) (($ $ (-406 (-544))) 42)))
(((-242) (-139)) (T -242))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-561)))) (-1519 (*1 *1 *1) (-4 *1 (-242))))
-(-13 (-289) (-38 (-406 (-561))) (-10 -8 (-15 ** ($ $ (-561))) (-15 -1519 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-289) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-720) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-3164 (($ $) 57)) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-2982 (($ $ $) 53 (|has| $ (-6 -4400)))) (-3744 (($ $ $) 52 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-2674 (($) 7 T CONST)) (-1562 (($ $) 56)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-4327 (($ $) 55)) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1501 ((|#1| $) 59)) (-3149 (($ $) 58)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47)) (-4293 (((-561) $ $) 44)) (-1650 (((-112) $) 46)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-2448 (($ $ $) 54 (|has| $ (-6 -4400)))) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-243 |#1|) (-139) (-1205)) (T -243))
-((-1501 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-3149 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-1562 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-4327 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-2448 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-2982 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-3744 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
-(-13 (-1003 |t#1|) (-10 -8 (-15 -1501 (|t#1| $)) (-15 -3149 ($ $)) (-15 -3164 ($ $)) (-15 -1562 ($ $)) (-15 -4327 ($ $)) (IF (|has| $ (-6 -4400)) (PROGN (-15 -2448 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -3744 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) NIL)) (-2333 ((|#1| $) NIL)) (-3164 (($ $) NIL)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1680 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1318 (($ $) 10 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2956 (($ $ $) NIL (|has| $ (-6 -4400)))) (-3281 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4400))) (($ $ "rest" $) NIL (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2322 ((|#1| $) NIL)) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1437 (($ $) NIL) (($ $ (-765)) NIL)) (-3299 (($ $) NIL (|has| |#1| (-1090)))) (-1461 (($ $) 7 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-2728 (((-112) $) NIL)) (-4266 (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090))) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) NIL)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1458 (($ (-765) |#1|) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-2289 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3755 (($ |#1|) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1501 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1617 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3350 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-2391 (((-112) $) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1221 (-561))) NIL) ((|#1| $ (-561)) NIL) ((|#1| $ (-561) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-765) $ "count") 16)) (-4293 (((-561) $ $) NIL)) (-4335 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-2883 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-3940 (($ (-638 |#1|)) 22)) (-1650 (((-112) $) NIL)) (-3235 (($ $) NIL)) (-4193 (($ $) NIL (|has| $ (-6 -4400)))) (-2118 (((-765) $) NIL)) (-1491 (($ $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-2448 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2754 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-638 $)) NIL) (($ $ |#1|) NIL)) (-4064 (($ (-638 |#1|)) 17) (((-638 |#1|) $) 18) (((-856) $) 21 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) 14 (|has| $ (-6 -4399)))))
-(((-244 |#1|) (-13 (-659 |#1|) (-488 (-638 |#1|)) (-10 -8 (-15 -3940 ($ (-638 |#1|))) (-15 -2315 ($ $ "unique")) (-15 -2315 ($ $ "sort")) (-15 -2315 ((-765) $ "count")))) (-844)) (T -244))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844)))))
-(-13 (-659 |#1|) (-488 (-638 |#1|)) (-10 -8 (-15 -3940 ($ (-638 |#1|))) (-15 -2315 ($ $ "unique")) (-15 -2315 ($ $ "sort")) (-15 -2315 ((-765) $ "count"))))
-((-3989 (((-3 (-765) "failed") |#1| |#1| (-765)) 26)))
-(((-245 |#1|) (-10 -7 (-15 -3989 ((-3 (-765) "failed") |#1| |#1| (-765)))) (-13 (-720) (-367) (-10 -7 (-15 ** (|#1| |#1| (-561)))))) (T -245))
-((-3989 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-765)) (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-561)))))) (-5 *1 (-245 *3)))))
-(-10 -7 (-15 -3989 ((-3 (-765) "failed") |#1| |#1| (-765))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-858 |#1|)) $) NIL)) (-1596 (((-1162 $) $ (-858 |#1|)) NIL) (((-1162 |#2|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-3012 (($ $) NIL (|has| |#2| (-553)))) (-3163 (((-112) $) NIL (|has| |#2| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2557 (($ $) NIL (|has| |#2| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3979 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-2395 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2134 (($ $ (-638 (-561))) NIL)) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-902)))) (-3227 (($ $ |#2| (-239 (-3548 |#1|) (-765)) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1393 (($ (-1162 |#2|) (-858 |#1|)) NIL) (($ (-1162 $) (-858 |#1|)) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#2| (-239 (-3548 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-858 |#1|)) NIL)) (-1522 (((-239 (-3548 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-1597 (($ $ $) NIL (|has| |#2| (-844)))) (-3017 (($ $ $) NIL (|has| |#2| (-844)))) (-1368 (($ (-1 (-239 (-3548 |#1|) (-765)) (-239 (-3548 |#1|) (-765))) $) NIL)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-2830 (((-3 (-858 |#1|) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#2| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1883 (((-1148) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4181 (-765))) "failed") $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#2| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-638 (-858 |#1|)) (-638 $)) NIL)) (-2753 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3922 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3768 (((-239 (-3548 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-2125 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-561))) NIL (-4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-239 (-3548 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-246 |#1| |#2|) (-13 (-942 |#2| (-239 (-3548 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2134 ($ $ (-638 (-561)))))) (-638 (-1166)) (-1042)) (T -246))
-((-2134 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-246 *3 *4)) (-14 *3 (-638 (-1166))) (-4 *4 (-1042)))))
-(-13 (-942 |#2| (-239 (-3548 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2134 ($ $ (-638 (-561))))))
-((-4053 (((-112) $ $) NIL)) (-1685 (((-1259) $) 17)) (-4284 (((-182) $) 11)) (-1606 (($ (-182)) 12)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1843 (((-248) $) 7)) (-4064 (((-856) $) 9)) (-1723 (((-112) $ $) 15)))
-(((-247) (-13 (-1090) (-10 -8 (-15 -1843 ((-248) $)) (-15 -4284 ((-182) $)) (-15 -1606 ($ (-182))) (-15 -1685 ((-1259) $))))) (T -247))
-((-1843 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-1606 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-247)))))
-(-13 (-1090) (-10 -8 (-15 -1843 ((-248) $)) (-15 -4284 ((-182) $)) (-15 -1606 ($ (-182))) (-15 -1685 ((-1259) $))))
-((-4053 (((-112) $ $) NIL)) (-3305 (((-504) $) NIL)) (-1883 (((-1148) $) NIL)) (-2401 (((-185) $) NIL)) (-1701 (((-1110) $) NIL)) (-1474 (((-638 (-112)) $) NIL)) (-4064 (((-856) $) NIL) (((-186) $) 6)) (-2004 (((-55) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-248) (-13 (-184) (-608 (-186)))) (T -248))
-NIL
-(-13 (-184) (-608 (-186)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2274 (($ (-914)) NIL (|has| |#4| (-1042)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-1403 (($ $ $) NIL (|has| |#4| (-787)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-1386 (((-765)) NIL (|has| |#4| (-367)))) (-1659 (((-561) $) NIL (|has| |#4| (-842)))) (-4207 ((|#4| $ (-561) |#4|) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1090))) (((-3 (-561) "failed") $) NIL (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))) (-3979 ((|#4| $) NIL (|has| |#4| (-1090))) (((-561) $) NIL (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))) (-3720 (((-2 (|:| -2942 (-682 |#4|)) (|:| |vec| (-1254 |#4|))) (-682 $) (-1254 $)) NIL (|has| |#4| (-1042))) (((-682 |#4|) (-682 $)) NIL (|has| |#4| (-1042))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))))) (-3735 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-1362 (($) NIL (|has| |#4| (-367)))) (-2041 ((|#4| $ (-561) |#4|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#4| $ (-561)) NIL)) (-1784 (((-112) $) NIL (|has| |#4| (-842)))) (-2368 (((-638 |#4|) $) NIL (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL (-4050 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-3271 (((-112) $) NIL (|has| |#4| (-842)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (-4050 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-4125 (((-638 |#4|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (-4050 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2029 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) NIL)) (-1335 (((-914) $) NIL (|has| |#4| (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-2442 (($ (-914)) NIL (|has| |#4| (-367)))) (-1701 (((-1110) $) NIL)) (-1424 ((|#4| $) NIL (|has| (-561) (-844)))) (-3193 (($ $ |#4|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-2411 (((-638 |#4|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#4| $ (-561) |#4|) NIL) ((|#4| $ (-561)) 12)) (-3634 ((|#4| $ $) NIL (|has| |#4| (-1042)))) (-1675 (($ (-1254 |#4|)) NIL)) (-2390 (((-133)) NIL (|has| |#4| (-362)))) (-3922 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-1714 (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399))) (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-1254 |#4|) $) NIL) (((-856) $) NIL) (($ |#4|) NIL (|has| |#4| (-1090))) (($ (-561)) NIL (-4050 (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090))) (|has| |#4| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))) (-3746 (((-765)) NIL (|has| |#4| (-1042)))) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-2165 (($ $) NIL (|has| |#4| (-842)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL (-4050 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) CONST)) (-3154 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-1781 (((-112) $ $) NIL (-4050 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1758 (((-112) $ $) NIL (-4050 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (-4050 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1746 (((-112) $ $) NIL (-4050 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1828 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-1819 (($ $ $) NIL) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-4050 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042))))) (($ $ (-914)) NIL (-4050 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (* (($ |#2| $) 14) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-720))) (($ |#4| $) NIL (|has| |#4| (-720))) (($ $ $) NIL (-4050 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-641 |#2|) (-641 |#3|)) (-914) (-1042) (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-641 |#2|)) (T -249))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-544)))) (-2779 (*1 *1 *1) (-4 *1 (-242))))
+(-13 (-289) (-38 (-406 (-544))) (-10 -8 (-15 ** ($ $ (-544))) (-15 -2779 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-289) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-720) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4203 (($ $) 57)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-1558 (($ $ $) 53 (|has| $ (-6 -4401)))) (-1557 (($ $ $) 52 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-1560 (($ $) 56)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-1559 (($ $) 55)) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 59)) (-3579 (($ $) 58)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4197 (($ $ $) 54 (|has| $ (-6 -4401)))) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-243 |#1|) (-139) (-1204)) (T -243))
+((-4204 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1558 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1557 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))))
+(-13 (-1003 |t#1|) (-10 -8 (-15 -4204 (|t#1| $)) (-15 -3579 ($ $)) (-15 -4203 ($ $)) (-15 -1560 ($ $)) (-15 -1559 ($ $)) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4197 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1557 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) 10 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) NIL (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-4205 (($ $) NIL) (($ $ (-765)) NIL)) (-2498 (($ $) NIL (|has| |#1| (-1091)))) (-1424 (($ $) 7 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091))) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3941 (($ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) NIL) ((|#1| $ (-544) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-765) $ "count") 16)) (-3412 (((-544) $ $) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-1561 (($ (-635 |#1|)) 22)) (-4040 (((-112) $) NIL)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4197 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4208 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-4353 (($ (-635 |#1|)) 17) (((-635 |#1|) $) 18) (((-857) $) 21 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 14 (|has| $ (-6 -4400)))))
+(((-244 |#1|) (-13 (-659 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -1561 ($ (-635 |#1|))) (-15 -4206 ($ $ "unique")) (-15 -4206 ($ $ "sort")) (-15 -4206 ((-765) $ "count")))) (-844)) (T -244))
+((-1561 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844)))))
+(-13 (-659 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -1561 ($ (-635 |#1|))) (-15 -4206 ($ $ "unique")) (-15 -4206 ($ $ "sort")) (-15 -4206 ((-765) $ "count"))))
+((-1562 (((-3 (-765) "failed") |#1| |#1| (-765)) 26)))
+(((-245 |#1|) (-10 -7 (-15 -1562 ((-3 (-765) "failed") |#1| |#1| (-765)))) (-13 (-720) (-367) (-10 -7 (-15 ** (|#1| |#1| (-544)))))) (T -245))
+((-1562 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-765)) (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-544)))))) (-5 *1 (-245 *3)))))
+(-10 -7 (-15 -1562 ((-3 (-765) "failed") |#1| |#1| (-765))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-858 |#1|)) $) NIL)) (-3469 (((-1160 $) $ (-858 |#1|)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2087 (($ $ (-635 (-544))) NIL)) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-238 (-4364 |#1|) (-765)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) NIL) (($ (-1160 $) (-858 |#1|)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-238 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 (((-238 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-238 (-4364 |#1|) (-765)) (-238 (-4364 |#1|) (-765))) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-635 (-858 |#1|)) (-635 $)) NIL)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 (((-238 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-238 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-246 |#1| |#2|) (-13 (-943 |#2| (-238 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) (-635 (-1166)) (-1042)) (T -246))
+((-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-246 *3 *4)) (-14 *3 (-635 (-1166))) (-4 *4 (-1042)))))
+(-13 (-943 |#2| (-238 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544))))))
+((-2947 (((-112) $ $) NIL)) (-1563 (((-1259) $) 17)) (-1565 (((-183) $) 11)) (-1564 (($ (-183)) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1566 (((-248) $) 7)) (-4353 (((-857) $) 9)) (-3437 (((-112) $ $) 15)))
+(((-247) (-13 (-1091) (-10 -8 (-15 -1566 ((-248) $)) (-15 -1565 ((-183) $)) (-15 -1564 ($ (-183))) (-15 -1563 ((-1259) $))))) (T -247))
+((-1566 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-247)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-247)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-247)))))
+(-13 (-1091) (-10 -8 (-15 -1566 ((-248) $)) (-15 -1565 ((-183) $)) (-15 -1564 ($ (-183))) (-15 -1563 ((-1259) $))))
+((-2947 (((-112) $ $) NIL)) (-3949 (((-504) $) NIL)) (-3643 (((-1148) $) NIL)) (-1493 (((-186) $) NIL)) (-3644 (((-1110) $) NIL)) (-1492 (((-635 (-112)) $) NIL)) (-4353 (((-857) $) NIL) (((-182) $) 6)) (-2900 (((-55) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-248) (-13 (-185) (-608 (-182)))) (T -248))
+NIL
+(-13 (-185) (-608 (-182)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4114 (($ (-912)) NIL (|has| |#4| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#4| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#4| (-367)))) (-4030 (((-544) $) NIL (|has| |#4| (-842)))) (-4194 ((|#4| $ (-544) |#4|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1091))) (((-3 (-544) #1#) $) NIL (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))) (-3557 ((|#4| $) NIL (|has| |#4| (-1091))) (((-544) $) NIL (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))) (-2401 (((-2 (|:| -1728 (-682 |#4|)) (|:| |vec| (-1253 |#4|))) (-682 $) (-1253 $)) NIL (|has| |#4| (-1042))) (((-682 |#4|) (-682 $)) NIL (|has| |#4| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))))) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-3377 (($) NIL (|has| |#4| (-367)))) (-1665 ((|#4| $ (-544) |#4|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#4| $ (-544)) NIL)) (-3587 (((-112) $) NIL (|has| |#4| (-842)))) (-2096 (((-635 |#4|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-3588 (((-112) $) NIL (|has| |#4| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2554 (((-635 |#4|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2100 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#4| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#4| (-367)))) (-3644 (((-1110) $) NIL)) (-4207 ((|#4| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#4|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2351 (((-635 |#4|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#4| $ (-544) |#4|) NIL) ((|#4| $ (-544)) 12)) (-4243 ((|#4| $ $) NIL (|has| |#4| (-1042)))) (-1552 (($ (-1253 |#4|)) NIL)) (-4318 (((-133)) NIL (|has| |#4| (-362)))) (-4217 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-2097 (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#4|) $) NIL) (((-857) $) NIL) (($ |#4|) NIL (|has| |#4| (-1091))) (($ (-544)) NIL (-3936 (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091))) (|has| |#4| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))) (-3511 (((-765)) NIL (|has| |#4| (-1042)))) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#4| (-842)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) CONST)) (-3051 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-3067 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-4356 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042))))) (($ $ (-912)) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (* (($ |#2| $) 14) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-720))) (($ |#4| $) NIL (|has| |#4| (-720))) (($ $ $) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-641 |#2|) (-641 |#3|)) (-912) (-1042) (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-641 |#2|)) (T -249))
NIL
(-13 (-237 |#1| |#4|) (-641 |#2|) (-641 |#3|))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2274 (($ (-914)) NIL (|has| |#3| (-1042)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-1403 (($ $ $) NIL (|has| |#3| (-787)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-1386 (((-765)) NIL (|has| |#3| (-367)))) (-1659 (((-561) $) NIL (|has| |#3| (-842)))) (-4207 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1090))) (((-3 (-561) "failed") $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))) (-3979 ((|#3| $) NIL (|has| |#3| (-1090))) (((-561) $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))) (-3720 (((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 $) (-1254 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))))) (-3735 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-1362 (($) NIL (|has| |#3| (-367)))) (-2041 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#3| $ (-561)) NIL)) (-1784 (((-112) $) NIL (|has| |#3| (-842)))) (-2368 (((-638 |#3|) $) NIL (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL (-4050 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-3271 (((-112) $) NIL (|has| |#3| (-842)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-4125 (((-638 |#3|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2029 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#3| |#3|) $) NIL)) (-1335 (((-914) $) NIL (|has| |#3| (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-2442 (($ (-914)) NIL (|has| |#3| (-367)))) (-1701 (((-1110) $) NIL)) (-1424 ((|#3| $) NIL (|has| (-561) (-844)))) (-3193 (($ $ |#3|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 |#3|) (-638 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090))))) (-2411 (((-638 |#3|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#3| $ (-561) |#3|) NIL) ((|#3| $ (-561)) 11)) (-3634 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1675 (($ (-1254 |#3|)) NIL)) (-2390 (((-133)) NIL (|has| |#3| (-362)))) (-3922 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-1714 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-1254 |#3|) $) NIL) (((-856) $) NIL) (($ |#3|) NIL (|has| |#3| (-1090))) (($ (-561)) NIL (-4050 (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))) (-3746 (((-765)) NIL (|has| |#3| (-1042)))) (-3715 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399)))) (-2165 (($ $) NIL (|has| |#3| (-842)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL (-4050 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) CONST)) (-3154 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-1781 (((-112) $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1758 (((-112) $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1746 (((-112) $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1828 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1819 (($ $ $) NIL) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-4050 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))) (($ $ (-914)) NIL (-4050 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (* (($ |#2| $) 13) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ $ $) NIL (-4050 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4114 (($ (-912)) NIL (|has| |#3| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#3| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#3| (-367)))) (-4030 (((-544) $) NIL (|has| |#3| (-842)))) (-4194 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1091))) (((-3 (-544) #1#) $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))) (-3557 ((|#3| $) NIL (|has| |#3| (-1091))) (((-544) $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))) (-2401 (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))))) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-3377 (($) NIL (|has| |#3| (-367)))) (-1665 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#3| $ (-544)) NIL)) (-3587 (((-112) $) NIL (|has| |#3| (-842)))) (-2096 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-3588 (((-112) $) NIL (|has| |#3| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2554 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2100 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#3| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#3| (-367)))) (-3644 (((-1110) $) NIL)) (-4207 ((|#3| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#3|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2351 (((-635 |#3|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#3| $ (-544) |#3|) NIL) ((|#3| $ (-544)) 11)) (-4243 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1552 (($ (-1253 |#3|)) NIL)) (-4318 (((-133)) NIL (|has| |#3| (-362)))) (-4217 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-2097 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#3|) $) NIL) (((-857) $) NIL) (($ |#3|) NIL (|has| |#3| (-1091))) (($ (-544)) NIL (-3936 (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))) (-3511 (((-765)) NIL (|has| |#3| (-1042)))) (-2099 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#3| (-842)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) CONST)) (-3051 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3067 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-4356 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))) (($ $ (-912)) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (* (($ |#2| $) 13) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ $ $) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
(((-250 |#1| |#2| |#3|) (-13 (-237 |#1| |#3|) (-641 |#2|)) (-765) (-1042) (-641 |#2|)) (T -250))
NIL
(-13 (-237 |#1| |#3|) (-641 |#2|))
-((-2714 (((-638 (-765)) $) 47) (((-638 (-765)) $ |#3|) 50)) (-2211 (((-765) $) 49) (((-765) $ |#3|) 52)) (-4334 (($ $) 65)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-4027 (((-765) $ |#3|) 39) (((-765) $) 36)) (-1607 (((-1 $ (-765)) |#3|) 15) (((-1 $ (-765)) $) 77)) (-3776 ((|#4| $) 58)) (-2378 (((-112) $) 56)) (-3646 (($ $) 64)) (-1436 (($ $ (-638 (-293 $))) 97) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-638 |#4|) (-638 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-638 |#4|) (-638 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-638 |#3|) (-638 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-638 |#3|) (-638 |#2|)) 84)) (-3922 (($ $ |#4|) NIL) (($ $ (-638 |#4|)) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-638 |#4|) (-638 (-765))) NIL) (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2995 (((-638 |#3|) $) 75)) (-3768 ((|#5| $) NIL) (((-765) $ |#4|) NIL) (((-638 (-765)) $ (-638 |#4|)) NIL) (((-765) $ |#3|) 44)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-561))) NIL) (($ $) NIL)))
-(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4064 (|#1| |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -1436 (|#1| |#1| (-638 |#3|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#3| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#3|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#3| |#1|)) (-15 -1607 ((-1 |#1| (-765)) |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -3776 (|#4| |#1|)) (-15 -2378 ((-112) |#1|)) (-15 -2211 ((-765) |#1| |#3|)) (-15 -2714 ((-638 (-765)) |#1| |#3|)) (-15 -2211 ((-765) |#1|)) (-15 -2714 ((-638 (-765)) |#1|)) (-15 -3768 ((-765) |#1| |#3|)) (-15 -4027 ((-765) |#1|)) (-15 -4027 ((-765) |#1| |#3|)) (-15 -2995 ((-638 |#3|) |#1|)) (-15 -1607 ((-1 |#1| (-765)) |#3|)) (-15 -4064 (|#1| |#3|)) (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -3768 ((-638 (-765)) |#1| (-638 |#4|))) (-15 -3768 ((-765) |#1| |#4|)) (-15 -4064 (|#1| |#4|)) (-15 -4061 ((-3 |#4| "failed") |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#4| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#4| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -3768 (|#5| |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -3922 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -3922 (|#1| |#1| |#4| (-765))) (-15 -3922 (|#1| |#1| (-638 |#4|))) (-15 -3922 (|#1| |#1| |#4|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1042) (-844) (-265 |#3|) (-787)) (T -251))
+((-1571 (((-635 (-765)) $) 47) (((-635 (-765)) $ |#3|) 50)) (-1605 (((-765) $) 49) (((-765) $ |#3|) 52)) (-1567 (($ $) 65)) (-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4178 (((-765) $ |#3|) 39) (((-765) $) 36)) (-1606 (((-1 $ (-765)) |#3|) 15) (((-1 $ (-765)) $) 77)) (-1569 ((|#4| $) 58)) (-1570 (((-112) $) 56)) (-1568 (($ $) 64)) (-4174 (($ $ (-635 (-292 $))) 97) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-635 |#3|) (-635 |#2|)) 84)) (-4217 (($ $ |#4|) NIL) (($ $ (-635 |#4|)) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-635 |#4|) (-635 (-765))) NIL) (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1572 (((-635 |#3|) $) 75)) (-4355 ((|#5| $) NIL) (((-765) $ |#4|) NIL) (((-635 (-765)) $ (-635 |#4|)) NIL) (((-765) $ |#3|) 44)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-544))) NIL) (($ $) NIL)))
+(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#3| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#3| |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1569 (|#4| |#1|)) (-15 -1570 ((-112) |#1|)) (-15 -1605 ((-765) |#1| |#3|)) (-15 -1571 ((-635 (-765)) |#1| |#3|)) (-15 -1605 ((-765) |#1|)) (-15 -1571 ((-635 (-765)) |#1|)) (-15 -4355 ((-765) |#1| |#3|)) (-15 -4178 ((-765) |#1|)) (-15 -4178 ((-765) |#1| |#3|)) (-15 -1572 ((-635 |#3|) |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#3|)) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 |#4|))) (-15 -4355 ((-765) |#1| |#4|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1#) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 (|#5| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#4| (-765))) (-15 -4217 (|#1| |#1| (-635 |#4|))) (-15 -4217 (|#1| |#1| |#4|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1042) (-844) (-265 |#3|) (-787)) (T -251))
NIL
-(-10 -8 (-15 -4064 (|#1| |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -1436 (|#1| |#1| (-638 |#3|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#3| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#3|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#3| |#1|)) (-15 -1607 ((-1 |#1| (-765)) |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -3776 (|#4| |#1|)) (-15 -2378 ((-112) |#1|)) (-15 -2211 ((-765) |#1| |#3|)) (-15 -2714 ((-638 (-765)) |#1| |#3|)) (-15 -2211 ((-765) |#1|)) (-15 -2714 ((-638 (-765)) |#1|)) (-15 -3768 ((-765) |#1| |#3|)) (-15 -4027 ((-765) |#1|)) (-15 -4027 ((-765) |#1| |#3|)) (-15 -2995 ((-638 |#3|) |#1|)) (-15 -1607 ((-1 |#1| (-765)) |#3|)) (-15 -4064 (|#1| |#3|)) (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -3768 ((-638 (-765)) |#1| (-638 |#4|))) (-15 -3768 ((-765) |#1| |#4|)) (-15 -4064 (|#1| |#4|)) (-15 -4061 ((-3 |#4| "failed") |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#4| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#4| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -3768 (|#5| |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -3922 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -3922 (|#1| |#1| |#4| (-765))) (-15 -3922 (|#1| |#1| (-638 |#4|))) (-15 -3922 (|#1| |#1| |#4|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2714 (((-638 (-765)) $) 214) (((-638 (-765)) $ |#2|) 212)) (-2211 (((-765) $) 213) (((-765) $ |#2|) 211)) (-1405 (((-638 |#3|) $) 110)) (-1596 (((-1162 $) $ |#3|) 125) (((-1162 |#1|) $) 124)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-3012 (($ $) 88 (|has| |#1| (-553)))) (-3163 (((-112) $) 90 (|has| |#1| (-553)))) (-3827 (((-765) $) 112) (((-765) $ (-638 |#3|)) 111)) (-2979 (((-3 $ "failed") $ $) 19)) (-2128 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-2557 (($ $) 98 (|has| |#1| (-450)))) (-3552 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-4334 (($ $) 207)) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3979 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) ((|#3| $) 137) ((|#2| $) 222)) (-2395 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1598 (($ $) 154)) (-3720 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3735 (((-3 $ "failed") $) 33)) (-4229 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-1584 (((-638 $) $) 109)) (-2725 (((-112) $) 96 (|has| |#1| (-902)))) (-3227 (($ $ |#1| |#4| $) 172)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| |#3| (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| |#3| (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4027 (((-765) $ |#2|) 217) (((-765) $) 216)) (-2252 (((-112) $) 31)) (-2044 (((-765) $) 169)) (-1393 (($ (-1162 |#1|) |#3|) 117) (($ (-1162 $) |#3|) 116)) (-1859 (((-638 $) $) 126)) (-1750 (((-112) $) 152)) (-1381 (($ |#1| |#4|) 153) (($ $ |#3| (-765)) 119) (($ $ (-638 |#3|) (-638 (-765))) 118)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |#3|) 120)) (-1522 ((|#4| $) 170) (((-765) $ |#3|) 122) (((-638 (-765)) $ (-638 |#3|)) 121)) (-1597 (($ $ $) 79 (|has| |#1| (-844)))) (-3017 (($ $ $) 78 (|has| |#1| (-844)))) (-1368 (($ (-1 |#4| |#4|) $) 171)) (-4165 (($ (-1 |#1| |#1|) $) 151)) (-1607 (((-1 $ (-765)) |#2|) 219) (((-1 $ (-765)) $) 206 (|has| |#1| (-232)))) (-2830 (((-3 |#3| "failed") $) 123)) (-1557 (($ $) 149)) (-1572 ((|#1| $) 148)) (-3776 ((|#3| $) 209)) (-1563 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-1883 (((-1148) $) 9)) (-2378 (((-112) $) 210)) (-4174 (((-3 (-638 $) "failed") $) 114)) (-2540 (((-3 (-638 $) "failed") $) 115)) (-3276 (((-3 (-2 (|:| |var| |#3|) (|:| -4181 (-765))) "failed") $) 113)) (-3646 (($ $) 208)) (-1701 (((-1110) $) 10)) (-1530 (((-112) $) 166)) (-1542 ((|#1| $) 167)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1603 (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1633 (((-417 $) $) 99 (|has| |#1| (-902)))) (-1748 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-638 |#3|) (-638 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-638 |#3|) (-638 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 |#1|)) 202 (|has| |#1| (-232)))) (-2753 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3922 (($ $ |#3|) 42) (($ $ (-638 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-638 |#3|) (-638 (-765))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-765)) 236 (|has| |#1| (-232))) (($ $ (-1166)) 234 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 233 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 232 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 231 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2995 (((-638 |#2|) $) 218)) (-3768 ((|#4| $) 150) (((-765) $ |#3|) 130) (((-638 (-765)) $ (-638 |#3|)) 129) (((-765) $ |#2|) 215)) (-4216 (((-885 (-378)) $) 82 (-12 (|has| |#3| (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| |#3| (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| |#3| (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 104 (-2198 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-561))) 72 (-4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561)))))) (($ $) 85 (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) 168)) (-3932 ((|#1| $ |#4|) 155) (($ $ |#3| (-765)) 128) (($ $ (-638 |#3|) (-638 (-765))) 127)) (-3666 (((-3 $ "failed") $) 73 (-4050 (-2198 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) 28)) (-2803 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3996 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ |#3|) 38) (($ $ (-638 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-638 |#3|) (-638 (-765))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-765)) 235 (|has| |#1| (-232))) (($ $ (-1166)) 230 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 229 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 228 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 227 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1781 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1828 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#3| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#3| |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1569 (|#4| |#1|)) (-15 -1570 ((-112) |#1|)) (-15 -1605 ((-765) |#1| |#3|)) (-15 -1571 ((-635 (-765)) |#1| |#3|)) (-15 -1605 ((-765) |#1|)) (-15 -1571 ((-635 (-765)) |#1|)) (-15 -4355 ((-765) |#1| |#3|)) (-15 -4178 ((-765) |#1|)) (-15 -4178 ((-765) |#1| |#3|)) (-15 -1572 ((-635 |#3|) |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#3|)) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 |#4|))) (-15 -4355 ((-765) |#1| |#4|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1#) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 (|#5| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#4| (-765))) (-15 -4217 (|#1| |#1| (-635 |#4|))) (-15 -4217 (|#1| |#1| |#4|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1571 (((-635 (-765)) $) 214) (((-635 (-765)) $ |#2|) 212)) (-1605 (((-765) $) 213) (((-765) $ |#2|) 211)) (-3467 (((-635 |#3|) $) 110)) (-3469 (((-1160 $) $ |#3|) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 |#3|)) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-1567 (($ $) 207)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) 136) (((-3 |#2| #2#) $) 221)) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) ((|#3| $) 137) ((|#2| $) 222)) (-4163 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-4366 (($ $) 154)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-1749 (($ $ |#1| |#4| $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| |#3| (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| |#3| (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ |#2|) 217) (((-765) $) 216)) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-3470 (($ (-1160 |#1|) |#3|) 117) (($ (-1160 $) |#3|) 116)) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| |#4|) 153) (($ $ |#3| (-765)) 119) (($ $ (-635 |#3|) (-635 (-765))) 118)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 120)) (-3202 ((|#4| $) 170) (((-765) $ |#3|) 122) (((-635 (-765)) $ (-635 |#3|)) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 |#4| |#4|) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-1606 (((-1 $ (-765)) |#2|) 219) (((-1 $ (-765)) $) 206 (|has| |#1| (-232)))) (-3468 (((-3 |#3| #3="failed") $) 123)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148)) (-1569 ((|#3| $) 209)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3643 (((-1148) $) 9)) (-1570 (((-112) $) 210)) (-3205 (((-3 (-635 $) #3#) $) 114)) (-3204 (((-3 (-635 $) #3#) $) 115)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) #3#) $) 113)) (-1568 (($ $) 208)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) 202 (|has| |#1| (-232)))) (-4164 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4217 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-635 |#3|) (-635 (-765))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-765)) 236 (|has| |#1| (-232))) (($ $ (-1166)) 234 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 233 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 232 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 231 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1572 (((-635 |#2|) $) 218)) (-4355 ((|#4| $) 150) (((-765) $ |#3|) 130) (((-635 (-765)) $ (-635 |#3|)) 129) (((-765) $ |#2|) 215)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| |#3| (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| |#3| (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| |#3| (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544)))))) (($ $) 85 (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ |#4|) 155) (($ $ |#3| (-765)) 128) (($ $ (-635 |#3|) (-635 (-765))) 127)) (-3084 (((-3 $ #1#) $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-635 |#3|) (-635 (-765))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-765)) 235 (|has| |#1| (-232))) (($ $ (-1166)) 230 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 229 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 228 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 227 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-252 |#1| |#2| |#3| |#4|) (-139) (-1042) (-844) (-265 |t#2|) (-787)) (T -252))
-((-1607 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 *4)))) (-4027 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 (-765))))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-2714 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-638 (-765))))) (-2211 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-787)) (-4 *2 (-265 *4)))) (-3646 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-4334 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-1607 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6)))))
-(-13 (-942 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1031 |t#2|) (-10 -8 (-15 -1607 ((-1 $ (-765)) |t#2|)) (-15 -2995 ((-638 |t#2|) $)) (-15 -4027 ((-765) $ |t#2|)) (-15 -4027 ((-765) $)) (-15 -3768 ((-765) $ |t#2|)) (-15 -2714 ((-638 (-765)) $)) (-15 -2211 ((-765) $)) (-15 -2714 ((-638 (-765)) $ |t#2|)) (-15 -2211 ((-765) $ |t#2|)) (-15 -2378 ((-112) $)) (-15 -3776 (|t#3| $)) (-15 -3646 ($ $)) (-15 -4334 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-512 |t#2| |t#1|)) (-6 (-512 |t#2| $)) (-6 (-308 $)) (-15 -1607 ((-1 $ (-765)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 |#2|) . T) ((-611 |#3|) . T) ((-611 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4050 (|has| |#1| (-902)) (|has| |#1| (-450))) ((-512 |#2| |#1|) |has| |#1| (-232)) ((-512 |#2| $) |has| |#1| (-232)) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-553) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-893 |#3|) . T) ((-879 (-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) ((-942 |#1| |#4| |#3|) . T) ((-902) |has| |#1| (-902)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1031 |#2|) . T) ((-1031 |#3|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) |has| |#1| (-902)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2974 ((|#1| $) 54)) (-2765 ((|#1| $) 44)) (-2684 (((-112) $ (-765)) 8)) (-2674 (($) 7 T CONST)) (-1385 (($ $) 60)) (-4026 (($ $) 48)) (-3802 ((|#1| |#1| $) 46)) (-2217 ((|#1| $) 45)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-4310 (((-765) $) 61)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1441 ((|#1| |#1| $) 52)) (-2242 ((|#1| |#1| $) 51)) (-1617 (($ |#1| $) 40)) (-3093 (((-765) $) 55)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-4237 ((|#1| $) 62)) (-2277 ((|#1| $) 50)) (-4275 ((|#1| $) 49)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2936 ((|#1| |#1| $) 58)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-4126 ((|#1| $) 59)) (-3697 (($) 57) (($ (-638 |#1|)) 56)) (-1433 (((-765) $) 43)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3302 ((|#1| $) 53)) (-1903 (($ (-638 |#1|)) 42)) (-2763 ((|#1| $) 63)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-253 |#1|) (-139) (-1205)) (T -253))
-((-3697 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-253 *3)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-1441 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-2242 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-4275 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-4026 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(-13 (-1111 |t#1|) (-988 |t#1|) (-10 -8 (-15 -3697 ($)) (-15 -3697 ($ (-638 |t#1|))) (-15 -3093 ((-765) $)) (-15 -2974 (|t#1| $)) (-15 -3302 (|t#1| $)) (-15 -1441 (|t#1| |t#1| $)) (-15 -2242 (|t#1| |t#1| $)) (-15 -2277 (|t#1| $)) (-15 -4275 (|t#1| $)) (-15 -4026 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-988 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1111 |#1|) . T) ((-1205) . T))
-((-2022 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-4206 (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378))) 160) (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 158) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 163) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 159) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 150) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 149) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378))) 129) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262))) 127) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378))) 128) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262))) 125)) (-4167 (((-1256) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378))) 162) (((-1256) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 161) (((-1256) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 165) (((-1256) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 164) (((-1256) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 152) (((-1256) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 151) (((-1256) (-1 (-936 (-224)) (-224)) (-1084 (-378))) 135) (((-1256) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262))) 134) (((-1256) (-872 (-1 (-224) (-224))) (-1084 (-378))) 133) (((-1256) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262))) 132) (((-1255) (-870 (-1 (-224) (-224))) (-1084 (-378))) 100) (((-1255) (-870 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262))) 99) (((-1255) (-1 (-224) (-224)) (-1084 (-378))) 96) (((-1255) (-1 (-224) (-224)) (-1084 (-378)) (-638 (-262))) 95)))
-(((-254) (-10 -7 (-15 -4167 ((-1255) (-1 (-224) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) (-1 (-224) (-224)) (-1084 (-378)))) (-15 -4167 ((-1255) (-870 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) (-870 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4167 ((-1256) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4167 ((-1256) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4167 ((-1256) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -2022 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -254))
-((-2022 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254)))))
-(-10 -7 (-15 -4167 ((-1255) (-1 (-224) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) (-1 (-224) (-224)) (-1084 (-378)))) (-15 -4167 ((-1255) (-870 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) (-870 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4167 ((-1256) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4167 ((-1256) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4167 ((-1256) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -4206 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -2022 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
-((-4167 (((-1255) (-293 |#2|) (-1166) (-1166) (-638 (-262))) 96)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -4167 ((-1255) (-293 |#2|) (-1166) (-1166) (-638 (-262))))) (-13 (-553) (-844) (-1031 (-561))) (-429 |#1|)) (T -255))
-((-4167 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-1166)) (-5 *5 (-638 (-262))) (-4 *7 (-429 *6)) (-4 *6 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-1255)) (-5 *1 (-255 *6 *7)))))
-(-10 -7 (-15 -4167 ((-1255) (-293 |#2|) (-1166) (-1166) (-638 (-262)))))
-((-2445 (((-561) (-561)) 50)) (-3197 (((-561) (-561)) 51)) (-3779 (((-224) (-224)) 52)) (-3696 (((-1256) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224))) 49)) (-3079 (((-1256) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)) (-112)) 47)))
-(((-256) (-10 -7 (-15 -3079 ((-1256) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)) (-112))) (-15 -3696 ((-1256) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -2445 ((-561) (-561))) (-15 -3197 ((-561) (-561))) (-15 -3779 ((-224) (-224))))) (T -256))
-((-3779 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))) (-2445 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))) (-3696 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224))) (-5 *2 (-1256)) (-5 *1 (-256)))) (-3079 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224))) (-5 *5 (-112)) (-5 *2 (-1256)) (-5 *1 (-256)))))
-(-10 -7 (-15 -3079 ((-1256) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)) (-112))) (-15 -3696 ((-1256) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -2445 ((-561) (-561))) (-15 -3197 ((-561) (-561))) (-15 -3779 ((-224) (-224))))
-((-4064 (((-1082 (-378)) (-1082 (-315 |#1|))) 16)))
-(((-257 |#1|) (-10 -7 (-15 -4064 ((-1082 (-378)) (-1082 (-315 |#1|))))) (-13 (-844) (-553) (-609 (-378)))) (T -257))
-((-4064 (*1 *2 *3) (-12 (-5 *3 (-1082 (-315 *4))) (-4 *4 (-13 (-844) (-553) (-609 (-378)))) (-5 *2 (-1082 (-378))) (-5 *1 (-257 *4)))))
-(-10 -7 (-15 -4064 ((-1082 (-378)) (-1082 (-315 |#1|)))))
-((-4206 (((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378))) 71) (((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 70) (((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378))) 61) (((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 60) (((-1123 (-224)) (-872 |#1|) (-1082 (-378))) 52) (((-1123 (-224)) (-872 |#1|) (-1082 (-378)) (-638 (-262))) 51)) (-4167 (((-1256) (-875 |#1|) (-1082 (-378)) (-1082 (-378))) 74) (((-1256) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 73) (((-1256) |#1| (-1082 (-378)) (-1082 (-378))) 64) (((-1256) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 63) (((-1256) (-872 |#1|) (-1082 (-378))) 56) (((-1256) (-872 |#1|) (-1082 (-378)) (-638 (-262))) 55) (((-1255) (-870 |#1|) (-1082 (-378))) 43) (((-1255) (-870 |#1|) (-1082 (-378)) (-638 (-262))) 42) (((-1255) |#1| (-1082 (-378))) 35) (((-1255) |#1| (-1082 (-378)) (-638 (-262))) 34)))
-(((-258 |#1|) (-10 -7 (-15 -4167 ((-1255) |#1| (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) |#1| (-1082 (-378)))) (-15 -4167 ((-1255) (-870 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) (-870 |#1|) (-1082 (-378)))) (-15 -4167 ((-1256) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-872 |#1|) (-1082 (-378)))) (-15 -4206 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)))) (-15 -4167 ((-1256) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4206 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4167 ((-1256) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-875 |#1|) (-1082 (-378)) (-1082 (-378)))) (-15 -4206 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378))))) (-13 (-609 (-534)) (-1090))) (T -258))
-((-4206 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *5)))) (-4206 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *6)))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256)) (-5 *1 (-258 *5)))) (-4167 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256)) (-5 *1 (-258 *6)))) (-4206 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4206 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1256)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4167 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *5)))) (-4206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256)) (-5 *1 (-258 *5)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256)) (-5 *1 (-258 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255)) (-5 *1 (-258 *5)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255)) (-5 *1 (-258 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1255)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))))
-(-10 -7 (-15 -4167 ((-1255) |#1| (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) |#1| (-1082 (-378)))) (-15 -4167 ((-1255) (-870 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1255) (-870 |#1|) (-1082 (-378)))) (-15 -4167 ((-1256) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-872 |#1|) (-1082 (-378)))) (-15 -4206 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)))) (-15 -4167 ((-1256) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4206 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4167 ((-1256) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4167 ((-1256) (-875 |#1|) (-1082 (-378)) (-1082 (-378)))) (-15 -4206 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4206 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)))))
-((-4167 (((-1256) (-638 (-224)) (-638 (-224)) (-638 (-224)) (-638 (-262))) 23) (((-1256) (-638 (-224)) (-638 (-224)) (-638 (-224))) 24) (((-1255) (-638 (-936 (-224))) (-638 (-262))) 16) (((-1255) (-638 (-936 (-224)))) 17) (((-1255) (-638 (-224)) (-638 (-224)) (-638 (-262))) 20) (((-1255) (-638 (-224)) (-638 (-224))) 21)))
-(((-259) (-10 -7 (-15 -4167 ((-1255) (-638 (-224)) (-638 (-224)))) (-15 -4167 ((-1255) (-638 (-224)) (-638 (-224)) (-638 (-262)))) (-15 -4167 ((-1255) (-638 (-936 (-224))))) (-15 -4167 ((-1255) (-638 (-936 (-224))) (-638 (-262)))) (-15 -4167 ((-1256) (-638 (-224)) (-638 (-224)) (-638 (-224)))) (-15 -4167 ((-1256) (-638 (-224)) (-638 (-224)) (-638 (-224)) (-638 (-262)))))) (T -259))
-((-4167 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-4167 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-259)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *2 (-1255)) (-5 *1 (-259)))) (-4167 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-259)))) (-4167 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1255)) (-5 *1 (-259)))))
-(-10 -7 (-15 -4167 ((-1255) (-638 (-224)) (-638 (-224)))) (-15 -4167 ((-1255) (-638 (-224)) (-638 (-224)) (-638 (-262)))) (-15 -4167 ((-1255) (-638 (-936 (-224))))) (-15 -4167 ((-1255) (-638 (-936 (-224))) (-638 (-262)))) (-15 -4167 ((-1256) (-638 (-224)) (-638 (-224)) (-638 (-224)))) (-15 -4167 ((-1256) (-638 (-224)) (-638 (-224)) (-638 (-224)) (-638 (-262)))))
-((-1525 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-638 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-3456 (((-914) (-638 (-262)) (-914)) 53)) (-2771 (((-914) (-638 (-262)) (-914)) 52)) (-3481 (((-638 (-378)) (-638 (-262)) (-638 (-378))) 69)) (-1320 (((-378) (-638 (-262)) (-378)) 58)) (-3262 (((-914) (-638 (-262)) (-914)) 54)) (-3751 (((-112) (-638 (-262)) (-112)) 28)) (-3618 (((-1148) (-638 (-262)) (-1148)) 20)) (-1827 (((-1148) (-638 (-262)) (-1148)) 27)) (-1755 (((-1123 (-224)) (-638 (-262))) 47)) (-3565 (((-638 (-1084 (-378))) (-638 (-262)) (-638 (-1084 (-378)))) 41)) (-1487 (((-867) (-638 (-262)) (-867)) 33)) (-3399 (((-867) (-638 (-262)) (-867)) 34)) (-2718 (((-1 (-936 (-224)) (-936 (-224))) (-638 (-262)) (-1 (-936 (-224)) (-936 (-224)))) 64)) (-3806 (((-112) (-638 (-262)) (-112)) 16)) (-2702 (((-112) (-638 (-262)) (-112)) 15)))
-(((-260) (-10 -7 (-15 -2702 ((-112) (-638 (-262)) (-112))) (-15 -3806 ((-112) (-638 (-262)) (-112))) (-15 -1525 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-638 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3618 ((-1148) (-638 (-262)) (-1148))) (-15 -1827 ((-1148) (-638 (-262)) (-1148))) (-15 -3751 ((-112) (-638 (-262)) (-112))) (-15 -1487 ((-867) (-638 (-262)) (-867))) (-15 -3399 ((-867) (-638 (-262)) (-867))) (-15 -3565 ((-638 (-1084 (-378))) (-638 (-262)) (-638 (-1084 (-378))))) (-15 -2771 ((-914) (-638 (-262)) (-914))) (-15 -3456 ((-914) (-638 (-262)) (-914))) (-15 -1755 ((-1123 (-224)) (-638 (-262)))) (-15 -3262 ((-914) (-638 (-262)) (-914))) (-15 -1320 ((-378) (-638 (-262)) (-378))) (-15 -2718 ((-1 (-936 (-224)) (-936 (-224))) (-638 (-262)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -3481 ((-638 (-378)) (-638 (-262)) (-638 (-378)))))) (T -260))
-((-3481 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-378))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2718 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1320 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-260)))) (-3456 (*1 *2 *3 *2) (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2771 (*1 *2 *3 *2) (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3565 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3399 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1487 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3751 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1827 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3618 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1525 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2702 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
-(-10 -7 (-15 -2702 ((-112) (-638 (-262)) (-112))) (-15 -3806 ((-112) (-638 (-262)) (-112))) (-15 -1525 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-638 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3618 ((-1148) (-638 (-262)) (-1148))) (-15 -1827 ((-1148) (-638 (-262)) (-1148))) (-15 -3751 ((-112) (-638 (-262)) (-112))) (-15 -1487 ((-867) (-638 (-262)) (-867))) (-15 -3399 ((-867) (-638 (-262)) (-867))) (-15 -3565 ((-638 (-1084 (-378))) (-638 (-262)) (-638 (-1084 (-378))))) (-15 -2771 ((-914) (-638 (-262)) (-914))) (-15 -3456 ((-914) (-638 (-262)) (-914))) (-15 -1755 ((-1123 (-224)) (-638 (-262)))) (-15 -3262 ((-914) (-638 (-262)) (-914))) (-15 -1320 ((-378) (-638 (-262)) (-378))) (-15 -2718 ((-1 (-936 (-224)) (-936 (-224))) (-638 (-262)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -3481 ((-638 (-378)) (-638 (-262)) (-638 (-378)))))
-((-1858 (((-3 |#1| "failed") (-638 (-262)) (-1166)) 17)))
-(((-261 |#1|) (-10 -7 (-15 -1858 ((-3 |#1| "failed") (-638 (-262)) (-1166)))) (-1205)) (T -261))
-((-1858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *1 (-261 *2)) (-4 *2 (-1205)))))
-(-10 -7 (-15 -1858 ((-3 |#1| "failed") (-638 (-262)) (-1166))))
-((-4053 (((-112) $ $) NIL)) (-1525 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-3456 (($ (-914)) 76)) (-2771 (($ (-914)) 75)) (-2385 (($ (-638 (-378))) 82)) (-1320 (($ (-378)) 58)) (-3262 (($ (-914)) 77)) (-3751 (($ (-112)) 23)) (-3618 (($ (-1148)) 18)) (-1827 (($ (-1148)) 19)) (-1755 (($ (-1123 (-224))) 71)) (-3565 (($ (-638 (-1084 (-378)))) 67)) (-2185 (($ (-638 (-1084 (-378)))) 59) (($ (-638 (-1084 (-406 (-561))))) 66)) (-3412 (($ (-378)) 29) (($ (-867)) 33)) (-3160 (((-112) (-638 $) (-1166)) 91)) (-1858 (((-3 (-52) "failed") (-638 $) (-1166)) 93)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1546 (($ (-378)) 34) (($ (-867)) 35)) (-3752 (($ (-1 (-936 (-224)) (-936 (-224)))) 57)) (-2718 (($ (-1 (-936 (-224)) (-936 (-224)))) 78)) (-2284 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-4064 (((-856) $) 87)) (-3477 (($ (-112)) 24) (($ (-638 (-1084 (-378)))) 52)) (-2702 (($ (-112)) 25)) (-1723 (((-112) $ $) 89)))
-(((-262) (-13 (-1090) (-10 -8 (-15 -2702 ($ (-112))) (-15 -3477 ($ (-112))) (-15 -1525 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3618 ($ (-1148))) (-15 -1827 ($ (-1148))) (-15 -3751 ($ (-112))) (-15 -3477 ($ (-638 (-1084 (-378))))) (-15 -3752 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -3412 ($ (-378))) (-15 -3412 ($ (-867))) (-15 -1546 ($ (-378))) (-15 -1546 ($ (-867))) (-15 -2284 ($ (-1 (-224) (-224)))) (-15 -2284 ($ (-1 (-224) (-224) (-224)))) (-15 -2284 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1320 ($ (-378))) (-15 -2185 ($ (-638 (-1084 (-378))))) (-15 -2185 ($ (-638 (-1084 (-406 (-561)))))) (-15 -3565 ($ (-638 (-1084 (-378))))) (-15 -1755 ($ (-1123 (-224)))) (-15 -2771 ($ (-914))) (-15 -3456 ($ (-914))) (-15 -3262 ($ (-914))) (-15 -2718 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -2385 ($ (-638 (-378)))) (-15 -1858 ((-3 (-52) "failed") (-638 $) (-1166))) (-15 -3160 ((-112) (-638 $) (-1166)))))) (T -262))
-((-2702 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-262)))) (-3618 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262)))) (-3412 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-3412 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262)))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) (-1320 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-406 (-561))))) (-5 *1 (-262)))) (-3565 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))) (-1755 (*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-262)))) (-2771 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))) (-3262 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-262)))) (-1858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-52)) (-5 *1 (-262)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-112)) (-5 *1 (-262)))))
-(-13 (-1090) (-10 -8 (-15 -2702 ($ (-112))) (-15 -3477 ($ (-112))) (-15 -1525 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3618 ($ (-1148))) (-15 -1827 ($ (-1148))) (-15 -3751 ($ (-112))) (-15 -3477 ($ (-638 (-1084 (-378))))) (-15 -3752 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -3412 ($ (-378))) (-15 -3412 ($ (-867))) (-15 -1546 ($ (-378))) (-15 -1546 ($ (-867))) (-15 -2284 ($ (-1 (-224) (-224)))) (-15 -2284 ($ (-1 (-224) (-224) (-224)))) (-15 -2284 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1320 ($ (-378))) (-15 -2185 ($ (-638 (-1084 (-378))))) (-15 -2185 ($ (-638 (-1084 (-406 (-561)))))) (-15 -3565 ($ (-638 (-1084 (-378))))) (-15 -1755 ($ (-1123 (-224)))) (-15 -2771 ($ (-914))) (-15 -3456 ($ (-914))) (-15 -3262 ($ (-914))) (-15 -2718 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -2385 ($ (-638 (-378)))) (-15 -1858 ((-3 (-52) "failed") (-638 $) (-1166))) (-15 -3160 ((-112) (-638 $) (-1166)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2714 (((-638 (-765)) $) NIL) (((-638 (-765)) $ |#2|) NIL)) (-2211 (((-765) $) NIL) (((-765) $ |#2|) NIL)) (-1405 (((-638 |#3|) $) NIL)) (-1596 (((-1162 $) $ |#3|) NIL) (((-1162 |#1|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 |#3|)) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-4334 (($ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1115 |#1| |#2|) "failed") $) 21)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1115 |#1| |#2|) $) NIL)) (-2395 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-529 |#3|) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))))) (-4027 (((-765) $ |#2|) NIL) (((-765) $) 10)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1393 (($ (-1162 |#1|) |#3|) NIL) (($ (-1162 $) |#3|) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |#3|) NIL)) (-1522 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-638 (-765)) $ (-638 |#3|)) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-529 |#3|) (-529 |#3|)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1607 (((-1 $ (-765)) |#2|) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-2830 (((-3 |#3| "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-3776 ((|#3| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-2378 (((-112) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| |#3|) (|:| -4181 (-765))) "failed") $) NIL)) (-3646 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-638 |#3|) (-638 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-638 |#3|) (-638 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 |#1|)) NIL (|has| |#1| (-232)))) (-2753 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-3922 (($ $ |#3|) NIL) (($ $ (-638 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2995 (((-638 |#2|) $) NIL)) (-3768 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-638 (-765)) $ (-638 |#3|)) NIL) (((-765) $ |#2|) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))))) (-2125 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1115 |#1| |#2|)) 30) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ |#3|) NIL) (($ $ (-638 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-1606 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 *4)))) (-4178 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-4355 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 (-765))))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-1571 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-635 (-765))))) (-1605 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-787)) (-4 *2 (-265 *4)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-1567 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-1606 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6)))))
+(-13 (-943 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1031 |t#2|) (-10 -8 (-15 -1606 ((-1 $ (-765)) |t#2|)) (-15 -1572 ((-635 |t#2|) $)) (-15 -4178 ((-765) $ |t#2|)) (-15 -4178 ((-765) $)) (-15 -4355 ((-765) $ |t#2|)) (-15 -1571 ((-635 (-765)) $)) (-15 -1605 ((-765) $)) (-15 -1571 ((-635 (-765)) $ |t#2|)) (-15 -1605 ((-765) $ |t#2|)) (-15 -1570 ((-112) $)) (-15 -1569 (|t#3| $)) (-15 -1568 ($ $)) (-15 -1567 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-512 |t#2| |t#1|)) (-6 (-512 |t#2| $)) (-6 (-308 $)) (-15 -1606 ((-1 $ (-765)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 |#2|) . T) ((-611 |#3|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450))) ((-512 |#2| |#1|) |has| |#1| (-232)) ((-512 |#2| $) |has| |#1| (-232)) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-893 |#3|) . T) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) ((-943 |#1| |#4| |#3|) . T) ((-903) |has| |#1| (-903)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1031 |#2|) . T) ((-1031 |#3|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) |has| |#1| (-903)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1578 ((|#1| $) 54)) (-3728 ((|#1| $) 44)) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-3385 (($ $) 60)) (-2416 (($ $) 48)) (-3730 ((|#1| |#1| $) 46)) (-3729 ((|#1| $) 45)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-4240 (((-765) $) 61)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-1576 ((|#1| |#1| $) 52)) (-1575 ((|#1| |#1| $) 51)) (-4014 (($ |#1| $) 40)) (-2982 (((-765) $) 55)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-3384 ((|#1| $) 62)) (-1574 ((|#1| $) 50)) (-1573 ((|#1| $) 49)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3387 ((|#1| |#1| $) 58)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3386 ((|#1| $) 59)) (-1579 (($) 57) (($ (-635 |#1|)) 56)) (-3727 (((-765) $) 43)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1577 ((|#1| $) 53)) (-1358 (($ (-635 |#1|)) 42)) (-3383 ((|#1| $) 63)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-253 |#1|) (-139) (-1204)) (T -253))
+((-1579 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1579 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-253 *3)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1576 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1575 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(-13 (-1111 |t#1|) (-988 |t#1|) (-10 -8 (-15 -1579 ($)) (-15 -1579 ($ (-635 |t#1|))) (-15 -2982 ((-765) $)) (-15 -1578 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -1576 (|t#1| |t#1| $)) (-15 -1575 (|t#1| |t#1| $)) (-15 -1574 (|t#1| $)) (-15 -1573 (|t#1| $)) (-15 -2416 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-988 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1111 |#1|) . T) ((-1204) . T))
+((-1580 (((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377))) 71) (((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 70) (((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377))) 61) (((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 60) (((-1123 (-224)) (-872 |#1|) (-1082 (-377))) 52) (((-1123 (-224)) (-872 |#1|) (-1082 (-377)) (-635 (-260))) 51)) (-1587 (((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377))) 74) (((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 73) (((-1257) |#1| (-1082 (-377)) (-1082 (-377))) 64) (((-1257) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 63) (((-1257) (-872 |#1|) (-1082 (-377))) 56) (((-1257) (-872 |#1|) (-1082 (-377)) (-635 (-260))) 55) (((-1256) (-870 |#1|) (-1082 (-377))) 43) (((-1256) (-870 |#1|) (-1082 (-377)) (-635 (-260))) 42) (((-1256) |#1| (-1082 (-377))) 35) (((-1256) |#1| (-1082 (-377)) (-635 (-260))) 34)))
+(((-254 |#1|) (-10 -7 (-15 -1587 ((-1256) |#1| (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) |#1| (-1082 (-377)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377))))) (-13 (-609 (-533)) (-1091))) (T -254))
+((-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *5)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1257)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *5)))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *5)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1256)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))))
+(-10 -7 (-15 -1587 ((-1256) |#1| (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) |#1| (-1082 (-377)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377)))))
+((-1581 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-1580 (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377))) 160) (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 158) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 163) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 159) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 150) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 149) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377))) 129) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260))) 127) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377))) 128) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260))) 125)) (-1587 (((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377))) 162) (((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 161) (((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 165) (((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 164) (((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 152) (((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 151) (((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377))) 135) (((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260))) 134) (((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377))) 133) (((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260))) 132) (((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377))) 100) (((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260))) 99) (((-1256) (-1 (-224) (-224)) (-1079 (-377))) 96) (((-1256) (-1 (-224) (-224)) (-1079 (-377)) (-635 (-260))) 95)))
+(((-255) (-10 -7 (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1581 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -255))
+((-1581 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-255)))))
+(-10 -7 (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1581 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
+((-1587 (((-1256) (-292 |#2|) (-1166) (-1166) (-635 (-260))) 96)))
+(((-256 |#1| |#2|) (-10 -7 (-15 -1587 ((-1256) (-292 |#2|) (-1166) (-1166) (-635 (-260))))) (-13 (-554) (-844) (-1031 (-544))) (-420 |#1|)) (T -256))
+((-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-292 *7)) (-5 *4 (-1166)) (-5 *5 (-635 (-260))) (-4 *7 (-420 *6)) (-4 *6 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-1256)) (-5 *1 (-256 *6 *7)))))
+(-10 -7 (-15 -1587 ((-1256) (-292 |#2|) (-1166) (-1166) (-635 (-260)))))
+((-1584 (((-544) (-544)) 50)) (-1585 (((-544) (-544)) 51)) (-1586 (((-224) (-224)) 52)) (-1583 (((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224))) 49)) (-1582 (((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)) (-112)) 47)))
+(((-257) (-10 -7 (-15 -1582 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)) (-112))) (-15 -1583 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -1584 ((-544) (-544))) (-15 -1585 ((-544) (-544))) (-15 -1586 ((-224) (-224))))) (T -257))
+((-1586 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-257)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257)))) (-1583 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224))) (-5 *2 (-1257)) (-5 *1 (-257)))) (-1582 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224))) (-5 *5 (-112)) (-5 *2 (-1257)) (-5 *1 (-257)))))
+(-10 -7 (-15 -1582 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)) (-112))) (-15 -1583 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -1584 ((-544) (-544))) (-15 -1585 ((-544) (-544))) (-15 -1586 ((-224) (-224))))
+((-4353 (((-1082 (-377)) (-1082 (-313 |#1|))) 16)))
+(((-258 |#1|) (-10 -7 (-15 -4353 ((-1082 (-377)) (-1082 (-313 |#1|))))) (-13 (-844) (-554) (-609 (-377)))) (T -258))
+((-4353 (*1 *2 *3) (-12 (-5 *3 (-1082 (-313 *4))) (-4 *4 (-13 (-844) (-554) (-609 (-377)))) (-5 *2 (-1082 (-377))) (-5 *1 (-258 *4)))))
+(-10 -7 (-15 -4353 ((-1082 (-377)) (-1082 (-313 |#1|)))))
+((-1587 (((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-260))) 23) (((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224))) 24) (((-1256) (-635 (-936 (-224))) (-635 (-260))) 16) (((-1256) (-635 (-936 (-224)))) 17) (((-1256) (-635 (-224)) (-635 (-224)) (-635 (-260))) 20) (((-1256) (-635 (-224)) (-635 (-224))) 21)))
+(((-259) (-10 -7 (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)) (-635 (-260)))) (-15 -1587 ((-1256) (-635 (-936 (-224))))) (-15 -1587 ((-1256) (-635 (-936 (-224))) (-635 (-260)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-260)))))) (T -259))
+((-1587 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1256)) (-5 *1 (-259)))))
+(-10 -7 (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)) (-635 (-260)))) (-15 -1587 ((-1256) (-635 (-936 (-224))))) (-15 -1587 ((-1256) (-635 (-936 (-224))) (-635 (-260)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-260)))))
+((-2947 (((-112) $ $) NIL)) (-4288 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-1600 (($ (-912)) 76)) (-1599 (($ (-912)) 75)) (-1920 (($ (-635 (-377))) 82)) (-1603 (($ (-377)) 58)) (-1602 (($ (-912)) 77)) (-1596 (($ (-112)) 23)) (-4290 (($ (-1148)) 18)) (-1595 (($ (-1148)) 19)) (-1601 (($ (-1123 (-224))) 71)) (-2078 (($ (-635 (-1079 (-377)))) 67)) (-1589 (($ (-635 (-1079 (-377)))) 59) (($ (-635 (-1079 (-406 (-544))))) 66)) (-1592 (($ (-377)) 29) (($ (-867)) 33)) (-1588 (((-112) (-635 $) (-1166)) 91)) (-1604 (((-3 (-51) "failed") (-635 $) (-1166)) 93)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1591 (($ (-377)) 34) (($ (-867)) 35)) (-3625 (($ (-1 (-936 (-224)) (-936 (-224)))) 57)) (-2389 (($ (-1 (-936 (-224)) (-936 (-224)))) 78)) (-1590 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-4353 (((-857) $) 87)) (-1593 (($ (-112)) 24) (($ (-635 (-1079 (-377)))) 52)) (-2073 (($ (-112)) 25)) (-3437 (((-112) $ $) 89)))
+(((-260) (-13 (-1091) (-10 -8 (-15 -2073 ($ (-112))) (-15 -1593 ($ (-112))) (-15 -4288 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ($ (-1148))) (-15 -1595 ($ (-1148))) (-15 -1596 ($ (-112))) (-15 -1593 ($ (-635 (-1079 (-377))))) (-15 -3625 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1592 ($ (-377))) (-15 -1592 ($ (-867))) (-15 -1591 ($ (-377))) (-15 -1591 ($ (-867))) (-15 -1590 ($ (-1 (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1603 ($ (-377))) (-15 -1589 ($ (-635 (-1079 (-377))))) (-15 -1589 ($ (-635 (-1079 (-406 (-544)))))) (-15 -2078 ($ (-635 (-1079 (-377))))) (-15 -1601 ($ (-1123 (-224)))) (-15 -1599 ($ (-912))) (-15 -1600 ($ (-912))) (-15 -1602 ($ (-912))) (-15 -2389 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1920 ($ (-635 (-377)))) (-15 -1604 ((-3 (-51) "failed") (-635 $) (-1166))) (-15 -1588 ((-112) (-635 $) (-1166)))))) (T -260))
+((-2073 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) (-4288 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-260)))) (-4290 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) (-3625 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-260)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-260)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-260)))) (-1603 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-406 (-544))))) (-5 *1 (-260)))) (-2078 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-260)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) (-1602 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260)))) (-1920 (*1 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-260)))) (-1604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-51)) (-5 *1 (-260)))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-112)) (-5 *1 (-260)))))
+(-13 (-1091) (-10 -8 (-15 -2073 ($ (-112))) (-15 -1593 ($ (-112))) (-15 -4288 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ($ (-1148))) (-15 -1595 ($ (-1148))) (-15 -1596 ($ (-112))) (-15 -1593 ($ (-635 (-1079 (-377))))) (-15 -3625 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1592 ($ (-377))) (-15 -1592 ($ (-867))) (-15 -1591 ($ (-377))) (-15 -1591 ($ (-867))) (-15 -1590 ($ (-1 (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1603 ($ (-377))) (-15 -1589 ($ (-635 (-1079 (-377))))) (-15 -1589 ($ (-635 (-1079 (-406 (-544)))))) (-15 -2078 ($ (-635 (-1079 (-377))))) (-15 -1601 ($ (-1123 (-224)))) (-15 -1599 ($ (-912))) (-15 -1600 ($ (-912))) (-15 -1602 ($ (-912))) (-15 -2389 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1920 ($ (-635 (-377)))) (-15 -1604 ((-3 (-51) "failed") (-635 $) (-1166))) (-15 -1588 ((-112) (-635 $) (-1166)))))
+((-4288 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-260)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-1600 (((-912) (-635 (-260)) (-912)) 53)) (-1599 (((-912) (-635 (-260)) (-912)) 52)) (-4258 (((-635 (-377)) (-635 (-260)) (-635 (-377))) 69)) (-1603 (((-377) (-635 (-260)) (-377)) 58)) (-1602 (((-912) (-635 (-260)) (-912)) 54)) (-1596 (((-112) (-635 (-260)) (-112)) 28)) (-4290 (((-1148) (-635 (-260)) (-1148)) 20)) (-1595 (((-1148) (-635 (-260)) (-1148)) 27)) (-1601 (((-1123 (-224)) (-635 (-260))) 47)) (-2078 (((-635 (-1079 (-377))) (-635 (-260)) (-635 (-1079 (-377)))) 41)) (-1597 (((-867) (-635 (-260)) (-867)) 33)) (-1598 (((-867) (-635 (-260)) (-867)) 34)) (-2389 (((-1 (-936 (-224)) (-936 (-224))) (-635 (-260)) (-1 (-936 (-224)) (-936 (-224)))) 64)) (-1594 (((-112) (-635 (-260)) (-112)) 16)) (-2073 (((-112) (-635 (-260)) (-112)) 15)))
+(((-261) (-10 -7 (-15 -2073 ((-112) (-635 (-260)) (-112))) (-15 -1594 ((-112) (-635 (-260)) (-112))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-260)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ((-1148) (-635 (-260)) (-1148))) (-15 -1595 ((-1148) (-635 (-260)) (-1148))) (-15 -1596 ((-112) (-635 (-260)) (-112))) (-15 -1597 ((-867) (-635 (-260)) (-867))) (-15 -1598 ((-867) (-635 (-260)) (-867))) (-15 -2078 ((-635 (-1079 (-377))) (-635 (-260)) (-635 (-1079 (-377))))) (-15 -1599 ((-912) (-635 (-260)) (-912))) (-15 -1600 ((-912) (-635 (-260)) (-912))) (-15 -1601 ((-1123 (-224)) (-635 (-260)))) (-15 -1602 ((-912) (-635 (-260)) (-912))) (-15 -1603 ((-377) (-635 (-260)) (-377))) (-15 -2389 ((-1 (-936 (-224)) (-936 (-224))) (-635 (-260)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -4258 ((-635 (-377)) (-635 (-260)) (-635 (-377)))))) (T -261))
+((-4258 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-377))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-2389 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1603 (*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1602 (*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-261)))) (-1600 (*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1599 (*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1598 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1597 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1596 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1595 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-4290 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-4288 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1594 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-2073 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(-10 -7 (-15 -2073 ((-112) (-635 (-260)) (-112))) (-15 -1594 ((-112) (-635 (-260)) (-112))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-260)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ((-1148) (-635 (-260)) (-1148))) (-15 -1595 ((-1148) (-635 (-260)) (-1148))) (-15 -1596 ((-112) (-635 (-260)) (-112))) (-15 -1597 ((-867) (-635 (-260)) (-867))) (-15 -1598 ((-867) (-635 (-260)) (-867))) (-15 -2078 ((-635 (-1079 (-377))) (-635 (-260)) (-635 (-1079 (-377))))) (-15 -1599 ((-912) (-635 (-260)) (-912))) (-15 -1600 ((-912) (-635 (-260)) (-912))) (-15 -1601 ((-1123 (-224)) (-635 (-260)))) (-15 -1602 ((-912) (-635 (-260)) (-912))) (-15 -1603 ((-377) (-635 (-260)) (-377))) (-15 -2389 ((-1 (-936 (-224)) (-936 (-224))) (-635 (-260)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -4258 ((-635 (-377)) (-635 (-260)) (-635 (-377)))))
+((-1604 (((-3 |#1| "failed") (-635 (-260)) (-1166)) 17)))
+(((-262 |#1|) (-10 -7 (-15 -1604 ((-3 |#1| "failed") (-635 (-260)) (-1166)))) (-1204)) (T -262))
+((-1604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *1 (-262 *2)) (-4 *2 (-1204)))))
+(-10 -7 (-15 -1604 ((-3 |#1| "failed") (-635 (-260)) (-1166))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1571 (((-635 (-765)) $) NIL) (((-635 (-765)) $ |#2|) NIL)) (-1605 (((-765) $) NIL) (((-765) $ |#2|) NIL)) (-3467 (((-635 |#3|) $) NIL)) (-3469 (((-1160 $) $ |#3|) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 |#3|)) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1567 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1115 |#1| |#2|) #2#) $) 21)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1115 |#1| |#2|) $) NIL)) (-4163 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 |#3|) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))))) (-4178 (((-765) $ |#2|) NIL) (((-765) $) 10)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) |#3|) NIL) (($ (-1160 $) |#3|) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) NIL)) (-3202 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-635 (-765)) $ (-635 |#3|)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 |#3|) (-529 |#3|)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1606 (((-1 $ (-765)) |#2|) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-3468 (((-3 |#3| #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-1569 ((|#3| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1570 (((-112) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) #3#) $) NIL)) (-1568 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-635 |#3|) (-635 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-4164 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-4217 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-635 |#2|) $) NIL)) (-4355 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-635 (-765)) $ (-635 |#3|)) NIL) (((-765) $ |#2|) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1115 |#1| |#2|)) 30) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-263 |#1| |#2| |#3|) (-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1031 (-1115 |#1| |#2|))) (-1042) (-844) (-265 |#2|)) (T -263))
NIL
(-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1031 (-1115 |#1| |#2|)))
-((-2211 (((-765) $) 30)) (-4061 (((-3 |#2| "failed") $) 17)) (-3979 ((|#2| $) 27)) (-3922 (($ $) 12) (($ $ (-765)) 15)) (-4064 (((-856) $) 26) (($ |#2|) 10)) (-1723 (((-112) $ $) 20)) (-1746 (((-112) $ $) 29)))
-(((-264 |#1| |#2|) (-10 -8 (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -2211 ((-765) |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|))) (-265 |#2|) (-844)) (T -264))
+((-1605 (((-765) $) 30)) (-3558 (((-3 |#2| "failed") $) 17)) (-3557 ((|#2| $) 27)) (-4217 (($ $) 12) (($ $ (-765)) 15)) (-4353 (((-857) $) 26) (($ |#2|) 10)) (-3437 (((-112) $ $) 20)) (-3067 (((-112) $ $) 29)))
+(((-264 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -1605 ((-765) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| "failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-265 |#2|) (-844)) (T -264))
NIL
-(-10 -8 (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -2211 ((-765) |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-2211 (((-765) $) 22)) (-2421 ((|#1| $) 23)) (-4061 (((-3 |#1| "failed") $) 27)) (-3979 ((|#1| $) 28)) (-4027 (((-765) $) 24)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1607 (($ |#1| (-765)) 25)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3922 (($ $) 21) (($ $ (-765)) 20)) (-4064 (((-856) $) 11) (($ |#1|) 26)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
+(-10 -8 (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -1605 ((-765) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| "failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-1605 (((-765) $) 22)) (-4238 ((|#1| $) 23)) (-3558 (((-3 |#1| "failed") $) 27)) (-3557 ((|#1| $) 28)) (-4178 (((-765) $) 24)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-1606 (($ |#1| (-765)) 25)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $) 21) (($ $ (-765)) 20)) (-4353 (((-857) $) 11) (($ |#1|) 26)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)))
(((-265 |#1|) (-139) (-844)) (T -265))
-((-4064 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-3922 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-265 *3)) (-4 *3 (-844)))))
-(-13 (-844) (-1031 |t#1|) (-10 -8 (-15 -1607 ($ |t#1| (-765))) (-15 -4027 ((-765) $)) (-15 -2421 (|t#1| $)) (-15 -2211 ((-765) $)) (-15 -3922 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -4064 ($ |t#1|))))
-(((-102) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-844) . T) ((-1031 |#1|) . T) ((-1090) . T))
-((-1405 (((-638 (-1166)) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 41)) (-2844 (((-638 (-1166)) (-315 (-224)) (-765)) 80)) (-3605 (((-3 (-315 (-224)) "failed") (-315 (-224))) 51)) (-4037 (((-315 (-224)) (-315 (-224))) 67)) (-4115 (((-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 26)) (-3747 (((-112) (-638 (-315 (-224)))) 84)) (-1434 (((-112) (-315 (-224))) 24)) (-2503 (((-638 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))))) 105)) (-4029 (((-638 (-315 (-224))) (-638 (-315 (-224)))) 87)) (-4025 (((-638 (-315 (-224))) (-638 (-315 (-224)))) 86)) (-2018 (((-682 (-224)) (-638 (-315 (-224))) (-765)) 94)) (-2902 (((-112) (-315 (-224))) 20) (((-112) (-638 (-315 (-224)))) 85)) (-2459 (((-638 (-224)) (-638 (-837 (-224))) (-224)) 14)) (-1540 (((-378) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 100)) (-3524 (((-1028) (-1166) (-1028)) 34)))
-(((-266) (-10 -7 (-15 -2459 ((-638 (-224)) (-638 (-837 (-224))) (-224))) (-15 -4115 ((-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -3605 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -4037 ((-315 (-224)) (-315 (-224)))) (-15 -3747 ((-112) (-638 (-315 (-224))))) (-15 -2902 ((-112) (-638 (-315 (-224))))) (-15 -2902 ((-112) (-315 (-224)))) (-15 -2018 ((-682 (-224)) (-638 (-315 (-224))) (-765))) (-15 -4025 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -4029 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -1434 ((-112) (-315 (-224)))) (-15 -1405 ((-638 (-1166)) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -2844 ((-638 (-1166)) (-315 (-224)) (-765))) (-15 -3524 ((-1028) (-1166) (-1028))) (-15 -1540 ((-378) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -2503 ((-638 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))))))) (T -266))
-((-2503 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))))) (-5 *2 (-638 (-1148))) (-5 *1 (-266)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) (-5 *2 (-378)) (-5 *1 (-266)))) (-3524 (*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-765)) (-5 *2 (-638 (-1166))) (-5 *1 (-266)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) (-5 *2 (-638 (-1166))) (-5 *1 (-266)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))) (-2018 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-266)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-4037 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-3605 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-4115 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *1 (-266)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-837 (-224)))) (-5 *4 (-224)) (-5 *2 (-638 *4)) (-5 *1 (-266)))))
-(-10 -7 (-15 -2459 ((-638 (-224)) (-638 (-837 (-224))) (-224))) (-15 -4115 ((-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -3605 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -4037 ((-315 (-224)) (-315 (-224)))) (-15 -3747 ((-112) (-638 (-315 (-224))))) (-15 -2902 ((-112) (-638 (-315 (-224))))) (-15 -2902 ((-112) (-315 (-224)))) (-15 -2018 ((-682 (-224)) (-638 (-315 (-224))) (-765))) (-15 -4025 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -4029 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -1434 ((-112) (-315 (-224)))) (-15 -1405 ((-638 (-1166)) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -2844 ((-638 (-1166)) (-315 (-224)) (-765))) (-15 -3524 ((-1028) (-1166) (-1028))) (-15 -1540 ((-378) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -2503 ((-638 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))))))
-((-4053 (((-112) $ $) NIL)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 44)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 26) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-4353 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-1606 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4217 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-265 *3)) (-4 *3 (-844)))))
+(-13 (-844) (-1031 |t#1|) (-10 -8 (-15 -1606 ($ |t#1| (-765))) (-15 -4178 ((-765) $)) (-15 -4238 (|t#1| $)) (-15 -1605 ((-765) $)) (-15 -4217 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -4353 ($ |t#1|))))
+(((-102) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-844) . T) ((-1031 |#1|) . T) ((-1091) . T))
+((-3467 (((-635 (-1166)) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 41)) (-4341 (((-635 (-1166)) (-313 (-224)) (-765)) 80)) (-1609 (((-3 (-313 (-224)) "failed") (-313 (-224))) 51)) (-1610 (((-313 (-224)) (-313 (-224))) 67)) (-1608 (((-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 26)) (-1611 (((-112) (-635 (-313 (-224)))) 84)) (-1615 (((-112) (-313 (-224))) 24)) (-1617 (((-635 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) 105)) (-1614 (((-635 (-313 (-224))) (-635 (-313 (-224)))) 87)) (-1613 (((-635 (-313 (-224))) (-635 (-313 (-224)))) 86)) (-1612 (((-682 (-224)) (-635 (-313 (-224))) (-765)) 94)) (-3310 (((-112) (-313 (-224))) 20) (((-112) (-635 (-313 (-224)))) 85)) (-1607 (((-635 (-224)) (-635 (-836 (-224))) (-224)) 14)) (-1705 (((-377) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 100)) (-1616 (((-1028) (-1166) (-1028)) 34)))
+(((-266) (-10 -7 (-15 -1607 ((-635 (-224)) (-635 (-836 (-224))) (-224))) (-15 -1608 ((-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -1609 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1610 ((-313 (-224)) (-313 (-224)))) (-15 -1611 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-313 (-224)))) (-15 -1612 ((-682 (-224)) (-635 (-313 (-224))) (-765))) (-15 -1613 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1614 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1615 ((-112) (-313 (-224)))) (-15 -3467 ((-635 (-1166)) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4341 ((-635 (-1166)) (-313 (-224)) (-765))) (-15 -1616 ((-1028) (-1166) (-1028))) (-15 -1705 ((-377) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -1617 ((-635 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))))) (T -266))
+((-1617 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) (-5 *2 (-635 (-1148))) (-5 *1 (-266)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-377)) (-5 *1 (-266)))) (-1616 (*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-765)) (-5 *2 (-635 (-1166))) (-5 *1 (-266)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-635 (-1166))) (-5 *1 (-266)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266)))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-266)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1610 (*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-266)))) (-1609 (*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-266)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *1 (-266)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-836 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4)) (-5 *1 (-266)))))
+(-10 -7 (-15 -1607 ((-635 (-224)) (-635 (-836 (-224))) (-224))) (-15 -1608 ((-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -1609 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1610 ((-313 (-224)) (-313 (-224)))) (-15 -1611 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-313 (-224)))) (-15 -1612 ((-682 (-224)) (-635 (-313 (-224))) (-765))) (-15 -1613 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1614 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1615 ((-112) (-313 (-224)))) (-15 -3467 ((-635 (-1166)) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4341 ((-635 (-1166)) (-313 (-224)) (-765))) (-15 -1616 ((-1028) (-1166) (-1028))) (-15 -1705 ((-377) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -1617 ((-635 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))))
+((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 44)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 26) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-267) (-833)) (T -267))
NIL
(-833)
-((-4053 (((-112) $ $) NIL)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 58) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 54)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 34) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 36)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 58) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 54)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 34) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 36)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-268) (-833)) (T -268))
NIL
(-833)
-((-4053 (((-112) $ $) NIL)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 76) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 73)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 44) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 55)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 76) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 73)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 44) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 55)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-269) (-833)) (T -269))
NIL
(-833)
-((-4053 (((-112) $ $) NIL)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 50)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 31) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 50)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 31) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-270) (-833)) (T -270))
NIL
(-833)
-((-4053 (((-112) $ $) NIL)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 50)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 28) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 50)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 28) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-271) (-833)) (T -271))
NIL
(-833)
-((-4053 (((-112) $ $) NIL)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 73)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 28) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 73)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 28) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-272) (-833)) (T -272))
NIL
(-833)
-((-4053 (((-112) $ $) NIL)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 77)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 25) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1723 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 77)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 25) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL)))
(((-273) (-833)) (T -273))
NIL
(-833)
-((-4053 (((-112) $ $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3938 (((-638 (-561)) $) 18)) (-3768 (((-765) $) 16)) (-4064 (((-856) $) 22) (($ (-638 (-561))) 14)) (-3263 (($ (-765)) 19)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 9)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 10)))
-(((-274) (-13 (-844) (-10 -8 (-15 -4064 ($ (-638 (-561)))) (-15 -3768 ((-765) $)) (-15 -3938 ((-638 (-561)) $)) (-15 -3263 ($ (-765)))))) (T -274))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274)))))
-(-13 (-844) (-10 -8 (-15 -4064 ($ (-638 (-561)))) (-15 -3768 ((-765) $)) (-15 -3938 ((-638 (-561)) $)) (-15 -3263 ($ (-765)))))
-((-3014 ((|#2| |#2|) 77)) (-4106 ((|#2| |#2|) 65)) (-3990 (((-3 |#2| "failed") |#2| (-638 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-4213 ((|#2| |#2|) 75)) (-4085 ((|#2| |#2|) 63)) (-3039 ((|#2| |#2|) 79)) (-4130 ((|#2| |#2|) 67)) (-4111 ((|#2|) 46)) (-1773 (((-114) (-114)) 95)) (-4364 ((|#2| |#2|) 61)) (-2864 (((-112) |#2|) 134)) (-4048 ((|#2| |#2|) 181)) (-1508 ((|#2| |#2|) 157)) (-2589 ((|#2|) 59)) (-3033 ((|#2|) 58)) (-3993 ((|#2| |#2|) 177)) (-1544 ((|#2| |#2|) 153)) (-3846 ((|#2| |#2|) 185)) (-4028 ((|#2| |#2|) 161)) (-3162 ((|#2| |#2|) 149)) (-4289 ((|#2| |#2|) 151)) (-4018 ((|#2| |#2|) 187)) (-4365 ((|#2| |#2|) 163)) (-3687 ((|#2| |#2|) 183)) (-4283 ((|#2| |#2|) 159)) (-2338 ((|#2| |#2|) 179)) (-1356 ((|#2| |#2|) 155)) (-2299 ((|#2| |#2|) 193)) (-2792 ((|#2| |#2|) 169)) (-3298 ((|#2| |#2|) 189)) (-3654 ((|#2| |#2|) 165)) (-3964 ((|#2| |#2|) 197)) (-2290 ((|#2| |#2|) 173)) (-1887 ((|#2| |#2|) 199)) (-2729 ((|#2| |#2|) 175)) (-2093 ((|#2| |#2|) 195)) (-1698 ((|#2| |#2|) 171)) (-3487 ((|#2| |#2|) 191)) (-3543 ((|#2| |#2|) 167)) (-3486 ((|#2| |#2|) 62)) (-3052 ((|#2| |#2|) 80)) (-4140 ((|#2| |#2|) 68)) (-3026 ((|#2| |#2|) 78)) (-4118 ((|#2| |#2|) 66)) (-3002 ((|#2| |#2|) 76)) (-4097 ((|#2| |#2|) 64)) (-3333 (((-112) (-114)) 93)) (-3086 ((|#2| |#2|) 83)) (-4175 ((|#2| |#2|) 71)) (-3064 ((|#2| |#2|) 81)) (-4150 ((|#2| |#2|) 69)) (-3113 ((|#2| |#2|) 85)) (-4192 ((|#2| |#2|) 73)) (-2821 ((|#2| |#2|) 86)) (-4202 ((|#2| |#2|) 74)) (-3099 ((|#2| |#2|) 84)) (-4184 ((|#2| |#2|) 72)) (-3076 ((|#2| |#2|) 82)) (-4162 ((|#2| |#2|) 70)))
-(((-275 |#1| |#2|) (-10 -7 (-15 -3486 (|#2| |#2|)) (-15 -4364 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4192 (|#2| |#2|)) (-15 -4202 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3026 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3064 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -4111 (|#2|)) (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -3033 (|#2|)) (-15 -2589 (|#2|)) (-15 -4289 (|#2| |#2|)) (-15 -3162 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -1508 (|#2| |#2|)) (-15 -4283 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -4048 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3298 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -3990 ((-3 |#2| "failed") |#2| (-638 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2864 ((-112) |#2|))) (-13 (-844) (-553)) (-13 (-429 |#1|) (-995))) (T -275))
-((-2864 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-429 *4) (-995))))) (-3990 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-638 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-429 *4) (-995))) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-275 *4 *2)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2093 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3298 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3687 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2729 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2290 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4283 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-1508 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3162 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4289 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2589 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-553))))) (-3033 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-553))))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-429 *3) (-995))))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-995))))) (-4111 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-553))))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3099 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3086 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3064 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3026 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4202 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4192 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4162 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4364 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))))
-(-10 -7 (-15 -3486 (|#2| |#2|)) (-15 -4364 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4192 (|#2| |#2|)) (-15 -4202 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3026 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3052 (|#2| |#2|)) (-15 -3064 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -4111 (|#2|)) (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -3033 (|#2|)) (-15 -2589 (|#2|)) (-15 -4289 (|#2| |#2|)) (-15 -3162 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -1508 (|#2| |#2|)) (-15 -4283 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -4048 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3298 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -3990 ((-3 |#2| "failed") |#2| (-638 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2864 ((-112) |#2|)))
-((-4254 (((-3 |#2| "failed") (-638 (-607 |#2|)) |#2| (-1166)) 135)) (-2220 ((|#2| (-406 (-561)) |#2|) 51)) (-1314 ((|#2| |#2| (-607 |#2|)) 128)) (-2392 (((-2 (|:| |func| |#2|) (|:| |kers| (-638 (-607 |#2|))) (|:| |vals| (-638 |#2|))) |#2| (-1166)) 127)) (-1890 ((|#2| |#2| (-1166)) 20) ((|#2| |#2|) 23)) (-3073 ((|#2| |#2| (-1166)) 141) ((|#2| |#2|) 139)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -3073 (|#2| |#2|)) (-15 -3073 (|#2| |#2| (-1166))) (-15 -2392 ((-2 (|:| |func| |#2|) (|:| |kers| (-638 (-607 |#2|))) (|:| |vals| (-638 |#2|))) |#2| (-1166))) (-15 -1890 (|#2| |#2|)) (-15 -1890 (|#2| |#2| (-1166))) (-15 -4254 ((-3 |#2| "failed") (-638 (-607 |#2|)) |#2| (-1166))) (-15 -1314 (|#2| |#2| (-607 |#2|))) (-15 -2220 (|#2| (-406 (-561)) |#2|))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -276))
-((-2220 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-1314 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)))) (-4254 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-1166)) (-4 *2 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *5 *2)))) (-1890 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-2392 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-638 (-607 *3))) (|:| |vals| (-638 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-3073 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-3073 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
-(-10 -7 (-15 -3073 (|#2| |#2|)) (-15 -3073 (|#2| |#2| (-1166))) (-15 -2392 ((-2 (|:| |func| |#2|) (|:| |kers| (-638 (-607 |#2|))) (|:| |vals| (-638 |#2|))) |#2| (-1166))) (-15 -1890 (|#2| |#2|)) (-15 -1890 (|#2| |#2| (-1166))) (-15 -4254 ((-3 |#2| "failed") (-638 (-607 |#2|)) |#2| (-1166))) (-15 -1314 (|#2| |#2| (-607 |#2|))) (-15 -2220 (|#2| (-406 (-561)) |#2|)))
-((-2051 (((-3 |#3| "failed") |#3|) 110)) (-3014 ((|#3| |#3|) 131)) (-2437 (((-3 |#3| "failed") |#3|) 82)) (-4106 ((|#3| |#3|) 121)) (-4055 (((-3 |#3| "failed") |#3|) 58)) (-4213 ((|#3| |#3|) 129)) (-3882 (((-3 |#3| "failed") |#3|) 46)) (-4085 ((|#3| |#3|) 119)) (-4233 (((-3 |#3| "failed") |#3|) 112)) (-3039 ((|#3| |#3|) 133)) (-3967 (((-3 |#3| "failed") |#3|) 84)) (-4130 ((|#3| |#3|) 123)) (-1432 (((-3 |#3| "failed") |#3| (-765)) 36)) (-1445 (((-3 |#3| "failed") |#3|) 74)) (-4364 ((|#3| |#3|) 118)) (-3153 (((-3 |#3| "failed") |#3|) 44)) (-3486 ((|#3| |#3|) 117)) (-2905 (((-3 |#3| "failed") |#3|) 113)) (-3052 ((|#3| |#3|) 134)) (-2453 (((-3 |#3| "failed") |#3|) 85)) (-4140 ((|#3| |#3|) 124)) (-1375 (((-3 |#3| "failed") |#3|) 111)) (-3026 ((|#3| |#3|) 132)) (-3463 (((-3 |#3| "failed") |#3|) 83)) (-4118 ((|#3| |#3|) 122)) (-2523 (((-3 |#3| "failed") |#3|) 60)) (-3002 ((|#3| |#3|) 130)) (-3295 (((-3 |#3| "failed") |#3|) 48)) (-4097 ((|#3| |#3|) 120)) (-1407 (((-3 |#3| "failed") |#3|) 66)) (-3086 ((|#3| |#3|) 137)) (-1595 (((-3 |#3| "failed") |#3|) 104)) (-4175 ((|#3| |#3|) 142)) (-3801 (((-3 |#3| "failed") |#3|) 62)) (-3064 ((|#3| |#3|) 135)) (-4209 (((-3 |#3| "failed") |#3|) 50)) (-4150 ((|#3| |#3|) 125)) (-1918 (((-3 |#3| "failed") |#3|) 70)) (-3113 ((|#3| |#3|) 139)) (-2791 (((-3 |#3| "failed") |#3|) 54)) (-4192 ((|#3| |#3|) 127)) (-2924 (((-3 |#3| "failed") |#3|) 72)) (-2821 ((|#3| |#3|) 140)) (-2105 (((-3 |#3| "failed") |#3|) 56)) (-4202 ((|#3| |#3|) 128)) (-1715 (((-3 |#3| "failed") |#3|) 68)) (-3099 ((|#3| |#3|) 138)) (-2698 (((-3 |#3| "failed") |#3|) 107)) (-4184 ((|#3| |#3|) 143)) (-2798 (((-3 |#3| "failed") |#3|) 64)) (-3076 ((|#3| |#3|) 136)) (-1959 (((-3 |#3| "failed") |#3|) 52)) (-4162 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-561))) 40 (|has| |#1| (-362)))))
-(((-277 |#1| |#2| |#3|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3486 (|#3| |#3|)) (-15 -4364 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4162 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -4192 (|#3| |#3|)) (-15 -4202 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3064 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3086 (|#3| |#3|)) (-15 -3099 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)))) (-38 (-406 (-561))) (-1245 |#1|) (-1216 |#1| |#2|)) (T -277))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1245 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1216 *4 *5)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4364 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4162 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4192 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4202 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3026 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3064 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3086 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3099 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4)))))
-(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3486 (|#3| |#3|)) (-15 -4364 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4162 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -4192 (|#3| |#3|)) (-15 -4202 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3064 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3086 (|#3| |#3|)) (-15 -3099 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2821 (|#3| |#3|))))
-((-2051 (((-3 |#3| "failed") |#3|) 66)) (-3014 ((|#3| |#3|) 129)) (-2437 (((-3 |#3| "failed") |#3|) 50)) (-4106 ((|#3| |#3|) 117)) (-4055 (((-3 |#3| "failed") |#3|) 62)) (-4213 ((|#3| |#3|) 127)) (-3882 (((-3 |#3| "failed") |#3|) 46)) (-4085 ((|#3| |#3|) 115)) (-4233 (((-3 |#3| "failed") |#3|) 70)) (-3039 ((|#3| |#3|) 131)) (-3967 (((-3 |#3| "failed") |#3|) 54)) (-4130 ((|#3| |#3|) 119)) (-1432 (((-3 |#3| "failed") |#3| (-765)) 35)) (-1445 (((-3 |#3| "failed") |#3|) 44)) (-4364 ((|#3| |#3|) 104)) (-3153 (((-3 |#3| "failed") |#3|) 42)) (-3486 ((|#3| |#3|) 114)) (-2905 (((-3 |#3| "failed") |#3|) 72)) (-3052 ((|#3| |#3|) 132)) (-2453 (((-3 |#3| "failed") |#3|) 56)) (-4140 ((|#3| |#3|) 120)) (-1375 (((-3 |#3| "failed") |#3|) 68)) (-3026 ((|#3| |#3|) 130)) (-3463 (((-3 |#3| "failed") |#3|) 52)) (-4118 ((|#3| |#3|) 118)) (-2523 (((-3 |#3| "failed") |#3|) 64)) (-3002 ((|#3| |#3|) 128)) (-3295 (((-3 |#3| "failed") |#3|) 48)) (-4097 ((|#3| |#3|) 116)) (-1407 (((-3 |#3| "failed") |#3|) 74)) (-3086 ((|#3| |#3|) 135)) (-1595 (((-3 |#3| "failed") |#3|) 58)) (-4175 ((|#3| |#3|) 123)) (-3801 (((-3 |#3| "failed") |#3|) 105)) (-3064 ((|#3| |#3|) 133)) (-4209 (((-3 |#3| "failed") |#3|) 94)) (-4150 ((|#3| |#3|) 121)) (-1918 (((-3 |#3| "failed") |#3|) 109)) (-3113 ((|#3| |#3|) 137)) (-2791 (((-3 |#3| "failed") |#3|) 101)) (-4192 ((|#3| |#3|) 125)) (-2924 (((-3 |#3| "failed") |#3|) 110)) (-2821 ((|#3| |#3|) 138)) (-2105 (((-3 |#3| "failed") |#3|) 103)) (-4202 ((|#3| |#3|) 126)) (-1715 (((-3 |#3| "failed") |#3|) 76)) (-3099 ((|#3| |#3|) 136)) (-2698 (((-3 |#3| "failed") |#3|) 60)) (-4184 ((|#3| |#3|) 124)) (-2798 (((-3 |#3| "failed") |#3|) 106)) (-3076 ((|#3| |#3|) 134)) (-1959 (((-3 |#3| "failed") |#3|) 97)) (-4162 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-561))) 40 (|has| |#1| (-362)))))
-(((-278 |#1| |#2| |#3| |#4|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3486 (|#3| |#3|)) (-15 -4364 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4162 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -4192 (|#3| |#3|)) (-15 -4202 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3064 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3086 (|#3| |#3|)) (-15 -3099 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)))) (-38 (-406 (-561))) (-1214 |#1|) (-1237 |#1| |#2|) (-976 |#2|)) (T -278))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1214 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1237 *4 *5)) (-4 *6 (-976 *5)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4364 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4162 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4192 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4202 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3026 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3064 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3086 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3099 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4)))))
-(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3486 (|#3| |#3|)) (-15 -4364 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4106 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4162 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -4192 (|#3| |#3|)) (-15 -4202 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3026 (|#3| |#3|)) (-15 -3039 (|#3| |#3|)) (-15 -3052 (|#3| |#3|)) (-15 -3064 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)) (-15 -3086 (|#3| |#3|)) (-15 -3099 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2821 (|#3| |#3|))))
-((-3689 (((-112) $) 18)) (-3724 (((-182) $) 7)) (-3586 (((-3 (-1166) "failed") $) 14)) (-4304 (((-3 (-638 $) "failed") $) NIL)) (-2882 (((-3 (-1166) "failed") $) 20)) (-2990 (((-3 (-1094) "failed") $) 17)) (-1480 (((-112) $) 15)) (-4064 (((-856) $) NIL)) (-1971 (((-112) $) 9)))
-(((-279) (-13 (-608 (-856)) (-10 -8 (-15 -3724 ((-182) $)) (-15 -1480 ((-112) $)) (-15 -2990 ((-3 (-1094) "failed") $)) (-15 -3689 ((-112) $)) (-15 -2882 ((-3 (-1166) "failed") $)) (-15 -1971 ((-112) $)) (-15 -3586 ((-3 (-1166) "failed") $)) (-15 -4304 ((-3 (-638 $) "failed") $))))) (T -279))
-((-3724 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2990 (*1 *2 *1) (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-279)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2882 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-3586 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-4304 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-279))) (-5 *1 (-279)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -3724 ((-182) $)) (-15 -1480 ((-112) $)) (-15 -2990 ((-3 (-1094) "failed") $)) (-15 -3689 ((-112) $)) (-15 -2882 ((-3 (-1166) "failed") $)) (-15 -1971 ((-112) $)) (-15 -3586 ((-3 (-1166) "failed") $)) (-15 -4304 ((-3 (-638 $) "failed") $))))
-((-3612 (($ (-1 (-112) |#2|) $) 24)) (-1461 (($ $) 36)) (-3222 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1475 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-2289 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3350 (($ |#2| $ (-561)) 20) (($ $ $ (-561)) 22)) (-2883 (($ $ (-561)) 11) (($ $ (-1221 (-561))) 14)) (-2448 (($ $ |#2|) 30) (($ $ $) NIL)) (-2754 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-638 $)) NIL)))
-(((-280 |#1| |#2|) (-10 -8 (-15 -2289 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#2| |#1|)) (-15 -2289 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3222 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2448 (|#1| |#1| |#1|)) (-15 -2448 (|#1| |#1| |#2|)) (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -2883 (|#1| |#1| (-1221 (-561)))) (-15 -2883 (|#1| |#1| (-561))) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3612 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1461 (|#1| |#1|))) (-281 |#2|) (-1205)) (T -280))
-NIL
-(-10 -8 (-15 -2289 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#2| |#1|)) (-15 -2289 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3222 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2448 (|#1| |#1| |#1|)) (-15 -2448 (|#1| |#1| |#2|)) (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -2883 (|#1| |#1| (-1221 (-561)))) (-15 -2883 (|#1| |#1| (-561))) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3612 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1461 (|#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 58 (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) |#1|) $) 85)) (-3612 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-3299 (($ $) 83 (|has| |#1| (-1090)))) (-1461 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1090)))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 51)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-2289 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1617 (($ |#1| $ (-561)) 88) (($ $ $ (-561)) 87)) (-3350 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 42 (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3193 (($ $ |#1|) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1221 (-561))) 63)) (-4335 (($ $ (-561)) 91) (($ $ (-1221 (-561))) 90)) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 70)) (-2448 (($ $ |#1|) 93) (($ $ $) 92)) (-2754 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-281 |#1|) (-139) (-1205)) (T -281))
-((-2448 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)))) (-2448 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)))) (-4335 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-4335 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 (-561))) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-3222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-1617 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-281 *2)) (-4 *2 (-1205)))) (-1617 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-2289 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-3222 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))) (-3299 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))) (-2289 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))))
-(-13 (-644 |t#1|) (-10 -8 (-6 -4400) (-15 -2448 ($ $ |t#1|)) (-15 -2448 ($ $ $)) (-15 -4335 ($ $ (-561))) (-15 -4335 ($ $ (-1221 (-561)))) (-15 -3222 ($ (-1 (-112) |t#1|) $)) (-15 -1617 ($ |t#1| $ (-561))) (-15 -1617 ($ $ $ (-561))) (-15 -2289 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1954 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3222 ($ |t#1| $)) (-15 -3299 ($ $))) |%noBranch|) (IF (|has| |t#1| (-844)) (-15 -2289 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1619 (((-635 (-544)) $) 18)) (-4355 (((-765) $) 16)) (-4353 (((-857) $) 22) (($ (-635 (-544))) 14)) (-1618 (($ (-765)) 19)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 9)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 10)))
+(((-274) (-13 (-844) (-10 -8 (-15 -4353 ($ (-635 (-544)))) (-15 -4355 ((-765) $)) (-15 -1619 ((-635 (-544)) $)) (-15 -1618 ($ (-765)))))) (T -274))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274)))))
+(-13 (-844) (-10 -8 (-15 -4353 ($ (-635 (-544)))) (-15 -4355 ((-765) $)) (-15 -1619 ((-635 (-544)) $)) (-15 -1618 ($ (-765)))))
+((-3891 ((|#2| |#2|) 77)) (-4046 ((|#2| |#2|) 65)) (-1648 (((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3889 ((|#2| |#2|) 75)) (-4045 ((|#2| |#2|) 63)) (-3893 ((|#2| |#2|) 79)) (-4044 ((|#2| |#2|) 67)) (-4034 ((|#2|) 46)) (-3430 (((-113) (-113)) 95)) (-4349 ((|#2| |#2|) 61)) (-1649 (((-112) |#2|) 134)) (-1638 ((|#2| |#2|) 181)) (-1626 ((|#2| |#2|) 157)) (-1621 ((|#2|) 59)) (-1620 ((|#2|) 58)) (-1636 ((|#2| |#2|) 177)) (-1624 ((|#2| |#2|) 153)) (-1640 ((|#2| |#2|) 185)) (-1628 ((|#2| |#2|) 161)) (-1623 ((|#2| |#2|) 149)) (-1622 ((|#2| |#2|) 151)) (-1641 ((|#2| |#2|) 187)) (-1629 ((|#2| |#2|) 163)) (-1639 ((|#2| |#2|) 183)) (-1627 ((|#2| |#2|) 159)) (-1637 ((|#2| |#2|) 179)) (-1625 ((|#2| |#2|) 155)) (-1644 ((|#2| |#2|) 193)) (-1632 ((|#2| |#2|) 169)) (-1642 ((|#2| |#2|) 189)) (-1630 ((|#2| |#2|) 165)) (-1646 ((|#2| |#2|) 197)) (-1634 ((|#2| |#2|) 173)) (-1647 ((|#2| |#2|) 199)) (-1635 ((|#2| |#2|) 175)) (-1645 ((|#2| |#2|) 195)) (-1633 ((|#2| |#2|) 171)) (-1643 ((|#2| |#2|) 191)) (-1631 ((|#2| |#2|) 167)) (-4350 ((|#2| |#2|) 62)) (-3894 ((|#2| |#2|) 80)) (-4043 ((|#2| |#2|) 68)) (-3892 ((|#2| |#2|) 78)) (-4042 ((|#2| |#2|) 66)) (-3890 ((|#2| |#2|) 76)) (-4041 ((|#2| |#2|) 64)) (-2377 (((-112) (-113)) 93)) (-3897 ((|#2| |#2|) 83)) (-3885 ((|#2| |#2|) 71)) (-3895 ((|#2| |#2|) 81)) (-3883 ((|#2| |#2|) 69)) (-3899 ((|#2| |#2|) 85)) (-3887 ((|#2| |#2|) 73)) (-3900 ((|#2| |#2|) 86)) (-3888 ((|#2| |#2|) 74)) (-3898 ((|#2| |#2|) 84)) (-3886 ((|#2| |#2|) 72)) (-3896 ((|#2| |#2|) 82)) (-3884 ((|#2| |#2|) 70)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -4350 (|#2| |#2|)) (-15 -4349 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3884 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -4034 (|#2|)) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1620 (|#2|)) (-15 -1621 (|#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1649 ((-112) |#2|))) (-13 (-844) (-554)) (-13 (-420 |#1|) (-995))) (T -275))
+((-1649 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-420 *4) (-995))))) (-1648 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-420 *4) (-995))) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-275 *4 *2)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1645 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1637 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1634 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1631 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1627 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1625 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1621 (*1 *2) (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-554))))) (-1620 (*1 *2) (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-554))))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-420 *3) (-995))))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-420 *4) (-995))))) (-4034 (*1 *2) (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-554))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4349 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4350 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))))
+(-10 -7 (-15 -4350 (|#2| |#2|)) (-15 -4349 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3884 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -4034 (|#2|)) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1620 (|#2|)) (-15 -1621 (|#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1649 ((-112) |#2|)))
+((-1652 (((-3 |#2| "failed") (-635 (-606 |#2|)) |#2| (-1166)) 135)) (-1654 ((|#2| (-406 (-544)) |#2|) 51)) (-1653 ((|#2| |#2| (-606 |#2|)) 128)) (-1650 (((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-606 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1166)) 127)) (-1651 ((|#2| |#2| (-1166)) 20) ((|#2| |#2|) 23)) (-2737 ((|#2| |#2| (-1166)) 141) ((|#2| |#2|) 139)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -2737 (|#2| |#2|)) (-15 -2737 (|#2| |#2| (-1166))) (-15 -1650 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-606 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1166))) (-15 -1651 (|#2| |#2|)) (-15 -1651 (|#2| |#2| (-1166))) (-15 -1652 ((-3 |#2| "failed") (-635 (-606 |#2|)) |#2| (-1166))) (-15 -1653 (|#2| |#2| (-606 |#2|))) (-15 -1654 (|#2| (-406 (-544)) |#2|))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -276))
+((-1654 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-1653 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)))) (-1652 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-1166)) (-4 *2 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *5 *2)))) (-1651 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-1650 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-635 (-606 *3))) (|:| |vals| (-635 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2737 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))))
+(-10 -7 (-15 -2737 (|#2| |#2|)) (-15 -2737 (|#2| |#2| (-1166))) (-15 -1650 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-606 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1166))) (-15 -1651 (|#2| |#2|)) (-15 -1651 (|#2| |#2| (-1166))) (-15 -1652 ((-3 |#2| "failed") (-635 (-606 |#2|)) |#2| (-1166))) (-15 -1653 (|#2| |#2| (-606 |#2|))) (-15 -1654 (|#2| (-406 (-544)) |#2|)))
+((-3358 (((-3 |#3| #1="failed") |#3|) 110)) (-3891 ((|#3| |#3|) 131)) (-3346 (((-3 |#3| #1#) |#3|) 82)) (-4046 ((|#3| |#3|) 121)) (-3356 (((-3 |#3| #1#) |#3|) 58)) (-3889 ((|#3| |#3|) 129)) (-3344 (((-3 |#3| #1#) |#3|) 46)) (-4045 ((|#3| |#3|) 119)) (-3360 (((-3 |#3| #1#) |#3|) 112)) (-3893 ((|#3| |#3|) 133)) (-3348 (((-3 |#3| #1#) |#3|) 84)) (-4044 ((|#3| |#3|) 123)) (-3341 (((-3 |#3| #1#) |#3| (-765)) 36)) (-3343 (((-3 |#3| #1#) |#3|) 74)) (-4349 ((|#3| |#3|) 118)) (-3342 (((-3 |#3| #1#) |#3|) 44)) (-4350 ((|#3| |#3|) 117)) (-3361 (((-3 |#3| #1#) |#3|) 113)) (-3894 ((|#3| |#3|) 134)) (-3349 (((-3 |#3| #1#) |#3|) 85)) (-4043 ((|#3| |#3|) 124)) (-3359 (((-3 |#3| #1#) |#3|) 111)) (-3892 ((|#3| |#3|) 132)) (-3347 (((-3 |#3| #1#) |#3|) 83)) (-4042 ((|#3| |#3|) 122)) (-3357 (((-3 |#3| #1#) |#3|) 60)) (-3890 ((|#3| |#3|) 130)) (-3345 (((-3 |#3| #1#) |#3|) 48)) (-4041 ((|#3| |#3|) 120)) (-3364 (((-3 |#3| #1#) |#3|) 66)) (-3897 ((|#3| |#3|) 137)) (-3352 (((-3 |#3| #1#) |#3|) 104)) (-3885 ((|#3| |#3|) 142)) (-3362 (((-3 |#3| #1#) |#3|) 62)) (-3895 ((|#3| |#3|) 135)) (-3350 (((-3 |#3| #1#) |#3|) 50)) (-3883 ((|#3| |#3|) 125)) (-3366 (((-3 |#3| #1#) |#3|) 70)) (-3899 ((|#3| |#3|) 139)) (-3354 (((-3 |#3| #1#) |#3|) 54)) (-3887 ((|#3| |#3|) 127)) (-3367 (((-3 |#3| #1#) |#3|) 72)) (-3900 ((|#3| |#3|) 140)) (-3355 (((-3 |#3| #1#) |#3|) 56)) (-3888 ((|#3| |#3|) 128)) (-3365 (((-3 |#3| #1#) |#3|) 68)) (-3898 ((|#3| |#3|) 138)) (-3353 (((-3 |#3| #1#) |#3|) 107)) (-3886 ((|#3| |#3|) 143)) (-3363 (((-3 |#3| #1#) |#3|) 64)) (-3896 ((|#3| |#3|) 136)) (-3351 (((-3 |#3| #1#) |#3|) 52)) (-3884 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-544))) 40 (|has| |#1| (-362)))))
+(((-277 |#1| |#2| |#3|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)))) (-38 (-406 (-544))) (-1246 |#1|) (-1217 |#1| |#2|)) (T -277))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1246 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1217 *4 *5)))) (-4350 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4349 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))))
+(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|))))
+((-3358 (((-3 |#3| #1="failed") |#3|) 66)) (-3891 ((|#3| |#3|) 129)) (-3346 (((-3 |#3| #1#) |#3|) 50)) (-4046 ((|#3| |#3|) 117)) (-3356 (((-3 |#3| #1#) |#3|) 62)) (-3889 ((|#3| |#3|) 127)) (-3344 (((-3 |#3| #1#) |#3|) 46)) (-4045 ((|#3| |#3|) 115)) (-3360 (((-3 |#3| #1#) |#3|) 70)) (-3893 ((|#3| |#3|) 131)) (-3348 (((-3 |#3| #1#) |#3|) 54)) (-4044 ((|#3| |#3|) 119)) (-3341 (((-3 |#3| #1#) |#3| (-765)) 35)) (-3343 (((-3 |#3| #1#) |#3|) 44)) (-4349 ((|#3| |#3|) 104)) (-3342 (((-3 |#3| #1#) |#3|) 42)) (-4350 ((|#3| |#3|) 114)) (-3361 (((-3 |#3| #1#) |#3|) 72)) (-3894 ((|#3| |#3|) 132)) (-3349 (((-3 |#3| #1#) |#3|) 56)) (-4043 ((|#3| |#3|) 120)) (-3359 (((-3 |#3| #1#) |#3|) 68)) (-3892 ((|#3| |#3|) 130)) (-3347 (((-3 |#3| #1#) |#3|) 52)) (-4042 ((|#3| |#3|) 118)) (-3357 (((-3 |#3| #1#) |#3|) 64)) (-3890 ((|#3| |#3|) 128)) (-3345 (((-3 |#3| #1#) |#3|) 48)) (-4041 ((|#3| |#3|) 116)) (-3364 (((-3 |#3| #1#) |#3|) 74)) (-3897 ((|#3| |#3|) 135)) (-3352 (((-3 |#3| #1#) |#3|) 58)) (-3885 ((|#3| |#3|) 123)) (-3362 (((-3 |#3| #1#) |#3|) 105)) (-3895 ((|#3| |#3|) 133)) (-3350 (((-3 |#3| #1#) |#3|) 94)) (-3883 ((|#3| |#3|) 121)) (-3366 (((-3 |#3| #1#) |#3|) 109)) (-3899 ((|#3| |#3|) 137)) (-3354 (((-3 |#3| #1#) |#3|) 101)) (-3887 ((|#3| |#3|) 125)) (-3367 (((-3 |#3| #1#) |#3|) 110)) (-3900 ((|#3| |#3|) 138)) (-3355 (((-3 |#3| #1#) |#3|) 103)) (-3888 ((|#3| |#3|) 126)) (-3365 (((-3 |#3| #1#) |#3|) 76)) (-3898 ((|#3| |#3|) 136)) (-3353 (((-3 |#3| #1#) |#3|) 60)) (-3886 ((|#3| |#3|) 124)) (-3363 (((-3 |#3| #1#) |#3|) 106)) (-3896 ((|#3| |#3|) 134)) (-3351 (((-3 |#3| #1#) |#3|) 97)) (-3884 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-544))) 40 (|has| |#1| (-362)))))
+(((-278 |#1| |#2| |#3| |#4|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)))) (-38 (-406 (-544))) (-1215 |#1|) (-1238 |#1| |#2|) (-976 |#2|)) (T -278))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1215 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1238 *4 *5)) (-4 *6 (-976 *5)))) (-4350 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4349 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))))
+(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|))))
+((-3234 (((-112) $) 18)) (-1658 (((-183) $) 7)) (-3976 (((-3 (-1166) "failed") $) 14)) (-3975 (((-3 (-635 $) "failed") $) NIL)) (-1656 (((-3 (-1166) "failed") $) 20)) (-1657 (((-3 (-1093) "failed") $) 17)) (-4360 (((-112) $) 15)) (-4353 (((-857) $) NIL)) (-1655 (((-112) $) 9)))
+(((-279) (-13 (-608 (-857)) (-10 -8 (-15 -1658 ((-183) $)) (-15 -4360 ((-112) $)) (-15 -1657 ((-3 (-1093) "failed") $)) (-15 -3234 ((-112) $)) (-15 -1656 ((-3 (-1166) "failed") $)) (-15 -1655 ((-112) $)) (-15 -3976 ((-3 (-1166) "failed") $)) (-15 -3975 ((-3 (-635 $) "failed") $))))) (T -279))
+((-1658 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-279)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-279)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-1656 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-3976 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-3975 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -1658 ((-183) $)) (-15 -4360 ((-112) $)) (-15 -1657 ((-3 (-1093) "failed") $)) (-15 -3234 ((-112) $)) (-15 -1656 ((-3 (-1166) "failed") $)) (-15 -1655 ((-112) $)) (-15 -3976 ((-3 (-1166) "failed") $)) (-15 -3975 ((-3 (-635 $) "failed") $))))
+((-4117 (($ (-1 (-112) |#2|) $) 24)) (-1424 (($ $) 36)) (-3809 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3810 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3241 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2421 (($ |#2| $ (-544)) 20) (($ $ $ (-544)) 22)) (-2422 (($ $ (-544)) 11) (($ $ (-1220 (-544))) 14)) (-4197 (($ $ |#2|) 30) (($ $ $) NIL)) (-4208 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-635 $)) NIL)))
+(((-280 |#1| |#2|) (-10 -8 (-15 -3241 (|#1| |#1| |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -1424 (|#1| |#1|))) (-281 |#2|) (-1204)) (T -280))
+NIL
+(-10 -8 (-15 -3241 (|#1| |#1| |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -1424 (|#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) 85)) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 83 (|has| |#1| (-1091)))) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1091)))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-3241 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4014 (($ |#1| $ (-544)) 88) (($ $ $ (-544)) 87)) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-1660 (($ $ (-544)) 91) (($ $ (-1220 (-544))) 90)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4197 (($ $ |#1|) 93) (($ $ $) 92)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-281 |#1|) (-139) (-1204)) (T -281))
+((-4197 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-4014 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-281 *2)) (-4 *2 (-1204)))) (-4014 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-3241 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-1659 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-3809 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) (-2498 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))))
+(-13 (-644 |t#1|) (-10 -8 (-6 -4401) (-15 -4197 ($ $ |t#1|)) (-15 -4197 ($ $ $)) (-15 -1660 ($ $ (-544))) (-15 -1660 ($ $ (-1220 (-544)))) (-15 -3809 ($ (-1 (-112) |t#1|) $)) (-15 -4014 ($ |t#1| $ (-544))) (-15 -4014 ($ $ $ (-544))) (-15 -3241 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1659 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -3809 ($ |t#1| $)) (-15 -2498 ($ $))) |%noBranch|) (IF (|has| |t#1| (-844)) (-15 -3241 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
((** (($ $ $) 10)))
(((-282 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-283)) (T -282))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-4364 (($ $) 6)) (-3486 (($ $) 7)) (** (($ $ $) 8)))
+((-4349 (($ $) 6)) (-4350 (($ $) 7)) (** (($ $ $) 8)))
(((-283) (-139)) (T -283))
-((** (*1 *1 *1 *1) (-4 *1 (-283))) (-3486 (*1 *1 *1) (-4 *1 (-283))) (-4364 (*1 *1 *1) (-4 *1 (-283))))
-(-13 (-10 -8 (-15 -4364 ($ $)) (-15 -3486 ($ $)) (-15 ** ($ $ $))))
-((-4051 (((-638 (-1146 |#1|)) (-1146 |#1|) |#1|) 35)) (-2349 ((|#2| |#2| |#1|) 38)) (-3446 ((|#2| |#2| |#1|) 40)) (-3102 ((|#2| |#2| |#1|) 39)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -2349 (|#2| |#2| |#1|)) (-15 -3102 (|#2| |#2| |#1|)) (-15 -3446 (|#2| |#2| |#1|)) (-15 -4051 ((-638 (-1146 |#1|)) (-1146 |#1|) |#1|))) (-362) (-1245 |#1|)) (T -284))
-((-4051 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-638 (-1146 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1146 *4)) (-4 *5 (-1245 *4)))) (-3446 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1245 *3)))) (-3102 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1245 *3)))) (-2349 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1245 *3)))))
-(-10 -7 (-15 -2349 (|#2| |#2| |#1|)) (-15 -3102 (|#2| |#2| |#1|)) (-15 -3446 (|#2| |#2| |#1|)) (-15 -4051 ((-638 (-1146 |#1|)) (-1146 |#1|) |#1|)))
-((-2315 ((|#2| $ |#1|) 6)))
-(((-285 |#1| |#2|) (-139) (-1090) (-1205)) (T -285))
-((-2315 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))))
-(-13 (-10 -8 (-15 -2315 (|t#2| $ |t#1|))))
-((-2041 ((|#3| $ |#2| |#3|) 12)) (-1975 ((|#3| $ |#2|) 10)))
-(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -2041 (|#3| |#1| |#2| |#3|)) (-15 -1975 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1090) (-1205)) (T -286))
-NIL
-(-10 -8 (-15 -2041 (|#3| |#1| |#2| |#3|)) (-15 -1975 (|#3| |#1| |#2|)))
-((-4207 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4400)))) (-2041 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) 11)) (-2315 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-287 |#1| |#2|) (-139) (-1090) (-1205)) (T -287))
-((-2315 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-1975 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-4207 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-2041 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))))
-(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -2315 (|t#2| $ |t#1| |t#2|)) (-15 -1975 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4400)) (PROGN (-15 -4207 (|t#2| $ |t#1| |t#2|)) (-15 -2041 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-283))) (-4350 (*1 *1 *1) (-4 *1 (-283))) (-4349 (*1 *1 *1) (-4 *1 (-283))))
+(-13 (-10 -8 (-15 -4349 ($ $)) (-15 -4350 ($ $)) (-15 ** ($ $ $))))
+((-1664 (((-635 (-1143 |#1|)) (-1143 |#1|) |#1|) 35)) (-1661 ((|#2| |#2| |#1|) 38)) (-1663 ((|#2| |#2| |#1|) 40)) (-1662 ((|#2| |#2| |#1|) 39)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -1661 (|#2| |#2| |#1|)) (-15 -1662 (|#2| |#2| |#1|)) (-15 -1663 (|#2| |#2| |#1|)) (-15 -1664 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|))) (-362) (-1246 |#1|)) (T -284))
+((-1664 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-1246 *4)))) (-1663 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))) (-1662 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))) (-1661 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))))
+(-10 -7 (-15 -1661 (|#2| |#2| |#1|)) (-15 -1662 (|#2| |#2| |#1|)) (-15 -1663 (|#2| |#2| |#1|)) (-15 -1664 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|)))
+((-4206 ((|#2| $ |#1|) 6)))
+(((-285 |#1| |#2|) (-139) (-1091) (-1204)) (T -285))
+((-4206 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))))
+(-13 (-10 -8 (-15 -4206 (|t#2| $ |t#1|))))
+((-1665 ((|#3| $ |#2| |#3|) 12)) (-3498 ((|#3| $ |#2|) 10)))
+(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -1665 (|#3| |#1| |#2| |#3|)) (-15 -3498 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1091) (-1204)) (T -286))
+NIL
+(-10 -8 (-15 -1665 (|#3| |#1| |#2| |#3|)) (-15 -3498 (|#3| |#1| |#2|)))
+((-4194 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4401)))) (-1665 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 11)) (-4206 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-287 |#1| |#2|) (-139) (-1091) (-1204)) (T -287))
+((-4206 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-3498 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-1665 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))))
+(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -4206 (|t#2| $ |t#1| |t#2|)) (-15 -3498 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4194 (|t#2| $ |t#1| |t#2|)) (-15 -1665 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-285 |#1| |#2|) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 34)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 39)) (-3012 (($ $) 37)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) 32)) (-3176 (($ |#2| |#3|) 19)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1448 ((|#3| $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 20)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2075 (((-3 $ "failed") $ $) NIL)) (-1905 (((-765) $) 33)) (-2315 ((|#2| $ |#2|) 41)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 24)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3746 (((-765)) NIL)) (-3996 (((-112) $ $) NIL)) (-2246 (($) 28 T CONST)) (-2257 (($) 35 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 36)))
-(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -1448 (|#3| $)) (-15 -4064 (|#2| $)) (-15 -3176 ($ |#2| |#3|)) (-15 -2075 ((-3 $ "failed") $ $)) (-15 -3735 ((-3 $ "failed") $)) (-15 -1519 ($ $)) (-15 -2315 (|#2| $ |#2|)))) (-171) (-1230 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288))
-((-3735 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1230 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1230 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4064 (*1 *2 *1) (-12 (-4 *2 (-1230 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3176 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1230 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2075 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1230 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1519 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1230 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2315 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1230 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-306) (-10 -8 (-15 -1448 (|#3| $)) (-15 -4064 (|#2| $)) (-15 -3176 ($ |#2| |#3|)) (-15 -2075 ((-3 $ "failed") $ $)) (-15 -3735 ((-3 $ "failed") $)) (-15 -1519 ($ $)) (-15 -2315 (|#2| $ |#2|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 34)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 39)) (-2213 (($ $) 37)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) 32)) (-4249 (($ |#2| |#3|) 19)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 ((|#3| $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 20)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2537 (((-3 $ "failed") $ $) NIL)) (-1732 (((-765) $) 33)) (-4206 ((|#2| $ |#2|) 41)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 24)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 28 T CONST)) (-3046 (($) 35 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 36)))
+(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -2992 (|#3| $)) (-15 -4353 (|#2| $)) (-15 -4249 ($ |#2| |#3|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $)) (-15 -4206 (|#2| $ |#2|)))) (-171) (-1229 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288))
+((-3866 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1229 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4353 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4249 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1229 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2779 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4206 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1229 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))))
+(-13 (-306) (-10 -8 (-15 -2992 (|#3| $)) (-15 -4353 (|#2| $)) (-15 -4249 ($ |#2| |#3|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $)) (-15 -4206 (|#2| $ |#2|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-289) (-139)) (T -289))
NIL
-(-13 (-1042) (-111 $ $) (-10 -7 (-6 -4392)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-2293 (($ (-1166) (-1166) (-1094) $) 17)) (-3888 (($ (-1166) (-638 (-958)) $) 22)) (-3880 (((-638 (-1075)) $) 10)) (-1683 (((-3 (-1094) "failed") (-1166) (-1166) $) 16)) (-3693 (((-3 (-638 (-958)) "failed") (-1166) $) 21)) (-2910 (($) 7)) (-1370 (($) 23)) (-4064 (((-856) $) 27)) (-4278 (($) 24)))
-(((-290) (-13 (-608 (-856)) (-10 -8 (-15 -2910 ($)) (-15 -3880 ((-638 (-1075)) $)) (-15 -1683 ((-3 (-1094) "failed") (-1166) (-1166) $)) (-15 -2293 ($ (-1166) (-1166) (-1094) $)) (-15 -3693 ((-3 (-638 (-958)) "failed") (-1166) $)) (-15 -3888 ($ (-1166) (-638 (-958)) $)) (-15 -1370 ($)) (-15 -4278 ($))))) (T -290))
-((-2910 (*1 *1) (-5 *1 (-290))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-638 (-1075))) (-5 *1 (-290)))) (-1683 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-290)))) (-2293 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-290)))) (-3693 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-638 (-958))) (-5 *1 (-290)))) (-3888 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-290)))) (-1370 (*1 *1) (-5 *1 (-290))) (-4278 (*1 *1) (-5 *1 (-290))))
-(-13 (-608 (-856)) (-10 -8 (-15 -2910 ($)) (-15 -3880 ((-638 (-1075)) $)) (-15 -1683 ((-3 (-1094) "failed") (-1166) (-1166) $)) (-15 -2293 ($ (-1166) (-1166) (-1094) $)) (-15 -3693 ((-3 (-638 (-958)) "failed") (-1166) $)) (-15 -3888 ($ (-1166) (-638 (-958)) $)) (-15 -1370 ($)) (-15 -4278 ($))))
-((-1955 (((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|)))) 85)) (-1489 (((-638 (-682 (-406 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|)))))) (-682 (-406 (-945 |#1|)))) 80) (((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))) (-765) (-765)) 38)) (-3633 (((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|)))) 82)) (-2731 (((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|)))) 62)) (-2747 (((-638 (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (-682 (-406 (-945 |#1|)))) 61)) (-3934 (((-945 |#1|) (-682 (-406 (-945 |#1|)))) 50) (((-945 |#1|) (-682 (-406 (-945 |#1|))) (-1166)) 51)))
-(((-291 |#1|) (-10 -7 (-15 -3934 ((-945 |#1|) (-682 (-406 (-945 |#1|))) (-1166))) (-15 -3934 ((-945 |#1|) (-682 (-406 (-945 |#1|))))) (-15 -2747 ((-638 (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (-682 (-406 (-945 |#1|))))) (-15 -2731 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))))) (-15 -1489 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))) (-765) (-765))) (-15 -1489 ((-638 (-682 (-406 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|)))))) (-682 (-406 (-945 |#1|))))) (-15 -1955 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|))))) (-15 -3633 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|)))))) (-450)) (T -291))
-((-3633 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-638 (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-638 (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 *4)))) (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))) (-1489 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-945 *6)) (-1155 (-1166) (-945 *6)))) (-5 *5 (-765)) (-4 *6 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-682 (-406 (-945 *6)))))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5)))) (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-4 *4 (-450)) (-5 *2 (-638 (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4))))) (-5 *1 (-291 *4)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-5 *2 (-945 *4)) (-5 *1 (-291 *4)) (-4 *4 (-450)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-945 *5)))) (-5 *4 (-1166)) (-5 *2 (-945 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450)))))
-(-10 -7 (-15 -3934 ((-945 |#1|) (-682 (-406 (-945 |#1|))) (-1166))) (-15 -3934 ((-945 |#1|) (-682 (-406 (-945 |#1|))))) (-15 -2747 ((-638 (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (-682 (-406 (-945 |#1|))))) (-15 -2731 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))))) (-15 -1489 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))) (-765) (-765))) (-15 -1489 ((-638 (-682 (-406 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|)))))) (-682 (-406 (-945 |#1|))))) (-15 -1955 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|))))) (-15 -3633 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|))))))
-((-4165 (((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)) 14)))
-(((-292 |#1| |#2|) (-10 -7 (-15 -4165 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) (-1205) (-1205)) (T -292))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6)))))
-(-10 -7 (-15 -4165 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-4306 (((-112) $) NIL (|has| |#1| (-21)))) (-1513 (($ $) 12)) (-2979 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1339 (($ $ $) 94 (|has| |#1| (-301)))) (-2674 (($) NIL (-4050 (|has| |#1| (-21)) (|has| |#1| (-720))) CONST)) (-2534 (($ $) 50 (|has| |#1| (-21)))) (-2270 (((-3 $ "failed") $) 61 (|has| |#1| (-720)))) (-4322 ((|#1| $) 11)) (-3735 (((-3 $ "failed") $) 59 (|has| |#1| (-720)))) (-2252 (((-112) $) NIL (|has| |#1| (-720)))) (-4165 (($ (-1 |#1| |#1|) $) 14)) (-4308 ((|#1| $) 10)) (-2524 (($ $) 49 (|has| |#1| (-21)))) (-1326 (((-3 $ "failed") $) 60 (|has| |#1| (-720)))) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1519 (($ $) 63 (-4050 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1528 (((-638 $) $) 84 (|has| |#1| (-553)))) (-1436 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 21 (|has| |#1| (-512 (-1166) |#1|)))) (-3723 (($ |#1| |#1|) 9)) (-2390 (((-133)) 89 (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 86 (|has| |#1| (-893 (-1166))))) (-2076 (($ $ $) NIL (|has| |#1| (-471)))) (-3047 (($ $ $) NIL (|has| |#1| (-471)))) (-4064 (($ (-561)) NIL (|has| |#1| (-1042))) (((-112) $) 36 (|has| |#1| (-1090))) (((-856) $) 35 (|has| |#1| (-1090)))) (-3746 (((-765)) 66 (|has| |#1| (-1042)))) (-2246 (($) 46 (|has| |#1| (-21)) CONST)) (-2257 (($) 56 (|has| |#1| (-720)) CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166))))) (-1723 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1090)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-4050 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-1819 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1810 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-561)) NIL (|has| |#1| (-471))) (($ $ (-765)) NIL (|has| |#1| (-720))) (($ $ (-914)) NIL (|has| |#1| (-1102)))) (* (($ $ |#1|) 54 (|has| |#1| (-1102))) (($ |#1| $) 53 (|has| |#1| (-1102))) (($ $ $) 52 (|has| |#1| (-1102))) (($ (-561) $) 69 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-914) $) NIL (|has| |#1| (-25)))))
-(((-293 |#1|) (-13 (-1205) (-10 -8 (-15 -1723 ($ |#1| |#1|)) (-15 -3723 ($ |#1| |#1|)) (-15 -1513 ($ $)) (-15 -4308 (|#1| $)) (-15 -4322 (|#1| $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1436 ($ $ $)) (-15 -1436 ($ $ (-638 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1810 ($ |#1| $)) (-15 -1810 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2524 ($ $)) (-15 -2534 ($ $)) (-15 -1819 ($ |#1| $)) (-15 -1819 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -1326 ((-3 $ "failed") $)) (-15 -2270 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1326 ((-3 $ "failed") $)) (-15 -2270 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -1528 ((-638 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1261 |#1|)) (-15 -1828 ($ $ $)) (-15 -1519 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -1339 ($ $ $)) |%noBranch|))) (-1205)) (T -293))
-((-1723 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-3723 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-4308 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-4322 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-293 *3)))) (-1436 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)) (-5 *1 (-293 *2)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1090)) (-4 *3 (-1205)) (-5 *1 (-293 *3)))) (-1810 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205)))) (-2524 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-2534 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-1819 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-1326 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))) (-2270 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-638 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-553)) (-4 *3 (-1205)))) (-1339 (*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1205)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205)))) (-1828 (*1 *1 *1 *1) (-4050 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205))))) (-1519 (*1 *1 *1) (-4050 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205))))))
-(-13 (-1205) (-10 -8 (-15 -1723 ($ |#1| |#1|)) (-15 -3723 ($ |#1| |#1|)) (-15 -1513 ($ $)) (-15 -4308 (|#1| $)) (-15 -4322 (|#1| $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1436 ($ $ $)) (-15 -1436 ($ $ (-638 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1810 ($ |#1| $)) (-15 -1810 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2524 ($ $)) (-15 -2534 ($ $)) (-15 -1819 ($ |#1| $)) (-15 -1819 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -1326 ((-3 $ "failed") $)) (-15 -2270 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1326 ((-3 $ "failed") $)) (-15 -2270 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -1528 ((-638 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1261 |#1|)) (-15 -1828 ($ $ $)) (-15 -1519 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -1339 ($ $ $)) |%noBranch|)))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1846 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) NIL)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) NIL)) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 ((|#1| $) NIL (|has| |#1| (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 ((|#1| $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2066 (((-638 |#1|) $) NIL)) (-2492 (((-112) |#1| $) NIL)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2355 (((-638 |#1|) $) NIL)) (-1558 (((-112) |#1| $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#2| $) NIL (|has| |#1| (-844)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-294 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399))) (-1090) (-1090)) (T -294))
-NIL
-(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399)))
-((-3984 (((-311) (-1148) (-638 (-1148))) 16) (((-311) (-1148) (-1148)) 15) (((-311) (-638 (-1148))) 14) (((-311) (-1148)) 12)))
-(((-295) (-10 -7 (-15 -3984 ((-311) (-1148))) (-15 -3984 ((-311) (-638 (-1148)))) (-15 -3984 ((-311) (-1148) (-1148))) (-15 -3984 ((-311) (-1148) (-638 (-1148)))))) (T -295))
-((-3984 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1148))) (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3984 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-311)) (-5 *1 (-295)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295)))))
-(-10 -7 (-15 -3984 ((-311) (-1148))) (-15 -3984 ((-311) (-638 (-1148)))) (-15 -3984 ((-311) (-1148) (-1148))) (-15 -3984 ((-311) (-1148) (-638 (-1148)))))
-((-4165 ((|#2| (-1 |#2| |#1|) (-1148) (-607 |#1|)) 18)))
-(((-296 |#1| |#2|) (-10 -7 (-15 -4165 (|#2| (-1 |#2| |#1|) (-1148) (-607 |#1|)))) (-301) (-1205)) (T -296))
-((-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-607 *6)) (-4 *6 (-301)) (-4 *2 (-1205)) (-5 *1 (-296 *6 *2)))))
-(-10 -7 (-15 -4165 (|#2| (-1 |#2| |#1|) (-1148) (-607 |#1|))))
-((-4165 ((|#2| (-1 |#2| |#1|) (-607 |#1|)) 17)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -4165 (|#2| (-1 |#2| |#1|) (-607 |#1|)))) (-301) (-301)) (T -297))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-607 *5)) (-4 *5 (-301)) (-4 *2 (-301)) (-5 *1 (-297 *5 *2)))))
-(-10 -7 (-15 -4165 (|#2| (-1 |#2| |#1|) (-607 |#1|))))
-((-3069 (((-112) (-224)) 10)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -3069 ((-112) (-224)))) (-224) (-224)) (T -298))
-((-3069 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -3069 ((-112) (-224))))
-((-2311 (((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224)))) 92)) (-3454 (((-1146 (-224)) (-1254 (-315 (-224))) (-638 (-1166)) (-1084 (-837 (-224)))) 106) (((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224)))) 61)) (-3103 (((-638 (-1148)) (-1146 (-224))) NIL)) (-3029 (((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224)))) 58)) (-2816 (((-638 (-224)) (-945 (-406 (-561))) (-1166) (-1084 (-837 (-224)))) 49)) (-2708 (((-638 (-1148)) (-638 (-224))) NIL)) (-3872 (((-224) (-1084 (-837 (-224)))) 25)) (-2495 (((-224) (-1084 (-837 (-224)))) 26)) (-2060 (((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-3496 (((-1148) (-224)) NIL)))
-(((-299) (-10 -7 (-15 -3872 ((-224) (-1084 (-837 (-224))))) (-15 -2495 ((-224) (-1084 (-837 (-224))))) (-15 -2060 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3029 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -2311 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -3454 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -3454 ((-1146 (-224)) (-1254 (-315 (-224))) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2816 ((-638 (-224)) (-945 (-406 (-561))) (-1166) (-1084 (-837 (-224))))) (-15 -3496 ((-1148) (-224))) (-15 -2708 ((-638 (-1148)) (-638 (-224)))) (-15 -3103 ((-638 (-1148)) (-1146 (-224)))))) (T -299))
-((-3103 (*1 *2 *3) (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-299)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *4 (-1166)) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))) (-3454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *4 (-638 (-1166))) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))) (-3454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166))) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))) (-2311 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166))) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))) (-3029 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166)) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-299)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))))
-(-10 -7 (-15 -3872 ((-224) (-1084 (-837 (-224))))) (-15 -2495 ((-224) (-1084 (-837 (-224))))) (-15 -2060 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3029 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -2311 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -3454 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -3454 ((-1146 (-224)) (-1254 (-315 (-224))) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2816 ((-638 (-224)) (-945 (-406 (-561))) (-1166) (-1084 (-837 (-224))))) (-15 -3496 ((-1148) (-224))) (-15 -2708 ((-638 (-1148)) (-638 (-224)))) (-15 -3103 ((-638 (-1148)) (-1146 (-224)))))
-((-1495 (((-638 (-607 $)) $) 30)) (-1339 (($ $ (-293 $)) 80) (($ $ (-638 (-293 $))) 122) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-4061 (((-3 (-607 $) "failed") $) 112)) (-3979 (((-607 $) $) 111)) (-1719 (($ $) 19) (($ (-638 $)) 55)) (-2123 (((-638 (-114)) $) 38)) (-1773 (((-114) (-114)) 90)) (-2110 (((-112) $) 130)) (-4165 (($ (-1 $ $) (-607 $)) 88)) (-2373 (((-3 (-607 $) "failed") $) 92)) (-4154 (($ (-114) $) 60) (($ (-114) (-638 $)) 99)) (-4188 (((-112) $ (-114)) 116) (((-112) $ (-1166)) 115)) (-3093 (((-765) $) 46)) (-1342 (((-112) $ $) 58) (((-112) $ (-1166)) 50)) (-2058 (((-112) $) 128)) (-1436 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) 120) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 83) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) 68) (($ $ (-1166) (-1 $ $)) 74) (($ $ (-638 (-114)) (-638 (-1 $ $))) 82) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 84) (($ $ (-114) (-1 $ (-638 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2315 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-638 $)) 108)) (-4348 (($ $) 52) (($ $ $) 118)) (-3402 (($ $) 17) (($ (-638 $)) 54)) (-3333 (((-112) (-114)) 22)))
-(((-300 |#1|) (-10 -8 (-15 -2110 ((-112) |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -1342 ((-112) |#1| (-1166))) (-15 -1342 ((-112) |#1| |#1|)) (-15 -4165 (|#1| (-1 |#1| |#1|) (-607 |#1|))) (-15 -4154 (|#1| (-114) (-638 |#1|))) (-15 -4154 (|#1| (-114) |#1|)) (-15 -4188 ((-112) |#1| (-1166))) (-15 -4188 ((-112) |#1| (-114))) (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -2123 ((-638 (-114)) |#1|)) (-15 -1495 ((-638 (-607 |#1|)) |#1|)) (-15 -2373 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3093 ((-765) |#1|)) (-15 -4348 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -1719 (|#1| (-638 |#1|))) (-15 -1719 (|#1| |#1|)) (-15 -3402 (|#1| (-638 |#1|))) (-15 -3402 (|#1| |#1|)) (-15 -1339 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1339 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1339 (|#1| |#1| (-293 |#1|))) (-15 -2315 (|#1| (-114) (-638 |#1|))) (-15 -2315 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1436 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4061 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3979 ((-607 |#1|) |#1|))) (-301)) (T -300))
-((-1773 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301)))))
-(-10 -8 (-15 -2110 ((-112) |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -1342 ((-112) |#1| (-1166))) (-15 -1342 ((-112) |#1| |#1|)) (-15 -4165 (|#1| (-1 |#1| |#1|) (-607 |#1|))) (-15 -4154 (|#1| (-114) (-638 |#1|))) (-15 -4154 (|#1| (-114) |#1|)) (-15 -4188 ((-112) |#1| (-1166))) (-15 -4188 ((-112) |#1| (-114))) (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -2123 ((-638 (-114)) |#1|)) (-15 -1495 ((-638 (-607 |#1|)) |#1|)) (-15 -2373 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3093 ((-765) |#1|)) (-15 -4348 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -1719 (|#1| (-638 |#1|))) (-15 -1719 (|#1| |#1|)) (-15 -3402 (|#1| (-638 |#1|))) (-15 -3402 (|#1| |#1|)) (-15 -1339 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1339 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1339 (|#1| |#1| (-293 |#1|))) (-15 -2315 (|#1| (-114) (-638 |#1|))) (-15 -2315 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1436 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4061 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3979 ((-607 |#1|) |#1|)))
-((-4053 (((-112) $ $) 7)) (-1495 (((-638 (-607 $)) $) 44)) (-1339 (($ $ (-293 $)) 56) (($ $ (-638 (-293 $))) 55) (($ $ (-638 (-607 $)) (-638 $)) 54)) (-4061 (((-3 (-607 $) "failed") $) 69)) (-3979 (((-607 $) $) 70)) (-1719 (($ $) 51) (($ (-638 $)) 50)) (-2123 (((-638 (-114)) $) 43)) (-1773 (((-114) (-114)) 42)) (-2110 (((-112) $) 22 (|has| $ (-1031 (-561))))) (-1578 (((-1162 $) (-607 $)) 25 (|has| $ (-1042)))) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-4165 (($ (-1 $ $) (-607 $)) 36)) (-2373 (((-3 (-607 $) "failed") $) 46)) (-1883 (((-1148) $) 9)) (-1583 (((-638 (-607 $)) $) 45)) (-4154 (($ (-114) $) 38) (($ (-114) (-638 $)) 37)) (-4188 (((-112) $ (-114)) 40) (((-112) $ (-1166)) 39)) (-3093 (((-765) $) 47)) (-1701 (((-1110) $) 10)) (-1342 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-2058 (((-112) $) 23 (|has| $ (-1031 (-561))))) (-1436 (($ $ (-607 $) $) 67) (($ $ (-638 (-607 $)) (-638 $)) 66) (($ $ (-638 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-638 $) (-638 $)) 62) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 33) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 32) (($ $ (-1166) (-1 $ (-638 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-638 (-114)) (-638 (-1 $ $))) 29) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 28) (($ $ (-114) (-1 $ (-638 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2315 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-638 $)) 57)) (-4348 (($ $) 49) (($ $ $) 48)) (-3158 (($ $) 24 (|has| $ (-1042)))) (-4064 (((-856) $) 11) (($ (-607 $)) 68)) (-3402 (($ $) 53) (($ (-638 $)) 52)) (-3333 (((-112) (-114)) 41)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
-(((-301) (-139)) (T -301))
-((-2315 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2315 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2315 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2315 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2315 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *1))) (-4 *1 (-301)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-607 *1))) (-5 *3 (-638 *1)) (-4 *1 (-301)))) (-3402 (*1 *1 *1) (-4 *1 (-301))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301)))) (-1719 (*1 *1 *1) (-4 *1 (-301))) (-1719 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301)))) (-4348 (*1 *1 *1) (-4 *1 (-301))) (-4348 (*1 *1 *1 *1) (-4 *1 (-301))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-765)))) (-2373 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-301)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-638 (-114))))) (-1773 (*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-3333 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-4188 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-4188 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-4154 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-4154 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301)))) (-4165 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-607 *1)) (-4 *1 (-301)))) (-1342 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))) (-1342 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-301)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-301)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1042)) (-4 *1 (-301)) (-5 *2 (-1162 *1)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-301)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112)))))
-(-13 (-844) (-1031 (-607 $)) (-512 (-607 $) $) (-308 $) (-10 -8 (-15 -2315 ($ (-114) $)) (-15 -2315 ($ (-114) $ $)) (-15 -2315 ($ (-114) $ $ $)) (-15 -2315 ($ (-114) $ $ $ $)) (-15 -2315 ($ (-114) (-638 $))) (-15 -1339 ($ $ (-293 $))) (-15 -1339 ($ $ (-638 (-293 $)))) (-15 -1339 ($ $ (-638 (-607 $)) (-638 $))) (-15 -3402 ($ $)) (-15 -3402 ($ (-638 $))) (-15 -1719 ($ $)) (-15 -1719 ($ (-638 $))) (-15 -4348 ($ $)) (-15 -4348 ($ $ $)) (-15 -3093 ((-765) $)) (-15 -2373 ((-3 (-607 $) "failed") $)) (-15 -1583 ((-638 (-607 $)) $)) (-15 -1495 ((-638 (-607 $)) $)) (-15 -2123 ((-638 (-114)) $)) (-15 -1773 ((-114) (-114))) (-15 -3333 ((-112) (-114))) (-15 -4188 ((-112) $ (-114))) (-15 -4188 ((-112) $ (-1166))) (-15 -4154 ($ (-114) $)) (-15 -4154 ($ (-114) (-638 $))) (-15 -4165 ($ (-1 $ $) (-607 $))) (-15 -1342 ((-112) $ $)) (-15 -1342 ((-112) $ (-1166))) (-15 -1436 ($ $ (-638 (-1166)) (-638 (-1 $ $)))) (-15 -1436 ($ $ (-638 (-1166)) (-638 (-1 $ (-638 $))))) (-15 -1436 ($ $ (-1166) (-1 $ (-638 $)))) (-15 -1436 ($ $ (-1166) (-1 $ $))) (-15 -1436 ($ $ (-638 (-114)) (-638 (-1 $ $)))) (-15 -1436 ($ $ (-638 (-114)) (-638 (-1 $ (-638 $))))) (-15 -1436 ($ $ (-114) (-1 $ (-638 $)))) (-15 -1436 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1042)) (PROGN (-15 -1578 ((-1162 $) (-607 $))) (-15 -3158 ($ $))) |%noBranch|) (IF (|has| $ (-1031 (-561))) (PROGN (-15 -2058 ((-112) $)) (-15 -2110 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-611 #0=(-607 $)) . T) ((-608 (-856)) . T) ((-308 $) . T) ((-512 (-607 $) $) . T) ((-512 $ $) . T) ((-844) . T) ((-1031 #0#) . T) ((-1090) . T))
-((-1604 (((-638 |#1|) (-638 |#1|)) 10)))
-(((-302 |#1|) (-10 -7 (-15 -1604 ((-638 |#1|) (-638 |#1|)))) (-842)) (T -302))
-((-1604 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-842)) (-5 *1 (-302 *3)))))
-(-10 -7 (-15 -1604 ((-638 |#1|) (-638 |#1|))))
-((-4165 (((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)) 17)))
-(((-303 |#1| |#2|) (-10 -7 (-15 -4165 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)))) (-1042) (-1042)) (T -303))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-682 *6)) (-5 *1 (-303 *5 *6)))))
-(-10 -7 (-15 -4165 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|))))
-((-2789 (((-1254 (-315 (-378))) (-1254 (-315 (-224)))) 105)) (-1950 (((-1084 (-837 (-224))) (-1084 (-837 (-378)))) 40)) (-3103 (((-638 (-1148)) (-1146 (-224))) 87)) (-3901 (((-315 (-378)) (-945 (-224))) 50)) (-4032 (((-224) (-945 (-224))) 46)) (-3421 (((-1148) (-378)) 169)) (-2594 (((-837 (-224)) (-837 (-378))) 34)) (-3089 (((-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))) (-1254 (-315 (-224)))) 143)) (-3671 (((-1028) (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) 181) (((-1028) (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) 179)) (-2942 (((-682 (-224)) (-638 (-224)) (-765)) 14)) (-3619 (((-1254 (-692)) (-638 (-224))) 94)) (-2708 (((-638 (-1148)) (-638 (-224))) 75)) (-3032 (((-3 (-315 (-224)) "failed") (-315 (-224))) 120)) (-3069 (((-112) (-224) (-1084 (-837 (-224)))) 109)) (-4319 (((-1028) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) 198)) (-3872 (((-224) (-1084 (-837 (-224)))) 107)) (-2495 (((-224) (-1084 (-837 (-224)))) 108)) (-1717 (((-224) (-406 (-561))) 27)) (-3334 (((-1148) (-378)) 73)) (-2069 (((-224) (-378)) 17)) (-1540 (((-378) (-1254 (-315 (-224)))) 154)) (-4349 (((-315 (-224)) (-315 (-378))) 23)) (-2950 (((-406 (-561)) (-315 (-224))) 53)) (-2831 (((-315 (-406 (-561))) (-315 (-224))) 69)) (-2514 (((-315 (-378)) (-315 (-224))) 98)) (-4359 (((-224) (-315 (-224))) 54)) (-3647 (((-638 (-224)) (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) 64)) (-4082 (((-1084 (-837 (-224))) (-1084 (-837 (-224)))) 61)) (-3496 (((-1148) (-224)) 72)) (-1700 (((-692) (-224)) 90)) (-3346 (((-406 (-561)) (-224)) 55)) (-3145 (((-315 (-378)) (-224)) 49)) (-4216 (((-638 (-1084 (-837 (-224)))) (-638 (-1084 (-837 (-378))))) 43)) (-2754 (((-1028) (-638 (-1028))) 165) (((-1028) (-1028) (-1028)) 162)) (-2346 (((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-304) (-10 -7 (-15 -2069 ((-224) (-378))) (-15 -4349 ((-315 (-224)) (-315 (-378)))) (-15 -2594 ((-837 (-224)) (-837 (-378)))) (-15 -1950 ((-1084 (-837 (-224))) (-1084 (-837 (-378))))) (-15 -4216 ((-638 (-1084 (-837 (-224)))) (-638 (-1084 (-837 (-378)))))) (-15 -3346 ((-406 (-561)) (-224))) (-15 -2950 ((-406 (-561)) (-315 (-224)))) (-15 -4359 ((-224) (-315 (-224)))) (-15 -3032 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1540 ((-378) (-1254 (-315 (-224))))) (-15 -3089 ((-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))) (-1254 (-315 (-224))))) (-15 -2831 ((-315 (-406 (-561))) (-315 (-224)))) (-15 -4082 ((-1084 (-837 (-224))) (-1084 (-837 (-224))))) (-15 -3647 ((-638 (-224)) (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))) (-15 -1700 ((-692) (-224))) (-15 -3619 ((-1254 (-692)) (-638 (-224)))) (-15 -2514 ((-315 (-378)) (-315 (-224)))) (-15 -2789 ((-1254 (-315 (-378))) (-1254 (-315 (-224))))) (-15 -3069 ((-112) (-224) (-1084 (-837 (-224))))) (-15 -3496 ((-1148) (-224))) (-15 -3334 ((-1148) (-378))) (-15 -2708 ((-638 (-1148)) (-638 (-224)))) (-15 -3103 ((-638 (-1148)) (-1146 (-224)))) (-15 -3872 ((-224) (-1084 (-837 (-224))))) (-15 -2495 ((-224) (-1084 (-837 (-224))))) (-15 -2754 ((-1028) (-1028) (-1028))) (-15 -2754 ((-1028) (-638 (-1028)))) (-15 -3421 ((-1148) (-378))) (-15 -3671 ((-1028) (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))))) (-15 -3671 ((-1028) (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))) (-15 -2346 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4319 ((-1028) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3901 ((-315 (-378)) (-945 (-224)))) (-15 -4032 ((-224) (-945 (-224)))) (-15 -3145 ((-315 (-378)) (-224))) (-15 -1717 ((-224) (-406 (-561)))) (-15 -2942 ((-682 (-224)) (-638 (-224)) (-765))))) (T -304))
-((-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-304)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-406 (-561))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-945 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-945 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-638 (-1028))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-2754 (*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-304)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-304)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-837 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-304)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *2 (-1254 (-315 (-378)))) (-5 *1 (-304)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1254 (-692))) (-5 *1 (-304)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-304)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-5 *2 (-638 (-224))) (-5 *1 (-304)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-1084 (-837 (-224)))) (-5 *1 (-304)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-561)))) (-5 *1 (-304)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *2 (-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561)))) (-5 *1 (-304)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))) (-3032 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-561))) (-5 *1 (-304)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-561))) (-5 *1 (-304)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-638 (-1084 (-837 (-378))))) (-5 *2 (-638 (-1084 (-837 (-224))))) (-5 *1 (-304)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-378)))) (-5 *2 (-1084 (-837 (-224)))) (-5 *1 (-304)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-837 (-378))) (-5 *2 (-837 (-224))) (-5 *1 (-304)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
-(-10 -7 (-15 -2069 ((-224) (-378))) (-15 -4349 ((-315 (-224)) (-315 (-378)))) (-15 -2594 ((-837 (-224)) (-837 (-378)))) (-15 -1950 ((-1084 (-837 (-224))) (-1084 (-837 (-378))))) (-15 -4216 ((-638 (-1084 (-837 (-224)))) (-638 (-1084 (-837 (-378)))))) (-15 -3346 ((-406 (-561)) (-224))) (-15 -2950 ((-406 (-561)) (-315 (-224)))) (-15 -4359 ((-224) (-315 (-224)))) (-15 -3032 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1540 ((-378) (-1254 (-315 (-224))))) (-15 -3089 ((-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))) (-1254 (-315 (-224))))) (-15 -2831 ((-315 (-406 (-561))) (-315 (-224)))) (-15 -4082 ((-1084 (-837 (-224))) (-1084 (-837 (-224))))) (-15 -3647 ((-638 (-224)) (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))) (-15 -1700 ((-692) (-224))) (-15 -3619 ((-1254 (-692)) (-638 (-224)))) (-15 -2514 ((-315 (-378)) (-315 (-224)))) (-15 -2789 ((-1254 (-315 (-378))) (-1254 (-315 (-224))))) (-15 -3069 ((-112) (-224) (-1084 (-837 (-224))))) (-15 -3496 ((-1148) (-224))) (-15 -3334 ((-1148) (-378))) (-15 -2708 ((-638 (-1148)) (-638 (-224)))) (-15 -3103 ((-638 (-1148)) (-1146 (-224)))) (-15 -3872 ((-224) (-1084 (-837 (-224))))) (-15 -2495 ((-224) (-1084 (-837 (-224))))) (-15 -2754 ((-1028) (-1028) (-1028))) (-15 -2754 ((-1028) (-638 (-1028)))) (-15 -3421 ((-1148) (-378))) (-15 -3671 ((-1028) (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))))) (-15 -3671 ((-1028) (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))) (-15 -2346 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4319 ((-1028) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3901 ((-315 (-378)) (-945 (-224)))) (-15 -4032 ((-224) (-945 (-224)))) (-15 -3145 ((-315 (-378)) (-224))) (-15 -1717 ((-224) (-406 (-561)))) (-15 -2942 ((-682 (-224)) (-638 (-224)) (-765))))
-((-3698 (((-112) $ $) 11)) (-1792 (($ $ $) 15)) (-1771 (($ $ $) 14)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 43)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 52)) (-1603 (($ $ $) 20) (($ (-638 $)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-1748 (((-3 $ "failed") $ $) 17)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 45)))
-(((-305 |#1|) (-10 -8 (-15 -2286 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -2682 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2682 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3194 |#1|)) |#1| |#1|)) (-15 -1792 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -3698 ((-112) |#1| |#1|)) (-15 -3474 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -3924 ((-2 (|:| -4226 (-638 |#1|)) (|:| -3194 |#1|)) (-638 |#1|))) (-15 -1603 (|#1| (-638 |#1|))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305))
-NIL
-(-10 -8 (-15 -2286 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -2682 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2682 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3194 |#1|)) |#1| |#1|)) (-15 -1792 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -3698 ((-112) |#1| |#1|)) (-15 -3474 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -3924 ((-2 (|:| -4226 (-638 |#1|)) (|:| -3194 |#1|)) (-638 |#1|))) (-15 -1603 (|#1| (-638 |#1|))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-3698 (((-112) $ $) 60)) (-2674 (($) 17 T CONST)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2252 (((-112) $) 31)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(-13 (-1042) (-111 $ $) (-10 -7 (-6 -4393)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-1670 (($ (-1166) (-1166) (-1093) $) 17)) (-1668 (($ (-1166) (-635 (-958)) $) 22)) (-1672 (((-635 (-1075)) $) 10)) (-1671 (((-3 (-1093) "failed") (-1166) (-1166) $) 16)) (-1669 (((-3 (-635 (-958)) "failed") (-1166) $) 21)) (-3972 (($) 7)) (-1667 (($) 23)) (-4353 (((-857) $) 27)) (-1666 (($) 24)))
+(((-290) (-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -1672 ((-635 (-1075)) $)) (-15 -1671 ((-3 (-1093) "failed") (-1166) (-1166) $)) (-15 -1670 ($ (-1166) (-1166) (-1093) $)) (-15 -1669 ((-3 (-635 (-958)) "failed") (-1166) $)) (-15 -1668 ($ (-1166) (-635 (-958)) $)) (-15 -1667 ($)) (-15 -1666 ($))))) (T -290))
+((-3972 (*1 *1) (-5 *1 (-290))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-635 (-1075))) (-5 *1 (-290)))) (-1671 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-290)))) (-1670 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-290)))) (-1669 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-635 (-958))) (-5 *1 (-290)))) (-1668 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-290)))) (-1667 (*1 *1) (-5 *1 (-290))) (-1666 (*1 *1) (-5 *1 (-290))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -1672 ((-635 (-1075)) $)) (-15 -1671 ((-3 (-1093) "failed") (-1166) (-1166) $)) (-15 -1670 ($ (-1166) (-1166) (-1093) $)) (-15 -1669 ((-3 (-635 (-958)) "failed") (-1166) $)) (-15 -1668 ($ (-1166) (-635 (-958)) $)) (-15 -1667 ($)) (-15 -1666 ($))))
+((-1676 (((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|)))) 85)) (-1675 (((-635 (-682 (-406 (-939 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|)))))) (-682 (-406 (-939 |#1|)))) 80) (((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))) (-765) (-765)) 38)) (-1677 (((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|)))) 82)) (-1674 (((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|)))) 62)) (-1673 (((-635 (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (-682 (-406 (-939 |#1|)))) 61)) (-2743 (((-939 |#1|) (-682 (-406 (-939 |#1|)))) 50) (((-939 |#1|) (-682 (-406 (-939 |#1|))) (-1166)) 51)))
+(((-291 |#1|) (-10 -7 (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))) (-1166))) (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))))) (-15 -1673 ((-635 (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (-682 (-406 (-939 |#1|))))) (-15 -1674 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))) (-765) (-765))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|)))))) (-682 (-406 (-939 |#1|))))) (-15 -1676 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|))))) (-15 -1677 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|)))))) (-450)) (T -291))
+((-1677 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4)))))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4)))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 *4)))) (-4 *5 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-939 *5)))))) (-1675 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-939 *6)) (-1155 (-1166) (-939 *6)))) (-5 *5 (-765)) (-4 *6 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-682 (-406 (-939 *6)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5)))) (-4 *5 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-939 *5)))))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-4 *4 (-450)) (-5 *2 (-635 (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4))))) (-5 *1 (-291 *4)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-5 *2 (-939 *4)) (-5 *1 (-291 *4)) (-4 *4 (-450)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-939 *5)))) (-5 *4 (-1166)) (-5 *2 (-939 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450)))))
+(-10 -7 (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))) (-1166))) (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))))) (-15 -1673 ((-635 (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (-682 (-406 (-939 |#1|))))) (-15 -1674 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))) (-765) (-765))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|)))))) (-682 (-406 (-939 |#1|))))) (-15 -1676 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|))))) (-15 -1677 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|))))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3589 (((-112) $) NIL (|has| |#1| (-21)))) (-1683 (($ $) 12)) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1692 (($ $ $) 94 (|has| |#1| (-297)))) (-4131 (($) NIL (-3936 (|has| |#1| (-21)) (|has| |#1| (-720))) CONST)) (-1681 (($ $) 50 (|has| |#1| (-21)))) (-1679 (((-3 $ "failed") $) 61 (|has| |#1| (-720)))) (-3927 ((|#1| $) 11)) (-3866 (((-3 $ "failed") $) 59 (|has| |#1| (-720)))) (-2545 (((-112) $) NIL (|has| |#1| (-720)))) (-4365 (($ (-1 |#1| |#1|) $) 14)) (-3928 ((|#1| $) 10)) (-1682 (($ $) 49 (|has| |#1| (-21)))) (-1680 (((-3 $ "failed") $) 60 (|has| |#1| (-720)))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2779 (($ $) 63 (-3936 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1678 (((-635 $) $) 84 (|has| |#1| (-554)))) (-4174 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 21 (|has| |#1| (-512 (-1166) |#1|)))) (-3627 (($ |#1| |#1|) 9)) (-4318 (((-133)) 89 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 86 (|has| |#1| (-893 (-1166))))) (-3392 (($ $ $) NIL (|has| |#1| (-471)))) (-2729 (($ $ $) NIL (|has| |#1| (-471)))) (-4353 (($ (-544)) NIL (|has| |#1| (-1042))) (((-112) $) 36 (|has| |#1| (-1091))) (((-857) $) 35 (|has| |#1| (-1091)))) (-3511 (((-765)) 66 (|has| |#1| (-1042)))) (-3040 (($) 46 (|has| |#1| (-21)) CONST)) (-3046 (($) 56 (|has| |#1| (-720)) CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166))))) (-3437 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-3936 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-4244 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4246 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-544)) NIL (|has| |#1| (-471))) (($ $ (-765)) NIL (|has| |#1| (-720))) (($ $ (-912)) NIL (|has| |#1| (-1102)))) (* (($ $ |#1|) 54 (|has| |#1| (-1102))) (($ |#1| $) 53 (|has| |#1| (-1102))) (($ $ $) 52 (|has| |#1| (-1102))) (($ (-544) $) 69 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-912) $) NIL (|has| |#1| (-25)))))
+(((-292 |#1|) (-13 (-1204) (-10 -8 (-15 -3437 ($ |#1| |#1|)) (-15 -3627 ($ |#1| |#1|)) (-15 -1683 ($ $)) (-15 -3928 (|#1| $)) (-15 -3927 (|#1| $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1091)) (PROGN (-6 (-1091)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -4174 ($ $ $)) (-15 -4174 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4246 ($ |#1| $)) (-15 -4246 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1682 ($ $)) (-15 -1681 ($ $)) (-15 -4244 ($ |#1| $)) (-15 -4244 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -1678 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1261 |#1|)) (-15 -4356 ($ $ $)) (-15 -2779 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -1692 ($ $ $)) |%noBranch|))) (-1204)) (T -292))
+((-3437 (*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-3627 (*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-1683 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-3928 (*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-3927 (*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-292 *3)))) (-4174 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)) (-5 *1 (-292 *2)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)) (-5 *1 (-292 *3)))) (-4246 (*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204)))) (-1682 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-1681 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-4244 (*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-1680 (*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204)))) (-1679 (*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-635 (-292 *3))) (-5 *1 (-292 *3)) (-4 *3 (-554)) (-4 *3 (-1204)))) (-1692 (*1 *1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-297)) (-4 *2 (-1204)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204)))) (-4356 (*1 *1 *1 *1) (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204))) (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204))))) (-2779 (*1 *1 *1) (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204))) (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204))))))
+(-13 (-1204) (-10 -8 (-15 -3437 ($ |#1| |#1|)) (-15 -3627 ($ |#1| |#1|)) (-15 -1683 ($ $)) (-15 -3928 (|#1| $)) (-15 -3927 (|#1| $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1091)) (PROGN (-6 (-1091)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -4174 ($ $ $)) (-15 -4174 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4246 ($ |#1| $)) (-15 -4246 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1682 ($ $)) (-15 -1681 ($ $)) (-15 -4244 ($ |#1| $)) (-15 -4244 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -1678 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1261 |#1|)) (-15 -4356 ($ $ $)) (-15 -2779 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -1692 ($ $ $)) |%noBranch|)))
+((-4365 (((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)) 14)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -4365 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) (-1204) (-1204)) (T -293))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-292 *6)) (-5 *1 (-293 *5 *6)))))
+(-10 -7 (-15 -4365 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|))))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-294 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091)) (T -294))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400)))
+((-1684 (((-310) (-1148) (-635 (-1148))) 16) (((-310) (-1148) (-1148)) 15) (((-310) (-635 (-1148))) 14) (((-310) (-1148)) 12)))
+(((-295) (-10 -7 (-15 -1684 ((-310) (-1148))) (-15 -1684 ((-310) (-635 (-1148)))) (-15 -1684 ((-310) (-1148) (-1148))) (-15 -1684 ((-310) (-1148) (-635 (-1148)))))) (T -295))
+((-1684 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1148))) (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))) (-1684 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-310)) (-5 *1 (-295)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))))
+(-10 -7 (-15 -1684 ((-310) (-1148))) (-15 -1684 ((-310) (-635 (-1148)))) (-15 -1684 ((-310) (-1148) (-1148))) (-15 -1684 ((-310) (-1148) (-635 (-1148)))))
+((-1688 (((-635 (-606 $)) $) 30)) (-1692 (($ $ (-292 $)) 80) (($ $ (-635 (-292 $))) 122) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-3558 (((-3 (-606 $) "failed") $) 112)) (-3557 (((-606 $) $) 111)) (-2952 (($ $) 19) (($ (-635 $)) 55)) (-1687 (((-635 (-113)) $) 38)) (-3430 (((-113) (-113)) 90)) (-3055 (((-112) $) 130)) (-4365 (($ (-1 $ $) (-606 $)) 88)) (-1690 (((-3 (-606 $) "failed") $) 92)) (-2356 (($ (-113) $) 60) (($ (-113) (-635 $)) 99)) (-3013 (((-112) $ (-113)) 116) (((-112) $ (-1166)) 115)) (-2982 (((-765) $) 46)) (-1686 (((-112) $ $) 58) (((-112) $ (-1166)) 50)) (-3056 (((-112) $) 128)) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) 120) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 83) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) 68) (($ $ (-1166) (-1 $ $)) 74) (($ $ (-635 (-113)) (-635 (-1 $ $))) 82) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 84) (($ $ (-113) (-1 $ (-635 $))) 70) (($ $ (-113) (-1 $ $)) 76)) (-4206 (($ (-113) $) 61) (($ (-113) $ $) 62) (($ (-113) $ $ $) 63) (($ (-113) $ $ $ $) 64) (($ (-113) (-635 $)) 108)) (-1691 (($ $) 52) (($ $ $) 118)) (-2969 (($ $) 17) (($ (-635 $)) 54)) (-2377 (((-112) (-113)) 22)))
+(((-296 |#1|) (-10 -8 (-15 -3055 ((-112) |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -1686 ((-112) |#1| (-1166))) (-15 -1686 ((-112) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#1| |#1|) (-606 |#1|))) (-15 -2356 (|#1| (-113) (-635 |#1|))) (-15 -2356 (|#1| (-113) |#1|)) (-15 -3013 ((-112) |#1| (-1166))) (-15 -3013 ((-112) |#1| (-113))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1687 ((-635 (-113)) |#1|)) (-15 -1688 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2982 ((-765) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -2952 (|#1| (-635 |#1|))) (-15 -2952 (|#1| |#1|)) (-15 -2969 (|#1| (-635 |#1|))) (-15 -2969 (|#1| |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -3558 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3557 ((-606 |#1|) |#1|))) (-297)) (T -296))
+((-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297)))))
+(-10 -8 (-15 -3055 ((-112) |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -1686 ((-112) |#1| (-1166))) (-15 -1686 ((-112) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#1| |#1|) (-606 |#1|))) (-15 -2356 (|#1| (-113) (-635 |#1|))) (-15 -2356 (|#1| (-113) |#1|)) (-15 -3013 ((-112) |#1| (-1166))) (-15 -3013 ((-112) |#1| (-113))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1687 ((-635 (-113)) |#1|)) (-15 -1688 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2982 ((-765) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -2952 (|#1| (-635 |#1|))) (-15 -2952 (|#1| |#1|)) (-15 -2969 (|#1| (-635 |#1|))) (-15 -2969 (|#1| |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -3558 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3557 ((-606 |#1|) |#1|)))
+((-2947 (((-112) $ $) 7)) (-1688 (((-635 (-606 $)) $) 44)) (-1692 (($ $ (-292 $)) 56) (($ $ (-635 (-292 $))) 55) (($ $ (-635 (-606 $)) (-635 $)) 54)) (-3558 (((-3 (-606 $) "failed") $) 69)) (-3557 (((-606 $) $) 70)) (-2952 (($ $) 51) (($ (-635 $)) 50)) (-1687 (((-635 (-113)) $) 43)) (-3430 (((-113) (-113)) 42)) (-3055 (((-112) $) 22 (|has| $ (-1031 (-544))))) (-1685 (((-1160 $) (-606 $)) 25 (|has| $ (-1042)))) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-4365 (($ (-1 $ $) (-606 $)) 36)) (-1690 (((-3 (-606 $) "failed") $) 46)) (-3643 (((-1148) $) 9)) (-1689 (((-635 (-606 $)) $) 45)) (-2356 (($ (-113) $) 38) (($ (-113) (-635 $)) 37)) (-3013 (((-112) $ (-113)) 40) (((-112) $ (-1166)) 39)) (-2982 (((-765) $) 47)) (-3644 (((-1110) $) 10)) (-1686 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-3056 (((-112) $) 23 (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) 67) (($ $ (-635 (-606 $)) (-635 $)) 66) (($ $ (-635 (-292 $))) 65) (($ $ (-292 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1166) (-1 $ (-635 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-635 (-113)) (-635 (-1 $ $))) 29) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-113) (-1 $ (-635 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4206 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-635 $)) 57)) (-1691 (($ $) 49) (($ $ $) 48)) (-3586 (($ $) 24 (|has| $ (-1042)))) (-4353 (((-857) $) 11) (($ (-606 $)) 68)) (-2969 (($ $) 53) (($ (-635 $)) 52)) (-2377 (((-112) (-113)) 41)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)))
+(((-297) (-139)) (T -297))
+((-4206 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-292 *1)) (-4 *1 (-297)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *1))) (-4 *1 (-297)))) (-1692 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-606 *1))) (-5 *3 (-635 *1)) (-4 *1 (-297)))) (-2969 (*1 *1 *1) (-4 *1 (-297))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297)))) (-2952 (*1 *1 *1) (-4 *1 (-297))) (-2952 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297)))) (-1691 (*1 *1 *1) (-4 *1 (-297))) (-1691 (*1 *1 *1 *1) (-4 *1 (-297))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-765)))) (-1690 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-297)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-635 (-113))))) (-3430 (*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-2377 (*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3013 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3013 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-2356 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-2356 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297)))) (-4365 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-606 *1)) (-4 *1 (-297)))) (-1686 (*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))) (-1686 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1042)) (-4 *1 (-297)) (-5 *2 (-1160 *1)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-297)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112)))))
+(-13 (-844) (-1031 (-606 $)) (-512 (-606 $) $) (-308 $) (-10 -8 (-15 -4206 ($ (-113) $)) (-15 -4206 ($ (-113) $ $)) (-15 -4206 ($ (-113) $ $ $)) (-15 -4206 ($ (-113) $ $ $ $)) (-15 -4206 ($ (-113) (-635 $))) (-15 -1692 ($ $ (-292 $))) (-15 -1692 ($ $ (-635 (-292 $)))) (-15 -1692 ($ $ (-635 (-606 $)) (-635 $))) (-15 -2969 ($ $)) (-15 -2969 ($ (-635 $))) (-15 -2952 ($ $)) (-15 -2952 ($ (-635 $))) (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 -2982 ((-765) $)) (-15 -1690 ((-3 (-606 $) "failed") $)) (-15 -1689 ((-635 (-606 $)) $)) (-15 -1688 ((-635 (-606 $)) $)) (-15 -1687 ((-635 (-113)) $)) (-15 -3430 ((-113) (-113))) (-15 -2377 ((-112) (-113))) (-15 -3013 ((-112) $ (-113))) (-15 -3013 ((-112) $ (-1166))) (-15 -2356 ($ (-113) $)) (-15 -2356 ($ (-113) (-635 $))) (-15 -4365 ($ (-1 $ $) (-606 $))) (-15 -1686 ((-112) $ $)) (-15 -1686 ((-112) $ (-1166))) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-1 $ $)))) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-1 $ (-635 $))))) (-15 -4174 ($ $ (-1166) (-1 $ (-635 $)))) (-15 -4174 ($ $ (-1166) (-1 $ $))) (-15 -4174 ($ $ (-635 (-113)) (-635 (-1 $ $)))) (-15 -4174 ($ $ (-635 (-113)) (-635 (-1 $ (-635 $))))) (-15 -4174 ($ $ (-113) (-1 $ (-635 $)))) (-15 -4174 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1042)) (PROGN (-15 -1685 ((-1160 $) (-606 $))) (-15 -3586 ($ $))) |%noBranch|) (IF (|has| $ (-1031 (-544))) (PROGN (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-611 #1=(-606 $)) . T) ((-608 (-857)) . T) ((-308 $) . T) ((-512 (-606 $) $) . T) ((-512 $ $) . T) ((-844) . T) ((-1031 #1#) . T) ((-1091) . T))
+((-4365 ((|#2| (-1 |#2| |#1|) (-1148) (-606 |#1|)) 18)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-1148) (-606 |#1|)))) (-297) (-1204)) (T -298))
+((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-606 *6)) (-4 *6 (-297)) (-4 *2 (-1204)) (-5 *1 (-298 *6 *2)))))
+(-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-1148) (-606 |#1|))))
+((-4365 ((|#2| (-1 |#2| |#1|) (-606 |#1|)) 17)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-606 |#1|)))) (-297) (-297)) (T -299))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-606 *5)) (-4 *5 (-297)) (-4 *2 (-297)) (-5 *1 (-299 *5 *2)))))
+(-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-606 |#1|))))
+((-1695 (((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224)))) 92)) (-1696 (((-1143 (-224)) (-1253 (-313 (-224))) (-635 (-1166)) (-1079 (-836 (-224)))) 106) (((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224)))) 61)) (-1717 (((-635 (-1148)) (-1143 (-224))) NIL)) (-1694 (((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224)))) 58)) (-1697 (((-635 (-224)) (-939 (-406 (-544))) (-1166) (-1079 (-836 (-224)))) 49)) (-1716 (((-635 (-1148)) (-635 (-224))) NIL)) (-1718 (((-224) (-1079 (-836 (-224)))) 25)) (-1719 (((-224) (-1079 (-836 (-224)))) 26)) (-1693 (((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-1714 (((-1148) (-224)) NIL)))
+(((-300) (-10 -7 (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1693 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1695 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-1253 (-313 (-224))) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1697 ((-635 (-224)) (-939 (-406 (-544))) (-1166) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))))) (T -300))
+((-1717 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-300)))) (-1697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-300)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166))) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166))) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))) (-1695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166))) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-300)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300)))))
+(-10 -7 (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1693 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1695 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-1253 (-313 (-224))) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1697 ((-635 (-224)) (-939 (-406 (-544))) (-1166) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))))
+((-2127 (((-112) (-224)) 10)))
+(((-301 |#1| |#2|) (-10 -7 (-15 -2127 ((-112) (-224)))) (-224) (-224)) (T -301))
+((-2127 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-301 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2127 ((-112) (-224))))
+((-1713 (((-1253 (-313 (-377))) (-1253 (-313 (-224)))) 105)) (-1701 (((-1079 (-836 (-224))) (-1079 (-836 (-377)))) 40)) (-1717 (((-635 (-1148)) (-1143 (-224))) 87)) (-1724 (((-313 (-377)) (-939 (-224))) 50)) (-1725 (((-224) (-939 (-224))) 46)) (-1720 (((-1148) (-377)) 169)) (-1700 (((-836 (-224)) (-836 (-377))) 34)) (-1706 (((-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544))) (-1253 (-313 (-224)))) 143)) (-1721 (((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) 181) (((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) 179)) (-1728 (((-682 (-224)) (-635 (-224)) (-765)) 14)) (-1711 (((-1253 (-692)) (-635 (-224))) 94)) (-1716 (((-635 (-1148)) (-635 (-224))) 75)) (-3038 (((-3 (-313 (-224)) "failed") (-313 (-224))) 120)) (-2127 (((-112) (-224) (-1079 (-836 (-224)))) 109)) (-1723 (((-1028) (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))) 198)) (-1718 (((-224) (-1079 (-836 (-224)))) 107)) (-1719 (((-224) (-1079 (-836 (-224)))) 108)) (-1727 (((-224) (-406 (-544))) 27)) (-1715 (((-1148) (-377)) 73)) (-1698 (((-224) (-377)) 17)) (-1705 (((-377) (-1253 (-313 (-224)))) 154)) (-1699 (((-313 (-224)) (-313 (-377))) 23)) (-1703 (((-406 (-544)) (-313 (-224))) 53)) (-1707 (((-313 (-406 (-544))) (-313 (-224))) 69)) (-1712 (((-313 (-377)) (-313 (-224))) 98)) (-1704 (((-224) (-313 (-224))) 54)) (-1709 (((-635 (-224)) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) 64)) (-1708 (((-1079 (-836 (-224))) (-1079 (-836 (-224)))) 61)) (-1714 (((-1148) (-224)) 72)) (-1710 (((-692) (-224)) 90)) (-1702 (((-406 (-544)) (-224)) 55)) (-1726 (((-313 (-377)) (-224)) 49)) (-4377 (((-635 (-1079 (-836 (-224)))) (-635 (-1079 (-836 (-377))))) 43)) (-4208 (((-1028) (-635 (-1028))) 165) (((-1028) (-1028) (-1028)) 162)) (-1722 (((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-302) (-10 -7 (-15 -1698 ((-224) (-377))) (-15 -1699 ((-313 (-224)) (-313 (-377)))) (-15 -1700 ((-836 (-224)) (-836 (-377)))) (-15 -1701 ((-1079 (-836 (-224))) (-1079 (-836 (-377))))) (-15 -4377 ((-635 (-1079 (-836 (-224)))) (-635 (-1079 (-836 (-377)))))) (-15 -1702 ((-406 (-544)) (-224))) (-15 -1703 ((-406 (-544)) (-313 (-224)))) (-15 -1704 ((-224) (-313 (-224)))) (-15 -3038 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1705 ((-377) (-1253 (-313 (-224))))) (-15 -1706 ((-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544))) (-1253 (-313 (-224))))) (-15 -1707 ((-313 (-406 (-544))) (-313 (-224)))) (-15 -1708 ((-1079 (-836 (-224))) (-1079 (-836 (-224))))) (-15 -1709 ((-635 (-224)) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-15 -1710 ((-692) (-224))) (-15 -1711 ((-1253 (-692)) (-635 (-224)))) (-15 -1712 ((-313 (-377)) (-313 (-224)))) (-15 -1713 ((-1253 (-313 (-377))) (-1253 (-313 (-224))))) (-15 -2127 ((-112) (-224) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1715 ((-1148) (-377))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -4208 ((-1028) (-1028) (-1028))) (-15 -4208 ((-1028) (-635 (-1028)))) (-15 -1720 ((-1148) (-377))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))))) (-15 -1722 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1723 ((-1028) (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))) (-15 -1724 ((-313 (-377)) (-939 (-224)))) (-15 -1725 ((-224) (-939 (-224)))) (-15 -1726 ((-313 (-377)) (-224))) (-15 -1727 ((-224) (-406 (-544)))) (-15 -1728 ((-682 (-224)) (-635 (-224)) (-765))))) (T -302))
+((-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-302)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-406 (-544))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-313 (-377))) (-5 *1 (-302)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-635 (-1028))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-4208 (*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-302)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-302)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-836 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-302)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-1253 (-313 (-377)))) (-5 *1 (-302)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1253 (-692))) (-5 *1 (-302)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-302)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *2 (-635 (-224))) (-5 *1 (-302)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-1079 (-836 (-224)))) (-5 *1 (-302)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-406 (-544)))) (-5 *1 (-302)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544)))) (-5 *1 (-302)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-302)))) (-3038 (*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-302)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-406 (-544))) (-5 *1 (-302)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-544))) (-5 *1 (-302)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-635 (-1079 (-836 (-377))))) (-5 *2 (-635 (-1079 (-836 (-224))))) (-5 *1 (-302)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-377)))) (-5 *2 (-1079 (-836 (-224)))) (-5 *1 (-302)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-836 (-377))) (-5 *2 (-836 (-224))) (-5 *1 (-302)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-313 (-377))) (-5 *2 (-313 (-224))) (-5 *1 (-302)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-302)))))
+(-10 -7 (-15 -1698 ((-224) (-377))) (-15 -1699 ((-313 (-224)) (-313 (-377)))) (-15 -1700 ((-836 (-224)) (-836 (-377)))) (-15 -1701 ((-1079 (-836 (-224))) (-1079 (-836 (-377))))) (-15 -4377 ((-635 (-1079 (-836 (-224)))) (-635 (-1079 (-836 (-377)))))) (-15 -1702 ((-406 (-544)) (-224))) (-15 -1703 ((-406 (-544)) (-313 (-224)))) (-15 -1704 ((-224) (-313 (-224)))) (-15 -3038 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1705 ((-377) (-1253 (-313 (-224))))) (-15 -1706 ((-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544))) (-1253 (-313 (-224))))) (-15 -1707 ((-313 (-406 (-544))) (-313 (-224)))) (-15 -1708 ((-1079 (-836 (-224))) (-1079 (-836 (-224))))) (-15 -1709 ((-635 (-224)) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-15 -1710 ((-692) (-224))) (-15 -1711 ((-1253 (-692)) (-635 (-224)))) (-15 -1712 ((-313 (-377)) (-313 (-224)))) (-15 -1713 ((-1253 (-313 (-377))) (-1253 (-313 (-224))))) (-15 -2127 ((-112) (-224) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1715 ((-1148) (-377))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -4208 ((-1028) (-1028) (-1028))) (-15 -4208 ((-1028) (-635 (-1028)))) (-15 -1720 ((-1148) (-377))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))))) (-15 -1722 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1723 ((-1028) (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))) (-15 -1724 ((-313 (-377)) (-939 (-224)))) (-15 -1725 ((-224) (-939 (-224)))) (-15 -1726 ((-313 (-377)) (-224))) (-15 -1727 ((-224) (-406 (-544)))) (-15 -1728 ((-682 (-224)) (-635 (-224)) (-765))))
+((-1729 (((-635 |#1|) (-635 |#1|)) 10)))
+(((-303 |#1|) (-10 -7 (-15 -1729 ((-635 |#1|) (-635 |#1|)))) (-842)) (T -303))
+((-1729 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-842)) (-5 *1 (-303 *3)))))
+(-10 -7 (-15 -1729 ((-635 |#1|) (-635 |#1|))))
+((-4365 (((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)) 17)))
+(((-304 |#1| |#2|) (-10 -7 (-15 -4365 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)))) (-1042) (-1042)) (T -304))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-682 *6)) (-5 *1 (-304 *5 *6)))))
+(-10 -7 (-15 -4365 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|))))
+((-1733 (((-112) $ $) 11)) (-2943 (($ $ $) 15)) (-2942 (($ $ $) 14)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 43)) (-1730 (((-3 (-635 $) "failed") (-635 $) $) 52)) (-3545 (($ $ $) 20) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3865 (((-3 $ "failed") $ $) 17)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 45)))
+(((-305 |#1|) (-10 -8 (-15 -1730 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -1731 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1731 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3122 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3123 ((-2 (|:| -4361 (-635 |#1|)) (|:| -2544 |#1|)) (-635 |#1|))) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305))
+NIL
+(-10 -8 (-15 -1730 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -1731 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1731 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3122 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3123 ((-2 (|:| -4361 (-635 |#1|)) (|:| -2544 |#1|)) (-635 |#1|))) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-306) (-139)) (T -306))
-((-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765)))) (-1421 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-306)))) (-1771 (*1 *1 *1 *1) (-4 *1 (-306))) (-1792 (*1 *1 *1 *1) (-4 *1 (-306))) (-2682 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3194 *1))) (-4 *1 (-306)))) (-2682 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-2286 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-306)))))
-(-13 (-913) (-10 -8 (-15 -3698 ((-112) $ $)) (-15 -1905 ((-765) $)) (-15 -1421 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -1771 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -2682 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $)) (-15 -2682 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2286 ((-3 (-638 $) "failed") (-638 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-1436 (($ $ (-638 |#2|) (-638 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-293 |#2|)) 11) (($ $ (-638 (-293 |#2|))) NIL)))
-(((-307 |#1| |#2|) (-10 -8 (-15 -1436 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1436 (|#1| |#1| (-293 |#2|))) (-15 -1436 (|#1| |#1| |#2| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#2|)))) (-308 |#2|) (-1090)) (T -307))
-NIL
-(-10 -8 (-15 -1436 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1436 (|#1| |#1| (-293 |#2|))) (-15 -1436 (|#1| |#1| |#2| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#2|))))
-((-1436 (($ $ (-638 |#1|) (-638 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-293 |#1|)) 11) (($ $ (-638 (-293 |#1|))) 10)))
-(((-308 |#1|) (-139) (-1090)) (T -308))
-((-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1090)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1090)))))
-(-13 (-512 |t#1| |t#1|) (-10 -8 (-15 -1436 ($ $ (-293 |t#1|))) (-15 -1436 ($ $ (-638 (-293 |t#1|))))))
+((-1733 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765)))) (-3264 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-306)))) (-2942 (*1 *1 *1 *1) (-4 *1 (-306))) (-2943 (*1 *1 *1 *1) (-4 *1 (-306))) (-1731 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) (-4 *1 (-306)))) (-1731 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-1730 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306)))))
+(-13 (-914) (-10 -8 (-15 -1733 ((-112) $ $)) (-15 -1732 ((-765) $)) (-15 -3264 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2942 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -1731 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $)) (-15 -1731 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1730 ((-3 (-635 $) "failed") (-635 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-4174 (($ $ (-635 |#2|) (-635 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-292 |#2|)) 11) (($ $ (-635 (-292 |#2|))) NIL)))
+(((-307 |#1| |#2|) (-10 -8 (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|)))) (-308 |#2|) (-1091)) (T -307))
+NIL
+(-10 -8 (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))))
+((-4174 (($ $ (-635 |#1|) (-635 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-292 |#1|)) 11) (($ $ (-635 (-292 |#1|))) 10)))
+(((-308 |#1|) (-139) (-1091)) (T -308))
+((-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-292 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1091)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1091)))))
+(-13 (-512 |t#1| |t#1|) (-10 -8 (-15 -4174 ($ $ (-292 |t#1|))) (-15 -4174 ($ $ (-635 (-292 |t#1|))))))
(((-512 |#1| |#1|) . T))
-((-1436 ((|#1| (-1 |#1| (-561)) (-1168 (-406 (-561)))) 25)))
-(((-309 |#1|) (-10 -7 (-15 -1436 (|#1| (-1 |#1| (-561)) (-1168 (-406 (-561)))))) (-38 (-406 (-561)))) (T -309))
-((-1436 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-561))) (-5 *4 (-1168 (-406 (-561)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-561)))))))
-(-10 -7 (-15 -1436 (|#1| (-1 |#1| (-561)) (-1168 (-406 (-561))))))
-((-4053 (((-112) $ $) NIL)) (-3383 (((-561) $) 12)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1731 (((-1125) $) 9)) (-4064 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-310) (-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -3383 ((-561) $))))) (T -310))
-((-1731 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-310)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-310)))))
-(-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -3383 ((-561) $))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 7)) (-1723 (((-112) $ $) 9)))
-(((-311) (-1090)) (T -311))
-NIL
-(-1090)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 62)) (-3892 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-1240 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-3 (-1239 |#2| |#3| |#4|) "failed") $) 25)) (-3979 (((-1240 |#1| |#2| |#3| |#4|) $) NIL) (((-1166) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-561) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-1239 |#2| |#3| |#4|) $) NIL)) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-1240 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1254 (-1240 |#1| |#2| |#3| |#4|)))) (-682 $) (-1254 $)) NIL) (((-682 (-1240 |#1| |#2| |#3| |#4|)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 (((-1240 |#1| |#2| |#3| |#4|) $) 21)) (-2436 (((-3 $ "failed") $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1141)))) (-3271 (((-112) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-3017 (($ $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-4165 (($ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) $) NIL)) (-4107 (((-3 (-837 |#2|) "failed") $) 78)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-306)))) (-4020 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 (-1240 |#1| |#2| |#3| |#4|)) (-638 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-293 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-638 (-293 (-1240 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-638 (-1166)) (-638 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-1166) (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1240 |#1| |#2| |#3| |#4|))))) (-1905 (((-765) $) NIL)) (-2315 (($ $ (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-285 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))) NIL)) (-1969 (($ $) NIL)) (-4088 (((-1240 |#1| |#2| |#3| |#4|) $) 17)) (-4216 (((-885 (-561)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-534)))) (((-378) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1015))) (((-224) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1015)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1240 |#1| |#2| |#3| |#4|) (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-1240 |#1| |#2| |#3| |#4|)) 29) (($ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (($ (-1239 |#2| |#3| |#4|)) 36)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-1240 |#1| |#2| |#3| |#4|) (-902))) (|has| (-1240 |#1| |#2| |#3| |#4|) (-144))))) (-3746 (((-765)) NIL)) (-2449 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-3996 (((-112) $ $) NIL)) (-2165 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-2246 (($) 41 T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-1828 (($ $ $) 34) (($ (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) 31)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-1240 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1240 |#1| |#2| |#3| |#4|)) NIL)))
-(((-312 |#1| |#2| |#3| |#4|) (-13 (-985 (-1240 |#1| |#2| |#3| |#4|)) (-1031 (-1239 |#2| |#3| |#4|)) (-10 -8 (-15 -4107 ((-3 (-837 |#2|) "failed") $)) (-15 -4064 ($ (-1239 |#2| |#3| |#4|))))) (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)) (-13 (-27) (-1190) (-429 |#1|)) (-1166) |#2|) (T -312))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1239 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4) (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *1 (-312 *3 *4 *5 *6)))) (-4107 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *2 (-837 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4))))
-(-13 (-985 (-1240 |#1| |#2| |#3| |#4|)) (-1031 (-1239 |#2| |#3| |#4|)) (-10 -8 (-15 -4107 ((-3 (-837 |#2|) "failed") $)) (-15 -4064 ($ (-1239 |#2| |#3| |#4|)))))
-((-4165 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13)))
-(((-313 |#1| |#2|) (-10 -7 (-15 -4165 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-844) (-844)) (T -313))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6)))))
-(-10 -7 (-15 -4165 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|))))
-((-1469 (((-52) |#2| (-293 |#2|) (-765)) 33) (((-52) |#2| (-293 |#2|)) 24) (((-52) |#2| (-765)) 28) (((-52) |#2|) 25) (((-52) (-1166)) 21)) (-1543 (((-52) |#2| (-293 |#2|) (-406 (-561))) 51) (((-52) |#2| (-293 |#2|)) 48) (((-52) |#2| (-406 (-561))) 50) (((-52) |#2|) 49) (((-52) (-1166)) 47)) (-1496 (((-52) |#2| (-293 |#2|) (-406 (-561))) 46) (((-52) |#2| (-293 |#2|)) 43) (((-52) |#2| (-406 (-561))) 45) (((-52) |#2|) 44) (((-52) (-1166)) 42)) (-1484 (((-52) |#2| (-293 |#2|) (-561)) 39) (((-52) |#2| (-293 |#2|)) 35) (((-52) |#2| (-561)) 38) (((-52) |#2|) 36) (((-52) (-1166)) 34)))
-(((-314 |#1| |#2|) (-10 -7 (-15 -1469 ((-52) (-1166))) (-15 -1469 ((-52) |#2|)) (-15 -1469 ((-52) |#2| (-765))) (-15 -1469 ((-52) |#2| (-293 |#2|))) (-15 -1469 ((-52) |#2| (-293 |#2|) (-765))) (-15 -1484 ((-52) (-1166))) (-15 -1484 ((-52) |#2|)) (-15 -1484 ((-52) |#2| (-561))) (-15 -1484 ((-52) |#2| (-293 |#2|))) (-15 -1484 ((-52) |#2| (-293 |#2|) (-561))) (-15 -1496 ((-52) (-1166))) (-15 -1496 ((-52) |#2|)) (-15 -1496 ((-52) |#2| (-406 (-561)))) (-15 -1496 ((-52) |#2| (-293 |#2|))) (-15 -1496 ((-52) |#2| (-293 |#2|) (-406 (-561)))) (-15 -1543 ((-52) (-1166))) (-15 -1543 ((-52) |#2|)) (-15 -1543 ((-52) |#2| (-406 (-561)))) (-15 -1543 ((-52) |#2| (-293 |#2|))) (-15 -1543 ((-52) |#2| (-293 |#2|) (-406 (-561))))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -314))
-((-1543 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-561))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1543 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-561))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))) (-1484 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-561)) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))) (-1469 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-765)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1469 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))))
-(-10 -7 (-15 -1469 ((-52) (-1166))) (-15 -1469 ((-52) |#2|)) (-15 -1469 ((-52) |#2| (-765))) (-15 -1469 ((-52) |#2| (-293 |#2|))) (-15 -1469 ((-52) |#2| (-293 |#2|) (-765))) (-15 -1484 ((-52) (-1166))) (-15 -1484 ((-52) |#2|)) (-15 -1484 ((-52) |#2| (-561))) (-15 -1484 ((-52) |#2| (-293 |#2|))) (-15 -1484 ((-52) |#2| (-293 |#2|) (-561))) (-15 -1496 ((-52) (-1166))) (-15 -1496 ((-52) |#2|)) (-15 -1496 ((-52) |#2| (-406 (-561)))) (-15 -1496 ((-52) |#2| (-293 |#2|))) (-15 -1496 ((-52) |#2| (-293 |#2|) (-406 (-561)))) (-15 -1543 ((-52) (-1166))) (-15 -1543 ((-52) |#2|)) (-15 -1543 ((-52) |#2| (-406 (-561)))) (-15 -1543 ((-52) |#2| (-293 |#2|))) (-15 -1543 ((-52) |#2| (-293 |#2|) (-406 (-561)))))
-((-4053 (((-112) $ $) NIL)) (-2311 (((-638 $) $ (-1166)) NIL (|has| |#1| (-553))) (((-638 $) $) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $) (-1166)) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $)) NIL (|has| |#1| (-553))) (((-638 $) (-945 $)) NIL (|has| |#1| (-553)))) (-2153 (($ $ (-1166)) NIL (|has| |#1| (-553))) (($ $) NIL (|has| |#1| (-553))) (($ (-1162 $) (-1166)) NIL (|has| |#1| (-553))) (($ (-1162 $)) NIL (|has| |#1| (-553))) (($ (-945 $)) NIL (|has| |#1| (-553)))) (-4306 (((-112) $) 27 (-4050 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-1405 (((-638 (-1166)) $) 349)) (-1596 (((-406 (-1162 $)) $ (-607 $)) NIL (|has| |#1| (-553)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1495 (((-638 (-607 $)) $) NIL)) (-3014 (($ $) 159 (|has| |#1| (-553)))) (-4106 (($ $) 135 (|has| |#1| (-553)))) (-3375 (($ $ (-1082 $)) 220 (|has| |#1| (-553))) (($ $ (-1166)) 216 (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) NIL (-4050 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-1339 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) 366) (($ $ (-638 (-607 $)) (-638 $)) 410)) (-2128 (((-417 (-1162 $)) (-1162 $)) 294 (-12 (|has| |#1| (-450)) (|has| |#1| (-553))))) (-2557 (($ $) NIL (|has| |#1| (-553)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-553)))) (-1643 (($ $) NIL (|has| |#1| (-553)))) (-3698 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4213 (($ $) 155 (|has| |#1| (-553)))) (-4085 (($ $) 131 (|has| |#1| (-553)))) (-4247 (($ $ (-561)) 69 (|has| |#1| (-553)))) (-3039 (($ $) 163 (|has| |#1| (-553)))) (-4130 (($ $) 139 (|has| |#1| (-553)))) (-2674 (($) NIL (-4050 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-1466 (((-638 $) $ (-1166)) NIL (|has| |#1| (-553))) (((-638 $) $) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $) (-1166)) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $)) NIL (|has| |#1| (-553))) (((-638 $) (-945 $)) NIL (|has| |#1| (-553)))) (-2496 (($ $ (-1166)) NIL (|has| |#1| (-553))) (($ $) NIL (|has| |#1| (-553))) (($ (-1162 $) (-1166)) 122 (|has| |#1| (-553))) (($ (-1162 $)) NIL (|has| |#1| (-553))) (($ (-945 $)) NIL (|has| |#1| (-553)))) (-4061 (((-3 (-607 $) "failed") $) 17) (((-3 (-1166) "failed") $) NIL) (((-3 |#1| "failed") $) 419) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-945 |#1|)) "failed") $) NIL (|has| |#1| (-553))) (((-3 (-945 |#1|) "failed") $) NIL (|has| |#1| (-1042))) (((-3 (-406 (-561)) "failed") $) 46 (-4050 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-3979 (((-607 $) $) 11) (((-1166) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-945 |#1|)) $) NIL (|has| |#1| (-553))) (((-945 |#1|) $) NIL (|has| |#1| (-1042))) (((-406 (-561)) $) 305 (-4050 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-1792 (($ $ $) NIL (|has| |#1| (-553)))) (-3720 (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 115 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 105 (|has| |#1| (-1042))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (-3176 (($ $) 87 (|has| |#1| (-553)))) (-3735 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-1771 (($ $ $) NIL (|has| |#1| (-553)))) (-3638 (($ $ (-1082 $)) 224 (|has| |#1| (-553))) (($ $ (-1166)) 222 (|has| |#1| (-553)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-553)))) (-2725 (((-112) $) NIL (|has| |#1| (-553)))) (-3101 (($ $ $) 190 (|has| |#1| (-553)))) (-4111 (($) 125 (|has| |#1| (-553)))) (-3784 (($ $ $) 210 (|has| |#1| (-553)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 372 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 379 (|has| |#1| (-879 (-378))))) (-1719 (($ $) NIL) (($ (-638 $)) NIL)) (-2123 (((-638 (-114)) $) NIL)) (-1773 (((-114) (-114)) 265)) (-2252 (((-112) $) 25 (-4050 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-2110 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-3307 (($ $) 68 (|has| |#1| (-1042)))) (-4077 (((-1115 |#1| (-607 $)) $) 82 (|has| |#1| (-1042)))) (-1696 (((-112) $) 61 (|has| |#1| (-553)))) (-4343 (($ $ (-561)) NIL (|has| |#1| (-553)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-553)))) (-1578 (((-1162 $) (-607 $)) 266 (|has| $ (-1042)))) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 $ $) (-607 $)) 406)) (-2373 (((-3 (-607 $) "failed") $) NIL)) (-4364 (($ $) 129 (|has| |#1| (-553)))) (-1977 (($ $) 235 (|has| |#1| (-553)))) (-1563 (($ (-638 $)) NIL (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-1883 (((-1148) $) NIL)) (-1583 (((-638 (-607 $)) $) 49)) (-4154 (($ (-114) $) NIL) (($ (-114) (-638 $)) 411)) (-4174 (((-3 (-638 $) "failed") $) NIL (|has| |#1| (-1102)))) (-1703 (((-3 (-2 (|:| |val| $) (|:| -4181 (-561))) "failed") $) NIL (|has| |#1| (-1042)))) (-2540 (((-3 (-638 $) "failed") $) 414 (|has| |#1| (-25)))) (-3912 (((-3 (-2 (|:| -4226 (-561)) (|:| |var| (-607 $))) "failed") $) 418 (|has| |#1| (-25)))) (-3276 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $) NIL (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-114)) NIL (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-1166)) NIL (|has| |#1| (-1042)))) (-4188 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) 53)) (-1519 (($ $) NIL (-4050 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-1684 (($ $ (-1166)) 239 (|has| |#1| (-553))) (($ $ (-1082 $)) 241 (|has| |#1| (-553)))) (-3093 (((-765) $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) 43)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 287 (|has| |#1| (-553)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-1342 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-1322 (($ $ (-1166)) 214 (|has| |#1| (-553))) (($ $) 212 (|has| |#1| (-553)))) (-2084 (($ $) 206 (|has| |#1| (-553)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 292 (-12 (|has| |#1| (-450)) (|has| |#1| (-553))))) (-1633 (((-417 $) $) NIL (|has| |#1| (-553)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-553))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-553)))) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-553)))) (-3486 (($ $) 127 (|has| |#1| (-553)))) (-2058 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1436 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) 405) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) 359) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1166)) NIL (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-609 (-534)))) (($ $) NIL (|has| |#1| (-609 (-534)))) (($ $ (-114) $ (-1166)) 347 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-114)) (-638 $) (-1166)) 346 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) NIL (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-638 $))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) NIL (|has| |#1| (-1042)))) (-1905 (((-765) $) NIL (|has| |#1| (-553)))) (-4035 (($ $) 227 (|has| |#1| (-553)))) (-2315 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-4348 (($ $) NIL) (($ $ $) NIL)) (-4072 (($ $) 237 (|has| |#1| (-553)))) (-3502 (($ $) 188 (|has| |#1| (-553)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-1969 (($ $) 70 (|has| |#1| (-553)))) (-4088 (((-1115 |#1| (-607 $)) $) 84 (|has| |#1| (-553)))) (-3158 (($ $) 303 (|has| $ (-1042)))) (-3052 (($ $) 165 (|has| |#1| (-553)))) (-4140 (($ $) 141 (|has| |#1| (-553)))) (-3026 (($ $) 161 (|has| |#1| (-553)))) (-4118 (($ $) 137 (|has| |#1| (-553)))) (-3002 (($ $) 157 (|has| |#1| (-553)))) (-4097 (($ $) 133 (|has| |#1| (-553)))) (-4216 (((-885 (-561)) $) NIL (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#1| (-609 (-885 (-378))))) (($ (-417 $)) NIL (|has| |#1| (-553))) (((-534) $) 344 (|has| |#1| (-609 (-534))))) (-2076 (($ $ $) NIL (|has| |#1| (-471)))) (-3047 (($ $ $) NIL (|has| |#1| (-471)))) (-4064 (((-856) $) 404) (($ (-607 $)) 395) (($ (-1166)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-553))) (($ (-48)) 298 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) (($ (-1115 |#1| (-607 $))) 86 (|has| |#1| (-1042))) (($ (-406 |#1|)) NIL (|has| |#1| (-553))) (($ (-945 (-406 |#1|))) NIL (|has| |#1| (-553))) (($ (-406 (-945 (-406 |#1|)))) NIL (|has| |#1| (-553))) (($ (-406 (-945 |#1|))) NIL (|has| |#1| (-553))) (($ (-945 |#1|)) NIL (|has| |#1| (-1042))) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-553)) (|has| |#1| (-1031 (-406 (-561)))))) (($ (-561)) 34 (-4050 (|has| |#1| (-1031 (-561))) (|has| |#1| (-1042))))) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL (|has| |#1| (-1042)))) (-3402 (($ $) NIL) (($ (-638 $)) NIL)) (-3210 (($ $ $) 208 (|has| |#1| (-553)))) (-1824 (($ $ $) 194 (|has| |#1| (-553)))) (-2025 (($ $ $) 198 (|has| |#1| (-553)))) (-1822 (($ $ $) 192 (|has| |#1| (-553)))) (-1891 (($ $ $) 196 (|has| |#1| (-553)))) (-3333 (((-112) (-114)) 9)) (-3086 (($ $) 171 (|has| |#1| (-553)))) (-4175 (($ $) 147 (|has| |#1| (-553)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) 167 (|has| |#1| (-553)))) (-4150 (($ $) 143 (|has| |#1| (-553)))) (-3113 (($ $) 175 (|has| |#1| (-553)))) (-4192 (($ $) 151 (|has| |#1| (-553)))) (-3150 (($ (-1166) $) NIL) (($ (-1166) $ $) NIL) (($ (-1166) $ $ $) NIL) (($ (-1166) $ $ $ $) NIL) (($ (-1166) (-638 $)) NIL)) (-3710 (($ $) 202 (|has| |#1| (-553)))) (-2934 (($ $) 200 (|has| |#1| (-553)))) (-2821 (($ $) 177 (|has| |#1| (-553)))) (-4202 (($ $) 153 (|has| |#1| (-553)))) (-3099 (($ $) 173 (|has| |#1| (-553)))) (-4184 (($ $) 149 (|has| |#1| (-553)))) (-3076 (($ $) 169 (|has| |#1| (-553)))) (-4162 (($ $) 145 (|has| |#1| (-553)))) (-2165 (($ $) 180 (|has| |#1| (-553)))) (-2246 (($) 20 (-4050 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) CONST)) (-1862 (($ $) 231 (|has| |#1| (-553)))) (-2257 (($) 22 (-4050 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-4128 (($ $) 182 (|has| |#1| (-553))) (($ $ $) 184 (|has| |#1| (-553)))) (-1345 (($ $) 229 (|has| |#1| (-553)))) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-2604 (($ $) 233 (|has| |#1| (-553)))) (-1550 (($ $ $) 186 (|has| |#1| (-553)))) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 79)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 78)) (-1828 (($ (-1115 |#1| (-607 $)) (-1115 |#1| (-607 $))) 96 (|has| |#1| (-553))) (($ $ $) 42 (-4050 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-1819 (($ $ $) 40 (-4050 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (($ $) 29 (-4050 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-1810 (($ $ $) 38 (-4050 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (** (($ $ $) 63 (|has| |#1| (-553))) (($ $ (-406 (-561))) 300 (|has| |#1| (-553))) (($ $ (-561)) 74 (-4050 (|has| |#1| (-471)) (|has| |#1| (-553)))) (($ $ (-765)) 71 (-4050 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ $ (-914)) 76 (-4050 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (* (($ (-406 (-561)) $) NIL (|has| |#1| (-553))) (($ $ (-406 (-561))) NIL (|has| |#1| (-553))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-4050 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ (-561) $) 32 (-4050 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (($ (-765) $) NIL (-4050 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (($ (-914) $) NIL (-4050 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))))
-(((-315 |#1|) (-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-553)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-624)) (-6 (-1129)) (-15 -3176 ($ $)) (-15 -1696 ((-112) $)) (-15 -4247 ($ $ (-561))) (IF (|has| |#1| (-450)) (PROGN (-15 -3035 ((-417 (-1162 $)) (-1162 $))) (-15 -2128 ((-417 (-1162 $)) (-1162 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-561))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|))) (-844)) (T -315))
-((-3176 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-553)) (-4 *2 (-844)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))) (-4247 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))) (-3035 (*1 *2 *3) (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1)) (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844)))) (-2128 (*1 *2 *3) (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1)) (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844)))))
-(-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-553)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-624)) (-6 (-1129)) (-15 -3176 ($ $)) (-15 -1696 ((-112) $)) (-15 -4247 ($ $ (-561))) (IF (|has| |#1| (-450)) (PROGN (-15 -3035 ((-417 (-1162 $)) (-1162 $))) (-15 -2128 ((-417 (-1162 $)) (-1162 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-561))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|)))
-((-1371 (((-52) |#2| (-114) (-293 |#2|) (-638 |#2|)) 88) (((-52) |#2| (-114) (-293 |#2|) (-293 |#2|)) 84) (((-52) |#2| (-114) (-293 |#2|) |#2|) 86) (((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|) 87) (((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|))) 80) (((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 |#2|)) 82) (((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 |#2|)) 83) (((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|))) 81) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|)) 89) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|)) 85)))
-(((-316 |#1| |#2|) (-10 -7 (-15 -1371 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -1371 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -1371 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -1371 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -1371 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -1371 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -1371 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -1371 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -1371 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -1371 ((-52) |#2| (-114) (-293 |#2|) (-638 |#2|)))) (-13 (-844) (-553) (-609 (-534))) (-429 |#1|)) (T -316))
-((-1371 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-638 *3)) (-4 *3 (-429 *7)) (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))) (-1371 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1371 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1371 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *5)))) (-1371 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-114))) (-5 *6 (-638 (-293 *8))) (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-1371 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-1371 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-638 (-293 *8))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *8)) (-5 *6 (-638 *8)) (-4 *8 (-429 *7)) (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-1371 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-1371 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-638 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-1371 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) (-4 *5 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *6)))))
-(-10 -7 (-15 -1371 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -1371 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -1371 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -1371 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -1371 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -1371 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -1371 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -1371 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -1371 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -1371 ((-52) |#2| (-114) (-293 |#2|) (-638 |#2|))))
-((-3429 (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561) (-1148)) 45) (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561)) 46) (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561) (-1148)) 42) (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561)) 43)) (-3945 (((-1 (-224) (-224)) (-224)) 44)))
-(((-317) (-10 -7 (-15 -3945 ((-1 (-224) (-224)) (-224))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561) (-1148))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561) (-1148))))) (T -317))
-((-3429 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561)) (-5 *8 (-1148)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-3429 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-3429 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *7 (-1148)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-3429 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
-(-10 -7 (-15 -3945 ((-1 (-224) (-224)) (-224))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561) (-1148))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561))) (-15 -3429 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561) (-1148))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 25)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-4228 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 20)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3039 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) 31)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) 16)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-406 (-561))) NIL) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-2563 (($ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190)))))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-406 (-561))) NIL)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-4374 (((-406 (-561)) $) 17)) (-2370 (($ (-1239 |#1| |#2| |#3|)) 11)) (-4181 (((-1239 |#1| |#2| |#3|) $) 12)) (-3486 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-3768 (((-406 (-561)) $) NIL)) (-3052 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 10)) (-4064 (((-856) $) 37) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-3932 ((|#1| $ (-406 (-561))) 29)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) NIL)) (-3086 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 27)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 32)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-318 |#1| |#2| |#3|) (-13 (-1235 |#1|) (-786) (-10 -8 (-15 -2370 ($ (-1239 |#1| |#2| |#3|))) (-15 -4181 ((-1239 |#1| |#2| |#3|) $)) (-15 -4374 ((-406 (-561)) $)))) (-13 (-362) (-844)) (-1166) |#1|) (T -318))
-((-2370 (*1 *1 *2) (-12 (-5 *2 (-1239 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-1239 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))))
-(-13 (-1235 |#1|) (-786) (-10 -8 (-15 -2370 ($ (-1239 |#1| |#2| |#3|))) (-15 -4181 ((-1239 |#1| |#2| |#3|) $)) (-15 -4374 ((-406 (-561)) $))))
-((-4343 (((-2 (|:| -4181 (-765)) (|:| -4226 |#1|) (|:| |radicand| (-638 |#1|))) (-417 |#1|) (-765)) 24)) (-4364 (((-638 (-2 (|:| -4226 (-765)) (|:| |logand| |#1|))) (-417 |#1|)) 28)))
-(((-319 |#1|) (-10 -7 (-15 -4343 ((-2 (|:| -4181 (-765)) (|:| -4226 |#1|) (|:| |radicand| (-638 |#1|))) (-417 |#1|) (-765))) (-15 -4364 ((-638 (-2 (|:| -4226 (-765)) (|:| |logand| |#1|))) (-417 |#1|)))) (-553)) (T -319))
-((-4364 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-553)) (-5 *2 (-638 (-2 (|:| -4226 (-765)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-553)) (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *5) (|:| |radicand| (-638 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-765)))))
-(-10 -7 (-15 -4343 ((-2 (|:| -4181 (-765)) (|:| -4226 |#1|) (|:| |radicand| (-638 |#1|))) (-417 |#1|) (-765))) (-15 -4364 ((-638 (-2 (|:| -4226 (-765)) (|:| |logand| |#1|))) (-417 |#1|))))
-((-1405 (((-638 |#2|) (-1162 |#4|)) 43)) (-2197 ((|#3| (-561)) 46)) (-2441 (((-1162 |#4|) (-1162 |#3|)) 30)) (-2671 (((-1162 |#4|) (-1162 |#4|) (-561)) 55)) (-3198 (((-1162 |#3|) (-1162 |#4|)) 21)) (-3768 (((-638 (-765)) (-1162 |#4|) (-638 |#2|)) 40)) (-2565 (((-1162 |#3|) (-1162 |#4|) (-638 |#2|) (-638 |#3|)) 35)))
-(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2565 ((-1162 |#3|) (-1162 |#4|) (-638 |#2|) (-638 |#3|))) (-15 -3768 ((-638 (-765)) (-1162 |#4|) (-638 |#2|))) (-15 -1405 ((-638 |#2|) (-1162 |#4|))) (-15 -3198 ((-1162 |#3|) (-1162 |#4|))) (-15 -2441 ((-1162 |#4|) (-1162 |#3|))) (-15 -2671 ((-1162 |#4|) (-1162 |#4|) (-561))) (-15 -2197 (|#3| (-561)))) (-787) (-844) (-1042) (-942 |#3| |#1| |#2|)) (T -320))
-((-2197 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-942 *2 *4 *5)))) (-2671 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 *7)) (-5 *3 (-561)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *1 (-320 *4 *5 *6 *7)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-1162 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1162 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-1162 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-638 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *8)) (-5 *4 (-638 *6)) (-4 *6 (-844)) (-4 *8 (-942 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042)) (-5 *2 (-638 (-765))) (-5 *1 (-320 *5 *6 *7 *8)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-1162 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2565 ((-1162 |#3|) (-1162 |#4|) (-638 |#2|) (-638 |#3|))) (-15 -3768 ((-638 (-765)) (-1162 |#4|) (-638 |#2|))) (-15 -1405 ((-638 |#2|) (-1162 |#4|))) (-15 -3198 ((-1162 |#3|) (-1162 |#4|))) (-15 -2441 ((-1162 |#4|) (-1162 |#3|))) (-15 -2671 ((-1162 |#4|) (-1162 |#4|) (-561))) (-15 -2197 (|#3| (-561))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 14)) (-4228 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-561)))) $) 18)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1386 (((-765) $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3328 ((|#1| $ (-561)) NIL)) (-1352 (((-561) $ (-561)) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-4251 (($ (-1 |#1| |#1|) $) NIL)) (-2303 (($ (-1 (-561) (-561)) $) 10)) (-1883 (((-1148) $) NIL)) (-1897 (($ $ $) NIL (|has| (-561) (-786)))) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL) (($ |#1|) NIL)) (-3932 (((-561) |#1| $) NIL)) (-2246 (($) 15 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) 21 (|has| |#1| (-844)))) (-1819 (($ $) 11) (($ $ $) 20)) (-1810 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL) (($ (-561) |#1|) 19)))
-(((-321 |#1|) (-13 (-21) (-711 (-561)) (-322 |#1| (-561)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1090)) (T -321))
-NIL
-(-13 (-21) (-711 (-561)) (-322 |#1| (-561)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-4228 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|))) $) 27)) (-2979 (((-3 $ "failed") $ $) 19)) (-1386 (((-765) $) 28)) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 32)) (-3979 ((|#1| $) 33)) (-3328 ((|#1| $ (-561)) 25)) (-1352 ((|#2| $ (-561)) 26)) (-4251 (($ (-1 |#1| |#1|) $) 22)) (-2303 (($ (-1 |#2| |#2|) $) 23)) (-1883 (((-1148) $) 9)) (-1897 (($ $ $) 21 (|has| |#2| (-786)))) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ |#1|) 31)) (-3932 ((|#2| |#1| $) 24)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1810 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ |#2| |#1|) 29)))
-(((-322 |#1| |#2|) (-139) (-1090) (-130)) (T -322))
-((-1810 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)) (-5 *2 (-765)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)) (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 *4)))))) (-1352 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1090)) (-4 *2 (-130)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1090)))) (-3932 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130)))) (-2303 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)))) (-4251 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)))) (-1897 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130)) (-4 *3 (-786)))))
-(-13 (-130) (-1031 |t#1|) (-10 -8 (-15 -1810 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1386 ((-765) $)) (-15 -4228 ((-638 (-2 (|:| |gen| |t#1|) (|:| -3486 |t#2|))) $)) (-15 -1352 (|t#2| $ (-561))) (-15 -3328 (|t#1| $ (-561))) (-15 -3932 (|t#2| |t#1| $)) (-15 -2303 ($ (-1 |t#2| |t#2|) $)) (-15 -4251 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-786)) (-15 -1897 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-1031 |#1|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-4228 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-765)))) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1386 (((-765) $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3328 ((|#1| $ (-561)) NIL)) (-1352 (((-765) $ (-561)) NIL)) (-4251 (($ (-1 |#1| |#1|) $) NIL)) (-2303 (($ (-1 (-765) (-765)) $) NIL)) (-1883 (((-1148) $) NIL)) (-1897 (($ $ $) NIL (|has| (-765) (-786)))) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL) (($ |#1|) NIL)) (-3932 (((-765) |#1| $) NIL)) (-2246 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-765) |#1|) NIL)))
-(((-323 |#1|) (-322 |#1| (-765)) (-1090)) (T -323))
+((-4174 ((|#1| (-1 |#1| (-544)) (-1168 (-406 (-544)))) 25)))
+(((-309 |#1|) (-10 -7 (-15 -4174 (|#1| (-1 |#1| (-544)) (-1168 (-406 (-544)))))) (-38 (-406 (-544)))) (T -309))
+((-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-544))) (-5 *4 (-1168 (-406 (-544)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-544)))))))
+(-10 -7 (-15 -4174 (|#1| (-1 |#1| (-544)) (-1168 (-406 (-544))))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 7)) (-3437 (((-112) $ $) 9)))
+(((-310) (-1091)) (T -310))
+NIL
+(-1091)
+((-2947 (((-112) $ $) NIL)) (-3905 (((-544) $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 9)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-311) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3905 ((-544) $))))) (T -311))
+((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-311)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-311)))))
+(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3905 ((-544) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 62)) (-3514 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1240 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-3 (-1234 |#2| |#3| |#4|) #2#) $) 25)) (-3557 (((-1240 |#1| |#2| |#3| |#4|) $) NIL) (((-1166) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-544) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-1234 |#2| |#3| |#4|) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-1240 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1253 (-1240 |#1| |#2| |#3| |#4|)))) (-682 $) (-1253 $)) NIL) (((-682 (-1240 |#1| |#2| |#3| |#4|)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-1240 |#1| |#2| |#3| |#4|) $) 21)) (-3848 (((-3 $ "failed") $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1141)))) (-3588 (((-112) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-3242 (($ $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-4365 (($ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) $) NIL)) (-4190 (((-3 (-836 |#2|) "failed") $) 78)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-306)))) (-3515 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-1240 |#1| |#2| |#3| |#4|)) (-635 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-292 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-292 (-1240 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-1166)) (-635 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-1166) (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1240 |#1| |#2| |#3| |#4|))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-285 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-1240 |#1| |#2| |#3| |#4|) $) 17)) (-4377 (((-883 (-544)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-533)))) (((-377) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1013))) (((-224) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1240 |#1| |#2| |#3| |#4|) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-1240 |#1| |#2| |#3| |#4|)) 29) (($ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (($ (-1234 |#2| |#3| |#4|)) 36)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-1240 |#1| |#2| |#3| |#4|) (-903))) (|has| (-1240 |#1| |#2| |#3| |#4|) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-3040 (($) 41 T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-4356 (($ $ $) 34) (($ (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) 31)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-1240 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1240 |#1| |#2| |#3| |#4|)) NIL)))
+(((-312 |#1| |#2| |#3| |#4|) (-13 (-984 (-1240 |#1| |#2| |#3| |#4|)) (-1031 (-1234 |#2| |#3| |#4|)) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4353 ($ (-1234 |#2| |#3| |#4|))))) (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)) (-13 (-27) (-1190) (-420 |#1|)) (-1166) |#2|) (T -312))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1234 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4) (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *1 (-312 *3 *4 *5 *6)))) (-4190 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *2 (-836 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4))))
+(-13 (-984 (-1240 |#1| |#2| |#3| |#4|)) (-1031 (-1234 |#2| |#3| |#4|)) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4353 ($ (-1234 |#2| |#3| |#4|)))))
+((-2947 (((-112) $ $) NIL)) (-1695 (((-635 $) $ (-1166)) NIL (|has| |#1| (-554))) (((-635 $) $) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $) (-1166)) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $)) NIL (|has| |#1| (-554))) (((-635 $) (-939 $)) NIL (|has| |#1| (-554)))) (-1287 (($ $ (-1166)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1160 $) (-1166)) NIL (|has| |#1| (-554))) (($ (-1160 $)) NIL (|has| |#1| (-554))) (($ (-939 $)) NIL (|has| |#1| (-554)))) (-3589 (((-112) $) 27 (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-3467 (((-635 (-1166)) $) 349)) (-3469 (((-406 (-1160 $)) $ (-606 $)) NIL (|has| |#1| (-554)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1688 (((-635 (-606 $)) $) NIL)) (-3891 (($ $) 159 (|has| |#1| (-554)))) (-4046 (($ $) 135 (|has| |#1| (-554)))) (-1443 (($ $ (-1082 $)) 220 (|has| |#1| (-554))) (($ $ (-1166)) 216 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) 366) (($ $ (-635 (-606 $)) (-635 $)) 410)) (-3089 (((-404 (-1160 $)) (-1160 $)) 294 (-12 (|has| |#1| (-450)) (|has| |#1| (-554))))) (-4181 (($ $) NIL (|has| |#1| (-554)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-554)))) (-3420 (($ $) NIL (|has| |#1| (-554)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3889 (($ $) 155 (|has| |#1| (-554)))) (-4045 (($ $) 131 (|has| |#1| (-554)))) (-1734 (($ $ (-544)) 69 (|has| |#1| (-554)))) (-3893 (($ $) 163 (|has| |#1| (-554)))) (-4044 (($ $) 139 (|has| |#1| (-554)))) (-4131 (($) NIL (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-1288 (((-635 $) $ (-1166)) NIL (|has| |#1| (-554))) (((-635 $) $) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $) (-1166)) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $)) NIL (|has| |#1| (-554))) (((-635 $) (-939 $)) NIL (|has| |#1| (-554)))) (-3584 (($ $ (-1166)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1160 $) (-1166)) 122 (|has| |#1| (-554))) (($ (-1160 $)) NIL (|has| |#1| (-554))) (($ (-939 $)) NIL (|has| |#1| (-554)))) (-3558 (((-3 (-606 $) #1="failed") $) 17) (((-3 (-1166) #1#) $) NIL) (((-3 |#1| #1#) $) 419) (((-3 (-48) #1#) $) 322 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) (((-3 (-544) #1#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-939 |#1|)) #1#) $) NIL (|has| |#1| (-554))) (((-3 (-939 |#1|) #1#) $) NIL (|has| |#1| (-1042))) (((-3 (-406 (-544)) #1#) $) 46 (-3936 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 (((-606 $) $) 11) (((-1166) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-939 |#1|)) $) NIL (|has| |#1| (-554))) (((-939 |#1|) $) NIL (|has| |#1| (-1042))) (((-406 (-544)) $) 305 (-3936 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-2943 (($ $ $) NIL (|has| |#1| (-554)))) (-2401 (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 115 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 105 (|has| |#1| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (-4249 (($ $) 87 (|has| |#1| (-554)))) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-2942 (($ $ $) NIL (|has| |#1| (-554)))) (-4351 (($ $ (-1082 $)) 224 (|has| |#1| (-554))) (($ $ (-1166)) 222 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-554)))) (-4130 (((-112) $) NIL (|has| |#1| (-554)))) (-3790 (($ $ $) 190 (|has| |#1| (-554)))) (-4034 (($) 125 (|has| |#1| (-554)))) (-1440 (($ $ $) 210 (|has| |#1| (-554)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 372 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 379 (|has| |#1| (-879 (-377))))) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) 265)) (-2545 (((-112) $) 25 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-3379 (($ $) 68 (|has| |#1| (-1042)))) (-3381 (((-1115 |#1| (-606 $)) $) 82 (|has| |#1| (-1042)))) (-1735 (((-112) $) 61 (|has| |#1| (-554)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-554)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-554)))) (-1685 (((-1160 $) (-606 $)) 266 (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) 406)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-4349 (($ $) 129 (|has| |#1| (-554)))) (-2380 (($ $) 235 (|has| |#1| (-554)))) (-2041 (($ (-635 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) 49)) (-2356 (($ (-113) $) NIL) (($ (-113) (-635 $)) 411)) (-3205 (((-3 (-635 $) #3="failed") $) NIL (|has| |#1| (-1102)))) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) #3#) $) NIL (|has| |#1| (-1042)))) (-3204 (((-3 (-635 $) #3#) $) 414 (|has| |#1| (-25)))) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) #3#) $) 418 (|has| |#1| (-25)))) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $) NIL (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-113)) NIL (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-1166)) NIL (|has| |#1| (-1042)))) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) 53)) (-2779 (($ $) NIL (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-3214 (($ $ (-1166)) 239 (|has| |#1| (-554))) (($ $ (-1082 $)) 241 (|has| |#1| (-554)))) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 43)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 287 (|has| |#1| (-554)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-1444 (($ $ (-1166)) 214 (|has| |#1| (-554))) (($ $) 212 (|has| |#1| (-554)))) (-1438 (($ $) 206 (|has| |#1| (-554)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 292 (-12 (|has| |#1| (-450)) (|has| |#1| (-554))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-554)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-554)))) (-4350 (($ $) 127 (|has| |#1| (-554)))) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) 405) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) 359) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1166)) NIL (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-609 (-533)))) (($ $) NIL (|has| |#1| (-609 (-533)))) (($ $ (-113) $ (-1166)) 347 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-113)) (-635 $) (-1166)) 346 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) NIL (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-635 $))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) NIL (|has| |#1| (-1042)))) (-1732 (((-765) $) NIL (|has| |#1| (-554)))) (-2378 (($ $) 227 (|has| |#1| (-554)))) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-2379 (($ $) 237 (|has| |#1| (-554)))) (-3789 (($ $) 188 (|has| |#1| (-554)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-3378 (($ $) 70 (|has| |#1| (-554)))) (-3380 (((-1115 |#1| (-606 $)) $) 84 (|has| |#1| (-554)))) (-3586 (($ $) 303 (|has| $ (-1042)))) (-3894 (($ $) 165 (|has| |#1| (-554)))) (-4043 (($ $) 141 (|has| |#1| (-554)))) (-3892 (($ $) 161 (|has| |#1| (-554)))) (-4042 (($ $) 137 (|has| |#1| (-554)))) (-3890 (($ $) 157 (|has| |#1| (-554)))) (-4041 (($ $) 133 (|has| |#1| (-554)))) (-4377 (((-883 (-544)) $) NIL (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#1| (-609 (-883 (-377))))) (($ (-404 $)) NIL (|has| |#1| (-554))) (((-533) $) 344 (|has| |#1| (-609 (-533))))) (-3392 (($ $ $) NIL (|has| |#1| (-471)))) (-2729 (($ $ $) NIL (|has| |#1| (-471)))) (-4353 (((-857) $) 404) (($ (-606 $)) 395) (($ (-1166)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-554))) (($ (-48)) 298 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) (($ (-1115 |#1| (-606 $))) 86 (|has| |#1| (-1042))) (($ (-406 |#1|)) NIL (|has| |#1| (-554))) (($ (-939 (-406 |#1|))) NIL (|has| |#1| (-554))) (($ (-406 (-939 (-406 |#1|)))) NIL (|has| |#1| (-554))) (($ (-406 (-939 |#1|))) NIL (|has| |#1| (-554))) (($ (-939 |#1|)) NIL (|has| |#1| (-1042))) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-554)) (|has| |#1| (-1031 (-406 (-544)))))) (($ (-544)) 34 (-3936 (|has| |#1| (-1031 (-544))) (|has| |#1| (-1042))))) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL (|has| |#1| (-1042)))) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-3487 (($ $ $) 208 (|has| |#1| (-554)))) (-3793 (($ $ $) 194 (|has| |#1| (-554)))) (-3795 (($ $ $) 198 (|has| |#1| (-554)))) (-3792 (($ $ $) 192 (|has| |#1| (-554)))) (-3794 (($ $ $) 196 (|has| |#1| (-554)))) (-2377 (((-112) (-113)) 9)) (-3897 (($ $) 171 (|has| |#1| (-554)))) (-3885 (($ $) 147 (|has| |#1| (-554)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 167 (|has| |#1| (-554)))) (-3883 (($ $) 143 (|has| |#1| (-554)))) (-3899 (($ $) 175 (|has| |#1| (-554)))) (-3887 (($ $) 151 (|has| |#1| (-554)))) (-1942 (($ (-1166) $) NIL) (($ (-1166) $ $) NIL) (($ (-1166) $ $ $) NIL) (($ (-1166) $ $ $ $) NIL) (($ (-1166) (-635 $)) NIL)) (-3797 (($ $) 202 (|has| |#1| (-554)))) (-3796 (($ $) 200 (|has| |#1| (-554)))) (-3900 (($ $) 177 (|has| |#1| (-554)))) (-3888 (($ $) 153 (|has| |#1| (-554)))) (-3898 (($ $) 173 (|has| |#1| (-554)))) (-3886 (($ $) 149 (|has| |#1| (-554)))) (-3896 (($ $) 169 (|has| |#1| (-554)))) (-3884 (($ $) 145 (|has| |#1| (-554)))) (-3787 (($ $) 180 (|has| |#1| (-554)))) (-3040 (($) 20 (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) CONST)) (-2382 (($ $) 231 (|has| |#1| (-554)))) (-3046 (($) 22 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-3791 (($ $) 182 (|has| |#1| (-554))) (($ $ $) 184 (|has| |#1| (-554)))) (-2383 (($ $) 229 (|has| |#1| (-554)))) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-2381 (($ $) 233 (|has| |#1| (-554)))) (-3788 (($ $ $) 186 (|has| |#1| (-554)))) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 79)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 78)) (-4356 (($ (-1115 |#1| (-606 $)) (-1115 |#1| (-606 $))) 96 (|has| |#1| (-554))) (($ $ $) 42 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-4244 (($ $ $) 40 (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (($ $) 29 (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-4246 (($ $ $) 38 (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (** (($ $ $) 63 (|has| |#1| (-554))) (($ $ (-406 (-544))) 300 (|has| |#1| (-554))) (($ $ (-544)) 74 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554)))) (($ $ (-765)) 71 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ $ (-912)) 76 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (* (($ (-406 (-544)) $) NIL (|has| |#1| (-554))) (($ $ (-406 (-544))) NIL (|has| |#1| (-554))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ (-544) $) 32 (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (($ (-765) $) NIL (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (($ (-912) $) NIL (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))))
+(((-313 |#1|) (-13 (-420 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-625)) (-6 (-1129)) (-15 -4249 ($ $)) (-15 -1735 ((-112) $)) (-15 -1734 ($ $ (-544))) (IF (|has| |#1| (-450)) (PROGN (-15 -3088 ((-404 (-1160 $)) (-1160 $))) (-15 -3089 ((-404 (-1160 $)) (-1160 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-544))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|))) (-844)) (T -313))
+((-4249 (*1 *1 *1) (-12 (-5 *1 (-313 *2)) (-4 *2 (-554)) (-4 *2 (-844)))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844)))) (-1734 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1)) (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1)) (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844)))))
+(-13 (-420 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-625)) (-6 (-1129)) (-15 -4249 ($ $)) (-15 -1735 ((-112) $)) (-15 -1734 ($ $ (-544))) (IF (|has| |#1| (-450)) (PROGN (-15 -3088 ((-404 (-1160 $)) (-1160 $))) (-15 -3089 ((-404 (-1160 $)) (-1160 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-544))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|)))
+((-4365 (((-313 |#2|) (-1 |#2| |#1|) (-313 |#1|)) 13)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -4365 ((-313 |#2|) (-1 |#2| |#1|) (-313 |#1|)))) (-844) (-844)) (T -314))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-313 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-5 *2 (-313 *6)) (-5 *1 (-314 *5 *6)))))
+(-10 -7 (-15 -4365 ((-313 |#2|) (-1 |#2| |#1|) (-313 |#1|))))
+((-4136 (((-51) |#2| (-292 |#2|) (-765)) 33) (((-51) |#2| (-292 |#2|)) 24) (((-51) |#2| (-765)) 28) (((-51) |#2|) 25) (((-51) (-1166)) 21)) (-4225 (((-51) |#2| (-292 |#2|) (-406 (-544))) 51) (((-51) |#2| (-292 |#2|)) 48) (((-51) |#2| (-406 (-544))) 50) (((-51) |#2|) 49) (((-51) (-1166)) 47)) (-4188 (((-51) |#2| (-292 |#2|) (-406 (-544))) 46) (((-51) |#2| (-292 |#2|)) 43) (((-51) |#2| (-406 (-544))) 45) (((-51) |#2|) 44) (((-51) (-1166)) 42)) (-4185 (((-51) |#2| (-292 |#2|) (-544)) 39) (((-51) |#2| (-292 |#2|)) 35) (((-51) |#2| (-544)) 38) (((-51) |#2|) 36) (((-51) (-1166)) 34)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -4136 ((-51) (-1166))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-765))) (-15 -4136 ((-51) |#2| (-292 |#2|))) (-15 -4136 ((-51) |#2| (-292 |#2|) (-765))) (-15 -4185 ((-51) (-1166))) (-15 -4185 ((-51) |#2|)) (-15 -4185 ((-51) |#2| (-544))) (-15 -4185 ((-51) |#2| (-292 |#2|))) (-15 -4185 ((-51) |#2| (-292 |#2|) (-544))) (-15 -4188 ((-51) (-1166))) (-15 -4188 ((-51) |#2|)) (-15 -4188 ((-51) |#2| (-406 (-544)))) (-15 -4188 ((-51) |#2| (-292 |#2|))) (-15 -4188 ((-51) |#2| (-292 |#2|) (-406 (-544)))) (-15 -4225 ((-51) (-1166))) (-15 -4225 ((-51) |#2|)) (-15 -4225 ((-51) |#2| (-406 (-544)))) (-15 -4225 ((-51) |#2| (-292 |#2|))) (-15 -4225 ((-51) |#2| (-292 |#2|) (-406 (-544))))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -315))
+((-4225 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-544))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) (-4188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-544))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4188 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) (-4185 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-544)) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-5 *5 (-765)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))))
+(-10 -7 (-15 -4136 ((-51) (-1166))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-765))) (-15 -4136 ((-51) |#2| (-292 |#2|))) (-15 -4136 ((-51) |#2| (-292 |#2|) (-765))) (-15 -4185 ((-51) (-1166))) (-15 -4185 ((-51) |#2|)) (-15 -4185 ((-51) |#2| (-544))) (-15 -4185 ((-51) |#2| (-292 |#2|))) (-15 -4185 ((-51) |#2| (-292 |#2|) (-544))) (-15 -4188 ((-51) (-1166))) (-15 -4188 ((-51) |#2|)) (-15 -4188 ((-51) |#2| (-406 (-544)))) (-15 -4188 ((-51) |#2| (-292 |#2|))) (-15 -4188 ((-51) |#2| (-292 |#2|) (-406 (-544)))) (-15 -4225 ((-51) (-1166))) (-15 -4225 ((-51) |#2|)) (-15 -4225 ((-51) |#2| (-406 (-544)))) (-15 -4225 ((-51) |#2| (-292 |#2|))) (-15 -4225 ((-51) |#2| (-292 |#2|) (-406 (-544)))))
+((-1736 (((-51) |#2| (-113) (-292 |#2|) (-635 |#2|)) 88) (((-51) |#2| (-113) (-292 |#2|) (-292 |#2|)) 84) (((-51) |#2| (-113) (-292 |#2|) |#2|) 86) (((-51) (-292 |#2|) (-113) (-292 |#2|) |#2|) 87) (((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|))) 80) (((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 |#2|)) 82) (((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 |#2|)) 83) (((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|))) 81) (((-51) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|)) 89) (((-51) (-292 |#2|) (-113) (-292 |#2|) (-292 |#2|)) 85)))
+(((-316 |#1| |#2|) (-10 -7 (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-635 |#2|)))) (-13 (-844) (-554) (-609 (-533))) (-420 |#1|)) (T -316))
+((-1736 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-5 *6 (-635 *3)) (-4 *3 (-420 *7)) (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *7 *3)))) (-1736 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-1736 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-1736 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-292 *5)) (-5 *4 (-113)) (-4 *5 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *5)))) (-1736 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-113))) (-5 *6 (-635 (-292 *8))) (-4 *8 (-420 *7)) (-5 *5 (-292 *8)) (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *7 *8)))) (-1736 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7)) (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *7)))) (-1736 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 (-292 *8))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *8)) (-5 *6 (-635 *8)) (-4 *8 (-420 *7)) (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *7 *8)))) (-1736 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7)) (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *7)))) (-1736 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-635 *7)) (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *7)))) (-1736 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-292 *6)) (-5 *4 (-113)) (-4 *6 (-420 *5)) (-4 *5 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *6)))))
+(-10 -7 (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-635 |#2|))))
+((-1738 (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544) (-1148)) 45) (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544)) 46) (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544) (-1148)) 42) (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544)) 43)) (-1737 (((-1 (-224) (-224)) (-224)) 44)))
+(((-317) (-10 -7 (-15 -1737 ((-1 (-224) (-224)) (-224))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544) (-1148))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544) (-1148))))) (T -317))
+((-1738 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-224)) (-5 *7 (-544)) (-5 *8 (-1148)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1738 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-224)) (-5 *7 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1738 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-544)) (-5 *7 (-1148)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1738 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1737 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
+(-10 -7 (-15 -1737 ((-1 (-224) (-224)) (-224))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544) (-1148))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544) (-1148))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 25)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 20)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 31)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) 16)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) NIL) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1739 (((-406 (-544)) $) 17)) (-3476 (($ (-1234 |#1| |#2| |#3|)) 11)) (-2536 (((-1234 |#1| |#2| |#3|) $) 12)) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 10)) (-4353 (((-857) $) 37) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 29)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 27)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 32)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-318 |#1| |#2| |#3|) (-13 (-1236 |#1|) (-786) (-10 -8 (-15 -3476 ($ (-1234 |#1| |#2| |#3|))) (-15 -2536 ((-1234 |#1| |#2| |#3|) $)) (-15 -1739 ((-406 (-544)) $)))) (-13 (-362) (-844)) (-1166) |#1|) (T -318))
+((-3476 (*1 *1 *2) (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-1234 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))))
+(-13 (-1236 |#1|) (-786) (-10 -8 (-15 -3476 ($ (-1234 |#1| |#2| |#3|))) (-15 -2536 ((-1234 |#1| |#2| |#3|) $)) (-15 -1739 ((-406 (-544)) $))))
+((-3394 (((-2 (|:| -2536 (-765)) (|:| -4361 |#1|) (|:| |radicand| (-635 |#1|))) (-404 |#1|) (-765)) 24)) (-4349 (((-635 (-2 (|:| -4361 (-765)) (|:| |logand| |#1|))) (-404 |#1|)) 28)))
+(((-319 |#1|) (-10 -7 (-15 -3394 ((-2 (|:| -2536 (-765)) (|:| -4361 |#1|) (|:| |radicand| (-635 |#1|))) (-404 |#1|) (-765))) (-15 -4349 ((-635 (-2 (|:| -4361 (-765)) (|:| |logand| |#1|))) (-404 |#1|)))) (-554)) (T -319))
+((-4349 (*1 *2 *3) (-12 (-5 *3 (-404 *4)) (-4 *4 (-554)) (-5 *2 (-635 (-2 (|:| -4361 (-765)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-404 *5)) (-4 *5 (-554)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *5) (|:| |radicand| (-635 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-765)))))
+(-10 -7 (-15 -3394 ((-2 (|:| -2536 (-765)) (|:| -4361 |#1|) (|:| |radicand| (-635 |#1|))) (-404 |#1|) (-765))) (-15 -4349 ((-635 (-2 (|:| -4361 (-765)) (|:| |logand| |#1|))) (-404 |#1|))))
+((-3467 (((-635 |#2|) (-1160 |#4|)) 43)) (-1744 ((|#3| (-544)) 46)) (-1742 (((-1160 |#4|) (-1160 |#3|)) 30)) (-1743 (((-1160 |#4|) (-1160 |#4|) (-544)) 55)) (-1741 (((-1160 |#3|) (-1160 |#4|)) 21)) (-4355 (((-635 (-765)) (-1160 |#4|) (-635 |#2|)) 40)) (-1740 (((-1160 |#3|) (-1160 |#4|) (-635 |#2|) (-635 |#3|)) 35)))
+(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1740 ((-1160 |#3|) (-1160 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4355 ((-635 (-765)) (-1160 |#4|) (-635 |#2|))) (-15 -3467 ((-635 |#2|) (-1160 |#4|))) (-15 -1741 ((-1160 |#3|) (-1160 |#4|))) (-15 -1742 ((-1160 |#4|) (-1160 |#3|))) (-15 -1743 ((-1160 |#4|) (-1160 |#4|) (-544))) (-15 -1744 (|#3| (-544)))) (-787) (-844) (-1042) (-943 |#3| |#1| |#2|)) (T -320))
+((-1744 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-943 *2 *4 *5)))) (-1743 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 *7)) (-5 *3 (-544)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *1 (-320 *4 *5 *6 *7)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1160 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1160 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-1160 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-635 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-4355 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *8)) (-5 *4 (-635 *6)) (-4 *6 (-844)) (-4 *8 (-943 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042)) (-5 *2 (-635 (-765))) (-5 *1 (-320 *5 *6 *7 *8)))) (-1740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-1160 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1740 ((-1160 |#3|) (-1160 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4355 ((-635 (-765)) (-1160 |#4|) (-635 |#2|))) (-15 -3467 ((-635 |#2|) (-1160 |#4|))) (-15 -1741 ((-1160 |#3|) (-1160 |#4|))) (-15 -1742 ((-1160 |#4|) (-1160 |#3|))) (-15 -1743 ((-1160 |#4|) (-1160 |#4|) (-544))) (-15 -1744 (|#3| (-544))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 14)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $) 18)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2813 ((|#1| $ (-544)) NIL)) (-1747 (((-544) $ (-544)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2410 (($ (-1 |#1| |#1|) $) NIL)) (-1746 (($ (-1 (-544) (-544)) $) 10)) (-3643 (((-1148) $) NIL)) (-1745 (($ $ $) NIL (|has| (-544) (-786)))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-4084 (((-544) |#1| $) NIL)) (-3040 (($) 15 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) 21 (|has| |#1| (-844)))) (-4244 (($ $) 11) (($ $ $) 20)) (-4246 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL) (($ (-544) |#1|) 19)))
+(((-321 |#1|) (-13 (-21) (-711 (-544)) (-322 |#1| (-544)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1091)) (T -321))
+NIL
+(-13 (-21) (-711 (-544)) (-322 |#1| (-544)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $) 27)) (-1391 (((-3 $ "failed") $ $) 19)) (-3521 (((-765) $) 28)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| "failed") $) 32)) (-3557 ((|#1| $) 33)) (-2813 ((|#1| $ (-544)) 25)) (-1747 ((|#2| $ (-544)) 26)) (-2410 (($ (-1 |#1| |#1|) $) 22)) (-1746 (($ (-1 |#2| |#2|) $) 23)) (-3643 (((-1148) $) 9)) (-1745 (($ $ $) 21 (|has| |#2| (-786)))) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ |#1|) 31)) (-4084 ((|#2| |#1| $) 24)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ |#2| |#1|) 29)))
+(((-322 |#1| |#2|) (-139) (-1091) (-130)) (T -322))
+((-4246 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)) (-5 *2 (-765)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)) (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1091)) (-4 *2 (-130)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1091)))) (-4084 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130)))) (-1746 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)))) (-1745 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130)) (-4 *3 (-786)))))
+(-13 (-130) (-1031 |t#1|) (-10 -8 (-15 -4246 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3521 ((-765) $)) (-15 -4180 ((-635 (-2 (|:| |gen| |t#1|) (|:| -4350 |t#2|))) $)) (-15 -1747 (|t#2| $ (-544))) (-15 -2813 (|t#1| $ (-544))) (-15 -4084 (|t#2| |t#1| $)) (-15 -1746 ($ (-1 |t#2| |t#2|) $)) (-15 -2410 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-786)) (-15 -1745 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-1031 |#1|) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2813 ((|#1| $ (-544)) NIL)) (-1747 (((-765) $ (-544)) NIL)) (-2410 (($ (-1 |#1| |#1|) $) NIL)) (-1746 (($ (-1 (-765) (-765)) $) NIL)) (-3643 (((-1148) $) NIL)) (-1745 (($ $ $) NIL (|has| (-765) (-786)))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-4084 (((-765) |#1| $) NIL)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-765) |#1|) NIL)))
+(((-323 |#1|) (-322 |#1| (-765)) (-1091)) (T -323))
NIL
(-322 |#1| (-765))
-((-4229 (($ $) 52)) (-3227 (($ $ |#2| |#3| $) 14)) (-1368 (($ (-1 |#3| |#3|) $) 33)) (-1530 (((-112) $) 24)) (-1542 ((|#2| $) 26)) (-1748 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-2125 ((|#2| $) 48)) (-1868 (((-638 |#2|) $) 36)) (-2803 (($ $ $ (-765)) 20)) (-1828 (($ $ |#2|) 40)))
-(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -4229 (|#1| |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2803 (|#1| |#1| |#1| (-765))) (-15 -3227 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1368 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1868 ((-638 |#2|) |#1|)) (-15 -1542 (|#2| |#1|)) (-15 -1530 ((-112) |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1828 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1042) (-786)) (T -324))
+((-3902 (($ $) 52)) (-1749 (($ $ |#2| |#3| $) 14)) (-1750 (($ (-1 |#3| |#3|) $) 33)) (-1944 (((-112) $) 24)) (-1943 ((|#2| $) 26)) (-3865 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-3199 ((|#2| $) 48)) (-4224 (((-635 |#2|) $) 36)) (-1748 (($ $ $ (-765)) 20)) (-4356 (($ $ |#2|) 40)))
+(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1748 (|#1| |#1| |#1| (-765))) (-15 -1749 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1750 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4356 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1042) (-786)) (T -324))
NIL
-(-10 -8 (-15 -4229 (|#1| |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2803 (|#1| |#1| |#1| (-765))) (-15 -3227 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1368 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1868 ((-638 |#2|) |#1|)) (-15 -1542 (|#2| |#1|)) (-15 -1530 ((-112) |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1828 (|#1| |#1| |#2|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 91 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 89 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 86)) (-3979 (((-561) $) 90 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 88 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 87)) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-4229 (($ $) 75 (|has| |#1| (-450)))) (-3227 (($ $ |#1| |#2| $) 79)) (-2252 (((-112) $) 31)) (-2044 (((-765) $) 82)) (-1750 (((-112) $) 65)) (-1381 (($ |#1| |#2|) 64)) (-1522 ((|#2| $) 81)) (-1368 (($ (-1 |#2| |#2|) $) 80)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1530 (((-112) $) 85)) (-1542 ((|#1| $) 84)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-553)))) (-3768 ((|#2| $) 67)) (-2125 ((|#1| $) 76 (|has| |#1| (-450)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50) (($ (-406 (-561))) 60 (-4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))))) (-1868 (((-638 |#1|) $) 83)) (-3932 ((|#1| $ |#2|) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2803 (($ $ $ (-765)) 78 (|has| |#1| (-171)))) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1748 (|#1| |#1| |#1| (-765))) (-15 -1749 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1750 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4356 (|#1| |#1| |#2|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 91 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 89 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 86)) (-3557 (((-544) $) 90 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 88 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 87)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 75 (|has| |#1| (-450)))) (-1749 (($ $ |#1| |#2| $) 79)) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 82)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64)) (-3202 ((|#2| $) 81)) (-1750 (($ (-1 |#2| |#2|) $) 80)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 85)) (-1943 ((|#1| $) 84)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-554)))) (-4355 ((|#2| $) 67)) (-3199 ((|#1| $) 76 (|has| |#1| (-450)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50) (($ (-406 (-544))) 60 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))))) (-4224 (((-635 |#1|) $) 83)) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 78 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
(((-325 |#1| |#2|) (-139) (-1042) (-786)) (T -325))
-((-1530 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-638 *3)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-765)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1368 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-3227 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-2803 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *3 (-171)))) (-1748 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-553)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-4229 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-450)))))
-(-13 (-47 |t#1| |t#2|) (-410 |t#1|) (-10 -8 (-15 -1530 ((-112) $)) (-15 -1542 (|t#1| $)) (-15 -1868 ((-638 |t#1|) $)) (-15 -2044 ((-765) $)) (-15 -1522 (|t#2| $)) (-15 -1368 ($ (-1 |t#2| |t#2|) $)) (-15 -3227 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -2803 ($ $ $ (-765))) |%noBranch|) (IF (|has| |t#1| (-553)) (-15 -1748 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -2125 (|t#1| $)) (-15 -4229 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-289) |has| |#1| (-553)) ((-410 |#1|) . T) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4083 (((-112) (-112)) NIL)) (-4207 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-3299 (($ $) NIL (|has| |#1| (-1090)))) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3716 (($ $ (-561)) NIL)) (-2340 (((-765) $) NIL)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-2289 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1617 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-4138 (($ (-638 |#1|)) NIL)) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-4335 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-2448 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4138 ($ (-638 |#1|))) (-15 -2340 ((-765) $)) (-15 -3716 ($ $ (-561))) (-15 -4083 ((-112) (-112))))) (-1205)) (T -326))
-((-4138 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-326 *3)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1205)))) (-3716 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-326 *3)) (-4 *3 (-1205)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1205)))))
-(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4138 ($ (-638 |#1|))) (-15 -2340 ((-765) $)) (-15 -3716 ($ $ (-561))) (-15 -4083 ((-112) (-112)))))
-((-2472 (((-112) $) 42)) (-2176 (((-765)) 22)) (-1736 ((|#2| $) 46) (($ $ (-914)) 100)) (-1386 (((-765)) 101)) (-3376 (($ (-1254 |#2|)) 20)) (-1892 (((-112) $) 114)) (-2072 ((|#2| $) 48) (($ $ (-914)) 98)) (-1588 (((-1162 |#2|) $) NIL) (((-1162 $) $ (-914)) 94)) (-2313 (((-1162 |#2|) $) 82)) (-1382 (((-1162 |#2|) $) 79) (((-3 (-1162 |#2|) "failed") $ $) 76)) (-2953 (($ $ (-1162 |#2|)) 53)) (-2794 (((-827 (-914))) 28) (((-914)) 43)) (-2390 (((-133)) 25)) (-3768 (((-827 (-914)) $) 30) (((-914) $) 116)) (-3341 (($) 107)) (-3752 (((-1254 |#2|) $) NIL) (((-682 |#2|) (-1254 $)) 39)) (-3666 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4024 (((-112) $) 41)))
-(((-327 |#1| |#2|) (-10 -8 (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -1386 ((-765))) (-15 -3666 (|#1| |#1|)) (-15 -1382 ((-3 (-1162 |#2|) "failed") |#1| |#1|)) (-15 -1382 ((-1162 |#2|) |#1|)) (-15 -2313 ((-1162 |#2|) |#1|)) (-15 -2953 (|#1| |#1| (-1162 |#2|))) (-15 -1892 ((-112) |#1|)) (-15 -3341 (|#1|)) (-15 -1736 (|#1| |#1| (-914))) (-15 -2072 (|#1| |#1| (-914))) (-15 -1588 ((-1162 |#1|) |#1| (-914))) (-15 -1736 (|#2| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -3768 ((-914) |#1|)) (-15 -2794 ((-914))) (-15 -1588 ((-1162 |#2|) |#1|)) (-15 -3376 (|#1| (-1254 |#2|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -2176 ((-765))) (-15 -2794 ((-827 (-914)))) (-15 -3768 ((-827 (-914)) |#1|)) (-15 -2472 ((-112) |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -2390 ((-133)))) (-328 |#2|) (-362)) (T -327))
-((-2390 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-2794 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-827 (-914))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-2176 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-2794 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-914)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-1386 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))))
-(-10 -8 (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -1386 ((-765))) (-15 -3666 (|#1| |#1|)) (-15 -1382 ((-3 (-1162 |#2|) "failed") |#1| |#1|)) (-15 -1382 ((-1162 |#2|) |#1|)) (-15 -2313 ((-1162 |#2|) |#1|)) (-15 -2953 (|#1| |#1| (-1162 |#2|))) (-15 -1892 ((-112) |#1|)) (-15 -3341 (|#1|)) (-15 -1736 (|#1| |#1| (-914))) (-15 -2072 (|#1| |#1| (-914))) (-15 -1588 ((-1162 |#1|) |#1| (-914))) (-15 -1736 (|#2| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -3768 ((-914) |#1|)) (-15 -2794 ((-914))) (-15 -1588 ((-1162 |#2|) |#1|)) (-15 -3376 (|#1| (-1254 |#2|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -2176 ((-765))) (-15 -2794 ((-827 (-914)))) (-15 -3768 ((-827 (-914)) |#1|)) (-15 -2472 ((-112) |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -2390 ((-133))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2472 (((-112) $) 95)) (-2176 (((-765)) 91)) (-1736 ((|#1| $) 141) (($ $ (-914)) 138 (|has| |#1| (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) 123 (|has| |#1| (-367)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-3698 (((-112) $ $) 60)) (-1386 (((-765)) 113 (|has| |#1| (-367)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 102)) (-3979 ((|#1| $) 103)) (-3376 (($ (-1254 |#1|)) 147)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1362 (($) 110 (|has| |#1| (-367)))) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-3985 (($) 125 (|has| |#1| (-367)))) (-3943 (((-112) $) 126 (|has| |#1| (-367)))) (-3598 (($ $ (-765)) 88 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) 72)) (-4027 (((-914) $) 128 (|has| |#1| (-367))) (((-827 (-914)) $) 85 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) 31)) (-1946 (($) 136 (|has| |#1| (-367)))) (-1892 (((-112) $) 135 (|has| |#1| (-367)))) (-2072 ((|#1| $) 142) (($ $ (-914)) 139 (|has| |#1| (-367)))) (-2436 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1588 (((-1162 |#1|) $) 146) (((-1162 $) $ (-914)) 140 (|has| |#1| (-367)))) (-1335 (((-914) $) 111 (|has| |#1| (-367)))) (-2313 (((-1162 |#1|) $) 132 (|has| |#1| (-367)))) (-1382 (((-1162 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-2953 (($ $ (-1162 |#1|)) 133 (|has| |#1| (-367)))) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-3767 (($) 115 (|has| |#1| (-367)) CONST)) (-2442 (($ (-914)) 112 (|has| |#1| (-367)))) (-3168 (((-112) $) 94)) (-1701 (((-1110) $) 10)) (-3194 (($) 134 (|has| |#1| (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 122 (|has| |#1| (-367)))) (-1633 (((-417 $) $) 75)) (-2794 (((-827 (-914))) 92) (((-914)) 144)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-2768 (((-765) $) 127 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 86 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) 100)) (-3922 (($ $) 119 (|has| |#1| (-367))) (($ $ (-765)) 117 (|has| |#1| (-367)))) (-3768 (((-827 (-914)) $) 93) (((-914) $) 143)) (-3158 (((-1162 |#1|)) 145)) (-2102 (($) 124 (|has| |#1| (-367)))) (-3341 (($) 137 (|has| |#1| (-367)))) (-3752 (((-1254 |#1|) $) 149) (((-682 |#1|) (-1254 $)) 148)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 121 (|has| |#1| (-367)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ |#1|) 101)) (-3666 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) 28)) (-2615 (((-1254 $)) 151) (((-1254 $) (-914)) 150)) (-3996 (((-112) $ $) 40)) (-4024 (((-112) $) 96)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1471 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-3154 (($ $) 118 (|has| |#1| (-367))) (($ $ (-765)) 116 (|has| |#1| (-367)))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 66) (($ $ |#1|) 99)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+((-1944 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-635 *3)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-765)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1750 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-1749 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-1748 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *3 (-171)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-554)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-450)))))
+(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -1944 ((-112) $)) (-15 -1943 (|t#1| $)) (-15 -4224 ((-635 |t#1|) $)) (-15 -2553 ((-765) $)) (-15 -3202 (|t#2| $)) (-15 -1750 ($ (-1 |t#2| |t#2|) $)) (-15 -1749 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -1748 ($ $ $ (-765))) |%noBranch|) (IF (|has| |t#1| (-554)) (-15 -3865 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3199 (|t#1| $)) (-15 -3902 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-411 |#1|) . T) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-2135 (((-112) (-112)) NIL)) (-4194 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-2498 (($ $) NIL (|has| |#1| (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2136 (($ $ (-544)) NIL)) (-2137 (((-765) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2138 (($ (-635 |#1|)) NIL)) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4197 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112))))) (-1204)) (T -326))
+((-2138 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-326 *3)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))))
+(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112)))))
+((-4339 (((-112) $) 42)) (-4336 (((-765)) 22)) (-3734 ((|#2| $) 46) (($ $ (-912)) 100)) (-3521 (((-765)) 101)) (-1939 (($ (-1253 |#2|)) 20)) (-2161 (((-112) $) 114)) (-3517 ((|#2| $) 48) (($ $ (-912)) 98)) (-2164 (((-1160 |#2|) $) NIL) (((-1160 $) $ (-912)) 94)) (-1752 (((-1160 |#2|) $) 82)) (-1751 (((-1160 |#2|) $) 79) (((-3 (-1160 |#2|) "failed") $ $) 76)) (-1753 (($ $ (-1160 |#2|)) 53)) (-4337 (((-826 (-912))) 28) (((-912)) 43)) (-4318 (((-133)) 25)) (-4355 (((-826 (-912)) $) 30) (((-912) $) 116)) (-1754 (($) 107)) (-3625 (((-1253 |#2|) $) NIL) (((-682 |#2|) (-1253 $)) 39)) (-3084 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4340 (((-112) $) 41)))
+(((-327 |#1| |#2|) (-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3521 ((-765))) (-15 -3084 (|#1| |#1|)) (-15 -1751 ((-3 (-1160 |#2|) "failed") |#1| |#1|)) (-15 -1751 ((-1160 |#2|) |#1|)) (-15 -1752 ((-1160 |#2|) |#1|)) (-15 -1753 (|#1| |#1| (-1160 |#2|))) (-15 -2161 ((-112) |#1|)) (-15 -1754 (|#1|)) (-15 -3734 (|#1| |#1| (-912))) (-15 -3517 (|#1| |#1| (-912))) (-15 -2164 ((-1160 |#1|) |#1| (-912))) (-15 -3734 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -4355 ((-912) |#1|)) (-15 -4337 ((-912))) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -4336 ((-765))) (-15 -4337 ((-826 (-912)))) (-15 -4355 ((-826 (-912)) |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|)) (-15 -4318 ((-133)))) (-328 |#2|) (-362)) (T -327))
+((-4318 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4337 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-826 (-912))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4336 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4337 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-912)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-3521 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))))
+(-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3521 ((-765))) (-15 -3084 (|#1| |#1|)) (-15 -1751 ((-3 (-1160 |#2|) "failed") |#1| |#1|)) (-15 -1751 ((-1160 |#2|) |#1|)) (-15 -1752 ((-1160 |#2|) |#1|)) (-15 -1753 (|#1| |#1| (-1160 |#2|))) (-15 -2161 ((-112) |#1|)) (-15 -1754 (|#1|)) (-15 -3734 (|#1| |#1| (-912))) (-15 -3517 (|#1| |#1| (-912))) (-15 -2164 ((-1160 |#1|) |#1| (-912))) (-15 -3734 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -4355 ((-912) |#1|)) (-15 -4337 ((-912))) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -4336 ((-765))) (-15 -4337 ((-826 (-912)))) (-15 -4355 ((-826 (-912)) |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|)) (-15 -4318 ((-133))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4339 (((-112) $) 95)) (-4336 (((-765)) 91)) (-3734 ((|#1| $) 141) (($ $ (-912)) 138 (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 123 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-3521 (((-765)) 113 (|has| |#1| (-367)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| "failed") $) 102)) (-3557 ((|#1| $) 103)) (-1939 (($ (-1253 |#1|)) 147)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-3377 (($) 110 (|has| |#1| (-367)))) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-3215 (($) 125 (|has| |#1| (-367)))) (-1824 (((-112) $) 126 (|has| |#1| (-367)))) (-1914 (($ $ (-765)) 88 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) 72)) (-4178 (((-912) $) 128 (|has| |#1| (-367))) (((-826 (-912)) $) 85 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) 31)) (-2163 (($) 136 (|has| |#1| (-367)))) (-2161 (((-112) $) 135 (|has| |#1| (-367)))) (-3517 ((|#1| $) 142) (($ $ (-912)) 139 (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2164 (((-1160 |#1|) $) 146) (((-1160 $) $ (-912)) 140 (|has| |#1| (-367)))) (-2160 (((-912) $) 111 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) 132 (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) 133 (|has| |#1| (-367)))) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3849 (($) 115 (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 112 (|has| |#1| (-367)))) (-4338 (((-112) $) 94)) (-3644 (((-1110) $) 10)) (-2544 (($) 134 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 122 (|has| |#1| (-367)))) (-4139 (((-404 $) $) 75)) (-4337 (((-826 (-912))) 92) (((-912)) 144)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-765) $) 127 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 86 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) 100)) (-4217 (($ $) 119 (|has| |#1| (-367))) (($ $ (-765)) 117 (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) 93) (((-912) $) 143)) (-3586 (((-1160 |#1|)) 145)) (-1818 (($) 124 (|has| |#1| (-367)))) (-1754 (($) 137 (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 149) (((-682 |#1|) (-1253 $)) 148)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 121 (|has| |#1| (-367)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ |#1|) 101)) (-3084 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 151) (((-1253 $) (-912)) 150)) (-2212 (((-112) $ $) 40)) (-4340 (((-112) $) 96)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-4335 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-3051 (($ $) 118 (|has| |#1| (-367))) (($ $ (-765)) 116 (|has| |#1| (-367)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66) (($ $ |#1|) 99)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
(((-328 |#1|) (-139) (-362)) (T -328))
-((-2615 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1254 *1)) (-4 *1 (-328 *3)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-914)) (-4 *4 (-362)) (-5 *2 (-1254 *1)) (-4 *1 (-328 *4)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1254 *3)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3)))) (-3158 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3)))) (-2794 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1588 (*1 *2 *1 *3) (-12 (-5 *3 (-914)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1162 *1)) (-4 *1 (-328 *4)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1736 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-3341 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-1946 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-3194 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1162 *3)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1162 *3)))) (-1382 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1162 *3)))))
-(-13 (-1273 |t#1|) (-1031 |t#1|) (-10 -8 (-15 -2615 ((-1254 $))) (-15 -2615 ((-1254 $) (-914))) (-15 -3752 ((-1254 |t#1|) $)) (-15 -3752 ((-682 |t#1|) (-1254 $))) (-15 -3376 ($ (-1254 |t#1|))) (-15 -1588 ((-1162 |t#1|) $)) (-15 -3158 ((-1162 |t#1|))) (-15 -2794 ((-914))) (-15 -3768 ((-914) $)) (-15 -2072 (|t#1| $)) (-15 -1736 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-348)) (-15 -1588 ((-1162 $) $ (-914))) (-15 -2072 ($ $ (-914))) (-15 -1736 ($ $ (-914))) (-15 -3341 ($)) (-15 -1946 ($)) (-15 -1892 ((-112) $)) (-15 -3194 ($)) (-15 -2953 ($ $ (-1162 |t#1|))) (-15 -2313 ((-1162 |t#1|) $)) (-15 -1382 ((-1162 |t#1|) $)) (-15 -1382 ((-3 (-1162 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4050 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1273 |#1|) . T) ((-362) . T) ((-401) -4050 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-348) |has| |#1| (-367)) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-367)) ((-1209) . T) ((-1261 |#1|) . T))
-((-4053 (((-112) $ $) NIL)) (-1692 (($ (-1165) $) 87)) (-3342 (($) 76)) (-2381 (((-1110) (-1110)) 9)) (-2663 (($) 77)) (-2398 (($) 89) (($ (-315 (-692))) 97) (($ (-315 (-694))) 93) (($ (-315 (-687))) 101) (($ (-315 (-378))) 108) (($ (-315 (-561))) 104) (($ (-315 (-168 (-378)))) 112)) (-3031 (($ (-1165) $) 88)) (-2939 (($ (-638 (-856))) 78)) (-2681 (((-1259) $) 74)) (-1808 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1767 (($ (-1110)) 50)) (-1821 (((-1094) $) 24)) (-3074 (($ (-1082 (-945 (-561))) $) 84) (($ (-1082 (-945 (-561))) (-945 (-561)) $) 85)) (-4121 (($ (-1110)) 86)) (-2962 (($ (-1165) $) 114) (($ (-1165) $ $) 115)) (-3109 (($ (-1166) (-638 (-1166))) 75)) (-2703 (($ (-1148)) 81) (($ (-638 (-1148))) 79)) (-4064 (((-856) $) 117)) (-3529 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2508 (-112)) (|:| -2506 (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |blockBranch| (-638 $)) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2185 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3316 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3316 $))) (|:| |commonBranch| (-2 (|:| -3305 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856)))) $) 43)) (-1389 (($ (-1148)) 186)) (-2971 (($ (-638 $)) 113)) (-3355 (($ (-1166) (-1148)) 119) (($ (-1166) (-315 (-694))) 159) (($ (-1166) (-315 (-692))) 160) (($ (-1166) (-315 (-687))) 161) (($ (-1166) (-682 (-694))) 122) (($ (-1166) (-682 (-692))) 125) (($ (-1166) (-682 (-687))) 128) (($ (-1166) (-1254 (-694))) 131) (($ (-1166) (-1254 (-692))) 134) (($ (-1166) (-1254 (-687))) 137) (($ (-1166) (-682 (-315 (-694)))) 140) (($ (-1166) (-682 (-315 (-692)))) 143) (($ (-1166) (-682 (-315 (-687)))) 146) (($ (-1166) (-1254 (-315 (-694)))) 149) (($ (-1166) (-1254 (-315 (-692)))) 152) (($ (-1166) (-1254 (-315 (-687)))) 155) (($ (-1166) (-638 (-945 (-561))) (-315 (-694))) 156) (($ (-1166) (-638 (-945 (-561))) (-315 (-692))) 157) (($ (-1166) (-638 (-945 (-561))) (-315 (-687))) 158) (($ (-1166) (-315 (-561))) 183) (($ (-1166) (-315 (-378))) 184) (($ (-1166) (-315 (-168 (-378)))) 185) (($ (-1166) (-682 (-315 (-561)))) 164) (($ (-1166) (-682 (-315 (-378)))) 167) (($ (-1166) (-682 (-315 (-168 (-378))))) 170) (($ (-1166) (-1254 (-315 (-561)))) 173) (($ (-1166) (-1254 (-315 (-378)))) 176) (($ (-1166) (-1254 (-315 (-168 (-378))))) 179) (($ (-1166) (-638 (-945 (-561))) (-315 (-561))) 180) (($ (-1166) (-638 (-945 (-561))) (-315 (-378))) 181) (($ (-1166) (-638 (-945 (-561))) (-315 (-168 (-378)))) 182)) (-1723 (((-112) $ $) NIL)))
-(((-329) (-13 (-1090) (-10 -8 (-15 -3074 ($ (-1082 (-945 (-561))) $)) (-15 -3074 ($ (-1082 (-945 (-561))) (-945 (-561)) $)) (-15 -1692 ($ (-1165) $)) (-15 -3031 ($ (-1165) $)) (-15 -1767 ($ (-1110))) (-15 -4121 ($ (-1110))) (-15 -2703 ($ (-1148))) (-15 -2703 ($ (-638 (-1148)))) (-15 -1389 ($ (-1148))) (-15 -2398 ($)) (-15 -2398 ($ (-315 (-692)))) (-15 -2398 ($ (-315 (-694)))) (-15 -2398 ($ (-315 (-687)))) (-15 -2398 ($ (-315 (-378)))) (-15 -2398 ($ (-315 (-561)))) (-15 -2398 ($ (-315 (-168 (-378))))) (-15 -2962 ($ (-1165) $)) (-15 -2962 ($ (-1165) $ $)) (-15 -3355 ($ (-1166) (-1148))) (-15 -3355 ($ (-1166) (-315 (-694)))) (-15 -3355 ($ (-1166) (-315 (-692)))) (-15 -3355 ($ (-1166) (-315 (-687)))) (-15 -3355 ($ (-1166) (-682 (-694)))) (-15 -3355 ($ (-1166) (-682 (-692)))) (-15 -3355 ($ (-1166) (-682 (-687)))) (-15 -3355 ($ (-1166) (-1254 (-694)))) (-15 -3355 ($ (-1166) (-1254 (-692)))) (-15 -3355 ($ (-1166) (-1254 (-687)))) (-15 -3355 ($ (-1166) (-682 (-315 (-694))))) (-15 -3355 ($ (-1166) (-682 (-315 (-692))))) (-15 -3355 ($ (-1166) (-682 (-315 (-687))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-694))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-692))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-687))))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-694)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-692)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-687)))) (-15 -3355 ($ (-1166) (-315 (-561)))) (-15 -3355 ($ (-1166) (-315 (-378)))) (-15 -3355 ($ (-1166) (-315 (-168 (-378))))) (-15 -3355 ($ (-1166) (-682 (-315 (-561))))) (-15 -3355 ($ (-1166) (-682 (-315 (-378))))) (-15 -3355 ($ (-1166) (-682 (-315 (-168 (-378)))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-561))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-378))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-168 (-378)))))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-561)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-378)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-168 (-378))))) (-15 -2971 ($ (-638 $))) (-15 -3342 ($)) (-15 -2663 ($)) (-15 -2939 ($ (-638 (-856)))) (-15 -3109 ($ (-1166) (-638 (-1166)))) (-15 -1808 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3529 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2508 (-112)) (|:| -2506 (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |blockBranch| (-638 $)) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2185 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3316 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3316 $))) (|:| |commonBranch| (-2 (|:| -3305 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856)))) $)) (-15 -2681 ((-1259) $)) (-15 -1821 ((-1094) $)) (-15 -2381 ((-1110) (-1110)))))) (T -329))
-((-3074 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *1 (-329)))) (-3074 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *3 (-945 (-561))) (-5 *1 (-329)))) (-1692 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-3031 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-4121 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-329)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-2398 (*1 *1) (-5 *1 (-329))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-315 (-692))) (-5 *1 (-329)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-315 (-694))) (-5 *1 (-329)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-315 (-687))) (-5 *1 (-329)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-329)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2962 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-2962 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-694))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-692))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-687))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-694))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-692))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-687))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-694)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-692)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-687)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-694)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-692)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-687)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-694))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-692))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-687))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-561))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-561)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-378)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-561)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-378)))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-561))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-378))) (-5 *1 (-329)))) (-3355 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-5 *1 (-329)))) (-3342 (*1 *1) (-5 *1 (-329))) (-2663 (*1 *1) (-5 *1 (-329))) (-2939 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-329)))) (-3109 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -2508 (-112)) (|:| -2506 (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |blockBranch| (-638 (-329))) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2185 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3316 (-329)))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3316 (-329)))) (|:| |commonBranch| (-2 (|:| -3305 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856))))) (-5 *1 (-329)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-329)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-329)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
-(-13 (-1090) (-10 -8 (-15 -3074 ($ (-1082 (-945 (-561))) $)) (-15 -3074 ($ (-1082 (-945 (-561))) (-945 (-561)) $)) (-15 -1692 ($ (-1165) $)) (-15 -3031 ($ (-1165) $)) (-15 -1767 ($ (-1110))) (-15 -4121 ($ (-1110))) (-15 -2703 ($ (-1148))) (-15 -2703 ($ (-638 (-1148)))) (-15 -1389 ($ (-1148))) (-15 -2398 ($)) (-15 -2398 ($ (-315 (-692)))) (-15 -2398 ($ (-315 (-694)))) (-15 -2398 ($ (-315 (-687)))) (-15 -2398 ($ (-315 (-378)))) (-15 -2398 ($ (-315 (-561)))) (-15 -2398 ($ (-315 (-168 (-378))))) (-15 -2962 ($ (-1165) $)) (-15 -2962 ($ (-1165) $ $)) (-15 -3355 ($ (-1166) (-1148))) (-15 -3355 ($ (-1166) (-315 (-694)))) (-15 -3355 ($ (-1166) (-315 (-692)))) (-15 -3355 ($ (-1166) (-315 (-687)))) (-15 -3355 ($ (-1166) (-682 (-694)))) (-15 -3355 ($ (-1166) (-682 (-692)))) (-15 -3355 ($ (-1166) (-682 (-687)))) (-15 -3355 ($ (-1166) (-1254 (-694)))) (-15 -3355 ($ (-1166) (-1254 (-692)))) (-15 -3355 ($ (-1166) (-1254 (-687)))) (-15 -3355 ($ (-1166) (-682 (-315 (-694))))) (-15 -3355 ($ (-1166) (-682 (-315 (-692))))) (-15 -3355 ($ (-1166) (-682 (-315 (-687))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-694))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-692))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-687))))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-694)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-692)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-687)))) (-15 -3355 ($ (-1166) (-315 (-561)))) (-15 -3355 ($ (-1166) (-315 (-378)))) (-15 -3355 ($ (-1166) (-315 (-168 (-378))))) (-15 -3355 ($ (-1166) (-682 (-315 (-561))))) (-15 -3355 ($ (-1166) (-682 (-315 (-378))))) (-15 -3355 ($ (-1166) (-682 (-315 (-168 (-378)))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-561))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-378))))) (-15 -3355 ($ (-1166) (-1254 (-315 (-168 (-378)))))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-561)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-378)))) (-15 -3355 ($ (-1166) (-638 (-945 (-561))) (-315 (-168 (-378))))) (-15 -2971 ($ (-638 $))) (-15 -3342 ($)) (-15 -2663 ($)) (-15 -2939 ($ (-638 (-856)))) (-15 -3109 ($ (-1166) (-638 (-1166)))) (-15 -1808 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3529 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2508 (-112)) (|:| -2506 (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856)))))) (|:| |blockBranch| (-638 $)) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2185 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3316 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3316 $))) (|:| |commonBranch| (-2 (|:| -3305 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856)))) $)) (-15 -2681 ((-1259) $)) (-15 -1821 ((-1094) $)) (-15 -2381 ((-1110) (-1110)))))
-((-4053 (((-112) $ $) NIL)) (-3090 (((-112) $) 11)) (-4085 (($ |#1|) 8)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4097 (($ |#1|) 9)) (-4064 (((-856) $) 17)) (-2774 ((|#1| $) 12)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 19)))
-(((-330 |#1|) (-13 (-844) (-10 -8 (-15 -4085 ($ |#1|)) (-15 -4097 ($ |#1|)) (-15 -3090 ((-112) $)) (-15 -2774 (|#1| $)))) (-844)) (T -330))
-((-4085 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-4097 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844)))) (-2774 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))))
-(-13 (-844) (-10 -8 (-15 -4085 ($ |#1|)) (-15 -4097 ($ |#1|)) (-15 -3090 ((-112) $)) (-15 -2774 (|#1| $))))
-((-1631 (((-329) (-1166) (-945 (-561))) 23)) (-2288 (((-329) (-1166) (-945 (-561))) 27)) (-2574 (((-329) (-1166) (-1082 (-945 (-561))) (-1082 (-945 (-561)))) 26) (((-329) (-1166) (-945 (-561)) (-945 (-561))) 24)) (-2244 (((-329) (-1166) (-945 (-561))) 31)))
-(((-331) (-10 -7 (-15 -1631 ((-329) (-1166) (-945 (-561)))) (-15 -2574 ((-329) (-1166) (-945 (-561)) (-945 (-561)))) (-15 -2574 ((-329) (-1166) (-1082 (-945 (-561))) (-1082 (-945 (-561))))) (-15 -2288 ((-329) (-1166) (-945 (-561)))) (-15 -2244 ((-329) (-1166) (-945 (-561)))))) (T -331))
-((-2244 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2574 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-945 (-561)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2574 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1631 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))))
-(-10 -7 (-15 -1631 ((-329) (-1166) (-945 (-561)))) (-15 -2574 ((-329) (-1166) (-945 (-561)) (-945 (-561)))) (-15 -2574 ((-329) (-1166) (-1082 (-945 (-561))) (-1082 (-945 (-561))))) (-15 -2288 ((-329) (-1166) (-945 (-561)))) (-15 -2244 ((-329) (-1166) (-945 (-561)))))
-((-4165 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33)))
-(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4165 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-362) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1230 |#5|) (-1230 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -332))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1230 *9)) (-4 *11 (-1230 (-406 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11)))))
-(-10 -7 (-15 -4165 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|))))
-((-1837 (((-112) $) 14)))
-(((-333 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1837 ((-112) |#1|))) (-334 |#2| |#3| |#4| |#5|) (-362) (-1230 |#2|) (-1230 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -333))
-NIL
-(-10 -8 (-15 -1837 ((-112) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3176 (($ $) 26)) (-1837 (((-112) $) 25)) (-1883 (((-1148) $) 9)) (-3595 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-1701 (((-1110) $) 10)) (-3194 (((-3 |#4| "failed") $) 24)) (-4360 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-561)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4261 (((-2 (|:| -1418 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20)))
-(((-334 |#1| |#2| |#3| |#4|) (-139) (-362) (-1230 |t#1|) (-1230 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -334))
-((-3595 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-4360 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-334 *3 *4 *5 *6)))) (-4360 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-4360 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1230 *2)) (-4 *4 (-1230 (-406 *3))) (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-4360 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-561)) (-4 *2 (-362)) (-4 *4 (-1230 *2)) (-4 *5 (-1230 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -1418 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1230 *2)) (-4 *4 (-1230 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-3194 (*1 *2 *1) (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-4360 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 (-406 *3))) (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3595 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -4360 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -4360 ($ |t#4|)) (-15 -4360 ($ |t#1| |t#1|)) (-15 -4360 ($ |t#1| |t#1| (-561))) (-15 -4261 ((-2 (|:| -1418 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3176 ($ $)) (-15 -1837 ((-112) $)) (-15 -3194 ((-3 |t#4| "failed") $)) (-15 -4360 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3176 (($ $) 33)) (-1837 (((-112) $) NIL)) (-1883 (((-1148) $) NIL)) (-4169 (((-1254 |#4|) $) 125)) (-3595 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-1701 (((-1110) $) NIL)) (-3194 (((-3 |#4| "failed") $) 36)) (-1823 (((-1254 |#4|) $) 118)) (-4360 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-561)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4261 (((-2 (|:| -1418 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4064 (((-856) $) 17)) (-2246 (($) 14 T CONST)) (-1723 (((-112) $ $) 20)) (-1819 (($ $) 27) (($ $ $) NIL)) (-1810 (($ $ $) 25)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 23)))
-(((-335 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1823 ((-1254 |#4|) $)) (-15 -4169 ((-1254 |#4|) $)))) (-362) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -335))
-((-1823 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-1254 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-4169 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-1254 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))))
-(-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1823 ((-1254 |#4|) $)) (-15 -4169 ((-1254 |#4|) $))))
-((-1436 (($ $ (-1166) |#2|) NIL) (($ $ (-638 (-1166)) (-638 |#2|)) 20) (($ $ (-638 (-293 |#2|))) 15) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-638 |#2|) (-638 |#2|)) NIL)) (-2315 (($ $ |#2|) 11)))
-(((-336 |#1| |#2|) (-10 -8 (-15 -2315 (|#1| |#1| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#2| |#2|)) (-15 -1436 (|#1| |#1| (-293 |#2|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 |#2|))) (-15 -1436 (|#1| |#1| (-1166) |#2|))) (-337 |#2|) (-1090)) (T -336))
-NIL
-(-10 -8 (-15 -2315 (|#1| |#1| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#2| |#2|)) (-15 -1436 (|#1| |#1| (-293 |#2|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 |#2|))) (-15 -1436 (|#1| |#1| (-1166) |#2|)))
-((-4165 (($ (-1 |#1| |#1|) $) 6)) (-1436 (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 16 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-638 (-293 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-638 |#1|) (-638 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-2315 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|)))))
-(((-337 |#1|) (-139) (-1090)) (T -337))
-((-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1090)))))
-(-13 (-10 -8 (-15 -4165 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512 (-1166) |t#1|)) (-6 (-512 (-1166) |t#1|)) |%noBranch|)))
+((-2162 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *3)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-912)) (-4 *4 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *4)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1253 *3)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3)))) (-3586 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3)))) (-4337 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-2164 (*1 *2 *1 *3) (-12 (-5 *3 (-912)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1160 *1)) (-4 *1 (-328 *4)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1754 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2163 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2161 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-2544 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-1753 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3)))) (-1751 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3)))))
+(-13 (-1272 |t#1|) (-1031 |t#1|) (-10 -8 (-15 -2162 ((-1253 $))) (-15 -2162 ((-1253 $) (-912))) (-15 -3625 ((-1253 |t#1|) $)) (-15 -3625 ((-682 |t#1|) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|))) (-15 -2164 ((-1160 |t#1|) $)) (-15 -3586 ((-1160 |t#1|))) (-15 -4337 ((-912))) (-15 -4355 ((-912) $)) (-15 -3517 (|t#1| $)) (-15 -3734 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-349)) (-15 -2164 ((-1160 $) $ (-912))) (-15 -3517 ($ $ (-912))) (-15 -3734 ($ $ (-912))) (-15 -1754 ($)) (-15 -2163 ($)) (-15 -2161 ((-112) $)) (-15 -2544 ($)) (-15 -1753 ($ $ (-1160 |t#1|))) (-15 -1752 ((-1160 |t#1|) $)) (-15 -1751 ((-1160 |t#1|) $)) (-15 -1751 ((-3 (-1160 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1272 |#1|) . T) ((-362) . T) ((-401) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-349) |has| |#1| (-367)) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-367)) ((-1209) . T) ((-1261 |#1|) . T))
+((-2947 (((-112) $ $) NIL)) (-1772 (($ (-1165) $) 87)) (-1763 (($) 76)) (-1755 (((-1110) (-1110)) 9)) (-1762 (($) 77)) (-1766 (($) 89) (($ (-313 (-692))) 97) (($ (-313 (-694))) 93) (($ (-313 (-687))) 101) (($ (-313 (-377))) 108) (($ (-313 (-544))) 104) (($ (-313 (-167 (-377)))) 112)) (-1771 (($ (-1165) $) 88)) (-1761 (($ (-635 (-857))) 78)) (-1757 (((-1259) $) 74)) (-1759 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1770 (($ (-1110)) 50)) (-1756 (((-1093) $) 24)) (-1773 (($ (-1082 (-939 (-544))) $) 84) (($ (-1082 (-939 (-544))) (-939 (-544)) $) 85)) (-1769 (($ (-1110)) 86)) (-1765 (($ (-1165) $) 114) (($ (-1165) $ $) 115)) (-1760 (($ (-1166) (-635 (-1166))) 75)) (-1768 (($ (-1148)) 81) (($ (-635 (-1148))) 79)) (-4353 (((-857) $) 117)) (-1758 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 $))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857)))) $) 43)) (-1767 (($ (-1148)) 186)) (-1764 (($ (-635 $)) 113)) (-2965 (($ (-1166) (-1148)) 119) (($ (-1166) (-313 (-694))) 159) (($ (-1166) (-313 (-692))) 160) (($ (-1166) (-313 (-687))) 161) (($ (-1166) (-682 (-694))) 122) (($ (-1166) (-682 (-692))) 125) (($ (-1166) (-682 (-687))) 128) (($ (-1166) (-1253 (-694))) 131) (($ (-1166) (-1253 (-692))) 134) (($ (-1166) (-1253 (-687))) 137) (($ (-1166) (-682 (-313 (-694)))) 140) (($ (-1166) (-682 (-313 (-692)))) 143) (($ (-1166) (-682 (-313 (-687)))) 146) (($ (-1166) (-1253 (-313 (-694)))) 149) (($ (-1166) (-1253 (-313 (-692)))) 152) (($ (-1166) (-1253 (-313 (-687)))) 155) (($ (-1166) (-635 (-939 (-544))) (-313 (-694))) 156) (($ (-1166) (-635 (-939 (-544))) (-313 (-692))) 157) (($ (-1166) (-635 (-939 (-544))) (-313 (-687))) 158) (($ (-1166) (-313 (-544))) 183) (($ (-1166) (-313 (-377))) 184) (($ (-1166) (-313 (-167 (-377)))) 185) (($ (-1166) (-682 (-313 (-544)))) 164) (($ (-1166) (-682 (-313 (-377)))) 167) (($ (-1166) (-682 (-313 (-167 (-377))))) 170) (($ (-1166) (-1253 (-313 (-544)))) 173) (($ (-1166) (-1253 (-313 (-377)))) 176) (($ (-1166) (-1253 (-313 (-167 (-377))))) 179) (($ (-1166) (-635 (-939 (-544))) (-313 (-544))) 180) (($ (-1166) (-635 (-939 (-544))) (-313 (-377))) 181) (($ (-1166) (-635 (-939 (-544))) (-313 (-167 (-377)))) 182)) (-3437 (((-112) $ $) NIL)))
+(((-329) (-13 (-1091) (-10 -8 (-15 -1773 ($ (-1082 (-939 (-544))) $)) (-15 -1773 ($ (-1082 (-939 (-544))) (-939 (-544)) $)) (-15 -1772 ($ (-1165) $)) (-15 -1771 ($ (-1165) $)) (-15 -1770 ($ (-1110))) (-15 -1769 ($ (-1110))) (-15 -1768 ($ (-1148))) (-15 -1768 ($ (-635 (-1148)))) (-15 -1767 ($ (-1148))) (-15 -1766 ($)) (-15 -1766 ($ (-313 (-692)))) (-15 -1766 ($ (-313 (-694)))) (-15 -1766 ($ (-313 (-687)))) (-15 -1766 ($ (-313 (-377)))) (-15 -1766 ($ (-313 (-544)))) (-15 -1766 ($ (-313 (-167 (-377))))) (-15 -1765 ($ (-1165) $)) (-15 -1765 ($ (-1165) $ $)) (-15 -2965 ($ (-1166) (-1148))) (-15 -2965 ($ (-1166) (-313 (-694)))) (-15 -2965 ($ (-1166) (-313 (-692)))) (-15 -2965 ($ (-1166) (-313 (-687)))) (-15 -2965 ($ (-1166) (-682 (-694)))) (-15 -2965 ($ (-1166) (-682 (-692)))) (-15 -2965 ($ (-1166) (-682 (-687)))) (-15 -2965 ($ (-1166) (-1253 (-694)))) (-15 -2965 ($ (-1166) (-1253 (-692)))) (-15 -2965 ($ (-1166) (-1253 (-687)))) (-15 -2965 ($ (-1166) (-682 (-313 (-694))))) (-15 -2965 ($ (-1166) (-682 (-313 (-692))))) (-15 -2965 ($ (-1166) (-682 (-313 (-687))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-694))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-692))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-687))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-694)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-692)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-687)))) (-15 -2965 ($ (-1166) (-313 (-544)))) (-15 -2965 ($ (-1166) (-313 (-377)))) (-15 -2965 ($ (-1166) (-313 (-167 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-544))))) (-15 -2965 ($ (-1166) (-682 (-313 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-544))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-377))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-544)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-377)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-167 (-377))))) (-15 -1764 ($ (-635 $))) (-15 -1763 ($)) (-15 -1762 ($)) (-15 -1761 ($ (-635 (-857)))) (-15 -1760 ($ (-1166) (-635 (-1166)))) (-15 -1759 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1758 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 $))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857)))) $)) (-15 -1757 ((-1259) $)) (-15 -1756 ((-1093) $)) (-15 -1755 ((-1110) (-1110)))))) (T -329))
+((-1773 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *1 (-329)))) (-1773 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *3 (-939 (-544))) (-5 *1 (-329)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1771 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-329)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-1766 (*1 *1) (-5 *1 (-329))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-692))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-694))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-687))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-329)))) (-1765 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1765 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-694)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-692)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-687)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-694)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-692)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-687)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-544))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-377))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-167 (-377)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-544)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-377)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-167 (-377))))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-544)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-377)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-167 (-377))))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-544))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-377))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-167 (-377)))) (-5 *1 (-329)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329)))) (-1763 (*1 *1) (-5 *1 (-329))) (-1762 (*1 *1) (-5 *1 (-329))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-329)))) (-1760 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 (-329))) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 (-329)))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 (-329)))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857))))) (-5 *1 (-329)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-329)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-329)))) (-1755 (*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(-13 (-1091) (-10 -8 (-15 -1773 ($ (-1082 (-939 (-544))) $)) (-15 -1773 ($ (-1082 (-939 (-544))) (-939 (-544)) $)) (-15 -1772 ($ (-1165) $)) (-15 -1771 ($ (-1165) $)) (-15 -1770 ($ (-1110))) (-15 -1769 ($ (-1110))) (-15 -1768 ($ (-1148))) (-15 -1768 ($ (-635 (-1148)))) (-15 -1767 ($ (-1148))) (-15 -1766 ($)) (-15 -1766 ($ (-313 (-692)))) (-15 -1766 ($ (-313 (-694)))) (-15 -1766 ($ (-313 (-687)))) (-15 -1766 ($ (-313 (-377)))) (-15 -1766 ($ (-313 (-544)))) (-15 -1766 ($ (-313 (-167 (-377))))) (-15 -1765 ($ (-1165) $)) (-15 -1765 ($ (-1165) $ $)) (-15 -2965 ($ (-1166) (-1148))) (-15 -2965 ($ (-1166) (-313 (-694)))) (-15 -2965 ($ (-1166) (-313 (-692)))) (-15 -2965 ($ (-1166) (-313 (-687)))) (-15 -2965 ($ (-1166) (-682 (-694)))) (-15 -2965 ($ (-1166) (-682 (-692)))) (-15 -2965 ($ (-1166) (-682 (-687)))) (-15 -2965 ($ (-1166) (-1253 (-694)))) (-15 -2965 ($ (-1166) (-1253 (-692)))) (-15 -2965 ($ (-1166) (-1253 (-687)))) (-15 -2965 ($ (-1166) (-682 (-313 (-694))))) (-15 -2965 ($ (-1166) (-682 (-313 (-692))))) (-15 -2965 ($ (-1166) (-682 (-313 (-687))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-694))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-692))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-687))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-694)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-692)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-687)))) (-15 -2965 ($ (-1166) (-313 (-544)))) (-15 -2965 ($ (-1166) (-313 (-377)))) (-15 -2965 ($ (-1166) (-313 (-167 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-544))))) (-15 -2965 ($ (-1166) (-682 (-313 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-544))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-377))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-544)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-377)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-167 (-377))))) (-15 -1764 ($ (-635 $))) (-15 -1763 ($)) (-15 -1762 ($)) (-15 -1761 ($ (-635 (-857)))) (-15 -1760 ($ (-1166) (-635 (-1166)))) (-15 -1759 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1758 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 $))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857)))) $)) (-15 -1757 ((-1259) $)) (-15 -1756 ((-1093) $)) (-15 -1755 ((-1110) (-1110)))))
+((-2947 (((-112) $ $) NIL)) (-1774 (((-112) $) 11)) (-4045 (($ |#1|) 8)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4041 (($ |#1|) 9)) (-4353 (((-857) $) 17)) (-2357 ((|#1| $) 12)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 19)))
+(((-330 |#1|) (-13 (-844) (-10 -8 (-15 -4045 ($ |#1|)) (-15 -4041 ($ |#1|)) (-15 -1774 ((-112) $)) (-15 -2357 (|#1| $)))) (-844)) (T -330))
+((-4045 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-4041 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844)))) (-2357 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))))
+(-13 (-844) (-10 -8 (-15 -4045 ($ |#1|)) (-15 -4041 ($ |#1|)) (-15 -1774 ((-112) $)) (-15 -2357 (|#1| $))))
+((-1775 (((-329) (-1166) (-939 (-544))) 23)) (-1776 (((-329) (-1166) (-939 (-544))) 27)) (-2451 (((-329) (-1166) (-1082 (-939 (-544))) (-1082 (-939 (-544)))) 26) (((-329) (-1166) (-939 (-544)) (-939 (-544))) 24)) (-1777 (((-329) (-1166) (-939 (-544))) 31)))
+(((-331) (-10 -7 (-15 -1775 ((-329) (-1166) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-939 (-544)) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-1082 (-939 (-544))) (-1082 (-939 (-544))))) (-15 -1776 ((-329) (-1166) (-939 (-544)))) (-15 -1777 ((-329) (-1166) (-939 (-544)))))) (T -331))
+((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2451 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-939 (-544)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2451 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1775 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))))
+(-10 -7 (-15 -1775 ((-329) (-1166) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-939 (-544)) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-1082 (-939 (-544))) (-1082 (-939 (-544))))) (-15 -1776 ((-329) (-1166) (-939 (-544)))) (-15 -1777 ((-329) (-1166) (-939 (-544)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ $) 33)) (-1780 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-1778 (((-1253 |#4|) $) 125)) (-2120 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-3644 (((-1110) $) NIL)) (-2544 (((-3 |#4| "failed") $) 36)) (-1779 (((-1253 |#4|) $) 118)) (-1781 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-544)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3839 (((-2 (|:| -2459 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4353 (((-857) $) 17)) (-3040 (($) 14 T CONST)) (-3437 (((-112) $ $) 20)) (-4244 (($ $) 27) (($ $ $) NIL)) (-4246 (($ $ $) 25)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 23)))
+(((-332 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1779 ((-1253 |#4|) $)) (-15 -1778 ((-1253 |#4|) $)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -332))
+((-1779 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-1778 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))))
+(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1779 ((-1253 |#4|) $)) (-15 -1778 ((-1253 |#4|) $))))
+((-4365 (((-332 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-332 |#1| |#2| |#3| |#4|)) 33)))
+(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 ((-332 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-332 |#1| |#2| |#3| |#4|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1229 |#5|) (-1229 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -333))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-332 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1229 *9)) (-4 *11 (-1229 (-406 *10))) (-5 *2 (-332 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11)))))
+(-10 -7 (-15 -4365 ((-332 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-332 |#1| |#2| |#3| |#4|))))
+((-1780 (((-112) $) 14)))
+(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1780 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-362) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -334))
+NIL
+(-10 -8 (-15 -1780 ((-112) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4249 (($ $) 26)) (-1780 (((-112) $) 25)) (-3643 (((-1148) $) 9)) (-2120 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-3644 (((-1110) $) 10)) (-2544 (((-3 |#4| "failed") $) 24)) (-1781 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-544)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3839 (((-2 (|:| -2459 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20)))
+(((-335 |#1| |#2| |#3| |#4|) (-139) (-362) (-1229 |t#1|) (-1229 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -335))
+((-2120 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-335 *3 *4 *5 *6)))) (-1781 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-1781 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-1781 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-544)) (-4 *2 (-362)) (-4 *4 (-1229 *2)) (-4 *5 (-1229 (-406 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -2459 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-4249 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-2544 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-1781 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2120 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -1781 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -1781 ($ |t#4|)) (-15 -1781 ($ |t#1| |t#1|)) (-15 -1781 ($ |t#1| |t#1| (-544))) (-15 -3839 ((-2 (|:| -2459 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4249 ($ $)) (-15 -1780 ((-112) $)) (-15 -2544 ((-3 |t#4| "failed") $)) (-15 -1781 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-4174 (($ $ (-1166) |#2|) NIL) (($ $ (-635 (-1166)) (-635 |#2|)) 20) (($ $ (-635 (-292 |#2|))) 15) (($ $ (-292 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-4206 (($ $ |#2|) 11)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -4206 (|#1| |#1| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1166) |#2|))) (-337 |#2|) (-1091)) (T -336))
+NIL
+(-10 -8 (-15 -4206 (|#1| |#1| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1166) |#2|)))
+((-4365 (($ (-1 |#1| |#1|) $) 6)) (-4174 (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 16 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-635 (-292 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-635 |#1|) (-635 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-4206 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|)))))
+(((-337 |#1|) (-139) (-1091)) (T -337))
+((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1091)))))
+(-13 (-10 -8 (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512 (-1166) |t#1|)) (-6 (-512 (-1166) |t#1|)) |%noBranch|)))
(((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1166)) $) NIL)) (-2734 (((-112)) 90) (((-112) (-112)) 91)) (-1495 (((-638 (-607 $)) $) NIL)) (-3014 (($ $) NIL)) (-4106 (($ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1339 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-1643 (($ $) NIL)) (-4213 (($ $) NIL)) (-4085 (($ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-607 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-315 |#3|)) 70) (((-3 $ "failed") (-1166)) 96) (((-3 $ "failed") (-315 (-561))) 58 (|has| |#3| (-1031 (-561)))) (((-3 $ "failed") (-406 (-945 (-561)))) 64 (|has| |#3| (-1031 (-561)))) (((-3 $ "failed") (-945 (-561))) 59 (|has| |#3| (-1031 (-561)))) (((-3 $ "failed") (-315 (-378))) 88 (|has| |#3| (-1031 (-378)))) (((-3 $ "failed") (-406 (-945 (-378)))) 82 (|has| |#3| (-1031 (-378)))) (((-3 $ "failed") (-945 (-378))) 77 (|has| |#3| (-1031 (-378))))) (-3979 (((-607 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 71) (($ (-1166)) 97) (($ (-315 (-561))) 60 (|has| |#3| (-1031 (-561)))) (($ (-406 (-945 (-561)))) 65 (|has| |#3| (-1031 (-561)))) (($ (-945 (-561))) 61 (|has| |#3| (-1031 (-561)))) (($ (-315 (-378))) 89 (|has| |#3| (-1031 (-378)))) (($ (-406 (-945 (-378)))) 83 (|has| |#3| (-1031 (-378)))) (($ (-945 (-378))) 79 (|has| |#3| (-1031 (-378))))) (-3735 (((-3 $ "failed") $) NIL)) (-4111 (($) 10)) (-1719 (($ $) NIL) (($ (-638 $)) NIL)) (-2123 (((-638 (-114)) $) NIL)) (-1773 (((-114) (-114)) NIL)) (-2252 (((-112) $) NIL)) (-2110 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1578 (((-1162 $) (-607 $)) NIL (|has| $ (-1042)))) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 $ $) (-607 $)) NIL)) (-2373 (((-3 (-607 $) "failed") $) NIL)) (-3009 (($ $) 93)) (-4364 (($ $) NIL)) (-1883 (((-1148) $) NIL)) (-1583 (((-638 (-607 $)) $) NIL)) (-4154 (($ (-114) $) 92) (($ (-114) (-638 $)) NIL)) (-4188 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) NIL)) (-3093 (((-765) $) NIL)) (-1701 (((-1110) $) NIL)) (-1342 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-3486 (($ $) NIL)) (-2058 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1436 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2315 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-4348 (($ $) NIL) (($ $ $) NIL)) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL)) (-3158 (($ $) NIL (|has| $ (-1042)))) (-3002 (($ $) NIL)) (-4097 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-607 $)) NIL) (($ |#3|) NIL) (($ (-561)) NIL) (((-315 |#3|) $) 95)) (-3746 (((-765)) NIL)) (-3402 (($ $) NIL) (($ (-638 $)) NIL)) (-3333 (((-112) (-114)) NIL)) (-4175 (($ $) NIL)) (-4150 (($ $) NIL)) (-4162 (($ $) NIL)) (-2165 (($ $) NIL)) (-2246 (($) 94 T CONST)) (-2257 (($) 24 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1819 (($ $ $) NIL) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
-(((-338 |#1| |#2| |#3|) (-13 (-301) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3979 ($ (-315 |#3|))) (-15 -4061 ((-3 $ "failed") (-315 |#3|))) (-15 -3979 ($ (-1166))) (-15 -4061 ((-3 $ "failed") (-1166))) (-15 -4064 ((-315 |#3|) $)) (IF (|has| |#3| (-1031 (-561))) (PROGN (-15 -3979 ($ (-315 (-561)))) (-15 -4061 ((-3 $ "failed") (-315 (-561)))) (-15 -3979 ($ (-406 (-945 (-561))))) (-15 -4061 ((-3 $ "failed") (-406 (-945 (-561))))) (-15 -3979 ($ (-945 (-561)))) (-15 -4061 ((-3 $ "failed") (-945 (-561))))) |%noBranch|) (IF (|has| |#3| (-1031 (-378))) (PROGN (-15 -3979 ($ (-315 (-378)))) (-15 -4061 ((-3 $ "failed") (-315 (-378)))) (-15 -3979 ($ (-406 (-945 (-378))))) (-15 -4061 ((-3 $ "failed") (-406 (-945 (-378))))) (-15 -3979 ($ (-945 (-378)))) (-15 -4061 ((-3 $ "failed") (-945 (-378))))) |%noBranch|) (-15 -2165 ($ $)) (-15 -1643 ($ $)) (-15 -3486 ($ $)) (-15 -4364 ($ $)) (-15 -3009 ($ $)) (-15 -4085 ($ $)) (-15 -4097 ($ $)) (-15 -4106 ($ $)) (-15 -4150 ($ $)) (-15 -4162 ($ $)) (-15 -4175 ($ $)) (-15 -4213 ($ $)) (-15 -3002 ($ $)) (-15 -3014 ($ $)) (-15 -4111 ($)) (-15 -1405 ((-638 (-1166)) $)) (-15 -2734 ((-112))) (-15 -2734 ((-112) (-112))))) (-638 (-1166)) (-638 (-1166)) (-386)) (T -338))
-((-3979 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 *2)) (-14 *4 (-638 *2)) (-4 *5 (-386)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 *2)) (-14 *4 (-638 *2)) (-4 *5 (-386)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-1643 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-3486 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4364 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-3009 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4097 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4175 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4213 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-3002 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4111 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-2734 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))))
-(-13 (-301) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3979 ($ (-315 |#3|))) (-15 -4061 ((-3 $ "failed") (-315 |#3|))) (-15 -3979 ($ (-1166))) (-15 -4061 ((-3 $ "failed") (-1166))) (-15 -4064 ((-315 |#3|) $)) (IF (|has| |#3| (-1031 (-561))) (PROGN (-15 -3979 ($ (-315 (-561)))) (-15 -4061 ((-3 $ "failed") (-315 (-561)))) (-15 -3979 ($ (-406 (-945 (-561))))) (-15 -4061 ((-3 $ "failed") (-406 (-945 (-561))))) (-15 -3979 ($ (-945 (-561)))) (-15 -4061 ((-3 $ "failed") (-945 (-561))))) |%noBranch|) (IF (|has| |#3| (-1031 (-378))) (PROGN (-15 -3979 ($ (-315 (-378)))) (-15 -4061 ((-3 $ "failed") (-315 (-378)))) (-15 -3979 ($ (-406 (-945 (-378))))) (-15 -4061 ((-3 $ "failed") (-406 (-945 (-378))))) (-15 -3979 ($ (-945 (-378)))) (-15 -4061 ((-3 $ "failed") (-945 (-378))))) |%noBranch|) (-15 -2165 ($ $)) (-15 -1643 ($ $)) (-15 -3486 ($ $)) (-15 -4364 ($ $)) (-15 -3009 ($ $)) (-15 -4085 ($ $)) (-15 -4097 ($ $)) (-15 -4106 ($ $)) (-15 -4150 ($ $)) (-15 -4162 ($ $)) (-15 -4175 ($ $)) (-15 -4213 ($ $)) (-15 -3002 ($ $)) (-15 -3014 ($ $)) (-15 -4111 ($)) (-15 -1405 ((-638 (-1166)) $)) (-15 -2734 ((-112))) (-15 -2734 ((-112) (-112)))))
-((-4165 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-339 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4165 (|#8| (-1 |#5| |#1|) |#4|))) (-1209) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1209) (-1230 |#5|) (-1230 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -339))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209)) (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-4 *9 (-1230 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1230 (-406 *9))))))
-(-10 -7 (-15 -4165 (|#8| (-1 |#5| |#1|) |#4|)))
-((-1791 (((-2 (|:| |num| (-1254 |#3|)) (|:| |den| |#3|)) $) 38)) (-3376 (($ (-1254 (-406 |#3|)) (-1254 $)) NIL) (($ (-1254 (-406 |#3|))) NIL) (($ (-1254 |#3|) |#3|) 160)) (-3314 (((-1254 $) (-1254 $)) 144)) (-3357 (((-638 (-638 |#2|))) 118)) (-3053 (((-112) |#2| |#2|) 73)) (-4229 (($ $) 138)) (-3848 (((-765)) 31)) (-1447 (((-1254 $) (-1254 $)) 197)) (-2976 (((-638 (-945 |#2|)) (-1166)) 110)) (-3830 (((-112) $) 157)) (-4137 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-2245 (((-3 |#3| "failed")) 50)) (-4197 (((-765)) 169)) (-2315 ((|#2| $ |#2| |#2|) 131)) (-1935 (((-3 |#3| "failed")) 68)) (-3922 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-765)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-2739 (((-1254 $) (-1254 $)) 150)) (-3188 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2232 (((-112)) 33)))
-(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3357 ((-638 (-638 |#2|)))) (-15 -2976 ((-638 (-945 |#2|)) (-1166))) (-15 -3188 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2245 ((-3 |#3| "failed"))) (-15 -1935 ((-3 |#3| "failed"))) (-15 -2315 (|#2| |#1| |#2| |#2|)) (-15 -4229 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4137 ((-112) |#1| |#3|)) (-15 -4137 ((-112) |#1| |#2|)) (-15 -3376 (|#1| (-1254 |#3|) |#3|)) (-15 -1791 ((-2 (|:| |num| (-1254 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3314 ((-1254 |#1|) (-1254 |#1|))) (-15 -1447 ((-1254 |#1|) (-1254 |#1|))) (-15 -2739 ((-1254 |#1|) (-1254 |#1|))) (-15 -4137 ((-112) |#1|)) (-15 -3830 ((-112) |#1|)) (-15 -3053 ((-112) |#2| |#2|)) (-15 -2232 ((-112))) (-15 -4197 ((-765))) (-15 -3848 ((-765))) (-15 -3922 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -3922 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -3376 (|#1| (-1254 (-406 |#3|)))) (-15 -3376 (|#1| (-1254 (-406 |#3|)) (-1254 |#1|)))) (-341 |#2| |#3| |#4|) (-1209) (-1230 |#2|) (-1230 (-406 |#3|))) (T -340))
-((-3848 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-4197 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-2232 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-3053 (*1 *2 *3 *3) (-12 (-4 *3 (-1209)) (-4 *5 (-1230 *3)) (-4 *6 (-1230 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-1935 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1230 (-406 *2))) (-4 *2 (-1230 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-2245 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1230 (-406 *2))) (-4 *2 (-1230 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-5 *2 (-638 (-945 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-3357 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-5 *2 (-638 (-638 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))))
-(-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3357 ((-638 (-638 |#2|)))) (-15 -2976 ((-638 (-945 |#2|)) (-1166))) (-15 -3188 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2245 ((-3 |#3| "failed"))) (-15 -1935 ((-3 |#3| "failed"))) (-15 -2315 (|#2| |#1| |#2| |#2|)) (-15 -4229 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4137 ((-112) |#1| |#3|)) (-15 -4137 ((-112) |#1| |#2|)) (-15 -3376 (|#1| (-1254 |#3|) |#3|)) (-15 -1791 ((-2 (|:| |num| (-1254 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3314 ((-1254 |#1|) (-1254 |#1|))) (-15 -1447 ((-1254 |#1|) (-1254 |#1|))) (-15 -2739 ((-1254 |#1|) (-1254 |#1|))) (-15 -4137 ((-112) |#1|)) (-15 -3830 ((-112) |#1|)) (-15 -3053 ((-112) |#2| |#2|)) (-15 -2232 ((-112))) (-15 -4197 ((-765))) (-15 -3848 ((-765))) (-15 -3922 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -3922 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -3376 (|#1| (-1254 (-406 |#3|)))) (-15 -3376 (|#1| (-1254 (-406 |#3|)) (-1254 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1791 (((-2 (|:| |num| (-1254 |#2|)) (|:| |den| |#2|)) $) 195)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-3012 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-3163 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-3287 (((-682 (-406 |#2|)) (-1254 $)) 47) (((-682 (-406 |#2|))) 62)) (-1736 (((-406 |#2|) $) 53)) (-1499 (((-1178 (-914) (-765)) (-561)) 146 (|has| (-406 |#2|) (-348)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-3552 (((-417 $) $) 114 (|has| (-406 |#2|) (-362)))) (-3698 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-1386 (((-765)) 87 (|has| (-406 |#2|) (-367)))) (-1943 (((-112)) 212)) (-1676 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 169 (|has| (-406 |#2|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 167 (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-3 (-406 |#2|) "failed") $) 164)) (-3979 (((-561) $) 168 (|has| (-406 |#2|) (-1031 (-561)))) (((-406 (-561)) $) 166 (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-406 |#2|) $) 165)) (-3376 (($ (-1254 (-406 |#2|)) (-1254 $)) 49) (($ (-1254 (-406 |#2|))) 65) (($ (-1254 |#2|) |#2|) 194)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-348)))) (-1792 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-2405 (((-682 (-406 |#2|)) $ (-1254 $)) 54) (((-682 (-406 |#2|)) $) 60)) (-3720 (((-682 (-561)) (-682 $)) 163 (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 162 (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-406 |#2|))) (|:| |vec| (-1254 (-406 |#2|)))) (-682 $) (-1254 $)) 161) (((-682 (-406 |#2|)) (-682 $)) 160)) (-3314 (((-1254 $) (-1254 $)) 200)) (-3176 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-3735 (((-3 $ "failed") $) 33)) (-3357 (((-638 (-638 |#1|))) 181 (|has| |#1| (-367)))) (-3053 (((-112) |#1| |#1|) 216)) (-3400 (((-914)) 55)) (-1362 (($) 90 (|has| (-406 |#2|) (-367)))) (-1968 (((-112)) 209)) (-3104 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1771 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 102 (|has| (-406 |#2|) (-362)))) (-4229 (($ $) 187)) (-3985 (($) 148 (|has| (-406 |#2|) (-348)))) (-3943 (((-112) $) 149 (|has| (-406 |#2|) (-348)))) (-3598 (($ $ (-765)) 140 (|has| (-406 |#2|) (-348))) (($ $) 139 (|has| (-406 |#2|) (-348)))) (-2725 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-4027 (((-914) $) 151 (|has| (-406 |#2|) (-348))) (((-827 (-914)) $) 137 (|has| (-406 |#2|) (-348)))) (-2252 (((-112) $) 31)) (-3848 (((-765)) 219)) (-1447 (((-1254 $) (-1254 $)) 201)) (-2072 (((-406 |#2|) $) 52)) (-2976 (((-638 (-945 |#1|)) (-1166)) 182 (|has| |#1| (-362)))) (-2436 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 111 (|has| (-406 |#2|) (-362)))) (-1588 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-1335 (((-914) $) 89 (|has| (-406 |#2|) (-367)))) (-3354 ((|#3| $) 155)) (-1563 (($ (-638 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-1883 (((-1148) $) 9)) (-2142 (((-682 (-406 |#2|))) 196)) (-3583 (((-682 (-406 |#2|))) 198)) (-1519 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-4002 (($ (-1254 |#2|) |#2|) 192)) (-3268 (((-682 (-406 |#2|))) 197)) (-2812 (((-682 (-406 |#2|))) 199)) (-3471 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1825 (((-2 (|:| |num| (-1254 |#2|)) (|:| |den| |#2|)) $) 193)) (-1640 (((-1254 $)) 205)) (-3637 (((-1254 $)) 206)) (-3830 (((-112) $) 204)) (-4137 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3767 (($) 142 (|has| (-406 |#2|) (-348)) CONST)) (-2442 (($ (-914)) 88 (|has| (-406 |#2|) (-367)))) (-2245 (((-3 |#2| "failed")) 184)) (-1701 (((-1110) $) 10)) (-4197 (((-765)) 218)) (-3194 (($) 159)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 101 (|has| (-406 |#2|) (-362)))) (-1603 (($ (-638 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 145 (|has| (-406 |#2|) (-348)))) (-1633 (((-417 $) $) 112 (|has| (-406 |#2|) (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-1748 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 103 (|has| (-406 |#2|) (-362)))) (-1905 (((-765) $) 105 (|has| (-406 |#2|) (-362)))) (-2315 ((|#1| $ |#1| |#1|) 186)) (-1935 (((-3 |#2| "failed")) 185)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-2753 (((-406 |#2|) (-1254 $)) 48) (((-406 |#2|)) 61)) (-2768 (((-765) $) 150 (|has| (-406 |#2|) (-348))) (((-3 (-765) "failed") $ $) 138 (|has| (-406 |#2|) (-348)))) (-3922 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-638 (-1166)) (-638 (-765))) 129 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 130 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-638 (-1166))) 131 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 132 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 134 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2198 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 136 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2198 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-3885 (((-682 (-406 |#2|)) (-1254 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-3158 ((|#3|) 158)) (-2102 (($) 147 (|has| (-406 |#2|) (-348)))) (-3752 (((-1254 (-406 |#2|)) $ (-1254 $)) 51) (((-682 (-406 |#2|)) (-1254 $) (-1254 $)) 50) (((-1254 (-406 |#2|)) $) 67) (((-682 (-406 |#2|)) (-1254 $)) 66)) (-4216 (((-1254 (-406 |#2|)) $) 64) (($ (-1254 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 144 (|has| (-406 |#2|) (-348)))) (-2739 (((-1254 $) (-1254 $)) 202)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-561))) 86 (-4050 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-561)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-3666 (($ $) 143 (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-3934 ((|#3| $) 46)) (-3746 (((-765)) 28)) (-1688 (((-112)) 215)) (-3703 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-2615 (((-1254 $)) 68)) (-3996 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-3188 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-2232 (((-112)) 217)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-638 (-1166)) (-638 (-765))) 125 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 126 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-638 (-1166))) 127 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 128 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2198 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 133 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2198 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 135 (-4050 (-2198 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2198 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-561)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-561))) 118 (|has| (-406 |#2|) (-362)))))
-(((-341 |#1| |#2| |#3|) (-139) (-1209) (-1230 |t#1|) (-1230 (-406 |t#2|))) (T -341))
-((-3848 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-765)))) (-4197 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-765)))) (-2232 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-3053 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-1688 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-3703 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-3703 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112)))) (-1943 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-1676 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-1676 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112)))) (-1968 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-3104 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-3104 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112)))) (-3637 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)))) (-1640 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))))) (-2812 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-3583 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-3268 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-2142 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1254 *4)) (|:| |den| *4))))) (-3376 (*1 *1 *2 *3) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1230 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1230 (-406 *3))))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1254 *4)) (|:| |den| *4))))) (-4002 (*1 *1 *2 *3) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1230 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1230 (-406 *3))))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5))))) (-4137 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))) (-4137 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))))) (-4229 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1230 *2)) (-4 *4 (-1230 (-406 *3))))) (-2315 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1230 *2)) (-4 *4 (-1230 (-406 *3))))) (-1935 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1230 (-406 *2))) (-4 *2 (-1230 *3)))) (-2245 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1230 (-406 *2))) (-4 *2 (-1230 *3)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-1209)) (-4 *6 (-1230 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-638 (-945 *4))))) (-3357 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-638 (-638 *3))))))
-(-13 (-718 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3848 ((-765))) (-15 -4197 ((-765))) (-15 -2232 ((-112))) (-15 -3053 ((-112) |t#1| |t#1|)) (-15 -1688 ((-112))) (-15 -3703 ((-112) |t#1|)) (-15 -3703 ((-112) |t#2|)) (-15 -1943 ((-112))) (-15 -1676 ((-112) |t#1|)) (-15 -1676 ((-112) |t#2|)) (-15 -1968 ((-112))) (-15 -3104 ((-112) |t#1|)) (-15 -3104 ((-112) |t#2|)) (-15 -3637 ((-1254 $))) (-15 -1640 ((-1254 $))) (-15 -3830 ((-112) $)) (-15 -4137 ((-112) $)) (-15 -2739 ((-1254 $) (-1254 $))) (-15 -1447 ((-1254 $) (-1254 $))) (-15 -3314 ((-1254 $) (-1254 $))) (-15 -2812 ((-682 (-406 |t#2|)))) (-15 -3583 ((-682 (-406 |t#2|)))) (-15 -3268 ((-682 (-406 |t#2|)))) (-15 -2142 ((-682 (-406 |t#2|)))) (-15 -1791 ((-2 (|:| |num| (-1254 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3376 ($ (-1254 |t#2|) |t#2|)) (-15 -1825 ((-2 (|:| |num| (-1254 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4002 ($ (-1254 |t#2|) |t#2|)) (-15 -3471 ((-2 (|:| |num| (-682 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4137 ((-112) $ |t#1|)) (-15 -4137 ((-112) $ |t#2|)) (-15 -3922 ($ $ (-1 |t#2| |t#2|))) (-15 -4229 ($ $)) (-15 -2315 (|t#1| $ |t#1| |t#1|)) (-15 -1935 ((-3 |t#2| "failed"))) (-15 -2245 ((-3 |t#2| "failed"))) (-15 -3188 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -2976 ((-638 (-945 |t#1|)) (-1166))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -3357 ((-638 (-638 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-38 #1=(-406 |#2|)) . T) ((-38 $) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #0# #0#) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-611 #0#) -4050 (|has| (-406 |#2|) (-1031 (-406 (-561)))) (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-611 #1#) . T) ((-611 (-561)) . T) ((-611 $) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-608 (-856)) . T) ((-171) . T) ((-609 |#3|) . T) ((-230 #1#) |has| (-406 |#2|) (-362)) ((-232) -4050 (|has| (-406 |#2|) (-348)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-289) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-306) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-362) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-348)) ((-367) -4050 (|has| (-406 |#2|) (-367)) (|has| (-406 |#2|) (-348))) ((-348) |has| (-406 |#2|) (-348)) ((-369 #1# |#3|) . T) ((-408 #1# |#3|) . T) ((-376 #1#) . T) ((-410 #1#) . T) ((-450) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-553) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-641 #0#) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-641 #1#) . T) ((-641 $) . T) ((-634 #1#) . T) ((-634 (-561)) |has| (-406 |#2|) (-634 (-561))) ((-711 #0#) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-711 #1#) . T) ((-711 $) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-718 #1# |#3|) . T) ((-720) . T) ((-893 (-1166)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) ((-913) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1031 (-406 (-561))) |has| (-406 |#2|) (-1031 (-406 (-561)))) ((-1031 #1#) . T) ((-1031 (-561)) |has| (-406 |#2|) (-1031 (-561))) ((-1048 #0#) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| (-406 |#2|) (-348)) ((-1209) -4050 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-903 |#1|) (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| (-903 |#1|) (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-903 |#1|) "failed") $) NIL)) (-3979 (((-903 |#1|) $) NIL)) (-3376 (($ (-1254 (-903 |#1|))) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-903 |#1|) (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-903 |#1|) (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL (|has| (-903 |#1|) (-367)))) (-3943 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367)))) (($ $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| (-903 |#1|) (-367))) (((-827 (-914)) $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| (-903 |#1|) (-367)))) (-1892 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-2072 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| (-903 |#1|) (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 (-903 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1335 (((-914) $) NIL (|has| (-903 |#1|) (-367)))) (-2313 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367)))) (-1382 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-1162 (-903 |#1|)) "failed") $ $) NIL (|has| (-903 |#1|) (-367)))) (-2953 (($ $ (-1162 (-903 |#1|))) NIL (|has| (-903 |#1|) (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-903 |#1|) (-367)) CONST)) (-2442 (($ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-4102 (((-951 (-1110))) NIL)) (-3194 (($) NIL (|has| (-903 |#1|) (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| (-903 |#1|) (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 (-903 |#1|))) NIL)) (-2102 (($) NIL (|has| (-903 |#1|) (-367)))) (-3341 (($) NIL (|has| (-903 |#1|) (-367)))) (-3752 (((-1254 (-903 |#1|)) $) NIL) (((-682 (-903 |#1|)) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| (-903 |#1|) (-367)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-903 |#1|)) NIL)) (-3666 (($ $) NIL (|has| (-903 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL) (((-1254 $) (-914)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3154 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $ (-903 |#1|)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-903 |#1|)) NIL) (($ (-903 |#1|) $) NIL)))
-(((-342 |#1| |#2|) (-13 (-328 (-903 |#1|)) (-10 -7 (-15 -4102 ((-951 (-1110)))))) (-914) (-914)) (T -342))
-((-4102 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-342 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))))
-(-13 (-328 (-903 |#1|)) (-10 -7 (-15 -4102 ((-951 (-1110))))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 43)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) 40 (|has| |#1| (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 114)) (-3979 ((|#1| $) 85)) (-3376 (($ (-1254 |#1|)) 103)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) 97 (|has| |#1| (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) 128 (|has| |#1| (-367)))) (-3943 (((-112) $) 47 (|has| |#1| (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) 44 (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) 130 (|has| |#1| (-367)))) (-1892 (((-112) $) NIL (|has| |#1| (-367)))) (-2072 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 |#1|) $) 89) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-1335 (((-914) $) 138 (|has| |#1| (-367)))) (-2313 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-1382 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 145)) (-3767 (($) NIL (|has| |#1| (-367)) CONST)) (-2442 (($ (-914)) 70 (|has| |#1| (-367)))) (-3168 (((-112) $) 117)) (-1701 (((-1110) $) NIL)) (-4102 (((-951 (-1110))) 41)) (-3194 (($) 126 (|has| |#1| (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 92 (|has| |#1| (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) 66) (((-914)) 67)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) 129 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 124 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 |#1|)) 95)) (-2102 (($) 127 (|has| |#1| (-367)))) (-3341 (($) 135 (|has| |#1| (-367)))) (-3752 (((-1254 |#1|) $) 58) (((-682 |#1|) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4064 (((-856) $) 141) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 74)) (-3666 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) 137)) (-2615 (((-1254 $)) 116) (((-1254 $) (-914)) 72)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) 48 T CONST)) (-2257 (($) 45 T CONST)) (-1471 (($ $) 80 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3154 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1723 (((-112) $ $) 46)) (-1828 (($ $ $) 143) (($ $ |#1|) 144)) (-1819 (($ $) 125) (($ $ $) NIL)) (-1810 (($ $ $) 60)) (** (($ $ (-914)) 147) (($ $ (-765)) 148) (($ $ (-561)) 146)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 76) (($ $ $) 75) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
-(((-343 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -4102 ((-951 (-1110)))))) (-348) (-1162 |#1|)) (T -343))
-((-4102 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) (-14 *4 (-1162 *3)))))
-(-13 (-328 |#1|) (-10 -7 (-15 -4102 ((-951 (-1110))))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3376 (($ (-1254 |#1|)) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| |#1| (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL (|has| |#1| (-367)))) (-3943 (((-112) $) NIL (|has| |#1| (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| |#1| (-367)))) (-1892 (((-112) $) NIL (|has| |#1| (-367)))) (-2072 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 |#1|) $) NIL) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-1335 (((-914) $) NIL (|has| |#1| (-367)))) (-2313 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-1382 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| |#1| (-367)) CONST)) (-2442 (($ (-914)) NIL (|has| |#1| (-367)))) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-4102 (((-951 (-1110))) NIL)) (-3194 (($) NIL (|has| |#1| (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| |#1| (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 |#1|)) NIL)) (-2102 (($) NIL (|has| |#1| (-367)))) (-3341 (($) NIL (|has| |#1| (-367)))) (-3752 (((-1254 |#1|) $) NIL) (((-682 |#1|) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) NIL)) (-3666 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL) (((-1254 $) (-914)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3154 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -4102 ((-951 (-1110)))))) (-348) (-914)) (T -344))
-((-4102 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))))
-(-13 (-328 |#1|) (-10 -7 (-15 -4102 ((-951 (-1110))))))
-((-1321 (((-765) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110)))))) 42)) (-3448 (((-951 (-1110)) (-1162 |#1|)) 85)) (-1874 (((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) (-1162 |#1|)) 78)) (-3115 (((-682 |#1|) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110)))))) 86)) (-3758 (((-3 (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) "failed") (-914)) 13)) (-1835 (((-3 (-1162 |#1|) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110)))))) (-914)) 18)))
-(((-345 |#1|) (-10 -7 (-15 -3448 ((-951 (-1110)) (-1162 |#1|))) (-15 -1874 ((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) (-1162 |#1|))) (-15 -3115 ((-682 |#1|) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -1321 ((-765) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -3758 ((-3 (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) "failed") (-914))) (-15 -1835 ((-3 (-1162 |#1|) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110)))))) (-914)))) (-348)) (T -345))
-((-1835 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-3 (-1162 *4) (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110))))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-3758 (*1 *2 *3) (|partial| -12 (-5 *3 (-914)) (-5 *2 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110)))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110)))))) (-4 *4 (-348)) (-5 *2 (-765)) (-5 *1 (-345 *4)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110)))))) (-4 *4 (-348)) (-5 *2 (-682 *4)) (-5 *1 (-345 *4)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110)))))) (-5 *1 (-345 *4)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-951 (-1110))) (-5 *1 (-345 *4)))))
-(-10 -7 (-15 -3448 ((-951 (-1110)) (-1162 |#1|))) (-15 -1874 ((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) (-1162 |#1|))) (-15 -3115 ((-682 |#1|) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -1321 ((-765) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -3758 ((-3 (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) "failed") (-914))) (-15 -1835 ((-3 (-1162 |#1|) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110)))))) (-914))))
-((-4064 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -4064 (|#3| |#1|)) (-15 -4064 (|#1| |#3|))) (-328 |#2|) (-348) (-328 |#2|)) (T -346))
-((-4064 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) (-4 *3 (-328 *4)))) (-4064 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) (-4 *3 (-328 *4)))))
-(-10 -7 (-15 -4064 (|#3| |#1|)) (-15 -4064 (|#1| |#3|)))
-((-3943 (((-112) $) 50)) (-4027 (((-827 (-914)) $) 21) (((-914) $) 51)) (-2436 (((-3 $ "failed") $) 16)) (-3767 (($) 9)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 92)) (-2768 (((-3 (-765) "failed") $ $) 70) (((-765) $) 59)) (-3922 (($ $ (-765)) NIL) (($ $) 8)) (-2102 (($) 43)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 34)) (-3666 (((-3 $ "failed") $) 38) (($ $) 37)))
-(((-347 |#1|) (-10 -8 (-15 -4027 ((-914) |#1|)) (-15 -2768 ((-765) |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -2102 (|#1|)) (-15 -2881 ((-3 (-1254 |#1|) "failed") (-682 |#1|))) (-15 -3666 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -2768 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4027 ((-827 (-914)) |#1|)) (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|)))) (-348)) (T -347))
-NIL
-(-10 -8 (-15 -4027 ((-914) |#1|)) (-15 -2768 ((-765) |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -2102 (|#1|)) (-15 -2881 ((-3 (-1254 |#1|) "failed") (-682 |#1|))) (-15 -3666 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -2768 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4027 ((-827 (-914)) |#1|)) (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-1499 (((-1178 (-914) (-765)) (-561)) 94)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-3698 (((-112) $ $) 60)) (-1386 (((-765)) 104)) (-2674 (($) 17 T CONST)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1362 (($) 107)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-3985 (($) 92)) (-3943 (((-112) $) 91)) (-3598 (($ $) 80) (($ $ (-765)) 79)) (-2725 (((-112) $) 72)) (-4027 (((-827 (-914)) $) 82) (((-914) $) 89)) (-2252 (((-112) $) 31)) (-2436 (((-3 $ "failed") $) 103)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1335 (((-914) $) 106)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-3767 (($) 102 T CONST)) (-2442 (($ (-914)) 105)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 95)) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-2768 (((-3 (-765) "failed") $ $) 81) (((-765) $) 90)) (-3922 (($ $ (-765)) 100) (($ $) 98)) (-2102 (($) 93)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 96)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-3666 (((-3 $ "failed") $) 83) (($ $) 97)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-765)) 101) (($ $) 99)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 66)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
-(((-348) (-139)) (T -348))
-((-3666 (*1 *1 *1) (-4 *1 (-348))) (-2881 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-348)) (-5 *2 (-1254 *1)))) (-4190 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))))) (-1499 (*1 *2 *3) (-12 (-4 *1 (-348)) (-5 *3 (-561)) (-5 *2 (-1178 (-914) (-765))))) (-2102 (*1 *1) (-4 *1 (-348))) (-3985 (*1 *1) (-4 *1 (-348))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-765)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-914)))) (-3358 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-401) (-367) (-1141) (-232) (-10 -8 (-15 -3666 ($ $)) (-15 -2881 ((-3 (-1254 $) "failed") (-682 $))) (-15 -4190 ((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561)))))) (-15 -1499 ((-1178 (-914) (-765)) (-561))) (-15 -2102 ($)) (-15 -3985 ($)) (-15 -3943 ((-112) $)) (-15 -2768 ((-765) $)) (-15 -4027 ((-914) $)) (-15 -3358 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) . T) ((-1209) . T))
-((-4258 (((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|) 53)) (-3637 (((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 51)))
-(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -3637 ((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -4258 ((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))) (-1230 |#1|) (-408 |#1| |#2|)) (T -349))
-((-4258 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *4 (-1230 *3)) (-5 *2 (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3637 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *4 (-1230 *3)) (-5 *2 (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(-10 -7 (-15 -3637 ((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -4258 ((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-903 |#1|) (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1321 (((-765)) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| (-903 |#1|) (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-903 |#1|) "failed") $) NIL)) (-3979 (((-903 |#1|) $) NIL)) (-3376 (($ (-1254 (-903 |#1|))) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-903 |#1|) (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-903 |#1|) (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL (|has| (-903 |#1|) (-367)))) (-3943 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367)))) (($ $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| (-903 |#1|) (-367))) (((-827 (-914)) $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| (-903 |#1|) (-367)))) (-1892 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-2072 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| (-903 |#1|) (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 (-903 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1335 (((-914) $) NIL (|has| (-903 |#1|) (-367)))) (-2313 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367)))) (-1382 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-1162 (-903 |#1|)) "failed") $ $) NIL (|has| (-903 |#1|) (-367)))) (-2953 (($ $ (-1162 (-903 |#1|))) NIL (|has| (-903 |#1|) (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-903 |#1|) (-367)) CONST)) (-2442 (($ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-3896 (((-1254 (-638 (-2 (|:| -2506 (-903 |#1|)) (|:| -2442 (-1110)))))) NIL)) (-3348 (((-682 (-903 |#1|))) NIL)) (-3194 (($) NIL (|has| (-903 |#1|) (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| (-903 |#1|) (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 (-903 |#1|))) NIL)) (-2102 (($) NIL (|has| (-903 |#1|) (-367)))) (-3341 (($) NIL (|has| (-903 |#1|) (-367)))) (-3752 (((-1254 (-903 |#1|)) $) NIL) (((-682 (-903 |#1|)) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| (-903 |#1|) (-367)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-903 |#1|)) NIL)) (-3666 (($ $) NIL (|has| (-903 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL) (((-1254 $) (-914)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3154 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $ (-903 |#1|)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-903 |#1|)) NIL) (($ (-903 |#1|) $) NIL)))
-(((-350 |#1| |#2|) (-13 (-328 (-903 |#1|)) (-10 -7 (-15 -3896 ((-1254 (-638 (-2 (|:| -2506 (-903 |#1|)) (|:| -2442 (-1110))))))) (-15 -3348 ((-682 (-903 |#1|)))) (-15 -1321 ((-765))))) (-914) (-914)) (T -350))
-((-3896 (*1 *2) (-12 (-5 *2 (-1254 (-638 (-2 (|:| -2506 (-903 *3)) (|:| -2442 (-1110)))))) (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-3348 (*1 *2) (-12 (-5 *2 (-682 (-903 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-1321 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))))
-(-13 (-328 (-903 |#1|)) (-10 -7 (-15 -3896 ((-1254 (-638 (-2 (|:| -2506 (-903 |#1|)) (|:| -2442 (-1110))))))) (-15 -3348 ((-682 (-903 |#1|)))) (-15 -1321 ((-765)))))
-((-4053 (((-112) $ $) 61)) (-4306 (((-112) $) 74)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 ((|#1| $) 92) (($ $ (-914)) 90 (|has| |#1| (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) 148 (|has| |#1| (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1321 (((-765)) 89)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) 162 (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 112)) (-3979 ((|#1| $) 91)) (-3376 (($ (-1254 |#1|)) 58)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) 158 (|has| |#1| (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) 149 (|has| |#1| (-367)))) (-3943 (((-112) $) NIL (|has| |#1| (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) 98 (|has| |#1| (-367)))) (-1892 (((-112) $) 175 (|has| |#1| (-367)))) (-2072 ((|#1| $) 94) (($ $ (-914)) 93 (|has| |#1| (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 |#1|) $) 189) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-1335 (((-914) $) 134 (|has| |#1| (-367)))) (-2313 (((-1162 |#1|) $) 73 (|has| |#1| (-367)))) (-1382 (((-1162 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-2953 (($ $ (-1162 |#1|)) 69 (|has| |#1| (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 192)) (-3767 (($) NIL (|has| |#1| (-367)) CONST)) (-2442 (($ (-914)) 137 (|has| |#1| (-367)))) (-3168 (((-112) $) 108)) (-1701 (((-1110) $) NIL)) (-3896 (((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110)))))) 83)) (-3348 (((-682 |#1|)) 87)) (-3194 (($) 96 (|has| |#1| (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 150 (|has| |#1| (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) 151)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) 62)) (-3158 (((-1162 |#1|)) 152)) (-2102 (($) 133 (|has| |#1| (-367)))) (-3341 (($) NIL (|has| |#1| (-367)))) (-3752 (((-1254 |#1|) $) 106) (((-682 |#1|) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4064 (((-856) $) 124) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 57)) (-3666 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) 156)) (-2615 (((-1254 $)) 172) (((-1254 $) (-914)) 101)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) 117 T CONST)) (-2257 (($) 33 T CONST)) (-1471 (($ $) 107 (|has| |#1| (-367))) (($ $ (-765)) 99 (|has| |#1| (-367)))) (-3154 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1723 (((-112) $ $) 183)) (-1828 (($ $ $) 104) (($ $ |#1|) 105)) (-1819 (($ $) 177) (($ $ $) 181)) (-1810 (($ $ $) 179)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 138)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 186) (($ $ $) 142) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-351 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3896 ((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -3348 ((-682 |#1|))) (-15 -1321 ((-765))))) (-348) (-3 (-1162 |#1|) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (T -351))
-((-3896 (*1 *2) (-12 (-5 *2 (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110)))))) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) *2)))) (-3348 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110))))))))) (-1321 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110))))))))))
-(-13 (-328 |#1|) (-10 -7 (-15 -3896 ((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -3348 ((-682 |#1|))) (-15 -1321 ((-765)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1321 (((-765)) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3376 (($ (-1254 |#1|)) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| |#1| (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL (|has| |#1| (-367)))) (-3943 (((-112) $) NIL (|has| |#1| (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| |#1| (-367)))) (-1892 (((-112) $) NIL (|has| |#1| (-367)))) (-2072 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 |#1|) $) NIL) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-1335 (((-914) $) NIL (|has| |#1| (-367)))) (-2313 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-1382 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| |#1| (-367)) CONST)) (-2442 (($ (-914)) NIL (|has| |#1| (-367)))) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-3896 (((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110)))))) NIL)) (-3348 (((-682 |#1|)) NIL)) (-3194 (($) NIL (|has| |#1| (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| |#1| (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 |#1|)) NIL)) (-2102 (($) NIL (|has| |#1| (-367)))) (-3341 (($) NIL (|has| |#1| (-367)))) (-3752 (((-1254 |#1|) $) NIL) (((-682 |#1|) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) NIL)) (-3666 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL) (((-1254 $) (-914)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3154 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3896 ((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -3348 ((-682 |#1|))) (-15 -1321 ((-765))))) (-348) (-914)) (T -352))
-((-3896 (*1 *2) (-12 (-5 *2 (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))) (-3348 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))) (-1321 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))))
-(-13 (-328 |#1|) (-10 -7 (-15 -3896 ((-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))))) (-15 -3348 ((-682 |#1|))) (-15 -1321 ((-765)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-903 |#1|) (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| (-903 |#1|) (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-903 |#1|) "failed") $) NIL)) (-3979 (((-903 |#1|) $) NIL)) (-3376 (($ (-1254 (-903 |#1|))) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-903 |#1|) (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-903 |#1|) (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL (|has| (-903 |#1|) (-367)))) (-3943 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367)))) (($ $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| (-903 |#1|) (-367))) (((-827 (-914)) $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| (-903 |#1|) (-367)))) (-1892 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-2072 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| (-903 |#1|) (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 (-903 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1335 (((-914) $) NIL (|has| (-903 |#1|) (-367)))) (-2313 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367)))) (-1382 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-1162 (-903 |#1|)) "failed") $ $) NIL (|has| (-903 |#1|) (-367)))) (-2953 (($ $ (-1162 (-903 |#1|))) NIL (|has| (-903 |#1|) (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-903 |#1|) (-367)) CONST)) (-2442 (($ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-3194 (($) NIL (|has| (-903 |#1|) (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| (-903 |#1|) (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 (-903 |#1|))) NIL)) (-2102 (($) NIL (|has| (-903 |#1|) (-367)))) (-3341 (($) NIL (|has| (-903 |#1|) (-367)))) (-3752 (((-1254 (-903 |#1|)) $) NIL) (((-682 (-903 |#1|)) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| (-903 |#1|) (-367)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-903 |#1|)) NIL)) (-3666 (($ $) NIL (|has| (-903 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL) (((-1254 $) (-914)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3154 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $ (-903 |#1|)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-903 |#1|)) NIL) (($ (-903 |#1|) $) NIL)))
-(((-353 |#1| |#2|) (-328 (-903 |#1|)) (-914) (-914)) (T -353))
-NIL
-(-328 (-903 |#1|))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) 120 (|has| |#1| (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) 139 (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 93)) (-3979 ((|#1| $) 90)) (-3376 (($ (-1254 |#1|)) 85)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) 82 (|has| |#1| (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) 42 (|has| |#1| (-367)))) (-3943 (((-112) $) NIL (|has| |#1| (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) 121 (|has| |#1| (-367)))) (-1892 (((-112) $) 74 (|has| |#1| (-367)))) (-2072 ((|#1| $) 39) (($ $ (-914)) 43 (|has| |#1| (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 |#1|) $) 65) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-1335 (((-914) $) 97 (|has| |#1| (-367)))) (-2313 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-1382 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| |#1| (-367)) CONST)) (-2442 (($ (-914)) 95 (|has| |#1| (-367)))) (-3168 (((-112) $) 141)) (-1701 (((-1110) $) NIL)) (-3194 (($) 36 (|has| |#1| (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 115 (|has| |#1| (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) 138)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) 59)) (-3158 (((-1162 |#1|)) 88)) (-2102 (($) 126 (|has| |#1| (-367)))) (-3341 (($) NIL (|has| |#1| (-367)))) (-3752 (((-1254 |#1|) $) 53) (((-682 |#1|) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4064 (((-856) $) 137) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 87)) (-3666 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) 143)) (-2615 (((-1254 $)) 109) (((-1254 $) (-914)) 49)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) 111 T CONST)) (-2257 (($) 32 T CONST)) (-1471 (($ $) 68 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3154 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1723 (((-112) $ $) 107)) (-1828 (($ $ $) 99) (($ $ |#1|) 100)) (-1819 (($ $) 80) (($ $ $) 105)) (-1810 (($ $ $) 103)) (** (($ $ (-914)) NIL) (($ $ (-765)) 44) (($ $ (-561)) 129)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 78) (($ $ $) 56) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-354 |#1| |#2|) (-328 |#1|) (-348) (-1162 |#1|)) (T -354))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1166)) $) NIL)) (-1782 (((-112)) 90) (((-112) (-112)) 91)) (-1688 (((-635 (-606 $)) $) NIL)) (-3891 (($ $) NIL)) (-4046 (($ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-3420 (($ $) NIL)) (-3889 (($ $) NIL)) (-4045 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-313 |#3|)) 70) (((-3 $ "failed") (-1166)) 96) (((-3 $ "failed") (-313 (-544))) 58 (|has| |#3| (-1031 (-544)))) (((-3 $ "failed") (-406 (-939 (-544)))) 64 (|has| |#3| (-1031 (-544)))) (((-3 $ "failed") (-939 (-544))) 59 (|has| |#3| (-1031 (-544)))) (((-3 $ "failed") (-313 (-377))) 88 (|has| |#3| (-1031 (-377)))) (((-3 $ "failed") (-406 (-939 (-377)))) 82 (|has| |#3| (-1031 (-377)))) (((-3 $ "failed") (-939 (-377))) 77 (|has| |#3| (-1031 (-377))))) (-3557 (((-606 $) $) NIL) ((|#3| $) NIL) (($ (-313 |#3|)) 71) (($ (-1166)) 97) (($ (-313 (-544))) 60 (|has| |#3| (-1031 (-544)))) (($ (-406 (-939 (-544)))) 65 (|has| |#3| (-1031 (-544)))) (($ (-939 (-544))) 61 (|has| |#3| (-1031 (-544)))) (($ (-313 (-377))) 89 (|has| |#3| (-1031 (-377)))) (($ (-406 (-939 (-377)))) 83 (|has| |#3| (-1031 (-377)))) (($ (-939 (-377))) 79 (|has| |#3| (-1031 (-377))))) (-3866 (((-3 $ "failed") $) NIL)) (-4034 (($) 10)) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) NIL)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-1685 (((-1160 $) (-606 $)) NIL (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) NIL)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-1886 (($ $) 93)) (-4349 (($ $) NIL)) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) NIL)) (-2356 (($ (-113) $) 92) (($ (-113) (-635 $)) NIL)) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) NIL)) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-4350 (($ $) NIL)) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL)) (-3586 (($ $) NIL (|has| $ (-1042)))) (-3890 (($ $) NIL)) (-4041 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-606 $)) NIL) (($ |#3|) NIL) (($ (-544)) NIL) (((-313 |#3|) $) 95)) (-3511 (((-765)) NIL)) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-2377 (((-112) (-113)) NIL)) (-3885 (($ $) NIL)) (-3883 (($ $) NIL)) (-3884 (($ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) 94 T CONST)) (-3046 (($) 24 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL)))
+(((-338 |#1| |#2| |#3|) (-13 (-297) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3557 ($ (-313 |#3|))) (-15 -3558 ((-3 $ "failed") (-313 |#3|))) (-15 -3557 ($ (-1166))) (-15 -3558 ((-3 $ "failed") (-1166))) (-15 -4353 ((-313 |#3|) $)) (IF (|has| |#3| (-1031 (-544))) (PROGN (-15 -3557 ($ (-313 (-544)))) (-15 -3558 ((-3 $ "failed") (-313 (-544)))) (-15 -3557 ($ (-406 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-544))))) (-15 -3557 ($ (-939 (-544)))) (-15 -3558 ((-3 $ "failed") (-939 (-544))))) |%noBranch|) (IF (|has| |#3| (-1031 (-377))) (PROGN (-15 -3557 ($ (-313 (-377)))) (-15 -3558 ((-3 $ "failed") (-313 (-377)))) (-15 -3557 ($ (-406 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-377))))) (-15 -3557 ($ (-939 (-377)))) (-15 -3558 ((-3 $ "failed") (-939 (-377))))) |%noBranch|) (-15 -3787 ($ $)) (-15 -3420 ($ $)) (-15 -4350 ($ $)) (-15 -4349 ($ $)) (-15 -1886 ($ $)) (-15 -4045 ($ $)) (-15 -4041 ($ $)) (-15 -4046 ($ $)) (-15 -3883 ($ $)) (-15 -3884 ($ $)) (-15 -3885 ($ $)) (-15 -3889 ($ $)) (-15 -3890 ($ $)) (-15 -3891 ($ $)) (-15 -4034 ($)) (-15 -3467 ((-635 (-1166)) $)) (-15 -1782 ((-112))) (-15 -1782 ((-112) (-112))))) (-635 (-1166)) (-635 (-1166)) (-386)) (T -338))
+((-3557 (*1 *1 *2) (-12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-313 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3420 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4350 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4349 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4045 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4041 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4046 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3884 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3889 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4034 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-1782 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))))
+(-13 (-297) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3557 ($ (-313 |#3|))) (-15 -3558 ((-3 $ "failed") (-313 |#3|))) (-15 -3557 ($ (-1166))) (-15 -3558 ((-3 $ "failed") (-1166))) (-15 -4353 ((-313 |#3|) $)) (IF (|has| |#3| (-1031 (-544))) (PROGN (-15 -3557 ($ (-313 (-544)))) (-15 -3558 ((-3 $ "failed") (-313 (-544)))) (-15 -3557 ($ (-406 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-544))))) (-15 -3557 ($ (-939 (-544)))) (-15 -3558 ((-3 $ "failed") (-939 (-544))))) |%noBranch|) (IF (|has| |#3| (-1031 (-377))) (PROGN (-15 -3557 ($ (-313 (-377)))) (-15 -3558 ((-3 $ "failed") (-313 (-377)))) (-15 -3557 ($ (-406 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-377))))) (-15 -3557 ($ (-939 (-377)))) (-15 -3558 ((-3 $ "failed") (-939 (-377))))) |%noBranch|) (-15 -3787 ($ $)) (-15 -3420 ($ $)) (-15 -4350 ($ $)) (-15 -4349 ($ $)) (-15 -1886 ($ $)) (-15 -4045 ($ $)) (-15 -4041 ($ $)) (-15 -4046 ($ $)) (-15 -3883 ($ $)) (-15 -3884 ($ $)) (-15 -3885 ($ $)) (-15 -3889 ($ $)) (-15 -3890 ($ $)) (-15 -3891 ($ $)) (-15 -4034 ($)) (-15 -3467 ((-635 (-1166)) $)) (-15 -1782 ((-112))) (-15 -1782 ((-112) (-112)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-899 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-899 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-899 |#1|) "failed") $) NIL)) (-3557 (((-899 |#1|) $) NIL)) (-1939 (($ (-1253 (-899 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-899 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-899 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-899 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-899 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-899 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-3517 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-899 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-899 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-899 |#1|) (-367)))) (-1752 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367)))) (-1751 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-1160 (-899 |#1|)) "failed") $ $) NIL (|has| (-899 |#1|) (-367)))) (-1753 (($ $ (-1160 (-899 |#1|))) NIL (|has| (-899 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-899 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| (-899 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-899 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-899 |#1|))) NIL)) (-1818 (($) NIL (|has| (-899 |#1|) (-367)))) (-1754 (($) NIL (|has| (-899 |#1|) (-367)))) (-3625 (((-1253 (-899 |#1|)) $) NIL) (((-682 (-899 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-899 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-899 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-899 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-899 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-899 |#1|)) NIL) (($ (-899 |#1|) $) NIL)))
+(((-339 |#1| |#2|) (-328 (-899 |#1|)) (-912) (-912)) (T -339))
+NIL
+(-328 (-899 |#1|))
+((-1791 (((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) $) 38)) (-1939 (($ (-1253 (-406 |#3|)) (-1253 $)) NIL) (($ (-1253 (-406 |#3|))) NIL) (($ (-1253 |#3|) |#3|) 160)) (-1796 (((-1253 $) (-1253 $)) 144)) (-1783 (((-635 (-635 |#2|))) 118)) (-1808 (((-112) |#2| |#2|) 73)) (-3902 (($ $) 138)) (-3781 (((-765)) 31)) (-1797 (((-1253 $) (-1253 $)) 197)) (-1784 (((-635 (-939 |#2|)) (-1166)) 110)) (-1800 (((-112) $) 157)) (-1799 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-1786 (((-3 |#3| "failed")) 50)) (-1810 (((-765)) 169)) (-4206 ((|#2| $ |#2| |#2|) 131)) (-1787 (((-3 |#3| "failed")) 68)) (-4217 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-765)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-1798 (((-1253 $) (-1253 $)) 150)) (-1785 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1809 (((-112)) 33)))
+(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1783 ((-635 (-635 |#2|)))) (-15 -1784 ((-635 (-939 |#2|)) (-1166))) (-15 -1785 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1786 ((-3 |#3| "failed"))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -4206 (|#2| |#1| |#2| |#2|)) (-15 -3902 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1799 ((-112) |#1| |#3|)) (-15 -1799 ((-112) |#1| |#2|)) (-15 -1939 (|#1| (-1253 |#3|) |#3|)) (-15 -1791 ((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1796 ((-1253 |#1|) (-1253 |#1|))) (-15 -1797 ((-1253 |#1|) (-1253 |#1|))) (-15 -1798 ((-1253 |#1|) (-1253 |#1|))) (-15 -1799 ((-112) |#1|)) (-15 -1800 ((-112) |#1|)) (-15 -1808 ((-112) |#2| |#2|)) (-15 -1809 ((-112))) (-15 -1810 ((-765))) (-15 -3781 ((-765))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -1939 (|#1| (-1253 (-406 |#3|)))) (-15 -1939 (|#1| (-1253 (-406 |#3|)) (-1253 |#1|)))) (-341 |#2| |#3| |#4|) (-1209) (-1229 |#2|) (-1229 (-406 |#3|))) (T -340))
+((-3781 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1810 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1809 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1808 (*1 *2 *3 *3) (-12 (-4 *3 (-1209)) (-4 *5 (-1229 *3)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-1787 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-1786 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-635 (-939 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-1783 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))))
+(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1783 ((-635 (-635 |#2|)))) (-15 -1784 ((-635 (-939 |#2|)) (-1166))) (-15 -1785 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1786 ((-3 |#3| "failed"))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -4206 (|#2| |#1| |#2| |#2|)) (-15 -3902 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1799 ((-112) |#1| |#3|)) (-15 -1799 ((-112) |#1| |#2|)) (-15 -1939 (|#1| (-1253 |#3|) |#3|)) (-15 -1791 ((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1796 ((-1253 |#1|) (-1253 |#1|))) (-15 -1797 ((-1253 |#1|) (-1253 |#1|))) (-15 -1798 ((-1253 |#1|) (-1253 |#1|))) (-15 -1799 ((-112) |#1|)) (-15 -1800 ((-112) |#1|)) (-15 -1808 ((-112) |#2| |#2|)) (-15 -1809 ((-112))) (-15 -1810 ((-765))) (-15 -3781 ((-765))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -1939 (|#1| (-1253 (-406 |#3|)))) (-15 -1939 (|#1| (-1253 (-406 |#3|)) (-1253 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1791 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 195)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-2213 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-2211 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-1929 (((-682 (-406 |#2|)) (-1253 $)) 47) (((-682 (-406 |#2|))) 62)) (-3734 (((-406 |#2|) $) 53)) (-1819 (((-1177 (-912) (-765)) (-544)) 146 (|has| (-406 |#2|) (-349)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-4376 (((-404 $) $) 114 (|has| (-406 |#2|) (-362)))) (-1733 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-3521 (((-765)) 87 (|has| (-406 |#2|) (-367)))) (-1805 (((-112)) 212)) (-1804 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 169 (|has| (-406 |#2|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 167 (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-3 (-406 |#2|) #1#) $) 164)) (-3557 (((-544) $) 168 (|has| (-406 |#2|) (-1031 (-544)))) (((-406 (-544)) $) 166 (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-406 |#2|) $) 165)) (-1939 (($ (-1253 (-406 |#2|)) (-1253 $)) 49) (($ (-1253 (-406 |#2|))) 65) (($ (-1253 |#2|) |#2|) 194)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-349)))) (-2943 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-1928 (((-682 (-406 |#2|)) $ (-1253 $)) 54) (((-682 (-406 |#2|)) $) 60)) (-2401 (((-682 (-544)) (-682 $)) 163 (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 162 (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) 161) (((-682 (-406 |#2|)) (-682 $)) 160)) (-1796 (((-1253 $) (-1253 $)) 200)) (-4249 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-3866 (((-3 $ "failed") $) 33)) (-1783 (((-635 (-635 |#1|))) 181 (|has| |#1| (-367)))) (-1808 (((-112) |#1| |#1|) 216)) (-3494 (((-912)) 55)) (-3377 (($) 90 (|has| (-406 |#2|) (-367)))) (-1803 (((-112)) 209)) (-1802 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-2942 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 102 (|has| (-406 |#2|) (-362)))) (-3902 (($ $) 187)) (-3215 (($) 148 (|has| (-406 |#2|) (-349)))) (-1824 (((-112) $) 149 (|has| (-406 |#2|) (-349)))) (-1914 (($ $ (-765)) 140 (|has| (-406 |#2|) (-349))) (($ $) 139 (|has| (-406 |#2|) (-349)))) (-4130 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-4178 (((-912) $) 151 (|has| (-406 |#2|) (-349))) (((-826 (-912)) $) 137 (|has| (-406 |#2|) (-349)))) (-2545 (((-112) $) 31)) (-3781 (((-765)) 219)) (-1797 (((-1253 $) (-1253 $)) 201)) (-3517 (((-406 |#2|) $) 52)) (-1784 (((-635 (-939 |#1|)) (-1166)) 182 (|has| |#1| (-362)))) (-3848 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 111 (|has| (-406 |#2|) (-362)))) (-2164 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-2160 (((-912) $) 89 (|has| (-406 |#2|) (-367)))) (-3463 ((|#3| $) 155)) (-2041 (($ (-635 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-3643 (((-1148) $) 9)) (-1792 (((-682 (-406 |#2|))) 196)) (-1794 (((-682 (-406 |#2|))) 198)) (-2779 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-1789 (($ (-1253 |#2|) |#2|) 192)) (-1793 (((-682 (-406 |#2|))) 197)) (-1795 (((-682 (-406 |#2|))) 199)) (-1788 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1790 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 193)) (-1801 (((-1253 $)) 205)) (-4325 (((-1253 $)) 206)) (-1800 (((-112) $) 204)) (-1799 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3849 (($) 142 (|has| (-406 |#2|) (-349)) CONST)) (-2535 (($ (-912)) 88 (|has| (-406 |#2|) (-367)))) (-1786 (((-3 |#2| "failed")) 184)) (-3644 (((-1110) $) 10)) (-1810 (((-765)) 218)) (-2544 (($) 159)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 101 (|has| (-406 |#2|) (-362)))) (-3545 (($ (-635 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 145 (|has| (-406 |#2|) (-349)))) (-4139 (((-404 $) $) 112 (|has| (-406 |#2|) (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-3865 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| (-406 |#2|) (-362)))) (-1732 (((-765) $) 105 (|has| (-406 |#2|) (-362)))) (-4206 ((|#1| $ |#1| |#1|) 186)) (-1787 (((-3 |#2| "failed")) 185)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-4164 (((-406 |#2|) (-1253 $)) 48) (((-406 |#2|)) 61)) (-1915 (((-765) $) 150 (|has| (-406 |#2|) (-349))) (((-3 (-765) "failed") $ $) 138 (|has| (-406 |#2|) (-349)))) (-4217 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-635 (-1166)) (-635 (-765))) 129 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 130 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1166))) 131 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 132 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 134 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) 136 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-2543 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-3586 ((|#3|) 158)) (-1818 (($) 147 (|has| (-406 |#2|) (-349)))) (-3625 (((-1253 (-406 |#2|)) $ (-1253 $)) 51) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) 50) (((-1253 (-406 |#2|)) $) 67) (((-682 (-406 |#2|)) (-1253 $)) 66)) (-4377 (((-1253 (-406 |#2|)) $) 64) (($ (-1253 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 144 (|has| (-406 |#2|) (-349)))) (-1798 (((-1253 $) (-1253 $)) 202)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-544))) 86 (-3936 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-544)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-3084 (($ $) 143 (|has| (-406 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-2743 ((|#3| $) 46)) (-3511 (((-765)) 28)) (-1807 (((-112)) 215)) (-1806 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-2162 (((-1253 $)) 68)) (-2212 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-1785 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-1809 (((-112)) 217)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1166)) (-635 (-765))) 125 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 126 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1166))) 127 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 128 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 133 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) 135 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-544)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-544))) 118 (|has| (-406 |#2|) (-362)))))
+(((-341 |#1| |#2| |#3|) (-139) (-1209) (-1229 |t#1|) (-1229 (-406 |t#2|))) (T -341))
+((-3781 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))) (-1810 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))) (-1809 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1808 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1807 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1806 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1806 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-1805 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1804 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1804 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-1803 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1802 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1802 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-4325 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))) (-1801 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-1797 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-1795 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1794 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1793 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1792 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5))))) (-1799 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1799 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))))) (-4206 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))))) (-1787 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))) (-1786 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1209)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-635 (-939 *4))))) (-1783 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3))))))
+(-13 (-718 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3781 ((-765))) (-15 -1810 ((-765))) (-15 -1809 ((-112))) (-15 -1808 ((-112) |t#1| |t#1|)) (-15 -1807 ((-112))) (-15 -1806 ((-112) |t#1|)) (-15 -1806 ((-112) |t#2|)) (-15 -1805 ((-112))) (-15 -1804 ((-112) |t#1|)) (-15 -1804 ((-112) |t#2|)) (-15 -1803 ((-112))) (-15 -1802 ((-112) |t#1|)) (-15 -1802 ((-112) |t#2|)) (-15 -4325 ((-1253 $))) (-15 -1801 ((-1253 $))) (-15 -1800 ((-112) $)) (-15 -1799 ((-112) $)) (-15 -1798 ((-1253 $) (-1253 $))) (-15 -1797 ((-1253 $) (-1253 $))) (-15 -1796 ((-1253 $) (-1253 $))) (-15 -1795 ((-682 (-406 |t#2|)))) (-15 -1794 ((-682 (-406 |t#2|)))) (-15 -1793 ((-682 (-406 |t#2|)))) (-15 -1792 ((-682 (-406 |t#2|)))) (-15 -1791 ((-2 (|:| |num| (-1253 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1939 ($ (-1253 |t#2|) |t#2|)) (-15 -1790 ((-2 (|:| |num| (-1253 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1789 ($ (-1253 |t#2|) |t#2|)) (-15 -1788 ((-2 (|:| |num| (-682 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1799 ((-112) $ |t#1|)) (-15 -1799 ((-112) $ |t#2|)) (-15 -4217 ($ $ (-1 |t#2| |t#2|))) (-15 -3902 ($ $)) (-15 -4206 (|t#1| $ |t#1| |t#1|)) (-15 -1787 ((-3 |t#2| "failed"))) (-15 -1786 ((-3 |t#2| "failed"))) (-15 -1785 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -1784 ((-635 (-939 |t#1|)) (-1166))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -1783 ((-635 (-635 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-38 #2=(-406 |#2|)) . T) ((-38 $) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #1# #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-611 #1#) -3936 (|has| (-406 |#2|) (-1031 (-406 (-544)))) (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-611 #2#) . T) ((-611 (-544)) . T) ((-611 $) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-608 (-857)) . T) ((-171) . T) ((-609 |#3|) . T) ((-230 #2#) |has| (-406 |#2|) (-362)) ((-232) -3936 (|has| (-406 |#2|) (-349)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-289) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-306) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-362) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-349)) ((-367) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-367))) ((-349) |has| (-406 |#2|) (-349)) ((-369 #2# |#3|) . T) ((-409 #2# |#3|) . T) ((-376 #2#) . T) ((-411 #2#) . T) ((-450) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-554) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-641 #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-641 #2#) . T) ((-641 $) . T) ((-634 #2#) . T) ((-634 (-544)) |has| (-406 |#2|) (-634 (-544))) ((-711 #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-711 #2#) . T) ((-711 $) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-718 #2# |#3|) . T) ((-720) . T) ((-893 (-1166)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) ((-914) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-1031 (-406 (-544))) |has| (-406 |#2|) (-1031 (-406 (-544)))) ((-1031 #2#) . T) ((-1031 (-544)) |has| (-406 |#2|) (-1031 (-544))) ((-1048 #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-1048 #2#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| (-406 |#2|) (-349)) ((-1209) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))))
+((-4365 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|))) (-1209) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1209) (-1229 |#5|) (-1229 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -342))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *9 (-1229 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1229 (-406 *9))))))
+(-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-899 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-899 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-899 |#1|) "failed") $) NIL)) (-3557 (((-899 |#1|) $) NIL)) (-1939 (($ (-1253 (-899 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-899 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-899 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-899 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-899 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-899 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-3517 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-899 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-899 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-899 |#1|) (-367)))) (-1752 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367)))) (-1751 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-1160 (-899 |#1|)) "failed") $ $) NIL (|has| (-899 |#1|) (-367)))) (-1753 (($ $ (-1160 (-899 |#1|))) NIL (|has| (-899 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-899 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1811 (((-951 (-1110))) NIL)) (-2544 (($) NIL (|has| (-899 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-899 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-899 |#1|))) NIL)) (-1818 (($) NIL (|has| (-899 |#1|) (-367)))) (-1754 (($) NIL (|has| (-899 |#1|) (-367)))) (-3625 (((-1253 (-899 |#1|)) $) NIL) (((-682 (-899 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-899 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-899 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-899 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-899 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-899 |#1|)) NIL) (($ (-899 |#1|) $) NIL)))
+(((-343 |#1| |#2|) (-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1811 ((-951 (-1110)))))) (-912) (-912)) (T -343))
+((-1811 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))))
+(-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1811 ((-951 (-1110))))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 43)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 40 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 114)) (-3557 ((|#1| $) 85)) (-1939 (($ (-1253 |#1|)) 103)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) 97 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 128 (|has| |#1| (-367)))) (-1824 (((-112) $) 47 (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) 44 (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) 130 (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) 89) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) 138 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 145)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 70 (|has| |#1| (-367)))) (-4338 (((-112) $) 117)) (-3644 (((-1110) $) NIL)) (-1811 (((-951 (-1110))) 41)) (-2544 (($) 126 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 92 (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) 66) (((-912)) 67)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) 129 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 124 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) 95)) (-1818 (($) 127 (|has| |#1| (-367)))) (-1754 (($) 135 (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 58) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) 141) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 74)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 137)) (-2162 (((-1253 $)) 116) (((-1253 $) (-912)) 72)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 48 T CONST)) (-3046 (($) 45 T CONST)) (-4335 (($ $) 80 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) 46)) (-4356 (($ $ $) 143) (($ $ |#1|) 144)) (-4244 (($ $) 125) (($ $ $) NIL)) (-4246 (($ $ $) 60)) (** (($ $ (-912)) 147) (($ $ (-765)) 148) (($ $ (-544)) 146)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 76) (($ $ $) 75) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
+(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110)))))) (-349) (-1160 |#1|)) (T -344))
+((-1811 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1160 *3)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110))))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) NIL) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1811 (((-951 (-1110))) NIL)) (-2544 (($) NIL (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) NIL)) (-1818 (($) NIL (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) NIL)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-345 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110)))))) (-349) (-912)) (T -345))
+((-1811 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110))))))
+((-1821 (((-765) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) 42)) (-1812 (((-951 (-1110)) (-1160 |#1|)) 85)) (-1813 (((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) (-1160 |#1|)) 78)) (-1814 (((-682 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) 86)) (-1815 (((-3 (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) "failed") (-912)) 13)) (-1816 (((-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) (-912)) 18)))
+(((-346 |#1|) (-10 -7 (-15 -1812 ((-951 (-1110)) (-1160 |#1|))) (-15 -1813 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) (-1160 |#1|))) (-15 -1814 ((-682 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1821 ((-765) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1815 ((-3 (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) "failed") (-912))) (-15 -1816 ((-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) (-912)))) (-349)) (T -346))
+((-1816 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-3 (-1160 *4) (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1815 (*1 *2 *3) (|partial| -12 (-5 *3 (-912)) (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-4 *4 (-349)) (-5 *2 (-765)) (-5 *1 (-346 *4)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-4 *4 (-349)) (-5 *2 (-682 *4)) (-5 *1 (-346 *4)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-5 *1 (-346 *4)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-951 (-1110))) (-5 *1 (-346 *4)))))
+(-10 -7 (-15 -1812 ((-951 (-1110)) (-1160 |#1|))) (-15 -1813 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) (-1160 |#1|))) (-15 -1814 ((-682 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1821 ((-765) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1815 ((-3 (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) "failed") (-912))) (-15 -1816 ((-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) (-912))))
+((-4353 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -4353 (|#3| |#1|)) (-15 -4353 (|#1| |#3|))) (-328 |#2|) (-349) (-328 |#2|)) (T -347))
+((-4353 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-328 *4)))) (-4353 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-328 *4)))))
+(-10 -7 (-15 -4353 (|#3| |#1|)) (-15 -4353 (|#1| |#3|)))
+((-1824 (((-112) $) 50)) (-4178 (((-826 (-912)) $) 21) (((-912) $) 51)) (-3848 (((-3 $ "failed") $) 16)) (-3849 (($) 9)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 92)) (-1915 (((-3 (-765) "failed") $ $) 70) (((-765) $) 59)) (-4217 (($ $ (-765)) NIL) (($ $) 8)) (-1818 (($) 43)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 34)) (-3084 (((-3 $ "failed") $) 38) (($ $) 37)))
+(((-348 |#1|) (-10 -8 (-15 -4178 ((-912) |#1|)) (-15 -1915 ((-765) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1818 (|#1|)) (-15 -3085 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -3084 (|#1| |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -1915 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4178 ((-826 (-912)) |#1|)) (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)))) (-349)) (T -348))
+NIL
+(-10 -8 (-15 -4178 ((-912) |#1|)) (-15 -1915 ((-765) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1818 (|#1|)) (-15 -3085 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -3084 (|#1| |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -1915 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4178 ((-826 (-912)) |#1|)) (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1819 (((-1177 (-912) (-765)) (-544)) 94)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-3521 (((-765)) 104)) (-4131 (($) 17 T CONST)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-3377 (($) 107)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-3215 (($) 92)) (-1824 (((-112) $) 91)) (-1914 (($ $) 80) (($ $ (-765)) 79)) (-4130 (((-112) $) 72)) (-4178 (((-826 (-912)) $) 82) (((-912) $) 89)) (-2545 (((-112) $) 31)) (-3848 (((-3 $ "failed") $) 103)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2160 (((-912) $) 106)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3849 (($) 102 T CONST)) (-2535 (($ (-912)) 105)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 95)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-3 (-765) "failed") $ $) 81) (((-765) $) 90)) (-4217 (($ $ (-765)) 100) (($ $) 98)) (-1818 (($) 93)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 96)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3084 (((-3 $ "failed") $) 83) (($ $) 97)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-765)) 101) (($ $) 99)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68)))
+(((-349) (-139)) (T -349))
+((-3084 (*1 *1 *1) (-4 *1 (-349))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-349)) (-5 *2 (-1253 *1)))) (-1820 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))))) (-1819 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-544)) (-5 *2 (-1177 (-912) (-765))))) (-1818 (*1 *1) (-4 *1 (-349))) (-3215 (*1 *1) (-4 *1 (-349))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-765)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-912)))) (-1817 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-401) (-367) (-1141) (-232) (-10 -8 (-15 -3084 ($ $)) (-15 -3085 ((-3 (-1253 $) "failed") (-682 $))) (-15 -1820 ((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544)))))) (-15 -1819 ((-1177 (-912) (-765)) (-544))) (-15 -1818 ($)) (-15 -3215 ($)) (-15 -1824 ((-112) $)) (-15 -1915 ((-765) $)) (-15 -4178 ((-912) $)) (-15 -1817 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) . T) ((-1209) . T))
+((-4326 (((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|) 53)) (-4325 (((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 51)))
+(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))) (-1229 |#1|) (-409 |#1| |#2|)) (T -350))
+((-4326 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4325 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-899 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1821 (((-765)) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-899 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-899 |#1|) "failed") $) NIL)) (-3557 (((-899 |#1|) $) NIL)) (-1939 (($ (-1253 (-899 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-899 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-899 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-899 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-899 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-899 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-3517 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-899 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-899 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-899 |#1|) (-367)))) (-1752 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367)))) (-1751 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-1160 (-899 |#1|)) "failed") $ $) NIL (|has| (-899 |#1|) (-367)))) (-1753 (($ $ (-1160 (-899 |#1|))) NIL (|has| (-899 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-899 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1823 (((-1253 (-635 (-2 (|:| -3806 (-899 |#1|)) (|:| -2535 (-1110)))))) NIL)) (-1822 (((-682 (-899 |#1|))) NIL)) (-2544 (($) NIL (|has| (-899 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-899 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-899 |#1|))) NIL)) (-1818 (($) NIL (|has| (-899 |#1|) (-367)))) (-1754 (($) NIL (|has| (-899 |#1|) (-367)))) (-3625 (((-1253 (-899 |#1|)) $) NIL) (((-682 (-899 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-899 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-899 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-899 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-899 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-899 |#1|)) NIL) (($ (-899 |#1|) $) NIL)))
+(((-351 |#1| |#2|) (-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 (-899 |#1|)) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 (-899 |#1|)))) (-15 -1821 ((-765))))) (-912) (-912)) (T -351))
+((-1823 (*1 *2) (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 (-899 *3)) (|:| -2535 (-1110)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-1822 (*1 *2) (-12 (-5 *2 (-682 (-899 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-1821 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))))
+(-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 (-899 |#1|)) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 (-899 |#1|)))) (-15 -1821 ((-765)))))
+((-2947 (((-112) $ $) 61)) (-3589 (((-112) $) 74)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) 92) (($ $ (-912)) 90 (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 148 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1821 (((-765)) 89)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) 162 (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 112)) (-3557 ((|#1| $) 91)) (-1939 (($ (-1253 |#1|)) 58)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) 158 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 149 (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) 98 (|has| |#1| (-367)))) (-2161 (((-112) $) 175 (|has| |#1| (-367)))) (-3517 ((|#1| $) 94) (($ $ (-912)) 93 (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) 189) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) 134 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) 73 (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) 69 (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 192)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 137 (|has| |#1| (-367)))) (-4338 (((-112) $) 108)) (-3644 (((-1110) $) NIL)) (-1823 (((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) 83)) (-1822 (((-682 |#1|)) 87)) (-2544 (($) 96 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 150 (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) 151)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) 62)) (-3586 (((-1160 |#1|)) 152)) (-1818 (($) 133 (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 106) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) 124) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 57)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 156)) (-2162 (((-1253 $)) 172) (((-1253 $) (-912)) 101)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 117 T CONST)) (-3046 (($) 33 T CONST)) (-4335 (($ $) 107 (|has| |#1| (-367))) (($ $ (-765)) 99 (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) 183)) (-4356 (($ $ $) 104) (($ $ |#1|) 105)) (-4244 (($ $) 177) (($ $ $) 181)) (-4246 (($ $ $) 179)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 138)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 186) (($ $ $) 142) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765))))) (-349) (-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (T -352))
+((-1823 (*1 *2) (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) *2)))) (-1822 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110))))))))) (-1821 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110))))))))))
+(-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1821 (((-765)) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) NIL) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1823 (((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) NIL)) (-1822 (((-682 |#1|)) NIL)) (-2544 (($) NIL (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) NIL)) (-1818 (($) NIL (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) NIL)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-353 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765))))) (-349) (-912)) (T -353))
+((-1823 (*1 *2) (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))) (-1822 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))) (-1821 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 120 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) 139 (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 93)) (-3557 ((|#1| $) 90)) (-1939 (($ (-1253 |#1|)) 85)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) 82 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 42 (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) 121 (|has| |#1| (-367)))) (-2161 (((-112) $) 74 (|has| |#1| (-367)))) (-3517 ((|#1| $) 39) (($ $ (-912)) 43 (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) 65) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) 97 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 95 (|has| |#1| (-367)))) (-4338 (((-112) $) 141)) (-3644 (((-1110) $) NIL)) (-2544 (($) 36 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 115 (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) 138)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) 59)) (-3586 (((-1160 |#1|)) 88)) (-1818 (($) 126 (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 53) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) 137) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 87)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 143)) (-2162 (((-1253 $)) 109) (((-1253 $) (-912)) 49)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 111 T CONST)) (-3046 (($) 32 T CONST)) (-4335 (($ $) 68 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) 107)) (-4356 (($ $ $) 99) (($ $ |#1|) 100)) (-4244 (($ $) 80) (($ $ $) 105)) (-4246 (($ $ $) 103)) (** (($ $ (-912)) NIL) (($ $ (-765)) 44) (($ $ (-544)) 129)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 78) (($ $ $) 56) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-354 |#1| |#2|) (-328 |#1|) (-349) (-1160 |#1|)) (T -354))
NIL
(-328 |#1|)
-((-1783 ((|#1| (-1162 |#2|)) 52)))
-(((-355 |#1| |#2|) (-10 -7 (-15 -1783 (|#1| (-1162 |#2|)))) (-13 (-401) (-10 -7 (-15 -4064 (|#1| |#2|)) (-15 -1335 ((-914) |#1|)) (-15 -2615 ((-1254 |#1|) (-914))) (-15 -1471 (|#1| |#1|)))) (-348)) (T -355))
-((-1783 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-4 *2 (-13 (-401) (-10 -7 (-15 -4064 (*2 *4)) (-15 -1335 ((-914) *2)) (-15 -2615 ((-1254 *2) (-914))) (-15 -1471 (*2 *2))))) (-5 *1 (-355 *2 *4)))))
-(-10 -7 (-15 -1783 (|#1| (-1162 |#2|))))
-((-3332 (((-951 (-1162 |#1|)) (-1162 |#1|)) 36)) (-1362 (((-1162 |#1|) (-914) (-914)) 112) (((-1162 |#1|) (-914)) 111)) (-3943 (((-112) (-1162 |#1|)) 84)) (-3057 (((-914) (-914)) 71)) (-2946 (((-914) (-914)) 74)) (-1795 (((-914) (-914)) 69)) (-1892 (((-112) (-1162 |#1|)) 88)) (-1396 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 100)) (-3329 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 103)) (-2599 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 102)) (-3864 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 101)) (-3478 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 97)) (-1358 (((-1162 |#1|) (-1162 |#1|)) 62)) (-3617 (((-1162 |#1|) (-914)) 106)) (-3199 (((-1162 |#1|) (-914)) 109)) (-2476 (((-1162 |#1|) (-914)) 108)) (-1712 (((-1162 |#1|) (-914)) 107)) (-1934 (((-1162 |#1|) (-914)) 104)))
-(((-356 |#1|) (-10 -7 (-15 -3943 ((-112) (-1162 |#1|))) (-15 -1892 ((-112) (-1162 |#1|))) (-15 -1795 ((-914) (-914))) (-15 -3057 ((-914) (-914))) (-15 -2946 ((-914) (-914))) (-15 -1934 ((-1162 |#1|) (-914))) (-15 -3617 ((-1162 |#1|) (-914))) (-15 -1712 ((-1162 |#1|) (-914))) (-15 -2476 ((-1162 |#1|) (-914))) (-15 -3199 ((-1162 |#1|) (-914))) (-15 -3478 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1396 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3864 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -2599 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3329 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1362 ((-1162 |#1|) (-914))) (-15 -1362 ((-1162 |#1|) (-914) (-914))) (-15 -1358 ((-1162 |#1|) (-1162 |#1|))) (-15 -3332 ((-951 (-1162 |#1|)) (-1162 |#1|)))) (-348)) (T -356))
-((-3332 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-951 (-1162 *4))) (-5 *1 (-356 *4)) (-5 *3 (-1162 *4)))) (-1358 (*1 *2 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-1362 (*1 *2 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3329 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2599 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3864 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-1396 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3478 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))))
-(-10 -7 (-15 -3943 ((-112) (-1162 |#1|))) (-15 -1892 ((-112) (-1162 |#1|))) (-15 -1795 ((-914) (-914))) (-15 -3057 ((-914) (-914))) (-15 -2946 ((-914) (-914))) (-15 -1934 ((-1162 |#1|) (-914))) (-15 -3617 ((-1162 |#1|) (-914))) (-15 -1712 ((-1162 |#1|) (-914))) (-15 -2476 ((-1162 |#1|) (-914))) (-15 -3199 ((-1162 |#1|) (-914))) (-15 -3478 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1396 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3864 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -2599 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3329 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1362 ((-1162 |#1|) (-914))) (-15 -1362 ((-1162 |#1|) (-914) (-914))) (-15 -1358 ((-1162 |#1|) (-1162 |#1|))) (-15 -3332 ((-951 (-1162 |#1|)) (-1162 |#1|))))
-((-1963 (((-3 (-638 |#3|) "failed") (-638 |#3|) |#3|) 33)))
-(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -1963 ((-3 (-638 |#3|) "failed") (-638 |#3|) |#3|))) (-348) (-1230 |#1|) (-1230 |#2|)) (T -357))
-((-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3)))))
-(-10 -7 (-15 -1963 ((-3 (-638 |#3|) "failed") (-638 |#3|) |#3|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3376 (($ (-1254 |#1|)) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| |#1| (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL (|has| |#1| (-367)))) (-3943 (((-112) $) NIL (|has| |#1| (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| |#1| (-367)))) (-1892 (((-112) $) NIL (|has| |#1| (-367)))) (-2072 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 |#1|) $) NIL) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-1335 (((-914) $) NIL (|has| |#1| (-367)))) (-2313 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-1382 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2953 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| |#1| (-367)) CONST)) (-2442 (($ (-914)) NIL (|has| |#1| (-367)))) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-3194 (($) NIL (|has| |#1| (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| |#1| (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 |#1|)) NIL)) (-2102 (($) NIL (|has| |#1| (-367)))) (-3341 (($) NIL (|has| |#1| (-367)))) (-3752 (((-1254 |#1|) $) NIL) (((-682 |#1|) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) NIL)) (-3666 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL) (((-1254 $) (-914)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3154 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-358 |#1| |#2|) (-328 |#1|) (-348) (-914)) (T -358))
+((-1839 (((-951 (-1160 |#1|)) (-1160 |#1|)) 36)) (-3377 (((-1160 |#1|) (-912) (-912)) 112) (((-1160 |#1|) (-912)) 111)) (-1824 (((-112) (-1160 |#1|)) 84)) (-1826 (((-912) (-912)) 71)) (-1827 (((-912) (-912)) 74)) (-1825 (((-912) (-912)) 69)) (-2161 (((-112) (-1160 |#1|)) 88)) (-1834 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 100)) (-1837 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 103)) (-1836 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 102)) (-1835 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 101)) (-1833 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 97)) (-1838 (((-1160 |#1|) (-1160 |#1|)) 62)) (-1829 (((-1160 |#1|) (-912)) 106)) (-1832 (((-1160 |#1|) (-912)) 109)) (-1831 (((-1160 |#1|) (-912)) 108)) (-1830 (((-1160 |#1|) (-912)) 107)) (-1828 (((-1160 |#1|) (-912)) 104)))
+(((-355 |#1|) (-10 -7 (-15 -1824 ((-112) (-1160 |#1|))) (-15 -2161 ((-112) (-1160 |#1|))) (-15 -1825 ((-912) (-912))) (-15 -1826 ((-912) (-912))) (-15 -1827 ((-912) (-912))) (-15 -1828 ((-1160 |#1|) (-912))) (-15 -1829 ((-1160 |#1|) (-912))) (-15 -1830 ((-1160 |#1|) (-912))) (-15 -1831 ((-1160 |#1|) (-912))) (-15 -1832 ((-1160 |#1|) (-912))) (-15 -1833 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1834 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1835 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1836 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1837 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -3377 ((-1160 |#1|) (-912))) (-15 -3377 ((-1160 |#1|) (-912) (-912))) (-15 -1838 ((-1160 |#1|) (-1160 |#1|))) (-15 -1839 ((-951 (-1160 |#1|)) (-1160 |#1|)))) (-349)) (T -355))
+((-1839 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-951 (-1160 *4))) (-5 *1 (-355 *4)) (-5 *3 (-1160 *4)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-3377 (*1 *2 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1837 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1836 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1835 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1834 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1833 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4)))))
+(-10 -7 (-15 -1824 ((-112) (-1160 |#1|))) (-15 -2161 ((-112) (-1160 |#1|))) (-15 -1825 ((-912) (-912))) (-15 -1826 ((-912) (-912))) (-15 -1827 ((-912) (-912))) (-15 -1828 ((-1160 |#1|) (-912))) (-15 -1829 ((-1160 |#1|) (-912))) (-15 -1830 ((-1160 |#1|) (-912))) (-15 -1831 ((-1160 |#1|) (-912))) (-15 -1832 ((-1160 |#1|) (-912))) (-15 -1833 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1834 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1835 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1836 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1837 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -3377 ((-1160 |#1|) (-912))) (-15 -3377 ((-1160 |#1|) (-912) (-912))) (-15 -1838 ((-1160 |#1|) (-1160 |#1|))) (-15 -1839 ((-951 (-1160 |#1|)) (-1160 |#1|))))
+((-1840 ((|#1| (-1160 |#2|)) 52)))
+(((-356 |#1| |#2|) (-10 -7 (-15 -1840 (|#1| (-1160 |#2|)))) (-13 (-401) (-10 -7 (-15 -4353 (|#1| |#2|)) (-15 -2160 ((-912) |#1|)) (-15 -2162 ((-1253 |#1|) (-912))) (-15 -4335 (|#1| |#1|)))) (-349)) (T -356))
+((-1840 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-401) (-10 -7 (-15 -4353 (*2 *4)) (-15 -2160 ((-912) *2)) (-15 -2162 ((-1253 *2) (-912))) (-15 -4335 (*2 *2))))) (-5 *1 (-356 *2 *4)))))
+(-10 -7 (-15 -1840 (|#1| (-1160 |#2|))))
+((-3086 (((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|) 33)))
+(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -3086 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|))) (-349) (-1229 |#1|) (-1229 |#2|)) (T -357))
+((-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-349)) (-5 *1 (-357 *4 *5 *3)))))
+(-10 -7 (-15 -3086 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) NIL) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) NIL)) (-1818 (($) NIL (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) NIL)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-358 |#1| |#2|) (-328 |#1|) (-349) (-912)) (T -358))
NIL
(-328 |#1|)
-((-2256 (((-112) (-638 (-945 |#1|))) 33)) (-1907 (((-638 (-945 |#1|)) (-638 (-945 |#1|))) 45)) (-3136 (((-3 (-638 (-945 |#1|)) "failed") (-638 (-945 |#1|))) 40)))
-(((-359 |#1| |#2|) (-10 -7 (-15 -2256 ((-112) (-638 (-945 |#1|)))) (-15 -3136 ((-3 (-638 (-945 |#1|)) "failed") (-638 (-945 |#1|)))) (-15 -1907 ((-638 (-945 |#1|)) (-638 (-945 |#1|))))) (-450) (-638 (-1166))) (T -359))
-((-1907 (*1 *2 *2) (-12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-638 (-1166))))) (-3136 (*1 *2 *2) (|partial| -12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-638 (-1166))))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-638 (-1166))))))
-(-10 -7 (-15 -2256 ((-112) (-638 (-945 |#1|)))) (-15 -3136 ((-3 (-638 (-945 |#1|)) "failed") (-638 (-945 |#1|)))) (-15 -1907 ((-638 (-945 |#1|)) (-638 (-945 |#1|)))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765) $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) 15)) (-3328 ((|#1| $ (-561)) NIL)) (-1895 (((-561) $ (-561)) NIL)) (-4251 (($ (-1 |#1| |#1|) $) 32)) (-4378 (($ (-1 (-561) (-561)) $) 24)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 26)) (-1701 (((-1110) $) NIL)) (-2762 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-561)))) $) 28)) (-2076 (($ $ $) NIL)) (-3047 (($ $ $) NIL)) (-4064 (((-856) $) 38) (($ |#1|) NIL)) (-2257 (($) 9 T CONST)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ |#1| (-561)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-360 |#1|) (-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-561))) (-15 -1386 ((-765) $)) (-15 -1895 ((-561) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -4378 ($ (-1 (-561) (-561)) $)) (-15 -4251 ($ (-1 |#1| |#1|) $)) (-15 -2762 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-561)))) $)))) (-1090)) (T -360))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1090)))) (-1895 (*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-360 *3)) (-4 *3 (-1090)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (-4378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-561) (-561))) (-5 *1 (-360 *3)) (-4 *3 (-1090)))) (-4251 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-360 *3)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 (-561))))) (-5 *1 (-360 *3)) (-4 *3 (-1090)))))
-(-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-561))) (-15 -1386 ((-765) $)) (-15 -1895 ((-561) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -4378 ($ (-1 (-561) (-561)) $)) (-15 -4251 ($ (-1 |#1| |#1|) $)) (-15 -2762 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-561)))) $))))
-((-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 13)) (-3012 (($ $) 14)) (-3552 (((-417 $) $) 29)) (-2725 (((-112) $) 25)) (-1519 (($ $) 18)) (-1603 (($ $ $) 22) (($ (-638 $)) NIL)) (-1633 (((-417 $) $) 30)) (-1748 (((-3 $ "failed") $ $) 21)) (-1905 (((-765) $) 24)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 34)) (-3996 (((-112) $ $) 15)) (-1828 (($ $ $) 32)))
-(((-361 |#1|) (-10 -8 (-15 -1828 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -1421 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -1905 ((-765) |#1|)) (-15 -1603 (|#1| (-638 |#1|))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -3996 ((-112) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -1844 ((-2 (|:| -2385 |#1|) (|:| -4386 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361))
-NIL
-(-10 -8 (-15 -1828 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -1421 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -1905 ((-765) |#1|)) (-15 -1603 (|#1| (-638 |#1|))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -3996 ((-112) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -1844 ((-2 (|:| -2385 |#1|) (|:| -4386 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-3698 (((-112) $ $) 60)) (-2674 (($) 17 T CONST)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2725 (((-112) $) 72)) (-2252 (((-112) $) 31)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 66)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
+((-2372 (((-112) (-635 (-939 |#1|))) 33)) (-2374 (((-635 (-939 |#1|)) (-635 (-939 |#1|))) 45)) (-2373 (((-3 (-635 (-939 |#1|)) "failed") (-635 (-939 |#1|))) 40)))
+(((-359 |#1| |#2|) (-10 -7 (-15 -2372 ((-112) (-635 (-939 |#1|)))) (-15 -2373 ((-3 (-635 (-939 |#1|)) "failed") (-635 (-939 |#1|)))) (-15 -2374 ((-635 (-939 |#1|)) (-635 (-939 |#1|))))) (-450) (-635 (-1166))) (T -359))
+((-2374 (*1 *2 *2) (-12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1166))))) (-2373 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1166))))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1166))))))
+(-10 -7 (-15 -2372 ((-112) (-635 (-939 |#1|)))) (-15 -2373 ((-3 (-635 (-939 |#1|)) "failed") (-635 (-939 |#1|)))) (-15 -2374 ((-635 (-939 |#1|)) (-635 (-939 |#1|)))))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) 15)) (-2813 ((|#1| $ (-544)) NIL)) (-2814 (((-544) $ (-544)) NIL)) (-2410 (($ (-1 |#1| |#1|) $) 32)) (-2411 (($ (-1 (-544) (-544)) $) 24)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 26)) (-3644 (((-1110) $) NIL)) (-2812 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $) 28)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 38) (($ |#1|) NIL)) (-3046 (($) 9 T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ |#1| (-544)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-360 |#1|) (-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-544))) (-15 -3521 ((-765) $)) (-15 -2814 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-544) (-544)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $)))) (-1091)) (T -360))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) (-2814 (*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (-2411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-544) (-544))) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-360 *3)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-544))))) (-5 *1 (-360 *3)) (-4 *3 (-1091)))))
+(-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-544))) (-15 -3521 ((-765) $)) (-15 -2814 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-544) (-544)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $))))
+((-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 13)) (-2213 (($ $) 14)) (-4376 (((-404 $) $) 29)) (-4130 (((-112) $) 25)) (-2779 (($ $) 18)) (-3545 (($ $ $) 22) (($ (-635 $)) NIL)) (-4139 (((-404 $) $) 30)) (-3865 (((-3 $ "failed") $ $) 21)) (-1732 (((-765) $) 24)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 34)) (-2212 (((-112) $ $) 15)) (-4356 (($ $ $) 32)))
+(((-361 |#1|) (-10 -8 (-15 -4356 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361))
+NIL
+(-10 -8 (-15 -4356 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68)))
(((-362) (-139)) (T -362))
-((-1828 (*1 *1 *1 *1) (-4 *1 (-362))))
-(-13 (-306) (-1209) (-242) (-10 -8 (-15 -1828 ($ $ $)) (-6 -4397) (-6 -4391)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
-((-4053 (((-112) $ $) 7)) (-2254 ((|#2| $ |#2|) 13)) (-2848 (($ $ (-1148)) 18)) (-1769 ((|#2| $) 14)) (-3368 (($ |#1|) 20) (($ |#1| (-1148)) 19)) (-3305 ((|#1| $) 16)) (-1883 (((-1148) $) 9)) (-3391 (((-1148) $) 15)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-3550 (($ $) 17)) (-1723 (((-112) $ $) 6)))
-(((-363 |#1| |#2|) (-139) (-1090) (-1090)) (T -363))
-((-3368 (*1 *1 *2) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-3368 (*1 *1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1090)) (-4 *4 (-1090)))) (-2848 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3550 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-1148)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-2254 (*1 *2 *1 *2) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
-(-13 (-1090) (-10 -8 (-15 -3368 ($ |t#1|)) (-15 -3368 ($ |t#1| (-1148))) (-15 -2848 ($ $ (-1148))) (-15 -3550 ($ $)) (-15 -3305 (|t#1| $)) (-15 -3391 ((-1148) $)) (-15 -1769 (|t#2| $)) (-15 -2254 (|t#2| $ |t#2|))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-2254 ((|#1| $ |#1|) 30)) (-2848 (($ $ (-1148)) 22)) (-1942 (((-3 |#1| "failed") $) 29)) (-1769 ((|#1| $) 27)) (-3368 (($ (-387)) 21) (($ (-387) (-1148)) 20)) (-3305 (((-387) $) 24)) (-1883 (((-1148) $) NIL)) (-3391 (((-1148) $) 25)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19)) (-3550 (($ $) 23)) (-1723 (((-112) $ $) 18)))
-(((-364 |#1|) (-13 (-363 (-387) |#1|) (-10 -8 (-15 -1942 ((-3 |#1| "failed") $)))) (-1090)) (T -364))
-((-1942 (*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1090)))))
-(-13 (-363 (-387) |#1|) (-10 -8 (-15 -1942 ((-3 |#1| "failed") $))))
-((-3625 (((-1254 (-682 |#2|)) (-1254 $)) 61)) (-3615 (((-682 |#2|) (-1254 $)) 120)) (-3230 ((|#2| $) 32)) (-4196 (((-682 |#2|) $ (-1254 $)) 123)) (-3884 (((-3 $ "failed") $) 75)) (-3718 ((|#2| $) 35)) (-2477 (((-1162 |#2|) $) 83)) (-2137 ((|#2| (-1254 $)) 106)) (-4292 (((-1162 |#2|) $) 28)) (-3172 (((-112)) 100)) (-3376 (($ (-1254 |#2|) (-1254 $)) 113)) (-3735 (((-3 $ "failed") $) 79)) (-2203 (((-112)) 95)) (-3787 (((-112)) 90)) (-3591 (((-112)) 53)) (-2960 (((-682 |#2|) (-1254 $)) 118)) (-1952 ((|#2| $) 31)) (-4208 (((-682 |#2|) $ (-1254 $)) 122)) (-3408 (((-3 $ "failed") $) 73)) (-4178 ((|#2| $) 34)) (-3462 (((-1162 |#2|) $) 82)) (-3659 ((|#2| (-1254 $)) 104)) (-4321 (((-1162 |#2|) $) 26)) (-4112 (((-112)) 99)) (-2646 (((-112)) 92)) (-2227 (((-112)) 51)) (-1871 (((-112)) 87)) (-1800 (((-112)) 101)) (-3752 (((-1254 |#2|) $ (-1254 $)) NIL) (((-682 |#2|) (-1254 $) (-1254 $)) 111)) (-2619 (((-112)) 97)) (-2541 (((-638 (-1254 |#2|))) 86)) (-3498 (((-112)) 98)) (-1999 (((-112)) 96)) (-2136 (((-112)) 46)) (-3030 (((-112)) 102)))
-(((-365 |#1| |#2|) (-10 -8 (-15 -2477 ((-1162 |#2|) |#1|)) (-15 -3462 ((-1162 |#2|) |#1|)) (-15 -2541 ((-638 (-1254 |#2|)))) (-15 -3884 ((-3 |#1| "failed") |#1|)) (-15 -3408 ((-3 |#1| "failed") |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 -3787 ((-112))) (-15 -2646 ((-112))) (-15 -2203 ((-112))) (-15 -2227 ((-112))) (-15 -3591 ((-112))) (-15 -1871 ((-112))) (-15 -3030 ((-112))) (-15 -1800 ((-112))) (-15 -3172 ((-112))) (-15 -4112 ((-112))) (-15 -2136 ((-112))) (-15 -3498 ((-112))) (-15 -1999 ((-112))) (-15 -2619 ((-112))) (-15 -4292 ((-1162 |#2|) |#1|)) (-15 -4321 ((-1162 |#2|) |#1|)) (-15 -3615 ((-682 |#2|) (-1254 |#1|))) (-15 -2960 ((-682 |#2|) (-1254 |#1|))) (-15 -2137 (|#2| (-1254 |#1|))) (-15 -3659 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -3718 (|#2| |#1|)) (-15 -4178 (|#2| |#1|)) (-15 -3230 (|#2| |#1|)) (-15 -1952 (|#2| |#1|)) (-15 -4196 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -4208 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -3625 ((-1254 (-682 |#2|)) (-1254 |#1|)))) (-366 |#2|) (-171)) (T -365))
-((-2619 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1999 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3498 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2136 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4112 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3172 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1800 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3030 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1871 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3591 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2227 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2203 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2646 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3787 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2541 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-638 (-1254 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))))
-(-10 -8 (-15 -2477 ((-1162 |#2|) |#1|)) (-15 -3462 ((-1162 |#2|) |#1|)) (-15 -2541 ((-638 (-1254 |#2|)))) (-15 -3884 ((-3 |#1| "failed") |#1|)) (-15 -3408 ((-3 |#1| "failed") |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 -3787 ((-112))) (-15 -2646 ((-112))) (-15 -2203 ((-112))) (-15 -2227 ((-112))) (-15 -3591 ((-112))) (-15 -1871 ((-112))) (-15 -3030 ((-112))) (-15 -1800 ((-112))) (-15 -3172 ((-112))) (-15 -4112 ((-112))) (-15 -2136 ((-112))) (-15 -3498 ((-112))) (-15 -1999 ((-112))) (-15 -2619 ((-112))) (-15 -4292 ((-1162 |#2|) |#1|)) (-15 -4321 ((-1162 |#2|) |#1|)) (-15 -3615 ((-682 |#2|) (-1254 |#1|))) (-15 -2960 ((-682 |#2|) (-1254 |#1|))) (-15 -2137 (|#2| (-1254 |#1|))) (-15 -3659 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -3718 (|#2| |#1|)) (-15 -4178 (|#2| |#1|)) (-15 -3230 (|#2| |#1|)) (-15 -1952 (|#2| |#1|)) (-15 -4196 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -4208 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -3625 ((-1254 (-682 |#2|)) (-1254 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2385 (((-3 $ "failed")) 37 (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) 19)) (-3625 (((-1254 (-682 |#1|)) (-1254 $)) 78)) (-1426 (((-1254 $)) 81)) (-2674 (($) 17 T CONST)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) 40 (|has| |#1| (-553)))) (-1763 (((-3 $ "failed")) 38 (|has| |#1| (-553)))) (-3615 (((-682 |#1|) (-1254 $)) 65)) (-3230 ((|#1| $) 74)) (-4196 (((-682 |#1|) $ (-1254 $)) 76)) (-3884 (((-3 $ "failed") $) 45 (|has| |#1| (-553)))) (-3187 (($ $ (-914)) 28)) (-3718 ((|#1| $) 72)) (-2477 (((-1162 |#1|) $) 42 (|has| |#1| (-553)))) (-2137 ((|#1| (-1254 $)) 67)) (-4292 (((-1162 |#1|) $) 63)) (-3172 (((-112)) 57)) (-3376 (($ (-1254 |#1|) (-1254 $)) 69)) (-3735 (((-3 $ "failed") $) 47 (|has| |#1| (-553)))) (-3400 (((-914)) 80)) (-2949 (((-112)) 54)) (-3425 (($ $ (-914)) 33)) (-2203 (((-112)) 50)) (-3787 (((-112)) 48)) (-3591 (((-112)) 52)) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) 41 (|has| |#1| (-553)))) (-2699 (((-3 $ "failed")) 39 (|has| |#1| (-553)))) (-2960 (((-682 |#1|) (-1254 $)) 66)) (-1952 ((|#1| $) 75)) (-4208 (((-682 |#1|) $ (-1254 $)) 77)) (-3408 (((-3 $ "failed") $) 46 (|has| |#1| (-553)))) (-2143 (($ $ (-914)) 29)) (-4178 ((|#1| $) 73)) (-3462 (((-1162 |#1|) $) 43 (|has| |#1| (-553)))) (-3659 ((|#1| (-1254 $)) 68)) (-4321 (((-1162 |#1|) $) 64)) (-4112 (((-112)) 58)) (-1883 (((-1148) $) 9)) (-2646 (((-112)) 49)) (-2227 (((-112)) 51)) (-1871 (((-112)) 53)) (-1701 (((-1110) $) 10)) (-1800 (((-112)) 56)) (-3752 (((-1254 |#1|) $ (-1254 $)) 71) (((-682 |#1|) (-1254 $) (-1254 $)) 70)) (-3311 (((-638 (-945 |#1|)) (-1254 $)) 79)) (-3047 (($ $ $) 25)) (-2619 (((-112)) 62)) (-4064 (((-856) $) 11)) (-2541 (((-638 (-1254 |#1|))) 44 (|has| |#1| (-553)))) (-2748 (($ $ $ $) 26)) (-3498 (((-112)) 60)) (-2897 (($ $ $) 24)) (-1999 (((-112)) 61)) (-2136 (((-112)) 59)) (-3030 (((-112)) 55)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4356 (*1 *1 *1 *1) (-4 *1 (-362))))
+(-13 (-306) (-1209) (-242) (-10 -8 (-15 -4356 ($ $ $)) (-6 -4398) (-6 -4392)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T))
+((-2947 (((-112) $ $) NIL)) (-1841 ((|#1| $ |#1|) 30)) (-1845 (($ $ (-1148)) 22)) (-4026 (((-3 |#1| "failed") $) 29)) (-1842 ((|#1| $) 27)) (-1846 (($ (-387)) 21) (($ (-387) (-1148)) 20)) (-3949 (((-387) $) 24)) (-3643 (((-1148) $) NIL)) (-1843 (((-1148) $) 25)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19)) (-1844 (($ $) 23)) (-3437 (((-112) $ $) 18)))
+(((-363 |#1|) (-13 (-364 (-387) |#1|) (-10 -8 (-15 -4026 ((-3 |#1| "failed") $)))) (-1091)) (T -363))
+((-4026 (*1 *2 *1) (|partial| -12 (-5 *1 (-363 *2)) (-4 *2 (-1091)))))
+(-13 (-364 (-387) |#1|) (-10 -8 (-15 -4026 ((-3 |#1| "failed") $))))
+((-2947 (((-112) $ $) 7)) (-1841 ((|#2| $ |#2|) 13)) (-1845 (($ $ (-1148)) 18)) (-1842 ((|#2| $) 14)) (-1846 (($ |#1|) 20) (($ |#1| (-1148)) 19)) (-3949 ((|#1| $) 16)) (-3643 (((-1148) $) 9)) (-1843 (((-1148) $) 15)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-1844 (($ $) 17)) (-3437 (((-112) $ $) 6)))
+(((-364 |#1| |#2|) (-139) (-1091) (-1091)) (T -364))
+((-1846 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-1846 (*1 *1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1091)) (-4 *4 (-1091)))) (-1845 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-1844 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-1148)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-1841 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))))
+(-13 (-1091) (-10 -8 (-15 -1846 ($ |t#1|)) (-15 -1846 ($ |t#1| (-1148))) (-15 -1845 ($ $ (-1148))) (-15 -1844 ($ $)) (-15 -3949 (|t#1| $)) (-15 -1843 ((-1148) $)) (-15 -1842 (|t#2| $)) (-15 -1841 (|t#2| $ |t#2|))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-3624 (((-1253 (-682 |#2|)) (-1253 $)) 61)) (-1935 (((-682 |#2|) (-1253 $)) 120)) (-1871 ((|#2| $) 32)) (-1933 (((-682 |#2|) $ (-1253 $)) 123)) (-2539 (((-3 $ "failed") $) 75)) (-1869 ((|#2| $) 35)) (-1849 (((-1160 |#2|) $) 83)) (-1937 ((|#2| (-1253 $)) 106)) (-1867 (((-1160 |#2|) $) 28)) (-1861 (((-112)) 100)) (-1939 (($ (-1253 |#2|) (-1253 $)) 113)) (-3866 (((-3 $ "failed") $) 79)) (-1854 (((-112)) 95)) (-1852 (((-112)) 90)) (-1856 (((-112)) 53)) (-1936 (((-682 |#2|) (-1253 $)) 118)) (-1872 ((|#2| $) 31)) (-1934 (((-682 |#2|) $ (-1253 $)) 122)) (-2540 (((-3 $ "failed") $) 73)) (-1870 ((|#2| $) 34)) (-1850 (((-1160 |#2|) $) 82)) (-1938 ((|#2| (-1253 $)) 104)) (-1868 (((-1160 |#2|) $) 26)) (-1862 (((-112)) 99)) (-1853 (((-112)) 92)) (-1855 (((-112)) 51)) (-1857 (((-112)) 87)) (-1860 (((-112)) 101)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) 111)) (-1866 (((-112)) 97)) (-1851 (((-635 (-1253 |#2|))) 86)) (-1864 (((-112)) 98)) (-1865 (((-112)) 96)) (-1863 (((-112)) 46)) (-1859 (((-112)) 102)))
+(((-365 |#1| |#2|) (-10 -8 (-15 -1849 ((-1160 |#2|) |#1|)) (-15 -1850 ((-1160 |#2|) |#1|)) (-15 -1851 ((-635 (-1253 |#2|)))) (-15 -2539 ((-3 |#1| "failed") |#1|)) (-15 -2540 ((-3 |#1| "failed") |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 -1852 ((-112))) (-15 -1853 ((-112))) (-15 -1854 ((-112))) (-15 -1855 ((-112))) (-15 -1856 ((-112))) (-15 -1857 ((-112))) (-15 -1859 ((-112))) (-15 -1860 ((-112))) (-15 -1861 ((-112))) (-15 -1862 ((-112))) (-15 -1863 ((-112))) (-15 -1864 ((-112))) (-15 -1865 ((-112))) (-15 -1866 ((-112))) (-15 -1867 ((-1160 |#2|) |#1|)) (-15 -1868 ((-1160 |#2|) |#1|)) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1869 (|#2| |#1|)) (-15 -1870 (|#2| |#1|)) (-15 -1871 (|#2| |#1|)) (-15 -1872 (|#2| |#1|)) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|)))) (-366 |#2|) (-171)) (T -365))
+((-1866 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1865 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1864 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1863 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1862 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1861 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1860 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1859 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1857 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1856 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1855 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1854 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1853 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1852 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1851 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1253 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))))
+(-10 -8 (-15 -1849 ((-1160 |#2|) |#1|)) (-15 -1850 ((-1160 |#2|) |#1|)) (-15 -1851 ((-635 (-1253 |#2|)))) (-15 -2539 ((-3 |#1| "failed") |#1|)) (-15 -2540 ((-3 |#1| "failed") |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 -1852 ((-112))) (-15 -1853 ((-112))) (-15 -1854 ((-112))) (-15 -1855 ((-112))) (-15 -1856 ((-112))) (-15 -1857 ((-112))) (-15 -1859 ((-112))) (-15 -1860 ((-112))) (-15 -1861 ((-112))) (-15 -1862 ((-112))) (-15 -1863 ((-112))) (-15 -1864 ((-112))) (-15 -1865 ((-112))) (-15 -1866 ((-112))) (-15 -1867 ((-1160 |#2|) |#1|)) (-15 -1868 ((-1160 |#2|) |#1|)) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1869 (|#2| |#1|)) (-15 -1870 (|#2| |#1|)) (-15 -1871 (|#2| |#1|)) (-15 -1872 (|#2| |#1|)) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1920 (((-3 $ "failed")) 37 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-3624 (((-1253 (-682 |#1|)) (-1253 $)) 78)) (-1873 (((-1253 $)) 81)) (-4131 (($) 17 T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) 40 (|has| |#1| (-554)))) (-1847 (((-3 $ "failed")) 38 (|has| |#1| (-554)))) (-1935 (((-682 |#1|) (-1253 $)) 65)) (-1871 ((|#1| $) 74)) (-1933 (((-682 |#1|) $ (-1253 $)) 76)) (-2539 (((-3 $ "failed") $) 45 (|has| |#1| (-554)))) (-2542 (($ $ (-912)) 28)) (-1869 ((|#1| $) 72)) (-1849 (((-1160 |#1|) $) 42 (|has| |#1| (-554)))) (-1937 ((|#1| (-1253 $)) 67)) (-1867 (((-1160 |#1|) $) 63)) (-1861 (((-112)) 57)) (-1939 (($ (-1253 |#1|) (-1253 $)) 69)) (-3866 (((-3 $ "failed") $) 47 (|has| |#1| (-554)))) (-3494 (((-912)) 80)) (-1858 (((-112)) 54)) (-2567 (($ $ (-912)) 33)) (-1854 (((-112)) 50)) (-1852 (((-112)) 48)) (-1856 (((-112)) 52)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) 41 (|has| |#1| (-554)))) (-1848 (((-3 $ "failed")) 39 (|has| |#1| (-554)))) (-1936 (((-682 |#1|) (-1253 $)) 66)) (-1872 ((|#1| $) 75)) (-1934 (((-682 |#1|) $ (-1253 $)) 77)) (-2540 (((-3 $ "failed") $) 46 (|has| |#1| (-554)))) (-2541 (($ $ (-912)) 29)) (-1870 ((|#1| $) 73)) (-1850 (((-1160 |#1|) $) 43 (|has| |#1| (-554)))) (-1938 ((|#1| (-1253 $)) 68)) (-1868 (((-1160 |#1|) $) 64)) (-1862 (((-112)) 58)) (-3643 (((-1148) $) 9)) (-1853 (((-112)) 49)) (-1855 (((-112)) 51)) (-1857 (((-112)) 53)) (-3644 (((-1110) $) 10)) (-1860 (((-112)) 56)) (-3625 (((-1253 |#1|) $ (-1253 $)) 71) (((-682 |#1|) (-1253 $) (-1253 $)) 70)) (-2042 (((-635 (-939 |#1|)) (-1253 $)) 79)) (-2729 (($ $ $) 25)) (-1866 (((-112)) 62)) (-4353 (((-857) $) 11)) (-1851 (((-635 (-1253 |#1|))) 44 (|has| |#1| (-554)))) (-2730 (($ $ $ $) 26)) (-1864 (((-112)) 60)) (-2728 (($ $ $) 24)) (-1865 (((-112)) 61)) (-1863 (((-112)) 59)) (-1859 (((-112)) 55)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-366 |#1|) (-139) (-171)) (T -366))
-((-1426 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1254 *1)) (-4 *1 (-366 *3)))) (-3400 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-914)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-638 (-945 *4))))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1254 (-682 *4))))) (-4208 (*1 *2 *1 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-4196 (*1 *2 *1 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3752 (*1 *2 *1 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1254 *4)))) (-3752 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-1254 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-4321 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))) (-2619 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1999 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3498 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2136 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4112 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3172 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1800 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3030 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2949 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1871 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3591 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2227 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2203 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2646 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3787 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3735 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-3408 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-3884 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-2541 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553)) (-5 *2 (-638 (-1254 *3))))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553)) (-5 *2 (-1162 *3)))) (-2477 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553)) (-5 *2 (-1162 *3)))) (-1364 (*1 *2) (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2615 (-638 *1)))) (-4 *1 (-366 *3)))) (-4108 (*1 *2) (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2615 (-638 *1)))) (-4 *1 (-366 *3)))) (-2699 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))) (-1763 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))) (-2385 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))))
-(-13 (-738 |t#1|) (-10 -8 (-15 -1426 ((-1254 $))) (-15 -3400 ((-914))) (-15 -3311 ((-638 (-945 |t#1|)) (-1254 $))) (-15 -3625 ((-1254 (-682 |t#1|)) (-1254 $))) (-15 -4208 ((-682 |t#1|) $ (-1254 $))) (-15 -4196 ((-682 |t#1|) $ (-1254 $))) (-15 -1952 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -4178 (|t#1| $)) (-15 -3718 (|t#1| $)) (-15 -3752 ((-1254 |t#1|) $ (-1254 $))) (-15 -3752 ((-682 |t#1|) (-1254 $) (-1254 $))) (-15 -3376 ($ (-1254 |t#1|) (-1254 $))) (-15 -3659 (|t#1| (-1254 $))) (-15 -2137 (|t#1| (-1254 $))) (-15 -2960 ((-682 |t#1|) (-1254 $))) (-15 -3615 ((-682 |t#1|) (-1254 $))) (-15 -4321 ((-1162 |t#1|) $)) (-15 -4292 ((-1162 |t#1|) $)) (-15 -2619 ((-112))) (-15 -1999 ((-112))) (-15 -3498 ((-112))) (-15 -2136 ((-112))) (-15 -4112 ((-112))) (-15 -3172 ((-112))) (-15 -1800 ((-112))) (-15 -3030 ((-112))) (-15 -2949 ((-112))) (-15 -1871 ((-112))) (-15 -3591 ((-112))) (-15 -2227 ((-112))) (-15 -2203 ((-112))) (-15 -2646 ((-112))) (-15 -3787 ((-112))) (IF (|has| |t#1| (-553)) (PROGN (-15 -3735 ((-3 $ "failed") $)) (-15 -3408 ((-3 $ "failed") $)) (-15 -3884 ((-3 $ "failed") $)) (-15 -2541 ((-638 (-1254 |t#1|)))) (-15 -3462 ((-1162 |t#1|) $)) (-15 -2477 ((-1162 |t#1|) $)) (-15 -1364 ((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed"))) (-15 -4108 ((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed"))) (-15 -2699 ((-3 $ "failed"))) (-15 -1763 ((-3 $ "failed"))) (-15 -2385 ((-3 $ "failed"))) (-6 -4396)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-1386 (((-765)) 16)) (-1362 (($) 13)) (-1335 (((-914) $) 14)) (-1883 (((-1148) $) 9)) (-2442 (($ (-914)) 15)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)))
+((-1873 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-366 *3)))) (-3494 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-912)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-635 (-939 *4))))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))))) (-1934 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1933 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 *4)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3)))) (-1866 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1865 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1864 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1863 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1862 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1861 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1860 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1859 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1858 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1857 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1856 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1855 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1854 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1853 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1852 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3866 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-2540 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-2539 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-1851 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-635 (-1253 *3))))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3)))) (-2057 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3)))) (-2056 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3)))) (-1848 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-1847 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-1920 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))))
+(-13 (-738 |t#1|) (-10 -8 (-15 -1873 ((-1253 $))) (-15 -3494 ((-912))) (-15 -2042 ((-635 (-939 |t#1|)) (-1253 $))) (-15 -3624 ((-1253 (-682 |t#1|)) (-1253 $))) (-15 -1934 ((-682 |t#1|) $ (-1253 $))) (-15 -1933 ((-682 |t#1|) $ (-1253 $))) (-15 -1872 (|t#1| $)) (-15 -1871 (|t#1| $)) (-15 -1870 (|t#1| $)) (-15 -1869 (|t#1| $)) (-15 -3625 ((-1253 |t#1|) $ (-1253 $))) (-15 -3625 ((-682 |t#1|) (-1253 $) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|) (-1253 $))) (-15 -1938 (|t#1| (-1253 $))) (-15 -1937 (|t#1| (-1253 $))) (-15 -1936 ((-682 |t#1|) (-1253 $))) (-15 -1935 ((-682 |t#1|) (-1253 $))) (-15 -1868 ((-1160 |t#1|) $)) (-15 -1867 ((-1160 |t#1|) $)) (-15 -1866 ((-112))) (-15 -1865 ((-112))) (-15 -1864 ((-112))) (-15 -1863 ((-112))) (-15 -1862 ((-112))) (-15 -1861 ((-112))) (-15 -1860 ((-112))) (-15 -1859 ((-112))) (-15 -1858 ((-112))) (-15 -1857 ((-112))) (-15 -1856 ((-112))) (-15 -1855 ((-112))) (-15 -1854 ((-112))) (-15 -1853 ((-112))) (-15 -1852 ((-112))) (IF (|has| |t#1| (-554)) (PROGN (-15 -3866 ((-3 $ "failed") $)) (-15 -2540 ((-3 $ "failed") $)) (-15 -2539 ((-3 $ "failed") $)) (-15 -1851 ((-635 (-1253 |t#1|)))) (-15 -1850 ((-1160 |t#1|) $)) (-15 -1849 ((-1160 |t#1|) $)) (-15 -2057 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2056 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -1848 ((-3 $ "failed"))) (-15 -1847 ((-3 $ "failed"))) (-15 -1920 ((-3 $ "failed"))) (-6 -4397)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-3521 (((-765)) 16)) (-3377 (($) 13)) (-2160 (((-912) $) 14)) (-3643 (((-1148) $) 9)) (-2535 (($ (-912)) 15)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)))
(((-367) (-139)) (T -367))
-((-1386 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765)))) (-2442 (*1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-367)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-914)))) (-1362 (*1 *1) (-4 *1 (-367))))
-(-13 (-1090) (-10 -8 (-15 -1386 ((-765))) (-15 -2442 ($ (-914))) (-15 -1335 ((-914) $)) (-15 -1362 ($))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-3287 (((-682 |#2|) (-1254 $)) 40)) (-3376 (($ (-1254 |#2|) (-1254 $)) 34)) (-2405 (((-682 |#2|) $ (-1254 $)) 42)) (-2753 ((|#2| (-1254 $)) 13)) (-3752 (((-1254 |#2|) $ (-1254 $)) NIL) (((-682 |#2|) (-1254 $) (-1254 $)) 25)))
-(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -3287 ((-682 |#2|) (-1254 |#1|))) (-15 -2753 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -2405 ((-682 |#2|) |#1| (-1254 |#1|)))) (-369 |#2| |#3|) (-171) (-1230 |#2|)) (T -368))
-NIL
-(-10 -8 (-15 -3287 ((-682 |#2|) (-1254 |#1|))) (-15 -2753 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -2405 ((-682 |#2|) |#1| (-1254 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3287 (((-682 |#1|) (-1254 $)) 47)) (-1736 ((|#1| $) 53)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3376 (($ (-1254 |#1|) (-1254 $)) 49)) (-2405 (((-682 |#1|) $ (-1254 $)) 54)) (-3735 (((-3 $ "failed") $) 33)) (-3400 (((-914)) 55)) (-2252 (((-112) $) 31)) (-2072 ((|#1| $) 52)) (-1588 ((|#2| $) 45 (|has| |#1| (-362)))) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2753 ((|#1| (-1254 $)) 48)) (-3752 (((-1254 |#1|) $ (-1254 $)) 51) (((-682 |#1|) (-1254 $) (-1254 $)) 50)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38)) (-3666 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3934 ((|#2| $) 46)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-369 |#1| |#2|) (-139) (-171) (-1230 |t#1|)) (T -369))
-((-3400 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3)) (-5 *2 (-914)))) (-2405 (*1 *2 *1 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-682 *4)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1230 *2)) (-4 *2 (-171)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1230 *2)) (-4 *2 (-171)))) (-3752 (*1 *2 *1 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-1254 *4)))) (-3752 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-682 *4)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-1254 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1230 *4)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1230 *2)) (-4 *2 (-171)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-682 *4)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1230 *3)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1230 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3400 ((-914))) (-15 -2405 ((-682 |t#1|) $ (-1254 $))) (-15 -1736 (|t#1| $)) (-15 -2072 (|t#1| $)) (-15 -3752 ((-1254 |t#1|) $ (-1254 $))) (-15 -3752 ((-682 |t#1|) (-1254 $) (-1254 $))) (-15 -3376 ($ (-1254 |t#1|) (-1254 $))) (-15 -2753 (|t#1| (-1254 $))) (-15 -3287 ((-682 |t#1|) (-1254 $))) (-15 -3934 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -1588 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3522 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3176 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4165 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3176 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3522 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1205) (-372 |#1|) (-1205) (-372 |#3|)) (T -370))
-((-3522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) (-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5)))))
-(-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3176 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3522 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2097 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1680 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1318 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2659 (($ $) 25)) (-4266 (((-561) (-1 (-112) |#2|) $) NIL) (((-561) |#2| $) 11) (((-561) |#2| $ (-561)) NIL)) (-3405 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-371 |#1| |#2|) (-10 -8 (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2097 ((-112) |#1|)) (-15 -1318 (|#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -4266 ((-561) |#2| |#1| (-561))) (-15 -4266 ((-561) |#2| |#1|)) (-15 -4266 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1318 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -3405 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-372 |#2|) (-1205)) (T -371))
-NIL
-(-10 -8 (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2097 ((-112) |#1|)) (-15 -1318 (|#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -4266 ((-561) |#2| |#1| (-561))) (-15 -4266 ((-561) |#2| |#1|)) (-15 -4266 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1318 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -3405 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4400))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4400))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 58 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-4026 (($ $) 90 (|has| $ (-6 -4400)))) (-2659 (($ $) 100)) (-1461 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 51)) (-4266 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-1597 (($ $ $) 87 (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-3017 (($ $ $) 86 (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 42 (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3193 (($ $ |#1|) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1221 (-561))) 63)) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2879 (($ $ $ (-561)) 91 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 70)) (-2754 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1770 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-844)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-372 |#1|) (-139) (-1205)) (T -372))
-((-3405 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-2659 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)))) (-1318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-2097 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-4266 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205)) (-5 *2 (-561)))) (-4266 (*1 *2 *3 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-561)))) (-4266 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))) (-1318 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-844)) (-5 *2 (-112)))) (-2879 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-561)) (|has| *1 (-6 -4400)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-4026 (*1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-372 *2)) (-4 *2 (-1205)))) (-1680 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4400)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-1680 (*1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))))
-(-13 (-644 |t#1|) (-10 -8 (-6 -4399) (-15 -3405 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2659 ($ $)) (-15 -1318 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2097 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4266 ((-561) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -4266 ((-561) |t#1| $)) (-15 -4266 ((-561) |t#1| $ (-561)))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-6 (-844)) (-15 -3405 ($ $ $)) (-15 -1318 ($ $)) (-15 -2097 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4400)) (PROGN (-15 -2879 ($ $ $ (-561))) (-15 -4026 ($ $)) (-15 -1680 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-844)) (-15 -1680 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2844 (((-638 |#1|) $) 32)) (-2371 (($ $ (-765)) 33)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3395 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 36)) (-3658 (($ $) 34)) (-2339 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 37)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1436 (($ $ |#1| $) 31) (($ $ (-638 |#1|) (-638 $)) 30)) (-3768 (((-765) $) 38)) (-4078 (($ $ $) 29)) (-4064 (((-856) $) 11) (($ |#1|) 41) (((-1269 |#1| |#2|) $) 40) (((-1278 |#1| |#2|) $) 39)) (-4226 ((|#2| (-1278 |#1| |#2|) $) 42)) (-2246 (($) 18 T CONST)) (-1722 (($ (-665 |#1|)) 35)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-3521 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765)))) (-2535 (*1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-367)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-912)))) (-3377 (*1 *1) (-4 *1 (-367))))
+(-13 (-1091) (-10 -8 (-15 -3521 ((-765))) (-15 -2535 ($ (-912))) (-15 -2160 ((-912) $)) (-15 -3377 ($))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-1929 (((-682 |#2|) (-1253 $)) 40)) (-1939 (($ (-1253 |#2|) (-1253 $)) 34)) (-1928 (((-682 |#2|) $ (-1253 $)) 42)) (-4164 ((|#2| (-1253 $)) 13)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) 25)))
+(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|)))) (-369 |#2| |#3|) (-171) (-1229 |#2|)) (T -368))
+NIL
+(-10 -8 (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1929 (((-682 |#1|) (-1253 $)) 47)) (-3734 ((|#1| $) 53)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49)) (-1928 (((-682 |#1|) $ (-1253 $)) 54)) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-912)) 55)) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 52)) (-2164 ((|#2| $) 45 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4164 ((|#1| (-1253 $)) 48)) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38)) (-3084 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2743 ((|#2| $) 46)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-369 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -369))
+((-3494 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-912)))) (-1928 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *4)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1229 *4)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1229 *2)) (-4 *2 (-171)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1229 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3494 ((-912))) (-15 -1928 ((-682 |t#1|) $ (-1253 $))) (-15 -3734 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -3625 ((-1253 |t#1|) $ (-1253 $))) (-15 -3625 ((-682 |t#1|) (-1253 $) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|) (-1253 $))) (-15 -4164 (|t#1| (-1253 $))) (-15 -1929 ((-682 |t#1|) (-1253 $))) (-15 -2743 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -2164 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-1876 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1874 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3292 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2417 (($ $) 25)) (-3823 (((-544) (-1 (-112) |#2|) $) NIL) (((-544) |#2| $) 11) (((-544) |#2| $ (-544)) NIL)) (-3917 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-370 |#1| |#2|) (-10 -8 (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3292 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-371 |#2|) (-1204)) (T -370))
+NIL
+(-10 -8 (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3292 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-371 |#1|) (-139) (-1204)) (T -371))
+((-3917 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-2417 (*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)))) (-3292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-1876 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-3823 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204)) (-5 *2 (-544)))) (-3823 (*1 *2 *3 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-544)))) (-3823 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-844)) (-5 *2 (-112)))) (-1875 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-2416 (*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204)))) (-1874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-1874 (*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))))
+(-13 (-644 |t#1|) (-10 -8 (-6 -4400) (-15 -3917 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2417 ($ $)) (-15 -3292 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1876 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3823 ((-544) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -3823 ((-544) |t#1| $)) (-15 -3823 ((-544) |t#1| $ (-544)))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-6 (-844)) (-15 -3917 ($ $ $)) (-15 -3292 ($ $)) (-15 -1876 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4401)) (PROGN (-15 -1875 ($ $ $ (-544))) (-15 -2416 ($ $)) (-15 -1874 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-844)) (-15 -1874 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T))
+((-4248 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4249 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4365 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-372 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1204) (-371 |#1|) (-1204) (-371 |#3|)) (T -372))
+((-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-4 *2 (-371 *5)) (-5 *1 (-372 *6 *4 *5 *2)) (-4 *4 (-371 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-372 *5 *4 *2 *6)) (-4 *4 (-371 *5)) (-4 *6 (-371 *2)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *2 (-371 *6)) (-5 *1 (-372 *5 *4 *6 *2)) (-4 *4 (-371 *5)))))
+(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4341 (((-635 |#1|) $) 32)) (-4354 (($ $ (-765)) 33)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4346 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 36)) (-4343 (($ $) 34)) (-4347 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 37)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4174 (($ $ |#1| $) 31) (($ $ (-635 |#1|) (-635 $)) 30)) (-4355 (((-765) $) 38)) (-3929 (($ $ $) 29)) (-4353 (((-857) $) 11) (($ |#1|) 41) (((-1269 |#1| |#2|) $) 40) (((-1278 |#1| |#2|) $) 39)) (-4361 ((|#2| (-1278 |#1| |#2|) $) 42)) (-3040 (($) 18 T CONST)) (-1877 (($ (-665 |#1|)) 35)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-373 |#1| |#2|) (-139) (-844) (-171)) (T -373))
-((-4226 (*1 *2 *3 *1) (-12 (-5 *3 (-1278 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844)) (-4 *2 (-171)))) (-4064 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1269 *3 *4)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1278 *3 *4)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-765)))) (-2339 (*1 *2 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-3395 (*1 *2 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-3658 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-638 *3)))) (-1436 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-844)) (-4 *5 (-171)))))
-(-13 (-629 |t#2|) (-10 -8 (-15 -4226 (|t#2| (-1278 |t#1| |t#2|) $)) (-15 -4064 ($ |t#1|)) (-15 -4064 ((-1269 |t#1| |t#2|) $)) (-15 -4064 ((-1278 |t#1| |t#2|) $)) (-15 -3768 ((-765) $)) (-15 -2339 ((-1278 |t#1| |t#2|) (-1278 |t#1| |t#2|) $)) (-15 -3395 ((-1278 |t#1| |t#2|) (-1278 |t#1| |t#2|) $)) (-15 -1722 ($ (-665 |t#1|))) (-15 -3658 ($ $)) (-15 -2371 ($ $ (-765))) (-15 -2844 ((-638 |t#1|) $)) (-15 -1436 ($ $ |t#1| $)) (-15 -1436 ($ $ (-638 |t#1|) (-638 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#2|) . T) ((-629 |#2|) . T) ((-711 |#2|) . T) ((-1048 |#2|) . T) ((-1090) . T))
-((-2657 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-1289 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2645 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
-(((-374 |#1| |#2|) (-10 -7 (-15 -1289 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2645 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2657 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1205) (-13 (-372 |#1|) (-10 -7 (-6 -4400)))) (T -374))
-((-2657 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400)))))) (-2645 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400)))))) (-1289 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400)))))))
-(-10 -7 (-15 -1289 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2645 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2657 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-3720 (((-682 |#2|) (-682 $)) NIL) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 22) (((-682 (-561)) (-682 $)) 14)))
-(((-375 |#1| |#2|) (-10 -8 (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 |#2|) (-682 |#1|)))) (-376 |#2|) (-1042)) (T -375))
-NIL
-(-10 -8 (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 |#2|) (-682 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3720 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 35) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 43 (|has| |#1| (-634 (-561)))) (((-682 (-561)) (-682 $)) 42 (|has| |#1| (-634 (-561))))) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-4361 (*1 *2 *3 *1) (-12 (-5 *3 (-1278 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844)) (-4 *2 (-171)))) (-4353 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1269 *3 *4)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1278 *3 *4)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-765)))) (-4347 (*1 *2 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4346 (*1 *2 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-1877 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-4343 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4354 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-635 *3)))) (-4174 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-844)) (-4 *5 (-171)))))
+(-13 (-630 |t#2|) (-10 -8 (-15 -4361 (|t#2| (-1278 |t#1| |t#2|) $)) (-15 -4353 ($ |t#1|)) (-15 -4353 ((-1269 |t#1| |t#2|) $)) (-15 -4353 ((-1278 |t#1| |t#2|) $)) (-15 -4355 ((-765) $)) (-15 -4347 ((-1278 |t#1| |t#2|) (-1278 |t#1| |t#2|) $)) (-15 -4346 ((-1278 |t#1| |t#2|) (-1278 |t#1| |t#2|) $)) (-15 -1877 ($ (-665 |t#1|))) (-15 -4343 ($ $)) (-15 -4354 ($ $ (-765))) (-15 -4341 ((-635 |t#1|) $)) (-15 -4174 ($ $ |t#1| $)) (-15 -4174 ($ $ (-635 |t#1|) (-635 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#2|) . T) ((-630 |#2|) . T) ((-711 |#2|) . T) ((-1048 |#2|) . T) ((-1091) . T))
+((-1880 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-1878 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1879 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
+(((-374 |#1| |#2|) (-10 -7 (-15 -1878 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1879 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1880 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1204) (-13 (-371 |#1|) (-10 -7 (-6 -4401)))) (T -374))
+((-1880 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))) (-1879 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))) (-1878 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))))
+(-10 -7 (-15 -1878 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1879 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1880 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-2401 (((-682 |#2|) (-682 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 22) (((-682 (-544)) (-682 $)) 14)))
+(((-375 |#1| |#2|) (-10 -8 (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 |#2|) (-682 |#1|)))) (-376 |#2|) (-1042)) (T -375))
+NIL
+(-10 -8 (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 |#2|) (-682 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2401 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 35) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 43 (|has| |#1| (-634 (-544)))) (((-682 (-544)) (-682 $)) 42 (|has| |#1| (-634 (-544))))) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-376 |#1|) (-139) (-1042)) (T -376))
NIL
-(-13 (-634 |t#1|) (-10 -7 (IF (|has| |t#1| (-634 (-561))) (-6 (-634 (-561))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-1379 (((-638 (-293 (-945 (-168 |#1|)))) (-293 (-406 (-945 (-168 (-561))))) |#1|) 51) (((-638 (-293 (-945 (-168 |#1|)))) (-406 (-945 (-168 (-561)))) |#1|) 50) (((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-293 (-406 (-945 (-168 (-561)))))) |#1|) 47) (((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-406 (-945 (-168 (-561))))) |#1|) 41)) (-2016 (((-638 (-638 (-168 |#1|))) (-638 (-406 (-945 (-168 (-561))))) (-638 (-1166)) |#1|) 30) (((-638 (-168 |#1|)) (-406 (-945 (-168 (-561)))) |#1|) 18)))
-(((-377 |#1|) (-10 -7 (-15 -1379 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -1379 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-293 (-406 (-945 (-168 (-561)))))) |#1|)) (-15 -1379 ((-638 (-293 (-945 (-168 |#1|)))) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -1379 ((-638 (-293 (-945 (-168 |#1|)))) (-293 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -2016 ((-638 (-168 |#1|)) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -2016 ((-638 (-638 (-168 |#1|))) (-638 (-406 (-945 (-168 (-561))))) (-638 (-1166)) |#1|))) (-13 (-362) (-842))) (T -377))
-((-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561)))))) (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 (-168 *5)))) (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-842))))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-168 (-561))))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 (-168 (-561)))))) (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-168 (-561))))) (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-293 (-406 (-945 (-168 (-561))))))) (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561)))))) (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))))
-(-10 -7 (-15 -1379 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -1379 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-293 (-406 (-945 (-168 (-561)))))) |#1|)) (-15 -1379 ((-638 (-293 (-945 (-168 |#1|)))) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -1379 ((-638 (-293 (-945 (-168 |#1|)))) (-293 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -2016 ((-638 (-168 |#1|)) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -2016 ((-638 (-638 (-168 |#1|))) (-638 (-406 (-945 (-168 (-561))))) (-638 (-1166)) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 33)) (-3892 (((-561) $) 55)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-1991 (($ $) 110)) (-3014 (($ $) 82)) (-4106 (($ $) 71)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1643 (($ $) 44)) (-3698 (((-112) $ $) NIL)) (-4213 (($ $) 80)) (-4085 (($ $) 69)) (-1659 (((-561) $) 64)) (-3410 (($ $ (-561)) 62)) (-3039 (($ $) NIL)) (-4130 (($ $) NIL)) (-2674 (($) NIL T CONST)) (-3588 (($ $) 112)) (-4061 (((-3 (-561) "failed") $) 189) (((-3 (-406 (-561)) "failed") $) 185)) (-3979 (((-561) $) 187) (((-406 (-561)) $) 183)) (-1792 (($ $ $) NIL)) (-3847 (((-561) $ $) 102)) (-3735 (((-3 $ "failed") $) 114)) (-1452 (((-406 (-561)) $ (-765)) 190) (((-406 (-561)) $ (-765) (-765)) 182)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-4008 (((-914)) 73) (((-914) (-914)) 98 (|has| $ (-6 -4390)))) (-1784 (((-112) $) 106)) (-4111 (($) 40)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL)) (-1757 (((-1259) (-765)) 152)) (-2375 (((-1259)) 157) (((-1259) (-765)) 158)) (-2937 (((-1259)) 159) (((-1259) (-765)) 160)) (-3639 (((-1259)) 155) (((-1259) (-765)) 156)) (-4027 (((-561) $) 58)) (-2252 (((-112) $) 104)) (-4343 (($ $ (-561)) NIL)) (-3073 (($ $) 48)) (-2072 (($ $) NIL)) (-3271 (((-112) $) 35)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL) (($) NIL (-12 (-2186 (|has| $ (-6 -4382))) (-2186 (|has| $ (-6 -4390)))))) (-3017 (($ $ $) NIL) (($) 99 (-12 (-2186 (|has| $ (-6 -4382))) (-2186 (|has| $ (-6 -4390)))))) (-3966 (((-561) $) 17)) (-3947 (($) 87) (($ $) 92)) (-3009 (($) 91) (($ $) 93)) (-4364 (($ $) 83)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 116)) (-2918 (((-914) (-561)) 43 (|has| $ (-6 -4390)))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) 53)) (-4020 (($ $) 109)) (-4242 (($ (-561) (-561)) 107) (($ (-561) (-561) (-914)) 108)) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-4181 (((-561) $) 19)) (-2675 (($) 94)) (-3486 (($ $) 79)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3679 (((-914)) 100) (((-914) (-914)) 101 (|has| $ (-6 -4390)))) (-3922 (($ $ (-765)) NIL) (($ $) 115)) (-1725 (((-914) (-561)) 47 (|has| $ (-6 -4390)))) (-3052 (($ $) NIL)) (-4140 (($ $) NIL)) (-3026 (($ $) NIL)) (-4118 (($ $) NIL)) (-3002 (($ $) 81)) (-4097 (($ $) 70)) (-4216 (((-378) $) 175) (((-224) $) 177) (((-885 (-378)) $) NIL) (((-1148) $) 162) (((-534) $) 173) (($ (-224)) 181)) (-4064 (((-856) $) 164) (($ (-561)) 186) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-561)) 186) (($ (-406 (-561))) NIL) (((-224) $) 178)) (-3746 (((-765)) NIL)) (-2449 (($ $) 111)) (-2860 (((-914)) 54) (((-914) (-914)) 66 (|has| $ (-6 -4390)))) (-1423 (((-914)) 103)) (-3086 (($ $) 86)) (-4175 (($ $) 46) (($ $ $) 52)) (-3996 (((-112) $ $) NIL)) (-3064 (($ $) 84)) (-4150 (($ $) 37)) (-3113 (($ $) NIL)) (-4192 (($ $) NIL)) (-2821 (($ $) NIL)) (-4202 (($ $) NIL)) (-3099 (($ $) NIL)) (-4184 (($ $) NIL)) (-3076 (($ $) 85)) (-4162 (($ $) 49)) (-2165 (($ $) 51)) (-2246 (($) 34 T CONST)) (-2257 (($) 38 T CONST)) (-3785 (((-1148) $) 27) (((-1148) $ (-112)) 29) (((-1259) (-816) $) 30) (((-1259) (-816) $ (-112)) 31)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 39)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 42)) (-1828 (($ $ $) 45) (($ $ (-561)) 41)) (-1819 (($ $) 36) (($ $ $) 50)) (-1810 (($ $ $) 61)) (** (($ $ (-914)) 67) (($ $ (-765)) NIL) (($ $ (-561)) 88) (($ $ (-406 (-561))) 125) (($ $ $) 117)) (* (($ (-914) $) 65) (($ (-765) $) NIL) (($ (-561) $) 68) (($ $ $) 60) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-378) (-13 (-403) (-232) (-609 (-1148)) (-822) (-608 (-224)) (-1190) (-609 (-534)) (-613 (-224)) (-10 -8 (-15 -1828 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -3073 ($ $)) (-15 -3847 ((-561) $ $)) (-15 -3410 ($ $ (-561))) (-15 -1452 ((-406 (-561)) $ (-765))) (-15 -1452 ((-406 (-561)) $ (-765) (-765))) (-15 -3947 ($)) (-15 -3009 ($)) (-15 -2675 ($)) (-15 -4175 ($ $ $)) (-15 -3947 ($ $)) (-15 -3009 ($ $)) (-15 -2937 ((-1259))) (-15 -2937 ((-1259) (-765))) (-15 -3639 ((-1259))) (-15 -3639 ((-1259) (-765))) (-15 -2375 ((-1259))) (-15 -2375 ((-1259) (-765))) (-15 -1757 ((-1259) (-765))) (-6 -4390) (-6 -4382)))) (T -378))
-((** (*1 *1 *1 *1) (-5 *1 (-378))) (-1828 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378)))) (-3073 (*1 *1 *1) (-5 *1 (-378))) (-3847 (*1 *2 *1 *1) (-12 (-5 *2 (-561)) (-5 *1 (-378)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378)))) (-1452 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378)))) (-1452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378)))) (-3947 (*1 *1) (-5 *1 (-378))) (-3009 (*1 *1) (-5 *1 (-378))) (-2675 (*1 *1) (-5 *1 (-378))) (-4175 (*1 *1 *1 *1) (-5 *1 (-378))) (-3947 (*1 *1 *1) (-5 *1 (-378))) (-3009 (*1 *1 *1) (-5 *1 (-378))) (-2937 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-378)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378)))) (-3639 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-378)))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378)))) (-2375 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-378)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378)))))
-(-13 (-403) (-232) (-609 (-1148)) (-822) (-608 (-224)) (-1190) (-609 (-534)) (-613 (-224)) (-10 -8 (-15 -1828 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -3073 ($ $)) (-15 -3847 ((-561) $ $)) (-15 -3410 ($ $ (-561))) (-15 -1452 ((-406 (-561)) $ (-765))) (-15 -1452 ((-406 (-561)) $ (-765) (-765))) (-15 -3947 ($)) (-15 -3009 ($)) (-15 -2675 ($)) (-15 -4175 ($ $ $)) (-15 -3947 ($ $)) (-15 -3009 ($ $)) (-15 -2937 ((-1259))) (-15 -2937 ((-1259) (-765))) (-15 -3639 ((-1259))) (-15 -3639 ((-1259) (-765))) (-15 -2375 ((-1259))) (-15 -2375 ((-1259) (-765))) (-15 -1757 ((-1259) (-765))) (-6 -4390) (-6 -4382)))
-((-4164 (((-638 (-293 (-945 |#1|))) (-293 (-406 (-945 (-561)))) |#1|) 46) (((-638 (-293 (-945 |#1|))) (-406 (-945 (-561))) |#1|) 45) (((-638 (-638 (-293 (-945 |#1|)))) (-638 (-293 (-406 (-945 (-561))))) |#1|) 42) (((-638 (-638 (-293 (-945 |#1|)))) (-638 (-406 (-945 (-561)))) |#1|) 36)) (-3540 (((-638 |#1|) (-406 (-945 (-561))) |#1|) 20) (((-638 (-638 |#1|)) (-638 (-406 (-945 (-561)))) (-638 (-1166)) |#1|) 30)))
-(((-379 |#1|) (-10 -7 (-15 -4164 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-406 (-945 (-561)))) |#1|)) (-15 -4164 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-293 (-406 (-945 (-561))))) |#1|)) (-15 -4164 ((-638 (-293 (-945 |#1|))) (-406 (-945 (-561))) |#1|)) (-15 -4164 ((-638 (-293 (-945 |#1|))) (-293 (-406 (-945 (-561)))) |#1|)) (-15 -3540 ((-638 (-638 |#1|)) (-638 (-406 (-945 (-561)))) (-638 (-1166)) |#1|)) (-15 -3540 ((-638 |#1|) (-406 (-945 (-561))) |#1|))) (-13 (-842) (-362))) (T -379))
-((-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-406 (-945 (-561))))) (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-842) (-362))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 (-561))))) (-5 *2 (-638 (-293 (-945 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 (-293 (-945 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-293 (-406 (-945 (-561)))))) (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 (-561))))) (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))))
-(-10 -7 (-15 -4164 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-406 (-945 (-561)))) |#1|)) (-15 -4164 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-293 (-406 (-945 (-561))))) |#1|)) (-15 -4164 ((-638 (-293 (-945 |#1|))) (-406 (-945 (-561))) |#1|)) (-15 -4164 ((-638 (-293 (-945 |#1|))) (-293 (-406 (-945 (-561)))) |#1|)) (-15 -3540 ((-638 (-638 |#1|)) (-638 (-406 (-945 (-561)))) (-638 (-1166)) |#1|)) (-15 -3540 ((-638 |#1|) (-406 (-945 (-561))) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) 26)) (-3979 ((|#2| $) 28)) (-1598 (($ $) NIL)) (-2044 (((-765) $) 10)) (-1859 (((-638 $) $) 20)) (-1750 (((-112) $) NIL)) (-3077 (($ |#2| |#1|) 18)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-2963 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1557 ((|#2| $) 15)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 44) (($ |#2|) 27)) (-1868 (((-638 |#1|) $) 17)) (-3932 ((|#1| $ |#2|) 46)) (-2246 (($) 29 T CONST)) (-4299 (((-638 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
-(((-380 |#1| |#2|) (-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1042) (-844)) (T -380))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)))))
-(-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#2| "failed") $) 44)) (-3979 ((|#2| $) 45)) (-1598 (($ $) 30)) (-2044 (((-765) $) 34)) (-1859 (((-638 $) $) 35)) (-1750 (((-112) $) 38)) (-3077 (($ |#2| |#1|) 39)) (-4165 (($ (-1 |#1| |#1|) $) 40)) (-2963 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1557 ((|#2| $) 33)) (-1572 ((|#1| $) 32)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ |#2|) 43)) (-1868 (((-638 |#1|) $) 36)) (-3932 ((|#1| $ |#2|) 41)) (-2246 (($) 18 T CONST)) (-4299 (((-638 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-381 |#1| |#2|) (-139) (-1042) (-1090)) (T -381))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090)))) (-3932 (*1 *2 *1 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042)))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)))) (-3077 (*1 *1 *2 *3) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 *3)))) (-1859 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 *1)) (-4 *1 (-381 *3 *4)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-765)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1598 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090)))))
-(-13 (-111 |t#1| |t#1|) (-1031 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3932 (|t#1| $ |t#2|)) (-15 -4165 ($ (-1 |t#1| |t#1|) $)) (-15 -3077 ($ |t#2| |t#1|)) (-15 -1750 ((-112) $)) (-15 -4299 ((-638 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1868 ((-638 |t#1|) $)) (-15 -1859 ((-638 $) $)) (-15 -2044 ((-765) $)) (-15 -1557 (|t#2| $)) (-15 -1572 (|t#1| $)) (-15 -2963 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1598 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-711 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) |has| |#1| (-171)) ((-1031 |#2|) . T) ((-1048 |#1|) . T) ((-1090) . T))
-((-3107 (((-1259) $) 7)) (-4064 (((-856) $) 8) (($ (-682 (-692))) 14) (($ (-638 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 11)))
-(((-382) (-139)) (T -382))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-682 (-692))) (-4 *1 (-382)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-382)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) (-4 *1 (-382)))))
-(-13 (-394) (-10 -8 (-15 -4064 ($ (-682 (-692)))) (-15 -4064 ($ (-638 (-329)))) (-15 -4064 ($ (-329))) (-15 -4064 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))))))
-(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
-((-4061 (((-3 $ "failed") (-682 (-315 (-378)))) 21) (((-3 $ "failed") (-682 (-315 (-561)))) 19) (((-3 $ "failed") (-682 (-945 (-378)))) 17) (((-3 $ "failed") (-682 (-945 (-561)))) 15) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 13) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 11)) (-3979 (($ (-682 (-315 (-378)))) 22) (($ (-682 (-315 (-561)))) 20) (($ (-682 (-945 (-378)))) 18) (($ (-682 (-945 (-561)))) 16) (($ (-682 (-406 (-945 (-378))))) 14) (($ (-682 (-406 (-945 (-561))))) 12)) (-3107 (((-1259) $) 7)) (-4064 (((-856) $) 8) (($ (-638 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 23)))
-(((-383) (-139)) (T -383))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-383)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) (-4 *1 (-383)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383)))))
-(-13 (-394) (-10 -8 (-15 -4064 ($ (-638 (-329)))) (-15 -4064 ($ (-329))) (-15 -4064 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))) (-15 -3979 ($ (-682 (-315 (-378))))) (-15 -4061 ((-3 $ "failed") (-682 (-315 (-378))))) (-15 -3979 ($ (-682 (-315 (-561))))) (-15 -4061 ((-3 $ "failed") (-682 (-315 (-561))))) (-15 -3979 ($ (-682 (-945 (-378))))) (-15 -4061 ((-3 $ "failed") (-682 (-945 (-378))))) (-15 -3979 ($ (-682 (-945 (-561))))) (-15 -4061 ((-3 $ "failed") (-682 (-945 (-561))))) (-15 -3979 ($ (-682 (-406 (-945 (-378)))))) (-15 -4061 ((-3 $ "failed") (-682 (-406 (-945 (-378)))))) (-15 -3979 ($ (-682 (-406 (-945 (-561)))))) (-15 -4061 ((-3 $ "failed") (-682 (-406 (-945 (-561))))))))
-(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-1381 (($ |#1| |#2|) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4300 ((|#2| $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 28)) (-2246 (($) 12 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-384 |#1| |#2|) (-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|))) (-1042) (-844)) (T -384))
+(-13 (-634 |t#1|) (-10 -7 (IF (|has| |t#1| (-634 (-544))) (-6 (-634 (-544))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 33)) (-3514 (((-544) $) 55)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4177 (($ $) 110)) (-3891 (($ $) 82)) (-4046 (($ $) 71)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) 44)) (-1733 (((-112) $ $) NIL)) (-3889 (($ $) 80)) (-4045 (($ $) 69)) (-4030 (((-544) $) 64)) (-2735 (($ $ (-544)) 62)) (-3893 (($ $) NIL)) (-4044 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3512 (($ $) 112)) (-3558 (((-3 (-544) #1="failed") $) 189) (((-3 (-406 (-544)) #1#) $) 185)) (-3557 (((-544) $) 187) (((-406 (-544)) $) 183)) (-2943 (($ $ $) NIL)) (-1889 (((-544) $ $) 102)) (-3866 (((-3 $ "failed") $) 114)) (-1888 (((-406 (-544)) $ (-765)) 190) (((-406 (-544)) $ (-765) (-765)) 182)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2509 (((-912)) 73) (((-912) (-912)) 98 (|has| $ (-6 -4391)))) (-3587 (((-112) $) 106)) (-4034 (($) 40)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL)) (-1881 (((-1259) (-765)) 152)) (-1882 (((-1259)) 157) (((-1259) (-765)) 158)) (-1884 (((-1259)) 159) (((-1259) (-765)) 160)) (-1883 (((-1259)) 155) (((-1259) (-765)) 156)) (-4178 (((-544) $) 58)) (-2545 (((-112) $) 104)) (-3394 (($ $ (-544)) NIL)) (-2737 (($ $) 48)) (-3517 (($ $) NIL)) (-3588 (((-112) $) 35)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL) (($) NIL (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-3242 (($ $ $) NIL) (($) 99 (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2510 (((-544) $) 17)) (-1887 (($) 87) (($ $) 92)) (-1886 (($) 91) (($ $) 93)) (-4349 (($ $) 83)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 116)) (-1917 (((-912) (-544)) 43 (|has| $ (-6 -4391)))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) 53)) (-3515 (($ $) 109)) (-3655 (($ (-544) (-544)) 107) (($ (-544) (-544) (-912)) 108)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2536 (((-544) $) 19)) (-1885 (($) 94)) (-4350 (($ $) 79)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-912)) 100) (((-912) (-912)) 101 (|has| $ (-6 -4391)))) (-4217 (($ $ (-765)) NIL) (($ $) 115)) (-1916 (((-912) (-544)) 47 (|has| $ (-6 -4391)))) (-3894 (($ $) NIL)) (-4043 (($ $) NIL)) (-3892 (($ $) NIL)) (-4042 (($ $) NIL)) (-3890 (($ $) 81)) (-4041 (($ $) 70)) (-4377 (((-377) $) 175) (((-224) $) 177) (((-883 (-377)) $) NIL) (((-1148) $) 162) (((-533) $) 173) (($ (-224)) 181)) (-4353 (((-857) $) 164) (($ (-544)) 186) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-544)) 186) (($ (-406 (-544))) NIL) (((-224) $) 178)) (-3511 (((-765)) NIL)) (-3516 (($ $) 111)) (-1918 (((-912)) 54) (((-912) (-912)) 66 (|has| $ (-6 -4391)))) (-3076 (((-912)) 103)) (-3897 (($ $) 86)) (-3885 (($ $) 46) (($ $ $) 52)) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) 84)) (-3883 (($ $) 37)) (-3899 (($ $) NIL)) (-3887 (($ $) NIL)) (-3900 (($ $) NIL)) (-3888 (($ $) NIL)) (-3898 (($ $) NIL)) (-3886 (($ $) NIL)) (-3896 (($ $) 85)) (-3884 (($ $) 49)) (-3787 (($ $) 51)) (-3040 (($) 34 T CONST)) (-3046 (($) 38 T CONST)) (-2879 (((-1148) $) 27) (((-1148) $ (-112)) 29) (((-1259) (-817) $) 30) (((-1259) (-817) $ (-112)) 31)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 39)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 42)) (-4356 (($ $ $) 45) (($ $ (-544)) 41)) (-4244 (($ $) 36) (($ $ $) 50)) (-4246 (($ $ $) 61)) (** (($ $ (-912)) 67) (($ $ (-765)) NIL) (($ $ (-544)) 88) (($ $ (-406 (-544))) 125) (($ $ $) 117)) (* (($ (-912) $) 65) (($ (-765) $) NIL) (($ (-544) $) 68) (($ $ $) 60) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-377) (-13 (-403) (-232) (-609 (-1148)) (-815) (-608 (-224)) (-1190) (-609 (-533)) (-613 (-224)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -2737 ($ $)) (-15 -1889 ((-544) $ $)) (-15 -2735 ($ $ (-544))) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765))) (-15 -1887 ($)) (-15 -1886 ($)) (-15 -1885 ($)) (-15 -3885 ($ $ $)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -1884 ((-1259))) (-15 -1884 ((-1259) (-765))) (-15 -1883 ((-1259))) (-15 -1883 ((-1259) (-765))) (-15 -1882 ((-1259))) (-15 -1882 ((-1259) (-765))) (-15 -1881 ((-1259) (-765))) (-6 -4391) (-6 -4383)))) (T -377))
+((** (*1 *1 *1 *1) (-5 *1 (-377))) (-4356 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) (-2737 (*1 *1 *1) (-5 *1 (-377))) (-1889 (*1 *2 *1 *1) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) (-1888 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377)))) (-1888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377)))) (-1887 (*1 *1) (-5 *1 (-377))) (-1886 (*1 *1) (-5 *1 (-377))) (-1885 (*1 *1) (-5 *1 (-377))) (-3885 (*1 *1 *1 *1) (-5 *1 (-377))) (-1887 (*1 *1 *1) (-5 *1 (-377))) (-1886 (*1 *1 *1) (-5 *1 (-377))) (-1884 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) (-1883 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) (-1882 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))))
+(-13 (-403) (-232) (-609 (-1148)) (-815) (-608 (-224)) (-1190) (-609 (-533)) (-613 (-224)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -2737 ($ $)) (-15 -1889 ((-544) $ $)) (-15 -2735 ($ $ (-544))) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765))) (-15 -1887 ($)) (-15 -1886 ($)) (-15 -1885 ($)) (-15 -3885 ($ $ $)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -1884 ((-1259))) (-15 -1884 ((-1259) (-765))) (-15 -1883 ((-1259))) (-15 -1883 ((-1259) (-765))) (-15 -1882 ((-1259))) (-15 -1882 ((-1259) (-765))) (-15 -1881 ((-1259) (-765))) (-6 -4391) (-6 -4383)))
+((-1890 (((-635 (-292 (-939 (-167 |#1|)))) (-292 (-406 (-939 (-167 (-544))))) |#1|) 51) (((-635 (-292 (-939 (-167 |#1|)))) (-406 (-939 (-167 (-544)))) |#1|) 50) (((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-292 (-406 (-939 (-167 (-544)))))) |#1|) 47) (((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-406 (-939 (-167 (-544))))) |#1|) 41)) (-1891 (((-635 (-635 (-167 |#1|))) (-635 (-406 (-939 (-167 (-544))))) (-635 (-1166)) |#1|) 30) (((-635 (-167 |#1|)) (-406 (-939 (-167 (-544)))) |#1|) 18)))
+(((-378 |#1|) (-10 -7 (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-292 (-406 (-939 (-167 (-544)))))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-292 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1891 ((-635 (-167 |#1|)) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1891 ((-635 (-635 (-167 |#1|))) (-635 (-406 (-939 (-167 (-544))))) (-635 (-1166)) |#1|))) (-13 (-362) (-842))) (T -378))
+((-1891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544)))))) (-5 *4 (-635 (-1166))) (-5 *2 (-635 (-635 (-167 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-362) (-842))))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-167 (-544))))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 (-167 (-544)))))) (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-167 (-544))))) (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-292 (-406 (-939 (-167 (-544))))))) (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544)))))) (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-292 (-406 (-939 (-167 (-544)))))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-292 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1891 ((-635 (-167 |#1|)) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1891 ((-635 (-635 (-167 |#1|))) (-635 (-406 (-939 (-167 (-544))))) (-635 (-1166)) |#1|)))
+((-3980 (((-635 (-292 (-939 |#1|))) (-292 (-406 (-939 (-544)))) |#1|) 46) (((-635 (-292 (-939 |#1|))) (-406 (-939 (-544))) |#1|) 45) (((-635 (-635 (-292 (-939 |#1|)))) (-635 (-292 (-406 (-939 (-544))))) |#1|) 42) (((-635 (-635 (-292 (-939 |#1|)))) (-635 (-406 (-939 (-544)))) |#1|) 36)) (-1892 (((-635 |#1|) (-406 (-939 (-544))) |#1|) 20) (((-635 (-635 |#1|)) (-635 (-406 (-939 (-544)))) (-635 (-1166)) |#1|) 30)))
+(((-379 |#1|) (-10 -7 (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-406 (-939 (-544)))) |#1|)) (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-292 (-406 (-939 (-544))))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-406 (-939 (-544))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-292 (-406 (-939 (-544)))) |#1|)) (-15 -1892 ((-635 (-635 |#1|)) (-635 (-406 (-939 (-544)))) (-635 (-1166)) |#1|)) (-15 -1892 ((-635 |#1|) (-406 (-939 (-544))) |#1|))) (-13 (-842) (-362))) (T -379))
+((-1892 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-1892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-939 (-544))))) (-5 *4 (-635 (-1166))) (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 (-544))))) (-5 *2 (-635 (-292 (-939 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 (-292 (-939 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-292 (-406 (-939 (-544)))))) (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 (-544))))) (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))))
+(-10 -7 (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-406 (-939 (-544)))) |#1|)) (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-292 (-406 (-939 (-544))))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-406 (-939 (-544))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-292 (-406 (-939 (-544)))) |#1|)) (-15 -1892 ((-635 (-635 |#1|)) (-635 (-406 (-939 (-544)))) (-635 (-1166)) |#1|)) (-15 -1892 ((-635 |#1|) (-406 (-939 (-544))) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 28)) (-3040 (($) 12 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-380 |#1| |#2|) (-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|))) (-1042) (-844)) (T -380))
NIL
(-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765) $) 58)) (-2674 (($) NIL T CONST)) (-3395 (((-3 $ "failed") $ $) 60)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1817 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-2252 (((-112) $) 15)) (-3328 ((|#1| $ (-561)) NIL)) (-1895 (((-765) $ (-561)) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-4251 (($ (-1 |#1| |#1|) $) 38)) (-4378 (($ (-1 (-765) (-765)) $) 35)) (-2339 (((-3 $ "failed") $ $) 49)) (-1883 (((-1148) $) NIL)) (-3240 (($ $ $) 26)) (-3820 (($ $ $) 24)) (-1701 (((-1110) $) NIL)) (-2762 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-765)))) $) 32)) (-1421 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-4064 (((-856) $) 22) (($ |#1|) NIL)) (-2257 (($) 9 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) 41)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) 62 (|has| |#1| (-844)))) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-385 |#1|) (-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -3820 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -2339 ((-3 $ "failed") $ $)) (-15 -3395 ((-3 $ "failed") $ $)) (-15 -1421 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1817 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1386 ((-765) $)) (-15 -2762 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-765)))) $)) (-15 -1895 ((-765) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -4378 ($ (-1 (-765) (-765)) $)) (-15 -4251 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1090)) (T -385))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-3820 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-3240 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-2339 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-3395 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-1421 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-1817 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 (-765))))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1090)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-4378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-4251 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-385 *3)))))
-(-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -3820 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -2339 ((-3 $ "failed") $ $)) (-15 -3395 ((-3 $ "failed") $ $)) (-15 -1421 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1817 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1386 ((-765) $)) (-15 -2762 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-765)))) $)) (-15 -1895 ((-765) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -4378 ($ (-1 (-765) (-765)) $)) (-15 -4251 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 48)) (-3979 (((-561) $) 49)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1597 (($ $ $) 55)) (-3017 (($ $ $) 54)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ $) 43)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-561)) 47)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1781 (((-112) $ $) 52)) (-1758 (((-112) $ $) 51)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 53)) (-1746 (((-112) $ $) 50)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| "failed") $) 26)) (-3557 ((|#2| $) 28)) (-4366 (($ $) NIL)) (-2553 (((-765) $) 10)) (-3203 (((-635 $) $) 20)) (-4344 (((-112) $) NIL)) (-4345 (($ |#2| |#1|) 18)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3277 ((|#2| $) 15)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 44) (($ |#2|) 27)) (-4224 (((-635 |#1|) $) 17)) (-4084 ((|#1| $ |#2|) 46)) (-3040 (($) 29 T CONST)) (-3045 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-381 |#1| |#2|) (-13 (-383 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1042) (-844)) (T -381))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)))))
+(-13 (-383 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-682 (-692))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 11)))
+(((-382) (-139)) (T -382))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-692))) (-4 *1 (-382)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-382)))))
+(-13 (-395) (-10 -8 (-15 -4353 ($ (-682 (-692)))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))))))
+(((-608 (-857)) . T) ((-395) . T) ((-1204) . T))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#2| "failed") $) 44)) (-3557 ((|#2| $) 45)) (-4366 (($ $) 30)) (-2553 (((-765) $) 34)) (-3203 (((-635 $) $) 35)) (-4344 (((-112) $) 38)) (-4345 (($ |#2| |#1|) 39)) (-4365 (($ (-1 |#1| |#1|) $) 40)) (-1893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3277 ((|#2| $) 33)) (-3575 ((|#1| $) 32)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ |#2|) 43)) (-4224 (((-635 |#1|) $) 36)) (-4084 ((|#1| $ |#2|) 41)) (-3040 (($) 18 T CONST)) (-3045 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-383 |#1| |#2|) (-139) (-1042) (-1091)) (T -383))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)))) (-4345 (*1 *1 *2 *3) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-112)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *3)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-383 *3 *4)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-765)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091)))))
+(-13 (-111 |t#1| |t#1|) (-1031 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4084 (|t#1| $ |t#2|)) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -4345 ($ |t#2| |t#1|)) (-15 -4344 ((-112) $)) (-15 -3045 ((-635 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4224 ((-635 |t#1|) $)) (-15 -3203 ((-635 $) $)) (-15 -2553 ((-765) $)) (-15 -3277 (|t#2| $)) (-15 -3575 (|t#1| $)) (-15 -1893 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4366 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-711 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) |has| |#1| (-171)) ((-1031 |#2|) . T) ((-1048 |#1|) . T) ((-1091) . T))
+((-3558 (((-3 $ "failed") (-682 (-313 (-377)))) 21) (((-3 $ "failed") (-682 (-313 (-544)))) 19) (((-3 $ "failed") (-682 (-939 (-377)))) 17) (((-3 $ "failed") (-682 (-939 (-544)))) 15) (((-3 $ "failed") (-682 (-406 (-939 (-377))))) 13) (((-3 $ "failed") (-682 (-406 (-939 (-544))))) 11)) (-3557 (($ (-682 (-313 (-377)))) 22) (($ (-682 (-313 (-544)))) 20) (($ (-682 (-939 (-377)))) 18) (($ (-682 (-939 (-544)))) 16) (($ (-682 (-406 (-939 (-377))))) 14) (($ (-682 (-406 (-939 (-544))))) 12)) (-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 23)))
+(((-384) (-139)) (T -384))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-384)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-384)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384)))))
+(-13 (-395) (-10 -8 (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -3557 ($ (-682 (-313 (-377))))) (-15 -3558 ((-3 $ "failed") (-682 (-313 (-377))))) (-15 -3557 ($ (-682 (-313 (-544))))) (-15 -3558 ((-3 $ "failed") (-682 (-313 (-544))))) (-15 -3557 ($ (-682 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-682 (-939 (-377))))) (-15 -3557 ($ (-682 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-682 (-939 (-544))))) (-15 -3557 ($ (-682 (-406 (-939 (-377)))))) (-15 -3558 ((-3 $ "failed") (-682 (-406 (-939 (-377)))))) (-15 -3557 ($ (-682 (-406 (-939 (-544)))))) (-15 -3558 ((-3 $ "failed") (-682 (-406 (-939 (-544))))))))
+(((-608 (-857)) . T) ((-395) . T) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765) $) 58)) (-4131 (($) NIL T CONST)) (-4346 (((-3 $ "failed") $ $) 60)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2815 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-2545 (((-112) $) 15)) (-2813 ((|#1| $ (-544)) NIL)) (-2814 (((-765) $ (-544)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2410 (($ (-1 |#1| |#1|) $) 38)) (-2411 (($ (-1 (-765) (-765)) $) 35)) (-4347 (((-3 $ "failed") $ $) 49)) (-3643 (((-1148) $) NIL)) (-2816 (($ $ $) 26)) (-2817 (($ $ $) 24)) (-3644 (((-1110) $) NIL)) (-2812 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $) 32)) (-3264 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-4353 (((-857) $) 22) (($ |#1|) NIL)) (-3046 (($) 9 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 41)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) 62 (|has| |#1| (-844)))) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-385 |#1|) (-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -3264 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-765) (-765)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1091)) (T -385))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-2817 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-2816 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-4347 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-4346 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-3264 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2815 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1091)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-2411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-385 *3)))))
+(-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -3264 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-765) (-765)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) "failed") $) 48)) (-3557 (((-544) $) 49)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-2913 (($ $ $) 55)) (-3242 (($ $ $) 54)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-544)) 47)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 52)) (-2946 (((-112) $ $) 51)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 53)) (-3067 (((-112) $ $) 50)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-386) (-139)) (T -386))
NIL
-(-13 (-553) (-844) (-1031 (-561)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-1031 (-561)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4267 (((-112) $) 20)) (-2546 (((-112) $) 19)) (-1458 (($ (-1148) (-1148) (-1148)) 21)) (-3305 (((-1148) $) 16)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2308 (($ (-1148) (-1148) (-1148)) 14)) (-3117 (((-1148) $) 17)) (-2026 (((-112) $) 18)) (-2664 (((-1148) $) 15)) (-4064 (((-856) $) 12) (($ (-1148)) 13) (((-1148) $) 9)) (-1723 (((-112) $ $) 7)))
+(-13 (-554) (-844) (-1031 (-544)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-1031 (-544)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-1894 (((-112) $) 20)) (-1895 (((-112) $) 19)) (-4021 (($ (-1148) (-1148) (-1148)) 21)) (-3949 (((-1148) $) 16)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1899 (($ (-1148) (-1148) (-1148)) 14)) (-1897 (((-1148) $) 17)) (-1896 (((-112) $) 18)) (-1898 (((-1148) $) 15)) (-4353 (((-857) $) 12) (($ (-1148)) 13) (((-1148) $) 9)) (-3437 (((-112) $ $) 7)))
(((-387) (-388)) (T -387))
NIL
(-388)
-((-4053 (((-112) $ $) 7)) (-4267 (((-112) $) 16)) (-2546 (((-112) $) 17)) (-1458 (($ (-1148) (-1148) (-1148)) 15)) (-3305 (((-1148) $) 20)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2308 (($ (-1148) (-1148) (-1148)) 22)) (-3117 (((-1148) $) 19)) (-2026 (((-112) $) 18)) (-2664 (((-1148) $) 21)) (-4064 (((-856) $) 11) (($ (-1148)) 24) (((-1148) $) 23)) (-1723 (((-112) $ $) 6)))
+((-2947 (((-112) $ $) 7)) (-1894 (((-112) $) 16)) (-1895 (((-112) $) 17)) (-4021 (($ (-1148) (-1148) (-1148)) 15)) (-3949 (((-1148) $) 20)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-1899 (($ (-1148) (-1148) (-1148)) 22)) (-1897 (((-1148) $) 19)) (-1896 (((-112) $) 18)) (-1898 (((-1148) $) 21)) (-4353 (((-857) $) 11) (($ (-1148)) 24) (((-1148) $) 23)) (-3437 (((-112) $ $) 6)))
(((-388) (-139)) (T -388))
-((-2308 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1458 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))))
-(-13 (-1090) (-488 (-1148)) (-10 -8 (-15 -2308 ($ (-1148) (-1148) (-1148))) (-15 -2664 ((-1148) $)) (-15 -3305 ((-1148) $)) (-15 -3117 ((-1148) $)) (-15 -2026 ((-112) $)) (-15 -2546 ((-112) $)) (-15 -4267 ((-112) $)) (-15 -1458 ($ (-1148) (-1148) (-1148)))))
-(((-102) . T) ((-611 #0=(-1148)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2558 (((-856) $) 50)) (-2674 (($) NIL T CONST)) (-3187 (($ $ (-914)) NIL)) (-3425 (($ $ (-914)) NIL)) (-2143 (($ $ (-914)) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3194 (($ (-765)) 26)) (-2390 (((-765)) 17)) (-1457 (((-856) $) 52)) (-3047 (($ $ $) NIL)) (-4064 (((-856) $) NIL)) (-2748 (($ $ $ $) NIL)) (-2897 (($ $ $) NIL)) (-2246 (($) 20 T CONST)) (-1723 (((-112) $ $) 28)) (-1819 (($ $) 34) (($ $ $) 36)) (-1810 (($ $ $) 37)) (** (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-389 |#1| |#2| |#3|) (-13 (-738 |#3|) (-10 -8 (-15 -2390 ((-765))) (-15 -1457 ((-856) $)) (-15 -2558 ((-856) $)) (-15 -3194 ($ (-765))))) (-765) (-765) (-171)) (T -389))
-((-2390 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))))
-(-13 (-738 |#3|) (-10 -8 (-15 -2390 ((-765))) (-15 -1457 ((-856) $)) (-15 -2558 ((-856) $)) (-15 -3194 ($ (-765)))))
-((-4351 (((-1148)) 10)) (-3905 (((-1137 (-1148))) 28)) (-4350 (((-1259) (-1148)) 25) (((-1259) (-387)) 24)) (-3043 (((-1259)) 26)) (-2452 (((-1137 (-1148))) 27)))
-(((-390) (-10 -7 (-15 -2452 ((-1137 (-1148)))) (-15 -3905 ((-1137 (-1148)))) (-15 -3043 ((-1259))) (-15 -4350 ((-1259) (-387))) (-15 -4350 ((-1259) (-1148))) (-15 -4351 ((-1148))))) (T -390))
-((-4351 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-390)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-390)))) (-3043 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-390)))) (-3905 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))) (-2452 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
-(-10 -7 (-15 -2452 ((-1137 (-1148)))) (-15 -3905 ((-1137 (-1148)))) (-15 -3043 ((-1259))) (-15 -4350 ((-1259) (-387))) (-15 -4350 ((-1259) (-1148))) (-15 -4351 ((-1148))))
-((-4027 (((-765) (-335 |#1| |#2| |#3| |#4|)) 16)))
-(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4027 ((-765) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391))
-((-4027 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4027 ((-765) (-335 |#1| |#2| |#3| |#4|))))
-((-4064 (((-393) |#1|) 11)))
-(((-392 |#1|) (-10 -7 (-15 -4064 ((-393) |#1|))) (-1090)) (T -392))
-((-4064 (*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1090)))))
-(-10 -7 (-15 -4064 ((-393) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-1467 (((-638 (-1148)) $ (-638 (-1148))) 38)) (-3011 (((-638 (-1148)) $ (-638 (-1148))) 39)) (-1816 (((-638 (-1148)) $ (-638 (-1148))) 40)) (-2078 (((-638 (-1148)) $) 35)) (-1458 (($) 23)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3304 (((-638 (-1148)) $) 36)) (-3567 (((-638 (-1148)) $) 37)) (-1479 (((-1259) $ (-561)) 33) (((-1259) $) 34)) (-4216 (($ (-856) (-561)) 30)) (-4064 (((-856) $) 42) (($ (-856)) 25)) (-1723 (((-112) $ $) NIL)))
-(((-393) (-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4216 ($ (-856) (-561))) (-15 -1479 ((-1259) $ (-561))) (-15 -1479 ((-1259) $)) (-15 -3567 ((-638 (-1148)) $)) (-15 -3304 ((-638 (-1148)) $)) (-15 -1458 ($)) (-15 -2078 ((-638 (-1148)) $)) (-15 -1816 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -3011 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1467 ((-638 (-1148)) $ (-638 (-1148))))))) (T -393))
-((-4216 (*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-393)))) (-1479 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-393)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-393)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-1458 (*1 *1) (-5 *1 (-393))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-1816 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-3011 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-1467 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))))
-(-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4216 ($ (-856) (-561))) (-15 -1479 ((-1259) $ (-561))) (-15 -1479 ((-1259) $)) (-15 -3567 ((-638 (-1148)) $)) (-15 -3304 ((-638 (-1148)) $)) (-15 -1458 ($)) (-15 -2078 ((-638 (-1148)) $)) (-15 -1816 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -3011 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1467 ((-638 (-1148)) $ (-638 (-1148))))))
-((-3107 (((-1259) $) 7)) (-4064 (((-856) $) 8)))
-(((-394) (-139)) (T -394))
-((-3107 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1259)))))
-(-13 (-1205) (-608 (-856)) (-10 -8 (-15 -3107 ((-1259) $))))
-(((-608 (-856)) . T) ((-1205) . T))
-((-4061 (((-3 $ "failed") (-315 (-378))) 21) (((-3 $ "failed") (-315 (-561))) 19) (((-3 $ "failed") (-945 (-378))) 17) (((-3 $ "failed") (-945 (-561))) 15) (((-3 $ "failed") (-406 (-945 (-378)))) 13) (((-3 $ "failed") (-406 (-945 (-561)))) 11)) (-3979 (($ (-315 (-378))) 22) (($ (-315 (-561))) 20) (($ (-945 (-378))) 18) (($ (-945 (-561))) 16) (($ (-406 (-945 (-378)))) 14) (($ (-406 (-945 (-561)))) 12)) (-3107 (((-1259) $) 7)) (-4064 (((-856) $) 8) (($ (-638 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 23)))
+((-1899 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))) (-1898 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-4021 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))))
+(-13 (-1091) (-488 (-1148)) (-10 -8 (-15 -1899 ($ (-1148) (-1148) (-1148))) (-15 -1898 ((-1148) $)) (-15 -3949 ((-1148) $)) (-15 -1897 ((-1148) $)) (-15 -1896 ((-112) $)) (-15 -1895 ((-112) $)) (-15 -1894 ((-112) $)) (-15 -4021 ($ (-1148) (-1148) (-1148)))))
+(((-102) . T) ((-611 #1=(-1148)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1900 (((-857) $) 50)) (-4131 (($) NIL T CONST)) (-2542 (($ $ (-912)) NIL)) (-2567 (($ $ (-912)) NIL)) (-2541 (($ $ (-912)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($ (-765)) 26)) (-4318 (((-765)) 17)) (-1901 (((-857) $) 52)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) NIL)) (-2730 (($ $ $ $) NIL)) (-2728 (($ $ $) NIL)) (-3040 (($) 20 T CONST)) (-3437 (((-112) $ $) 28)) (-4244 (($ $) 34) (($ $ $) 36)) (-4246 (($ $ $) 37)) (** (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-389 |#1| |#2| |#3|) (-13 (-738 |#3|) (-10 -8 (-15 -4318 ((-765))) (-15 -1901 ((-857) $)) (-15 -1900 ((-857) $)) (-15 -2544 ($ (-765))))) (-765) (-765) (-171)) (T -389))
+((-4318 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))))
+(-13 (-738 |#3|) (-10 -8 (-15 -4318 ((-765))) (-15 -1901 ((-857) $)) (-15 -1900 ((-857) $)) (-15 -2544 ($ (-765)))))
+((-1906 (((-1148)) 10)) (-1903 (((-1137 (-1148))) 28)) (-1905 (((-1259) (-1148)) 25) (((-1259) (-387)) 24)) (-1904 (((-1259)) 26)) (-1902 (((-1137 (-1148))) 27)))
+(((-390) (-10 -7 (-15 -1902 ((-1137 (-1148)))) (-15 -1903 ((-1137 (-1148)))) (-15 -1904 ((-1259))) (-15 -1905 ((-1259) (-387))) (-15 -1905 ((-1259) (-1148))) (-15 -1906 ((-1148))))) (T -390))
+((-1906 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-390)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-390)))) (-1904 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-390)))) (-1903 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))) (-1902 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
+(-10 -7 (-15 -1902 ((-1137 (-1148)))) (-15 -1903 ((-1137 (-1148)))) (-15 -1904 ((-1259))) (-15 -1905 ((-1259) (-387))) (-15 -1905 ((-1259) (-1148))) (-15 -1906 ((-1148))))
+((-4178 (((-765) (-332 |#1| |#2| |#3| |#4|)) 16)))
+(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391))
+((-4178 (*1 *2 *3) (-12 (-5 *3 (-332 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|))))
+((-2947 (((-112) $ $) NIL)) (-4017 (((-635 (-1148)) $ (-635 (-1148))) 38)) (-1907 (((-635 (-1148)) $ (-635 (-1148))) 39)) (-4019 (((-635 (-1148)) $ (-635 (-1148))) 40)) (-4020 (((-635 (-1148)) $) 35)) (-4021 (($) 23)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1908 (((-635 (-1148)) $) 36)) (-4023 (((-635 (-1148)) $) 37)) (-4024 (((-1259) $ (-544)) 33) (((-1259) $) 34)) (-4377 (($ (-857) (-544)) 30)) (-4353 (((-857) $) 42) (($ (-857)) 25)) (-3437 (((-112) $ $) NIL)))
+(((-392) (-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -1908 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -1907 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148))))))) (T -392))
+((-4377 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-392)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-392)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-392)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-4021 (*1 *1) (-5 *1 (-392))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-4019 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-1907 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-4017 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))))
+(-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -1908 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -1907 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148))))))
+((-4353 (((-392) |#1|) 11)))
+(((-393 |#1|) (-10 -7 (-15 -4353 ((-392) |#1|))) (-1091)) (T -393))
+((-4353 (*1 *2 *3) (-12 (-5 *2 (-392)) (-5 *1 (-393 *3)) (-4 *3 (-1091)))))
+(-10 -7 (-15 -4353 ((-392) |#1|)))
+((-1910 (((-635 (-1148)) (-635 (-1148))) 9)) (-3784 (((-1259) (-387)) 27)) (-1909 (((-1093) (-1166) (-635 (-1166)) (-1169) (-635 (-1166))) 60) (((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)) (-1166)) 35) (((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166))) 34)))
+(((-394) (-10 -7 (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)))) (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)) (-1166))) (-15 -1909 ((-1093) (-1166) (-635 (-1166)) (-1169) (-635 (-1166)))) (-15 -3784 ((-1259) (-387))) (-15 -1910 ((-635 (-1148)) (-635 (-1148)))))) (T -394))
+((-1910 (*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-394)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-394)))) (-1909 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-635 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394)))) (-1909 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394)))) (-1909 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394)))))
+(-10 -7 (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)))) (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)) (-1166))) (-15 -1909 ((-1093) (-1166) (-635 (-1166)) (-1169) (-635 (-1166)))) (-15 -3784 ((-1259) (-387))) (-15 -1910 ((-635 (-1148)) (-635 (-1148)))))
+((-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8)))
(((-395) (-139)) (T -395))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-395)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) (-4 *1 (-395)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-4 *1 (-395)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-561))) (-4 *1 (-395)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-945 (-378))) (-4 *1 (-395)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-378))) (-4 *1 (-395)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-395)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-561))) (-4 *1 (-395)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395)))))
-(-13 (-394) (-10 -8 (-15 -4064 ($ (-638 (-329)))) (-15 -4064 ($ (-329))) (-15 -4064 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))) (-15 -3979 ($ (-315 (-378)))) (-15 -4061 ((-3 $ "failed") (-315 (-378)))) (-15 -3979 ($ (-315 (-561)))) (-15 -4061 ((-3 $ "failed") (-315 (-561)))) (-15 -3979 ($ (-945 (-378)))) (-15 -4061 ((-3 $ "failed") (-945 (-378)))) (-15 -3979 ($ (-945 (-561)))) (-15 -4061 ((-3 $ "failed") (-945 (-561)))) (-15 -3979 ($ (-406 (-945 (-378))))) (-15 -4061 ((-3 $ "failed") (-406 (-945 (-378))))) (-15 -3979 ($ (-406 (-945 (-561))))) (-15 -4061 ((-3 $ "failed") (-406 (-945 (-561)))))))
-(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
-((-4003 (((-638 (-1148)) (-638 (-1148))) 9)) (-3107 (((-1259) (-387)) 27)) (-3691 (((-1094) (-1166) (-638 (-1166)) (-1169) (-638 (-1166))) 60) (((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)) (-1166)) 35) (((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166))) 34)))
-(((-396) (-10 -7 (-15 -3691 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)))) (-15 -3691 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)) (-1166))) (-15 -3691 ((-1094) (-1166) (-638 (-1166)) (-1169) (-638 (-1166)))) (-15 -3107 ((-1259) (-387))) (-15 -4003 ((-638 (-1148)) (-638 (-1148)))))) (T -396))
-((-4003 (*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-396)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-396)))) (-3691 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-638 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-396)))) (-3691 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-396)))) (-3691 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-396)))))
-(-10 -7 (-15 -3691 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)))) (-15 -3691 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)) (-1166))) (-15 -3691 ((-1094) (-1166) (-638 (-1166)) (-1169) (-638 (-1166)))) (-15 -3107 ((-1259) (-387))) (-15 -4003 ((-638 (-1148)) (-638 (-1148)))))
-((-3107 (((-1259) $) 36)) (-4064 (((-856) $) 96) (($ (-329)) 98) (($ (-638 (-329))) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 95) (($ (-315 (-694))) 52) (($ (-315 (-692))) 71) (($ (-315 (-687))) 84) (($ (-293 (-315 (-694)))) 66) (($ (-293 (-315 (-692)))) 79) (($ (-293 (-315 (-687)))) 92) (($ (-315 (-561))) 103) (($ (-315 (-378))) 116) (($ (-315 (-168 (-378)))) 129) (($ (-293 (-315 (-561)))) 111) (($ (-293 (-315 (-378)))) 124) (($ (-293 (-315 (-168 (-378))))) 137)))
-(((-397 |#1| |#2| |#3| |#4|) (-13 (-394) (-10 -8 (-15 -4064 ($ (-329))) (-15 -4064 ($ (-638 (-329)))) (-15 -4064 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))) (-15 -4064 ($ (-315 (-694)))) (-15 -4064 ($ (-315 (-692)))) (-15 -4064 ($ (-315 (-687)))) (-15 -4064 ($ (-293 (-315 (-694))))) (-15 -4064 ($ (-293 (-315 (-692))))) (-15 -4064 ($ (-293 (-315 (-687))))) (-15 -4064 ($ (-315 (-561)))) (-15 -4064 ($ (-315 (-378)))) (-15 -4064 ($ (-315 (-168 (-378))))) (-15 -4064 ($ (-293 (-315 (-561))))) (-15 -4064 ($ (-293 (-315 (-378))))) (-15 -4064 ($ (-293 (-315 (-168 (-378)))))))) (-1166) (-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-638 (-1166)) (-1170)) (T -397))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-315 (-694))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-315 (-692))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-315 (-687))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-694)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-692)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-687)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-561)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))))
-(-13 (-394) (-10 -8 (-15 -4064 ($ (-329))) (-15 -4064 ($ (-638 (-329)))) (-15 -4064 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))) (-15 -4064 ($ (-315 (-694)))) (-15 -4064 ($ (-315 (-692)))) (-15 -4064 ($ (-315 (-687)))) (-15 -4064 ($ (-293 (-315 (-694))))) (-15 -4064 ($ (-293 (-315 (-692))))) (-15 -4064 ($ (-293 (-315 (-687))))) (-15 -4064 ($ (-315 (-561)))) (-15 -4064 ($ (-315 (-378)))) (-15 -4064 ($ (-315 (-168 (-378))))) (-15 -4064 ($ (-293 (-315 (-561))))) (-15 -4064 ($ (-293 (-315 (-378))))) (-15 -4064 ($ (-293 (-315 (-168 (-378))))))))
-((-4053 (((-112) $ $) NIL)) (-2155 ((|#2| $) 36)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3121 (($ (-406 |#2|)) 85)) (-1353 (((-638 (-2 (|:| -4181 (-765)) (|:| -2298 |#2|) (|:| |num| |#2|))) $) 37)) (-3922 (($ $) 32) (($ $ (-765)) 34)) (-4216 (((-406 |#2|) $) 46)) (-4078 (($ (-638 (-2 (|:| -4181 (-765)) (|:| -2298 |#2|) (|:| |num| |#2|)))) 31)) (-4064 (((-856) $) 120)) (-3154 (($ $) 33) (($ $ (-765)) 35)) (-1723 (((-112) $ $) NIL)) (-1810 (($ |#2| $) 39)))
-(((-398 |#1| |#2|) (-13 (-1090) (-609 (-406 |#2|)) (-10 -8 (-15 -1810 ($ |#2| $)) (-15 -3121 ($ (-406 |#2|))) (-15 -2155 (|#2| $)) (-15 -1353 ((-638 (-2 (|:| -4181 (-765)) (|:| -2298 |#2|) (|:| |num| |#2|))) $)) (-15 -4078 ($ (-638 (-2 (|:| -4181 (-765)) (|:| -2298 |#2|) (|:| |num| |#2|))))) (-15 -3922 ($ $)) (-15 -3154 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -3154 ($ $ (-765))))) (-13 (-362) (-146)) (-1230 |#1|)) (T -398))
-((-1810 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1230 *3)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-2155 (*1 *2 *1) (-12 (-4 *2 (-1230 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-1353 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-638 (-2 (|:| -4181 (-765)) (|:| -2298 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1230 *3)))) (-4078 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -4181 (-765)) (|:| -2298 *4) (|:| |num| *4)))) (-4 *4 (-1230 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-3922 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1230 *2)))) (-3154 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1230 *2)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1230 *3)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1230 *3)))))
-(-13 (-1090) (-609 (-406 |#2|)) (-10 -8 (-15 -1810 ($ |#2| $)) (-15 -3121 ($ (-406 |#2|))) (-15 -2155 (|#2| $)) (-15 -1353 ((-638 (-2 (|:| -4181 (-765)) (|:| -2298 |#2|) (|:| |num| |#2|))) $)) (-15 -4078 ($ (-638 (-2 (|:| -4181 (-765)) (|:| -2298 |#2|) (|:| |num| |#2|))))) (-15 -3922 ($ $)) (-15 -3154 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -3154 ($ $ (-765)))))
-((-4053 (((-112) $ $) 9 (-4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 15 (|has| |#1| (-879 (-378)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 14 (|has| |#1| (-879 (-561))))) (-1883 (((-1148) $) 13 (-4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-1701 (((-1110) $) 12 (-4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-4064 (((-856) $) 11 (-4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-1723 (((-112) $ $) 10 (-4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))))
-(((-399 |#1|) (-139) (-1205)) (T -399))
-NIL
-(-13 (-1205) (-10 -7 (IF (|has| |t#1| (-879 (-561))) (-6 (-879 (-561))) |%noBranch|) (IF (|has| |t#1| (-879 (-378))) (-6 (-879 (-378))) |%noBranch|)))
-(((-102) -4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))) ((-608 (-856)) -4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-1090) -4050 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))) ((-1205) . T))
-((-3598 (($ $) 10) (($ $ (-765)) 11)))
-(((-400 |#1|) (-10 -8 (-15 -3598 (|#1| |#1| (-765))) (-15 -3598 (|#1| |#1|))) (-401)) (T -400))
-NIL
-(-10 -8 (-15 -3598 (|#1| |#1| (-765))) (-15 -3598 (|#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-3698 (((-112) $ $) 60)) (-2674 (($) 17 T CONST)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-3598 (($ $) 80) (($ $ (-765)) 79)) (-2725 (((-112) $) 72)) (-4027 (((-827 (-914)) $) 82)) (-2252 (((-112) $) 31)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-2768 (((-3 (-765) "failed") $ $) 81)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-3666 (((-3 $ "failed") $) 83)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 66)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
+((-3784 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1259)))))
+(-13 (-1204) (-608 (-857)) (-10 -8 (-15 -3784 ((-1259) $))))
+(((-608 (-857)) . T) ((-1204) . T))
+((-3558 (((-3 $ "failed") (-313 (-377))) 21) (((-3 $ "failed") (-313 (-544))) 19) (((-3 $ "failed") (-939 (-377))) 17) (((-3 $ "failed") (-939 (-544))) 15) (((-3 $ "failed") (-406 (-939 (-377)))) 13) (((-3 $ "failed") (-406 (-939 (-544)))) 11)) (-3557 (($ (-313 (-377))) 22) (($ (-313 (-544))) 20) (($ (-939 (-377))) 18) (($ (-939 (-544))) 16) (($ (-406 (-939 (-377)))) 14) (($ (-406 (-939 (-544)))) 12)) (-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 23)))
+(((-396) (-139)) (T -396))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-396)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-396)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-377))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-544))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-377))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-377))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-544))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396)))))
+(-13 (-395) (-10 -8 (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -3557 ($ (-313 (-377)))) (-15 -3558 ((-3 $ "failed") (-313 (-377)))) (-15 -3557 ($ (-313 (-544)))) (-15 -3558 ((-3 $ "failed") (-313 (-544)))) (-15 -3557 ($ (-939 (-377)))) (-15 -3558 ((-3 $ "failed") (-939 (-377)))) (-15 -3557 ($ (-939 (-544)))) (-15 -3558 ((-3 $ "failed") (-939 (-544)))) (-15 -3557 ($ (-406 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-377))))) (-15 -3557 ($ (-406 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-544)))))))
+(((-608 (-857)) . T) ((-395) . T) ((-1204) . T))
+((-3784 (((-1259) $) 36)) (-4353 (((-857) $) 96) (($ (-329)) 98) (($ (-635 (-329))) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 95) (($ (-313 (-694))) 52) (($ (-313 (-692))) 71) (($ (-313 (-687))) 84) (($ (-292 (-313 (-694)))) 66) (($ (-292 (-313 (-692)))) 79) (($ (-292 (-313 (-687)))) 92) (($ (-313 (-544))) 103) (($ (-313 (-377))) 116) (($ (-313 (-167 (-377)))) 129) (($ (-292 (-313 (-544)))) 111) (($ (-292 (-313 (-377)))) 124) (($ (-292 (-313 (-167 (-377))))) 137)))
+(((-397 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -4353 ($ (-329))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -4353 ($ (-313 (-694)))) (-15 -4353 ($ (-313 (-692)))) (-15 -4353 ($ (-313 (-687)))) (-15 -4353 ($ (-292 (-313 (-694))))) (-15 -4353 ($ (-292 (-313 (-692))))) (-15 -4353 ($ (-292 (-313 (-687))))) (-15 -4353 ($ (-313 (-544)))) (-15 -4353 ($ (-313 (-377)))) (-15 -4353 ($ (-313 (-167 (-377))))) (-15 -4353 ($ (-292 (-313 (-544))))) (-15 -4353 ($ (-292 (-313 (-377))))) (-15 -4353 ($ (-292 (-313 (-167 (-377)))))))) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 "void")) (-635 (-1166)) (-1170)) (T -397))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-694))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-692))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-687))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-694)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-692)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-687)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-544)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-167 (-377))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))))
+(-13 (-395) (-10 -8 (-15 -4353 ($ (-329))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -4353 ($ (-313 (-694)))) (-15 -4353 ($ (-313 (-692)))) (-15 -4353 ($ (-313 (-687)))) (-15 -4353 ($ (-292 (-313 (-694))))) (-15 -4353 ($ (-292 (-313 (-692))))) (-15 -4353 ($ (-292 (-313 (-687))))) (-15 -4353 ($ (-313 (-544)))) (-15 -4353 ($ (-313 (-377)))) (-15 -4353 ($ (-313 (-167 (-377))))) (-15 -4353 ($ (-292 (-313 (-544))))) (-15 -4353 ($ (-292 (-313 (-377))))) (-15 -4353 ($ (-292 (-313 (-167 (-377))))))))
+((-2947 (((-112) $ $) NIL)) (-1912 ((|#2| $) 36)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1913 (($ (-406 |#2|)) 85)) (-1911 (((-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))) $) 37)) (-4217 (($ $) 32) (($ $ (-765)) 34)) (-4377 (((-406 |#2|) $) 46)) (-3929 (($ (-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|)))) 31)) (-4353 (((-857) $) 120)) (-3051 (($ $) 33) (($ $ (-765)) 35)) (-3437 (((-112) $ $) NIL)) (-4246 (($ |#2| $) 39)))
+(((-398 |#1| |#2|) (-13 (-1091) (-609 (-406 |#2|)) (-10 -8 (-15 -4246 ($ |#2| $)) (-15 -1913 ($ (-406 |#2|))) (-15 -1912 (|#2| $)) (-15 -1911 ((-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))))) (-15 -4217 ($ $)) (-15 -3051 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -3051 ($ $ (-765))))) (-13 (-362) (-146)) (-1229 |#1|)) (T -398))
+((-4246 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1229 *3)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-1912 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-1911 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4)))) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-4217 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) (-3051 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))))
+(-13 (-1091) (-609 (-406 |#2|)) (-10 -8 (-15 -4246 ($ |#2| $)) (-15 -1913 ($ (-406 |#2|))) (-15 -1912 (|#2| $)) (-15 -1911 ((-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))))) (-15 -4217 ($ $)) (-15 -3051 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -3051 ($ $ (-765)))))
+((-2947 (((-112) $ $) 9 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 15 (|has| |#1| (-879 (-377)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 14 (|has| |#1| (-879 (-544))))) (-3643 (((-1148) $) 13 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-3644 (((-1110) $) 12 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-4353 (((-857) $) 11 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-3437 (((-112) $ $) 10 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))))
+(((-399 |#1|) (-139) (-1204)) (T -399))
+NIL
+(-13 (-1204) (-10 -7 (IF (|has| |t#1| (-879 (-544))) (-6 (-879 (-544))) |%noBranch|) (IF (|has| |t#1| (-879 (-377))) (-6 (-879 (-377))) |%noBranch|)))
+(((-102) -3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))) ((-608 (-857)) -3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-1091) -3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))) ((-1204) . T))
+((-1914 (($ $) 10) (($ $ (-765)) 11)))
+(((-400 |#1|) (-10 -8 (-15 -1914 (|#1| |#1| (-765))) (-15 -1914 (|#1| |#1|))) (-401)) (T -400))
+NIL
+(-10 -8 (-15 -1914 (|#1| |#1| (-765))) (-15 -1914 (|#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-1914 (($ $) 80) (($ $ (-765)) 79)) (-4130 (((-112) $) 72)) (-4178 (((-826 (-912)) $) 82)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-3 (-765) "failed") $ $) 81)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3084 (((-3 $ "failed") $) 83)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68)))
(((-401) (-139)) (T -401))
-((-4027 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-827 (-914))))) (-2768 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765)))) (-3598 (*1 *1 *1) (-4 *1 (-401))) (-3598 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765)))))
-(-13 (-362) (-144) (-10 -8 (-15 -4027 ((-827 (-914)) $)) (-15 -2768 ((-3 (-765) "failed") $ $)) (-15 -3598 ($ $)) (-15 -3598 ($ $ (-765)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
-((-4242 (($ (-561) (-561)) 11) (($ (-561) (-561) (-914)) NIL)) (-3679 (((-914)) 16) (((-914) (-914)) NIL)))
-(((-402 |#1|) (-10 -8 (-15 -3679 ((-914) (-914))) (-15 -3679 ((-914))) (-15 -4242 (|#1| (-561) (-561) (-914))) (-15 -4242 (|#1| (-561) (-561)))) (-403)) (T -402))
-((-3679 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403)))))
-(-10 -8 (-15 -3679 ((-914) (-914))) (-15 -3679 ((-914))) (-15 -4242 (|#1| (-561) (-561) (-914))) (-15 -4242 (|#1| (-561) (-561))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3892 (((-561) $) 90)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-1991 (($ $) 88)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-1643 (($ $) 98)) (-3698 (((-112) $ $) 60)) (-1659 (((-561) $) 115)) (-2674 (($) 17 T CONST)) (-3588 (($ $) 87)) (-4061 (((-3 (-561) "failed") $) 103) (((-3 (-406 (-561)) "failed") $) 100)) (-3979 (((-561) $) 104) (((-406 (-561)) $) 101)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2725 (((-112) $) 72)) (-4008 (((-914)) 131) (((-914) (-914)) 128 (|has| $ (-6 -4390)))) (-1784 (((-112) $) 113)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 94)) (-4027 (((-561) $) 137)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 97)) (-2072 (($ $) 93)) (-3271 (((-112) $) 114)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1597 (($ $ $) 112) (($) 125 (-12 (-2186 (|has| $ (-6 -4390))) (-2186 (|has| $ (-6 -4382)))))) (-3017 (($ $ $) 111) (($) 124 (-12 (-2186 (|has| $ (-6 -4390))) (-2186 (|has| $ (-6 -4382)))))) (-3966 (((-561) $) 134)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-2918 (((-914) (-561)) 127 (|has| $ (-6 -4390)))) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-2569 (($ $) 89)) (-4020 (($ $) 91)) (-4242 (($ (-561) (-561)) 139) (($ (-561) (-561) (-914)) 138)) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-4181 (((-561) $) 135)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-3679 (((-914)) 132) (((-914) (-914)) 129 (|has| $ (-6 -4390)))) (-1725 (((-914) (-561)) 126 (|has| $ (-6 -4390)))) (-4216 (((-378) $) 106) (((-224) $) 105) (((-885 (-378)) $) 95)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ (-561)) 102) (($ (-406 (-561))) 99)) (-3746 (((-765)) 28)) (-2449 (($ $) 92)) (-2860 (((-914)) 133) (((-914) (-914)) 130 (|has| $ (-6 -4390)))) (-1423 (((-914)) 136)) (-3996 (((-112) $ $) 40)) (-2165 (($ $) 116)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1781 (((-112) $ $) 109)) (-1758 (((-112) $ $) 108)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 110)) (-1746 (((-112) $ $) 107)) (-1828 (($ $ $) 66)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 96)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
+((-4178 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-826 (-912))))) (-1915 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765)))) (-1914 (*1 *1 *1) (-4 *1 (-401))) (-1914 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765)))))
+(-13 (-362) (-144) (-10 -8 (-15 -4178 ((-826 (-912)) $)) (-15 -1915 ((-3 (-765) "failed") $ $)) (-15 -1914 ($ $)) (-15 -1914 ($ $ (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T))
+((-3655 (($ (-544) (-544)) 11) (($ (-544) (-544) (-912)) NIL)) (-2993 (((-912)) 16) (((-912) (-912)) NIL)))
+(((-402 |#1|) (-10 -8 (-15 -2993 ((-912) (-912))) (-15 -2993 ((-912))) (-15 -3655 (|#1| (-544) (-544) (-912))) (-15 -3655 (|#1| (-544) (-544)))) (-403)) (T -402))
+((-2993 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-2993 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403)))))
+(-10 -8 (-15 -2993 ((-912) (-912))) (-15 -2993 ((-912))) (-15 -3655 (|#1| (-544) (-544) (-912))) (-15 -3655 (|#1| (-544) (-544))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 (((-544) $) 90)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4177 (($ $) 88)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 98)) (-1733 (((-112) $ $) 60)) (-4030 (((-544) $) 115)) (-4131 (($) 17 T CONST)) (-3512 (($ $) 87)) (-3558 (((-3 (-544) #1="failed") $) 103) (((-3 (-406 (-544)) #1#) $) 100)) (-3557 (((-544) $) 104) (((-406 (-544)) $) 101)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-2509 (((-912)) 131) (((-912) (-912)) 128 (|has| $ (-6 -4391)))) (-3587 (((-112) $) 113)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 94)) (-4178 (((-544) $) 137)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 97)) (-3517 (($ $) 93)) (-3588 (((-112) $) 114)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 53)) (-2913 (($ $ $) 112) (($) 125 (-12 (-3726 (|has| $ (-6 -4391))) (-3726 (|has| $ (-6 -4383)))))) (-3242 (($ $ $) 111) (($) 124 (-12 (-3726 (|has| $ (-6 -4391))) (-3726 (|has| $ (-6 -4383)))))) (-2510 (((-544) $) 134)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-1917 (((-912) (-544)) 127 (|has| $ (-6 -4391)))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3513 (($ $) 89)) (-3515 (($ $) 91)) (-3655 (($ (-544) (-544)) 139) (($ (-544) (-544) (-912)) 138)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-2536 (((-544) $) 135)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-2993 (((-912)) 132) (((-912) (-912)) 129 (|has| $ (-6 -4391)))) (-1916 (((-912) (-544)) 126 (|has| $ (-6 -4391)))) (-4377 (((-377) $) 106) (((-224) $) 105) (((-883 (-377)) $) 95)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ (-544)) 102) (($ (-406 (-544))) 99)) (-3511 (((-765)) 28)) (-3516 (($ $) 92)) (-1918 (((-912)) 133) (((-912) (-912)) 130 (|has| $ (-6 -4391)))) (-3076 (((-912)) 136)) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 116)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 109)) (-2946 (((-112) $ $) 108)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 110)) (-3067 (((-112) $ $) 107)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 96)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68)))
(((-403) (-139)) (T -403))
-((-4242 (*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-403)))) (-4242 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-4 *1 (-403)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561)))) (-1423 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561)))) (-2860 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-3679 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-4008 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-2860 (*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4390)) (-4 *1 (-403)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4390)) (-4 *1 (-403)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4390)) (-4 *1 (-403)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-561)) (|has| *1 (-6 -4390)) (-4 *1 (-403)) (-5 *2 (-914)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-561)) (|has| *1 (-6 -4390)) (-4 *1 (-403)) (-5 *2 (-914)))) (-1597 (*1 *1) (-12 (-4 *1 (-403)) (-2186 (|has| *1 (-6 -4390))) (-2186 (|has| *1 (-6 -4382))))) (-3017 (*1 *1) (-12 (-4 *1 (-403)) (-2186 (|has| *1 (-6 -4390))) (-2186 (|has| *1 (-6 -4382))))))
-(-13 (-1051) (-10 -8 (-6 -1408) (-15 -4242 ($ (-561) (-561))) (-15 -4242 ($ (-561) (-561) (-914))) (-15 -4027 ((-561) $)) (-15 -1423 ((-914))) (-15 -4181 ((-561) $)) (-15 -3966 ((-561) $)) (-15 -2860 ((-914))) (-15 -3679 ((-914))) (-15 -4008 ((-914))) (IF (|has| $ (-6 -4390)) (PROGN (-15 -2860 ((-914) (-914))) (-15 -3679 ((-914) (-914))) (-15 -4008 ((-914) (-914))) (-15 -2918 ((-914) (-561))) (-15 -1725 ((-914) (-561)))) |%noBranch|) (IF (|has| $ (-6 -4382)) |%noBranch| (IF (|has| $ (-6 -4390)) |%noBranch| (PROGN (-15 -1597 ($)) (-15 -3017 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-378)) . T) ((-609 (-885 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-879 (-378)) . T) ((-913) . T) ((-995) . T) ((-1015) . T) ((-1051) . T) ((-1031 (-406 (-561))) . T) ((-1031 (-561)) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
-((-4165 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20)))
-(((-404 |#1| |#2|) (-10 -7 (-15 -4165 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-553) (-553)) (T -404))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-553)) (-4 *6 (-553)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6)))))
-(-10 -7 (-15 -4165 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|))))
-((-4165 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13)))
-(((-405 |#1| |#2|) (-10 -7 (-15 -4165 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-553) (-553)) (T -405))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-553)) (-4 *6 (-553)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6)))))
-(-10 -7 (-15 -4165 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 13)) (-3892 ((|#1| $) 21 (|has| |#1| (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| |#1| (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 17) (((-3 (-1166) "failed") $) NIL (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) 70 (|has| |#1| (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561))))) (-3979 ((|#1| $) 15) (((-1166) $) NIL (|has| |#1| (-1031 (-1166)))) (((-406 (-561)) $) 67 (|has| |#1| (-1031 (-561)))) (((-561) $) NIL (|has| |#1| (-1031 (-561))))) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) 50)) (-1362 (($) NIL (|has| |#1| (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| |#1| (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| |#1| (-879 (-378))))) (-2252 (((-112) $) 64)) (-3307 (($ $) NIL)) (-4077 ((|#1| $) 71)) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3271 (((-112) $) NIL (|has| |#1| (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| |#1| (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 97)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| |#1| (-306)))) (-4020 ((|#1| $) 28 (|has| |#1| (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) 135 (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 131 (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-1905 (((-765) $) NIL)) (-2315 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1969 (($ $) NIL)) (-4088 ((|#1| $) 73)) (-4216 (((-885 (-561)) $) NIL (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#1| (-609 (-885 (-378))))) (((-534) $) NIL (|has| |#1| (-609 (-534)))) (((-378) $) NIL (|has| |#1| (-1015))) (((-224) $) NIL (|has| |#1| (-1015)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 10) (($ (-1166)) NIL (|has| |#1| (-1031 (-1166))))) (-3666 (((-3 $ "failed") $) 99 (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) 100)) (-2449 ((|#1| $) 26 (|has| |#1| (-543)))) (-3996 (((-112) $ $) NIL)) (-2165 (($ $) NIL (|has| |#1| (-814)))) (-2246 (($) 22 T CONST)) (-2257 (($) 8 T CONST)) (-3785 (((-1148) $) 43 (-12 (|has| |#1| (-543)) (|has| |#1| (-822)))) (((-1148) $ (-112)) 44 (-12 (|has| |#1| (-543)) (|has| |#1| (-822)))) (((-1259) (-816) $) 45 (-12 (|has| |#1| (-543)) (|has| |#1| (-822)))) (((-1259) (-816) $ (-112)) 46 (-12 (|has| |#1| (-543)) (|has| |#1| (-822))))) (-3154 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) 56)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) 24 (|has| |#1| (-844)))) (-1828 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1819 (($ $) 25) (($ $ $) 55)) (-1810 (($ $ $) 53)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 125)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 60) (($ $ $) 57) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-406 |#1|) (-13 (-985 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4386)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4397)) (-6 -4386) |%noBranch|) |%noBranch|) |%noBranch|))) (-553)) (T -406))
-NIL
-(-13 (-985 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4386)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4397)) (-6 -4386) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3287 (((-682 |#2|) (-1254 $)) NIL) (((-682 |#2|)) 18)) (-3376 (($ (-1254 |#2|) (-1254 $)) NIL) (($ (-1254 |#2|)) 24)) (-2405 (((-682 |#2|) $ (-1254 $)) NIL) (((-682 |#2|) $) 38)) (-1588 ((|#3| $) 60)) (-2753 ((|#2| (-1254 $)) NIL) ((|#2|) 20)) (-3752 (((-1254 |#2|) $ (-1254 $)) NIL) (((-682 |#2|) (-1254 $) (-1254 $)) NIL) (((-1254 |#2|) $) 22) (((-682 |#2|) (-1254 $)) 36)) (-4216 (((-1254 |#2|) $) 11) (($ (-1254 |#2|)) 13)) (-3934 ((|#3| $) 52)))
-(((-407 |#1| |#2| |#3|) (-10 -8 (-15 -2405 ((-682 |#2|) |#1|)) (-15 -2753 (|#2|)) (-15 -3287 ((-682 |#2|))) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -3376 (|#1| (-1254 |#2|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -1588 (|#3| |#1|)) (-15 -3934 (|#3| |#1|)) (-15 -3287 ((-682 |#2|) (-1254 |#1|))) (-15 -2753 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -2405 ((-682 |#2|) |#1| (-1254 |#1|)))) (-408 |#2| |#3|) (-171) (-1230 |#2|)) (T -407))
-((-3287 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-682 *4)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) (-2753 (*1 *2) (-12 (-4 *4 (-1230 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) (-4 *3 (-408 *2 *4)))))
-(-10 -8 (-15 -2405 ((-682 |#2|) |#1|)) (-15 -2753 (|#2|)) (-15 -3287 ((-682 |#2|))) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -3376 (|#1| (-1254 |#2|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -1588 (|#3| |#1|)) (-15 -3934 (|#3| |#1|)) (-15 -3287 ((-682 |#2|) (-1254 |#1|))) (-15 -2753 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -2405 ((-682 |#2|) |#1| (-1254 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3287 (((-682 |#1|) (-1254 $)) 47) (((-682 |#1|)) 62)) (-1736 ((|#1| $) 53)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3376 (($ (-1254 |#1|) (-1254 $)) 49) (($ (-1254 |#1|)) 65)) (-2405 (((-682 |#1|) $ (-1254 $)) 54) (((-682 |#1|) $) 60)) (-3735 (((-3 $ "failed") $) 33)) (-3400 (((-914)) 55)) (-2252 (((-112) $) 31)) (-2072 ((|#1| $) 52)) (-1588 ((|#2| $) 45 (|has| |#1| (-362)))) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2753 ((|#1| (-1254 $)) 48) ((|#1|) 61)) (-3752 (((-1254 |#1|) $ (-1254 $)) 51) (((-682 |#1|) (-1254 $) (-1254 $)) 50) (((-1254 |#1|) $) 67) (((-682 |#1|) (-1254 $)) 66)) (-4216 (((-1254 |#1|) $) 64) (($ (-1254 |#1|)) 63)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38)) (-3666 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3934 ((|#2| $) 46)) (-3746 (((-765)) 28)) (-2615 (((-1254 $)) 68)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-408 |#1| |#2|) (-139) (-171) (-1230 |t#1|)) (T -408))
-((-2615 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1230 *3)) (-5 *2 (-1254 *1)) (-4 *1 (-408 *3 *4)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3)) (-5 *2 (-1254 *3)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-682 *4)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1230 *3)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3)) (-5 *2 (-1254 *3)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1230 *3)))) (-3287 (*1 *2) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3)) (-5 *2 (-682 *3)))) (-2753 (*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1230 *2)) (-4 *2 (-171)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3)) (-5 *2 (-682 *3)))))
-(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -2615 ((-1254 $))) (-15 -3752 ((-1254 |t#1|) $)) (-15 -3752 ((-682 |t#1|) (-1254 $))) (-15 -3376 ($ (-1254 |t#1|))) (-15 -4216 ((-1254 |t#1|) $)) (-15 -4216 ($ (-1254 |t#1|))) (-15 -3287 ((-682 |t#1|))) (-15 -2753 (|t#1|)) (-15 -2405 ((-682 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-369 |#1| |#2|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) 27) (((-3 (-561) "failed") $) 19)) (-3979 ((|#2| $) NIL) (((-406 (-561)) $) 24) (((-561) $) 14)) (-4064 (($ |#2|) NIL) (($ (-406 (-561))) 22) (($ (-561)) 11)))
-(((-409 |#1| |#2|) (-10 -8 (-15 -4064 (|#1| (-561))) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|))) (-410 |#2|) (-1205)) (T -409))
-NIL
-(-10 -8 (-15 -4064 (|#1| (-561))) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|)))
-((-4061 (((-3 |#1| "failed") $) 9) (((-3 (-406 (-561)) "failed") $) 16 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 13 (|has| |#1| (-1031 (-561))))) (-3979 ((|#1| $) 8) (((-406 (-561)) $) 17 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 14 (|has| |#1| (-1031 (-561))))) (-4064 (($ |#1|) 6) (($ (-406 (-561))) 15 (|has| |#1| (-1031 (-406 (-561))))) (($ (-561)) 12 (|has| |#1| (-1031 (-561))))))
-(((-410 |#1|) (-139) (-1205)) (T -410))
-NIL
-(-13 (-1031 |t#1|) (-10 -7 (IF (|has| |t#1| (-1031 (-561))) (-6 (-1031 (-561))) |%noBranch|) (IF (|has| |t#1| (-1031 (-406 (-561)))) (-6 (-1031 (-406 (-561)))) |%noBranch|)))
-(((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 #1=(-561)) |has| |#1| (-1031 (-561))) ((-611 |#1|) . T) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 #1#) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T))
-((-4165 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33)))
-(((-411 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4165 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-985 |#1|) (-1230 |#2|) (-13 (-408 |#2| |#3|) (-1031 |#2|)) (-306) (-985 |#5|) (-1230 |#6|) (-13 (-408 |#6| |#7|) (-1031 |#6|))) (T -411))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-985 *5)) (-4 *7 (-1230 *6)) (-4 *8 (-13 (-408 *6 *7) (-1031 *6))) (-4 *9 (-306)) (-4 *10 (-985 *9)) (-4 *11 (-1230 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-408 *10 *11) (-1031 *10))))))
-(-10 -7 (-15 -4165 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|))))
-((-4053 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-3036 ((|#4| (-765) (-1254 |#4|)) 56)) (-2252 (((-112) $) NIL)) (-4077 (((-1254 |#4|) $) 17)) (-2072 ((|#2| $) 54)) (-2996 (($ $) 139)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 100)) (-3595 (($ (-1254 |#4|)) 99)) (-1701 (((-1110) $) NIL)) (-4088 ((|#1| $) 18)) (-2076 (($ $ $) NIL)) (-3047 (($ $ $) NIL)) (-4064 (((-856) $) 134)) (-2615 (((-1254 |#4|) $) 129)) (-2257 (($) 11 T CONST)) (-1723 (((-112) $ $) 40)) (-1828 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 122)) (* (($ $ $) 121)))
-(((-412 |#1| |#2| |#3| |#4|) (-13 (-471) (-10 -8 (-15 -3595 ($ (-1254 |#4|))) (-15 -2615 ((-1254 |#4|) $)) (-15 -2072 (|#2| $)) (-15 -4077 ((-1254 |#4|) $)) (-15 -4088 (|#1| $)) (-15 -2996 ($ $)) (-15 -3036 (|#4| (-765) (-1254 |#4|))))) (-306) (-985 |#1|) (-1230 |#2|) (-13 (-408 |#2| |#3|) (-1031 |#2|))) (T -412))
-((-3595 (*1 *1 *2) (-12 (-5 *2 (-1254 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4))) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-2615 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-5 *2 (-1254 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4))))) (-2072 (*1 *2 *1) (-12 (-4 *4 (-1230 *2)) (-4 *2 (-985 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1031 *2))))) (-4077 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-5 *2 (-1254 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4))))) (-4088 (*1 *2 *1) (-12 (-4 *3 (-985 *2)) (-4 *4 (-1230 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3))))) (-2996 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-985 *2)) (-4 *4 (-1230 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1254 *2)) (-4 *5 (-306)) (-4 *6 (-985 *5)) (-4 *2 (-13 (-408 *6 *7) (-1031 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1230 *6)))))
-(-13 (-471) (-10 -8 (-15 -3595 ($ (-1254 |#4|))) (-15 -2615 ((-1254 |#4|) $)) (-15 -2072 (|#2| $)) (-15 -4077 ((-1254 |#4|) $)) (-15 -4088 (|#1| $)) (-15 -2996 ($ $)) (-15 -3036 (|#4| (-765) (-1254 |#4|)))))
-((-4053 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-2072 ((|#2| $) 61)) (-3065 (($ (-1254 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1031 |#2|)))) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 34)) (-2615 (((-1254 |#4|) $) 26)) (-2257 (($) 23 T CONST)) (-1723 (((-112) $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ $ $) 72)))
-(((-413 |#1| |#2| |#3| |#4| |#5|) (-13 (-720) (-10 -8 (-15 -2615 ((-1254 |#4|) $)) (-15 -2072 (|#2| $)) (-15 -3065 ($ (-1254 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -3065 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-985 |#1|) (-1230 |#2|) (-408 |#2| |#3|) (-1254 |#4|)) (T -413))
-((-2615 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-5 *2 (-1254 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-4 *6 (-408 *4 *5)) (-14 *7 *2))) (-2072 (*1 *2 *1) (-12 (-4 *4 (-1230 *2)) (-4 *2 (-985 *3)) (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) (-14 *6 (-1254 *5)))) (-3065 (*1 *1 *2) (-12 (-5 *2 (-1254 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3065 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-4 *6 (-408 *4 *5)) (-14 *7 (-1254 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)))))
-(-13 (-720) (-10 -8 (-15 -2615 ((-1254 |#4|) $)) (-15 -2072 (|#2| $)) (-15 -3065 ($ (-1254 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -3065 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-4165 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#3| (-1 |#4| |#2|) |#1|))) (-416 |#2|) (-171) (-416 |#4|) (-171)) (T -414))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5)))))
-(-10 -7 (-15 -4165 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2385 (((-3 $ "failed")) 86)) (-3625 (((-1254 (-682 |#2|)) (-1254 $)) NIL) (((-1254 (-682 |#2|))) 91)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) 85)) (-1763 (((-3 $ "failed")) 84)) (-3615 (((-682 |#2|) (-1254 $)) NIL) (((-682 |#2|)) 102)) (-4196 (((-682 |#2|) $ (-1254 $)) NIL) (((-682 |#2|) $) 110)) (-3146 (((-1162 (-945 |#2|))) 55)) (-2137 ((|#2| (-1254 $)) NIL) ((|#2|) 106)) (-3376 (($ (-1254 |#2|) (-1254 $)) NIL) (($ (-1254 |#2|)) 112)) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) 83)) (-2699 (((-3 $ "failed")) 75)) (-2960 (((-682 |#2|) (-1254 $)) NIL) (((-682 |#2|)) 100)) (-4208 (((-682 |#2|) $ (-1254 $)) NIL) (((-682 |#2|) $) 108)) (-4291 (((-1162 (-945 |#2|))) 54)) (-3659 ((|#2| (-1254 $)) NIL) ((|#2|) 104)) (-3752 (((-1254 |#2|) $ (-1254 $)) NIL) (((-682 |#2|) (-1254 $) (-1254 $)) NIL) (((-1254 |#2|) $) 111) (((-682 |#2|) (-1254 $)) 118)) (-4216 (((-1254 |#2|) $) 96) (($ (-1254 |#2|)) 98)) (-3311 (((-638 (-945 |#2|)) (-1254 $)) NIL) (((-638 (-945 |#2|))) 94)) (-1363 (($ (-682 |#2|) $) 90)))
-(((-415 |#1| |#2|) (-10 -8 (-15 -1363 (|#1| (-682 |#2|) |#1|)) (-15 -3146 ((-1162 (-945 |#2|)))) (-15 -4291 ((-1162 (-945 |#2|)))) (-15 -4196 ((-682 |#2|) |#1|)) (-15 -4208 ((-682 |#2|) |#1|)) (-15 -3615 ((-682 |#2|))) (-15 -2960 ((-682 |#2|))) (-15 -2137 (|#2|)) (-15 -3659 (|#2|)) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -3376 (|#1| (-1254 |#2|))) (-15 -3311 ((-638 (-945 |#2|)))) (-15 -3625 ((-1254 (-682 |#2|)))) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -2385 ((-3 |#1| "failed"))) (-15 -1763 ((-3 |#1| "failed"))) (-15 -2699 ((-3 |#1| "failed"))) (-15 -4108 ((-3 (-2 (|:| |particular| |#1|) (|:| -2615 (-638 |#1|))) "failed"))) (-15 -1364 ((-3 (-2 (|:| |particular| |#1|) (|:| -2615 (-638 |#1|))) "failed"))) (-15 -3615 ((-682 |#2|) (-1254 |#1|))) (-15 -2960 ((-682 |#2|) (-1254 |#1|))) (-15 -2137 (|#2| (-1254 |#1|))) (-15 -3659 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -4196 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -4208 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -3625 ((-1254 (-682 |#2|)) (-1254 |#1|))) (-15 -3311 ((-638 (-945 |#2|)) (-1254 |#1|)))) (-416 |#2|) (-171)) (T -415))
-((-3625 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1254 (-682 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3311 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-638 (-945 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3659 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2137 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2960 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3615 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-4291 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3146 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))))
-(-10 -8 (-15 -1363 (|#1| (-682 |#2|) |#1|)) (-15 -3146 ((-1162 (-945 |#2|)))) (-15 -4291 ((-1162 (-945 |#2|)))) (-15 -4196 ((-682 |#2|) |#1|)) (-15 -4208 ((-682 |#2|) |#1|)) (-15 -3615 ((-682 |#2|))) (-15 -2960 ((-682 |#2|))) (-15 -2137 (|#2|)) (-15 -3659 (|#2|)) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -3376 (|#1| (-1254 |#2|))) (-15 -3311 ((-638 (-945 |#2|)))) (-15 -3625 ((-1254 (-682 |#2|)))) (-15 -3752 ((-682 |#2|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1|)) (-15 -2385 ((-3 |#1| "failed"))) (-15 -1763 ((-3 |#1| "failed"))) (-15 -2699 ((-3 |#1| "failed"))) (-15 -4108 ((-3 (-2 (|:| |particular| |#1|) (|:| -2615 (-638 |#1|))) "failed"))) (-15 -1364 ((-3 (-2 (|:| |particular| |#1|) (|:| -2615 (-638 |#1|))) "failed"))) (-15 -3615 ((-682 |#2|) (-1254 |#1|))) (-15 -2960 ((-682 |#2|) (-1254 |#1|))) (-15 -2137 (|#2| (-1254 |#1|))) (-15 -3659 (|#2| (-1254 |#1|))) (-15 -3376 (|#1| (-1254 |#2|) (-1254 |#1|))) (-15 -3752 ((-682 |#2|) (-1254 |#1|) (-1254 |#1|))) (-15 -3752 ((-1254 |#2|) |#1| (-1254 |#1|))) (-15 -4196 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -4208 ((-682 |#2|) |#1| (-1254 |#1|))) (-15 -3625 ((-1254 (-682 |#2|)) (-1254 |#1|))) (-15 -3311 ((-638 (-945 |#2|)) (-1254 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2385 (((-3 $ "failed")) 37 (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) 19)) (-3625 (((-1254 (-682 |#1|)) (-1254 $)) 78) (((-1254 (-682 |#1|))) 100)) (-1426 (((-1254 $)) 81)) (-2674 (($) 17 T CONST)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) 40 (|has| |#1| (-553)))) (-1763 (((-3 $ "failed")) 38 (|has| |#1| (-553)))) (-3615 (((-682 |#1|) (-1254 $)) 65) (((-682 |#1|)) 92)) (-3230 ((|#1| $) 74)) (-4196 (((-682 |#1|) $ (-1254 $)) 76) (((-682 |#1|) $) 90)) (-3884 (((-3 $ "failed") $) 45 (|has| |#1| (-553)))) (-3146 (((-1162 (-945 |#1|))) 88 (|has| |#1| (-362)))) (-3187 (($ $ (-914)) 28)) (-3718 ((|#1| $) 72)) (-2477 (((-1162 |#1|) $) 42 (|has| |#1| (-553)))) (-2137 ((|#1| (-1254 $)) 67) ((|#1|) 94)) (-4292 (((-1162 |#1|) $) 63)) (-3172 (((-112)) 57)) (-3376 (($ (-1254 |#1|) (-1254 $)) 69) (($ (-1254 |#1|)) 98)) (-3735 (((-3 $ "failed") $) 47 (|has| |#1| (-553)))) (-3400 (((-914)) 80)) (-2949 (((-112)) 54)) (-3425 (($ $ (-914)) 33)) (-2203 (((-112)) 50)) (-3787 (((-112)) 48)) (-3591 (((-112)) 52)) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) 41 (|has| |#1| (-553)))) (-2699 (((-3 $ "failed")) 39 (|has| |#1| (-553)))) (-2960 (((-682 |#1|) (-1254 $)) 66) (((-682 |#1|)) 93)) (-1952 ((|#1| $) 75)) (-4208 (((-682 |#1|) $ (-1254 $)) 77) (((-682 |#1|) $) 91)) (-3408 (((-3 $ "failed") $) 46 (|has| |#1| (-553)))) (-4291 (((-1162 (-945 |#1|))) 89 (|has| |#1| (-362)))) (-2143 (($ $ (-914)) 29)) (-4178 ((|#1| $) 73)) (-3462 (((-1162 |#1|) $) 43 (|has| |#1| (-553)))) (-3659 ((|#1| (-1254 $)) 68) ((|#1|) 95)) (-4321 (((-1162 |#1|) $) 64)) (-4112 (((-112)) 58)) (-1883 (((-1148) $) 9)) (-2646 (((-112)) 49)) (-2227 (((-112)) 51)) (-1871 (((-112)) 53)) (-1701 (((-1110) $) 10)) (-1800 (((-112)) 56)) (-2315 ((|#1| $ (-561)) 101)) (-3752 (((-1254 |#1|) $ (-1254 $)) 71) (((-682 |#1|) (-1254 $) (-1254 $)) 70) (((-1254 |#1|) $) 103) (((-682 |#1|) (-1254 $)) 102)) (-4216 (((-1254 |#1|) $) 97) (($ (-1254 |#1|)) 96)) (-3311 (((-638 (-945 |#1|)) (-1254 $)) 79) (((-638 (-945 |#1|))) 99)) (-3047 (($ $ $) 25)) (-2619 (((-112)) 62)) (-4064 (((-856) $) 11)) (-2615 (((-1254 $)) 104)) (-2541 (((-638 (-1254 |#1|))) 44 (|has| |#1| (-553)))) (-2748 (($ $ $ $) 26)) (-3498 (((-112)) 60)) (-1363 (($ (-682 |#1|) $) 87)) (-2897 (($ $ $) 24)) (-1999 (((-112)) 61)) (-2136 (((-112)) 59)) (-3030 (((-112)) 55)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-416 |#1|) (-139) (-171)) (T -416))
-((-2615 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1254 *1)) (-4 *1 (-416 *3)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1254 *3)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-3625 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1254 (-682 *3))))) (-3311 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-638 (-945 *3))))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1254 *3)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-3659 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2137 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2960 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-3615 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-4291 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1162 (-945 *3))))) (-3146 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1162 (-945 *3))))) (-1363 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171)))))
-(-13 (-366 |t#1|) (-10 -8 (-15 -2615 ((-1254 $))) (-15 -3752 ((-1254 |t#1|) $)) (-15 -3752 ((-682 |t#1|) (-1254 $))) (-15 -2315 (|t#1| $ (-561))) (-15 -3625 ((-1254 (-682 |t#1|)))) (-15 -3311 ((-638 (-945 |t#1|)))) (-15 -3376 ($ (-1254 |t#1|))) (-15 -4216 ((-1254 |t#1|) $)) (-15 -4216 ($ (-1254 |t#1|))) (-15 -3659 (|t#1|)) (-15 -2137 (|t#1|)) (-15 -2960 ((-682 |t#1|))) (-15 -3615 ((-682 |t#1|))) (-15 -4208 ((-682 |t#1|) $)) (-15 -4196 ((-682 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -4291 ((-1162 (-945 |t#1|)))) (-15 -3146 ((-1162 (-945 |t#1|))))) |%noBranch|) (-15 -1363 ($ (-682 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-366 |#1|) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 44)) (-4124 (($ $) 59)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 147)) (-3012 (($ $) NIL)) (-3163 (((-112) $) 38)) (-2385 ((|#1| $) 13)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#1| (-1209)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-1209)))) (-1961 (($ |#1| (-561)) 34)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 117)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 57)) (-3735 (((-3 $ "failed") $) 132)) (-3063 (((-3 (-406 (-561)) "failed") $) 65 (|has| |#1| (-543)))) (-4079 (((-112) $) 61 (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) 72 (|has| |#1| (-543)))) (-4042 (($ |#1| (-561)) 36)) (-2725 (((-112) $) 153 (|has| |#1| (-1209)))) (-2252 (((-112) $) 45)) (-3195 (((-765) $) 40)) (-1372 (((-3 "nil" "sqfr" "irred" "prime") $ (-561)) 138)) (-3328 ((|#1| $ (-561)) 137)) (-4093 (((-561) $ (-561)) 136)) (-3874 (($ |#1| (-561)) 33)) (-4165 (($ (-1 |#1| |#1|) $) 144)) (-2829 (($ |#1| (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561))))) 60)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-3714 (($ |#1| (-561)) 35)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) 148 (|has| |#1| (-450)))) (-3049 (($ |#1| (-561) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-2762 (((-638 (-2 (|:| -1633 |#1|) (|:| -4181 (-561)))) $) 56)) (-2056 (((-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))) $) 12)) (-1633 (((-417 $) $) NIL (|has| |#1| (-1209)))) (-1748 (((-3 $ "failed") $ $) 139)) (-4181 (((-561) $) 133)) (-3582 ((|#1| $) 58)) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 87 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) $) NIL (|has| |#1| (-512 (-1166) $))) (($ $ (-638 (-1166)) (-638 $)) 88 (|has| |#1| (-512 (-1166) $))) (($ $ (-638 (-293 $))) 84 (|has| |#1| (-308 $))) (($ $ (-293 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-638 $) (-638 $)) NIL (|has| |#1| (-308 $)))) (-2315 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-3922 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-4216 (((-534) $) 30 (|has| |#1| (-609 (-534)))) (((-378) $) 94 (|has| |#1| (-1015))) (((-224) $) 97 (|has| |#1| (-1015)))) (-4064 (((-856) $) 115) (($ (-561)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561)))))) (-3746 (((-765)) 50)) (-3996 (((-112) $ $) NIL)) (-2246 (($) 42 T CONST)) (-2257 (($) 41 T CONST)) (-3154 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1723 (((-112) $ $) 98)) (-1819 (($ $) 129) (($ $ $) NIL)) (-1810 (($ $ $) 141)) (** (($ $ (-914)) NIL) (($ $ (-765)) 104)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL)))
-(((-417 |#1|) (-13 (-553) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3582 (|#1| $)) (-15 -4181 ((-561) $)) (-15 -2829 ($ |#1| (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))))) (-15 -2056 ((-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))) $)) (-15 -3874 ($ |#1| (-561))) (-15 -2762 ((-638 (-2 (|:| -1633 |#1|) (|:| -4181 (-561)))) $)) (-15 -3714 ($ |#1| (-561))) (-15 -4093 ((-561) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -1372 ((-3 "nil" "sqfr" "irred" "prime") $ (-561))) (-15 -3195 ((-765) $)) (-15 -4042 ($ |#1| (-561))) (-15 -1961 ($ |#1| (-561))) (-15 -3049 ($ |#1| (-561) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2385 (|#1| $)) (-15 -4124 ($ $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|))) (-553)) (T -417))
-((-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-553)) (-5 *1 (-417 *3)))) (-3582 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-2829 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-561))))) (-4 *2 (-553)) (-5 *1 (-417 *2)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-561))))) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-3874 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -1633 *3) (|:| -4181 (-561))))) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-3714 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-4093 (*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-1372 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *4)) (-4 *4 (-553)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-4042 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-1961 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-3049 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-561)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-2385 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-4124 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553)))) (-3063 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553)))))
-(-13 (-553) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3582 (|#1| $)) (-15 -4181 ((-561) $)) (-15 -2829 ($ |#1| (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))))) (-15 -2056 ((-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))) $)) (-15 -3874 ($ |#1| (-561))) (-15 -2762 ((-638 (-2 (|:| -1633 |#1|) (|:| -4181 (-561)))) $)) (-15 -3714 ($ |#1| (-561))) (-15 -4093 ((-561) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -1372 ((-3 "nil" "sqfr" "irred" "prime") $ (-561))) (-15 -3195 ((-765) $)) (-15 -4042 ($ |#1| (-561))) (-15 -1961 ($ |#1| (-561))) (-15 -3049 ($ |#1| (-561) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2385 (|#1| $)) (-15 -4124 ($ $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|)))
-((-2335 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 21)) (-4116 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 16)))
-(((-418 |#1|) (-10 -7 (-15 -2335 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4116 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-553)) (T -418))
-((-4116 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-553)) (-5 *1 (-418 *3)))) (-2335 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-553)) (-5 *2 (-417 *4)) (-5 *1 (-418 *4)))))
-(-10 -7 (-15 -2335 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4116 ((-417 |#1|) (-417 |#1|) (-417 |#1|))))
-((-3037 ((|#2| |#2|) 165)) (-1328 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112)) 57)))
-(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1328 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -3037 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|)) (-1166) |#2|) (T -419))
-((-3037 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-429 *3))) (-14 *4 (-1166)) (-14 *5 *2))) (-1328 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-14 *6 (-1166)) (-14 *7 *3))))
-(-10 -7 (-15 -1328 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -3037 (|#2| |#2|)))
-((-4165 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1042) (-844)) (-429 |#1|) (-13 (-1042) (-844)) (-429 |#3|)) (T -420))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1042) (-844))) (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-429 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5)))))
-(-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3037 ((|#2| |#2|) 89)) (-3482 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 48)) (-3788 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 153)))
-(((-421 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3482 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -3788 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -3037 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|) (-10 -8 (-15 -4064 ($ |#3|)))) (-842) (-13 (-1232 |#2| |#3|) (-362) (-1190) (-10 -8 (-15 -3922 ($ $)) (-15 -2563 ($ $)))) (-976 |#4|) (-1166)) (T -421))
-((-3037 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *2 (-13 (-27) (-1190) (-429 *3) (-10 -8 (-15 -4064 ($ *4))))) (-4 *4 (-842)) (-4 *5 (-13 (-1232 *2 *4) (-362) (-1190) (-10 -8 (-15 -3922 ($ $)) (-15 -2563 ($ $))))) (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4064 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1232 *3 *7) (-362) (-1190) (-10 -8 (-15 -3922 ($ $)) (-15 -2563 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166)))) (-3482 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4064 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1232 *3 *7) (-362) (-1190) (-10 -8 (-15 -3922 ($ $)) (-15 -2563 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166)))))
-(-10 -7 (-15 -3482 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -3788 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -3037 (|#2| |#2|)))
-((-3522 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3176 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4165 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3176 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3522 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1090) (-424 |#1|) (-1090) (-424 |#3|)) (T -422))
-((-3522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1090)) (-4 *5 (-1090)) (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) (-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1090)) (-4 *2 (-1090)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5)))))
-(-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3176 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3522 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2750 (($) 44)) (-2468 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2327 (($ $ $) 39)) (-3856 (((-112) $ $) 28)) (-1386 (((-765)) 47)) (-1605 (($ (-638 |#2|)) 20) (($) NIL)) (-1362 (($) 53)) (-3713 (((-112) $ $) 13)) (-1597 ((|#2| $) 61)) (-3017 ((|#2| $) 59)) (-1335 (((-914) $) 55)) (-1338 (($ $ $) 35)) (-2442 (($ (-914)) 50)) (-1533 (($ $ |#2|) NIL) (($ $ $) 38)) (-1714 (((-765) (-1 (-112) |#2|) $) NIL) (((-765) |#2| $) 26)) (-4078 (($ (-638 |#2|)) 24)) (-4211 (($ $) 46)) (-4064 (((-856) $) 33)) (-2065 (((-765) $) 21)) (-1697 (($ (-638 |#2|)) 19) (($) NIL)) (-1723 (((-112) $ $) 16)))
-(((-423 |#1| |#2|) (-10 -8 (-15 -1386 ((-765))) (-15 -2442 (|#1| (-914))) (-15 -1335 ((-914) |#1|)) (-15 -1362 (|#1|)) (-15 -1597 (|#2| |#1|)) (-15 -3017 (|#2| |#1|)) (-15 -2750 (|#1|)) (-15 -4211 (|#1| |#1|)) (-15 -2065 ((-765) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -3713 ((-112) |#1| |#1|)) (-15 -1697 (|#1|)) (-15 -1697 (|#1| (-638 |#2|))) (-15 -1605 (|#1|)) (-15 -1605 (|#1| (-638 |#2|))) (-15 -1338 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#2|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -3856 ((-112) |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1| |#2|)) (-15 -2468 (|#1| |#2| |#1|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -1714 ((-765) |#2| |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|))) (-424 |#2|) (-1090)) (T -423))
-((-1386 (*1 *2) (-12 (-4 *4 (-1090)) (-5 *2 (-765)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))))
-(-10 -8 (-15 -1386 ((-765))) (-15 -2442 (|#1| (-914))) (-15 -1335 ((-914) |#1|)) (-15 -1362 (|#1|)) (-15 -1597 (|#2| |#1|)) (-15 -3017 (|#2| |#1|)) (-15 -2750 (|#1|)) (-15 -4211 (|#1| |#1|)) (-15 -2065 ((-765) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -3713 ((-112) |#1| |#1|)) (-15 -1697 (|#1|)) (-15 -1697 (|#1| (-638 |#2|))) (-15 -1605 (|#1|)) (-15 -1605 (|#1| (-638 |#2|))) (-15 -1338 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#2|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -3856 ((-112) |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1| |#2|)) (-15 -2468 (|#1| |#2| |#1|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -1714 ((-765) |#2| |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)))
-((-4053 (((-112) $ $) 19)) (-2750 (($) 67 (|has| |#1| (-367)))) (-2468 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2327 (($ $ $) 78)) (-3856 (((-112) $ $) 79)) (-2684 (((-112) $ (-765)) 8)) (-1386 (((-765)) 61 (|has| |#1| (-367)))) (-1605 (($ (-638 |#1|)) 74) (($) 73)) (-1954 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-1461 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ |#1| $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4399)))) (-1362 (($) 64 (|has| |#1| (-367)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3713 (((-112) $ $) 70)) (-3116 (((-112) $ (-765)) 9)) (-1597 ((|#1| $) 65 (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3017 ((|#1| $) 66 (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-1335 (((-914) $) 63 (|has| |#1| (-367)))) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22)) (-1338 (($ $ $) 75)) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40)) (-2442 (($ (-914)) 62 (|has| |#1| (-367)))) (-1701 (((-1110) $) 21)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-1533 (($ $ |#1|) 77) (($ $ $) 76)) (-3643 (($) 49) (($ (-638 |#1|)) 48)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 50)) (-4211 (($ $) 68 (|has| |#1| (-367)))) (-4064 (((-856) $) 18)) (-2065 (((-765) $) 69)) (-1697 (($ (-638 |#1|)) 72) (($) 71)) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20)) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-424 |#1|) (-139) (-1090)) (T -424))
-((-2065 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1090)) (-5 *2 (-765)))) (-4211 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-367)))) (-2750 (*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1090)))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844)))))
-(-13 (-228 |t#1|) (-1088 |t#1|) (-10 -8 (-6 -4399) (-15 -2065 ((-765) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -4211 ($ $)) (-15 -2750 ($))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -3017 (|t#1| $)) (-15 -1597 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-367) |has| |#1| (-367)) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1088 |#1|) . T) ((-1090) . T) ((-1205) . T))
-((-3840 (((-582 |#2|) |#2| (-1166)) 35)) (-2679 (((-582 |#2|) |#2| (-1166)) 20)) (-2314 ((|#2| |#2| (-1166)) 25)))
-(((-425 |#1| |#2|) (-10 -7 (-15 -2679 ((-582 |#2|) |#2| (-1166))) (-15 -3840 ((-582 |#2|) |#2| (-1166))) (-15 -2314 (|#2| |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-29 |#1|))) (T -425))
-((-2314 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4))))) (-3840 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))) (-2679 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))))
-(-10 -7 (-15 -2679 ((-582 |#2|) |#2| (-1166))) (-15 -3840 ((-582 |#2|) |#2| (-1166))) (-15 -2314 (|#2| |#2| (-1166))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-3795 (($ |#2| |#1|) 35)) (-3259 (($ |#2| |#1|) 33)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-3746 (((-765)) NIL)) (-2246 (($) 10 T CONST)) (-2257 (($) 16 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 34)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-426 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4386)) (IF (|has| |#1| (-6 -4386)) (-6 -4386) |%noBranch|) |%noBranch|) (-15 -4064 ($ |#1|)) (-15 -4064 ($ (-330 |#2|))) (-15 -3795 ($ |#2| |#1|)) (-15 -3259 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-561)))) (-13 (-844) (-21))) (T -426))
-((-4064 (*1 *1 *2) (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-561))))) (-4 *3 (-13 (-844) (-21))))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21))) (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-561))))))) (-3795 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561))))) (-4 *2 (-13 (-844) (-21))))) (-3259 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561))))) (-4 *2 (-13 (-844) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4386)) (IF (|has| |#1| (-6 -4386)) (-6 -4386) |%noBranch|) |%noBranch|) (-15 -4064 ($ |#1|)) (-15 -4064 ($ (-330 |#2|))) (-15 -3795 ($ |#2| |#1|)) (-15 -3259 ($ |#2| |#1|))))
-((-2563 (((-3 |#2| (-638 |#2|)) |#2| (-1166)) 108)))
-(((-427 |#1| |#2|) (-10 -7 (-15 -2563 ((-3 |#2| (-638 |#2|)) |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-29 |#1|))) (T -427))
-((-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 *3 (-638 *3))) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-952) (-29 *5))))))
-(-10 -7 (-15 -2563 ((-3 |#2| (-638 |#2|)) |#2| (-1166))))
-((-1405 (((-638 (-1166)) $) 72)) (-1596 (((-406 (-1162 $)) $ (-607 $)) 273)) (-1339 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) 237)) (-4061 (((-3 (-607 $) "failed") $) NIL) (((-3 (-1166) "failed") $) 75) (((-3 (-561) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-406 (-945 |#2|)) "failed") $) 324) (((-3 (-945 |#2|) "failed") $) 235) (((-3 (-406 (-561)) "failed") $) NIL)) (-3979 (((-607 $) $) NIL) (((-1166) $) 30) (((-561) $) NIL) ((|#2| $) 231) (((-406 (-945 |#2|)) $) 305) (((-945 |#2|) $) 232) (((-406 (-561)) $) NIL)) (-1773 (((-114) (-114)) 47)) (-3307 (($ $) 87)) (-2373 (((-3 (-607 $) "failed") $) 228)) (-1583 (((-638 (-607 $)) $) 229)) (-4174 (((-3 (-638 $) "failed") $) 247)) (-1703 (((-3 (-2 (|:| |val| $) (|:| -4181 (-561))) "failed") $) 254)) (-2540 (((-3 (-638 $) "failed") $) 245)) (-3912 (((-3 (-2 (|:| -4226 (-561)) (|:| |var| (-607 $))) "failed") $) 264)) (-3276 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $) 251) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-1166)) 219)) (-1530 (((-112) $) 19)) (-1542 ((|#2| $) 21)) (-1436 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) 236) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 96) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1166)) 57) (($ $ (-638 (-1166))) 240) (($ $) 241) (($ $ (-114) $ (-1166)) 60) (($ $ (-638 (-114)) (-638 $) (-1166)) 67) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) 107) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) 242) (($ $ (-1166) (-765) (-1 $ (-638 $))) 94) (($ $ (-1166) (-765) (-1 $ $)) 93)) (-2315 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) 106)) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) 238)) (-1969 (($ $) 284)) (-4216 (((-885 (-561)) $) 257) (((-885 (-378)) $) 261) (($ (-417 $)) 320) (((-534) $) NIL)) (-4064 (((-856) $) 239) (($ (-607 $)) 84) (($ (-1166)) 26) (($ |#2|) NIL) (($ (-1115 |#2| (-607 $))) NIL) (($ (-406 |#2|)) 289) (($ (-945 (-406 |#2|))) 329) (($ (-406 (-945 (-406 |#2|)))) 301) (($ (-406 (-945 |#2|))) 295) (($ $) NIL) (($ (-945 |#2|)) 185) (($ (-406 (-561))) 334) (($ (-561)) NIL)) (-3746 (((-765)) 79)) (-3333 (((-112) (-114)) 41)) (-3150 (($ (-1166) $) 33) (($ (-1166) $ $) 34) (($ (-1166) $ $ $) 35) (($ (-1166) $ $ $ $) 36) (($ (-1166) (-638 $)) 39)) (* (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
-(((-428 |#1| |#2|) (-10 -8 (-15 * (|#1| (-914) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4064 (|#1| (-561))) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4064 (|#1| (-945 |#2|))) (-15 -4061 ((-3 (-945 |#2|) "failed") |#1|)) (-15 -3979 ((-945 |#2|) |#1|)) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4064 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4064 (|#1| (-406 (-945 |#2|)))) (-15 -4061 ((-3 (-406 (-945 |#2|)) "failed") |#1|)) (-15 -3979 ((-406 (-945 |#2|)) |#1|)) (-15 -1596 ((-406 (-1162 |#1|)) |#1| (-607 |#1|))) (-15 -4064 (|#1| (-406 (-945 (-406 |#2|))))) (-15 -4064 (|#1| (-945 (-406 |#2|)))) (-15 -4064 (|#1| (-406 |#2|))) (-15 -1969 (|#1| |#1|)) (-15 -4216 (|#1| (-417 |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-765) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| |#1|)))) (-15 -1703 ((-3 (-2 (|:| |val| |#1|) (|:| -4181 (-561))) "failed") |#1|)) (-15 -3276 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4181 (-561))) "failed") |#1| (-1166))) (-15 -3276 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4181 (-561))) "failed") |#1| (-114))) (-15 -3307 (|#1| |#1|)) (-15 -4064 (|#1| (-1115 |#2| (-607 |#1|)))) (-15 -3912 ((-3 (-2 (|:| -4226 (-561)) (|:| |var| (-607 |#1|))) "failed") |#1|)) (-15 -2540 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -3276 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4181 (-561))) "failed") |#1|)) (-15 -4174 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 |#1|) (-1166))) (-15 -1436 (|#1| |#1| (-114) |#1| (-1166))) (-15 -1436 (|#1| |#1|)) (-15 -1436 (|#1| |#1| (-638 (-1166)))) (-15 -1436 (|#1| |#1| (-1166))) (-15 -3150 (|#1| (-1166) (-638 |#1|))) (-15 -3150 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -3150 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -3150 (|#1| (-1166) |#1| |#1|)) (-15 -3150 (|#1| (-1166) |#1|)) (-15 -1405 ((-638 (-1166)) |#1|)) (-15 -1542 (|#2| |#1|)) (-15 -1530 ((-112) |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4064 (|#1| (-1166))) (-15 -4061 ((-3 (-1166) "failed") |#1|)) (-15 -3979 ((-1166) |#1|)) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -1583 ((-638 (-607 |#1|)) |#1|)) (-15 -2373 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1339 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1339 (|#1| |#1| (-293 |#1|))) (-15 -2315 (|#1| (-114) (-638 |#1|))) (-15 -2315 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1436 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4064 (|#1| (-607 |#1|))) (-15 -4061 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3979 ((-607 |#1|) |#1|)) (-15 -4064 ((-856) |#1|))) (-429 |#2|) (-844)) (T -428))
-((-1773 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-844)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) (-3746 (*1 *2) (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))))
-(-10 -8 (-15 * (|#1| (-914) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4064 (|#1| (-561))) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4064 (|#1| (-945 |#2|))) (-15 -4061 ((-3 (-945 |#2|) "failed") |#1|)) (-15 -3979 ((-945 |#2|) |#1|)) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4064 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4064 (|#1| (-406 (-945 |#2|)))) (-15 -4061 ((-3 (-406 (-945 |#2|)) "failed") |#1|)) (-15 -3979 ((-406 (-945 |#2|)) |#1|)) (-15 -1596 ((-406 (-1162 |#1|)) |#1| (-607 |#1|))) (-15 -4064 (|#1| (-406 (-945 (-406 |#2|))))) (-15 -4064 (|#1| (-945 (-406 |#2|)))) (-15 -4064 (|#1| (-406 |#2|))) (-15 -1969 (|#1| |#1|)) (-15 -4216 (|#1| (-417 |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-765) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| |#1|)))) (-15 -1703 ((-3 (-2 (|:| |val| |#1|) (|:| -4181 (-561))) "failed") |#1|)) (-15 -3276 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4181 (-561))) "failed") |#1| (-1166))) (-15 -3276 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4181 (-561))) "failed") |#1| (-114))) (-15 -3307 (|#1| |#1|)) (-15 -4064 (|#1| (-1115 |#2| (-607 |#1|)))) (-15 -3912 ((-3 (-2 (|:| -4226 (-561)) (|:| |var| (-607 |#1|))) "failed") |#1|)) (-15 -2540 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -3276 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4181 (-561))) "failed") |#1|)) (-15 -4174 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 |#1|) (-1166))) (-15 -1436 (|#1| |#1| (-114) |#1| (-1166))) (-15 -1436 (|#1| |#1|)) (-15 -1436 (|#1| |#1| (-638 (-1166)))) (-15 -1436 (|#1| |#1| (-1166))) (-15 -3150 (|#1| (-1166) (-638 |#1|))) (-15 -3150 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -3150 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -3150 (|#1| (-1166) |#1| |#1|)) (-15 -3150 (|#1| (-1166) |#1|)) (-15 -1405 ((-638 (-1166)) |#1|)) (-15 -1542 (|#2| |#1|)) (-15 -1530 ((-112) |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4064 (|#1| (-1166))) (-15 -4061 ((-3 (-1166) "failed") |#1|)) (-15 -3979 ((-1166) |#1|)) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1436 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1436 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -1583 ((-638 (-607 |#1|)) |#1|)) (-15 -2373 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1339 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1339 (|#1| |#1| (-293 |#1|))) (-15 -2315 (|#1| (-114) (-638 |#1|))) (-15 -2315 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1| |#1|)) (-15 -2315 (|#1| (-114) |#1|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1436 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1436 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4064 (|#1| (-607 |#1|))) (-15 -4061 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3979 ((-607 |#1|) |#1|)) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 114 (|has| |#1| (-25)))) (-1405 (((-638 (-1166)) $) 201)) (-1596 (((-406 (-1162 $)) $ (-607 $)) 169 (|has| |#1| (-553)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 141 (|has| |#1| (-553)))) (-3012 (($ $) 142 (|has| |#1| (-553)))) (-3163 (((-112) $) 144 (|has| |#1| (-553)))) (-1495 (((-638 (-607 $)) $) 44)) (-2979 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-1339 (($ $ (-293 $)) 56) (($ $ (-638 (-293 $))) 55) (($ $ (-638 (-607 $)) (-638 $)) 54)) (-2557 (($ $) 161 (|has| |#1| (-553)))) (-3552 (((-417 $) $) 162 (|has| |#1| (-553)))) (-3698 (((-112) $ $) 152 (|has| |#1| (-553)))) (-2674 (($) 102 (-4050 (|has| |#1| (-1102)) (|has| |#1| (-25))) CONST)) (-4061 (((-3 (-607 $) "failed") $) 69) (((-3 (-1166) "failed") $) 214) (((-3 (-561) "failed") $) 208 (|has| |#1| (-1031 (-561)))) (((-3 |#1| "failed") $) 205) (((-3 (-406 (-945 |#1|)) "failed") $) 167 (|has| |#1| (-553))) (((-3 (-945 |#1|) "failed") $) 121 (|has| |#1| (-1042))) (((-3 (-406 (-561)) "failed") $) 96 (-4050 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-3979 (((-607 $) $) 70) (((-1166) $) 215) (((-561) $) 207 (|has| |#1| (-1031 (-561)))) ((|#1| $) 206) (((-406 (-945 |#1|)) $) 168 (|has| |#1| (-553))) (((-945 |#1|) $) 122 (|has| |#1| (-1042))) (((-406 (-561)) $) 97 (-4050 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-1792 (($ $ $) 156 (|has| |#1| (-553)))) (-3720 (((-682 (-561)) (-682 $)) 135 (-2198 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 134 (-2198 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 133 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 132 (|has| |#1| (-1042)))) (-3735 (((-3 $ "failed") $) 104 (|has| |#1| (-1102)))) (-1771 (($ $ $) 155 (|has| |#1| (-553)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 150 (|has| |#1| (-553)))) (-2725 (((-112) $) 163 (|has| |#1| (-553)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 210 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 209 (|has| |#1| (-879 (-378))))) (-1719 (($ $) 51) (($ (-638 $)) 50)) (-2123 (((-638 (-114)) $) 43)) (-1773 (((-114) (-114)) 42)) (-2252 (((-112) $) 103 (|has| |#1| (-1102)))) (-2110 (((-112) $) 22 (|has| $ (-1031 (-561))))) (-3307 (($ $) 184 (|has| |#1| (-1042)))) (-4077 (((-1115 |#1| (-607 $)) $) 185 (|has| |#1| (-1042)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 159 (|has| |#1| (-553)))) (-1578 (((-1162 $) (-607 $)) 25 (|has| $ (-1042)))) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-4165 (($ (-1 $ $) (-607 $)) 36)) (-2373 (((-3 (-607 $) "failed") $) 46)) (-1563 (($ (-638 $)) 148 (|has| |#1| (-553))) (($ $ $) 147 (|has| |#1| (-553)))) (-1883 (((-1148) $) 9)) (-1583 (((-638 (-607 $)) $) 45)) (-4154 (($ (-114) $) 38) (($ (-114) (-638 $)) 37)) (-4174 (((-3 (-638 $) "failed") $) 190 (|has| |#1| (-1102)))) (-1703 (((-3 (-2 (|:| |val| $) (|:| -4181 (-561))) "failed") $) 181 (|has| |#1| (-1042)))) (-2540 (((-3 (-638 $) "failed") $) 188 (|has| |#1| (-25)))) (-3912 (((-3 (-2 (|:| -4226 (-561)) (|:| |var| (-607 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3276 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $) 189 (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-114)) 183 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-1166)) 182 (|has| |#1| (-1042)))) (-4188 (((-112) $ (-114)) 40) (((-112) $ (-1166)) 39)) (-1519 (($ $) 106 (-4050 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-3093 (((-765) $) 47)) (-1701 (((-1110) $) 10)) (-1530 (((-112) $) 203)) (-1542 ((|#1| $) 202)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 149 (|has| |#1| (-553)))) (-1603 (($ (-638 $)) 146 (|has| |#1| (-553))) (($ $ $) 145 (|has| |#1| (-553)))) (-1342 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-1633 (((-417 $) $) 160 (|has| |#1| (-553)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-553))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 157 (|has| |#1| (-553)))) (-1748 (((-3 $ "failed") $ $) 140 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 151 (|has| |#1| (-553)))) (-2058 (((-112) $) 23 (|has| $ (-1031 (-561))))) (-1436 (($ $ (-607 $) $) 67) (($ $ (-638 (-607 $)) (-638 $)) 66) (($ $ (-638 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-638 $) (-638 $)) 62) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 33) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 32) (($ $ (-1166) (-1 $ (-638 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-638 (-114)) (-638 (-1 $ $))) 29) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 28) (($ $ (-114) (-1 $ (-638 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1166)) 195 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166))) 194 (|has| |#1| (-609 (-534)))) (($ $) 193 (|has| |#1| (-609 (-534)))) (($ $ (-114) $ (-1166)) 192 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-114)) (-638 $) (-1166)) 191 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) 180 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) 179 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-638 $))) 178 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) 177 (|has| |#1| (-1042)))) (-1905 (((-765) $) 153 (|has| |#1| (-553)))) (-2315 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-638 $)) 57)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 154 (|has| |#1| (-553)))) (-4348 (($ $) 49) (($ $ $) 48)) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) 126 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 125 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 124 (|has| |#1| (-1042))) (($ $ (-1166)) 123 (|has| |#1| (-1042)))) (-1969 (($ $) 174 (|has| |#1| (-553)))) (-4088 (((-1115 |#1| (-607 $)) $) 175 (|has| |#1| (-553)))) (-3158 (($ $) 24 (|has| $ (-1042)))) (-4216 (((-885 (-561)) $) 212 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 211 (|has| |#1| (-609 (-885 (-378))))) (($ (-417 $)) 176 (|has| |#1| (-553))) (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-2076 (($ $ $) 109 (|has| |#1| (-471)))) (-3047 (($ $ $) 110 (|has| |#1| (-471)))) (-4064 (((-856) $) 11) (($ (-607 $)) 68) (($ (-1166)) 213) (($ |#1|) 204) (($ (-1115 |#1| (-607 $))) 186 (|has| |#1| (-1042))) (($ (-406 |#1|)) 172 (|has| |#1| (-553))) (($ (-945 (-406 |#1|))) 171 (|has| |#1| (-553))) (($ (-406 (-945 (-406 |#1|)))) 170 (|has| |#1| (-553))) (($ (-406 (-945 |#1|))) 166 (|has| |#1| (-553))) (($ $) 139 (|has| |#1| (-553))) (($ (-945 |#1|)) 120 (|has| |#1| (-1042))) (($ (-406 (-561))) 95 (-4050 (|has| |#1| (-553)) (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561)))))) (($ (-561)) 94 (-4050 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-561)))))) (-3666 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-3746 (((-765)) 131 (|has| |#1| (-1042)))) (-3402 (($ $) 53) (($ (-638 $)) 52)) (-3333 (((-112) (-114)) 41)) (-3996 (((-112) $ $) 143 (|has| |#1| (-553)))) (-3150 (($ (-1166) $) 200) (($ (-1166) $ $) 199) (($ (-1166) $ $ $) 198) (($ (-1166) $ $ $ $) 197) (($ (-1166) (-638 $)) 196)) (-2246 (($) 113 (|has| |#1| (-25)) CONST)) (-2257 (($) 101 (|has| |#1| (-1102)) CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) 130 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 129 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 128 (|has| |#1| (-1042))) (($ $ (-1166)) 127 (|has| |#1| (-1042)))) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1828 (($ (-1115 |#1| (-607 $)) (-1115 |#1| (-607 $))) 173 (|has| |#1| (-553))) (($ $ $) 107 (-4050 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-1819 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1810 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-561)) 108 (-4050 (|has| |#1| (-471)) (|has| |#1| (-553)))) (($ $ (-765)) 105 (|has| |#1| (-1102))) (($ $ (-914)) 100 (|has| |#1| (-1102)))) (* (($ (-406 (-561)) $) 165 (|has| |#1| (-553))) (($ $ (-406 (-561))) 164 (|has| |#1| (-553))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-561) $) 119 (|has| |#1| (-21))) (($ (-765) $) 115 (|has| |#1| (-25))) (($ (-914) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1102)))))
-(((-429 |#1|) (-139) (-844)) (T -429))
-((-1530 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-112)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-638 (-1166))))) (-3150 (*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3150 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3150 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3150 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3150 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 *1)) (-4 *1 (-429 *4)) (-4 *4 (-844)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-534))))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1166))) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-534))))) (-1436 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-534))))) (-1436 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1166)) (-4 *1 (-429 *4)) (-4 *4 (-844)) (-4 *4 (-609 (-534))))) (-1436 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 *1)) (-5 *4 (-1166)) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-534))))) (-4174 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-429 *3)))) (-3276 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4181 (-561)))) (-4 *1 (-429 *3)))) (-2540 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-429 *3)))) (-3912 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4226 (-561)) (|:| |var| (-607 *1)))) (-4 *1 (-429 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-1042)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4077 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1))) (-4 *1 (-429 *3)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-1042)))) (-3276 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4181 (-561)))) (-4 *1 (-429 *4)))) (-3276 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4181 (-561)))) (-4 *1 (-429 *4)))) (-1703 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |val| *1) (|:| -4181 (-561)))) (-4 *1 (-429 *3)))) (-1436 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765))) (-5 *4 (-638 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-1436 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765))) (-5 *4 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-1436 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-638 *1))) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-1436 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1)) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-553)) (-4 *3 (-844)))) (-4088 (*1 *2 *1) (-12 (-4 *3 (-553)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1))) (-4 *1 (-429 *3)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-553)))) (-1828 (*1 *1 *2 *2) (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-945 (-406 *3))) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-406 *3)))) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-1596 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-429 *4)) (-4 *4 (-844)) (-4 *4 (-553)) (-5 *2 (-406 (-1162 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-1102)))))
-(-13 (-301) (-1031 (-1166)) (-877 |t#1|) (-399 |t#1|) (-410 |t#1|) (-10 -8 (-15 -1530 ((-112) $)) (-15 -1542 (|t#1| $)) (-15 -1405 ((-638 (-1166)) $)) (-15 -3150 ($ (-1166) $)) (-15 -3150 ($ (-1166) $ $)) (-15 -3150 ($ (-1166) $ $ $)) (-15 -3150 ($ (-1166) $ $ $ $)) (-15 -3150 ($ (-1166) (-638 $))) (IF (|has| |t#1| (-609 (-534))) (PROGN (-6 (-609 (-534))) (-15 -1436 ($ $ (-1166))) (-15 -1436 ($ $ (-638 (-1166)))) (-15 -1436 ($ $)) (-15 -1436 ($ $ (-114) $ (-1166))) (-15 -1436 ($ $ (-638 (-114)) (-638 $) (-1166)))) |%noBranch|) (IF (|has| |t#1| (-1102)) (PROGN (-6 (-720)) (-15 ** ($ $ (-765))) (-15 -4174 ((-3 (-638 $) "failed") $)) (-15 -3276 ((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-471)) (-6 (-471)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2540 ((-3 (-638 $) "failed") $)) (-15 -3912 ((-3 (-2 (|:| -4226 (-561)) (|:| |var| (-607 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-1031 (-945 |t#1|))) (-6 (-893 (-1166))) (-6 (-376 |t#1|)) (-15 -4064 ($ (-1115 |t#1| (-607 $)))) (-15 -4077 ((-1115 |t#1| (-607 $)) $)) (-15 -3307 ($ $)) (-15 -3276 ((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-114))) (-15 -3276 ((-3 (-2 (|:| |var| (-607 $)) (|:| -4181 (-561))) "failed") $ (-1166))) (-15 -1703 ((-3 (-2 (|:| |val| $) (|:| -4181 (-561))) "failed") $)) (-15 -1436 ($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $)))) (-15 -1436 ($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $))))) (-15 -1436 ($ $ (-1166) (-765) (-1 $ (-638 $)))) (-15 -1436 ($ $ (-1166) (-765) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-6 (-362)) (-6 (-1031 (-406 (-945 |t#1|)))) (-15 -4216 ($ (-417 $))) (-15 -4088 ((-1115 |t#1| (-607 $)) $)) (-15 -1969 ($ $)) (-15 -1828 ($ (-1115 |t#1| (-607 $)) (-1115 |t#1| (-607 $)))) (-15 -4064 ($ (-406 |t#1|))) (-15 -4064 ($ (-945 (-406 |t#1|)))) (-15 -4064 ($ (-406 (-945 (-406 |t#1|))))) (-15 -1596 ((-406 (-1162 $)) $ (-607 $))) (IF (|has| |t#1| (-1031 (-561))) (-6 (-1031 (-406 (-561)))) |%noBranch|)) |%noBranch|)))
-(((-21) -4050 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -4050 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4050 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-406 (-561))) |has| |#1| (-553)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-553)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-553)) ((-130) -4050 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-553))) ((-611 #1=(-406 (-945 |#1|))) |has| |#1| (-553)) ((-611 (-561)) -4050 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-561))) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-611 #2=(-607 $)) . T) ((-611 #3=(-945 |#1|)) |has| |#1| (-1042)) ((-611 #4=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) |has| |#1| (-553)) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-242) |has| |#1| (-553)) ((-289) |has| |#1| (-553)) ((-306) |has| |#1| (-553)) ((-308 $) . T) ((-301) . T) ((-362) |has| |#1| (-553)) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) |has| |#1| (-553)) ((-471) |has| |#1| (-471)) ((-512 (-607 $) $) . T) ((-512 $ $) . T) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-553)) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) -4050 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-634 (-561)) -12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #0#) |has| |#1| (-553)) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) -4050 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-913) |has| |#1| (-553)) ((-1031 (-406 (-561))) -4050 (|has| |#1| (-1031 (-406 (-561)))) (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) ((-1031 #1#) |has| |#1| (-553)) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #2#) . T) ((-1031 #3#) |has| |#1| (-1042)) ((-1031 #4#) . T) ((-1031 |#1|) . T) ((-1048 #0#) |has| |#1| (-553)) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) |has| |#1| (-553)) ((-1042) -4050 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1049) -4050 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1102) -4050 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1090) . T) ((-1205) . T) ((-1209) |has| |#1| (-553)))
-((-3101 ((|#2| |#2| |#2|) 33)) (-1773 (((-114) (-114)) 44)) (-3352 ((|#2| |#2|) 66)) (-2991 ((|#2| |#2|) 69)) (-3502 ((|#2| |#2|) 32)) (-1824 ((|#2| |#2| |#2|) 35)) (-2025 ((|#2| |#2| |#2|) 37)) (-1822 ((|#2| |#2| |#2|) 34)) (-1891 ((|#2| |#2| |#2|) 36)) (-3333 (((-112) (-114)) 42)) (-3710 ((|#2| |#2|) 39)) (-2934 ((|#2| |#2|) 38)) (-2165 ((|#2| |#2|) 27)) (-4128 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1550 ((|#2| |#2| |#2|) 31)))
-(((-430 |#1| |#2|) (-10 -7 (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -2165 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4128 (|#2| |#2| |#2|)) (-15 -1550 (|#2| |#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3101 (|#2| |#2| |#2|)) (-15 -1822 (|#2| |#2| |#2|)) (-15 -1824 (|#2| |#2| |#2|)) (-15 -1891 (|#2| |#2| |#2|)) (-15 -2025 (|#2| |#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -3352 (|#2| |#2|))) (-13 (-844) (-553)) (-429 |#1|)) (T -430))
-((-3352 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2025 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1891 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1824 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1822 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3101 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1550 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-4128 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2165 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *4)) (-4 *4 (-429 *3)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4)))))
-(-10 -7 (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -2165 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4128 (|#2| |#2| |#2|)) (-15 -1550 (|#2| |#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3101 (|#2| |#2| |#2|)) (-15 -1822 (|#2| |#2| |#2|)) (-15 -1824 (|#2| |#2| |#2|)) (-15 -1891 (|#2| |#2| |#2|)) (-15 -2025 (|#2| |#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -3352 (|#2| |#2|)))
-((-3985 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1162 |#2|)) (|:| |pol2| (-1162 |#2|)) (|:| |prim| (-1162 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-638 (-1162 |#2|))) (|:| |prim| (-1162 |#2|))) (-638 |#2|)) 61)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -3985 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-638 (-1162 |#2|))) (|:| |prim| (-1162 |#2|))) (-638 |#2|))) (IF (|has| |#2| (-27)) (-15 -3985 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1162 |#2|)) (|:| |pol2| (-1162 |#2|)) (|:| |prim| (-1162 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-553) (-844) (-146)) (-429 |#1|)) (T -431))
-((-3985 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-553) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1162 *3)) (|:| |pol2| (-1162 *3)) (|:| |prim| (-1162 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-553) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-638 (-1162 *5))) (|:| |prim| (-1162 *5)))) (-5 *1 (-431 *4 *5)))))
-(-10 -7 (-15 -3985 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-638 (-1162 |#2|))) (|:| |prim| (-1162 |#2|))) (-638 |#2|))) (IF (|has| |#2| (-27)) (-15 -3985 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1162 |#2|)) (|:| |pol2| (-1162 |#2|)) (|:| |prim| (-1162 |#2|))) |#2| |#2|)) |%noBranch|))
-((-4263 (((-1259)) 19)) (-2239 (((-1162 (-406 (-561))) |#2| (-607 |#2|)) 41) (((-406 (-561)) |#2|) 25)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -2239 ((-406 (-561)) |#2|)) (-15 -2239 ((-1162 (-406 (-561))) |#2| (-607 |#2|))) (-15 -4263 ((-1259)))) (-13 (-844) (-553) (-1031 (-561))) (-429 |#1|)) (T -432))
-((-4263 (*1 *2) (-12 (-4 *3 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-1259)) (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-429 *5)) (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-432 *5 *3)))) (-2239 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-406 (-561))) (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4)))))
-(-10 -7 (-15 -2239 ((-406 (-561)) |#2|)) (-15 -2239 ((-1162 (-406 (-561))) |#2| (-607 |#2|))) (-15 -4263 ((-1259))))
-((-4324 (((-112) $) 28)) (-2297 (((-112) $) 30)) (-1765 (((-112) $) 31)) (-1753 (((-112) $) 34)) (-2694 (((-112) $) 29)) (-1431 (((-112) $) 33)) (-4064 (((-856) $) 18) (($ (-1148)) 27) (($ (-1166)) 23) (((-1166) $) 22) (((-1094) $) 21)) (-1579 (((-112) $) 32)) (-1723 (((-112) $ $) 15)))
-(((-433) (-13 (-608 (-856)) (-10 -8 (-15 -4064 ($ (-1148))) (-15 -4064 ($ (-1166))) (-15 -4064 ((-1166) $)) (-15 -4064 ((-1094) $)) (-15 -4324 ((-112) $)) (-15 -2694 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -1753 ((-112) $)) (-15 -1579 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -1723 ((-112) $ $))))) (T -433))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-433)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-433)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1723 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -4064 ($ (-1148))) (-15 -4064 ($ (-1166))) (-15 -4064 ((-1166) $)) (-15 -4064 ((-1094) $)) (-15 -4324 ((-112) $)) (-15 -2694 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -1753 ((-112) $)) (-15 -1579 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -1723 ((-112) $ $))))
-((-2087 (((-3 (-417 (-1162 (-406 (-561)))) "failed") |#3|) 70)) (-2805 (((-417 |#3|) |#3|) 34)) (-4333 (((-3 (-417 (-1162 (-48))) "failed") |#3|) 46 (|has| |#2| (-1031 (-48))))) (-1881 (((-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4256 (-112))) |#3|) 37)))
-(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -2805 ((-417 |#3|) |#3|)) (-15 -2087 ((-3 (-417 (-1162 (-406 (-561)))) "failed") |#3|)) (-15 -1881 ((-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4256 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -4333 ((-3 (-417 (-1162 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-553) (-844) (-1031 (-561))) (-429 |#1|) (-1230 |#2|)) (T -434))
-((-4333 (*1 *2 *3) (|partial| -12 (-4 *5 (-1031 (-48))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1162 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1230 *5)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4256 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1230 *5)))) (-2087 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1162 (-406 (-561))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1230 *5)))) (-2805 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1230 *5)))))
-(-10 -7 (-15 -2805 ((-417 |#3|) |#3|)) (-15 -2087 ((-3 (-417 (-1162 (-406 (-561)))) "failed") |#3|)) (-15 -1881 ((-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4256 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -4333 ((-3 (-417 (-1162 (-48))) "failed") |#3|)) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-2254 (((-1148) $ (-1148)) NIL)) (-2848 (($ $ (-1148)) NIL)) (-1769 (((-1148) $) NIL)) (-4185 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-3368 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3305 (((-387) $) NIL)) (-1883 (((-1148) $) NIL)) (-3391 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1428 (((-1259) (-1148)) 9)) (-1515 (((-1259) (-1148)) 10)) (-2454 (((-1259)) 11)) (-4064 (((-856) $) NIL)) (-3550 (($ $) 34)) (-1723 (((-112) $ $) NIL)))
-(((-435) (-13 (-363 (-387) (-1148)) (-10 -7 (-15 -4185 ((-387) (-387) (-387))) (-15 -4185 ((-387) (-387))) (-15 -1428 ((-1259) (-1148))) (-15 -1515 ((-1259) (-1148))) (-15 -2454 ((-1259)))))) (T -435))
-((-4185 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-435)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-435)))) (-2454 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-435)))))
-(-13 (-363 (-387) (-1148)) (-10 -7 (-15 -4185 ((-387) (-387) (-387))) (-15 -4185 ((-387) (-387))) (-15 -1428 ((-1259) (-1148))) (-15 -1515 ((-1259) (-1148))) (-15 -2454 ((-1259)))))
-((-4053 (((-112) $ $) NIL)) (-3909 (((-3 (|:| |fst| (-433)) (|:| -2630 "void")) $) 11)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3769 (($) 32)) (-2443 (($) 38)) (-2928 (($) 34)) (-1383 (($) 36)) (-1789 (($) 33)) (-2127 (($) 35)) (-2784 (($) 37)) (-2529 (((-112) $) 8)) (-2269 (((-638 (-945 (-561))) $) 19)) (-4078 (($ (-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-638 (-1166)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-638 (-945 (-561))) (-112)) 28)) (-4064 (((-856) $) 23) (($ (-433)) 29)) (-1723 (((-112) $ $) NIL)))
-(((-436) (-13 (-1090) (-10 -8 (-15 -4064 ($ (-433))) (-15 -3909 ((-3 (|:| |fst| (-433)) (|:| -2630 "void")) $)) (-15 -2269 ((-638 (-945 (-561))) $)) (-15 -2529 ((-112) $)) (-15 -4078 ($ (-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-638 (-1166)) (-112))) (-15 -4078 ($ (-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-638 (-945 (-561))) (-112))) (-15 -3769 ($)) (-15 -1789 ($)) (-15 -2928 ($)) (-15 -2443 ($)) (-15 -2127 ($)) (-15 -1383 ($)) (-15 -2784 ($))))) (T -436))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *1 (-436)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-638 (-945 (-561)))) (-5 *1 (-436)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4078 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *3 (-638 (-1166))) (-5 *4 (-112)) (-5 *1 (-436)))) (-4078 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-112)) (-5 *1 (-436)))) (-3769 (*1 *1) (-5 *1 (-436))) (-1789 (*1 *1) (-5 *1 (-436))) (-2928 (*1 *1) (-5 *1 (-436))) (-2443 (*1 *1) (-5 *1 (-436))) (-2127 (*1 *1) (-5 *1 (-436))) (-1383 (*1 *1) (-5 *1 (-436))) (-2784 (*1 *1) (-5 *1 (-436))))
-(-13 (-1090) (-10 -8 (-15 -4064 ($ (-433))) (-15 -3909 ((-3 (|:| |fst| (-433)) (|:| -2630 "void")) $)) (-15 -2269 ((-638 (-945 (-561))) $)) (-15 -2529 ((-112) $)) (-15 -4078 ($ (-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-638 (-1166)) (-112))) (-15 -4078 ($ (-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-638 (-945 (-561))) (-112))) (-15 -3769 ($)) (-15 -1789 ($)) (-15 -2928 ($)) (-15 -2443 ($)) (-15 -2127 ($)) (-15 -1383 ($)) (-15 -2784 ($))))
-((-4053 (((-112) $ $) NIL)) (-3305 (((-1166) $) 8)) (-1883 (((-1148) $) 16)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 13)))
-(((-437 |#1|) (-13 (-1090) (-10 -8 (-15 -3305 ((-1166) $)))) (-1166)) (T -437))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-437 *3)) (-14 *3 *2))))
-(-13 (-1090) (-10 -8 (-15 -3305 ((-1166) $))))
-((-3107 (((-1259) $) 7)) (-4064 (((-856) $) 8) (($ (-1254 (-692))) 14) (($ (-638 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 11)))
+((-3655 (*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-403)))) (-3655 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-4 *1 (-403)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) (-3076 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) (-1918 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-2993 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-2509 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) (-2993 (*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912)))) (-2913 (*1 *1) (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391))) (-3726 (|has| *1 (-6 -4383))))) (-3242 (*1 *1) (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391))) (-3726 (|has| *1 (-6 -4383))))))
+(-13 (-1051) (-10 -8 (-6 -4176) (-15 -3655 ($ (-544) (-544))) (-15 -3655 ($ (-544) (-544) (-912))) (-15 -4178 ((-544) $)) (-15 -3076 ((-912))) (-15 -2536 ((-544) $)) (-15 -2510 ((-544) $)) (-15 -1918 ((-912))) (-15 -2993 ((-912))) (-15 -2509 ((-912))) (IF (|has| $ (-6 -4391)) (PROGN (-15 -1918 ((-912) (-912))) (-15 -2993 ((-912) (-912))) (-15 -2509 ((-912) (-912))) (-15 -1917 ((-912) (-544))) (-15 -1916 ((-912) (-544)))) |%noBranch|) (IF (|has| $ (-6 -4383)) |%noBranch| (IF (|has| $ (-6 -4391)) |%noBranch| (PROGN (-15 -2913 ($)) (-15 -3242 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-377)) . T) ((-609 (-883 (-377))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-879 (-377)) . T) ((-914) . T) ((-995) . T) ((-1013) . T) ((-1051) . T) ((-1031 (-406 (-544))) . T) ((-1031 (-544)) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 44)) (-1919 (($ $) 59)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 147)) (-2213 (($ $) NIL)) (-2211 (((-112) $) 38)) (-1920 ((|#1| $) 13)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-1209)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-1209)))) (-1922 (($ |#1| (-544)) 34)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 117)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 57)) (-3866 (((-3 $ "failed") $) 132)) (-3407 (((-3 (-406 (-544)) "failed") $) 65 (|has| |#1| (-543)))) (-3406 (((-112) $) 61 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 72 (|has| |#1| (-543)))) (-1923 (($ |#1| (-544)) 36)) (-4130 (((-112) $) 153 (|has| |#1| (-1209)))) (-2545 (((-112) $) 45)) (-1984 (((-765) $) 40)) (-1924 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-544)) 138)) (-2813 ((|#1| $ (-544)) 137)) (-1925 (((-544) $ (-544)) 136)) (-1927 (($ |#1| (-544)) 33)) (-4365 (($ (-1 |#1| |#1|) $) 144)) (-1981 (($ |#1| (-635 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544))))) 60)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1926 (($ |#1| (-544)) 35)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 148 (|has| |#1| (-450)))) (-1921 (($ |#1| (-544) (-3 #2# #3# #4# #5#)) 32)) (-2812 (((-635 (-2 (|:| -4139 |#1|) (|:| -2536 (-544)))) $) 56)) (-2103 (((-635 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))) $) 12)) (-4139 (((-404 $) $) NIL (|has| |#1| (-1209)))) (-3865 (((-3 $ "failed") $ $) 139)) (-2536 (((-544) $) 133)) (-4370 ((|#1| $) 58)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 87 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) $) NIL (|has| |#1| (-512 (-1166) $))) (($ $ (-635 (-1166)) (-635 $)) 88 (|has| |#1| (-512 (-1166) $))) (($ $ (-635 (-292 $))) 84 (|has| |#1| (-308 $))) (($ $ (-292 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-635 $) (-635 $)) NIL (|has| |#1| (-308 $)))) (-4206 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-4217 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-4377 (((-533) $) 30 (|has| |#1| (-609 (-533)))) (((-377) $) 94 (|has| |#1| (-1013))) (((-224) $) 97 (|has| |#1| (-1013)))) (-4353 (((-857) $) 115) (($ (-544)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544)))))) (-3511 (((-765)) 50)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 42 T CONST)) (-3046 (($) 41 T CONST)) (-3051 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3437 (((-112) $ $) 98)) (-4244 (($ $) 129) (($ $ $) NIL)) (-4246 (($ $ $) 141)) (** (($ $ (-912)) NIL) (($ $ (-765)) 104)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL)))
+(((-404 |#1|) (-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-411 |#1|) (-10 -8 (-15 -4370 (|#1| $)) (-15 -2536 ((-544) $)) (-15 -1981 ($ |#1| (-635 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))))) (-15 -2103 ((-635 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))) $)) (-15 -1927 ($ |#1| (-544))) (-15 -2812 ((-635 (-2 (|:| -4139 |#1|) (|:| -2536 (-544)))) $)) (-15 -1926 ($ |#1| (-544))) (-15 -1925 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -1924 ((-3 #1# #2# #3# #4#) $ (-544))) (-15 -1984 ((-765) $)) (-15 -1923 ($ |#1| (-544))) (-15 -1922 ($ |#1| (-544))) (-15 -1921 ($ |#1| (-544) (-3 #1# #2# #3# #4#))) (-15 -1920 (|#1| $)) (-15 -1919 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|))) (-554)) (T -404))
+((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-404 *3)))) (-4370 (*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1981 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-544))))) (-4 *2 (-554)) (-5 *1 (-404 *2)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-544))))) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1927 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -2536 (-544))))) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1926 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1925 (*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-404 *4)) (-4 *4 (-554)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1923 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1921 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-544)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1920 (*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1919 (*1 *1 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554)))) (-3407 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554)))))
+(-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-411 |#1|) (-10 -8 (-15 -4370 (|#1| $)) (-15 -2536 ((-544) $)) (-15 -1981 ($ |#1| (-635 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))))) (-15 -2103 ((-635 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))) $)) (-15 -1927 ($ |#1| (-544))) (-15 -2812 ((-635 (-2 (|:| -4139 |#1|) (|:| -2536 (-544)))) $)) (-15 -1926 ($ |#1| (-544))) (-15 -1925 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -1924 ((-3 #1# #2# #3# #4#) $ (-544))) (-15 -1984 ((-765) $)) (-15 -1923 ($ |#1| (-544))) (-15 -1922 ($ |#1| (-544))) (-15 -1921 ($ |#1| (-544) (-3 #1# #2# #3# #4#))) (-15 -1920 (|#1| $)) (-15 -1919 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|)))
+((-4365 (((-404 |#2|) (-1 |#2| |#1|) (-404 |#1|)) 20)))
+(((-405 |#1| |#2|) (-10 -7 (-15 -4365 ((-404 |#2|) (-1 |#2| |#1|) (-404 |#1|)))) (-554) (-554)) (T -405))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-404 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-404 *6)) (-5 *1 (-405 *5 *6)))))
+(-10 -7 (-15 -4365 ((-404 |#2|) (-1 |#2| |#1|) (-404 |#1|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 13)) (-3514 ((|#1| $) 21 (|has| |#1| (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| |#1| (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) 17) (((-3 (-1166) #2#) $) NIL (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) 70 (|has| |#1| (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544))))) (-3557 ((|#1| $) 15) (((-1166) $) NIL (|has| |#1| (-1031 (-1166)))) (((-406 (-544)) $) 67 (|has| |#1| (-1031 (-544)))) (((-544) $) NIL (|has| |#1| (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 50)) (-3377 (($) NIL (|has| |#1| (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| |#1| (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| |#1| (-879 (-377))))) (-2545 (((-112) $) 64)) (-3379 (($ $) NIL)) (-3381 ((|#1| $) 71)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3588 (((-112) $) NIL (|has| |#1| (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 97)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| |#1| (-306)))) (-3515 ((|#1| $) 28 (|has| |#1| (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 135 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 131 (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) NIL)) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3378 (($ $) NIL)) (-3380 ((|#1| $) 73)) (-4377 (((-883 (-544)) $) NIL (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#1| (-609 (-883 (-377))))) (((-533) $) NIL (|has| |#1| (-609 (-533)))) (((-377) $) NIL (|has| |#1| (-1013))) (((-224) $) NIL (|has| |#1| (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 10) (($ (-1166)) NIL (|has| |#1| (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) 99 (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 100)) (-3516 ((|#1| $) 26 (|has| |#1| (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| |#1| (-814)))) (-3040 (($) 22 T CONST)) (-3046 (($) 8 T CONST)) (-2879 (((-1148) $) 43 (-12 (|has| |#1| (-543)) (|has| |#1| (-815)))) (((-1148) $ (-112)) 44 (-12 (|has| |#1| (-543)) (|has| |#1| (-815)))) (((-1259) (-817) $) 45 (-12 (|has| |#1| (-543)) (|has| |#1| (-815)))) (((-1259) (-817) $ (-112)) 46 (-12 (|has| |#1| (-543)) (|has| |#1| (-815))))) (-3051 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 56)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) 24 (|has| |#1| (-844)))) (-4356 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4244 (($ $) 25) (($ $ $) 55)) (-4246 (($ $ $) 53)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 125)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 60) (($ $ $) 57) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-406 |#1|) (-13 (-984 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4387)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4398)) (-6 -4387) |%noBranch|) |%noBranch|) |%noBranch|))) (-554)) (T -406))
+NIL
+(-13 (-984 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4387)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4398)) (-6 -4387) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-4365 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13)))
+(((-407 |#1| |#2|) (-10 -7 (-15 -4365 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-554) (-554)) (T -407))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-406 *6)) (-5 *1 (-407 *5 *6)))))
+(-10 -7 (-15 -4365 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|))))
+((-1929 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 18)) (-1939 (($ (-1253 |#2|) (-1253 $)) NIL) (($ (-1253 |#2|)) 24)) (-1928 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 38)) (-2164 ((|#3| $) 60)) (-4164 ((|#2| (-1253 $)) NIL) ((|#2|) 20)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 22) (((-682 |#2|) (-1253 $)) 36)) (-4377 (((-1253 |#2|) $) 11) (($ (-1253 |#2|)) 13)) (-2743 ((|#3| $) 52)))
+(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -1928 ((-682 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -1929 ((-682 |#2|))) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 (|#3| |#1|)) (-15 -2743 (|#3| |#1|)) (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|)))) (-409 |#2| |#3|) (-171) (-1229 |#2|)) (T -408))
+((-1929 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-4164 (*1 *2) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-171)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4)))))
+(-10 -8 (-15 -1928 ((-682 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -1929 ((-682 |#2|))) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 (|#3| |#1|)) (-15 -2743 (|#3| |#1|)) (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1929 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-3734 ((|#1| $) 53)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1928 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-912)) 55)) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 52)) (-2164 ((|#2| $) 45 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4164 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4377 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38)) (-3084 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2743 ((|#2| $) 46)) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 68)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-409 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -409))
+((-2162 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *1)) (-4 *1 (-409 *3 *4)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *3)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1229 *3)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *3)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1229 *3)))) (-1929 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-682 *3)))) (-4164 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-682 *3)))))
+(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -2162 ((-1253 $))) (-15 -3625 ((-1253 |t#1|) $)) (-15 -3625 ((-682 |t#1|) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|))) (-15 -4377 ((-1253 |t#1|) $)) (-15 -4377 ($ (-1253 |t#1|))) (-15 -1929 ((-682 |t#1|))) (-15 -4164 (|t#1|)) (-15 -1928 ((-682 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-369 |#1| |#2|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) 27) (((-3 (-544) #1#) $) 19)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) 24) (((-544) $) 14)) (-4353 (($ |#2|) NIL) (($ (-406 (-544))) 22) (($ (-544)) 11)))
+(((-410 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| (-544))) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|))) (-411 |#2|) (-1204)) (T -410))
+NIL
+(-10 -8 (-15 -4353 (|#1| (-544))) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)))
+((-3558 (((-3 |#1| #1="failed") $) 9) (((-3 (-406 (-544)) #1#) $) 16 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #1#) $) 13 (|has| |#1| (-1031 (-544))))) (-3557 ((|#1| $) 8) (((-406 (-544)) $) 17 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 14 (|has| |#1| (-1031 (-544))))) (-4353 (($ |#1|) 6) (($ (-406 (-544))) 15 (|has| |#1| (-1031 (-406 (-544))))) (($ (-544)) 12 (|has| |#1| (-1031 (-544))))))
+(((-411 |#1|) (-139) (-1204)) (T -411))
+NIL
+(-13 (-1031 |t#1|) (-10 -7 (IF (|has| |t#1| (-1031 (-544))) (-6 (-1031 (-544))) |%noBranch|) (IF (|has| |t#1| (-1031 (-406 (-544)))) (-6 (-1031 (-406 (-544)))) |%noBranch|)))
+(((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 #2=(-544)) |has| |#1| (-1031 (-544))) ((-611 |#1|) . T) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 #2#) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T))
+((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-1930 ((|#4| (-765) (-1253 |#4|)) 56)) (-2545 (((-112) $) NIL)) (-3381 (((-1253 |#4|) $) 17)) (-3517 ((|#2| $) 54)) (-1931 (($ $) 139)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 100)) (-2120 (($ (-1253 |#4|)) 99)) (-3644 (((-1110) $) NIL)) (-3380 ((|#1| $) 18)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 134)) (-2162 (((-1253 |#4|) $) 129)) (-3046 (($) 11 T CONST)) (-3437 (((-112) $ $) 40)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 122)) (* (($ $ $) 121)))
+(((-412 |#1| |#2| |#3| |#4|) (-13 (-471) (-10 -8 (-15 -2120 ($ (-1253 |#4|))) (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -3381 ((-1253 |#4|) $)) (-15 -3380 (|#1| $)) (-15 -1931 ($ $)) (-15 -1930 (|#4| (-765) (-1253 |#4|))))) (-306) (-984 |#1|) (-1229 |#2|) (-13 (-409 |#2| |#3|) (-1031 |#2|))) (T -412))
+((-2120 (*1 *1 *2) (-12 (-5 *2 (-1253 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-2162 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))))) (-3517 (*1 *2 *1) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-409 *2 *4) (-1031 *2))))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-984 *2)) (-4 *4 (-1229 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3))))) (-1931 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-984 *2)) (-4 *4 (-1229 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3))))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1253 *2)) (-4 *5 (-306)) (-4 *6 (-984 *5)) (-4 *2 (-13 (-409 *6 *7) (-1031 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1229 *6)))))
+(-13 (-471) (-10 -8 (-15 -2120 ($ (-1253 |#4|))) (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -3381 ((-1253 |#4|) $)) (-15 -3380 (|#1| $)) (-15 -1931 ($ $)) (-15 -1930 (|#4| (-765) (-1253 |#4|)))))
+((-4365 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33)))
+(((-413 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-984 |#1|) (-1229 |#2|) (-13 (-409 |#2| |#3|) (-1031 |#2|)) (-306) (-984 |#5|) (-1229 |#6|) (-13 (-409 |#6| |#7|) (-1031 |#6|))) (T -413))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-984 *5)) (-4 *7 (-1229 *6)) (-4 *8 (-13 (-409 *6 *7) (-1031 *6))) (-4 *9 (-306)) (-4 *10 (-984 *9)) (-4 *11 (-1229 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-413 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1031 *10))))))
+(-10 -7 (-15 -4365 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|))))
+((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3517 ((|#2| $) 61)) (-1932 (($ (-1253 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1031 |#2|)))) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 34)) (-2162 (((-1253 |#4|) $) 26)) (-3046 (($) 23 T CONST)) (-3437 (((-112) $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ $ $) 72)))
+(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-720) (-10 -8 (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -1932 ($ (-1253 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -1932 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-984 |#1|) (-1229 |#2|) (-409 |#2| |#3|) (-1253 |#4|)) (T -414))
+((-2162 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-3517 (*1 *2 *1) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1253 *5)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-1253 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1253 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))))
+(-13 (-720) (-10 -8 (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -1932 ($ (-1253 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -1932 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-4365 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-171) (-417 |#4|) (-171)) (T -415))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))))
+(-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1920 (((-3 $ #1="failed")) 86)) (-3624 (((-1253 (-682 |#2|)) (-1253 $)) NIL) (((-1253 (-682 |#2|))) 91)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 85)) (-1847 (((-3 $ #1#)) 84)) (-1935 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 102)) (-1933 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 110)) (-2050 (((-1160 (-939 |#2|))) 55)) (-1937 ((|#2| (-1253 $)) NIL) ((|#2|) 106)) (-1939 (($ (-1253 |#2|) (-1253 $)) NIL) (($ (-1253 |#2|)) 112)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 83)) (-1848 (((-3 $ #1#)) 75)) (-1936 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 100)) (-1934 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 108)) (-2054 (((-1160 (-939 |#2|))) 54)) (-1938 ((|#2| (-1253 $)) NIL) ((|#2|) 104)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 111) (((-682 |#2|) (-1253 $)) 118)) (-4377 (((-1253 |#2|) $) 96) (($ (-1253 |#2|)) 98)) (-2042 (((-635 (-939 |#2|)) (-1253 $)) NIL) (((-635 (-939 |#2|))) 94)) (-2927 (($ (-682 |#2|) $) 90)))
+(((-416 |#1| |#2|) (-10 -8 (-15 -2927 (|#1| (-682 |#2|) |#1|)) (-15 -2050 ((-1160 (-939 |#2|)))) (-15 -2054 ((-1160 (-939 |#2|)))) (-15 -1933 ((-682 |#2|) |#1|)) (-15 -1934 ((-682 |#2|) |#1|)) (-15 -1935 ((-682 |#2|))) (-15 -1936 ((-682 |#2|))) (-15 -1937 (|#2|)) (-15 -1938 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -2042 ((-635 (-939 |#2|)))) (-15 -3624 ((-1253 (-682 |#2|)))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -1920 ((-3 |#1| #1="failed"))) (-15 -1847 ((-3 |#1| #1#))) (-15 -1848 ((-3 |#1| #1#))) (-15 -2056 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -2057 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|))) (-15 -2042 ((-635 (-939 |#2|)) (-1253 |#1|)))) (-417 |#2|) (-171)) (T -416))
+((-3624 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2042 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-939 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1938 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1937 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1936 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1935 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2054 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2050 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))))
+(-10 -8 (-15 -2927 (|#1| (-682 |#2|) |#1|)) (-15 -2050 ((-1160 (-939 |#2|)))) (-15 -2054 ((-1160 (-939 |#2|)))) (-15 -1933 ((-682 |#2|) |#1|)) (-15 -1934 ((-682 |#2|) |#1|)) (-15 -1935 ((-682 |#2|))) (-15 -1936 ((-682 |#2|))) (-15 -1937 (|#2|)) (-15 -1938 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -2042 ((-635 (-939 |#2|)))) (-15 -3624 ((-1253 (-682 |#2|)))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -1920 ((-3 |#1| #1="failed"))) (-15 -1847 ((-3 |#1| #1#))) (-15 -1848 ((-3 |#1| #1#))) (-15 -2056 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -2057 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|))) (-15 -2042 ((-635 (-939 |#2|)) (-1253 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1920 (((-3 $ #1="failed")) 37 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-3624 (((-1253 (-682 |#1|)) (-1253 $)) 78) (((-1253 (-682 |#1|))) 100)) (-1873 (((-1253 $)) 81)) (-4131 (($) 17 T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 40 (|has| |#1| (-554)))) (-1847 (((-3 $ #1#)) 38 (|has| |#1| (-554)))) (-1935 (((-682 |#1|) (-1253 $)) 65) (((-682 |#1|)) 92)) (-1871 ((|#1| $) 74)) (-1933 (((-682 |#1|) $ (-1253 $)) 76) (((-682 |#1|) $) 90)) (-2539 (((-3 $ #1#) $) 45 (|has| |#1| (-554)))) (-2050 (((-1160 (-939 |#1|))) 88 (|has| |#1| (-362)))) (-2542 (($ $ (-912)) 28)) (-1869 ((|#1| $) 72)) (-1849 (((-1160 |#1|) $) 42 (|has| |#1| (-554)))) (-1937 ((|#1| (-1253 $)) 67) ((|#1|) 94)) (-1867 (((-1160 |#1|) $) 63)) (-1861 (((-112)) 57)) (-1939 (($ (-1253 |#1|) (-1253 $)) 69) (($ (-1253 |#1|)) 98)) (-3866 (((-3 $ #1#) $) 47 (|has| |#1| (-554)))) (-3494 (((-912)) 80)) (-1858 (((-112)) 54)) (-2567 (($ $ (-912)) 33)) (-1854 (((-112)) 50)) (-1852 (((-112)) 48)) (-1856 (((-112)) 52)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 41 (|has| |#1| (-554)))) (-1848 (((-3 $ #1#)) 39 (|has| |#1| (-554)))) (-1936 (((-682 |#1|) (-1253 $)) 66) (((-682 |#1|)) 93)) (-1872 ((|#1| $) 75)) (-1934 (((-682 |#1|) $ (-1253 $)) 77) (((-682 |#1|) $) 91)) (-2540 (((-3 $ #1#) $) 46 (|has| |#1| (-554)))) (-2054 (((-1160 (-939 |#1|))) 89 (|has| |#1| (-362)))) (-2541 (($ $ (-912)) 29)) (-1870 ((|#1| $) 73)) (-1850 (((-1160 |#1|) $) 43 (|has| |#1| (-554)))) (-1938 ((|#1| (-1253 $)) 68) ((|#1|) 95)) (-1868 (((-1160 |#1|) $) 64)) (-1862 (((-112)) 58)) (-3643 (((-1148) $) 9)) (-1853 (((-112)) 49)) (-1855 (((-112)) 51)) (-1857 (((-112)) 53)) (-3644 (((-1110) $) 10)) (-1860 (((-112)) 56)) (-4206 ((|#1| $ (-544)) 101)) (-3625 (((-1253 |#1|) $ (-1253 $)) 71) (((-682 |#1|) (-1253 $) (-1253 $)) 70) (((-1253 |#1|) $) 103) (((-682 |#1|) (-1253 $)) 102)) (-4377 (((-1253 |#1|) $) 97) (($ (-1253 |#1|)) 96)) (-2042 (((-635 (-939 |#1|)) (-1253 $)) 79) (((-635 (-939 |#1|))) 99)) (-2729 (($ $ $) 25)) (-1866 (((-112)) 62)) (-4353 (((-857) $) 11)) (-2162 (((-1253 $)) 104)) (-1851 (((-635 (-1253 |#1|))) 44 (|has| |#1| (-554)))) (-2730 (($ $ $ $) 26)) (-1864 (((-112)) 60)) (-2927 (($ (-682 |#1|) $) 87)) (-2728 (($ $ $) 24)) (-1865 (((-112)) 61)) (-1863 (((-112)) 59)) (-1859 (((-112)) 55)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-417 |#1|) (-139) (-171)) (T -417))
+((-2162 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-417 *3)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-417 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-417 *2)) (-4 *2 (-171)))) (-3624 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 (-682 *3))))) (-2042 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-939 *3))))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3)))) (-1938 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171)))) (-1937 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171)))) (-1936 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-1935 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-2054 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1160 (-939 *3))))) (-2050 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1160 (-939 *3))))) (-2927 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *1 (-417 *3)) (-4 *3 (-171)))))
+(-13 (-366 |t#1|) (-10 -8 (-15 -2162 ((-1253 $))) (-15 -3625 ((-1253 |t#1|) $)) (-15 -3625 ((-682 |t#1|) (-1253 $))) (-15 -4206 (|t#1| $ (-544))) (-15 -3624 ((-1253 (-682 |t#1|)))) (-15 -2042 ((-635 (-939 |t#1|)))) (-15 -1939 ($ (-1253 |t#1|))) (-15 -4377 ((-1253 |t#1|) $)) (-15 -4377 ($ (-1253 |t#1|))) (-15 -1938 (|t#1|)) (-15 -1937 (|t#1|)) (-15 -1936 ((-682 |t#1|))) (-15 -1935 ((-682 |t#1|))) (-15 -1934 ((-682 |t#1|) $)) (-15 -1933 ((-682 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2054 ((-1160 (-939 |t#1|)))) (-15 -2050 ((-1160 (-939 |t#1|))))) |%noBranch|) (-15 -2927 ($ (-682 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-366 |#1|) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1091) . T))
+((-3519 (((-404 |#1|) (-404 |#1|) (-1 (-404 |#1|) |#1|)) 21)) (-1940 (((-404 |#1|) (-404 |#1|) (-404 |#1|)) 16)))
+(((-418 |#1|) (-10 -7 (-15 -3519 ((-404 |#1|) (-404 |#1|) (-1 (-404 |#1|) |#1|))) (-15 -1940 ((-404 |#1|) (-404 |#1|) (-404 |#1|)))) (-554)) (T -418))
+((-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-404 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3)))) (-3519 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-404 *4) *4)) (-4 *4 (-554)) (-5 *2 (-404 *4)) (-5 *1 (-418 *4)))))
+(-10 -7 (-15 -3519 ((-404 |#1|) (-404 |#1|) (-1 (-404 |#1|) |#1|))) (-15 -1940 ((-404 |#1|) (-404 |#1|) (-404 |#1|))))
+((-3467 (((-635 (-1166)) $) 72)) (-3469 (((-406 (-1160 $)) $ (-606 $)) 273)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) 237)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 (-1166) #1#) $) 75) (((-3 (-544) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-406 (-939 |#2|)) #1#) $) 324) (((-3 (-939 |#2|) #1#) $) 235) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-606 $) $) NIL) (((-1166) $) 30) (((-544) $) NIL) ((|#2| $) 231) (((-406 (-939 |#2|)) $) 305) (((-939 |#2|) $) 232) (((-406 (-544)) $) NIL)) (-3430 (((-113) (-113)) 47)) (-3379 (($ $) 87)) (-1690 (((-3 (-606 $) "failed") $) 228)) (-1689 (((-635 (-606 $)) $) 229)) (-3205 (((-3 (-635 $) "failed") $) 247)) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) "failed") $) 254)) (-3204 (((-3 (-635 $) "failed") $) 245)) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) "failed") $) 264)) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $) 251) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-1166)) 219)) (-1944 (((-112) $) 19)) (-1943 ((|#2| $) 21)) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) 236) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 96) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1166)) 57) (($ $ (-635 (-1166))) 240) (($ $) 241) (($ $ (-113) $ (-1166)) 60) (($ $ (-635 (-113)) (-635 $) (-1166)) 67) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) 107) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) 242) (($ $ (-1166) (-765) (-1 $ (-635 $))) 94) (($ $ (-1166) (-765) (-1 $ $)) 93)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) 106)) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) 238)) (-3378 (($ $) 284)) (-4377 (((-883 (-544)) $) 257) (((-883 (-377)) $) 261) (($ (-404 $)) 320) (((-533) $) NIL)) (-4353 (((-857) $) 239) (($ (-606 $)) 84) (($ (-1166)) 26) (($ |#2|) NIL) (($ (-1115 |#2| (-606 $))) NIL) (($ (-406 |#2|)) 289) (($ (-939 (-406 |#2|))) 329) (($ (-406 (-939 (-406 |#2|)))) 301) (($ (-406 (-939 |#2|))) 295) (($ $) NIL) (($ (-939 |#2|)) 185) (($ (-406 (-544))) 334) (($ (-544)) NIL)) (-3511 (((-765)) 79)) (-2377 (((-112) (-113)) 41)) (-1942 (($ (-1166) $) 33) (($ (-1166) $ $) 34) (($ (-1166) $ $ $) 35) (($ (-1166) $ $ $ $) 36) (($ (-1166) (-635 $)) 39)) (* (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL)))
+(((-419 |#1| |#2|) (-10 -8 (-15 * (|#1| (-912) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| (-544))) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1="failed") |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-939 |#2|))) (-15 -3558 ((-3 (-939 |#2|) #1#) |#1|)) (-15 -3557 ((-939 |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-939 |#2|)))) (-15 -3558 ((-3 (-406 (-939 |#2|)) #1#) |#1|)) (-15 -3557 ((-406 (-939 |#2|)) |#1|)) (-15 -3469 ((-406 (-1160 |#1|)) |#1| (-606 |#1|))) (-15 -4353 (|#1| (-406 (-939 (-406 |#2|))))) (-15 -4353 (|#1| (-939 (-406 |#2|)))) (-15 -4353 (|#1| (-406 |#2|))) (-15 -3378 (|#1| |#1|)) (-15 -4377 (|#1| (-404 |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| |#1|)))) (-15 -3207 ((-3 (-2 (|:| |val| |#1|) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-1166))) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-113))) (-15 -3379 (|#1| |#1|)) (-15 -4353 (|#1| (-1115 |#2| (-606 |#1|)))) (-15 -1941 ((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 |#1|))) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 |#1|) (-1166))) (-15 -4174 (|#1| |#1| (-113) |#1| (-1166))) (-15 -4174 (|#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1166)))) (-15 -4174 (|#1| |#1| (-1166))) (-15 -1942 (|#1| (-1166) (-635 |#1|))) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1|)) (-15 -3467 ((-635 (-1166)) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1689 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -4353 (|#1| (-606 |#1|))) (-15 -3558 ((-3 (-606 |#1|) #1#) |#1|)) (-15 -3557 ((-606 |#1|) |#1|)) (-15 -4353 ((-857) |#1|))) (-420 |#2|) (-844)) (T -419))
+((-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-844)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-419 *4 *5)) (-4 *4 (-420 *5)))) (-3511 (*1 *2) (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))))
+(-10 -8 (-15 * (|#1| (-912) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| (-544))) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1="failed") |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-939 |#2|))) (-15 -3558 ((-3 (-939 |#2|) #1#) |#1|)) (-15 -3557 ((-939 |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-939 |#2|)))) (-15 -3558 ((-3 (-406 (-939 |#2|)) #1#) |#1|)) (-15 -3557 ((-406 (-939 |#2|)) |#1|)) (-15 -3469 ((-406 (-1160 |#1|)) |#1| (-606 |#1|))) (-15 -4353 (|#1| (-406 (-939 (-406 |#2|))))) (-15 -4353 (|#1| (-939 (-406 |#2|)))) (-15 -4353 (|#1| (-406 |#2|))) (-15 -3378 (|#1| |#1|)) (-15 -4377 (|#1| (-404 |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| |#1|)))) (-15 -3207 ((-3 (-2 (|:| |val| |#1|) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-1166))) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-113))) (-15 -3379 (|#1| |#1|)) (-15 -4353 (|#1| (-1115 |#2| (-606 |#1|)))) (-15 -1941 ((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 |#1|))) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 |#1|) (-1166))) (-15 -4174 (|#1| |#1| (-113) |#1| (-1166))) (-15 -4174 (|#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1166)))) (-15 -4174 (|#1| |#1| (-1166))) (-15 -1942 (|#1| (-1166) (-635 |#1|))) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1|)) (-15 -3467 ((-635 (-1166)) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1689 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -4353 (|#1| (-606 |#1|))) (-15 -3558 ((-3 (-606 |#1|) #1#) |#1|)) (-15 -3557 ((-606 |#1|) |#1|)) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 114 (|has| |#1| (-25)))) (-3467 (((-635 (-1166)) $) 201)) (-3469 (((-406 (-1160 $)) $ (-606 $)) 169 (|has| |#1| (-554)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 141 (|has| |#1| (-554)))) (-2213 (($ $) 142 (|has| |#1| (-554)))) (-2211 (((-112) $) 144 (|has| |#1| (-554)))) (-1688 (((-635 (-606 $)) $) 44)) (-1391 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-1692 (($ $ (-292 $)) 56) (($ $ (-635 (-292 $))) 55) (($ $ (-635 (-606 $)) (-635 $)) 54)) (-4181 (($ $) 161 (|has| |#1| (-554)))) (-4376 (((-404 $) $) 162 (|has| |#1| (-554)))) (-1733 (((-112) $ $) 152 (|has| |#1| (-554)))) (-4131 (($) 102 (-3936 (|has| |#1| (-1102)) (|has| |#1| (-25))) CONST)) (-3558 (((-3 (-606 $) #1="failed") $) 69) (((-3 (-1166) #1#) $) 214) (((-3 (-544) #1#) $) 208 (|has| |#1| (-1031 (-544)))) (((-3 |#1| #1#) $) 205) (((-3 (-406 (-939 |#1|)) #1#) $) 167 (|has| |#1| (-554))) (((-3 (-939 |#1|) #1#) $) 121 (|has| |#1| (-1042))) (((-3 (-406 (-544)) #1#) $) 96 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 (((-606 $) $) 70) (((-1166) $) 215) (((-544) $) 207 (|has| |#1| (-1031 (-544)))) ((|#1| $) 206) (((-406 (-939 |#1|)) $) 168 (|has| |#1| (-554))) (((-939 |#1|) $) 122 (|has| |#1| (-1042))) (((-406 (-544)) $) 97 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-2943 (($ $ $) 156 (|has| |#1| (-554)))) (-2401 (((-682 (-544)) (-682 $)) 135 (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 134 (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 133 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 132 (|has| |#1| (-1042)))) (-3866 (((-3 $ "failed") $) 104 (|has| |#1| (-1102)))) (-2942 (($ $ $) 155 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 150 (|has| |#1| (-554)))) (-4130 (((-112) $) 163 (|has| |#1| (-554)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 210 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 209 (|has| |#1| (-879 (-377))))) (-2952 (($ $) 51) (($ (-635 $)) 50)) (-1687 (((-635 (-113)) $) 43)) (-3430 (((-113) (-113)) 42)) (-2545 (((-112) $) 103 (|has| |#1| (-1102)))) (-3055 (((-112) $) 22 (|has| $ (-1031 (-544))))) (-3379 (($ $) 184 (|has| |#1| (-1042)))) (-3381 (((-1115 |#1| (-606 $)) $) 185 (|has| |#1| (-1042)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 159 (|has| |#1| (-554)))) (-1685 (((-1160 $) (-606 $)) 25 (|has| $ (-1042)))) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-4365 (($ (-1 $ $) (-606 $)) 36)) (-1690 (((-3 (-606 $) "failed") $) 46)) (-2041 (($ (-635 $)) 148 (|has| |#1| (-554))) (($ $ $) 147 (|has| |#1| (-554)))) (-3643 (((-1148) $) 9)) (-1689 (((-635 (-606 $)) $) 45)) (-2356 (($ (-113) $) 38) (($ (-113) (-635 $)) 37)) (-3205 (((-3 (-635 $) "failed") $) 190 (|has| |#1| (-1102)))) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) "failed") $) 181 (|has| |#1| (-1042)))) (-3204 (((-3 (-635 $) "failed") $) 188 (|has| |#1| (-25)))) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $) 189 (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-113)) 183 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-1166)) 182 (|has| |#1| (-1042)))) (-3013 (((-112) $ (-113)) 40) (((-112) $ (-1166)) 39)) (-2779 (($ $) 106 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-2982 (((-765) $) 47)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 203)) (-1943 ((|#1| $) 202)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 149 (|has| |#1| (-554)))) (-3545 (($ (-635 $)) 146 (|has| |#1| (-554))) (($ $ $) 145 (|has| |#1| (-554)))) (-1686 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-4139 (((-404 $) $) 160 (|has| |#1| (-554)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 158 (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 157 (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ $) 140 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 151 (|has| |#1| (-554)))) (-3056 (((-112) $) 23 (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) 67) (($ $ (-635 (-606 $)) (-635 $)) 66) (($ $ (-635 (-292 $))) 65) (($ $ (-292 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1166) (-1 $ (-635 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-635 (-113)) (-635 (-1 $ $))) 29) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-113) (-1 $ (-635 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1166)) 195 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166))) 194 (|has| |#1| (-609 (-533)))) (($ $) 193 (|has| |#1| (-609 (-533)))) (($ $ (-113) $ (-1166)) 192 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-113)) (-635 $) (-1166)) 191 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) 180 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) 179 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-635 $))) 178 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) 177 (|has| |#1| (-1042)))) (-1732 (((-765) $) 153 (|has| |#1| (-554)))) (-4206 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-635 $)) 57)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 154 (|has| |#1| (-554)))) (-1691 (($ $) 49) (($ $ $) 48)) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 126 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 125 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 124 (|has| |#1| (-1042))) (($ $ (-1166)) 123 (|has| |#1| (-1042)))) (-3378 (($ $) 174 (|has| |#1| (-554)))) (-3380 (((-1115 |#1| (-606 $)) $) 175 (|has| |#1| (-554)))) (-3586 (($ $) 24 (|has| $ (-1042)))) (-4377 (((-883 (-544)) $) 212 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 211 (|has| |#1| (-609 (-883 (-377))))) (($ (-404 $)) 176 (|has| |#1| (-554))) (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3392 (($ $ $) 109 (|has| |#1| (-471)))) (-2729 (($ $ $) 110 (|has| |#1| (-471)))) (-4353 (((-857) $) 11) (($ (-606 $)) 68) (($ (-1166)) 213) (($ |#1|) 204) (($ (-1115 |#1| (-606 $))) 186 (|has| |#1| (-1042))) (($ (-406 |#1|)) 172 (|has| |#1| (-554))) (($ (-939 (-406 |#1|))) 171 (|has| |#1| (-554))) (($ (-406 (-939 (-406 |#1|)))) 170 (|has| |#1| (-554))) (($ (-406 (-939 |#1|))) 166 (|has| |#1| (-554))) (($ $) 139 (|has| |#1| (-554))) (($ (-939 |#1|)) 120 (|has| |#1| (-1042))) (($ (-406 (-544))) 95 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544)))))) (($ (-544)) 94 (-3936 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-544)))))) (-3084 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-3511 (((-765)) 131 (|has| |#1| (-1042)))) (-2969 (($ $) 53) (($ (-635 $)) 52)) (-2377 (((-112) (-113)) 41)) (-2212 (((-112) $ $) 143 (|has| |#1| (-554)))) (-1942 (($ (-1166) $) 200) (($ (-1166) $ $) 199) (($ (-1166) $ $ $) 198) (($ (-1166) $ $ $ $) 197) (($ (-1166) (-635 $)) 196)) (-3040 (($) 113 (|has| |#1| (-25)) CONST)) (-3046 (($) 101 (|has| |#1| (-1102)) CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 130 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 129 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 128 (|has| |#1| (-1042))) (($ $ (-1166)) 127 (|has| |#1| (-1042)))) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4356 (($ (-1115 |#1| (-606 $)) (-1115 |#1| (-606 $))) 173 (|has| |#1| (-554))) (($ $ $) 107 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-4244 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-4246 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-544)) 108 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554)))) (($ $ (-765)) 105 (|has| |#1| (-1102))) (($ $ (-912)) 100 (|has| |#1| (-1102)))) (* (($ (-406 (-544)) $) 165 (|has| |#1| (-554))) (($ $ (-406 (-544))) 164 (|has| |#1| (-554))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-544) $) 119 (|has| |#1| (-21))) (($ (-765) $) 115 (|has| |#1| (-25))) (($ (-912) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1102)))))
+(((-420 |#1|) (-139) (-844)) (T -420))
+((-1944 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-112)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-635 (-1166))))) (-1942 (*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-533))))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1166))) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-533))))) (-4174 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-533))))) (-4174 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1166)) (-4 *1 (-420 *4)) (-4 *4 (-844)) (-4 *4 (-609 (-533))))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 *1)) (-5 *4 (-1166)) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-533))))) (-3205 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-420 *3)))) (-3206 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *3)))) (-3204 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-420 *3)))) (-1941 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4361 (-544)) (|:| |var| (-606 *1)))) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-1042)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1))) (-4 *1 (-420 *3)))) (-3379 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-1042)))) (-3206 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4)))) (-3206 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4)))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |val| *1) (|:| -2536 (-544)))) (-4 *1 (-420 *3)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765))) (-5 *4 (-635 (-1 *1 *1))) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765))) (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-635 *1))) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1)) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-404 *1)) (-4 *1 (-420 *3)) (-4 *3 (-554)) (-4 *3 (-844)))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-554)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1))) (-4 *1 (-420 *3)))) (-3378 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-554)))) (-4356 (*1 *1 *2 *2) (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-939 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-3469 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844)) (-4 *4 (-554)) (-5 *2 (-406 (-1160 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-1102)))))
+(-13 (-297) (-1031 (-1166)) (-877 |t#1|) (-399 |t#1|) (-411 |t#1|) (-10 -8 (-15 -1944 ((-112) $)) (-15 -1943 (|t#1| $)) (-15 -3467 ((-635 (-1166)) $)) (-15 -1942 ($ (-1166) $)) (-15 -1942 ($ (-1166) $ $)) (-15 -1942 ($ (-1166) $ $ $)) (-15 -1942 ($ (-1166) $ $ $ $)) (-15 -1942 ($ (-1166) (-635 $))) (IF (|has| |t#1| (-609 (-533))) (PROGN (-6 (-609 (-533))) (-15 -4174 ($ $ (-1166))) (-15 -4174 ($ $ (-635 (-1166)))) (-15 -4174 ($ $)) (-15 -4174 ($ $ (-113) $ (-1166))) (-15 -4174 ($ $ (-635 (-113)) (-635 $) (-1166)))) |%noBranch|) (IF (|has| |t#1| (-1102)) (PROGN (-6 (-720)) (-15 ** ($ $ (-765))) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-471)) (-6 (-471)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -1941 ((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-1031 (-939 |t#1|))) (-6 (-893 (-1166))) (-6 (-376 |t#1|)) (-15 -4353 ($ (-1115 |t#1| (-606 $)))) (-15 -3381 ((-1115 |t#1| (-606 $)) $)) (-15 -3379 ($ $)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-113))) (-15 -3206 ((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-1166))) (-15 -3207 ((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) "failed") $)) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $)))) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $))))) (-15 -4174 ($ $ (-1166) (-765) (-1 $ (-635 $)))) (-15 -4174 ($ $ (-1166) (-765) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-362)) (-6 (-1031 (-406 (-939 |t#1|)))) (-15 -4377 ($ (-404 $))) (-15 -3380 ((-1115 |t#1| (-606 $)) $)) (-15 -3378 ($ $)) (-15 -4356 ($ (-1115 |t#1| (-606 $)) (-1115 |t#1| (-606 $)))) (-15 -4353 ($ (-406 |t#1|))) (-15 -4353 ($ (-939 (-406 |t#1|)))) (-15 -4353 ($ (-406 (-939 (-406 |t#1|))))) (-15 -3469 ((-406 (-1160 $)) $ (-606 $))) (IF (|has| |t#1| (-1031 (-544))) (-6 (-1031 (-406 (-544)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-406 (-544))) |has| |#1| (-554)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-554)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-554)) ((-130) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-554))) ((-611 #2=(-406 (-939 |#1|))) |has| |#1| (-554)) ((-611 (-544)) -3936 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-544))) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-611 #3=(-606 $)) . T) ((-611 #4=(-939 |#1|)) |has| |#1| (-1042)) ((-611 #5=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) |has| |#1| (-554)) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-242) |has| |#1| (-554)) ((-289) |has| |#1| (-554)) ((-306) |has| |#1| (-554)) ((-308 $) . T) ((-297) . T) ((-362) |has| |#1| (-554)) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-411 |#1|) . T) ((-450) |has| |#1| (-554)) ((-471) |has| |#1| (-471)) ((-512 (-606 $) $) . T) ((-512 $ $) . T) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-554)) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-634 (-544)) -12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #1#) |has| |#1| (-554)) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) -3936 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-914) |has| |#1| (-554)) ((-1031 (-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) ((-1031 #2#) |has| |#1| (-554)) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #3#) . T) ((-1031 #4#) |has| |#1| (-1042)) ((-1031 #5#) . T) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-554)) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) |has| |#1| (-554)) ((-1042) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1049) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1102) -3936 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1091) . T) ((-1204) . T) ((-1209) |has| |#1| (-554)))
+((-4365 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1042) (-844)) (-420 |#1|) (-13 (-1042) (-844)) (-420 |#3|)) (T -421))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1042) (-844))) (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-420 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-420 *5)))))
+(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1948 ((|#2| |#2|) 165)) (-1945 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112)) 57)))
+(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1945 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -1948 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|)) (-1166) |#2|) (T -422))
+((-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-420 *3))) (-14 *4 (-1166)) (-14 *5 *2))) (-1945 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-14 *6 (-1166)) (-14 *7 *3))))
+(-10 -7 (-15 -1945 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -1948 (|#2| |#2|)))
+((-1948 ((|#2| |#2|) 89)) (-1946 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 48)) (-1947 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 153)))
+(((-423 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1946 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1947 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1948 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|) (-10 -8 (-15 -4353 ($ |#3|)))) (-842) (-13 (-1232 |#2| |#3|) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $)))) (-976 |#4|) (-1166)) (T -423))
+((-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *2 (-13 (-27) (-1190) (-420 *3) (-10 -8 (-15 -4353 ($ *4))))) (-4 *4 (-842)) (-4 *5 (-13 (-1232 *2 *4) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) (-5 *1 (-423 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166)))) (-1947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1232 *3 *7) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166)))) (-1946 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1232 *3 *7) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166)))))
+(-10 -7 (-15 -1946 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1947 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1948 (|#2| |#2|)))
+((-1949 (($) 44)) (-3635 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3637 (($ $ $) 39)) (-3636 (((-112) $ $) 28)) (-3521 (((-765)) 47)) (-3640 (($ (-635 |#2|)) 20) (($) NIL)) (-3377 (($) 53)) (-3642 (((-112) $ $) 13)) (-2913 ((|#2| $) 61)) (-3242 ((|#2| $) 59)) (-2160 (((-912) $) 55)) (-3639 (($ $ $) 35)) (-2535 (($ (-912)) 50)) (-3638 (($ $ |#2|) NIL) (($ $ $) 38)) (-2097 (((-765) (-1 (-112) |#2|) $) NIL) (((-765) |#2| $) 26)) (-3929 (($ (-635 |#2|)) 24)) (-1950 (($ $) 46)) (-4353 (((-857) $) 33)) (-1951 (((-765) $) 21)) (-3641 (($ (-635 |#2|)) 19) (($) NIL)) (-3437 (((-112) $ $) 16)))
+(((-424 |#1| |#2|) (-10 -8 (-15 -3521 ((-765))) (-15 -2535 (|#1| (-912))) (-15 -2160 ((-912) |#1|)) (-15 -3377 (|#1|)) (-15 -2913 (|#2| |#1|)) (-15 -3242 (|#2| |#1|)) (-15 -1949 (|#1|)) (-15 -1950 (|#1| |#1|)) (-15 -1951 ((-765) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3642 ((-112) |#1| |#1|)) (-15 -3641 (|#1|)) (-15 -3641 (|#1| (-635 |#2|))) (-15 -3640 (|#1|)) (-15 -3640 (|#1| (-635 |#2|))) (-15 -3639 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3636 ((-112) |#1| |#1|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#2| |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1091)) (T -424))
+((-3521 (*1 *2) (-12 (-4 *4 (-1091)) (-5 *2 (-765)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
+(-10 -8 (-15 -3521 ((-765))) (-15 -2535 (|#1| (-912))) (-15 -2160 ((-912) |#1|)) (-15 -3377 (|#1|)) (-15 -2913 (|#2| |#1|)) (-15 -3242 (|#2| |#1|)) (-15 -1949 (|#1|)) (-15 -1950 (|#1| |#1|)) (-15 -1951 ((-765) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3642 ((-112) |#1| |#1|)) (-15 -3641 (|#1|)) (-15 -3641 (|#1| (-635 |#2|))) (-15 -3640 (|#1|)) (-15 -3640 (|#1| (-635 |#2|))) (-15 -3639 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3636 ((-112) |#1| |#1|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#2| |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)))
+((-2947 (((-112) $ $) 19)) (-1949 (($) 67 (|has| |#1| (-367)))) (-3635 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3637 (($ $ $) 78)) (-3636 (((-112) $ $) 79)) (-1293 (((-112) $ (-765)) 8)) (-3521 (((-765)) 61 (|has| |#1| (-367)))) (-3640 (($ (-635 |#1|)) 74) (($) 73)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-3377 (($) 64 (|has| |#1| (-367)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 70)) (-4126 (((-112) $ (-765)) 9)) (-2913 ((|#1| $) 65 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3242 ((|#1| $) 66 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-2160 (((-912) $) 63 (|has| |#1| (-367)))) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22)) (-3639 (($ $ $) 75)) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-2535 (($ (-912)) 62 (|has| |#1| (-367)))) (-3644 (((-1110) $) 21)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3638 (($ $ |#1|) 77) (($ $ $) 76)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-1950 (($ $) 68 (|has| |#1| (-367)))) (-4353 (((-857) $) 18)) (-1951 (((-765) $) 69)) (-3641 (($ (-635 |#1|)) 72) (($) 71)) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-425 |#1|) (-139) (-1091)) (T -425))
+((-1951 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1091)) (-5 *2 (-765)))) (-1950 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-367)))) (-1949 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-367)) (-4 *2 (-1091)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844)))))
+(-13 (-228 |t#1|) (-1089 |t#1|) (-10 -8 (-6 -4400) (-15 -1951 ((-765) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -1950 ($ $)) (-15 -1949 ($))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -3242 (|t#1| $)) (-15 -2913 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-367) |has| |#1| (-367)) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1089 |#1|) . T) ((-1091) . T) ((-1204) . T))
+((-4248 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4249 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4365 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1091) (-425 |#1|) (-1091) (-425 |#3|)) (T -426))
+((-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1091)) (-4 *5 (-1091)) (-4 *2 (-425 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1091)) (-4 *2 (-1091)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-425 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
+(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1952 (((-580 |#2|) |#2| (-1166)) 35)) (-2255 (((-580 |#2|) |#2| (-1166)) 20)) (-2300 ((|#2| |#2| (-1166)) 25)))
+(((-427 |#1| |#2|) (-10 -7 (-15 -2255 ((-580 |#2|) |#2| (-1166))) (-15 -1952 ((-580 |#2|) |#2| (-1166))) (-15 -2300 (|#2| |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-29 |#1|))) (T -427))
+((-2300 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-427 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4))))) (-1952 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))))
+(-10 -7 (-15 -2255 ((-580 |#2|) |#2| (-1166))) (-15 -1952 ((-580 |#2|) |#2| (-1166))) (-15 -2300 (|#2| |#2| (-1166))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-1954 (($ |#2| |#1|) 35)) (-1953 (($ |#2| |#1|) 33)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-3511 (((-765)) NIL)) (-3040 (($) 10 T CONST)) (-3046 (($) 16 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 34)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-428 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4387)) (IF (|has| |#1| (-6 -4387)) (-6 -4387) |%noBranch|) |%noBranch|) (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-330 |#2|))) (-15 -1954 ($ |#2| |#1|)) (-15 -1953 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-544)))) (-13 (-844) (-21))) (T -428))
+((-4353 (*1 *1 *2) (-12 (-5 *1 (-428 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-544))))) (-4 *3 (-13 (-844) (-21))))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21))) (-5 *1 (-428 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))))) (-1954 (*1 *1 *2 *3) (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))) (-4 *2 (-13 (-844) (-21))))) (-1953 (*1 *1 *2 *3) (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))) (-4 *2 (-13 (-844) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4387)) (IF (|has| |#1| (-6 -4387)) (-6 -4387) |%noBranch|) |%noBranch|) (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-330 |#2|))) (-15 -1954 ($ |#2| |#1|)) (-15 -1953 ($ |#2| |#1|))))
+((-4219 (((-3 |#2| (-635 |#2|)) |#2| (-1166)) 108)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -4219 ((-3 |#2| (-635 |#2|)) |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-29 |#1|))) (T -429))
+((-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1190) (-953) (-29 *5))))))
+(-10 -7 (-15 -4219 ((-3 |#2| (-635 |#2|)) |#2| (-1166))))
+((-3790 ((|#2| |#2| |#2|) 33)) (-3430 (((-113) (-113)) 44)) (-1956 ((|#2| |#2|) 66)) (-1955 ((|#2| |#2|) 69)) (-3789 ((|#2| |#2|) 32)) (-3793 ((|#2| |#2| |#2|) 35)) (-3795 ((|#2| |#2| |#2|) 37)) (-3792 ((|#2| |#2| |#2|) 34)) (-3794 ((|#2| |#2| |#2|) 36)) (-2377 (((-112) (-113)) 42)) (-3797 ((|#2| |#2|) 39)) (-3796 ((|#2| |#2|) 38)) (-3787 ((|#2| |#2|) 27)) (-3791 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3788 ((|#2| |#2| |#2|) 31)))
+(((-430 |#1| |#2|) (-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -3787 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| |#2|)) (-15 -3788 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -3793 (|#2| |#2| |#2|)) (-15 -3794 (|#2| |#2| |#2|)) (-15 -3795 (|#2| |#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1956 (|#2| |#2|))) (-13 (-844) (-554)) (-420 |#1|)) (T -430))
+((-1956 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-1955 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3795 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3794 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3793 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3792 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3790 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3788 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3791 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *4)) (-4 *4 (-420 *3)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-420 *4)))))
+(-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -3787 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| |#2|)) (-15 -3788 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -3793 (|#2| |#2| |#2|)) (-15 -3794 (|#2| |#2| |#2|)) (-15 -3795 (|#2| |#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1956 (|#2| |#2|)))
+((-3215 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1160 |#2|)) (|:| |pol2| (-1160 |#2|)) (|:| |prim| (-1160 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1160 |#2|))) (|:| |prim| (-1160 |#2|))) (-635 |#2|)) 61)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1160 |#2|))) (|:| |prim| (-1160 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1160 |#2|)) (|:| |pol2| (-1160 |#2|)) (|:| |prim| (-1160 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-554) (-844) (-146)) (-420 |#1|)) (T -431))
+((-3215 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-554) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1160 *3)) (|:| |pol2| (-1160 *3)) (|:| |prim| (-1160 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-420 *4)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-554) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1160 *5))) (|:| |prim| (-1160 *5)))) (-5 *1 (-431 *4 *5)))))
+(-10 -7 (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1160 |#2|))) (|:| |prim| (-1160 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1160 |#2|)) (|:| |pol2| (-1160 |#2|)) (|:| |prim| (-1160 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1958 (((-1259)) 19)) (-1957 (((-1160 (-406 (-544))) |#2| (-606 |#2|)) 41) (((-406 (-544)) |#2|) 25)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -1957 ((-406 (-544)) |#2|)) (-15 -1957 ((-1160 (-406 (-544))) |#2| (-606 |#2|))) (-15 -1958 ((-1259)))) (-13 (-844) (-554) (-1031 (-544))) (-420 |#1|)) (T -432))
+((-1958 (*1 *2) (-12 (-4 *3 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1259)) (-5 *1 (-432 *3 *4)) (-4 *4 (-420 *3)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-420 *5)) (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-432 *5 *3)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-432 *4 *3)) (-4 *3 (-420 *4)))))
+(-10 -7 (-15 -1957 ((-406 (-544)) |#2|)) (-15 -1957 ((-1160 (-406 (-544))) |#2| (-606 |#2|))) (-15 -1958 ((-1259))))
+((-4052 (((-112) $) 28)) (-1959 (((-112) $) 30)) (-3660 (((-112) $) 31)) (-1961 (((-112) $) 34)) (-1963 (((-112) $) 29)) (-1962 (((-112) $) 33)) (-4353 (((-857) $) 18) (($ (-1148)) 27) (($ (-1166)) 23) (((-1166) $) 22) (((-1093) $) 21)) (-1960 (((-112) $) 32)) (-3437 (((-112) $ $) 15)))
+(((-433) (-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1148))) (-15 -4353 ($ (-1166))) (-15 -4353 ((-1166) $)) (-15 -4353 ((-1093) $)) (-15 -4052 ((-112) $)) (-15 -1963 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -1962 ((-112) $)) (-15 -1961 ((-112) $)) (-15 -1960 ((-112) $)) (-15 -1959 ((-112) $)) (-15 -3437 ((-112) $ $))))) (T -433))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-433)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-433)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3437 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1148))) (-15 -4353 ($ (-1166))) (-15 -4353 ((-1166) $)) (-15 -4353 ((-1093) $)) (-15 -4052 ((-112) $)) (-15 -1963 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -1962 ((-112) $)) (-15 -1961 ((-112) $)) (-15 -1960 ((-112) $)) (-15 -1959 ((-112) $)) (-15 -3437 ((-112) $ $))))
+((-1965 (((-3 (-404 (-1160 (-406 (-544)))) "failed") |#3|) 70)) (-1964 (((-404 |#3|) |#3|) 34)) (-1967 (((-3 (-404 (-1160 (-48))) "failed") |#3|) 46 (|has| |#2| (-1031 (-48))))) (-1966 (((-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112))) |#3|) 37)))
+(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -1964 ((-404 |#3|) |#3|)) (-15 -1965 ((-3 (-404 (-1160 (-406 (-544)))) "failed") |#3|)) (-15 -1966 ((-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -1967 ((-3 (-404 (-1160 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-554) (-844) (-1031 (-544))) (-420 |#1|) (-1229 |#2|)) (T -434))
+((-1967 (*1 *2 *3) (|partial| -12 (-4 *5 (-1031 (-48))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-404 (-1160 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-1965 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-404 (-1160 (-406 (-544))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-404 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -1964 ((-404 |#3|) |#3|)) (-15 -1965 ((-3 (-404 (-1160 (-406 (-544)))) "failed") |#3|)) (-15 -1966 ((-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -1967 ((-3 (-404 (-1160 (-48))) "failed") |#3|)) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-1976 (((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $) 11)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1974 (($) 32)) (-1971 (($) 38)) (-1972 (($) 34)) (-1969 (($) 36)) (-1973 (($) 33)) (-1970 (($) 35)) (-1968 (($) 37)) (-1975 (((-112) $) 8)) (-2725 (((-635 (-939 (-544))) $) 19)) (-3929 (($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-1166)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-939 (-544))) (-112)) 28)) (-4353 (((-857) $) 23) (($ (-433)) 29)) (-3437 (((-112) $ $) NIL)))
+(((-435) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-433))) (-15 -1976 ((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -2725 ((-635 (-939 (-544))) $)) (-15 -1975 ((-112) $)) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-1166)) (-112))) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-939 (-544))) (-112))) (-15 -1974 ($)) (-15 -1973 ($)) (-15 -1972 ($)) (-15 -1971 ($)) (-15 -1970 ($)) (-15 -1969 ($)) (-15 -1968 ($))))) (T -435))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-435)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-5 *1 (-435)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-635 (-939 (-544)))) (-5 *1 (-435)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-435)))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *3 (-635 (-1166))) (-5 *4 (-112)) (-5 *1 (-435)))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-112)) (-5 *1 (-435)))) (-1974 (*1 *1) (-5 *1 (-435))) (-1973 (*1 *1) (-5 *1 (-435))) (-1972 (*1 *1) (-5 *1 (-435))) (-1971 (*1 *1) (-5 *1 (-435))) (-1970 (*1 *1) (-5 *1 (-435))) (-1969 (*1 *1) (-5 *1 (-435))) (-1968 (*1 *1) (-5 *1 (-435))))
+(-13 (-1091) (-10 -8 (-15 -4353 ($ (-433))) (-15 -1976 ((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -2725 ((-635 (-939 (-544))) $)) (-15 -1975 ((-112) $)) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-1166)) (-112))) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-939 (-544))) (-112))) (-15 -1974 ($)) (-15 -1973 ($)) (-15 -1972 ($)) (-15 -1971 ($)) (-15 -1970 ($)) (-15 -1969 ($)) (-15 -1968 ($))))
+((-2947 (((-112) $ $) NIL)) (-1841 (((-1148) $ (-1148)) NIL)) (-1845 (($ $ (-1148)) NIL)) (-1842 (((-1148) $) NIL)) (-1980 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-1846 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3949 (((-387) $) NIL)) (-3643 (((-1148) $) NIL)) (-1843 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1979 (((-1259) (-1148)) 9)) (-1978 (((-1259) (-1148)) 10)) (-1977 (((-1259)) 11)) (-4353 (((-857) $) NIL)) (-1844 (($ $) 34)) (-3437 (((-112) $ $) NIL)))
+(((-436) (-13 (-364 (-387) (-1148)) (-10 -7 (-15 -1980 ((-387) (-387) (-387))) (-15 -1980 ((-387) (-387))) (-15 -1979 ((-1259) (-1148))) (-15 -1978 ((-1259) (-1148))) (-15 -1977 ((-1259)))))) (T -436))
+((-1980 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436)))) (-1977 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-436)))))
+(-13 (-364 (-387) (-1148)) (-10 -7 (-15 -1980 ((-387) (-387) (-387))) (-15 -1980 ((-387) (-387))) (-15 -1979 ((-1259) (-1148))) (-15 -1978 ((-1259) (-1148))) (-15 -1977 ((-1259)))))
+((-2947 (((-112) $ $) NIL)) (-3949 (((-1166) $) 8)) (-3643 (((-1148) $) 16)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 13)))
+(((-437 |#1|) (-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $)))) (-1166)) (T -437))
+((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-437 *3)) (-14 *3 *2))))
+(-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $))))
+((-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-1253 (-692))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 11)))
(((-438) (-139)) (T -438))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-692))) (-4 *1 (-438)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-438)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) (-4 *1 (-438)))))
-(-13 (-394) (-10 -8 (-15 -4064 ($ (-1254 (-692)))) (-15 -4064 ($ (-638 (-329)))) (-15 -4064 ($ (-329))) (-15 -4064 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))))))
-(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
-((-4061 (((-3 $ "failed") (-1254 (-315 (-378)))) 21) (((-3 $ "failed") (-1254 (-315 (-561)))) 19) (((-3 $ "failed") (-1254 (-945 (-378)))) 17) (((-3 $ "failed") (-1254 (-945 (-561)))) 15) (((-3 $ "failed") (-1254 (-406 (-945 (-378))))) 13) (((-3 $ "failed") (-1254 (-406 (-945 (-561))))) 11)) (-3979 (($ (-1254 (-315 (-378)))) 22) (($ (-1254 (-315 (-561)))) 20) (($ (-1254 (-945 (-378)))) 18) (($ (-1254 (-945 (-561)))) 16) (($ (-1254 (-406 (-945 (-378))))) 14) (($ (-1254 (-406 (-945 (-561))))) 12)) (-3107 (((-1259) $) 7)) (-4064 (((-856) $) 8) (($ (-638 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) 23)))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-692))) (-4 *1 (-438)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-438)))))
+(-13 (-395) (-10 -8 (-15 -4353 ($ (-1253 (-692)))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))))))
+(((-608 (-857)) . T) ((-395) . T) ((-1204) . T))
+((-3558 (((-3 $ "failed") (-1253 (-313 (-377)))) 21) (((-3 $ "failed") (-1253 (-313 (-544)))) 19) (((-3 $ "failed") (-1253 (-939 (-377)))) 17) (((-3 $ "failed") (-1253 (-939 (-544)))) 15) (((-3 $ "failed") (-1253 (-406 (-939 (-377))))) 13) (((-3 $ "failed") (-1253 (-406 (-939 (-544))))) 11)) (-3557 (($ (-1253 (-313 (-377)))) 22) (($ (-1253 (-313 (-544)))) 20) (($ (-1253 (-939 (-377)))) 18) (($ (-1253 (-939 (-544)))) 16) (($ (-1253 (-406 (-939 (-377))))) 14) (($ (-1253 (-406 (-939 (-544))))) 12)) (-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 23)))
(((-439) (-139)) (T -439))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-439)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329))))) (-4 *1 (-439)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1254 (-315 (-378)))) (-4 *1 (-439)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-1254 (-315 (-378)))) (-4 *1 (-439)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1254 (-315 (-561)))) (-4 *1 (-439)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-1254 (-315 (-561)))) (-4 *1 (-439)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1254 (-945 (-378)))) (-4 *1 (-439)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-1254 (-945 (-378)))) (-4 *1 (-439)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1254 (-945 (-561)))) (-4 *1 (-439)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-1254 (-945 (-561)))) (-4 *1 (-439)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1254 (-406 (-945 (-378))))) (-4 *1 (-439)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-1254 (-406 (-945 (-378))))) (-4 *1 (-439)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1254 (-406 (-945 (-561))))) (-4 *1 (-439)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-1254 (-406 (-945 (-561))))) (-4 *1 (-439)))))
-(-13 (-394) (-10 -8 (-15 -4064 ($ (-638 (-329)))) (-15 -4064 ($ (-329))) (-15 -4064 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))) (-15 -3979 ($ (-1254 (-315 (-378))))) (-15 -4061 ((-3 $ "failed") (-1254 (-315 (-378))))) (-15 -3979 ($ (-1254 (-315 (-561))))) (-15 -4061 ((-3 $ "failed") (-1254 (-315 (-561))))) (-15 -3979 ($ (-1254 (-945 (-378))))) (-15 -4061 ((-3 $ "failed") (-1254 (-945 (-378))))) (-15 -3979 ($ (-1254 (-945 (-561))))) (-15 -4061 ((-3 $ "failed") (-1254 (-945 (-561))))) (-15 -3979 ($ (-1254 (-406 (-945 (-378)))))) (-15 -4061 ((-3 $ "failed") (-1254 (-406 (-945 (-378)))))) (-15 -3979 ($ (-1254 (-406 (-945 (-561)))))) (-15 -4061 ((-3 $ "failed") (-1254 (-406 (-945 (-561))))))))
-(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
-((-2095 (((-112)) 17)) (-4240 (((-112) (-112)) 18)) (-1296 (((-112)) 13)) (-2977 (((-112) (-112)) 14)) (-4170 (((-112)) 15)) (-3291 (((-112) (-112)) 16)) (-2535 (((-914) (-914)) 21) (((-914)) 20)) (-3195 (((-765) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561))))) 41)) (-2997 (((-914) (-914)) 23) (((-914)) 22)) (-3807 (((-2 (|:| -2425 (-561)) (|:| -2762 (-638 |#1|))) |#1|) 61)) (-2829 (((-417 |#1|) (-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561))))))) 126)) (-4354 (((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112)) 152)) (-2989 (((-417 |#1|) |#1| (-765) (-765)) 165) (((-417 |#1|) |#1| (-638 (-765)) (-765)) 162) (((-417 |#1|) |#1| (-638 (-765))) 164) (((-417 |#1|) |#1| (-765)) 163) (((-417 |#1|) |#1|) 161)) (-4038 (((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765) (-112)) 167) (((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765)) 168) (((-3 |#1| "failed") (-914) |#1| (-638 (-765))) 170) (((-3 |#1| "failed") (-914) |#1| (-765)) 169) (((-3 |#1| "failed") (-914) |#1|) 171)) (-1633 (((-417 |#1|) |#1| (-765) (-765)) 160) (((-417 |#1|) |#1| (-638 (-765)) (-765)) 156) (((-417 |#1|) |#1| (-638 (-765))) 158) (((-417 |#1|) |#1| (-765)) 157) (((-417 |#1|) |#1|) 155)) (-4212 (((-112) |#1|) 36)) (-2312 (((-731 (-765)) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561))))) 66)) (-2874 (((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112) (-1092 (-765)) (-765)) 154)))
-(((-440 |#1|) (-10 -7 (-15 -2829 ((-417 |#1|) (-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))))) (-15 -2312 ((-731 (-765)) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))))) (-15 -2997 ((-914))) (-15 -2997 ((-914) (-914))) (-15 -2535 ((-914))) (-15 -2535 ((-914) (-914))) (-15 -3195 ((-765) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))))) (-15 -3807 ((-2 (|:| -2425 (-561)) (|:| -2762 (-638 |#1|))) |#1|)) (-15 -2095 ((-112))) (-15 -4240 ((-112) (-112))) (-15 -1296 ((-112))) (-15 -2977 ((-112) (-112))) (-15 -4212 ((-112) |#1|)) (-15 -4170 ((-112))) (-15 -3291 ((-112) (-112))) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -1633 ((-417 |#1|) |#1| (-765))) (-15 -1633 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -1633 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -1633 ((-417 |#1|) |#1| (-765) (-765))) (-15 -2989 ((-417 |#1|) |#1|)) (-15 -2989 ((-417 |#1|) |#1| (-765))) (-15 -2989 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -2989 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -2989 ((-417 |#1|) |#1| (-765) (-765))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1|)) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-765))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765) (-112))) (-15 -4354 ((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112))) (-15 -2874 ((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112) (-1092 (-765)) (-765)))) (-1230 (-561))) (T -440))
-((-2874 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1092 (-765))) (-5 *6 (-765)) (-5 *2 (-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561))))))) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-4354 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561))))))) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-4038 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1230 (-561))))) (-4038 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1230 (-561))))) (-4038 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *1 (-440 *2)) (-4 *2 (-1230 (-561))))) (-4038 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1230 (-561))))) (-4038 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-914)) (-5 *1 (-440 *2)) (-4 *2 (-1230 (-561))))) (-2989 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2989 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2989 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2989 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2989 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-1633 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-3291 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-4170 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-4212 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2977 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-1296 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2095 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-3807 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2425 (-561)) (|:| -2762 (-638 *3)))) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1633 *4) (|:| -3768 (-561))))) (-4 *4 (-1230 (-561))) (-5 *2 (-765)) (-5 *1 (-440 *4)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2535 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2997 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1633 *4) (|:| -3768 (-561))))) (-4 *4 (-1230 (-561))) (-5 *2 (-731 (-765))) (-5 *1 (-440 *4)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| *4) (|:| -3453 (-561))))))) (-4 *4 (-1230 (-561))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
-(-10 -7 (-15 -2829 ((-417 |#1|) (-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))))) (-15 -2312 ((-731 (-765)) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))))) (-15 -2997 ((-914))) (-15 -2997 ((-914) (-914))) (-15 -2535 ((-914))) (-15 -2535 ((-914) (-914))) (-15 -3195 ((-765) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))))) (-15 -3807 ((-2 (|:| -2425 (-561)) (|:| -2762 (-638 |#1|))) |#1|)) (-15 -2095 ((-112))) (-15 -4240 ((-112) (-112))) (-15 -1296 ((-112))) (-15 -2977 ((-112) (-112))) (-15 -4212 ((-112) |#1|)) (-15 -4170 ((-112))) (-15 -3291 ((-112) (-112))) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -1633 ((-417 |#1|) |#1| (-765))) (-15 -1633 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -1633 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -1633 ((-417 |#1|) |#1| (-765) (-765))) (-15 -2989 ((-417 |#1|) |#1|)) (-15 -2989 ((-417 |#1|) |#1| (-765))) (-15 -2989 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -2989 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -2989 ((-417 |#1|) |#1| (-765) (-765))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1|)) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-765))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765))) (-15 -4038 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765) (-112))) (-15 -4354 ((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112))) (-15 -2874 ((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112) (-1092 (-765)) (-765))))
-((-3673 (((-561) |#2|) 48) (((-561) |#2| (-765)) 47)) (-2042 (((-561) |#2|) 55)) (-2089 ((|#3| |#2|) 25)) (-2072 ((|#3| |#2| (-914)) 14)) (-4310 ((|#3| |#2|) 15)) (-1514 ((|#3| |#2|) 9)) (-3093 ((|#3| |#2|) 10)) (-1732 ((|#3| |#2| (-914)) 62) ((|#3| |#2|) 30)) (-1848 (((-561) |#2|) 57)))
-(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -1848 ((-561) |#2|)) (-15 -1732 (|#3| |#2|)) (-15 -1732 (|#3| |#2| (-914))) (-15 -2042 ((-561) |#2|)) (-15 -3673 ((-561) |#2| (-765))) (-15 -3673 ((-561) |#2|)) (-15 -2072 (|#3| |#2| (-914))) (-15 -2089 (|#3| |#2|)) (-15 -1514 (|#3| |#2|)) (-15 -3093 (|#3| |#2|)) (-15 -4310 (|#3| |#2|))) (-1042) (-1230 |#1|) (-13 (-403) (-1031 |#1|) (-362) (-1190) (-283))) (T -441))
-((-4310 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4)))) (-1514 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4)))) (-2089 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1230 *5)))) (-3673 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1230 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-3673 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1230 *5)) (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))))) (-2042 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1230 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-1732 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1230 *5)))) (-1732 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1230 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
-(-10 -7 (-15 -1848 ((-561) |#2|)) (-15 -1732 (|#3| |#2|)) (-15 -1732 (|#3| |#2| (-914))) (-15 -2042 ((-561) |#2|)) (-15 -3673 ((-561) |#2| (-765))) (-15 -3673 ((-561) |#2|)) (-15 -2072 (|#3| |#2| (-914))) (-15 -2089 (|#3| |#2|)) (-15 -1514 (|#3| |#2|)) (-15 -3093 (|#3| |#2|)) (-15 -4310 (|#3| |#2|)))
-((-1936 ((|#2| (-1254 |#1|)) 36)) (-1838 ((|#2| |#2| |#1|) 49)) (-2975 ((|#2| |#2| |#1|) 41)) (-2659 ((|#2| |#2|) 38)) (-3147 (((-112) |#2|) 30)) (-1686 (((-638 |#2|) (-914) (-417 |#2|)) 17)) (-4038 ((|#2| (-914) (-417 |#2|)) 21)) (-2312 (((-731 (-765)) (-417 |#2|)) 25)))
-(((-442 |#1| |#2|) (-10 -7 (-15 -3147 ((-112) |#2|)) (-15 -1936 (|#2| (-1254 |#1|))) (-15 -2659 (|#2| |#2|)) (-15 -2975 (|#2| |#2| |#1|)) (-15 -1838 (|#2| |#2| |#1|)) (-15 -2312 ((-731 (-765)) (-417 |#2|))) (-15 -4038 (|#2| (-914) (-417 |#2|))) (-15 -1686 ((-638 |#2|) (-914) (-417 |#2|)))) (-1042) (-1230 |#1|)) (T -442))
-((-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-417 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-1042)) (-5 *2 (-638 *6)) (-5 *1 (-442 *5 *6)))) (-4038 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-417 *2)) (-4 *2 (-1230 *5)) (-5 *1 (-442 *5 *2)) (-4 *5 (-1042)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-1042)) (-5 *2 (-731 (-765))) (-5 *1 (-442 *4 *5)))) (-1838 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1230 *3)))) (-2975 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1230 *3)))) (-2659 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1230 *3)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1254 *4)) (-4 *4 (-1042)) (-4 *2 (-1230 *4)) (-5 *1 (-442 *4 *2)))) (-3147 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -3147 ((-112) |#2|)) (-15 -1936 (|#2| (-1254 |#1|))) (-15 -2659 (|#2| |#2|)) (-15 -2975 (|#2| |#2| |#1|)) (-15 -1838 (|#2| |#2| |#1|)) (-15 -2312 ((-731 (-765)) (-417 |#2|))) (-15 -4038 (|#2| (-914) (-417 |#2|))) (-15 -1686 ((-638 |#2|) (-914) (-417 |#2|))))
-((-2710 (((-765)) 41)) (-3568 (((-765)) 23 (|has| |#1| (-403))) (((-765) (-765)) 22 (|has| |#1| (-403)))) (-2711 (((-561) |#1|) 18 (|has| |#1| (-403)))) (-3682 (((-561) |#1|) 20 (|has| |#1| (-403)))) (-3419 (((-765)) 40) (((-765) (-765)) 39)) (-1502 ((|#1| (-765) (-561)) 29)) (-3628 (((-1259)) 43)))
-(((-443 |#1|) (-10 -7 (-15 -1502 (|#1| (-765) (-561))) (-15 -3419 ((-765) (-765))) (-15 -3419 ((-765))) (-15 -2710 ((-765))) (-15 -3628 ((-1259))) (IF (|has| |#1| (-403)) (PROGN (-15 -3682 ((-561) |#1|)) (-15 -2711 ((-561) |#1|)) (-15 -3568 ((-765) (-765))) (-15 -3568 ((-765)))) |%noBranch|)) (-1042)) (T -443))
-((-3568 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-3568 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2711 (*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-3682 (*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-3628 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2710 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-3419 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-561)) (-5 *1 (-443 *2)) (-4 *2 (-1042)))))
-(-10 -7 (-15 -1502 (|#1| (-765) (-561))) (-15 -3419 ((-765) (-765))) (-15 -3419 ((-765))) (-15 -2710 ((-765))) (-15 -3628 ((-1259))) (IF (|has| |#1| (-403)) (PROGN (-15 -3682 ((-561) |#1|)) (-15 -2711 ((-561) |#1|)) (-15 -3568 ((-765) (-765))) (-15 -3568 ((-765)))) |%noBranch|))
-((-4330 (((-638 (-561)) (-561)) 60)) (-2725 (((-112) (-168 (-561))) 64)) (-1633 (((-417 (-168 (-561))) (-168 (-561))) 59)))
-(((-444) (-10 -7 (-15 -1633 ((-417 (-168 (-561))) (-168 (-561)))) (-15 -4330 ((-638 (-561)) (-561))) (-15 -2725 ((-112) (-168 (-561)))))) (T -444))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-168 (-561))) (-5 *2 (-112)) (-5 *1 (-444)))) (-4330 (*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-444)) (-5 *3 (-561)))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-417 (-168 (-561)))) (-5 *1 (-444)) (-5 *3 (-168 (-561))))))
-(-10 -7 (-15 -1633 ((-417 (-168 (-561))) (-168 (-561)))) (-15 -4330 ((-638 (-561)) (-561))) (-15 -2725 ((-112) (-168 (-561)))))
-((-2325 ((|#4| |#4| (-638 |#4|)) 60)) (-2876 (((-638 |#4|) (-638 |#4|) (-1148) (-1148)) 17) (((-638 |#4|) (-638 |#4|) (-1148)) 16) (((-638 |#4|) (-638 |#4|)) 11)))
-(((-445 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 (|#4| |#4| (-638 |#4|))) (-15 -2876 ((-638 |#4|) (-638 |#4|))) (-15 -2876 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -2876 ((-638 |#4|) (-638 |#4|) (-1148) (-1148)))) (-306) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -445))
-((-2876 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2876 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6)))) (-2325 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2325 (|#4| |#4| (-638 |#4|))) (-15 -2876 ((-638 |#4|) (-638 |#4|))) (-15 -2876 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -2876 ((-638 |#4|) (-638 |#4|) (-1148) (-1148))))
-((-2618 (((-638 (-638 |#4|)) (-638 |#4|) (-112)) 72) (((-638 (-638 |#4|)) (-638 |#4|)) 71) (((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|) (-112)) 65) (((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|)) 66)) (-1710 (((-638 (-638 |#4|)) (-638 |#4|) (-112)) 41) (((-638 (-638 |#4|)) (-638 |#4|)) 62)))
-(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1710 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -1710 ((-638 (-638 |#4|)) (-638 |#4|) (-112))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|) (-112))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|) (-112)))) (-13 (-306) (-146)) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -446))
-((-2618 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-2618 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))) (-2618 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-1710 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))) (-1710 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
-(-10 -7 (-15 -1710 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -1710 ((-638 (-638 |#4|)) (-638 |#4|) (-112))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|) (-112))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -2618 ((-638 (-638 |#4|)) (-638 |#4|) (-112))))
-((-3497 (((-765) |#4|) 12)) (-2478 (((-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|))) |#4| (-765) (-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|)))) 31)) (-1570 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1727 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-2353 ((|#4| |#4| (-638 |#4|)) 39)) (-1841 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-638 |#4|)) 69)) (-2469 (((-1259) |#4|) 41)) (-3674 (((-1259) (-638 |#4|)) 50)) (-3556 (((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561)) 47)) (-3817 (((-1259) (-561)) 78)) (-2422 (((-638 |#4|) (-638 |#4|)) 76)) (-3489 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|)) |#4| (-765)) 25)) (-3396 (((-561) |#4|) 77)) (-2954 ((|#4| |#4|) 29)) (-4200 (((-638 |#4|) (-638 |#4|) (-561) (-561)) 55)) (-3656 (((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561) (-561)) 88)) (-3551 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1312 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2509 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3449 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3206 (((-112) |#2| |#2|) 56)) (-2344 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3706 (((-112) |#2| |#2| |#2| |#2|) 59)) (-2658 ((|#4| |#4| (-638 |#4|)) 70)))
-(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2658 (|#4| |#4| (-638 |#4|))) (-15 -2353 (|#4| |#4| (-638 |#4|))) (-15 -4200 ((-638 |#4|) (-638 |#4|) (-561) (-561))) (-15 -1312 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3206 ((-112) |#2| |#2|)) (-15 -3706 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2344 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3449 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2509 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1841 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-638 |#4|))) (-15 -2954 (|#4| |#4|)) (-15 -2478 ((-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|))) |#4| (-765) (-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|))))) (-15 -1727 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1570 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2422 ((-638 |#4|) (-638 |#4|))) (-15 -3396 ((-561) |#4|)) (-15 -2469 ((-1259) |#4|)) (-15 -3556 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561))) (-15 -3656 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561) (-561))) (-15 -3674 ((-1259) (-638 |#4|))) (-15 -3817 ((-1259) (-561))) (-15 -3551 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3489 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|)) |#4| (-765))) (-15 -3497 ((-765) |#4|))) (-450) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -447))
-((-3497 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-3489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -3590 *4))) (-5 *5 (-765)) (-4 *4 (-942 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-447 *6 *7 *8 *4)))) (-3551 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3656 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *4)))) (-3556 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *4)))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-3396 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-561)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1570 (*1 *2 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-787)) (-4 *2 (-942 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2)) (-4 *4 (-450)) (-4 *6 (-844)))) (-2478 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 *3)))) (-5 *4 (-765)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *3)))) (-2954 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-447 *5 *6 *7 *3)))) (-2509 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-787)) (-4 *6 (-942 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-5 *1 (-447 *4 *3 *5 *6)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))) (-2344 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-787)) (-4 *3 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *3)))) (-3706 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-4200 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2353 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))) (-2658 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2658 (|#4| |#4| (-638 |#4|))) (-15 -2353 (|#4| |#4| (-638 |#4|))) (-15 -4200 ((-638 |#4|) (-638 |#4|) (-561) (-561))) (-15 -1312 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3206 ((-112) |#2| |#2|)) (-15 -3706 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2344 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3449 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2509 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1841 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-638 |#4|))) (-15 -2954 (|#4| |#4|)) (-15 -2478 ((-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|))) |#4| (-765) (-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|))))) (-15 -1727 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1570 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2422 ((-638 |#4|) (-638 |#4|))) (-15 -3396 ((-561) |#4|)) (-15 -2469 ((-1259) |#4|)) (-15 -3556 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561))) (-15 -3656 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561) (-561))) (-15 -3674 ((-1259) (-638 |#4|))) (-15 -3817 ((-1259) (-561))) (-15 -3551 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3489 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -3590 |#4|)) |#4| (-765))) (-15 -3497 ((-765) |#4|)))
-((-3750 ((|#4| |#4| (-638 |#4|)) 22 (|has| |#1| (-362)))) (-1907 (((-638 |#4|) (-638 |#4|) (-1148) (-1148)) 41) (((-638 |#4|) (-638 |#4|) (-1148)) 40) (((-638 |#4|) (-638 |#4|)) 35)))
-(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1907 ((-638 |#4|) (-638 |#4|))) (-15 -1907 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -1907 ((-638 |#4|) (-638 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -3750 (|#4| |#4| (-638 |#4|))) |%noBranch|)) (-450) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -448))
-((-3750 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2)))) (-1907 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7)))) (-1907 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1907 ((-638 |#4|) (-638 |#4|))) (-15 -1907 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -1907 ((-638 |#4|) (-638 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -3750 (|#4| |#4| (-638 |#4|))) |%noBranch|))
-((-1563 (($ $ $) 14) (($ (-638 $)) 21)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 41)) (-1603 (($ $ $) NIL) (($ (-638 $)) 22)))
-(((-449 |#1|) (-10 -8 (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -1563 (|#1| (-638 |#1|))) (-15 -1563 (|#1| |#1| |#1|)) (-15 -1603 (|#1| (-638 |#1|))) (-15 -1603 (|#1| |#1| |#1|))) (-450)) (T -449))
-NIL
-(-10 -8 (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -1563 (|#1| (-638 |#1|))) (-15 -1563 (|#1| |#1| |#1|)) (-15 -1603 (|#1| (-638 |#1|))) (-15 -1603 (|#1| |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1748 (((-3 $ "failed") $ $) 43)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439)))))
+(-13 (-395) (-10 -8 (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -3557 ($ (-1253 (-313 (-377))))) (-15 -3558 ((-3 $ "failed") (-1253 (-313 (-377))))) (-15 -3557 ($ (-1253 (-313 (-544))))) (-15 -3558 ((-3 $ "failed") (-1253 (-313 (-544))))) (-15 -3557 ($ (-1253 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-1253 (-939 (-377))))) (-15 -3557 ($ (-1253 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-1253 (-939 (-544))))) (-15 -3557 ($ (-1253 (-406 (-939 (-377)))))) (-15 -3558 ((-3 $ "failed") (-1253 (-406 (-939 (-377)))))) (-15 -3557 ($ (-1253 (-406 (-939 (-544)))))) (-15 -3558 ((-3 $ "failed") (-1253 (-406 (-939 (-544))))))))
+(((-608 (-857)) . T) ((-395) . T) ((-1204) . T))
+((-1986 (((-112)) 17)) (-1987 (((-112) (-112)) 18)) (-1988 (((-112)) 13)) (-1989 (((-112) (-112)) 14)) (-1991 (((-112)) 15)) (-1992 (((-112) (-112)) 16)) (-1983 (((-912) (-912)) 21) (((-912)) 20)) (-1984 (((-765) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544))))) 41)) (-1982 (((-912) (-912)) 23) (((-912)) 22)) (-1985 (((-2 (|:| -2957 (-544)) (|:| -2812 (-635 |#1|))) |#1|) 61)) (-1981 (((-404 |#1|) (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544))))))) 126)) (-4141 (((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112)) 152)) (-4140 (((-404 |#1|) |#1| (-765) (-765)) 165) (((-404 |#1|) |#1| (-635 (-765)) (-765)) 162) (((-404 |#1|) |#1| (-635 (-765))) 164) (((-404 |#1|) |#1| (-765)) 163) (((-404 |#1|) |#1|) 161)) (-2003 (((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765) (-112)) 167) (((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765)) 168) (((-3 |#1| "failed") (-912) |#1| (-635 (-765))) 170) (((-3 |#1| "failed") (-912) |#1| (-765)) 169) (((-3 |#1| "failed") (-912) |#1|) 171)) (-4139 (((-404 |#1|) |#1| (-765) (-765)) 160) (((-404 |#1|) |#1| (-635 (-765)) (-765)) 156) (((-404 |#1|) |#1| (-635 (-765))) 158) (((-404 |#1|) |#1| (-765)) 157) (((-404 |#1|) |#1|) 155)) (-1990 (((-112) |#1|) 36)) (-2002 (((-730 (-765)) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544))))) 66)) (-1993 (((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112) (-1087 (-765)) (-765)) 154)))
+(((-440 |#1|) (-10 -7 (-15 -1981 ((-404 |#1|) (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))))) (-15 -2002 ((-730 (-765)) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1982 ((-912))) (-15 -1982 ((-912) (-912))) (-15 -1983 ((-912))) (-15 -1983 ((-912) (-912))) (-15 -1984 ((-765) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1985 ((-2 (|:| -2957 (-544)) (|:| -2812 (-635 |#1|))) |#1|)) (-15 -1986 ((-112))) (-15 -1987 ((-112) (-112))) (-15 -1988 ((-112))) (-15 -1989 ((-112) (-112))) (-15 -1990 ((-112) |#1|)) (-15 -1991 ((-112))) (-15 -1992 ((-112) (-112))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1| (-765))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4139 ((-404 |#1|) |#1| (-765) (-765))) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1| (-765))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4140 ((-404 |#1|) |#1| (-765) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1|)) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765) (-112))) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112))) (-15 -1993 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112) (-1087 (-765)) (-765)))) (-1229 (-544))) (T -440))
+((-1993 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1087 (-765))) (-5 *6 (-765)) (-5 *2 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-912)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-4140 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1991 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1990 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1988 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1986 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1985 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2957 (-544)) (|:| -2812 (-635 *3)))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544))))) (-4 *4 (-1229 (-544))) (-5 *2 (-765)) (-5 *1 (-440 *4)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1983 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1982 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544))))) (-4 *4 (-1229 (-544))) (-5 *2 (-730 (-765))) (-5 *1 (-440 *4)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *4) (|:| -2530 (-544))))))) (-4 *4 (-1229 (-544))) (-5 *2 (-404 *4)) (-5 *1 (-440 *4)))))
+(-10 -7 (-15 -1981 ((-404 |#1|) (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))))) (-15 -2002 ((-730 (-765)) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1982 ((-912))) (-15 -1982 ((-912) (-912))) (-15 -1983 ((-912))) (-15 -1983 ((-912) (-912))) (-15 -1984 ((-765) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1985 ((-2 (|:| -2957 (-544)) (|:| -2812 (-635 |#1|))) |#1|)) (-15 -1986 ((-112))) (-15 -1987 ((-112) (-112))) (-15 -1988 ((-112))) (-15 -1989 ((-112) (-112))) (-15 -1990 ((-112) |#1|)) (-15 -1991 ((-112))) (-15 -1992 ((-112) (-112))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1| (-765))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4139 ((-404 |#1|) |#1| (-765) (-765))) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1| (-765))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4140 ((-404 |#1|) |#1| (-765) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1|)) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765) (-112))) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112))) (-15 -1993 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112) (-1087 (-765)) (-765))))
+((-1997 (((-544) |#2|) 48) (((-544) |#2| (-765)) 47)) (-1996 (((-544) |#2|) 55)) (-1998 ((|#3| |#2|) 25)) (-3517 ((|#3| |#2| (-912)) 14)) (-4240 ((|#3| |#2|) 15)) (-1999 ((|#3| |#2|) 9)) (-2982 ((|#3| |#2|) 10)) (-1995 ((|#3| |#2| (-912)) 62) ((|#3| |#2|) 30)) (-1994 (((-544) |#2|) 57)))
+(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -1994 ((-544) |#2|)) (-15 -1995 (|#3| |#2|)) (-15 -1995 (|#3| |#2| (-912))) (-15 -1996 ((-544) |#2|)) (-15 -1997 ((-544) |#2| (-765))) (-15 -1997 ((-544) |#2|)) (-15 -3517 (|#3| |#2| (-912))) (-15 -1998 (|#3| |#2|)) (-15 -1999 (|#3| |#2|)) (-15 -2982 (|#3| |#2|)) (-15 -4240 (|#3| |#2|))) (-1042) (-1229 |#1|) (-13 (-403) (-1031 |#1|) (-362) (-1190) (-283))) (T -441))
+((-4240 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-2982 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-1998 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))) (-1997 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1229 *5)) (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))))) (-1996 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-1995 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))) (-1995 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(-10 -7 (-15 -1994 ((-544) |#2|)) (-15 -1995 (|#3| |#2|)) (-15 -1995 (|#3| |#2| (-912))) (-15 -1996 ((-544) |#2|)) (-15 -1997 ((-544) |#2| (-765))) (-15 -1997 ((-544) |#2|)) (-15 -3517 (|#3| |#2| (-912))) (-15 -1998 (|#3| |#2|)) (-15 -1999 (|#3| |#2|)) (-15 -2982 (|#3| |#2|)) (-15 -4240 (|#3| |#2|)))
+((-3758 ((|#2| (-1253 |#1|)) 36)) (-2001 ((|#2| |#2| |#1|) 49)) (-2000 ((|#2| |#2| |#1|) 41)) (-2417 ((|#2| |#2|) 38)) (-3574 (((-112) |#2|) 30)) (-2004 (((-635 |#2|) (-912) (-404 |#2|)) 17)) (-2003 ((|#2| (-912) (-404 |#2|)) 21)) (-2002 (((-730 (-765)) (-404 |#2|)) 25)))
+(((-442 |#1| |#2|) (-10 -7 (-15 -3574 ((-112) |#2|)) (-15 -3758 (|#2| (-1253 |#1|))) (-15 -2417 (|#2| |#2|)) (-15 -2000 (|#2| |#2| |#1|)) (-15 -2001 (|#2| |#2| |#1|)) (-15 -2002 ((-730 (-765)) (-404 |#2|))) (-15 -2003 (|#2| (-912) (-404 |#2|))) (-15 -2004 ((-635 |#2|) (-912) (-404 |#2|)))) (-1042) (-1229 |#1|)) (T -442))
+((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-404 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-1042)) (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-404 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-442 *5 *2)) (-4 *5 (-1042)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-404 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-730 (-765))) (-5 *1 (-442 *4 *5)))) (-2001 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-2000 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-1042)) (-4 *2 (-1229 *4)) (-5 *1 (-442 *4 *2)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3574 ((-112) |#2|)) (-15 -3758 (|#2| (-1253 |#1|))) (-15 -2417 (|#2| |#2|)) (-15 -2000 (|#2| |#2| |#1|)) (-15 -2001 (|#2| |#2| |#1|)) (-15 -2002 ((-730 (-765)) (-404 |#2|))) (-15 -2003 (|#2| (-912) (-404 |#2|))) (-15 -2004 ((-635 |#2|) (-912) (-404 |#2|))))
+((-2007 (((-765)) 41)) (-2011 (((-765)) 23 (|has| |#1| (-403))) (((-765) (-765)) 22 (|has| |#1| (-403)))) (-2010 (((-544) |#1|) 18 (|has| |#1| (-403)))) (-2009 (((-544) |#1|) 20 (|has| |#1| (-403)))) (-2006 (((-765)) 40) (((-765) (-765)) 39)) (-2005 ((|#1| (-765) (-544)) 29)) (-2008 (((-1259)) 43)))
+(((-443 |#1|) (-10 -7 (-15 -2005 (|#1| (-765) (-544))) (-15 -2006 ((-765) (-765))) (-15 -2006 ((-765))) (-15 -2007 ((-765))) (-15 -2008 ((-1259))) (IF (|has| |#1| (-403)) (PROGN (-15 -2009 ((-544) |#1|)) (-15 -2010 ((-544) |#1|)) (-15 -2011 ((-765) (-765))) (-15 -2011 ((-765)))) |%noBranch|)) (-1042)) (T -443))
+((-2011 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2010 (*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2009 (*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2008 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2007 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2006 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-544)) (-5 *1 (-443 *2)) (-4 *2 (-1042)))))
+(-10 -7 (-15 -2005 (|#1| (-765) (-544))) (-15 -2006 ((-765) (-765))) (-15 -2006 ((-765))) (-15 -2007 ((-765))) (-15 -2008 ((-1259))) (IF (|has| |#1| (-403)) (PROGN (-15 -2009 ((-544) |#1|)) (-15 -2010 ((-544) |#1|)) (-15 -2011 ((-765) (-765))) (-15 -2011 ((-765)))) |%noBranch|))
+((-2012 (((-635 (-544)) (-544)) 60)) (-4130 (((-112) (-167 (-544))) 64)) (-4139 (((-404 (-167 (-544))) (-167 (-544))) 59)))
+(((-444) (-10 -7 (-15 -4139 ((-404 (-167 (-544))) (-167 (-544)))) (-15 -2012 ((-635 (-544)) (-544))) (-15 -4130 ((-112) (-167 (-544)))))) (T -444))
+((-4130 (*1 *2 *3) (-12 (-5 *3 (-167 (-544))) (-5 *2 (-112)) (-5 *1 (-444)))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-444)) (-5 *3 (-544)))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 (-167 (-544)))) (-5 *1 (-444)) (-5 *3 (-167 (-544))))))
+(-10 -7 (-15 -4139 ((-404 (-167 (-544))) (-167 (-544)))) (-15 -2012 ((-635 (-544)) (-544))) (-15 -4130 ((-112) (-167 (-544)))))
+((-3329 ((|#4| |#4| (-635 |#4|)) 22 (|has| |#1| (-362)))) (-2374 (((-635 |#4|) (-635 |#4|) (-1148) (-1148)) 41) (((-635 |#4|) (-635 |#4|) (-1148)) 40) (((-635 |#4|) (-635 |#4|)) 35)))
+(((-445 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2374 ((-635 |#4|) (-635 |#4|))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -3329 (|#4| |#4| (-635 |#4|))) |%noBranch|)) (-450) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -445))
+((-3329 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2)))) (-2374 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2374 ((-635 |#4|) (-635 |#4|))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -3329 (|#4| |#4| (-635 |#4|))) |%noBranch|))
+((-2013 ((|#4| |#4| (-635 |#4|)) 60)) (-2014 (((-635 |#4|) (-635 |#4|) (-1148) (-1148)) 17) (((-635 |#4|) (-635 |#4|) (-1148)) 16) (((-635 |#4|) (-635 |#4|)) 11)))
+(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2013 (|#4| |#4| (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148) (-1148)))) (-306) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -446))
+((-2014 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-446 *3 *4 *5 *6)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2013 (|#4| |#4| (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148) (-1148))))
+((-2016 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 72) (((-635 (-635 |#4|)) (-635 |#4|)) 71) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112)) 65) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|)) 66)) (-2015 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 41) (((-635 (-635 |#4|)) (-635 |#4|)) 62)))
+(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-112)))) (-13 (-306) (-146)) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -447))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-2016 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-2016 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(-10 -7 (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-112))))
+((-2040 (((-765) |#4|) 12)) (-2028 (((-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))) |#4| (-765) (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)))) 31)) (-2030 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2029 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-2018 ((|#4| |#4| (-635 |#4|)) 39)) (-2026 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|)) 69)) (-2033 (((-1259) |#4|) 41)) (-2036 (((-1259) (-635 |#4|)) 50)) (-2034 (((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544)) 47)) (-2037 (((-1259) (-544)) 78)) (-2031 (((-635 |#4|) (-635 |#4|)) 76)) (-2039 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)) |#4| (-765)) 25)) (-2032 (((-544) |#4|) 77)) (-2027 ((|#4| |#4|) 29)) (-2019 (((-635 |#4|) (-635 |#4|) (-544) (-544)) 55)) (-2035 (((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544) (-544)) 88)) (-2038 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2020 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2025 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2024 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-2021 (((-112) |#2| |#2|) 56)) (-2023 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2022 (((-112) |#2| |#2| |#2| |#2|) 59)) (-2017 ((|#4| |#4| (-635 |#4|)) 70)))
+(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2017 (|#4| |#4| (-635 |#4|))) (-15 -2018 (|#4| |#4| (-635 |#4|))) (-15 -2019 ((-635 |#4|) (-635 |#4|) (-544) (-544))) (-15 -2020 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2021 ((-112) |#2| |#2|)) (-15 -2022 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2023 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2024 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2025 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2026 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -2027 (|#4| |#4|)) (-15 -2028 ((-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))) |#4| (-765) (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))))) (-15 -2029 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2030 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2031 ((-635 |#4|) (-635 |#4|))) (-15 -2032 ((-544) |#4|)) (-15 -2033 ((-1259) |#4|)) (-15 -2034 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544))) (-15 -2035 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544) (-544))) (-15 -2036 ((-1259) (-635 |#4|))) (-15 -2037 ((-1259) (-544))) (-15 -2038 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2039 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)) |#4| (-765))) (-15 -2040 ((-765) |#4|))) (-450) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -448))
+((-2040 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2039 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -2154 *4))) (-5 *5 (-765)) (-4 *4 (-943 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-448 *6 *7 *8 *4)))) (-2038 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2035 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-448 *5 *6 *7 *4)))) (-2034 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-448 *5 *6 *7 *4)))) (-2033 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2032 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-544)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-787)) (-4 *2 (-943 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2)) (-4 *4 (-450)) (-4 *6 (-844)))) (-2028 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 *3)))) (-5 *4 (-765)) (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-448 *5 *6 *7 *3)))) (-2027 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *2)) (-4 *2 (-943 *3 *4 *5)))) (-2026 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-448 *5 *6 *7 *3)))) (-2025 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-787)) (-4 *6 (-943 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-5 *1 (-448 *4 *3 *5 *6)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-787)) (-4 *3 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *3)))) (-2022 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5)))) (-2021 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2019 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-544)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2018 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2)))) (-2017 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2017 (|#4| |#4| (-635 |#4|))) (-15 -2018 (|#4| |#4| (-635 |#4|))) (-15 -2019 ((-635 |#4|) (-635 |#4|) (-544) (-544))) (-15 -2020 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2021 ((-112) |#2| |#2|)) (-15 -2022 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2023 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2024 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2025 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2026 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -2027 (|#4| |#4|)) (-15 -2028 ((-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))) |#4| (-765) (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))))) (-15 -2029 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2030 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2031 ((-635 |#4|) (-635 |#4|))) (-15 -2032 ((-544) |#4|)) (-15 -2033 ((-1259) |#4|)) (-15 -2034 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544))) (-15 -2035 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544) (-544))) (-15 -2036 ((-1259) (-635 |#4|))) (-15 -2037 ((-1259) (-544))) (-15 -2038 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2039 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)) |#4| (-765))) (-15 -2040 ((-765) |#4|)))
+((-2041 (($ $ $) 14) (($ (-635 $)) 21)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 41)) (-3545 (($ $ $) NIL) (($ (-635 $)) 22)))
+(((-449 |#1|) (-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -2041 (|#1| (-635 |#1|))) (-15 -2041 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|))) (-450)) (T -449))
+NIL
+(-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -2041 (|#1| (-635 |#1|))) (-15 -2041 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-450) (-139)) (T -450))
-((-1603 (*1 *1 *1 *1) (-4 *1 (-450))) (-1603 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450)))) (-1563 (*1 *1 *1 *1) (-4 *1 (-450))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450)))) (-2002 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-450)))))
-(-13 (-553) (-10 -8 (-15 -1603 ($ $ $)) (-15 -1603 ($ (-638 $))) (-15 -1563 ($ $ $)) (-15 -1563 ($ (-638 $))) (-15 -2002 ((-1162 $) (-1162 $) (-1162 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2385 (((-3 $ "failed")) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-3625 (((-1254 (-682 (-406 (-945 |#1|)))) (-1254 $)) NIL) (((-1254 (-682 (-406 (-945 |#1|))))) NIL)) (-1426 (((-1254 $)) NIL)) (-2674 (($) NIL T CONST)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL)) (-1763 (((-3 $ "failed")) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-3615 (((-682 (-406 (-945 |#1|))) (-1254 $)) NIL) (((-682 (-406 (-945 |#1|)))) NIL)) (-3230 (((-406 (-945 |#1|)) $) NIL)) (-4196 (((-682 (-406 (-945 |#1|))) $ (-1254 $)) NIL) (((-682 (-406 (-945 |#1|))) $) NIL)) (-3884 (((-3 $ "failed") $) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-3146 (((-1162 (-945 (-406 (-945 |#1|))))) NIL (|has| (-406 (-945 |#1|)) (-362))) (((-1162 (-406 (-945 |#1|)))) 84 (|has| |#1| (-553)))) (-3187 (($ $ (-914)) NIL)) (-3718 (((-406 (-945 |#1|)) $) NIL)) (-2477 (((-1162 (-406 (-945 |#1|))) $) 82 (|has| (-406 (-945 |#1|)) (-553)))) (-2137 (((-406 (-945 |#1|)) (-1254 $)) NIL) (((-406 (-945 |#1|))) NIL)) (-4292 (((-1162 (-406 (-945 |#1|))) $) NIL)) (-3172 (((-112)) NIL)) (-3376 (($ (-1254 (-406 (-945 |#1|))) (-1254 $)) 103) (($ (-1254 (-406 (-945 |#1|)))) NIL)) (-3735 (((-3 $ "failed") $) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-3400 (((-914)) NIL)) (-2949 (((-112)) NIL)) (-3425 (($ $ (-914)) NIL)) (-2203 (((-112)) NIL)) (-3787 (((-112)) NIL)) (-3591 (((-112)) NIL)) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL)) (-2699 (((-3 $ "failed")) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-2960 (((-682 (-406 (-945 |#1|))) (-1254 $)) NIL) (((-682 (-406 (-945 |#1|)))) NIL)) (-1952 (((-406 (-945 |#1|)) $) NIL)) (-4208 (((-682 (-406 (-945 |#1|))) $ (-1254 $)) NIL) (((-682 (-406 (-945 |#1|))) $) NIL)) (-3408 (((-3 $ "failed") $) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-4291 (((-1162 (-945 (-406 (-945 |#1|))))) NIL (|has| (-406 (-945 |#1|)) (-362))) (((-1162 (-406 (-945 |#1|)))) 83 (|has| |#1| (-553)))) (-2143 (($ $ (-914)) NIL)) (-4178 (((-406 (-945 |#1|)) $) NIL)) (-3462 (((-1162 (-406 (-945 |#1|))) $) 77 (|has| (-406 (-945 |#1|)) (-553)))) (-3659 (((-406 (-945 |#1|)) (-1254 $)) NIL) (((-406 (-945 |#1|))) NIL)) (-4321 (((-1162 (-406 (-945 |#1|))) $) NIL)) (-4112 (((-112)) NIL)) (-1883 (((-1148) $) NIL)) (-2646 (((-112)) NIL)) (-2227 (((-112)) NIL)) (-1871 (((-112)) NIL)) (-1701 (((-1110) $) NIL)) (-3363 (((-406 (-945 |#1|)) $ $) 71 (|has| |#1| (-553)))) (-2489 (((-406 (-945 |#1|)) $) 93 (|has| |#1| (-553)))) (-2345 (((-406 (-945 |#1|)) $) 95 (|has| |#1| (-553)))) (-3091 (((-1162 (-406 (-945 |#1|))) $) 88 (|has| |#1| (-553)))) (-1976 (((-406 (-945 |#1|))) 72 (|has| |#1| (-553)))) (-1298 (((-406 (-945 |#1|)) $ $) 64 (|has| |#1| (-553)))) (-3224 (((-406 (-945 |#1|)) $) 92 (|has| |#1| (-553)))) (-4268 (((-406 (-945 |#1|)) $) 94 (|has| |#1| (-553)))) (-2156 (((-1162 (-406 (-945 |#1|))) $) 87 (|has| |#1| (-553)))) (-3495 (((-406 (-945 |#1|))) 68 (|has| |#1| (-553)))) (-4352 (($) 101) (($ (-1166)) 107) (($ (-1254 (-1166))) 106) (($ (-1254 $)) 96) (($ (-1166) (-1254 $)) 105) (($ (-1254 (-1166)) (-1254 $)) 104)) (-1800 (((-112)) NIL)) (-2315 (((-406 (-945 |#1|)) $ (-561)) NIL)) (-3752 (((-1254 (-406 (-945 |#1|))) $ (-1254 $)) 98) (((-682 (-406 (-945 |#1|))) (-1254 $) (-1254 $)) NIL) (((-1254 (-406 (-945 |#1|))) $) 40) (((-682 (-406 (-945 |#1|))) (-1254 $)) NIL)) (-4216 (((-1254 (-406 (-945 |#1|))) $) NIL) (($ (-1254 (-406 (-945 |#1|)))) 37)) (-3311 (((-638 (-945 (-406 (-945 |#1|)))) (-1254 $)) NIL) (((-638 (-945 (-406 (-945 |#1|))))) NIL) (((-638 (-945 |#1|)) (-1254 $)) 99 (|has| |#1| (-553))) (((-638 (-945 |#1|))) 100 (|has| |#1| (-553)))) (-3047 (($ $ $) NIL)) (-2619 (((-112)) NIL)) (-4064 (((-856) $) NIL) (($ (-1254 (-406 (-945 |#1|)))) NIL)) (-2615 (((-1254 $)) 60)) (-2541 (((-638 (-1254 (-406 (-945 |#1|))))) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-2748 (($ $ $ $) NIL)) (-3498 (((-112)) NIL)) (-1363 (($ (-682 (-406 (-945 |#1|))) $) NIL)) (-2897 (($ $ $) NIL)) (-1999 (((-112)) NIL)) (-2136 (((-112)) NIL)) (-3030 (((-112)) NIL)) (-2246 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) 97)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 56) (($ $ (-406 (-945 |#1|))) NIL) (($ (-406 (-945 |#1|)) $) NIL) (($ (-1132 |#2| (-406 (-945 |#1|))) $) NIL)))
-(((-451 |#1| |#2| |#3| |#4|) (-13 (-416 (-406 (-945 |#1|))) (-641 (-1132 |#2| (-406 (-945 |#1|)))) (-10 -8 (-15 -4064 ($ (-1254 (-406 (-945 |#1|))))) (-15 -1364 ((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed"))) (-15 -4108 ((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed"))) (-15 -4352 ($)) (-15 -4352 ($ (-1166))) (-15 -4352 ($ (-1254 (-1166)))) (-15 -4352 ($ (-1254 $))) (-15 -4352 ($ (-1166) (-1254 $))) (-15 -4352 ($ (-1254 (-1166)) (-1254 $))) (IF (|has| |#1| (-553)) (PROGN (-15 -4291 ((-1162 (-406 (-945 |#1|))))) (-15 -2156 ((-1162 (-406 (-945 |#1|))) $)) (-15 -3224 ((-406 (-945 |#1|)) $)) (-15 -4268 ((-406 (-945 |#1|)) $)) (-15 -3146 ((-1162 (-406 (-945 |#1|))))) (-15 -3091 ((-1162 (-406 (-945 |#1|))) $)) (-15 -2489 ((-406 (-945 |#1|)) $)) (-15 -2345 ((-406 (-945 |#1|)) $)) (-15 -1298 ((-406 (-945 |#1|)) $ $)) (-15 -3495 ((-406 (-945 |#1|)))) (-15 -3363 ((-406 (-945 |#1|)) $ $)) (-15 -1976 ((-406 (-945 |#1|)))) (-15 -3311 ((-638 (-945 |#1|)) (-1254 $))) (-15 -3311 ((-638 (-945 |#1|))))) |%noBranch|))) (-171) (-914) (-638 (-1166)) (-1254 (-682 |#1|))) (T -451))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1254 (-406 (-945 *3)))) (-4 *3 (-171)) (-14 *6 (-1254 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))))) (-1364 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2615 (-638 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-4108 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2615 (-638 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-4352 (*1 *1) (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-914)) (-14 *4 (-638 (-1166))) (-14 *5 (-1254 (-682 *2))))) (-4352 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 *2)) (-14 *6 (-1254 (-682 *3))))) (-4352 (*1 *1 *2) (-12 (-5 *2 (-1254 (-1166))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-4352 (*1 *1 *2) (-12 (-5 *2 (-1254 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-4352 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914)) (-14 *6 (-638 *2)) (-14 *7 (-1254 (-682 *4))))) (-4352 (*1 *1 *2 *3) (-12 (-5 *2 (-1254 (-1166))) (-5 *3 (-1254 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914)) (-14 *6 (-638 (-1166))) (-14 *7 (-1254 (-682 *4))))) (-4291 (*1 *2) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-3146 (*1 *2) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-1298 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-3495 (*1 *2) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-3363 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-1976 (*1 *2) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1254 (-451 *4 *5 *6 *7))) (-5 *2 (-638 (-945 *4))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-553)) (-4 *4 (-171)) (-14 *5 (-914)) (-14 *6 (-638 (-1166))) (-14 *7 (-1254 (-682 *4))))) (-3311 (*1 *2) (-12 (-5 *2 (-638 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(-13 (-416 (-406 (-945 |#1|))) (-641 (-1132 |#2| (-406 (-945 |#1|)))) (-10 -8 (-15 -4064 ($ (-1254 (-406 (-945 |#1|))))) (-15 -1364 ((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed"))) (-15 -4108 ((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed"))) (-15 -4352 ($)) (-15 -4352 ($ (-1166))) (-15 -4352 ($ (-1254 (-1166)))) (-15 -4352 ($ (-1254 $))) (-15 -4352 ($ (-1166) (-1254 $))) (-15 -4352 ($ (-1254 (-1166)) (-1254 $))) (IF (|has| |#1| (-553)) (PROGN (-15 -4291 ((-1162 (-406 (-945 |#1|))))) (-15 -2156 ((-1162 (-406 (-945 |#1|))) $)) (-15 -3224 ((-406 (-945 |#1|)) $)) (-15 -4268 ((-406 (-945 |#1|)) $)) (-15 -3146 ((-1162 (-406 (-945 |#1|))))) (-15 -3091 ((-1162 (-406 (-945 |#1|))) $)) (-15 -2489 ((-406 (-945 |#1|)) $)) (-15 -2345 ((-406 (-945 |#1|)) $)) (-15 -1298 ((-406 (-945 |#1|)) $ $)) (-15 -3495 ((-406 (-945 |#1|)))) (-15 -3363 ((-406 (-945 |#1|)) $ $)) (-15 -1976 ((-406 (-945 |#1|)))) (-15 -3311 ((-638 (-945 |#1|)) (-1254 $))) (-15 -3311 ((-638 (-945 |#1|))))) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 13)) (-1405 (((-638 (-858 |#1|)) $) 74)) (-1596 (((-1162 $) $ (-858 |#1|)) 46) (((-1162 |#2|) $) 117)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-3012 (($ $) NIL (|has| |#2| (-553)))) (-3163 (((-112) $) NIL (|has| |#2| (-553)))) (-3827 (((-765) $) 21) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2557 (($ $) NIL (|has| |#2| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) 44) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3979 ((|#2| $) 42) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-2395 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2134 (($ $ (-638 (-561))) 79)) (-1598 (($ $) 67)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-902)))) (-3227 (($ $ |#2| |#3| $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) 58)) (-1393 (($ (-1162 |#2|) (-858 |#1|)) 122) (($ (-1162 $) (-858 |#1|)) 52)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) 59)) (-1381 (($ |#2| |#3|) 28) (($ $ (-858 |#1|) (-765)) 30) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-858 |#1|)) NIL)) (-1522 ((|#3| $) NIL) (((-765) $ (-858 |#1|)) 50) (((-638 (-765)) $ (-638 (-858 |#1|))) 57)) (-1597 (($ $ $) NIL (|has| |#2| (-844)))) (-3017 (($ $ $) NIL (|has| |#2| (-844)))) (-1368 (($ (-1 |#3| |#3|) $) NIL)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-2830 (((-3 (-858 |#1|) "failed") $) 39)) (-1557 (($ $) NIL)) (-1572 ((|#2| $) 41)) (-1563 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1883 (((-1148) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4181 (-765))) "failed") $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) 40)) (-1542 ((|#2| $) 115)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) 127 (|has| |#2| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) 86) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) 89) (($ $ (-858 |#1|) $) 84) (($ $ (-638 (-858 |#1|)) (-638 $)) 105)) (-2753 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3922 (($ $ (-858 |#1|)) 53) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3768 ((|#3| $) 66) (((-765) $ (-858 |#1|)) 37) (((-638 (-765)) $ (-638 (-858 |#1|))) 56)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-2125 ((|#2| $) 124 (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4064 (((-856) $) 144) (($ (-561)) NIL) (($ |#2|) 85) (($ (-858 |#1|)) 31) (($ (-406 (-561))) NIL (-4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ |#3|) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2246 (($) 17 T CONST)) (-2257 (($) 25 T CONST)) (-3154 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1828 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 110)) (** (($ $ (-914)) NIL) (($ $ (-765)) 108)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 29) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-452 |#1| |#2| |#3|) (-13 (-942 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -2134 ($ $ (-638 (-561)))))) (-638 (-1166)) (-1042) (-237 (-3548 |#1|) (-765))) (T -452))
-((-2134 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-14 *3 (-638 (-1166))) (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-237 (-3548 *3) (-765))))))
-(-13 (-942 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -2134 ($ $ (-638 (-561))))))
-((-2614 (((-112) |#1| (-638 |#2|)) 68)) (-2606 (((-3 (-1254 (-638 |#2|)) "failed") (-765) |#1| (-638 |#2|)) 77)) (-3781 (((-3 (-638 |#2|) "failed") |#2| |#1| (-1254 (-638 |#2|))) 79)) (-4047 ((|#2| |#2| |#1|) 28)) (-4222 (((-765) |#2| (-638 |#2|)) 20)))
-(((-453 |#1| |#2|) (-10 -7 (-15 -4047 (|#2| |#2| |#1|)) (-15 -4222 ((-765) |#2| (-638 |#2|))) (-15 -2606 ((-3 (-1254 (-638 |#2|)) "failed") (-765) |#1| (-638 |#2|))) (-15 -3781 ((-3 (-638 |#2|) "failed") |#2| |#1| (-1254 (-638 |#2|)))) (-15 -2614 ((-112) |#1| (-638 |#2|)))) (-306) (-1230 |#1|)) (T -453))
-((-2614 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *5)) (-4 *5 (-1230 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))) (-3781 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1254 (-638 *3))) (-4 *4 (-306)) (-5 *2 (-638 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1230 *4)))) (-2606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1230 *4)) (-5 *2 (-1254 (-638 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-638 *6)))) (-4222 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-306)) (-5 *2 (-765)) (-5 *1 (-453 *5 *3)))) (-4047 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1230 *3)))))
-(-10 -7 (-15 -4047 (|#2| |#2| |#1|)) (-15 -4222 ((-765) |#2| (-638 |#2|))) (-15 -2606 ((-3 (-1254 (-638 |#2|)) "failed") (-765) |#1| (-638 |#2|))) (-15 -3781 ((-3 (-638 |#2|) "failed") |#2| |#1| (-1254 (-638 |#2|)))) (-15 -2614 ((-112) |#1| (-638 |#2|))))
-((-1633 (((-417 |#5|) |#5|) 24)))
-(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1633 ((-417 |#5|) |#5|))) (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166))))) (-787) (-553) (-553) (-942 |#4| |#2| |#1|)) (T -454))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166)))))) (-4 *5 (-787)) (-4 *7 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-553)) (-4 *3 (-942 *7 *5 *4)))))
-(-10 -7 (-15 -1633 ((-417 |#5|) |#5|)))
-((-1367 ((|#3|) 37)) (-2002 (((-1162 |#4|) (-1162 |#4|) (-1162 |#4|)) 33)))
-(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2002 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1367 (|#3|))) (-787) (-844) (-902) (-942 |#3| |#1| |#2|)) (T -455))
-((-1367 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902)) (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2002 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-902)) (-5 *1 (-455 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2002 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1367 (|#3|)))
-((-1633 (((-417 (-1162 |#1|)) (-1162 |#1|)) 43)))
-(((-456 |#1|) (-10 -7 (-15 -1633 ((-417 (-1162 |#1|)) (-1162 |#1|)))) (-306)) (T -456))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1162 *4))) (-5 *1 (-456 *4)) (-5 *3 (-1162 *4)))))
-(-10 -7 (-15 -1633 ((-417 (-1162 |#1|)) (-1162 |#1|))))
-((-1469 (((-52) |#2| (-1166) (-293 |#2|) (-1221 (-765))) 42) (((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-765))) 41) (((-52) |#2| (-1166) (-293 |#2|)) 35) (((-52) (-1 |#2| (-561)) (-293 |#2|)) 28)) (-1543 (((-52) |#2| (-1166) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561))) 80) (((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561))) 79) (((-52) |#2| (-1166) (-293 |#2|) (-1221 (-561))) 78) (((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-561))) 77) (((-52) |#2| (-1166) (-293 |#2|)) 72) (((-52) (-1 |#2| (-561)) (-293 |#2|)) 71)) (-1496 (((-52) |#2| (-1166) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561))) 66) (((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561))) 64)) (-1484 (((-52) |#2| (-1166) (-293 |#2|) (-1221 (-561))) 48) (((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-561))) 47)))
-(((-457 |#1| |#2|) (-10 -7 (-15 -1469 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -1469 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -1469 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-765)))) (-15 -1469 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-765)))) (-15 -1484 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-561)))) (-15 -1484 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-561)))) (-15 -1496 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561)))) (-15 -1496 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561)))) (-15 -1543 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -1543 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -1543 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-561)))) (-15 -1543 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-561)))) (-15 -1543 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561)))) (-15 -1543 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561))))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -457))
-((-1543 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-406 (-561)))) (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8))) (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-1543 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8)) (-5 *5 (-1221 (-406 (-561)))) (-5 *6 (-406 (-561))) (-4 *8 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-1543 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-1543 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1221 (-561))) (-4 *7 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-1543 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))) (-1496 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-406 (-561)))) (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8))) (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-1496 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8)) (-5 *5 (-1221 (-406 (-561)))) (-5 *6 (-406 (-561))) (-4 *8 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-1484 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-1484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1221 (-561))) (-4 *7 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-1469 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-765))) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-1469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1221 (-765))) (-4 *7 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-1469 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))))
-(-10 -7 (-15 -1469 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -1469 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -1469 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-765)))) (-15 -1469 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-765)))) (-15 -1484 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-561)))) (-15 -1484 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-561)))) (-15 -1496 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561)))) (-15 -1496 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561)))) (-15 -1543 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -1543 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -1543 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1221 (-561)))) (-15 -1543 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-561)))) (-15 -1543 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561)))) (-15 -1543 ((-52) |#2| (-1166) (-293 |#2|) (-1221 (-406 (-561))) (-406 (-561)))))
-((-4047 ((|#2| |#2| |#1|) 15)) (-4005 (((-638 |#2|) |#2| (-638 |#2|) |#1| (-914)) 68)) (-2922 (((-2 (|:| |plist| (-638 |#2|)) (|:| |modulo| |#1|)) |#2| (-638 |#2|) |#1| (-914)) 59)))
-(((-458 |#1| |#2|) (-10 -7 (-15 -2922 ((-2 (|:| |plist| (-638 |#2|)) (|:| |modulo| |#1|)) |#2| (-638 |#2|) |#1| (-914))) (-15 -4005 ((-638 |#2|) |#2| (-638 |#2|) |#1| (-914))) (-15 -4047 (|#2| |#2| |#1|))) (-306) (-1230 |#1|)) (T -458))
-((-4047 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1230 *3)))) (-4005 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-638 *3)) (-5 *5 (-914)) (-4 *3 (-1230 *4)) (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))) (-2922 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-914)) (-4 *5 (-306)) (-4 *3 (-1230 *5)) (-5 *2 (-2 (|:| |plist| (-638 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3)) (-5 *4 (-638 *3)))))
-(-10 -7 (-15 -2922 ((-2 (|:| |plist| (-638 |#2|)) (|:| |modulo| |#1|)) |#2| (-638 |#2|) |#1| (-914))) (-15 -4005 ((-638 |#2|) |#2| (-638 |#2|) |#1| (-914))) (-15 -4047 (|#2| |#2| |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 28)) (-2274 (($ |#3|) 25)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1598 (($ $) 32)) (-2775 (($ |#2| |#4| $) 33)) (-1381 (($ |#2| (-707 |#3| |#4| |#5|)) 24)) (-1557 (((-707 |#3| |#4| |#5|) $) 15)) (-1506 ((|#3| $) 19)) (-2547 ((|#4| $) 17)) (-1572 ((|#2| $) 29)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-3246 (($ |#2| |#3| |#4|) 26)) (-2246 (($) 36 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 34)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-459 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -1572 (|#2| $)) (-15 -1557 ((-707 |#3| |#4| |#5|) $)) (-15 -2547 (|#4| $)) (-15 -1506 (|#3| $)) (-15 -1598 ($ $)) (-15 -1381 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -2274 ($ |#3|)) (-15 -3246 ($ |#2| |#3| |#4|)) (-15 -2775 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-638 (-1166)) (-171) (-844) (-237 (-3548 |#1|) (-765)) (-1 (-112) (-2 (|:| -2442 |#3|) (|:| -4181 |#4|)) (-2 (|:| -2442 |#3|) (|:| -4181 |#4|))) (-942 |#2| |#4| (-858 |#1|))) (T -459))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-3548 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *6)) (-2 (|:| -2442 *5) (|:| -4181 *6)))) (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-844)) (-4 *2 (-942 *4 *6 (-858 *3))))) (-1572 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *5 (-237 (-3548 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2442 *4) (|:| -4181 *5)) (-2 (|:| -2442 *4) (|:| -4181 *5)))) (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-942 *2 *5 (-858 *3))))) (-1557 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-3548 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *6)) (-2 (|:| -2442 *5) (|:| -4181 *6)))) (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-844)) (-4 *8 (-942 *4 *6 (-858 *3))))) (-2547 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *2)) (-2 (|:| -2442 *5) (|:| -4181 *2)))) (-4 *2 (-237 (-3548 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7)) (-4 *5 (-844)) (-4 *7 (-942 *4 *2 (-858 *3))))) (-1506 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-3548 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *5)) (-2 (|:| -2442 *2) (|:| -4181 *5)))) (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *7 (-942 *4 *5 (-858 *3))))) (-1598 (*1 *1 *1) (-12 (-14 *2 (-638 (-1166))) (-4 *3 (-171)) (-4 *5 (-237 (-3548 *2) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2442 *4) (|:| -4181 *5)) (-2 (|:| -2442 *4) (|:| -4181 *5)))) (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-942 *3 *5 (-858 *2))))) (-1381 (*1 *1 *2 *3) (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844)) (-4 *6 (-237 (-3548 *4) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *6)) (-2 (|:| -2442 *5) (|:| -4181 *6)))) (-14 *4 (-638 (-1166))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-942 *2 *6 (-858 *4))))) (-2274 (*1 *1 *2) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-3548 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *5)) (-2 (|:| -2442 *2) (|:| -4181 *5)))) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844)) (-4 *7 (-942 *4 *5 (-858 *3))))) (-3246 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-638 (-1166))) (-4 *2 (-171)) (-4 *4 (-237 (-3548 *5) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2442 *3) (|:| -4181 *4)) (-2 (|:| -2442 *3) (|:| -4181 *4)))) (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844)) (-4 *7 (-942 *2 *4 (-858 *5))))) (-2775 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-638 (-1166))) (-4 *2 (-171)) (-4 *3 (-237 (-3548 *4) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *3)) (-2 (|:| -2442 *5) (|:| -4181 *3)))) (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844)) (-4 *7 (-942 *2 *3 (-858 *4))))))
-(-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -1572 (|#2| $)) (-15 -1557 ((-707 |#3| |#4| |#5|) $)) (-15 -2547 (|#4| $)) (-15 -1506 (|#3| $)) (-15 -1598 ($ $)) (-15 -1381 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -2274 ($ |#3|)) (-15 -3246 ($ |#2| |#3| |#4|)) (-15 -2775 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-4297 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-460 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4297 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-787) (-844) (-553) (-942 |#3| |#1| |#2|) (-13 (-1031 (-406 (-561))) (-362) (-10 -8 (-15 -4064 ($ |#4|)) (-15 -4077 (|#4| $)) (-15 -4088 (|#4| $))))) (T -460))
-((-4297 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787)) (-4 *6 (-553)) (-4 *7 (-942 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1031 (-406 (-561))) (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))))
-(-10 -7 (-15 -4297 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-4053 (((-112) $ $) NIL)) (-1405 (((-638 |#3|) $) 41)) (-4214 (((-112) $) NIL)) (-2444 (((-112) $) NIL (|has| |#1| (-553)))) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-3612 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-3853 (((-112) $) NIL (|has| |#1| (-553)))) (-3733 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4338 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1577 (((-112) $) NIL (|has| |#1| (-553)))) (-3293 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) 48)) (-3979 (($ (-638 |#4|)) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4399)))) (-2368 (((-638 |#4|) $) 18 (|has| $ (-6 -4399)))) (-1994 ((|#3| $) 46)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#4|) $) 14 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-2029 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 21)) (-2597 (((-638 |#3|) $) NIL)) (-2247 (((-112) |#3| $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-1701 (((-1110) $) NIL)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3977 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 39)) (-2910 (($) 17)) (-1714 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) 16)) (-4216 (((-534) $) NIL (|has| |#4| (-609 (-534)))) (($ (-638 |#4|)) 50)) (-4078 (($ (-638 |#4|)) 13)) (-3883 (($ $ |#3|) NIL)) (-2049 (($ $ |#3|) NIL)) (-2983 (($ $ |#3|) NIL)) (-4064 (((-856) $) 38) (((-638 |#4|) $) 49)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 30)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-461 |#1| |#2| |#3| |#4|) (-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4216 ($ (-638 |#4|))) (-6 -4399) (-6 -4400))) (-1042) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -461))
-((-4216 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-461 *3 *4 *5 *6)))))
-(-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4216 ($ (-638 |#4|))) (-6 -4399) (-6 -4400)))
-((-2246 (($) 11)) (-2257 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -2257 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2246 (|#1|))) (-463 |#2| |#3|) (-171) (-23)) (T -462))
-NIL
-(-10 -8 (-15 -2257 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2246 (|#1|)))
-((-4053 (((-112) $ $) 7)) (-4061 (((-3 |#1| "failed") $) 26)) (-3979 ((|#1| $) 27)) (-3638 (($ $ $) 23)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3768 ((|#2| $) 19)) (-4064 (((-856) $) 11) (($ |#1|) 25)) (-2246 (($) 18 T CONST)) (-2257 (($) 24 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 15) (($ $ $) 13)) (-1810 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3545 (*1 *1 *1 *1) (-4 *1 (-450))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-2041 (*1 *1 *1 *1) (-4 *1 (-450))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-450)))))
+(-13 (-554) (-10 -8 (-15 -3545 ($ $ $)) (-15 -3545 ($ (-635 $))) (-15 -2041 ($ $ $)) (-15 -2041 ($ (-635 $))) (-15 -3090 ((-1160 $) (-1160 $) (-1160 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 (-406 (-939 |#1|)))) (-1253 $)) NIL) (((-1253 (-682 (-406 (-939 |#1|))))) NIL)) (-1873 (((-1253 $)) NIL)) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) NIL)) (-1847 (((-3 $ #1#)) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-1935 (((-682 (-406 (-939 |#1|))) (-1253 $)) NIL) (((-682 (-406 (-939 |#1|)))) NIL)) (-1871 (((-406 (-939 |#1|)) $) NIL)) (-1933 (((-682 (-406 (-939 |#1|))) $ (-1253 $)) NIL) (((-682 (-406 (-939 |#1|))) $) NIL)) (-2539 (((-3 $ #1#) $) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-2050 (((-1160 (-939 (-406 (-939 |#1|))))) NIL (|has| (-406 (-939 |#1|)) (-362))) (((-1160 (-406 (-939 |#1|)))) 84 (|has| |#1| (-554)))) (-2542 (($ $ (-912)) NIL)) (-1869 (((-406 (-939 |#1|)) $) NIL)) (-1849 (((-1160 (-406 (-939 |#1|))) $) 82 (|has| (-406 (-939 |#1|)) (-554)))) (-1937 (((-406 (-939 |#1|)) (-1253 $)) NIL) (((-406 (-939 |#1|))) NIL)) (-1867 (((-1160 (-406 (-939 |#1|))) $) NIL)) (-1861 (((-112)) NIL)) (-1939 (($ (-1253 (-406 (-939 |#1|))) (-1253 $)) 103) (($ (-1253 (-406 (-939 |#1|)))) NIL)) (-3866 (((-3 $ #1#) $) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-3494 (((-912)) NIL)) (-1858 (((-112)) NIL)) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL)) (-1852 (((-112)) NIL)) (-1856 (((-112)) NIL)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) NIL)) (-1848 (((-3 $ #1#)) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-1936 (((-682 (-406 (-939 |#1|))) (-1253 $)) NIL) (((-682 (-406 (-939 |#1|)))) NIL)) (-1872 (((-406 (-939 |#1|)) $) NIL)) (-1934 (((-682 (-406 (-939 |#1|))) $ (-1253 $)) NIL) (((-682 (-406 (-939 |#1|))) $) NIL)) (-2540 (((-3 $ #1#) $) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-2054 (((-1160 (-939 (-406 (-939 |#1|))))) NIL (|has| (-406 (-939 |#1|)) (-362))) (((-1160 (-406 (-939 |#1|)))) 83 (|has| |#1| (-554)))) (-2541 (($ $ (-912)) NIL)) (-1870 (((-406 (-939 |#1|)) $) NIL)) (-1850 (((-1160 (-406 (-939 |#1|))) $) 77 (|has| (-406 (-939 |#1|)) (-554)))) (-1938 (((-406 (-939 |#1|)) (-1253 $)) NIL) (((-406 (-939 |#1|))) NIL)) (-1868 (((-1160 (-406 (-939 |#1|))) $) NIL)) (-1862 (((-112)) NIL)) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL)) (-1855 (((-112)) NIL)) (-1857 (((-112)) NIL)) (-3644 (((-1110) $) NIL)) (-2044 (((-406 (-939 |#1|)) $ $) 71 (|has| |#1| (-554)))) (-2048 (((-406 (-939 |#1|)) $) 93 (|has| |#1| (-554)))) (-2047 (((-406 (-939 |#1|)) $) 95 (|has| |#1| (-554)))) (-2049 (((-1160 (-406 (-939 |#1|))) $) 88 (|has| |#1| (-554)))) (-2043 (((-406 (-939 |#1|))) 72 (|has| |#1| (-554)))) (-2046 (((-406 (-939 |#1|)) $ $) 64 (|has| |#1| (-554)))) (-2052 (((-406 (-939 |#1|)) $) 92 (|has| |#1| (-554)))) (-2051 (((-406 (-939 |#1|)) $) 94 (|has| |#1| (-554)))) (-2053 (((-1160 (-406 (-939 |#1|))) $) 87 (|has| |#1| (-554)))) (-2045 (((-406 (-939 |#1|))) 68 (|has| |#1| (-554)))) (-2055 (($) 101) (($ (-1166)) 107) (($ (-1253 (-1166))) 106) (($ (-1253 $)) 96) (($ (-1166) (-1253 $)) 105) (($ (-1253 (-1166)) (-1253 $)) 104)) (-1860 (((-112)) NIL)) (-4206 (((-406 (-939 |#1|)) $ (-544)) NIL)) (-3625 (((-1253 (-406 (-939 |#1|))) $ (-1253 $)) 98) (((-682 (-406 (-939 |#1|))) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 (-939 |#1|))) $) 40) (((-682 (-406 (-939 |#1|))) (-1253 $)) NIL)) (-4377 (((-1253 (-406 (-939 |#1|))) $) NIL) (($ (-1253 (-406 (-939 |#1|)))) 37)) (-2042 (((-635 (-939 (-406 (-939 |#1|)))) (-1253 $)) NIL) (((-635 (-939 (-406 (-939 |#1|))))) NIL) (((-635 (-939 |#1|)) (-1253 $)) 99 (|has| |#1| (-554))) (((-635 (-939 |#1|))) 100 (|has| |#1| (-554)))) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL)) (-4353 (((-857) $) NIL) (($ (-1253 (-406 (-939 |#1|)))) NIL)) (-2162 (((-1253 $)) 60)) (-1851 (((-635 (-1253 (-406 (-939 |#1|))))) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL)) (-2927 (($ (-682 (-406 (-939 |#1|))) $) NIL)) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL)) (-1863 (((-112)) NIL)) (-1859 (((-112)) NIL)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) 97)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 56) (($ $ (-406 (-939 |#1|))) NIL) (($ (-406 (-939 |#1|)) $) NIL) (($ (-1132 |#2| (-406 (-939 |#1|))) $) NIL)))
+(((-451 |#1| |#2| |#3| |#4|) (-13 (-417 (-406 (-939 |#1|))) (-641 (-1132 |#2| (-406 (-939 |#1|)))) (-10 -8 (-15 -4353 ($ (-1253 (-406 (-939 |#1|))))) (-15 -2057 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2056 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2055 ($)) (-15 -2055 ($ (-1166))) (-15 -2055 ($ (-1253 (-1166)))) (-15 -2055 ($ (-1253 $))) (-15 -2055 ($ (-1166) (-1253 $))) (-15 -2055 ($ (-1253 (-1166)) (-1253 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2054 ((-1160 (-406 (-939 |#1|))))) (-15 -2053 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2052 ((-406 (-939 |#1|)) $)) (-15 -2051 ((-406 (-939 |#1|)) $)) (-15 -2050 ((-1160 (-406 (-939 |#1|))))) (-15 -2049 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2048 ((-406 (-939 |#1|)) $)) (-15 -2047 ((-406 (-939 |#1|)) $)) (-15 -2046 ((-406 (-939 |#1|)) $ $)) (-15 -2045 ((-406 (-939 |#1|)))) (-15 -2044 ((-406 (-939 |#1|)) $ $)) (-15 -2043 ((-406 (-939 |#1|)))) (-15 -2042 ((-635 (-939 |#1|)) (-1253 $))) (-15 -2042 ((-635 (-939 |#1|))))) |%noBranch|))) (-171) (-912) (-635 (-1166)) (-1253 (-682 |#1|))) (T -451))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 *3)))) (-4 *3 (-171)) (-14 *6 (-1253 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))))) (-2057 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2162 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2056 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2162 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1) (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-912)) (-14 *4 (-635 (-1166))) (-14 *5 (-1253 (-682 *2))))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 *2)) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1253 (-1166))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1253 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 *2)) (-14 *7 (-1253 (-682 *4))))) (-2055 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 (-1166))) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4))))) (-2054 (*1 *2) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2050 (*1 *2) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2046 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2045 (*1 *2) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2044 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2043 (*1 *2) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-939 *4))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4))))) (-2042 (*1 *2) (-12 (-5 *2 (-635 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(-13 (-417 (-406 (-939 |#1|))) (-641 (-1132 |#2| (-406 (-939 |#1|)))) (-10 -8 (-15 -4353 ($ (-1253 (-406 (-939 |#1|))))) (-15 -2057 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2056 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2055 ($)) (-15 -2055 ($ (-1166))) (-15 -2055 ($ (-1253 (-1166)))) (-15 -2055 ($ (-1253 $))) (-15 -2055 ($ (-1166) (-1253 $))) (-15 -2055 ($ (-1253 (-1166)) (-1253 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2054 ((-1160 (-406 (-939 |#1|))))) (-15 -2053 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2052 ((-406 (-939 |#1|)) $)) (-15 -2051 ((-406 (-939 |#1|)) $)) (-15 -2050 ((-1160 (-406 (-939 |#1|))))) (-15 -2049 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2048 ((-406 (-939 |#1|)) $)) (-15 -2047 ((-406 (-939 |#1|)) $)) (-15 -2046 ((-406 (-939 |#1|)) $ $)) (-15 -2045 ((-406 (-939 |#1|)))) (-15 -2044 ((-406 (-939 |#1|)) $ $)) (-15 -2043 ((-406 (-939 |#1|)))) (-15 -2042 ((-635 (-939 |#1|)) (-1253 $))) (-15 -2042 ((-635 (-939 |#1|))))) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 13)) (-3467 (((-635 (-858 |#1|)) $) 74)) (-3469 (((-1160 $) $ (-858 |#1|)) 46) (((-1160 |#2|) $) 117)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) 21) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) 44) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) 42) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2087 (($ $ (-635 (-544))) 79)) (-4366 (($ $) 67)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| |#3| $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 58)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) 122) (($ (-1160 $) (-858 |#1|)) 52)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) 59)) (-3276 (($ |#2| |#3|) 28) (($ $ (-858 |#1|) (-765)) 30) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 ((|#3| $) NIL) (((-765) $ (-858 |#1|)) 50) (((-635 (-765)) $ (-635 (-858 |#1|))) 57)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 |#3| |#3|) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) 39)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) 41)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 40)) (-1943 ((|#2| $) 115)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) 127 (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) 86) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) 89) (($ $ (-858 |#1|) $) 84) (($ $ (-635 (-858 |#1|)) (-635 $)) 105)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) 53) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 ((|#3| $) 66) (((-765) $ (-858 |#1|)) 37) (((-635 (-765)) $ (-635 (-858 |#1|))) 56)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) 124 (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) 144) (($ (-544)) NIL) (($ |#2|) 85) (($ (-858 |#1|)) 31) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ |#3|) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) 17 T CONST)) (-3046 (($) 25 T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 110)) (** (($ $ (-912)) NIL) (($ $ (-765)) 108)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 29) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-452 |#1| |#2| |#3|) (-13 (-943 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) (-635 (-1166)) (-1042) (-237 (-4364 |#1|) (-765))) (T -452))
+((-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-14 *3 (-635 (-1166))) (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-237 (-4364 *3) (-765))))))
+(-13 (-943 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544))))))
+((-2061 (((-112) |#1| (-635 |#2|)) 68)) (-2059 (((-3 (-1253 (-635 |#2|)) "failed") (-765) |#1| (-635 |#2|)) 77)) (-2060 (((-3 (-635 |#2|) "failed") |#2| |#1| (-1253 (-635 |#2|))) 79)) (-2187 ((|#2| |#2| |#1|) 28)) (-2058 (((-765) |#2| (-635 |#2|)) 20)))
+(((-453 |#1| |#2|) (-10 -7 (-15 -2187 (|#2| |#2| |#1|)) (-15 -2058 ((-765) |#2| (-635 |#2|))) (-15 -2059 ((-3 (-1253 (-635 |#2|)) "failed") (-765) |#1| (-635 |#2|))) (-15 -2060 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1253 (-635 |#2|)))) (-15 -2061 ((-112) |#1| (-635 |#2|)))) (-306) (-1229 |#1|)) (T -453))
+((-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-1229 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))) (-2060 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1253 (-635 *3))) (-4 *4 (-306)) (-5 *2 (-635 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1229 *4)))) (-2059 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1229 *4)) (-5 *2 (-1253 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-306)) (-5 *2 (-765)) (-5 *1 (-453 *5 *3)))) (-2187 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -2187 (|#2| |#2| |#1|)) (-15 -2058 ((-765) |#2| (-635 |#2|))) (-15 -2059 ((-3 (-1253 (-635 |#2|)) "failed") (-765) |#1| (-635 |#2|))) (-15 -2060 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1253 (-635 |#2|)))) (-15 -2061 ((-112) |#1| (-635 |#2|))))
+((-4139 (((-404 |#5|) |#5|) 24)))
+(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4139 ((-404 |#5|) |#5|))) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))) (-787) (-554) (-554) (-943 |#4| |#2| |#1|)) (T -454))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166)))))) (-4 *5 (-787)) (-4 *7 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-554)) (-4 *3 (-943 *7 *5 *4)))))
+(-10 -7 (-15 -4139 ((-404 |#5|) |#5|)))
+((-3082 ((|#3|) 37)) (-3090 (((-1160 |#4|) (-1160 |#4|) (-1160 |#4|)) 33)))
+(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3090 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3082 (|#3|))) (-787) (-844) (-903) (-943 |#3| |#1| |#2|)) (T -455))
+((-3082 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-943 *2 *3 *4)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-903)) (-5 *1 (-455 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3090 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3082 (|#3|)))
+((-4139 (((-404 (-1160 |#1|)) (-1160 |#1|)) 43)))
+(((-456 |#1|) (-10 -7 (-15 -4139 ((-404 (-1160 |#1|)) (-1160 |#1|)))) (-306)) (T -456))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-404 (-1160 *4))) (-5 *1 (-456 *4)) (-5 *3 (-1160 *4)))))
+(-10 -7 (-15 -4139 ((-404 (-1160 |#1|)) (-1160 |#1|))))
+((-4136 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-765))) 42) (((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-765))) 41) (((-51) |#2| (-1166) (-292 |#2|)) 35) (((-51) (-1 |#2| (-544)) (-292 |#2|)) 28)) (-4225 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 80) (((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 79) (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544))) 78) (((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544))) 77) (((-51) |#2| (-1166) (-292 |#2|)) 72) (((-51) (-1 |#2| (-544)) (-292 |#2|)) 71)) (-4188 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 66) (((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 64)) (-4185 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544))) 48) (((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544))) 47)))
+(((-457 |#1| |#2|) (-10 -7 (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-765)))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-765)))) (-15 -4185 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4185 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4188 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4188 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -457))
+((-4225 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544)))) (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8))) (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *8 *3)))) (-4225 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8)) (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544))) (-4 *8 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *8)))) (-4225 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *3)))) (-4225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544))) (-4 *7 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *7)))) (-4225 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6)) (-4 *6 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *5 *6)))) (-4188 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544)))) (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8))) (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *8 *3)))) (-4188 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8)) (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544))) (-4 *8 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *8)))) (-4185 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *3)))) (-4185 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544))) (-4 *7 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *7)))) (-4136 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-765))) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *3)))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-765))) (-4 *7 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *7)))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6)) (-4 *6 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *5 *6)))))
+(-10 -7 (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-765)))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-765)))) (-15 -4185 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4185 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4188 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4188 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))))
+((-2187 ((|#2| |#2| |#1|) 15)) (-2063 (((-635 |#2|) |#2| (-635 |#2|) |#1| (-912)) 68)) (-2062 (((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-912)) 59)))
+(((-458 |#1| |#2|) (-10 -7 (-15 -2062 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-912))) (-15 -2063 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-912))) (-15 -2187 (|#2| |#2| |#1|))) (-306) (-1229 |#1|)) (T -458))
+((-2187 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1229 *3)))) (-2063 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-635 *3)) (-5 *5 (-912)) (-4 *3 (-1229 *4)) (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))) (-2062 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-912)) (-4 *5 (-306)) (-4 *3 (-1229 *5)) (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3)) (-5 *4 (-635 *3)))))
+(-10 -7 (-15 -2062 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-912))) (-15 -2063 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-912))) (-15 -2187 (|#2| |#2| |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 28)) (-4114 (($ |#3|) 25)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) 32)) (-2064 (($ |#2| |#4| $) 33)) (-3276 (($ |#2| (-707 |#3| |#4| |#5|)) 24)) (-3277 (((-707 |#3| |#4| |#5|) $) 15)) (-2066 ((|#3| $) 19)) (-2067 ((|#4| $) 17)) (-3575 ((|#2| $) 29)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2065 (($ |#2| |#3| |#4|) 26)) (-3040 (($) 36 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 34)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-459 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -3575 (|#2| $)) (-15 -3277 ((-707 |#3| |#4| |#5|) $)) (-15 -2067 (|#4| $)) (-15 -2066 (|#3| $)) (-15 -4366 ($ $)) (-15 -3276 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -4114 ($ |#3|)) (-15 -2065 ($ |#2| |#3| |#4|)) (-15 -2064 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-635 (-1166)) (-171) (-844) (-237 (-4364 |#1|) (-765)) (-1 (-112) (-2 (|:| -2535 |#3|) (|:| -2536 |#4|)) (-2 (|:| -2535 |#3|) (|:| -2536 |#4|))) (-943 |#2| |#4| (-858 |#1|))) (T -459))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) (-2 (|:| -2535 *5) (|:| -2536 *6)))) (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-844)) (-4 *2 (-943 *4 *6 (-858 *3))))) (-3575 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *5 (-237 (-4364 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5)) (-2 (|:| -2535 *4) (|:| -2536 *5)))) (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-943 *2 *5 (-858 *3))))) (-3277 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) (-2 (|:| -2535 *5) (|:| -2536 *6)))) (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-844)) (-4 *8 (-943 *4 *6 (-858 *3))))) (-2067 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *2)) (-2 (|:| -2535 *5) (|:| -2536 *2)))) (-4 *2 (-237 (-4364 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7)) (-4 *5 (-844)) (-4 *7 (-943 *4 *2 (-858 *3))))) (-2066 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5)) (-2 (|:| -2535 *2) (|:| -2536 *5)))) (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *7 (-943 *4 *5 (-858 *3))))) (-4366 (*1 *1 *1) (-12 (-14 *2 (-635 (-1166))) (-4 *3 (-171)) (-4 *5 (-237 (-4364 *2) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5)) (-2 (|:| -2535 *4) (|:| -2536 *5)))) (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-943 *3 *5 (-858 *2))))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844)) (-4 *6 (-237 (-4364 *4) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) (-2 (|:| -2535 *5) (|:| -2536 *6)))) (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-943 *2 *6 (-858 *4))))) (-4114 (*1 *1 *2) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5)) (-2 (|:| -2535 *2) (|:| -2536 *5)))) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844)) (-4 *7 (-943 *4 *5 (-858 *3))))) (-2065 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-635 (-1166))) (-4 *2 (-171)) (-4 *4 (-237 (-4364 *5) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *4)) (-2 (|:| -2535 *3) (|:| -2536 *4)))) (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844)) (-4 *7 (-943 *2 *4 (-858 *5))))) (-2064 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-4 *3 (-237 (-4364 *4) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *3)) (-2 (|:| -2535 *5) (|:| -2536 *3)))) (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844)) (-4 *7 (-943 *2 *3 (-858 *4))))))
+(-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -3575 (|#2| $)) (-15 -3277 ((-707 |#3| |#4| |#5|) $)) (-15 -2067 (|#4| $)) (-15 -2066 (|#3| $)) (-15 -4366 ($ $)) (-15 -3276 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -4114 ($ |#3|)) (-15 -2065 ($ |#2| |#3| |#4|)) (-15 -2064 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2068 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-460 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2068 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-787) (-844) (-554) (-943 |#3| |#1| |#2|) (-13 (-1031 (-406 (-544))) (-362) (-10 -8 (-15 -4353 ($ |#4|)) (-15 -3381 (|#4| $)) (-15 -3380 (|#4| $))))) (T -460))
+((-2068 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787)) (-4 *6 (-554)) (-4 *7 (-943 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1031 (-406 (-544))) (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(-10 -7 (-15 -2068 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3467 (((-635 |#3|) $) 41)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) NIL (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 48)) (-3557 (($ (-635 |#4|)) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400)))) (-2096 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3581 ((|#3| $) 46)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 14 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 21)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-3644 (((-1110) $) NIL)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 39)) (-3972 (($) 17)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 16)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533)))) (($ (-635 |#4|)) 50)) (-3929 (($ (-635 |#4|)) 13)) (-3293 (($ $ |#3|) NIL)) (-3295 (($ $ |#3|) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 38) (((-635 |#4|) $) 49)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 30)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-461 |#1| |#2| |#3| |#4|) (-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4377 ($ (-635 |#4|))) (-6 -4400) (-6 -4401))) (-1042) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -461))
+((-4377 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-461 *3 *4 *5 *6)))))
+(-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4377 ($ (-635 |#4|))) (-6 -4400) (-6 -4401)))
+((-3040 (($) 11)) (-3046 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -3046 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3040 (|#1|))) (-463 |#2| |#3|) (-171) (-23)) (T -462))
+NIL
+(-10 -8 (-15 -3046 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3040 (|#1|)))
+((-2947 (((-112) $ $) 7)) (-3558 (((-3 |#1| "failed") $) 26)) (-3557 ((|#1| $) 27)) (-4351 (($ $ $) 23)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 ((|#2| $) 19)) (-4353 (((-857) $) 11) (($ |#1|) 25)) (-3040 (($) 18 T CONST)) (-3046 (($) 24 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 15) (($ $ $) 13)) (-4246 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-463 |#1| |#2|) (-139) (-171) (-23)) (T -463))
-((-2257 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-3638 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
-(-13 (-468 |t#1| |t#2|) (-1031 |t#1|) (-10 -8 (-15 (-2257) ($) -1494) (-15 -3638 ($ $ $))))
-(((-102) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-468 |#1| |#2|) . T) ((-1031 |#1|) . T) ((-1090) . T))
-((-3726 (((-1254 (-1254 (-561))) (-1254 (-1254 (-561))) (-914)) 18)) (-2266 (((-1254 (-1254 (-561))) (-914)) 16)))
-(((-464) (-10 -7 (-15 -3726 ((-1254 (-1254 (-561))) (-1254 (-1254 (-561))) (-914))) (-15 -2266 ((-1254 (-1254 (-561))) (-914))))) (T -464))
-((-2266 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1254 (-1254 (-561)))) (-5 *1 (-464)))) (-3726 (*1 *2 *2 *3) (-12 (-5 *2 (-1254 (-1254 (-561)))) (-5 *3 (-914)) (-5 *1 (-464)))))
-(-10 -7 (-15 -3726 ((-1254 (-1254 (-561))) (-1254 (-1254 (-561))) (-914))) (-15 -2266 ((-1254 (-1254 (-561))) (-914))))
-((-2908 (((-561) (-561)) 30) (((-561)) 22)) (-3325 (((-561) (-561)) 26) (((-561)) 18)) (-2281 (((-561) (-561)) 28) (((-561)) 20)) (-2387 (((-112) (-112)) 12) (((-112)) 10)) (-1444 (((-112) (-112)) 11) (((-112)) 9)) (-2702 (((-112) (-112)) 24) (((-112)) 15)))
-(((-465) (-10 -7 (-15 -1444 ((-112))) (-15 -2387 ((-112))) (-15 -1444 ((-112) (-112))) (-15 -2387 ((-112) (-112))) (-15 -2702 ((-112))) (-15 -2281 ((-561))) (-15 -3325 ((-561))) (-15 -2908 ((-561))) (-15 -2702 ((-112) (-112))) (-15 -2281 ((-561) (-561))) (-15 -3325 ((-561) (-561))) (-15 -2908 ((-561) (-561))))) (T -465))
-((-2908 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2908 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-3325 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-2281 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-2702 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2387 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-1444 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2387 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-1444 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
-(-10 -7 (-15 -1444 ((-112))) (-15 -2387 ((-112))) (-15 -1444 ((-112) (-112))) (-15 -2387 ((-112) (-112))) (-15 -2702 ((-112))) (-15 -2281 ((-561))) (-15 -3325 ((-561))) (-15 -2908 ((-561))) (-15 -2702 ((-112) (-112))) (-15 -2281 ((-561) (-561))) (-15 -3325 ((-561) (-561))) (-15 -2908 ((-561) (-561))))
-((-4053 (((-112) $ $) NIL)) (-3481 (((-638 (-378)) $) 28) (((-638 (-378)) $ (-638 (-378))) 94)) (-3565 (((-638 (-1084 (-378))) $) 16) (((-638 (-1084 (-378))) $ (-638 (-1084 (-378)))) 91)) (-4249 (((-638 (-638 (-936 (-224)))) (-638 (-638 (-936 (-224)))) (-638 (-867))) 44)) (-2648 (((-638 (-638 (-936 (-224)))) $) 87)) (-1507 (((-1259) $ (-936 (-224)) (-867)) 106)) (-2724 (($ $) 86) (($ (-638 (-638 (-936 (-224))))) 97) (($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914))) 96) (($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)) (-638 (-262))) 98)) (-1883 (((-1148) $) NIL)) (-2285 (((-561) $) 68)) (-1701 (((-1110) $) NIL)) (-3323 (($) 95)) (-4269 (((-638 (-224)) (-638 (-638 (-936 (-224))))) 54)) (-1849 (((-1259) $ (-638 (-936 (-224))) (-867) (-867) (-914)) 100) (((-1259) $ (-936 (-224))) 102) (((-1259) $ (-936 (-224)) (-867) (-867) (-914)) 101)) (-4064 (((-856) $) 112) (($ (-638 (-638 (-936 (-224))))) 107)) (-3968 (((-1259) $ (-936 (-224))) 105)) (-1723 (((-112) $ $) NIL)))
-(((-466) (-13 (-1090) (-10 -8 (-15 -3323 ($)) (-15 -2724 ($ $)) (-15 -2724 ($ (-638 (-638 (-936 (-224)))))) (-15 -2724 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)))) (-15 -2724 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)) (-638 (-262)))) (-15 -2648 ((-638 (-638 (-936 (-224)))) $)) (-15 -2285 ((-561) $)) (-15 -3565 ((-638 (-1084 (-378))) $)) (-15 -3565 ((-638 (-1084 (-378))) $ (-638 (-1084 (-378))))) (-15 -3481 ((-638 (-378)) $)) (-15 -3481 ((-638 (-378)) $ (-638 (-378)))) (-15 -1849 ((-1259) $ (-638 (-936 (-224))) (-867) (-867) (-914))) (-15 -1849 ((-1259) $ (-936 (-224)))) (-15 -1849 ((-1259) $ (-936 (-224)) (-867) (-867) (-914))) (-15 -3968 ((-1259) $ (-936 (-224)))) (-15 -1507 ((-1259) $ (-936 (-224)) (-867))) (-15 -4064 ($ (-638 (-638 (-936 (-224)))))) (-15 -4064 ((-856) $)) (-15 -4249 ((-638 (-638 (-936 (-224)))) (-638 (-638 (-936 (-224)))) (-638 (-867)))) (-15 -4269 ((-638 (-224)) (-638 (-638 (-936 (-224))))))))) (T -466))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-466)))) (-3323 (*1 *1) (-5 *1 (-466))) (-2724 (*1 *1 *1) (-5 *1 (-466))) (-2724 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))) (-2724 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867))) (-5 *4 (-638 (-914))) (-5 *1 (-466)))) (-2724 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867))) (-5 *4 (-638 (-914))) (-5 *5 (-638 (-262))) (-5 *1 (-466)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-466)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466)))) (-3565 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466)))) (-3481 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466)))) (-1849 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-1849 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))) (-1849 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-3968 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))) (-1507 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))) (-4249 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867))) (-5 *1 (-466)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-638 (-224))) (-5 *1 (-466)))))
-(-13 (-1090) (-10 -8 (-15 -3323 ($)) (-15 -2724 ($ $)) (-15 -2724 ($ (-638 (-638 (-936 (-224)))))) (-15 -2724 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)))) (-15 -2724 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)) (-638 (-262)))) (-15 -2648 ((-638 (-638 (-936 (-224)))) $)) (-15 -2285 ((-561) $)) (-15 -3565 ((-638 (-1084 (-378))) $)) (-15 -3565 ((-638 (-1084 (-378))) $ (-638 (-1084 (-378))))) (-15 -3481 ((-638 (-378)) $)) (-15 -3481 ((-638 (-378)) $ (-638 (-378)))) (-15 -1849 ((-1259) $ (-638 (-936 (-224))) (-867) (-867) (-914))) (-15 -1849 ((-1259) $ (-936 (-224)))) (-15 -1849 ((-1259) $ (-936 (-224)) (-867) (-867) (-914))) (-15 -3968 ((-1259) $ (-936 (-224)))) (-15 -1507 ((-1259) $ (-936 (-224)) (-867))) (-15 -4064 ($ (-638 (-638 (-936 (-224)))))) (-15 -4064 ((-856) $)) (-15 -4249 ((-638 (-638 (-936 (-224)))) (-638 (-638 (-936 (-224)))) (-638 (-867)))) (-15 -4269 ((-638 (-224)) (-638 (-638 (-936 (-224))))))))
-((-1819 (($ $) NIL) (($ $ $) 11)))
-(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|))) (-468 |#2| |#3|) (-171) (-23)) (T -467))
-NIL
-(-10 -8 (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3768 ((|#2| $) 19)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 15) (($ $ $) 13)) (-1810 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3046 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4351 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
+(-13 (-468 |t#1| |t#2|) (-1031 |t#1|) (-10 -8 (-15 (-3046) ($) -4359) (-15 -4351 ($ $ $))))
+(((-102) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-468 |#1| |#2|) . T) ((-1031 |#1|) . T) ((-1091) . T))
+((-2069 (((-1253 (-1253 (-544))) (-1253 (-1253 (-544))) (-912)) 18)) (-2070 (((-1253 (-1253 (-544))) (-912)) 16)))
+(((-464) (-10 -7 (-15 -2069 ((-1253 (-1253 (-544))) (-1253 (-1253 (-544))) (-912))) (-15 -2070 ((-1253 (-1253 (-544))) (-912))))) (T -464))
+((-2070 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 (-544)))) (-5 *1 (-464)))) (-2069 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 (-1253 (-544)))) (-5 *3 (-912)) (-5 *1 (-464)))))
+(-10 -7 (-15 -2069 ((-1253 (-1253 (-544))) (-1253 (-1253 (-544))) (-912))) (-15 -2070 ((-1253 (-1253 (-544))) (-912))))
+((-3152 (((-544) (-544)) 30) (((-544)) 22)) (-3156 (((-544) (-544)) 26) (((-544)) 18)) (-3154 (((-544) (-544)) 28) (((-544)) 20)) (-2072 (((-112) (-112)) 12) (((-112)) 10)) (-2071 (((-112) (-112)) 11) (((-112)) 9)) (-2073 (((-112) (-112)) 24) (((-112)) 15)))
+(((-465) (-10 -7 (-15 -2071 ((-112))) (-15 -2072 ((-112))) (-15 -2071 ((-112) (-112))) (-15 -2072 ((-112) (-112))) (-15 -2073 ((-112))) (-15 -3154 ((-544))) (-15 -3156 ((-544))) (-15 -3152 ((-544))) (-15 -2073 ((-112) (-112))) (-15 -3154 ((-544) (-544))) (-15 -3156 ((-544) (-544))) (-15 -3152 ((-544) (-544))))) (T -465))
+((-3152 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3152 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3156 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3154 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-2073 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2072 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2071 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(-10 -7 (-15 -2071 ((-112))) (-15 -2072 ((-112))) (-15 -2071 ((-112) (-112))) (-15 -2072 ((-112) (-112))) (-15 -2073 ((-112))) (-15 -3154 ((-544))) (-15 -3156 ((-544))) (-15 -3152 ((-544))) (-15 -2073 ((-112) (-112))) (-15 -3154 ((-544) (-544))) (-15 -3156 ((-544) (-544))) (-15 -3152 ((-544) (-544))))
+((-2947 (((-112) $ $) NIL)) (-4258 (((-635 (-377)) $) 28) (((-635 (-377)) $ (-635 (-377))) 94)) (-2078 (((-635 (-1079 (-377))) $) 16) (((-635 (-1079 (-377))) $ (-635 (-1079 (-377)))) 91)) (-2075 (((-635 (-635 (-936 (-224)))) (-635 (-635 (-936 (-224)))) (-635 (-867))) 44)) (-2079 (((-635 (-635 (-936 (-224)))) $) 87)) (-4113 (((-1259) $ (-936 (-224)) (-867)) 106)) (-2080 (($ $) 86) (($ (-635 (-635 (-936 (-224))))) 97) (($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912))) 96) (($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)) (-635 (-260))) 98)) (-3643 (((-1148) $) NIL)) (-4267 (((-544) $) 68)) (-3644 (((-1110) $) NIL)) (-2081 (($) 95)) (-2074 (((-635 (-224)) (-635 (-635 (-936 (-224))))) 54)) (-2077 (((-1259) $ (-635 (-936 (-224))) (-867) (-867) (-912)) 100) (((-1259) $ (-936 (-224))) 102) (((-1259) $ (-936 (-224)) (-867) (-867) (-912)) 101)) (-4353 (((-857) $) 112) (($ (-635 (-635 (-936 (-224))))) 107)) (-2076 (((-1259) $ (-936 (-224))) 105)) (-3437 (((-112) $ $) NIL)))
+(((-466) (-13 (-1091) (-10 -8 (-15 -2081 ($)) (-15 -2080 ($ $)) (-15 -2080 ($ (-635 (-635 (-936 (-224)))))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)) (-635 (-260)))) (-15 -2079 ((-635 (-635 (-936 (-224)))) $)) (-15 -4267 ((-544) $)) (-15 -2078 ((-635 (-1079 (-377))) $)) (-15 -2078 ((-635 (-1079 (-377))) $ (-635 (-1079 (-377))))) (-15 -4258 ((-635 (-377)) $)) (-15 -4258 ((-635 (-377)) $ (-635 (-377)))) (-15 -2077 ((-1259) $ (-635 (-936 (-224))) (-867) (-867) (-912))) (-15 -2077 ((-1259) $ (-936 (-224)))) (-15 -2077 ((-1259) $ (-936 (-224)) (-867) (-867) (-912))) (-15 -2076 ((-1259) $ (-936 (-224)))) (-15 -4113 ((-1259) $ (-936 (-224)) (-867))) (-15 -4353 ($ (-635 (-635 (-936 (-224)))))) (-15 -4353 ((-857) $)) (-15 -2075 ((-635 (-635 (-936 (-224)))) (-635 (-635 (-936 (-224)))) (-635 (-867)))) (-15 -2074 ((-635 (-224)) (-635 (-635 (-936 (-224))))))))) (T -466))
+((-4353 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-466)))) (-2081 (*1 *1) (-5 *1 (-466))) (-2080 (*1 *1 *1) (-5 *1 (-466))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) (-2080 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) (-5 *4 (-635 (-912))) (-5 *1 (-466)))) (-2080 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) (-5 *4 (-635 (-912))) (-5 *5 (-635 (-260))) (-5 *1 (-466)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-466)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466)))) (-2078 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466)))) (-4258 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466)))) (-2077 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-2077 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))) (-2077 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))) (-4113 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) (-2075 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) (-5 *1 (-466)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-224))) (-5 *1 (-466)))))
+(-13 (-1091) (-10 -8 (-15 -2081 ($)) (-15 -2080 ($ $)) (-15 -2080 ($ (-635 (-635 (-936 (-224)))))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)) (-635 (-260)))) (-15 -2079 ((-635 (-635 (-936 (-224)))) $)) (-15 -4267 ((-544) $)) (-15 -2078 ((-635 (-1079 (-377))) $)) (-15 -2078 ((-635 (-1079 (-377))) $ (-635 (-1079 (-377))))) (-15 -4258 ((-635 (-377)) $)) (-15 -4258 ((-635 (-377)) $ (-635 (-377)))) (-15 -2077 ((-1259) $ (-635 (-936 (-224))) (-867) (-867) (-912))) (-15 -2077 ((-1259) $ (-936 (-224)))) (-15 -2077 ((-1259) $ (-936 (-224)) (-867) (-867) (-912))) (-15 -2076 ((-1259) $ (-936 (-224)))) (-15 -4113 ((-1259) $ (-936 (-224)) (-867))) (-15 -4353 ($ (-635 (-635 (-936 (-224)))))) (-15 -4353 ((-857) $)) (-15 -2075 ((-635 (-635 (-936 (-224)))) (-635 (-635 (-936 (-224)))) (-635 (-867)))) (-15 -2074 ((-635 (-224)) (-635 (-635 (-936 (-224))))))))
+((-4244 (($ $) NIL) (($ $ $) 11)))
+(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|))) (-468 |#2| |#3|) (-171) (-23)) (T -467))
+NIL
+(-10 -8 (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 ((|#2| $) 19)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 15) (($ $ $) 13)) (-4246 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-468 |#1| |#2|) (-139) (-171) (-23)) (T -468))
-((-3768 (*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-2246 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
-(-13 (-1090) (-10 -8 (-15 -3768 (|t#2| $)) (-15 (-2246) ($) -1494) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1819 ($ $)) (-15 -1810 ($ $ $)) (-15 -1819 ($ $ $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4205 (((-3 (-638 (-479 |#1| |#2|)) "failed") (-638 (-479 |#1| |#2|)) (-638 (-858 |#1|))) 91)) (-1780 (((-638 (-638 (-246 |#1| |#2|))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|))) 89)) (-3010 (((-2 (|:| |dpolys| (-638 (-246 |#1| |#2|))) (|:| |coords| (-638 (-561)))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|))) 61)))
-(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -1780 ((-638 (-638 (-246 |#1| |#2|))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -4205 ((-3 (-638 (-479 |#1| |#2|)) "failed") (-638 (-479 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -3010 ((-2 (|:| |dpolys| (-638 (-246 |#1| |#2|))) (|:| |coords| (-638 (-561)))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|))))) (-638 (-1166)) (-450) (-450)) (T -469))
-((-3010 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-2 (|:| |dpolys| (-638 (-246 *5 *6))) (|:| |coords| (-638 (-561))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))) (-4205 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-638 (-858 *4))) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-450)))) (-1780 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-638 (-638 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))))
-(-10 -7 (-15 -1780 ((-638 (-638 (-246 |#1| |#2|))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -4205 ((-3 (-638 (-479 |#1| |#2|)) "failed") (-638 (-479 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -3010 ((-2 (|:| |dpolys| (-638 (-246 |#1| |#2|))) (|:| |coords| (-638 (-561)))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|)))))
-((-3735 (((-3 $ "failed") $) 11)) (-2076 (($ $ $) 18)) (-3047 (($ $ $) 19)) (-1828 (($ $ $) 9)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 17)))
-(((-470 |#1|) (-10 -8 (-15 -3047 (|#1| |#1| |#1|)) (-15 -2076 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1828 (|#1| |#1| |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914)))) (-471)) (T -470))
-NIL
-(-10 -8 (-15 -3047 (|#1| |#1| |#1|)) (-15 -2076 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1828 (|#1| |#1| |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))))
-((-4053 (((-112) $ $) 7)) (-2674 (($) 18 T CONST)) (-3735 (((-3 $ "failed") $) 15)) (-2252 (((-112) $) 17)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 24)) (-1701 (((-1110) $) 10)) (-2076 (($ $ $) 21)) (-3047 (($ $ $) 20)) (-4064 (((-856) $) 11)) (-2257 (($) 19 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 23)) (** (($ $ (-914)) 13) (($ $ (-765)) 16) (($ $ (-561)) 22)) (* (($ $ $) 14)))
+((-4355 (*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-3040 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4246 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
+(-13 (-1091) (-10 -8 (-15 -4355 (|t#2| $)) (-15 (-3040) ($) -4359) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4244 ($ $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2083 (((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-858 |#1|))) 91)) (-2082 (((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|))) 89)) (-2084 (((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-544)))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|))) 61)))
+(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2083 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2084 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-544)))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|))))) (-635 (-1166)) (-450) (-450)) (T -469))
+((-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-2 (|:| |dpolys| (-635 (-246 *5 *6))) (|:| |coords| (-635 (-544))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))) (-2083 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-858 *4))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-450)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
+(-10 -7 (-15 -2082 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2083 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2084 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-544)))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|)))))
+((-3866 (((-3 $ "failed") $) 11)) (-3392 (($ $ $) 18)) (-2729 (($ $ $) 19)) (-4356 (($ $ $) 9)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 17)))
+(((-470 |#1|) (-10 -8 (-15 -2729 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912)))) (-471)) (T -470))
+NIL
+(-10 -8 (-15 -2729 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))))
+((-2947 (((-112) $ $) 7)) (-4131 (($) 18 T CONST)) (-3866 (((-3 $ "failed") $) 15)) (-2545 (((-112) $) 17)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 24)) (-3644 (((-1110) $) 10)) (-3392 (($ $ $) 21)) (-2729 (($ $ $) 20)) (-4353 (((-857) $) 11)) (-3046 (($) 19 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 23)) (** (($ $ (-912)) 13) (($ $ (-765)) 16) (($ $ (-544)) 22)) (* (($ $ $) 14)))
(((-471) (-139)) (T -471))
-((-1519 (*1 *1 *1) (-4 *1 (-471))) (-1828 (*1 *1 *1 *1) (-4 *1 (-471))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-561)))) (-2076 (*1 *1 *1 *1) (-4 *1 (-471))) (-3047 (*1 *1 *1 *1) (-4 *1 (-471))))
-(-13 (-720) (-10 -8 (-15 -1519 ($ $)) (-15 -1828 ($ $ $)) (-15 ** ($ $ (-561))) (-6 -4396) (-15 -2076 ($ $ $)) (-15 -3047 ($ $ $))))
-(((-102) . T) ((-608 (-856)) . T) ((-720) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 17)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-4228 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3039 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) NIL)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-406 (-561))) NIL) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) 22)) (-4364 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-2563 (($ $) 26 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 33 (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1250 |#2|)) 27 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-406 (-561))) NIL)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3486 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) 25 (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $ (-1250 |#2|)) 15)) (-3768 (((-406 (-561)) $) NIL)) (-3052 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1250 |#2|)) NIL) (($ (-1239 |#1| |#2| |#3|)) 9) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-3932 ((|#1| $ (-406 (-561))) NIL)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) 18)) (-3086 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) 24)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-472 |#1| |#2| |#3|) (-13 (-1235 |#1|) (-10 -8 (-15 -4064 ($ (-1250 |#2|))) (-15 -4064 ($ (-1239 |#1| |#2| |#3|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -472))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1239 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(-13 (-1235 |#1|) (-10 -8 (-15 -4064 ($ (-1250 |#2|))) (-15 -4064 ($ (-1239 |#1| |#2| |#3|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|)))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1846 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#2| $ |#1| |#2|) 18)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) 19)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) 16)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) NIL)) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 ((|#1| $) NIL (|has| |#1| (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 ((|#1| $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2066 (((-638 |#1|) $) NIL)) (-2492 (((-112) |#1| $) NIL)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2355 (((-638 |#1|) $) NIL)) (-1558 (((-112) |#1| $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#2| $) NIL (|has| |#1| (-844)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-473 |#1| |#2| |#3| |#4|) (-1181 |#1| |#2|) (-1090) (-1090) (-1181 |#1| |#2|) |#2|) (T -473))
+((-2779 (*1 *1 *1) (-4 *1 (-471))) (-4356 (*1 *1 *1 *1) (-4 *1 (-471))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-544)))) (-3392 (*1 *1 *1 *1) (-4 *1 (-471))) (-2729 (*1 *1 *1 *1) (-4 *1 (-471))))
+(-13 (-720) (-10 -8 (-15 -2779 ($ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ (-544))) (-6 -4397) (-15 -3392 ($ $ $)) (-15 -2729 ($ $ $))))
+(((-102) . T) ((-608 (-857)) . T) ((-720) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 17)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) NIL) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 22)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 26 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 33 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 27 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 25 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $ (-1250 |#2|)) 15)) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1250 |#2|)) NIL) (($ (-1234 |#1| |#2| |#3|)) 9) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 18)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 24)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-472 |#1| |#2| |#3|) (-13 (-1236 |#1|) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4353 ($ (-1234 |#1| |#2| |#3|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -472))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1236 |#1|) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4353 ($ (-1234 |#1| |#2| |#3|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|)))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) 18)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) 19)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) 16)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-473 |#1| |#2| |#3| |#4|) (-1181 |#1| |#2|) (-1091) (-1091) (-1181 |#1| |#2|) |#2|) (T -473))
NIL
(-1181 |#1| |#2|)
-((-4053 (((-112) $ $) NIL)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3742 (((-638 $) (-638 |#4|)) NIL)) (-1405 (((-638 |#3|) $) NIL)) (-4214 (((-112) $) NIL)) (-2444 (((-112) $) NIL (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4089 ((|#4| |#4| $) NIL)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-3612 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2674 (($) NIL T CONST)) (-3853 (((-112) $) 27 (|has| |#1| (-553)))) (-3733 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4338 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1577 (((-112) $) NIL (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3293 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3979 (($ (-638 |#4|)) NIL)) (-1437 (((-3 $ "failed") $) 40)) (-2471 ((|#4| |#4| $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2310 ((|#4| |#4| $) NIL)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) NIL)) (-2368 (((-638 |#4|) $) 17 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#4|) $) 18 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-2029 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 22)) (-2597 (((-638 |#3|) $) NIL)) (-2247 (((-112) |#3| $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1501 (((-3 |#4| "failed") $) 38)) (-3589 (((-638 |#4|) $) NIL)) (-3067 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3641 ((|#4| |#4| $) NIL)) (-4345 (((-112) $ $) NIL)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2903 ((|#4| |#4| $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-3 |#4| "failed") $) 36)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2336 (((-3 $ "failed") $ |#4|) 47)) (-3702 (($ $ |#4|) NIL)) (-3977 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 16)) (-2910 (($) 14)) (-3768 (((-765) $) NIL)) (-1714 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) 13)) (-4216 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 21)) (-3883 (($ $ |#3|) 43)) (-2049 (($ $ |#3|) 44)) (-1768 (($ $) NIL)) (-2983 (($ $ |#3|) NIL)) (-4064 (((-856) $) 32) (((-638 |#4|) $) 41)) (-3513 (((-765) $) NIL (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) NIL)) (-4024 (((-112) |#3| $) NIL)) (-1723 (((-112) $ $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-474 |#1| |#2| |#3| |#4|) (-1198 |#1| |#2| |#3| |#4|) (-553) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -474))
-NIL
-(-1198 |#1| |#2| |#3| |#4|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL)) (-3979 (((-561) $) NIL) (((-406 (-561)) $) NIL)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-4111 (($) 18)) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-4216 (((-378) $) 22) (((-224) $) 25) (((-406 (-1162 (-561))) $) 19) (((-534) $) 52)) (-4064 (((-856) $) 50) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (((-224) $) 24) (((-378) $) 21)) (-3746 (((-765)) NIL)) (-3996 (((-112) $ $) NIL)) (-2246 (($) 36 T CONST)) (-2257 (($) 11 T CONST)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-475) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))) (-1015) (-608 (-224)) (-608 (-378)) (-609 (-406 (-1162 (-561)))) (-609 (-534)) (-10 -8 (-15 -4111 ($))))) (T -475))
-((-4111 (*1 *1) (-5 *1 (-475))))
-(-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))) (-1015) (-608 (-224)) (-608 (-378)) (-609 (-406 (-1162 (-561)))) (-609 (-534)) (-10 -8 (-15 -4111 ($))))
-((-4053 (((-112) $ $) NIL)) (-4322 (((-1125) $) 11)) (-4308 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-476) (-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))) (T -476))
-((-4308 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))))
-(-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1846 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#2| $ |#1| |#2|) 16)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) 20)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) 18)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) NIL)) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 ((|#1| $) NIL (|has| |#1| (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 ((|#1| $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2066 (((-638 |#1|) $) 13)) (-2492 (((-112) |#1| $) NIL)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2355 (((-638 |#1|) $) NIL)) (-1558 (((-112) |#1| $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#2| $) NIL (|has| |#1| (-844)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 19)) (-2315 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 11 (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3548 (((-765) $) 15 (|has| $ (-6 -4399)))))
-(((-477 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399))) (-1090) (-1090) (-1148)) (T -477))
-NIL
-(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399)))
-((-1879 (((-561) (-561) (-561)) 7)) (-3213 (((-112) (-561) (-561) (-561) (-561)) 11)) (-2120 (((-1254 (-638 (-561))) (-765) (-765)) 22)))
-(((-478) (-10 -7 (-15 -1879 ((-561) (-561) (-561))) (-15 -3213 ((-112) (-561) (-561) (-561) (-561))) (-15 -2120 ((-1254 (-638 (-561))) (-765) (-765))))) (T -478))
-((-2120 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1254 (-638 (-561)))) (-5 *1 (-478)))) (-3213 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-478)))) (-1879 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-478)))))
-(-10 -7 (-15 -1879 ((-561) (-561) (-561))) (-15 -3213 ((-112) (-561) (-561) (-561) (-561))) (-15 -2120 ((-1254 (-638 (-561))) (-765) (-765))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-858 |#1|)) $) NIL)) (-1596 (((-1162 $) $ (-858 |#1|)) NIL) (((-1162 |#2|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-3012 (($ $) NIL (|has| |#2| (-553)))) (-3163 (((-112) $) NIL (|has| |#2| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2557 (($ $) NIL (|has| |#2| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3979 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-2395 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2134 (($ $ (-638 (-561))) NIL)) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-902)))) (-3227 (($ $ |#2| (-480 (-3548 |#1|) (-765)) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1393 (($ (-1162 |#2|) (-858 |#1|)) NIL) (($ (-1162 $) (-858 |#1|)) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#2| (-480 (-3548 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-858 |#1|)) NIL)) (-1522 (((-480 (-3548 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-1597 (($ $ $) NIL (|has| |#2| (-844)))) (-3017 (($ $ $) NIL (|has| |#2| (-844)))) (-1368 (($ (-1 (-480 (-3548 |#1|) (-765)) (-480 (-3548 |#1|) (-765))) $) NIL)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-2830 (((-3 (-858 |#1|) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#2| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1883 (((-1148) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4181 (-765))) "failed") $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#2| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-638 (-858 |#1|)) (-638 $)) NIL)) (-2753 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3922 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3768 (((-480 (-3548 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-2125 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-561))) NIL (-4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-480 (-3548 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-479 |#1| |#2|) (-13 (-942 |#2| (-480 (-3548 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2134 ($ $ (-638 (-561)))))) (-638 (-1166)) (-1042)) (T -479))
-((-2134 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-479 *3 *4)) (-14 *3 (-638 (-1166))) (-4 *4 (-1042)))))
-(-13 (-942 |#2| (-480 (-3548 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2134 ($ $ (-638 (-561))))))
-((-4053 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-4306 (((-112) $) NIL (|has| |#2| (-130)))) (-2274 (($ (-914)) NIL (|has| |#2| (-1042)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-1403 (($ $ $) NIL (|has| |#2| (-787)))) (-2979 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2684 (((-112) $ (-765)) NIL)) (-1386 (((-765)) NIL (|has| |#2| (-367)))) (-1659 (((-561) $) NIL (|has| |#2| (-842)))) (-4207 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1090)))) (-3979 (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) NIL (|has| |#2| (-1090)))) (-3720 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3735 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-1362 (($) NIL (|has| |#2| (-367)))) (-2041 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ (-561)) 11)) (-1784 (((-112) $) NIL (|has| |#2| (-842)))) (-2368 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL (|has| |#2| (-720)))) (-3271 (((-112) $) NIL (|has| |#2| (-842)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4125 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2029 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-1335 (((-914) $) NIL (|has| |#2| (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#2| (-1090)))) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-2442 (($ (-914)) NIL (|has| |#2| (-367)))) (-1701 (((-1110) $) NIL (|has| |#2| (-1090)))) (-1424 ((|#2| $) NIL (|has| (-561) (-844)))) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) NIL)) (-3634 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1675 (($ (-1254 |#2|)) NIL)) (-2390 (((-133)) NIL (|has| |#2| (-362)))) (-3922 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1714 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-1254 |#2|) $) NIL) (($ (-561)) NIL (-4050 (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) NIL (|has| |#2| (-1090))) (((-856) $) NIL (|has| |#2| (-608 (-856))))) (-3746 (((-765)) NIL (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-2165 (($ $) NIL (|has| |#2| (-842)))) (-2246 (($) NIL (|has| |#2| (-130)) CONST)) (-2257 (($) NIL (|has| |#2| (-720)) CONST)) (-3154 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1781 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1758 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1723 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-1770 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1746 (((-112) $ $) 15 (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-1810 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-914)) NIL (|has| |#2| (-720)))) (* (($ (-561) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-914) $) NIL (|has| |#2| (-25)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
+((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) NIL)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) 27 (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 40)) (-4092 ((|#4| |#4| $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-2096 (((-635 |#4|) $) 17 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 22)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-4204 (((-3 |#4| #1#) $) 38)) (-4104 (((-635 |#4|) $) NIL)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 36)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) 47)) (-4175 (($ $ |#4|) NIL)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 14)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 21)) (-3293 (($ $ |#3|) 43)) (-3295 (($ $ |#3|) 44)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 32) (((-635 |#4|) $) 41)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-4340 (((-112) |#3| $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-474 |#1| |#2| |#3| |#4|) (-1199 |#1| |#2| |#3| |#4|) (-554) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -474))
+NIL
+(-1199 |#1| |#2| |#3| |#4|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-4034 (($) 18)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4377 (((-377) $) 22) (((-224) $) 25) (((-406 (-1160 (-544))) $) 19) (((-533) $) 52)) (-4353 (((-857) $) 50) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (((-224) $) 24) (((-377) $) 21)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 36 T CONST)) (-3046 (($) 11 T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-475) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))) (-1013) (-608 (-224)) (-608 (-377)) (-609 (-406 (-1160 (-544)))) (-609 (-533)) (-10 -8 (-15 -4034 ($))))) (T -475))
+((-4034 (*1 *1) (-5 *1 (-475))))
+(-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))) (-1013) (-608 (-224)) (-608 (-377)) (-609 (-406 (-1160 (-544)))) (-609 (-533)) (-10 -8 (-15 -4034 ($))))
+((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-476) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -476))
+((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))))
+(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) 16)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) 20)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) 18)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) 13)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 19)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 11 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) 15 (|has| $ (-6 -4400)))))
+(((-477 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091) (-1148)) (T -477))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400)))
+((-2085 (((-544) (-544) (-544)) 7)) (-2086 (((-112) (-544) (-544) (-544) (-544)) 11)) (-3856 (((-1253 (-635 (-544))) (-765) (-765)) 22)))
+(((-478) (-10 -7 (-15 -2085 ((-544) (-544) (-544))) (-15 -2086 ((-112) (-544) (-544) (-544) (-544))) (-15 -3856 ((-1253 (-635 (-544))) (-765) (-765))))) (T -478))
+((-3856 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1253 (-635 (-544)))) (-5 *1 (-478)))) (-2086 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-478)))) (-2085 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-478)))))
+(-10 -7 (-15 -2085 ((-544) (-544) (-544))) (-15 -2086 ((-112) (-544) (-544) (-544) (-544))) (-15 -3856 ((-1253 (-635 (-544))) (-765) (-765))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-858 |#1|)) $) NIL)) (-3469 (((-1160 $) $ (-858 |#1|)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2087 (($ $ (-635 (-544))) NIL)) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-480 (-4364 |#1|) (-765)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) NIL) (($ (-1160 $) (-858 |#1|)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-480 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 (((-480 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-480 (-4364 |#1|) (-765)) (-480 (-4364 |#1|) (-765))) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-635 (-858 |#1|)) (-635 $)) NIL)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 (((-480 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-480 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-479 |#1| |#2|) (-13 (-943 |#2| (-480 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) (-635 (-1166)) (-1042)) (T -479))
+((-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-479 *3 *4)) (-14 *3 (-635 (-1166))) (-4 *4 (-1042)))))
+(-13 (-943 |#2| (-480 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544))))))
+((-2947 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3589 (((-112) $) NIL (|has| |#2| (-130)))) (-4114 (($ (-912)) NIL (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#2| (-367)))) (-4030 (((-544) $) NIL (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) NIL (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-3377 (($) NIL (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) 11)) (-3587 (((-112) $) NIL (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#2| (-720)))) (-3588 (((-112) $) NIL (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#2| (-367)))) (-3644 (((-1110) $) NIL (|has| |#2| (-1091)))) (-4207 ((|#2| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) NIL)) (-4243 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) NIL)) (-4318 (((-133)) NIL (|has| |#2| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#2|) $) NIL) (($ (-544)) NIL (-3936 (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) NIL (|has| |#2| (-1091))) (((-857) $) NIL (|has| |#2| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#2| (-842)))) (-3040 (($) NIL (|has| |#2| (-130)) CONST)) (-3046 (($) NIL (|has| |#2| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3437 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3067 (((-112) $ $) 15 (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-4246 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-912)) NIL (|has| |#2| (-720)))) (* (($ (-544) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-912) $) NIL (|has| |#2| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
(((-480 |#1| |#2|) (-237 |#1| |#2|) (-765) (-787)) (T -480))
NIL
(-237 |#1| |#2|)
-((-4053 (((-112) $ $) NIL)) (-3134 (((-638 (-504)) $) 11)) (-3305 (((-504) $) 10)) (-1883 (((-1148) $) NIL)) (-2835 (($ (-504) (-638 (-504))) 9)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-481) (-13 (-1073) (-10 -8 (-15 -2835 ($ (-504) (-638 (-504)))) (-15 -3305 ((-504) $)) (-15 -3134 ((-638 (-504)) $))))) (T -481))
-((-2835 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-638 (-504))) (-5 *1 (-481)))))
-(-13 (-1073) (-10 -8 (-15 -2835 ($ (-504) (-638 (-504)))) (-15 -3305 ((-504) $)) (-15 -3134 ((-638 (-504)) $))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) NIL)) (-2674 (($) NIL T CONST)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-2289 (($ $ $) 32)) (-3405 (($ $ $) 31)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3017 ((|#1| $) 26)) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3721 ((|#1| $) 27)) (-1617 (($ |#1| $) 10)) (-3356 (($ (-638 |#1|)) 12)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1387 ((|#1| $) 23)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 9)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 29)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) 21 (|has| $ (-6 -4399)))))
-(((-482 |#1|) (-13 (-961 |#1|) (-10 -8 (-15 -3356 ($ (-638 |#1|))))) (-844)) (T -482))
-((-3356 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3)))))
-(-13 (-961 |#1|) (-10 -8 (-15 -3356 ($ (-638 |#1|)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3176 (($ $) 69)) (-1837 (((-112) $) NIL)) (-1883 (((-1148) $) NIL)) (-3595 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-1701 (((-1110) $) NIL)) (-3194 (((-3 |#4| "failed") $) 107)) (-4360 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-561)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4261 (((-2 (|:| -1418 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4064 (((-856) $) 102)) (-2246 (($) 33 T CONST)) (-1723 (((-112) $ $) 109)) (-1819 (($ $) 72) (($ $ $) NIL)) (-1810 (($ $ $) 70)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 73)))
-(((-483 |#1| |#2| |#3| |#4|) (-334 |#1| |#2| |#3| |#4|) (-362) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -483))
-NIL
-(-334 |#1| |#2| |#3| |#4|)
-((-3359 (((-561) (-638 (-561))) 29)) (-3975 ((|#1| (-638 |#1|)) 55)) (-1654 (((-638 |#1|) (-638 |#1|)) 56)) (-4057 (((-638 |#1|) (-638 |#1|)) 58)) (-1603 ((|#1| (-638 |#1|)) 57)) (-2125 (((-638 (-561)) (-638 |#1|)) 32)))
-(((-484 |#1|) (-10 -7 (-15 -1603 (|#1| (-638 |#1|))) (-15 -3975 (|#1| (-638 |#1|))) (-15 -4057 ((-638 |#1|) (-638 |#1|))) (-15 -1654 ((-638 |#1|) (-638 |#1|))) (-15 -2125 ((-638 (-561)) (-638 |#1|))) (-15 -3359 ((-561) (-638 (-561))))) (-1230 (-561))) (T -484))
-((-3359 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-561)) (-5 *1 (-484 *4)) (-4 *4 (-1230 *2)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1230 (-561))) (-5 *2 (-638 (-561))) (-5 *1 (-484 *4)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1230 (-561))) (-5 *1 (-484 *3)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1230 (-561))) (-5 *1 (-484 *3)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1230 (-561))))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1230 (-561))))))
-(-10 -7 (-15 -1603 (|#1| (-638 |#1|))) (-15 -3975 (|#1| (-638 |#1|))) (-15 -4057 ((-638 |#1|) (-638 |#1|))) (-15 -1654 ((-638 |#1|) (-638 |#1|))) (-15 -2125 ((-638 (-561)) (-638 |#1|))) (-15 -3359 ((-561) (-638 (-561)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 (((-561) $) NIL (|has| (-561) (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| (-561) (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-561) (-1031 (-561))))) (-3979 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-561) (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| (-561) (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 (((-561) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-3271 (((-112) $) NIL (|has| (-561) (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-561) (-844)))) (-4165 (($ (-1 (-561) (-561)) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-561) (-1141)) CONST)) (-4287 (($ (-406 (-561))) 9)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) NIL)) (-4020 (((-561) $) NIL (|has| (-561) (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-1905 (((-765) $) NIL)) (-2315 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1969 (($ $) NIL)) (-4088 (((-561) $) NIL)) (-4216 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 8) (($ (-561)) NIL) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL) (((-997 16) $) 10)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-3746 (((-765)) NIL)) (-2449 (((-561) $) NIL (|has| (-561) (-543)))) (-3996 (((-112) $ $) NIL)) (-2165 (($ $) NIL (|has| (-561) (-814)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1828 (($ $ $) NIL) (($ (-561) (-561)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL)))
-(((-485) (-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 16)) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -4287 ($ (-406 (-561))))))) (T -485))
-((-2569 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485)))))
-(-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 16)) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -4287 ($ (-406 (-561))))))
-((-4125 (((-638 |#2|) $) 23)) (-4288 (((-112) |#2| $) 28)) (-3977 (((-112) (-1 (-112) |#2|) $) 21)) (-1436 (($ $ (-638 (-293 |#2|))) 13) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-638 |#2|) (-638 |#2|)) NIL)) (-1714 (((-765) (-1 (-112) |#2|) $) 22) (((-765) |#2| $) 26)) (-4064 (((-856) $) 37)) (-3715 (((-112) (-1 (-112) |#2|) $) 20)) (-1723 (((-112) $ $) 31)) (-3548 (((-765) $) 17)))
-(((-486 |#1| |#2|) (-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#2| |#2|)) (-15 -1436 (|#1| |#1| (-293 |#2|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -4288 ((-112) |#2| |#1|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -4125 ((-638 |#2|) |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-765) |#1|))) (-487 |#2|) (-1205)) (T -486))
-NIL
-(-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#2| |#2|)) (-15 -1436 (|#1| |#1| (-293 |#2|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -4288 ((-112) |#2| |#1|)) (-15 -1714 ((-765) |#2| |#1|)) (-15 -4125 ((-638 |#2|) |#1|)) (-15 -1714 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-765) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-2674 (($) 7 T CONST)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-487 |#1|) (-139) (-1205)) (T -487))
-((-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1205)))) (-2029 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1205)))) (-3715 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4399)) (-4 *1 (-487 *4)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-3977 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4399)) (-4 *1 (-487 *4)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-1714 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4399)) (-4 *1 (-487 *4)) (-4 *4 (-1205)) (-5 *2 (-765)))) (-2368 (*1 *2 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))) (-4125 (*1 *2 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))) (-1714 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-765)))) (-4288 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) (IF (|has| |t#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4165 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4400)) (-15 -2029 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4399)) (PROGN (-15 -3715 ((-112) (-1 (-112) |t#1|) $)) (-15 -3977 ((-112) (-1 (-112) |t#1|) $)) (-15 -1714 ((-765) (-1 (-112) |t#1|) $)) (-15 -2368 ((-638 |t#1|) $)) (-15 -4125 ((-638 |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -1714 ((-765) |t#1| $)) (-15 -4288 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4064 ((|#1| $) 6) (($ |#1|) 9)))
-(((-488 |#1|) (-139) (-1205)) (T -488))
+((-2947 (((-112) $ $) NIL)) (-2088 (((-635 (-504)) $) 11)) (-3949 (((-504) $) 10)) (-3643 (((-1148) $) NIL)) (-2089 (($ (-504) (-635 (-504))) 9)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-481) (-13 (-1073) (-10 -8 (-15 -2089 ($ (-504) (-635 (-504)))) (-15 -3949 ((-504) $)) (-15 -2088 ((-635 (-504)) $))))) (T -481))
+((-2089 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481)))))
+(-13 (-1073) (-10 -8 (-15 -2089 ($ (-504) (-635 (-504)))) (-15 -3949 ((-504) $)) (-15 -2088 ((-635 (-504)) $))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-3241 (($ $ $) 32)) (-3917 (($ $ $) 31)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3242 ((|#1| $) 26)) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 27)) (-4014 (($ |#1| $) 10)) (-2090 (($ (-635 |#1|)) 12)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1357 ((|#1| $) 23)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 9)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 29)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) 21 (|has| $ (-6 -4400)))))
+(((-482 |#1|) (-13 (-961 |#1|) (-10 -8 (-15 -2090 ($ (-635 |#1|))))) (-844)) (T -482))
+((-2090 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3)))))
+(-13 (-961 |#1|) (-10 -8 (-15 -2090 ($ (-635 |#1|)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ $) 69)) (-1780 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-2120 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-3644 (((-1110) $) NIL)) (-2544 (((-3 |#4| "failed") $) 107)) (-1781 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-544)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3839 (((-2 (|:| -2459 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4353 (((-857) $) 102)) (-3040 (($) 33 T CONST)) (-3437 (((-112) $ $) 109)) (-4244 (($ $) 72) (($ $ $) NIL)) (-4246 (($ $ $) 70)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 73)))
+(((-483 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -483))
+NIL
+(-335 |#1| |#2| |#3| |#4|)
+((-2094 (((-544) (-635 (-544))) 29)) (-2091 ((|#1| (-635 |#1|)) 55)) (-2093 (((-635 |#1|) (-635 |#1|)) 56)) (-2092 (((-635 |#1|) (-635 |#1|)) 58)) (-3545 ((|#1| (-635 |#1|)) 57)) (-3199 (((-635 (-544)) (-635 |#1|)) 32)))
+(((-484 |#1|) (-10 -7 (-15 -3545 (|#1| (-635 |#1|))) (-15 -2091 (|#1| (-635 |#1|))) (-15 -2092 ((-635 |#1|) (-635 |#1|))) (-15 -2093 ((-635 |#1|) (-635 |#1|))) (-15 -3199 ((-635 (-544)) (-635 |#1|))) (-15 -2094 ((-544) (-635 (-544))))) (-1229 (-544))) (T -484))
+((-2094 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-544)) (-5 *1 (-484 *4)) (-4 *4 (-1229 *2)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1229 (-544))) (-5 *2 (-635 (-544))) (-5 *1 (-484 *4)))) (-2093 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3)))) (-2092 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544))))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544))))))
+(-10 -7 (-15 -3545 (|#1| (-635 |#1|))) (-15 -2091 (|#1| (-635 |#1|))) (-15 -2092 ((-635 |#1|) (-635 |#1|))) (-15 -2093 ((-635 |#1|) (-635 |#1|))) (-15 -3199 ((-635 (-544)) (-635 |#1|))) (-15 -2094 ((-544) (-635 (-544)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-544) $) NIL (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-2095 (($ (-406 (-544))) 9)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) NIL)) (-3515 (((-544) $) NIL (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 8) (($ (-544)) NIL) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL) (((-997 16) $) 10)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-544) $) NIL (|has| (-544) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-544) (-844)))) (-4356 (($ $ $) NIL) (($ (-544) (-544)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL)))
+(((-485) (-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 16)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2095 ($ (-406 (-544))))))) (T -485))
+((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485)))))
+(-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 16)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2095 ($ (-406 (-544))))))
+((-2554 (((-635 |#2|) $) 23)) (-3646 (((-112) |#2| $) 28)) (-2098 (((-112) (-1 (-112) |#2|) $) 21)) (-4174 (($ $ (-635 (-292 |#2|))) 13) (($ $ (-292 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-2097 (((-765) (-1 (-112) |#2|) $) 22) (((-765) |#2| $) 26)) (-4353 (((-857) $) 37)) (-2099 (((-112) (-1 (-112) |#2|) $) 20)) (-3437 (((-112) $ $) 31)) (-4364 (((-765) $) 17)))
+(((-486 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2554 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|))) (-487 |#2|) (-1204)) (T -486))
+NIL
+(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2554 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-487 |#1|) (-139) (-1204)) (T -487))
+((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1204)))) (-2100 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-487 *3)) (-4 *3 (-1204)))) (-2099 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-2098 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-2097 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) (-4 *4 (-1204)) (-5 *2 (-765)))) (-2096 (*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3)))) (-2554 (*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3)))) (-2097 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-765)))) (-3646 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) (IF (|has| |t#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |t#1| (-1091)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4401)) (-15 -2100 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4400)) (PROGN (-15 -2099 ((-112) (-1 (-112) |t#1|) $)) (-15 -2098 ((-112) (-1 (-112) |t#1|) $)) (-15 -2097 ((-765) (-1 (-112) |t#1|) $)) (-15 -2096 ((-635 |t#1|) $)) (-15 -2554 ((-635 |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -2097 ((-765) |t#1| $)) (-15 -3646 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-4353 ((|#1| $) 6) (($ |#1|) 9)))
+(((-488 |#1|) (-139) (-1204)) (T -488))
NIL
(-13 (-608 |t#1|) (-611 |t#1|))
(((-611 |#1|) . T) ((-608 |#1|) . T))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-3092 (($ (-1148)) 8)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 14) (((-1148) $) 11)) (-1723 (((-112) $ $) 10)))
-(((-489) (-13 (-1090) (-608 (-1148)) (-10 -8 (-15 -3092 ($ (-1148)))))) (T -489))
-((-3092 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489)))))
-(-13 (-1090) (-608 (-1148)) (-10 -8 (-15 -3092 ($ (-1148)))))
-((-3014 (($ $) 15)) (-4213 (($ $) 24)) (-3039 (($ $) 12)) (-3052 (($ $) 10)) (-3026 (($ $) 17)) (-3002 (($ $) 22)))
-(((-490 |#1|) (-10 -8 (-15 -3002 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3014 (|#1| |#1|))) (-491)) (T -490))
-NIL
-(-10 -8 (-15 -3002 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)))
-((-3014 (($ $) 11)) (-4213 (($ $) 10)) (-3039 (($ $) 9)) (-3052 (($ $) 8)) (-3026 (($ $) 7)) (-3002 (($ $) 6)))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2101 (($ (-1148)) 8)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 14) (((-1148) $) 11)) (-3437 (((-112) $ $) 10)))
+(((-489) (-13 (-1091) (-608 (-1148)) (-10 -8 (-15 -2101 ($ (-1148)))))) (T -489))
+((-2101 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489)))))
+(-13 (-1091) (-608 (-1148)) (-10 -8 (-15 -2101 ($ (-1148)))))
+((-3891 (($ $) 15)) (-3889 (($ $) 24)) (-3893 (($ $) 12)) (-3894 (($ $) 10)) (-3892 (($ $) 17)) (-3890 (($ $) 22)))
+(((-490 |#1|) (-10 -8 (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|))) (-491)) (T -490))
+NIL
+(-10 -8 (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)))
+((-3891 (($ $) 11)) (-3889 (($ $) 10)) (-3893 (($ $) 9)) (-3894 (($ $) 8)) (-3892 (($ $) 7)) (-3890 (($ $) 6)))
(((-491) (-139)) (T -491))
-((-3014 (*1 *1 *1) (-4 *1 (-491))) (-4213 (*1 *1 *1) (-4 *1 (-491))) (-3039 (*1 *1 *1) (-4 *1 (-491))) (-3052 (*1 *1 *1) (-4 *1 (-491))) (-3026 (*1 *1 *1) (-4 *1 (-491))) (-3002 (*1 *1 *1) (-4 *1 (-491))))
-(-13 (-10 -8 (-15 -3002 ($ $)) (-15 -3026 ($ $)) (-15 -3052 ($ $)) (-15 -3039 ($ $)) (-15 -4213 ($ $)) (-15 -3014 ($ $))))
-((-1633 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 42)))
-(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1633 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-362) (-1230 |#1|) (-13 (-362) (-146) (-718 |#1| |#2|)) (-1230 |#3|)) (T -492))
-((-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1230 *7)))))
-(-10 -7 (-15 -1633 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|))))
-((-4053 (((-112) $ $) NIL)) (-2311 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-2153 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-4306 (((-112) $) 38)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2228 (((-112) $ $) 63)) (-1495 (((-638 (-607 $)) $) 47)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1339 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1643 (($ $) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-1466 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-2496 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-4061 (((-3 (-607 $) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL)) (-3979 (((-607 $) $) NIL) (((-561) $) NIL) (((-406 (-561)) $) 49)) (-1792 (($ $ $) NIL)) (-3720 (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-406 (-561)))) (|:| |vec| (-1254 (-406 (-561))))) (-682 $) (-1254 $)) NIL) (((-682 (-406 (-561))) (-682 $)) NIL)) (-3176 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1719 (($ $) NIL) (($ (-638 $)) NIL)) (-2123 (((-638 (-114)) $) NIL)) (-1773 (((-114) (-114)) NIL)) (-2252 (((-112) $) 41)) (-2110 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-4077 (((-1115 (-561) (-607 $)) $) 36)) (-4343 (($ $ (-561)) NIL)) (-2072 (((-1162 $) (-1162 $) (-607 $)) 77) (((-1162 $) (-1162 $) (-638 (-607 $))) 54) (($ $ (-607 $)) 66) (($ $ (-638 (-607 $))) 67)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1578 (((-1162 $) (-607 $)) 64 (|has| $ (-1042)))) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 $ $) (-607 $)) NIL)) (-2373 (((-3 (-607 $) "failed") $) NIL)) (-1563 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1583 (((-638 (-607 $)) $) NIL)) (-4154 (($ (-114) $) NIL) (($ (-114) (-638 $)) NIL)) (-4188 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) NIL)) (-1519 (($ $) NIL)) (-3093 (((-765) $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1342 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2058 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1436 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1905 (((-765) $) NIL)) (-2315 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-4348 (($ $) NIL) (($ $ $) NIL)) (-3922 (($ $ (-765)) NIL) (($ $) 35)) (-4088 (((-1115 (-561) (-607 $)) $) 19)) (-3158 (($ $) NIL (|has| $ (-1042)))) (-4216 (((-378) $) 91) (((-224) $) 99) (((-168 (-378)) $) 107)) (-4064 (((-856) $) NIL) (($ (-607 $)) NIL) (($ (-406 (-561))) NIL) (($ $) NIL) (($ (-561)) NIL) (($ (-1115 (-561) (-607 $))) 20)) (-3746 (((-765)) NIL)) (-3402 (($ $) NIL) (($ (-638 $)) NIL)) (-3333 (((-112) (-114)) 83)) (-3996 (((-112) $ $) NIL)) (-2246 (($) 10 T CONST)) (-2257 (($) 21 T CONST)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 23)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1828 (($ $ $) 43)) (-1819 (($ $ $) NIL) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-406 (-561))) NIL) (($ $ (-561)) 45) (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ $ $) 26) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
-(((-493) (-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4064 ($ (-1115 (-561) (-607 $)))) (-15 -4077 ((-1115 (-561) (-607 $)) $)) (-15 -4088 ((-1115 (-561) (-607 $)) $)) (-15 -3176 ($ $)) (-15 -2228 ((-112) $ $)) (-15 -2072 ((-1162 $) (-1162 $) (-607 $))) (-15 -2072 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -2072 ($ $ (-607 $))) (-15 -2072 ($ $ (-638 (-607 $))))))) (T -493))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493)))) (-3176 (*1 *1 *1) (-5 *1 (-493))) (-2228 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))) (-2072 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-607 (-493))) (-5 *1 (-493)))) (-2072 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-638 (-607 (-493)))) (-5 *1 (-493)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-493))) (-5 *1 (-493)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-493)))) (-5 *1 (-493)))))
-(-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4064 ($ (-1115 (-561) (-607 $)))) (-15 -4077 ((-1115 (-561) (-607 $)) $)) (-15 -4088 ((-1115 (-561) (-607 $)) $)) (-15 -3176 ($ $)) (-15 -2228 ((-112) $ $)) (-15 -2072 ((-1162 $) (-1162 $) (-607 $))) (-15 -2072 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -2072 ($ $ (-607 $))) (-15 -2072 ($ $ (-638 (-607 $))))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) |#1|) 25 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 22 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 21)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) 14)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 12 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) 23 (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) 10 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 13)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 24) (($ $ (-1221 (-561))) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) 9 (|has| $ (-6 -4399)))))
-(((-494 |#1| |#2|) (-19 |#1|) (-1205) (-561)) (T -494))
+((-3891 (*1 *1 *1) (-4 *1 (-491))) (-3889 (*1 *1 *1) (-4 *1 (-491))) (-3893 (*1 *1 *1) (-4 *1 (-491))) (-3894 (*1 *1 *1) (-4 *1 (-491))) (-3892 (*1 *1 *1) (-4 *1 (-491))) (-3890 (*1 *1 *1) (-4 *1 (-491))))
+(-13 (-10 -8 (-15 -3890 ($ $)) (-15 -3892 ($ $)) (-15 -3894 ($ $)) (-15 -3893 ($ $)) (-15 -3889 ($ $)) (-15 -3891 ($ $))))
+((-4139 (((-404 |#4|) |#4| (-1 (-404 |#2|) |#2|)) 42)))
+(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 |#2|) |#2|)))) (-362) (-1229 |#1|) (-13 (-362) (-146) (-718 |#1| |#2|)) (-1229 |#3|)) (T -492))
+((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-404 *3)) (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1229 *7)))))
+(-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 |#2|) |#2|))))
+((-2947 (((-112) $ $) NIL)) (-1695 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-1287 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3589 (((-112) $) 38)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2102 (((-112) $ $) 63)) (-1688 (((-635 (-606 $)) $) 47)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-1288 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-3584 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-606 $) $) NIL) (((-544) $) NIL) (((-406 (-544)) $) 49)) (-2943 (($ $ $) NIL)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-406 (-544)))) (|:| |vec| (-1253 (-406 (-544))))) (-682 $) (-1253 $)) NIL) (((-682 (-406 (-544))) (-682 $)) NIL)) (-4249 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) NIL)) (-2545 (((-112) $) 41)) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-3381 (((-1115 (-544) (-606 $)) $) 36)) (-3394 (($ $ (-544)) NIL)) (-3517 (((-1160 $) (-1160 $) (-606 $)) 77) (((-1160 $) (-1160 $) (-635 (-606 $))) 54) (($ $ (-606 $)) 66) (($ $ (-635 (-606 $))) 67)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-1685 (((-1160 $) (-606 $)) 64 (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) NIL)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) NIL)) (-2356 (($ (-113) $) NIL) (($ (-113) (-635 $)) NIL)) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) NIL)) (-2779 (($ $) NIL)) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1732 (((-765) $) NIL)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) 35)) (-3380 (((-1115 (-544) (-606 $)) $) 19)) (-3586 (($ $) NIL (|has| $ (-1042)))) (-4377 (((-377) $) 91) (((-224) $) 99) (((-167 (-377)) $) 107)) (-4353 (((-857) $) NIL) (($ (-606 $)) NIL) (($ (-406 (-544))) NIL) (($ $) NIL) (($ (-544)) NIL) (($ (-1115 (-544) (-606 $))) 20)) (-3511 (((-765)) NIL)) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-2377 (((-112) (-113)) 83)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 10 T CONST)) (-3046 (($) 21 T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 23)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4356 (($ $ $) 43)) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-406 (-544))) NIL) (($ $ (-544)) 45) (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ $ $) 26) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL)))
+(((-493) (-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -2102 ((-112) $ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $))))))) (T -493))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) (-4249 (*1 *1 *1) (-5 *1 (-493))) (-2102 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-606 (-493))) (-5 *1 (-493)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-635 (-606 (-493)))) (-5 *1 (-493)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-493))) (-5 *1 (-493)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-493)))) (-5 *1 (-493)))))
+(-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -2102 ((-112) $ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $))))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 25 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 22 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 21)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 14)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 12 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) 23 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) 10 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 13)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 24) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 9 (|has| $ (-6 -4400)))))
+(((-494 |#1| |#2|) (-19 |#1|) (-1204) (-544)) (T -494))
NIL
(-19 |#1|)
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) (-561) |#1|) NIL)) (-4019 (($ $ (-561) (-494 |#1| |#3|)) NIL)) (-1316 (($ $ (-561) (-494 |#1| |#2|)) NIL)) (-2674 (($) NIL T CONST)) (-3324 (((-494 |#1| |#3|) $ (-561)) NIL)) (-2041 ((|#1| $ (-561) (-561) |#1|) NIL)) (-1975 ((|#1| $ (-561) (-561)) NIL)) (-2368 (((-638 |#1|) $) NIL)) (-3349 (((-765) $) NIL)) (-1458 (($ (-765) (-765) |#1|) NIL)) (-3361 (((-765) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3655 (((-561) $) NIL)) (-1355 (((-561) $) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2475 (((-561) $) NIL)) (-3838 (((-561) $) NIL)) (-2029 (($ (-1 |#1| |#1|) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-2062 (((-494 |#1| |#2|) $ (-561)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-495 |#1| |#2| |#3|) (-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) (-1205) (-561) (-561)) (T -495))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL)) (-1332 (($ $ (-544) (-494 |#1| |#3|)) NIL)) (-1331 (($ $ (-544) (-494 |#1| |#2|)) NIL)) (-4131 (($) NIL T CONST)) (-3497 (((-494 |#1| |#3|) $ (-544)) NIL)) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-494 |#1| |#2|) $ (-544)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-495 |#1| |#2| |#3|) (-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) (-1204) (-544) (-544)) (T -495))
NIL
(-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|))
-((-1880 (((-638 (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765)) 27)) (-2056 (((-638 (-1162 |#1|)) |#1| (-765) (-765) (-765)) 34)) (-2030 (((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-638 |#3|) (-638 (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)) 84)))
-(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -2056 ((-638 (-1162 |#1|)) |#1| (-765) (-765) (-765))) (-15 -1880 ((-638 (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2030 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-638 |#3|) (-638 (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)))) (-348) (-1230 |#1|) (-1230 |#2|)) (T -496))
-((-2030 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-2 (|:| -2615 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7))))) (-5 *5 (-765)) (-4 *8 (-1230 *7)) (-4 *7 (-1230 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -2615 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7)))) (-5 *1 (-496 *6 *7 *8)))) (-1880 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-4 *5 (-348)) (-4 *6 (-1230 *5)) (-5 *2 (-638 (-2 (|:| -2615 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6))))) (-5 *1 (-496 *5 *6 *7)) (-5 *3 (-2 (|:| -2615 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6)))) (-4 *7 (-1230 *6)))) (-2056 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-765)) (-4 *3 (-348)) (-4 *5 (-1230 *3)) (-5 *2 (-638 (-1162 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1230 *5)))))
-(-10 -7 (-15 -2056 ((-638 (-1162 |#1|)) |#1| (-765) (-765) (-765))) (-15 -1880 ((-638 (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2030 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-638 |#3|) (-638 (-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765))))
-((-2329 (((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 62)) (-2652 ((|#1| (-682 |#1|) |#1| (-765)) 25)) (-1733 (((-765) (-765) (-765)) 30)) (-2251 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 42)) (-2738 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 50) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 47)) (-4370 ((|#1| (-682 |#1|) (-682 |#1|) |#1| (-561)) 29)) (-3124 ((|#1| (-682 |#1|)) 18)))
-(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -3124 (|#1| (-682 |#1|))) (-15 -2652 (|#1| (-682 |#1|) |#1| (-765))) (-15 -4370 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-561))) (-15 -1733 ((-765) (-765) (-765))) (-15 -2738 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2738 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2251 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2329 ((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))))) (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))) (-1230 |#1|) (-408 |#1| |#2|)) (T -497))
-((-2329 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2251 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2738 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2738 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1733 (*1 *2 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-4370 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-561)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *5 (-1230 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-2652 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-765)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-4 *5 (-1230 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-682 *2)) (-4 *4 (-1230 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $))))) (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4)))))
-(-10 -7 (-15 -3124 (|#1| (-682 |#1|))) (-15 -2652 (|#1| (-682 |#1|) |#1| (-765))) (-15 -4370 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-561))) (-15 -1733 ((-765) (-765) (-765))) (-15 -2738 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2738 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2251 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2329 ((-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2615 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))))
-((-4053 (((-112) $ $) NIL)) (-3344 (($ $) NIL)) (-2222 (($ $ $) 35)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1680 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-1318 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-4207 (((-112) $ (-1221 (-561)) (-112)) NIL (|has| $ (-6 -4400))) (((-112) $ (-561) (-112)) 36 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-1475 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-3176 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-2041 (((-112) $ (-561) (-112)) NIL (|has| $ (-6 -4400)))) (-1975 (((-112) $ (-561)) NIL)) (-4266 (((-561) (-112) $ (-561)) NIL (|has| (-112) (-1090))) (((-561) (-112) $) NIL (|has| (-112) (-1090))) (((-561) (-1 (-112) (-112)) $) NIL)) (-2368 (((-638 (-112)) $) NIL (|has| $ (-6 -4399)))) (-2208 (($ $ $) 33)) (-2186 (($ $) NIL)) (-3096 (($ $ $) NIL)) (-1458 (($ (-765) (-112)) 23)) (-2767 (($ $ $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 8 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4125 (((-638 (-112)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL)) (-2029 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-3350 (($ $ $ (-561)) NIL) (($ (-112) $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-112) $) NIL (|has| (-561) (-844)))) (-3202 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3193 (($ $ (-112)) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-112)) (-638 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-638 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090))))) (-2411 (((-638 (-112)) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 24)) (-2315 (($ $ (-1221 (-561))) NIL) (((-112) $ (-561)) 18) (((-112) $ (-561) (-112)) NIL)) (-2883 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-1714 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-112) (-1090)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) 25)) (-4216 (((-534) $) NIL (|has| (-112) (-609 (-534))))) (-4078 (($ (-638 (-112))) NIL)) (-2754 (($ (-638 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4064 (((-856) $) 22)) (-3715 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4399)))) (-2198 (($ $ $) 31)) (-2273 (($ $ $) NIL)) (-2952 (($ $ $) 39)) (-2964 (($ $) 37)) (-2941 (($ $ $) 38)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 26)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 27)) (-2261 (($ $ $) NIL)) (-3548 (((-765) $) 10 (|has| $ (-6 -4399)))))
-(((-498 |#1|) (-13 (-123) (-10 -8 (-15 -2964 ($ $)) (-15 -2952 ($ $ $)) (-15 -2941 ($ $ $)))) (-561)) (T -498))
-((-2964 (*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561)))) (-2952 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561)))) (-2941 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561)))))
-(-13 (-123) (-10 -8 (-15 -2964 ($ $)) (-15 -2952 ($ $ $)) (-15 -2941 ($ $ $))))
-((-2354 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1162 |#4|)) 34)) (-1970 (((-1162 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1162 |#4|)) 21)) (-3826 (((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1162 |#4|))) 45)) (-1435 (((-1162 (-1162 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
-(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1970 (|#2| (-1 |#1| |#4|) (-1162 |#4|))) (-15 -1970 ((-1162 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2354 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1162 |#4|))) (-15 -3826 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1162 |#4|)))) (-15 -1435 ((-1162 (-1162 |#4|)) (-1 |#4| |#1|) |#3|))) (-1042) (-1230 |#1|) (-1230 |#2|) (-1042)) (T -499))
-((-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *6 (-1230 *5)) (-5 *2 (-1162 (-1162 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1230 *6)))) (-3826 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-682 (-1162 *8))) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-1230 *5)) (-5 *2 (-682 *6)) (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1230 *6)))) (-2354 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1162 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1230 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1230 *2)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *4 (-1230 *5)) (-5 *2 (-1162 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1230 *4)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1162 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1230 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1230 *2)))))
-(-10 -7 (-15 -1970 (|#2| (-1 |#1| |#4|) (-1162 |#4|))) (-15 -1970 ((-1162 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2354 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1162 |#4|))) (-15 -3826 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1162 |#4|)))) (-15 -1435 ((-1162 (-1162 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-4053 (((-112) $ $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3699 (((-1259) $) 19)) (-2315 (((-1148) $ (-1166)) 23)) (-1479 (((-1259) $) 15)) (-4064 (((-856) $) 21) (($ (-1148)) 20)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 9)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 8)))
-(((-500) (-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $)) (-15 -4064 ($ (-1148)))))) (T -500))
-((-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-500)))))
-(-13 (-844) (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $)) (-15 -3699 ((-1259) $)) (-15 -4064 ($ (-1148)))))
-((-4189 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1930 ((|#1| |#4|) 10)) (-3027 ((|#3| |#4|) 17)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1930 (|#1| |#4|)) (-15 -3027 (|#3| |#4|)) (-15 -4189 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-553) (-985 |#1|) (-372 |#1|) (-372 |#2|)) (T -501))
-((-4189 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-4 *2 (-372 *4)) (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-501 *2 *4 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-372 *4)))))
-(-10 -7 (-15 -1930 (|#1| |#4|)) (-15 -3027 (|#3| |#4|)) (-15 -4189 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-4053 (((-112) $ $) NIL)) (-2814 (((-112) $ (-638 |#3|)) 103) (((-112) $) 104)) (-4306 (((-112) $) 147)) (-1404 (($ $ |#4|) 95) (($ $ |#4| (-638 |#3|)) 99)) (-4198 (((-1155 (-638 (-945 |#1|)) (-638 (-293 (-945 |#1|)))) (-638 |#4|)) 140 (|has| |#3| (-609 (-1166))))) (-2970 (($ $ $) 89) (($ $ |#4|) 87)) (-2252 (((-112) $) 146)) (-2513 (($ $) 107)) (-1883 (((-1148) $) NIL)) (-1338 (($ $ $) 81) (($ (-638 $)) 83)) (-3480 (((-112) |#4| $) 106)) (-3069 (((-112) $ $) 70)) (-3595 (($ (-638 |#4|)) 88)) (-1701 (((-1110) $) NIL)) (-2505 (($ (-638 |#4|)) 144)) (-2158 (((-112) $) 145)) (-1907 (($ $) 72)) (-1373 (((-638 |#4|) $) 56)) (-2556 (((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-638 |#3|)) NIL)) (-1860 (((-112) |#4| $) 75)) (-2390 (((-561) $ (-638 |#3|)) 108) (((-561) $) 109)) (-4064 (((-856) $) 143) (($ (-638 |#4|)) 84)) (-2301 (($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $))) NIL)) (-1723 (((-112) $ $) 71)) (-1810 (($ $ $) 91)) (** (($ $ (-765)) 94)) (* (($ $ $) 93)))
-(((-502 |#1| |#2| |#3| |#4|) (-13 (-1090) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -1810 ($ $ $)) (-15 -2252 ((-112) $)) (-15 -4306 ((-112) $)) (-15 -1860 ((-112) |#4| $)) (-15 -3069 ((-112) $ $)) (-15 -3480 ((-112) |#4| $)) (-15 -2814 ((-112) $ (-638 |#3|))) (-15 -2814 ((-112) $)) (-15 -1338 ($ $ $)) (-15 -1338 ($ (-638 $))) (-15 -2970 ($ $ $)) (-15 -2970 ($ $ |#4|)) (-15 -1907 ($ $)) (-15 -2556 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-638 |#3|))) (-15 -2301 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -2390 ((-561) $ (-638 |#3|))) (-15 -2390 ((-561) $)) (-15 -2513 ($ $)) (-15 -3595 ($ (-638 |#4|))) (-15 -2505 ($ (-638 |#4|))) (-15 -2158 ((-112) $)) (-15 -1373 ((-638 |#4|) $)) (-15 -4064 ($ (-638 |#4|))) (-15 -1404 ($ $ |#4|)) (-15 -1404 ($ $ |#4| (-638 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -4198 ((-1155 (-638 (-945 |#1|)) (-638 (-293 (-945 |#1|)))) (-638 |#4|))) |%noBranch|))) (-362) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -502))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1810 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2252 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-4306 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1860 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-3069 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-3480 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-2814 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1338 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-638 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2970 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2970 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-1907 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2556 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4)) (|:| |genIdeal| (-502 *4 *5 *6 *7)))) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3)) (|:| |genIdeal| (-502 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2390 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-561)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-2390 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2513 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2505 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2158 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1373 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *6)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-1404 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-1404 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-942 *4 *5 *6)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *6 (-609 (-1166))) (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1155 (-638 (-945 *4)) (-638 (-293 (-945 *4))))) (-5 *1 (-502 *4 *5 *6 *7)))))
-(-13 (-1090) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -1810 ($ $ $)) (-15 -2252 ((-112) $)) (-15 -4306 ((-112) $)) (-15 -1860 ((-112) |#4| $)) (-15 -3069 ((-112) $ $)) (-15 -3480 ((-112) |#4| $)) (-15 -2814 ((-112) $ (-638 |#3|))) (-15 -2814 ((-112) $)) (-15 -1338 ($ $ $)) (-15 -1338 ($ (-638 $))) (-15 -2970 ($ $ $)) (-15 -2970 ($ $ |#4|)) (-15 -1907 ($ $)) (-15 -2556 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-638 |#3|))) (-15 -2301 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -2390 ((-561) $ (-638 |#3|))) (-15 -2390 ((-561) $)) (-15 -2513 ($ $)) (-15 -3595 ($ (-638 |#4|))) (-15 -2505 ($ (-638 |#4|))) (-15 -2158 ((-112) $)) (-15 -1373 ((-638 |#4|) $)) (-15 -4064 ($ (-638 |#4|))) (-15 -1404 ($ $ |#4|)) (-15 -1404 ($ $ |#4| (-638 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -4198 ((-1155 (-638 (-945 |#1|)) (-638 (-293 (-945 |#1|)))) (-638 |#4|))) |%noBranch|)))
-((-2487 (((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 148)) (-2641 (((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 149)) (-2323 (((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 107)) (-2725 (((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) NIL)) (-4161 (((-638 (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 151)) (-1626 (((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-638 (-858 |#1|))) 163)))
-(((-503 |#1| |#2|) (-10 -7 (-15 -2487 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2641 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2725 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2323 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -4161 ((-638 (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -1626 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-638 (-858 |#1|))))) (-638 (-1166)) (-765)) (T -503))
-((-1626 (*1 *2 *2 *3) (-12 (-5 *2 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-5 *3 (-638 (-858 *4))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *1 (-503 *4 *5)))) (-4161 (*1 *2 *3) (-12 (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-638 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561)))))) (-5 *1 (-503 *4 *5)) (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))))) (-2323 (*1 *2 *2) (-12 (-5 *2 (-502 (-406 (-561)) (-239 *4 (-765)) (-858 *3) (-246 *3 (-406 (-561))))) (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))))
-(-10 -7 (-15 -2487 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2641 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2725 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2323 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -4161 ((-638 (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -1626 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-638 (-858 |#1|)))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 11) (((-1166) $) 9)) (-1723 (((-112) $ $) 7)))
-(((-504) (-13 (-1090) (-608 (-1166)))) (T -504))
-NIL
-(-13 (-1090) (-608 (-1166)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-1381 (($ |#1| |#2|) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4300 ((|#2| $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-2246 (($) 12 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) 11) (($ $ $) 23)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 18)))
+((-2104 (((-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765)) 27)) (-2103 (((-635 (-1160 |#1|)) |#1| (-765) (-765) (-765)) 34)) (-2232 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)) 84)))
+(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -2103 ((-635 (-1160 |#1|)) |#1| (-765) (-765) (-765))) (-15 -2104 ((-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2232 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)))) (-349) (-1229 |#1|) (-1229 |#2|)) (T -496))
+((-2232 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7))))) (-5 *5 (-765)) (-4 *8 (-1229 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7)))) (-5 *1 (-496 *6 *7 *8)))) (-2104 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-4 *5 (-349)) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6))))) (-5 *1 (-496 *5 *6 *7)) (-5 *3 (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6)))) (-4 *7 (-1229 *6)))) (-2103 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-765)) (-4 *3 (-349)) (-4 *5 (-1229 *3)) (-5 *2 (-635 (-1160 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1229 *5)))))
+(-10 -7 (-15 -2103 ((-635 (-1160 |#1|)) |#1| (-765) (-765) (-765))) (-15 -2104 ((-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2232 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765))))
+((-2110 (((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 62)) (-2105 ((|#1| (-682 |#1|) |#1| (-765)) 25)) (-2107 (((-765) (-765) (-765)) 30)) (-2109 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 42)) (-2108 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 50) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 47)) (-2106 ((|#1| (-682 |#1|) (-682 |#1|) |#1| (-544)) 29)) (-3733 ((|#1| (-682 |#1|)) 18)))
+(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -3733 (|#1| (-682 |#1|))) (-15 -2105 (|#1| (-682 |#1|) |#1| (-765))) (-15 -2106 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-544))) (-15 -2107 ((-765) (-765) (-765))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2109 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2110 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))))) (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))) (-1229 |#1|) (-409 |#1| |#2|)) (T -497))
+((-2110 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2109 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2108 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2107 (*1 *2 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2106 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-544)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2105 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-765)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-682 *2)) (-4 *4 (-1229 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-409 *2 *4)))))
+(-10 -7 (-15 -3733 (|#1| (-682 |#1|))) (-15 -2105 (|#1| (-682 |#1|) |#1| (-765))) (-15 -2106 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-544))) (-15 -2107 ((-765) (-765) (-765))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2109 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2110 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))))
+((-2947 (((-112) $ $) NIL)) (-2430 (($ $) NIL)) (-3725 (($ $ $) 35)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-112) $ (-1220 (-544)) (-112)) NIL (|has| $ (-6 -4401))) (((-112) $ (-544) (-112)) 36 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-3810 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-4249 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-1665 (((-112) $ (-544) (-112)) NIL (|has| $ (-6 -4401)))) (-3498 (((-112) $ (-544)) NIL)) (-3823 (((-544) (-112) $ (-544)) NIL (|has| (-112) (-1091))) (((-544) (-112) $) NIL (|has| (-112) (-1091))) (((-544) (-1 (-112) (-112)) $) NIL)) (-2096 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3239 (($ $ $) 33)) (-3726 (($ $) NIL)) (-1382 (($ $ $) NIL)) (-4021 (($ (-765) (-112)) 23)) (-1383 (($ $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 8 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL)) (-3917 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2554 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL)) (-2100 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ (-112) $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-112) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2345 (($ $ (-112)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-292 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-635 (-292 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2351 (((-635 (-112)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 24)) (-4206 (($ $ (-1220 (-544))) NIL) (((-112) $ (-544)) 18) (((-112) $ (-544) (-112)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2097 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) 25)) (-4377 (((-533) $) NIL (|has| (-112) (-609 (-533))))) (-3929 (($ (-635 (-112))) NIL)) (-4208 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4353 (((-857) $) 22)) (-2099 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-3240 (($ $ $) 31)) (-2428 (($ $ $) NIL)) (-3722 (($ $ $) 39)) (-3724 (($ $) 37)) (-3723 (($ $ $) 38)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 26)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 27)) (-2429 (($ $ $) NIL)) (-4364 (((-765) $) 10 (|has| $ (-6 -4400)))))
+(((-498 |#1|) (-13 (-123) (-10 -8 (-15 -3724 ($ $)) (-15 -3722 ($ $ $)) (-15 -3723 ($ $ $)))) (-544)) (T -498))
+((-3724 (*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))) (-3722 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))) (-3723 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))))
+(-13 (-123) (-10 -8 (-15 -3724 ($ $)) (-15 -3722 ($ $ $)) (-15 -3723 ($ $ $))))
+((-2112 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1160 |#4|)) 34)) (-2111 (((-1160 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1160 |#4|)) 21)) (-2113 (((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1160 |#4|))) 45)) (-2114 (((-1160 (-1160 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
+(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2111 (|#2| (-1 |#1| |#4|) (-1160 |#4|))) (-15 -2111 ((-1160 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2112 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1160 |#4|))) (-15 -2113 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1160 |#4|)))) (-15 -2114 ((-1160 (-1160 |#4|)) (-1 |#4| |#1|) |#3|))) (-1042) (-1229 |#1|) (-1229 |#2|) (-1042)) (T -499))
+((-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-1160 (-1160 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1229 *6)))) (-2113 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-682 (-1160 *8))) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *6)) (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1229 *6)))) (-2112 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1160 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *4 (-1229 *5)) (-5 *2 (-1160 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1229 *4)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1160 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))))
+(-10 -7 (-15 -2111 (|#2| (-1 |#1| |#4|) (-1160 |#4|))) (-15 -2111 ((-1160 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2112 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1160 |#4|))) (-15 -2113 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1160 |#4|)))) (-15 -2114 ((-1160 (-1160 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2115 (((-1259) $) 19)) (-4206 (((-1148) $ (-1166)) 23)) (-4024 (((-1259) $) 15)) (-4353 (((-857) $) 21) (($ (-1148)) 20)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 9)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 8)))
+(((-500) (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -4353 ($ (-1148)))))) (T -500))
+((-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-500)))))
+(-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -4353 ($ (-1148)))))
+((-4148 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4146 ((|#1| |#4|) 10)) (-4147 ((|#3| |#4|) 17)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4146 (|#1| |#4|)) (-15 -4147 (|#3| |#4|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-554) (-984 |#1|) (-371 |#1|) (-371 |#2|)) (T -501))
+((-4148 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-371 *4)) (-4 *3 (-371 *5)))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-4 *2 (-371 *4)) (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-371 *5)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-501 *2 *4 *5 *3)) (-4 *5 (-371 *2)) (-4 *3 (-371 *4)))))
+(-10 -7 (-15 -4146 (|#1| |#4|)) (-15 -4147 (|#3| |#4|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2947 (((-112) $ $) NIL)) (-2125 (((-112) $ (-635 |#3|)) 103) (((-112) $) 104)) (-3589 (((-112) $) 147)) (-2117 (($ $ |#4|) 95) (($ $ |#4| (-635 |#3|)) 99)) (-2116 (((-1155 (-635 (-939 |#1|)) (-635 (-292 (-939 |#1|)))) (-635 |#4|)) 140 (|has| |#3| (-609 (-1166))))) (-2124 (($ $ $) 89) (($ $ |#4|) 87)) (-2545 (((-112) $) 146)) (-2121 (($ $) 107)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 81) (($ (-635 $)) 83)) (-2126 (((-112) |#4| $) 106)) (-2127 (((-112) $ $) 70)) (-2120 (($ (-635 |#4|)) 88)) (-3644 (((-1110) $) NIL)) (-2119 (($ (-635 |#4|)) 144)) (-2118 (((-112) $) 145)) (-2374 (($ $) 72)) (-3077 (((-635 |#4|) $) 56)) (-2123 (((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|)) NIL)) (-2128 (((-112) |#4| $) 75)) (-4318 (((-544) $ (-635 |#3|)) 108) (((-544) $) 109)) (-4353 (((-857) $) 143) (($ (-635 |#4|)) 84)) (-2122 (($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $))) NIL)) (-3437 (((-112) $ $) 71)) (-4246 (($ $ $) 91)) (** (($ $ (-765)) 94)) (* (($ $ $) 93)))
+(((-502 |#1| |#2| |#3| |#4|) (-13 (-1091) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -4246 ($ $ $)) (-15 -2545 ((-112) $)) (-15 -3589 ((-112) $)) (-15 -2128 ((-112) |#4| $)) (-15 -2127 ((-112) $ $)) (-15 -2126 ((-112) |#4| $)) (-15 -2125 ((-112) $ (-635 |#3|))) (-15 -2125 ((-112) $)) (-15 -3639 ($ $ $)) (-15 -3639 ($ (-635 $))) (-15 -2124 ($ $ $)) (-15 -2124 ($ $ |#4|)) (-15 -2374 ($ $)) (-15 -2123 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -2122 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -4318 ((-544) $ (-635 |#3|))) (-15 -4318 ((-544) $)) (-15 -2121 ($ $)) (-15 -2120 ($ (-635 |#4|))) (-15 -2119 ($ (-635 |#4|))) (-15 -2118 ((-112) $)) (-15 -3077 ((-635 |#4|) $)) (-15 -4353 ($ (-635 |#4|))) (-15 -2117 ($ $ |#4|)) (-15 -2117 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -2116 ((-1155 (-635 (-939 |#1|)) (-635 (-292 (-939 |#1|)))) (-635 |#4|))) |%noBranch|))) (-362) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -502))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-4246 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2545 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-3589 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2128 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2127 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2126 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-2125 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-3639 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2124 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2124 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-943 *3 *4 *5)))) (-2374 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4)) (|:| |genIdeal| (-502 *4 *5 *6 *7)))) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3)) (|:| |genIdeal| (-502 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-4318 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-544)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-4318 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2121 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2119 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2118 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-3077 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *6)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2117 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-943 *3 *4 *5)))) (-2117 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-943 *4 *5 *6)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *6 (-609 (-1166))) (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1155 (-635 (-939 *4)) (-635 (-292 (-939 *4))))) (-5 *1 (-502 *4 *5 *6 *7)))))
+(-13 (-1091) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -4246 ($ $ $)) (-15 -2545 ((-112) $)) (-15 -3589 ((-112) $)) (-15 -2128 ((-112) |#4| $)) (-15 -2127 ((-112) $ $)) (-15 -2126 ((-112) |#4| $)) (-15 -2125 ((-112) $ (-635 |#3|))) (-15 -2125 ((-112) $)) (-15 -3639 ($ $ $)) (-15 -3639 ($ (-635 $))) (-15 -2124 ($ $ $)) (-15 -2124 ($ $ |#4|)) (-15 -2374 ($ $)) (-15 -2123 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -2122 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -4318 ((-544) $ (-635 |#3|))) (-15 -4318 ((-544) $)) (-15 -2121 ($ $)) (-15 -2120 ($ (-635 |#4|))) (-15 -2119 ($ (-635 |#4|))) (-15 -2118 ((-112) $)) (-15 -3077 ((-635 |#4|) $)) (-15 -4353 ($ (-635 |#4|))) (-15 -2117 ($ $ |#4|)) (-15 -2117 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -2116 ((-1155 (-635 (-939 |#1|)) (-635 (-292 (-939 |#1|)))) (-635 |#4|))) |%noBranch|)))
+((-2129 (((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 148)) (-2130 (((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 149)) (-2131 (((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 107)) (-4130 (((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) NIL)) (-2132 (((-635 (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 151)) (-2133 (((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-635 (-858 |#1|))) 163)))
+(((-503 |#1| |#2|) (-10 -7 (-15 -2129 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -4130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2131 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2132 ((-635 (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2133 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-635 (-858 |#1|))))) (-635 (-1166)) (-765)) (T -503))
+((-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-5 *3 (-635 (-858 *4))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *1 (-503 *4 *5)))) (-2132 (*1 *2 *3) (-12 (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-635 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))) (-5 *1 (-503 *4 *5)) (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-502 (-406 (-544)) (-238 *4 (-765)) (-858 *3) (-246 *3 (-406 (-544))))) (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))))
+(-10 -7 (-15 -2129 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -4130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2131 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2132 ((-635 (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2133 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-635 (-858 |#1|)))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11) (((-1166) $) 9)) (-3437 (((-112) $ $) 7)))
+(((-504) (-13 (-1091) (-608 (-1166)))) (T -504))
+NIL
+(-13 (-1091) (-608 (-1166)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) 12 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) 11) (($ $ $) 23)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 18)))
(((-505 |#1| |#2|) (-13 (-21) (-507 |#1| |#2|)) (-21) (-844)) (T -505))
NIL
(-13 (-21) (-507 |#1| |#2|))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 12)) (-2674 (($) NIL T CONST)) (-1598 (($ $) 27)) (-1381 (($ |#1| |#2|) 24)) (-4165 (($ (-1 |#1| |#1|) $) 26)) (-4300 ((|#2| $) NIL)) (-1572 ((|#1| $) 28)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-2246 (($) 10 T CONST)) (-1723 (((-112) $ $) NIL)) (-1810 (($ $ $) 17)) (* (($ (-914) $) NIL) (($ (-765) $) 22)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 12)) (-4131 (($) NIL T CONST)) (-4366 (($ $) 27)) (-3276 (($ |#1| |#2|) 24)) (-4365 (($ (-1 |#1| |#1|) $) 26)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) 28)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) 10 T CONST)) (-3437 (((-112) $ $) NIL)) (-4246 (($ $ $) 17)) (* (($ (-912) $) NIL) (($ (-765) $) 22)))
(((-506 |#1| |#2|) (-13 (-23) (-507 |#1| |#2|)) (-23) (-844)) (T -506))
NIL
(-13 (-23) (-507 |#1| |#2|))
-((-4053 (((-112) $ $) 7)) (-1598 (($ $) 13)) (-1381 (($ |#1| |#2|) 16)) (-4165 (($ (-1 |#1| |#1|) $) 17)) (-4300 ((|#2| $) 14)) (-1572 ((|#1| $) 15)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)))
-(((-507 |#1| |#2|) (-139) (-1090) (-844)) (T -507))
-((-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-844)))) (-1381 (*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1090)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-844)))) (-1598 (*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844)))))
-(-13 (-1090) (-10 -8 (-15 -4165 ($ (-1 |t#1| |t#1|) $)) (-15 -1381 ($ |t#1| |t#2|)) (-15 -1572 (|t#1| $)) (-15 -4300 (|t#2| $)) (-15 -1598 ($ $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-1381 (($ |#1| |#2|) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4300 ((|#2| $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-2246 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 13)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL)))
-(((-508 |#1| |#2|) (-13 (-786) (-507 |#1| |#2|)) (-786) (-844)) (T -508))
+((-2947 (((-112) $ $) 7)) (-4366 (($ $) 13)) (-3276 (($ |#1| |#2|) 16)) (-4365 (($ (-1 |#1| |#1|) $) 17)) (-2134 ((|#2| $) 14)) (-3575 ((|#1| $) 15)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)))
+(((-507 |#1| |#2|) (-139) (-1091) (-844)) (T -507))
+((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-844)))) (-3276 (*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1091)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-844)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844)))))
+(-13 (-1091) (-10 -8 (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -3276 ($ |t#1| |t#2|)) (-15 -3575 (|t#1| $)) (-15 -2134 (|t#2| $)) (-15 -4366 ($ $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-4366 (($ $) 24)) (-3276 (($ |#1| |#2|) 21)) (-4365 (($ (-1 |#1| |#1|) $) 23)) (-2134 ((|#2| $) 26)) (-3575 ((|#1| $) 25)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20)) (-3437 (((-112) $ $) 13)))
+(((-508 |#1| |#2|) (-507 |#1| |#2|) (-1091) (-844)) (T -508))
+NIL
+(-507 |#1| |#2|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 13)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL)))
+(((-509 |#1| |#2|) (-13 (-786) (-507 |#1| |#2|)) (-786) (-844)) (T -509))
NIL
(-13 (-786) (-507 |#1| |#2|))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1403 (($ $ $) 16)) (-2979 (((-3 $ "failed") $ $) 13)) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-1381 (($ |#1| |#2|) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4300 ((|#2| $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-2246 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL)))
-(((-509 |#1| |#2|) (-13 (-787) (-507 |#1| |#2|)) (-787) (-844)) (T -509))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2778 (($ $ $) 16)) (-1391 (((-3 $ "failed") $ $) 13)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL)))
+(((-510 |#1| |#2|) (-13 (-787) (-507 |#1| |#2|)) (-787) (-844)) (T -510))
NIL
(-13 (-787) (-507 |#1| |#2|))
-((-4053 (((-112) $ $) NIL)) (-1598 (($ $) 24)) (-1381 (($ |#1| |#2|) 21)) (-4165 (($ (-1 |#1| |#1|) $) 23)) (-4300 ((|#2| $) 26)) (-1572 ((|#1| $) 25)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 20)) (-1723 (((-112) $ $) 13)))
-(((-510 |#1| |#2|) (-507 |#1| |#2|) (-1090) (-844)) (T -510))
-NIL
-(-507 |#1| |#2|)
-((-1436 (($ $ (-638 |#2|) (-638 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-511 |#1| |#2| |#3|) (-10 -8 (-15 -1436 (|#1| |#1| |#2| |#3|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#3|)))) (-512 |#2| |#3|) (-1090) (-1205)) (T -511))
+((-4174 (($ $ (-635 |#2|) (-635 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-511 |#1| |#2| |#3|) (-10 -8 (-15 -4174 (|#1| |#1| |#2| |#3|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#3|)))) (-512 |#2| |#3|) (-1091) (-1204)) (T -511))
NIL
-(-10 -8 (-15 -1436 (|#1| |#1| |#2| |#3|)) (-15 -1436 (|#1| |#1| (-638 |#2|) (-638 |#3|))))
-((-1436 (($ $ (-638 |#1|) (-638 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-512 |#1| |#2|) (-139) (-1090) (-1205)) (T -512))
-((-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1205)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1205)))))
-(-13 (-10 -8 (-15 -1436 ($ $ |t#1| |t#2|)) (-15 -1436 ($ $ (-638 |t#1|) (-638 |t#2|)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 16)) (-4228 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|))) $) 18)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1386 (((-765) $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-3328 ((|#1| $ (-561)) 23)) (-1352 ((|#2| $ (-561)) 21)) (-4251 (($ (-1 |#1| |#1|) $) 46)) (-2303 (($ (-1 |#2| |#2|) $) 43)) (-1883 (((-1148) $) NIL)) (-1897 (($ $ $) 53 (|has| |#2| (-786)))) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 42) (($ |#1|) NIL)) (-3932 ((|#2| |#1| $) 49)) (-2246 (($) 11 T CONST)) (-1723 (((-112) $ $) 29)) (-1810 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-914) $) NIL) (($ (-765) $) 36) (($ |#2| |#1|) 31)))
-(((-513 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1090) (-130) |#2|) (T -513))
+(-10 -8 (-15 -4174 (|#1| |#1| |#2| |#3|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#3|))))
+((-4174 (($ $ (-635 |#1|) (-635 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-512 |#1| |#2|) (-139) (-1091) (-1204)) (T -512))
+((-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1204)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1204)))))
+(-13 (-10 -8 (-15 -4174 ($ $ |t#1| |t#2|)) (-15 -4174 ($ $ (-635 |t#1|) (-635 |t#2|)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 16)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $) 18)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2813 ((|#1| $ (-544)) 23)) (-1747 ((|#2| $ (-544)) 21)) (-2410 (($ (-1 |#1| |#1|) $) 46)) (-1746 (($ (-1 |#2| |#2|) $) 43)) (-3643 (((-1148) $) NIL)) (-1745 (($ $ $) 53 (|has| |#2| (-786)))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 42) (($ |#1|) NIL)) (-4084 ((|#2| |#1| $) 49)) (-3040 (($) 11 T CONST)) (-3437 (((-112) $ $) 29)) (-4246 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-912) $) NIL) (($ (-765) $) 36) (($ |#2| |#1|) 31)))
+(((-513 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1091) (-130) |#2|) (T -513))
NIL
(-322 |#1| |#2|)
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4083 (((-112) (-112)) 25)) (-4207 ((|#1| $ (-561) |#1|) 28 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) |#1|) $) 52)) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-3299 (($ $) 56 (|has| |#1| (-1090)))) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) 44)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3716 (($ $ (-561)) 13)) (-2340 (((-765) $) 11)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) 23)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 21 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-2289 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) 20 (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1617 (($ $ $ (-561)) 51) (($ |#1| $ (-561)) 37)) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-4138 (($ (-638 |#1|)) 29)) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) 19 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 40)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 16)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 33) (($ $ (-1221 (-561))) NIL)) (-4335 (($ $ (-1221 (-561))) 50) (($ $ (-561)) 45)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) 41 (|has| $ (-6 -4400)))) (-4225 (($ $) 32)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-2448 (($ $ $) 42) (($ $ |#1|) 39)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) 17 (|has| $ (-6 -4399)))))
-(((-514 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4138 ($ (-638 |#1|))) (-15 -2340 ((-765) $)) (-15 -3716 ($ $ (-561))) (-15 -4083 ((-112) (-112))))) (-1205) (-561)) (T -514))
-((-4138 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-514 *3 *4)) (-14 *4 (-561)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 (-561)))) (-3716 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 *2))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 (-561)))))
-(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4138 ($ (-638 |#1|))) (-15 -2340 ((-765) $)) (-15 -3716 ($ $ (-561))) (-15 -4083 ((-112) (-112)))))
-((-4053 (((-112) $ $) NIL)) (-2919 (((-1125) $) 11)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4087 (((-1125) $) 13)) (-3372 (((-1125) $) 9)) (-4064 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-515) (-13 (-1073) (-10 -8 (-15 -3372 ((-1125) $)) (-15 -2919 ((-1125) $)) (-15 -4087 ((-1125) $))))) (T -515))
-((-3372 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
-(-13 (-1073) (-10 -8 (-15 -3372 ((-1125) $)) (-15 -2919 ((-1125) $)) (-15 -4087 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 (((-578 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-578 |#1|) (-367)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL (|has| (-578 |#1|) (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-578 |#1|) "failed") $) NIL)) (-3979 (((-578 |#1|) $) NIL)) (-3376 (($ (-1254 (-578 |#1|))) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-578 |#1|) (-367)))) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-578 |#1|) (-367)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL (|has| (-578 |#1|) (-367)))) (-3943 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-3598 (($ $ (-765)) NIL (-4050 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367)))) (($ $) NIL (-4050 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-2725 (((-112) $) NIL)) (-4027 (((-914) $) NIL (|has| (-578 |#1|) (-367))) (((-827 (-914)) $) NIL (-4050 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| (-578 |#1|) (-367)))) (-1892 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-2072 (((-578 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-2436 (((-3 $ "failed") $) NIL (|has| (-578 |#1|) (-367)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 (-578 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-1335 (((-914) $) NIL (|has| (-578 |#1|) (-367)))) (-2313 (((-1162 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367)))) (-1382 (((-1162 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-1162 (-578 |#1|)) "failed") $ $) NIL (|has| (-578 |#1|) (-367)))) (-2953 (($ $ (-1162 (-578 |#1|))) NIL (|has| (-578 |#1|) (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-578 |#1|) (-367)) CONST)) (-2442 (($ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-3194 (($) NIL (|has| (-578 |#1|) (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| (-578 |#1|) (-367)))) (-1633 (((-417 $) $) NIL)) (-2794 (((-827 (-914))) NIL) (((-914)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-765) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4050 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-2390 (((-133)) NIL)) (-3922 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-3768 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3158 (((-1162 (-578 |#1|))) NIL)) (-2102 (($) NIL (|has| (-578 |#1|) (-367)))) (-3341 (($) NIL (|has| (-578 |#1|) (-367)))) (-3752 (((-1254 (-578 |#1|)) $) NIL) (((-682 (-578 |#1|)) (-1254 $)) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| (-578 |#1|) (-367)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-578 |#1|)) NIL)) (-3666 (($ $) NIL (|has| (-578 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4050 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL) (((-1254 $) (-914)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-3154 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $ (-578 |#1|)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-578 |#1|)) NIL) (($ (-578 |#1|) $) NIL)))
-(((-516 |#1| |#2|) (-328 (-578 |#1|)) (-914) (-914)) (T -516))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-2135 (((-112) (-112)) 25)) (-4194 ((|#1| $ (-544) |#1|) 28 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) 52)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-2498 (($ $) 56 (|has| |#1| (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) 44)) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2136 (($ $ (-544)) 13)) (-2137 (((-765) $) 11)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 23)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 21 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) 20 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4014 (($ $ $ (-544)) 51) (($ |#1| $ (-544)) 37)) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2138 (($ (-635 |#1|)) 29)) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) 19 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 40)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 16)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 33) (($ $ (-1220 (-544))) NIL)) (-1660 (($ $ (-1220 (-544))) 50) (($ $ (-544)) 45)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) 41 (|has| $ (-6 -4401)))) (-3804 (($ $) 32)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4197 (($ $ $) 42) (($ $ |#1|) 39)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 17 (|has| $ (-6 -4400)))))
+(((-514 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112))))) (-1204) (-544)) (T -514))
+((-2138 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-514 *3 *4)) (-14 *4 (-544)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 *2))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544)))))
+(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112)))))
+((-2947 (((-112) $ $) NIL)) (-2140 (((-1125) $) 11)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2139 (((-1125) $) 13)) (-4329 (((-1125) $) 9)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-515) (-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $)) (-15 -2140 ((-1125) $)) (-15 -2139 ((-1125) $))))) (T -515))
+((-4329 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
+(-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $)) (-15 -2140 ((-1125) $)) (-15 -2139 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-578 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-578 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-578 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-578 |#1|) "failed") $) NIL)) (-3557 (((-578 |#1|) $) NIL)) (-1939 (($ (-1253 (-578 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-578 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-578 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-578 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-578 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-578 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-3517 (((-578 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-578 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-578 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-578 |#1|) (-367)))) (-1752 (((-1160 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367)))) (-1751 (((-1160 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-1160 (-578 |#1|)) "failed") $ $) NIL (|has| (-578 |#1|) (-367)))) (-1753 (($ $ (-1160 (-578 |#1|))) NIL (|has| (-578 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-578 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| (-578 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-578 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-578 |#1|))) NIL)) (-1818 (($) NIL (|has| (-578 |#1|) (-367)))) (-1754 (($) NIL (|has| (-578 |#1|) (-367)))) (-3625 (((-1253 (-578 |#1|)) $) NIL) (((-682 (-578 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-578 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-578 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-578 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-578 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-578 |#1|)) NIL) (($ (-578 |#1|) $) NIL)))
+(((-516 |#1| |#2|) (-328 (-578 |#1|)) (-912) (-912)) (T -516))
NIL
(-328 (-578 |#1|))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) (-561) |#1|) 35)) (-4019 (($ $ (-561) |#4|) NIL)) (-1316 (($ $ (-561) |#5|) NIL)) (-2674 (($) NIL T CONST)) (-3324 ((|#4| $ (-561)) NIL)) (-2041 ((|#1| $ (-561) (-561) |#1|) 34)) (-1975 ((|#1| $ (-561) (-561)) 32)) (-2368 (((-638 |#1|) $) NIL)) (-3349 (((-765) $) 28)) (-1458 (($ (-765) (-765) |#1|) 25)) (-3361 (((-765) $) 30)) (-3116 (((-112) $ (-765)) NIL)) (-3655 (((-561) $) 26)) (-1355 (((-561) $) 27)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2475 (((-561) $) 29)) (-3838 (((-561) $) 31)) (-2029 (($ (-1 |#1| |#1|) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) 38 (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 14)) (-2910 (($) 16)) (-2315 ((|#1| $ (-561) (-561)) 33) ((|#1| $ (-561) (-561) |#1|) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-2062 ((|#5| $ (-561)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-517 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1205) (-561) (-561) (-372 |#1|) (-372 |#1|)) (T -517))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) 35)) (-1332 (($ $ (-544) |#4|) NIL)) (-1331 (($ $ (-544) |#5|) NIL)) (-4131 (($) NIL T CONST)) (-3497 ((|#4| $ (-544)) NIL)) (-1665 ((|#1| $ (-544) (-544) |#1|) 34)) (-3498 ((|#1| $ (-544) (-544)) 32)) (-2096 (((-635 |#1|) $) NIL)) (-3500 (((-765) $) 28)) (-4021 (($ (-765) (-765) |#1|) 25)) (-3499 (((-765) $) 30)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) 26)) (-3502 (((-544) $) 27)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) 29)) (-3501 (((-544) $) 31)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) 38 (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 14)) (-3972 (($) 16)) (-4206 ((|#1| $ (-544) (-544)) 33) ((|#1| $ (-544) (-544) |#1|) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 ((|#5| $ (-544)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-517 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1204) (-544) (-544) (-371 |#1|) (-371 |#1|)) (T -517))
NIL
(-57 |#1| |#4| |#5|)
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) NIL)) (-2333 ((|#1| $) NIL)) (-3164 (($ $) NIL)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) 58 (|has| $ (-6 -4400)))) (-2097 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1680 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4400)))) (-1318 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2956 (($ $ $) 23 (|has| $ (-6 -4400)))) (-3281 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) 21 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4400))) (($ $ "rest" $) 24 (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2322 ((|#1| $) NIL)) (-2674 (($) NIL T CONST)) (-4026 (($ $) 28 (|has| $ (-6 -4400)))) (-2659 (($ $) 29)) (-1437 (($ $) 18) (($ $ (-765)) 32)) (-3299 (($ $) 54 (|has| |#1| (-1090)))) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-2728 (((-112) $) NIL)) (-4266 (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090))) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) NIL)) (-2368 (((-638 |#1|) $) 27 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1458 (($ (-765) |#1|) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 31 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-2289 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-3405 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3755 (($ |#1|) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) NIL)) (-1883 (((-1148) $) 50 (|has| |#1| (-1090)))) (-1501 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1617 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3350 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) 13) (($ $ (-765)) NIL)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-2391 (((-112) $) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 12)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) 17)) (-2910 (($) 16)) (-2315 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1221 (-561))) NIL) ((|#1| $ (-561)) NIL) ((|#1| $ (-561) |#1|) NIL)) (-4293 (((-561) $ $) NIL)) (-4335 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-2883 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-1650 (((-112) $) 33)) (-3235 (($ $) NIL)) (-4193 (($ $) NIL (|has| $ (-6 -4400)))) (-2118 (((-765) $) NIL)) (-1491 (($ $) 35)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) 34)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 26)) (-2448 (($ $ $) 53) (($ $ |#1|) NIL)) (-2754 (($ $ $) NIL) (($ |#1| $) 10) (($ (-638 $)) NIL) (($ $ |#1|) NIL)) (-4064 (((-856) $) 45 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) 47 (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) 9 (|has| $ (-6 -4399)))))
-(((-518 |#1| |#2|) (-659 |#1|) (-1205) (-561)) (T -518))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 58 (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) 23 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 21 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2416 (($ $) 28 (|has| $ (-6 -4401)))) (-2417 (($ $) 29)) (-4205 (($ $) 18) (($ $ (-765)) 32)) (-2498 (($ $) 54 (|has| |#1| (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091))) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) NIL)) (-2096 (((-635 |#1|) $) 27 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 31 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-3917 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3941 (($ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) 50 (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) 13) (($ $ (-765)) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 12)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) 17)) (-3972 (($) 16)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) NIL) ((|#1| $ (-544) |#1|) NIL)) (-3412 (((-544) $ $) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-4040 (((-112) $) 33)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) 35)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) 34)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 26)) (-4197 (($ $ $) 53) (($ $ |#1|) NIL)) (-4208 (($ $ $) NIL) (($ |#1| $) 10) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-4353 (((-857) $) 45 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 47 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 9 (|has| $ (-6 -4400)))))
+(((-518 |#1| |#2|) (-659 |#1|) (-1204) (-544)) (T -518))
NIL
(-659 |#1|)
-((-2617 ((|#4| |#4|) 27)) (-3400 (((-765) |#4|) 32)) (-1486 (((-765) |#4|) 33)) (-2351 (((-638 |#3|) |#4|) 39 (|has| |#3| (-6 -4400)))) (-1885 (((-3 |#4| "failed") |#4|) 50)) (-4186 ((|#4| |#4|) 43)) (-4105 ((|#1| |#4|) 42)))
-(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2617 (|#4| |#4|)) (-15 -3400 ((-765) |#4|)) (-15 -1486 ((-765) |#4|)) (IF (|has| |#3| (-6 -4400)) (-15 -2351 ((-638 |#3|) |#4|)) |%noBranch|) (-15 -4105 (|#1| |#4|)) (-15 -4186 (|#4| |#4|)) (-15 -1885 ((-3 |#4| "failed") |#4|))) (-362) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -519))
-((-1885 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-4105 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5)))) (-2351 (*1 *2 *3) (-12 (|has| *6 (-6 -4400)) (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-3400 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-2617 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(-10 -7 (-15 -2617 (|#4| |#4|)) (-15 -3400 ((-765) |#4|)) (-15 -1486 ((-765) |#4|)) (IF (|has| |#3| (-6 -4400)) (-15 -2351 ((-638 |#3|) |#4|)) |%noBranch|) (-15 -4105 (|#1| |#4|)) (-15 -4186 (|#4| |#4|)) (-15 -1885 ((-3 |#4| "failed") |#4|)))
-((-2617 ((|#8| |#4|) 20)) (-2351 (((-638 |#3|) |#4|) 29 (|has| |#7| (-6 -4400)))) (-1885 (((-3 |#8| "failed") |#4|) 23)))
-(((-520 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2617 (|#8| |#4|)) (-15 -1885 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4400)) (-15 -2351 ((-638 |#3|) |#4|)) |%noBranch|)) (-553) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|) (-985 |#1|) (-372 |#5|) (-372 |#5|) (-680 |#5| |#6| |#7|)) (T -520))
-((-2351 (*1 *2 *3) (-12 (|has| *9 (-6 -4400)) (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-638 *6)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-680 *4 *5 *6)) (-4 *10 (-680 *7 *8 *9)))) (-1885 (*1 *2 *3) (|partial| -12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))))
-(-10 -7 (-15 -2617 (|#8| |#4|)) (-15 -1885 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4400)) (-15 -2351 ((-638 |#3|) |#4|)) |%noBranch|))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2920 (($ (-765) (-765)) NIL)) (-2801 (($ $ $) NIL)) (-4084 (($ (-597 |#1| |#3|)) NIL) (($ $) NIL)) (-3711 (((-112) $) NIL)) (-3844 (($ $ (-561) (-561)) 12)) (-2271 (($ $ (-561) (-561)) NIL)) (-3234 (($ $ (-561) (-561) (-561) (-561)) NIL)) (-1526 (($ $) NIL)) (-1711 (((-112) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2727 (($ $ (-561) (-561) $) NIL)) (-4207 ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) NIL)) (-4019 (($ $ (-561) (-597 |#1| |#3|)) NIL)) (-1316 (($ $ (-561) (-597 |#1| |#2|)) NIL)) (-3256 (($ (-765) |#1|) NIL)) (-2674 (($) NIL T CONST)) (-2617 (($ $) 21 (|has| |#1| (-306)))) (-3324 (((-597 |#1| |#3|) $ (-561)) NIL)) (-3400 (((-765) $) 24 (|has| |#1| (-553)))) (-2041 ((|#1| $ (-561) (-561) |#1|) NIL)) (-1975 ((|#1| $ (-561) (-561)) NIL)) (-2368 (((-638 |#1|) $) NIL)) (-1486 (((-765) $) 26 (|has| |#1| (-553)))) (-2351 (((-638 (-597 |#1| |#2|)) $) 29 (|has| |#1| (-553)))) (-3349 (((-765) $) NIL)) (-1458 (($ (-765) (-765) |#1|) NIL)) (-3361 (((-765) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3440 ((|#1| $) 19 (|has| |#1| (-6 (-4401 "*"))))) (-3655 (((-561) $) 10)) (-1355 (((-561) $) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2475 (((-561) $) 11)) (-3838 (((-561) $) NIL)) (-2887 (($ (-638 (-638 |#1|))) NIL)) (-2029 (($ (-1 |#1| |#1|) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3485 (((-638 (-638 |#1|)) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1885 (((-3 $ "failed") $) 33 (|has| |#1| (-362)))) (-2769 (($ $ $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) NIL)) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561))) NIL)) (-3557 (($ (-638 |#1|)) NIL) (($ (-638 $)) NIL)) (-2100 (((-112) $) NIL)) (-4105 ((|#1| $) 17 (|has| |#1| (-6 (-4401 "*"))))) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-2062 (((-597 |#1| |#2|) $ (-561)) NIL)) (-4064 (($ (-597 |#1| |#2|)) NIL) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2841 (((-112) $) NIL)) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $ $) NIL) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-561) $) NIL) (((-597 |#1| |#2|) $ (-597 |#1| |#2|)) NIL) (((-597 |#1| |#3|) (-597 |#1| |#3|) $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-521 |#1| |#2| |#3|) (-680 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) (-1042) (-561) (-561)) (T -521))
-NIL
-(-680 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-3369 (((-638 (-1204)) $) 13)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL) (($ (-638 (-1204))) 11)) (-1723 (((-112) $ $) NIL)))
-(((-522) (-13 (-1073) (-10 -8 (-15 -4064 ($ (-638 (-1204)))) (-15 -3369 ((-638 (-1204)) $))))) (T -522))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522)))))
-(-13 (-1073) (-10 -8 (-15 -4064 ($ (-638 (-1204)))) (-15 -3369 ((-638 (-1204)) $))))
-((-4053 (((-112) $ $) NIL)) (-3182 (((-1125) $) 14)) (-1883 (((-1148) $) NIL)) (-1476 (((-1166) $) 11)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-523) (-13 (-1073) (-10 -8 (-15 -1476 ((-1166) $)) (-15 -3182 ((-1125) $))))) (T -523))
-((-1476 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523)))))
-(-13 (-1073) (-10 -8 (-15 -1476 ((-1166) $)) (-15 -3182 ((-1125) $))))
-((-3083 (((-684 (-1212)) $) 15)) (-1524 (((-684 (-1211)) $) 35)) (-1535 (((-684 (-1210)) $) 26)) (-2394 (((-684 (-546)) $) 12)) (-1548 (((-684 (-545)) $) 39)) (-1564 (((-684 (-544)) $) 30)) (-3430 (((-765) $ (-128)) 49)))
-(((-524 |#1|) (-10 -8 (-15 -3430 ((-765) |#1| (-128))) (-15 -1524 ((-684 (-1211)) |#1|)) (-15 -1548 ((-684 (-545)) |#1|)) (-15 -1535 ((-684 (-1210)) |#1|)) (-15 -1564 ((-684 (-544)) |#1|)) (-15 -3083 ((-684 (-1212)) |#1|)) (-15 -2394 ((-684 (-546)) |#1|))) (-525)) (T -524))
-NIL
-(-10 -8 (-15 -3430 ((-765) |#1| (-128))) (-15 -1524 ((-684 (-1211)) |#1|)) (-15 -1548 ((-684 (-545)) |#1|)) (-15 -1535 ((-684 (-1210)) |#1|)) (-15 -1564 ((-684 (-544)) |#1|)) (-15 -3083 ((-684 (-1212)) |#1|)) (-15 -2394 ((-684 (-546)) |#1|)))
-((-3083 (((-684 (-1212)) $) 12)) (-1524 (((-684 (-1211)) $) 8)) (-1535 (((-684 (-1210)) $) 10)) (-2394 (((-684 (-546)) $) 13)) (-1548 (((-684 (-545)) $) 9)) (-1564 (((-684 (-544)) $) 11)) (-3430 (((-765) $ (-128)) 7)) (-1429 (((-684 (-129)) $) 14)) (-3550 (($ $) 6)))
+((-3495 ((|#4| |#4|) 27)) (-3494 (((-765) |#4|) 32)) (-3493 (((-765) |#4|) 33)) (-3492 (((-635 |#3|) |#4|) 39 (|has| |#3| (-6 -4401)))) (-3996 (((-3 |#4| "failed") |#4|) 50)) (-2141 ((|#4| |#4|) 43)) (-3732 ((|#1| |#4|) 42)))
+(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3495 (|#4| |#4|)) (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (IF (|has| |#3| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3732 (|#1| |#4|)) (-15 -2141 (|#4| |#4|)) (-15 -3996 ((-3 |#4| "failed") |#4|))) (-362) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -519))
+((-3996 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-362)) (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))) (-3492 (*1 *2 *3) (-12 (|has| *6 (-6 -4401)) (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3493 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3494 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(-10 -7 (-15 -3495 (|#4| |#4|)) (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (IF (|has| |#3| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3732 (|#1| |#4|)) (-15 -2141 (|#4| |#4|)) (-15 -3996 ((-3 |#4| "failed") |#4|)))
+((-3495 ((|#8| |#4|) 20)) (-3492 (((-635 |#3|) |#4|) 29 (|has| |#7| (-6 -4401)))) (-3996 (((-3 |#8| "failed") |#4|) 23)))
+(((-520 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3495 (|#8| |#4|)) (-15 -3996 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|)) (-554) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|) (-984 |#1|) (-371 |#5|) (-371 |#5|) (-679 |#5| |#6| |#7|)) (T -520))
+((-3492 (*1 *2 *3) (-12 (|has| *9 (-6 -4401)) (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)) (-5 *2 (-635 *6)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-679 *4 *5 *6)) (-4 *10 (-679 *7 *8 *9)))) (-3996 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4)) (-4 *2 (-679 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-679 *4 *5 *6)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4)) (-4 *2 (-679 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-679 *4 *5 *6)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)))))
+(-10 -7 (-15 -3495 (|#8| |#4|)) (-15 -3996 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) NIL)) (-2473 (($ $ $) NIL)) (-3818 (($ (-597 |#1| |#3|)) NIL) (($ $) NIL)) (-3506 (((-112) $) NIL)) (-2472 (($ $ (-544) (-544)) 12)) (-2471 (($ $ (-544) (-544)) NIL)) (-2470 (($ $ (-544) (-544) (-544) (-544)) NIL)) (-2475 (($ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-2469 (($ $ (-544) (-544) $) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) NIL)) (-1332 (($ $ (-544) (-597 |#1| |#3|)) NIL)) (-1331 (($ $ (-544) (-597 |#1| |#2|)) NIL)) (-3737 (($ (-765) |#1|) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 21 (|has| |#1| (-306)))) (-3497 (((-597 |#1| |#3|) $ (-544)) NIL)) (-3494 (((-765) $) 24 (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3493 (((-765) $) 26 (|has| |#1| (-554)))) (-3492 (((-635 (-597 |#1| |#2|)) $) 29 (|has| |#1| (-554)))) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#1| $) 19 (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) 10)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) 11)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#1|))) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4000 (((-635 (-635 |#1|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3996 (((-3 $ #2="failed") $) 33 (|has| |#1| (-362)))) (-2474 (($ $ $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-3865 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544))) NIL)) (-3736 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-3507 (((-112) $) NIL)) (-3732 ((|#1| $) 17 (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-597 |#1| |#2|) $ (-544)) NIL)) (-4353 (($ (-597 |#1| |#2|)) NIL) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-544) $) NIL) (((-597 |#1| |#2|) $ (-597 |#1| |#2|)) NIL) (((-597 |#1| |#3|) (-597 |#1| |#3|) $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-521 |#1| |#2| |#3|) (-679 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) (-1042) (-544) (-544)) (T -521))
+NIL
+(-679 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2142 (((-635 (-1205)) $) 13)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL) (($ (-635 (-1205))) 11)) (-3437 (((-112) $ $) NIL)))
+(((-522) (-13 (-1073) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2142 ((-635 (-1205)) $))))) (T -522))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522)))))
+(-13 (-1073) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2142 ((-635 (-1205)) $))))
+((-2947 (((-112) $ $) NIL)) (-2143 (((-1125) $) 14)) (-3643 (((-1148) $) NIL)) (-2144 (((-1166) $) 11)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-523) (-13 (-1073) (-10 -8 (-15 -2144 ((-1166) $)) (-15 -2143 ((-1125) $))))) (T -523))
+((-2144 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523)))))
+(-13 (-1073) (-10 -8 (-15 -2144 ((-1166) $)) (-15 -2143 ((-1125) $))))
+((-2150 (((-684 (-1212)) $) 15)) (-2146 (((-684 (-1211)) $) 35)) (-2148 (((-684 (-1210)) $) 26)) (-2151 (((-684 (-547)) $) 12)) (-2147 (((-684 (-546)) $) 39)) (-2149 (((-684 (-545)) $) 30)) (-2145 (((-765) $ (-129)) 49)))
+(((-524 |#1|) (-10 -8 (-15 -2145 ((-765) |#1| (-129))) (-15 -2146 ((-684 (-1211)) |#1|)) (-15 -2147 ((-684 (-546)) |#1|)) (-15 -2148 ((-684 (-1210)) |#1|)) (-15 -2149 ((-684 (-545)) |#1|)) (-15 -2150 ((-684 (-1212)) |#1|)) (-15 -2151 ((-684 (-547)) |#1|))) (-525)) (T -524))
+NIL
+(-10 -8 (-15 -2145 ((-765) |#1| (-129))) (-15 -2146 ((-684 (-1211)) |#1|)) (-15 -2147 ((-684 (-546)) |#1|)) (-15 -2148 ((-684 (-1210)) |#1|)) (-15 -2149 ((-684 (-545)) |#1|)) (-15 -2150 ((-684 (-1212)) |#1|)) (-15 -2151 ((-684 (-547)) |#1|)))
+((-2150 (((-684 (-1212)) $) 12)) (-2146 (((-684 (-1211)) $) 8)) (-2148 (((-684 (-1210)) $) 10)) (-2151 (((-684 (-547)) $) 13)) (-2147 (((-684 (-546)) $) 9)) (-2149 (((-684 (-545)) $) 11)) (-2145 (((-765) $ (-129)) 7)) (-2152 (((-684 (-128)) $) 14)) (-1844 (($ $) 6)))
(((-525) (-139)) (T -525))
-((-1429 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-129))))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-546))))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1212))))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-544))))) (-1535 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1210))))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-545))))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1211))))) (-3430 (*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-765)))))
-(-13 (-172) (-10 -8 (-15 -1429 ((-684 (-129)) $)) (-15 -2394 ((-684 (-546)) $)) (-15 -3083 ((-684 (-1212)) $)) (-15 -1564 ((-684 (-544)) $)) (-15 -1535 ((-684 (-1210)) $)) (-15 -1548 ((-684 (-545)) $)) (-15 -1524 ((-684 (-1211)) $)) (-15 -3430 ((-765) $ (-128)))))
+((-2152 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-128))))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-547))))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1212))))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-545))))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1210))))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-546))))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1211))))) (-2145 (*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-129)) (-5 *2 (-765)))))
+(-13 (-172) (-10 -8 (-15 -2152 ((-684 (-128)) $)) (-15 -2151 ((-684 (-547)) $)) (-15 -2150 ((-684 (-1212)) $)) (-15 -2149 ((-684 (-545)) $)) (-15 -2148 ((-684 (-1210)) $)) (-15 -2147 ((-684 (-546)) $)) (-15 -2146 ((-684 (-1211)) $)) (-15 -2145 ((-765) $ (-129)))))
(((-172) . T))
-((-3575 (((-1162 |#1|) (-765)) 75)) (-1736 (((-1254 |#1|) (-1254 |#1|) (-914)) 68)) (-1681 (((-1259) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) |#1|) 83)) (-1472 (((-1254 |#1|) (-1254 |#1|) (-765)) 36)) (-1362 (((-1254 |#1|) (-914)) 70)) (-2512 (((-1254 |#1|) (-1254 |#1|) (-561)) 24)) (-3590 (((-1162 |#1|) (-1254 |#1|)) 76)) (-1946 (((-1254 |#1|) (-914)) 94)) (-1892 (((-112) (-1254 |#1|)) 79)) (-2072 (((-1254 |#1|) (-1254 |#1|) (-914)) 61)) (-1588 (((-1162 |#1|) (-1254 |#1|)) 88)) (-1335 (((-914) (-1254 |#1|)) 58)) (-1519 (((-1254 |#1|) (-1254 |#1|)) 30)) (-2442 (((-1254 |#1|) (-914) (-914)) 96)) (-1587 (((-1254 |#1|) (-1254 |#1|) (-1110) (-1110)) 23)) (-2267 (((-1254 |#1|) (-1254 |#1|) (-765) (-1110)) 37)) (-2615 (((-1254 (-1254 |#1|)) (-914)) 93)) (-1828 (((-1254 |#1|) (-1254 |#1|) (-1254 |#1|)) 80)) (** (((-1254 |#1|) (-1254 |#1|) (-561)) 43)) (* (((-1254 |#1|) (-1254 |#1|) (-1254 |#1|)) 25)))
-(((-526 |#1|) (-10 -7 (-15 -1681 ((-1259) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) |#1|)) (-15 -1362 ((-1254 |#1|) (-914))) (-15 -2442 ((-1254 |#1|) (-914) (-914))) (-15 -3590 ((-1162 |#1|) (-1254 |#1|))) (-15 -3575 ((-1162 |#1|) (-765))) (-15 -2267 ((-1254 |#1|) (-1254 |#1|) (-765) (-1110))) (-15 -1472 ((-1254 |#1|) (-1254 |#1|) (-765))) (-15 -1587 ((-1254 |#1|) (-1254 |#1|) (-1110) (-1110))) (-15 -2512 ((-1254 |#1|) (-1254 |#1|) (-561))) (-15 ** ((-1254 |#1|) (-1254 |#1|) (-561))) (-15 * ((-1254 |#1|) (-1254 |#1|) (-1254 |#1|))) (-15 -1828 ((-1254 |#1|) (-1254 |#1|) (-1254 |#1|))) (-15 -2072 ((-1254 |#1|) (-1254 |#1|) (-914))) (-15 -1736 ((-1254 |#1|) (-1254 |#1|) (-914))) (-15 -1519 ((-1254 |#1|) (-1254 |#1|))) (-15 -1335 ((-914) (-1254 |#1|))) (-15 -1892 ((-112) (-1254 |#1|))) (-15 -2615 ((-1254 (-1254 |#1|)) (-914))) (-15 -1946 ((-1254 |#1|) (-914))) (-15 -1588 ((-1162 |#1|) (-1254 |#1|)))) (-348)) (T -526))
-((-1588 (*1 *2 *3) (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1254 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1254 (-1254 *4))) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-526 *4)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-914)) (-5 *1 (-526 *4)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (-1736 (*1 *2 *2 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-914)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2072 (*1 *2 *2 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-914)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1828 (*1 *2 *2 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-561)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2512 (*1 *2 *2 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-561)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1587 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-1110)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-1254 *4)) (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2267 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1254 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-348)) (-5 *1 (-526 *5)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4)))) (-2442 (*1 *2 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1254 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1254 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110)))))) (-4 *4 (-348)) (-5 *2 (-1259)) (-5 *1 (-526 *4)))))
-(-10 -7 (-15 -1681 ((-1259) (-1254 (-638 (-2 (|:| -2506 |#1|) (|:| -2442 (-1110))))) |#1|)) (-15 -1362 ((-1254 |#1|) (-914))) (-15 -2442 ((-1254 |#1|) (-914) (-914))) (-15 -3590 ((-1162 |#1|) (-1254 |#1|))) (-15 -3575 ((-1162 |#1|) (-765))) (-15 -2267 ((-1254 |#1|) (-1254 |#1|) (-765) (-1110))) (-15 -1472 ((-1254 |#1|) (-1254 |#1|) (-765))) (-15 -1587 ((-1254 |#1|) (-1254 |#1|) (-1110) (-1110))) (-15 -2512 ((-1254 |#1|) (-1254 |#1|) (-561))) (-15 ** ((-1254 |#1|) (-1254 |#1|) (-561))) (-15 * ((-1254 |#1|) (-1254 |#1|) (-1254 |#1|))) (-15 -1828 ((-1254 |#1|) (-1254 |#1|) (-1254 |#1|))) (-15 -2072 ((-1254 |#1|) (-1254 |#1|) (-914))) (-15 -1736 ((-1254 |#1|) (-1254 |#1|) (-914))) (-15 -1519 ((-1254 |#1|) (-1254 |#1|))) (-15 -1335 ((-914) (-1254 |#1|))) (-15 -1892 ((-112) (-1254 |#1|))) (-15 -2615 ((-1254 (-1254 |#1|)) (-914))) (-15 -1946 ((-1254 |#1|) (-914))) (-15 -1588 ((-1162 |#1|) (-1254 |#1|))))
-((-3083 (((-684 (-1212)) $) NIL)) (-1524 (((-684 (-1211)) $) NIL)) (-1535 (((-684 (-1210)) $) NIL)) (-2394 (((-684 (-546)) $) NIL)) (-1548 (((-684 (-545)) $) NIL)) (-1564 (((-684 (-544)) $) NIL)) (-3430 (((-765) $ (-128)) NIL)) (-1429 (((-684 (-129)) $) 23)) (-4264 (((-1110) $ (-1110)) 28)) (-4266 (((-1110) $) 27)) (-1301 (((-112) $) 18)) (-3111 (($ (-387)) 12) (($ (-1148)) 14)) (-3662 (((-112) $) 24)) (-4064 (((-856) $) 31)) (-3550 (($ $) 25)))
-(((-527) (-13 (-525) (-608 (-856)) (-10 -8 (-15 -3111 ($ (-387))) (-15 -3111 ($ (-1148))) (-15 -3662 ((-112) $)) (-15 -1301 ((-112) $)) (-15 -4266 ((-1110) $)) (-15 -4264 ((-1110) $ (-1110)))))) (T -527))
-((-3111 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))) (-4264 (*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))))
-(-13 (-525) (-608 (-856)) (-10 -8 (-15 -3111 ($ (-387))) (-15 -3111 ($ (-1148))) (-15 -3662 ((-112) $)) (-15 -1301 ((-112) $)) (-15 -4266 ((-1110) $)) (-15 -4264 ((-1110) $ (-1110)))))
-((-3571 (((-1 |#1| |#1|) |#1|) 11)) (-4144 (((-1 |#1| |#1|)) 10)))
-(((-528 |#1|) (-10 -7 (-15 -4144 ((-1 |#1| |#1|))) (-15 -3571 ((-1 |#1| |#1|) |#1|))) (-13 (-720) (-25))) (T -528))
-((-3571 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))) (-4144 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
-(-10 -7 (-15 -4144 ((-1 |#1| |#1|))) (-15 -3571 ((-1 |#1| |#1|) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1403 (($ $ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-1381 (($ (-765) |#1|) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 (-765) (-765)) $) NIL)) (-4300 ((|#1| $) NIL)) (-1572 (((-765) $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 20)) (-2246 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL)))
+((-2155 (((-1160 |#1|) (-765)) 75)) (-3734 (((-1253 |#1|) (-1253 |#1|) (-912)) 68)) (-2153 (((-1259) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) |#1|) 83)) (-2157 (((-1253 |#1|) (-1253 |#1|) (-765)) 36)) (-3377 (((-1253 |#1|) (-912)) 70)) (-2159 (((-1253 |#1|) (-1253 |#1|) (-544)) 24)) (-2154 (((-1160 |#1|) (-1253 |#1|)) 76)) (-2163 (((-1253 |#1|) (-912)) 94)) (-2161 (((-112) (-1253 |#1|)) 79)) (-3517 (((-1253 |#1|) (-1253 |#1|) (-912)) 61)) (-2164 (((-1160 |#1|) (-1253 |#1|)) 88)) (-2160 (((-912) (-1253 |#1|)) 58)) (-2779 (((-1253 |#1|) (-1253 |#1|)) 30)) (-2535 (((-1253 |#1|) (-912) (-912)) 96)) (-2158 (((-1253 |#1|) (-1253 |#1|) (-1110) (-1110)) 23)) (-2156 (((-1253 |#1|) (-1253 |#1|) (-765) (-1110)) 37)) (-2162 (((-1253 (-1253 |#1|)) (-912)) 93)) (-4356 (((-1253 |#1|) (-1253 |#1|) (-1253 |#1|)) 80)) (** (((-1253 |#1|) (-1253 |#1|) (-544)) 43)) (* (((-1253 |#1|) (-1253 |#1|) (-1253 |#1|)) 25)))
+(((-526 |#1|) (-10 -7 (-15 -2153 ((-1259) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) |#1|)) (-15 -3377 ((-1253 |#1|) (-912))) (-15 -2535 ((-1253 |#1|) (-912) (-912))) (-15 -2154 ((-1160 |#1|) (-1253 |#1|))) (-15 -2155 ((-1160 |#1|) (-765))) (-15 -2156 ((-1253 |#1|) (-1253 |#1|) (-765) (-1110))) (-15 -2157 ((-1253 |#1|) (-1253 |#1|) (-765))) (-15 -2158 ((-1253 |#1|) (-1253 |#1|) (-1110) (-1110))) (-15 -2159 ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 ** ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 * ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -4356 ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -3517 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -3734 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -2779 ((-1253 |#1|) (-1253 |#1|))) (-15 -2160 ((-912) (-1253 |#1|))) (-15 -2161 ((-112) (-1253 |#1|))) (-15 -2162 ((-1253 (-1253 |#1|)) (-912))) (-15 -2163 ((-1253 |#1|) (-912))) (-15 -2164 ((-1160 |#1|) (-1253 |#1|)))) (-349)) (T -526))
+((-2164 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 *4))) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-526 *4)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-912)) (-5 *1 (-526 *4)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) (-3734 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-4356 (*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2159 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2158 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1110)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2157 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2156 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1253 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-349)) (-5 *1 (-526 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)))) (-2535 (*1 *2 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-4 *4 (-349)) (-5 *2 (-1259)) (-5 *1 (-526 *4)))))
+(-10 -7 (-15 -2153 ((-1259) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) |#1|)) (-15 -3377 ((-1253 |#1|) (-912))) (-15 -2535 ((-1253 |#1|) (-912) (-912))) (-15 -2154 ((-1160 |#1|) (-1253 |#1|))) (-15 -2155 ((-1160 |#1|) (-765))) (-15 -2156 ((-1253 |#1|) (-1253 |#1|) (-765) (-1110))) (-15 -2157 ((-1253 |#1|) (-1253 |#1|) (-765))) (-15 -2158 ((-1253 |#1|) (-1253 |#1|) (-1110) (-1110))) (-15 -2159 ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 ** ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 * ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -4356 ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -3517 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -3734 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -2779 ((-1253 |#1|) (-1253 |#1|))) (-15 -2160 ((-912) (-1253 |#1|))) (-15 -2161 ((-112) (-1253 |#1|))) (-15 -2162 ((-1253 (-1253 |#1|)) (-912))) (-15 -2163 ((-1253 |#1|) (-912))) (-15 -2164 ((-1160 |#1|) (-1253 |#1|))))
+((-2150 (((-684 (-1212)) $) NIL)) (-2146 (((-684 (-1211)) $) NIL)) (-2148 (((-684 (-1210)) $) NIL)) (-2151 (((-684 (-547)) $) NIL)) (-2147 (((-684 (-546)) $) NIL)) (-2149 (((-684 (-545)) $) NIL)) (-2145 (((-765) $ (-129)) NIL)) (-2152 (((-684 (-128)) $) 23)) (-2165 (((-1110) $ (-1110)) 28)) (-3823 (((-1110) $) 27)) (-2940 (((-112) $) 18)) (-2167 (($ (-387)) 12) (($ (-1148)) 14)) (-2166 (((-112) $) 24)) (-4353 (((-857) $) 31)) (-1844 (($ $) 25)))
+(((-527) (-13 (-525) (-608 (-857)) (-10 -8 (-15 -2167 ($ (-387))) (-15 -2167 ($ (-1148))) (-15 -2166 ((-112) $)) (-15 -2940 ((-112) $)) (-15 -3823 ((-1110) $)) (-15 -2165 ((-1110) $ (-1110)))))) (T -527))
+((-2167 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))) (-2167 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))) (-2165 (*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))))
+(-13 (-525) (-608 (-857)) (-10 -8 (-15 -2167 ($ (-387))) (-15 -2167 ($ (-1148))) (-15 -2166 ((-112) $)) (-15 -2940 ((-112) $)) (-15 -3823 ((-1110) $)) (-15 -2165 ((-1110) $ (-1110)))))
+((-2169 (((-1 |#1| |#1|) |#1|) 11)) (-2168 (((-1 |#1| |#1|)) 10)))
+(((-528 |#1|) (-10 -7 (-15 -2168 ((-1 |#1| |#1|))) (-15 -2169 ((-1 |#1| |#1|) |#1|))) (-13 (-720) (-25))) (T -528))
+((-2169 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))) (-2168 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
+(-10 -7 (-15 -2168 ((-1 |#1| |#1|))) (-15 -2169 ((-1 |#1| |#1|) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2778 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ (-765) |#1|) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 (-765) (-765)) $) NIL)) (-2134 ((|#1| $) NIL)) (-3575 (((-765) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20)) (-3040 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL)))
(((-529 |#1|) (-13 (-787) (-507 (-765) |#1|)) (-844)) (T -529))
NIL
(-13 (-787) (-507 (-765) |#1|))
-((-2043 (((-638 |#2|) (-1162 |#1|) |#3|) 83)) (-4094 (((-638 (-2 (|:| |outval| |#2|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-417 (-1162 |#1|)) (-1162 |#1|))) 100)) (-2591 (((-1162 |#1|) (-682 |#1|)) 95)))
-(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2591 ((-1162 |#1|) (-682 |#1|))) (-15 -2043 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -4094 ((-638 (-2 (|:| |outval| |#2|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-417 (-1162 |#1|)) (-1162 |#1|))))) (-362) (-362) (-13 (-362) (-842))) (T -530))
-((-4094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-417 (-1162 *6)) (-1162 *6))) (-4 *6 (-362)) (-5 *2 (-638 (-2 (|:| |outval| *7) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 *7)))))) (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *5)) (-4 *5 (-362)) (-5 *2 (-638 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1162 *4)) (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842))))))
-(-10 -7 (-15 -2591 ((-1162 |#1|) (-682 |#1|))) (-15 -2043 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -4094 ((-638 (-2 (|:| |outval| |#2|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-417 (-1162 |#1|)) (-1162 |#1|)))))
-((-4230 (((-684 (-1212)) $ (-1212)) NIL)) (-4315 (((-684 (-546)) $ (-546)) NIL)) (-3284 (((-765) $ (-128)) 39)) (-4065 (((-684 (-129)) $ (-129)) 40)) (-3083 (((-684 (-1212)) $) NIL)) (-1524 (((-684 (-1211)) $) NIL)) (-1535 (((-684 (-1210)) $) NIL)) (-2394 (((-684 (-546)) $) NIL)) (-1548 (((-684 (-545)) $) NIL)) (-1564 (((-684 (-544)) $) NIL)) (-3430 (((-765) $ (-128)) 34)) (-1429 (((-684 (-129)) $) 37)) (-3549 (((-112) $) 29)) (-3094 (((-684 $) (-576) (-947)) 19) (((-684 $) (-489) (-947)) 26)) (-4064 (((-856) $) 49)) (-3550 (($ $) 41)))
-(((-531) (-13 (-761 (-576)) (-608 (-856)) (-10 -8 (-15 -3094 ((-684 $) (-489) (-947)))))) (T -531))
-((-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531))) (-5 *1 (-531)))))
-(-13 (-761 (-576)) (-608 (-856)) (-10 -8 (-15 -3094 ((-684 $) (-489) (-947)))))
-((-3657 (((-837 (-561))) 12)) (-3667 (((-837 (-561))) 14)) (-4122 (((-827 (-561))) 9)))
-(((-532) (-10 -7 (-15 -4122 ((-827 (-561)))) (-15 -3657 ((-837 (-561)))) (-15 -3667 ((-837 (-561)))))) (T -532))
-((-3667 (*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532)))) (-3657 (*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532)))) (-4122 (*1 *2) (-12 (-5 *2 (-827 (-561))) (-5 *1 (-532)))))
-(-10 -7 (-15 -4122 ((-827 (-561)))) (-15 -3657 ((-837 (-561)))) (-15 -3667 ((-837 (-561)))))
-((-1876 (((-534) (-1166)) 15)) (-3946 ((|#1| (-534)) 20)))
-(((-533 |#1|) (-10 -7 (-15 -1876 ((-534) (-1166))) (-15 -3946 (|#1| (-534)))) (-1205)) (T -533))
-((-3946 (*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1205)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-534)) (-5 *1 (-533 *4)) (-4 *4 (-1205)))))
-(-10 -7 (-15 -1876 ((-534) (-1166))) (-15 -3946 (|#1| (-534))))
-((-4053 (((-112) $ $) NIL)) (-1568 (((-1148) $) 47)) (-1541 (((-112) $) 43)) (-1720 (((-1166) $) 44)) (-3517 (((-112) $) 41)) (-3651 (((-1148) $) 42)) (-2655 (($ (-1148)) 48)) (-2178 (((-112) $) NIL)) (-1945 (((-112) $) NIL)) (-2139 (((-112) $) NIL)) (-1883 (((-1148) $) NIL)) (-2047 (($ $ (-638 (-1166))) 20)) (-3946 (((-52) $) 22)) (-1765 (((-112) $) NIL)) (-1741 (((-561) $) NIL)) (-1701 (((-1110) $) NIL)) (-1411 (($ $ (-638 (-1166)) (-1166)) 60)) (-2061 (((-112) $) NIL)) (-4242 (((-224) $) NIL)) (-2743 (($ $) 38)) (-2382 (((-856) $) NIL)) (-3394 (((-112) $ $) NIL)) (-2315 (($ $ (-561)) NIL) (($ $ (-638 (-561))) NIL)) (-1707 (((-638 $) $) 28)) (-3135 (((-1166) (-638 $)) 49)) (-4216 (($ (-1148)) NIL) (($ (-1166)) 18) (($ (-561)) 8) (($ (-224)) 25) (($ (-856)) NIL) (($ (-638 $)) 56) (((-1094) $) 11) (($ (-1094)) 12)) (-3521 (((-1166) (-1166) (-638 $)) 52)) (-4064 (((-856) $) 46)) (-3778 (($ $) 51)) (-3766 (($ $) 50)) (-2531 (($ $ (-638 $)) 57)) (-3920 (((-112) $) 27)) (-2246 (($) 9 T CONST)) (-2257 (($) 10 T CONST)) (-1723 (((-112) $ $) 61)) (-1828 (($ $ $) 66)) (-1810 (($ $ $) 62)) (** (($ $ (-765)) 65) (($ $ (-561)) 64)) (* (($ $ $) 63)) (-3548 (((-561) $) NIL)))
-(((-534) (-13 (-1093 (-1148) (-1166) (-561) (-224) (-856)) (-609 (-1094)) (-10 -8 (-15 -3946 ((-52) $)) (-15 -4216 ($ (-1094))) (-15 -2531 ($ $ (-638 $))) (-15 -1411 ($ $ (-638 (-1166)) (-1166))) (-15 -2047 ($ $ (-638 (-1166)))) (-15 -1810 ($ $ $)) (-15 * ($ $ $)) (-15 -1828 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-561))) (-15 0 ($) -1494) (-15 1 ($) -1494) (-15 -2743 ($ $)) (-15 -1568 ((-1148) $)) (-15 -2655 ($ (-1148))) (-15 -3135 ((-1166) (-638 $))) (-15 -3521 ((-1166) (-1166) (-638 $)))))) (T -534))
-((-3946 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-534)))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-534))) (-5 *1 (-534)))) (-1411 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1166)) (-5 *1 (-534)))) (-2047 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-534)))) (-1810 (*1 *1 *1 *1) (-5 *1 (-534))) (* (*1 *1 *1 *1) (-5 *1 (-534))) (-1828 (*1 *1 *1 *1) (-5 *1 (-534))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-534)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-534)))) (-2246 (*1 *1) (-5 *1 (-534))) (-2257 (*1 *1) (-5 *1 (-534))) (-2743 (*1 *1 *1) (-5 *1 (-534))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))) (-2655 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-638 (-534))) (-5 *2 (-1166)) (-5 *1 (-534)))) (-3521 (*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-534))) (-5 *1 (-534)))))
-(-13 (-1093 (-1148) (-1166) (-561) (-224) (-856)) (-609 (-1094)) (-10 -8 (-15 -3946 ((-52) $)) (-15 -4216 ($ (-1094))) (-15 -2531 ($ $ (-638 $))) (-15 -1411 ($ $ (-638 (-1166)) (-1166))) (-15 -2047 ($ $ (-638 (-1166)))) (-15 -1810 ($ $ $)) (-15 * ($ $ $)) (-15 -1828 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-561))) (-15 (-2246) ($) -1494) (-15 (-2257) ($) -1494) (-15 -2743 ($ $)) (-15 -1568 ((-1148) $)) (-15 -2655 ($ (-1148))) (-15 -3135 ((-1166) (-638 $))) (-15 -3521 ((-1166) (-1166) (-638 $)))))
-((-2250 ((|#2| |#2|) 17)) (-1743 ((|#2| |#2|) 13)) (-2080 ((|#2| |#2| (-561) (-561)) 20)) (-2548 ((|#2| |#2|) 15)))
-(((-535 |#1| |#2|) (-10 -7 (-15 -1743 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2250 (|#2| |#2|)) (-15 -2080 (|#2| |#2| (-561) (-561)))) (-13 (-553) (-146)) (-1245 |#1|)) (T -535))
-((-2080 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-535 *4 *2)) (-4 *2 (-1245 *4)))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1245 *3)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1245 *3)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1245 *3)))))
-(-10 -7 (-15 -1743 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2250 (|#2| |#2|)) (-15 -2080 (|#2| |#2| (-561) (-561))))
-((-2486 (((-638 (-293 (-945 |#2|))) (-638 |#2|) (-638 (-1166))) 32)) (-2907 (((-638 |#2|) (-945 |#1|) |#3|) 53) (((-638 |#2|) (-1162 |#1|) |#3|) 52)) (-3897 (((-638 (-638 |#2|)) (-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)) |#3|) 88)))
-(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2907 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -2907 ((-638 |#2|) (-945 |#1|) |#3|)) (-15 -3897 ((-638 (-638 |#2|)) (-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)) |#3|)) (-15 -2486 ((-638 (-293 (-945 |#2|))) (-638 |#2|) (-638 (-1166))))) (-450) (-362) (-13 (-362) (-842))) (T -536))
-((-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1166))) (-4 *6 (-362)) (-5 *2 (-638 (-293 (-945 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-13 (-362) (-842))))) (-3897 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-842))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
-(-10 -7 (-15 -2907 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -2907 ((-638 |#2|) (-945 |#1|) |#3|)) (-15 -3897 ((-638 (-638 |#2|)) (-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)) |#3|)) (-15 -2486 ((-638 (-293 (-945 |#2|))) (-638 |#2|) (-638 (-1166)))))
-((-4047 ((|#2| |#2| |#1|) 17)) (-2586 ((|#2| (-638 |#2|)) 26)) (-3085 ((|#2| (-638 |#2|)) 45)))
-(((-537 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2586 (|#2| (-638 |#2|))) (-15 -3085 (|#2| (-638 |#2|))) (-15 -4047 (|#2| |#2| |#1|))) (-306) (-1230 |#1|) |#1| (-1 |#1| |#1| (-765))) (T -537))
-((-4047 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765))) (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1230 *3)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1230 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1230 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
-(-10 -7 (-15 -2586 (|#2| (-638 |#2|))) (-15 -3085 (|#2| (-638 |#2|))) (-15 -4047 (|#2| |#2| |#1|)))
-((-1633 (((-417 (-1162 |#4|)) (-1162 |#4|) (-1 (-417 (-1162 |#3|)) (-1162 |#3|))) 79) (((-417 |#4|) |#4| (-1 (-417 (-1162 |#3|)) (-1162 |#3|))) 167)))
-(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1633 ((-417 |#4|) |#4| (-1 (-417 (-1162 |#3|)) (-1162 |#3|)))) (-15 -1633 ((-417 (-1162 |#4|)) (-1162 |#4|) (-1 (-417 (-1162 |#3|)) (-1162 |#3|))))) (-844) (-787) (-13 (-306) (-146)) (-942 |#3| |#2| |#1|)) (T -538))
-((-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-942 *7 *6 *5)) (-5 *2 (-417 (-1162 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1162 *8)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3)) (-4 *3 (-942 *7 *6 *5)))))
-(-10 -7 (-15 -1633 ((-417 |#4|) |#4| (-1 (-417 (-1162 |#3|)) (-1162 |#3|)))) (-15 -1633 ((-417 (-1162 |#4|)) (-1162 |#4|) (-1 (-417 (-1162 |#3|)) (-1162 |#3|)))))
-((-2250 ((|#4| |#4|) 73)) (-1743 ((|#4| |#4|) 69)) (-2080 ((|#4| |#4| (-561) (-561)) 75)) (-2548 ((|#4| |#4|) 71)))
-(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1743 (|#4| |#4|)) (-15 -2548 (|#4| |#4|)) (-15 -2250 (|#4| |#4|)) (-15 -2080 (|#4| |#4| (-561) (-561)))) (-13 (-362) (-367) (-609 (-561))) (-1230 |#1|) (-718 |#1| |#2|) (-1245 |#3|)) (T -539))
-((-2080 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-4 *5 (-1230 *4)) (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1245 *6)))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1230 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1245 *5)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1230 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1245 *5)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1230 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1245 *5)))))
-(-10 -7 (-15 -1743 (|#4| |#4|)) (-15 -2548 (|#4| |#4|)) (-15 -2250 (|#4| |#4|)) (-15 -2080 (|#4| |#4| (-561) (-561))))
-((-2250 ((|#2| |#2|) 27)) (-1743 ((|#2| |#2|) 23)) (-2080 ((|#2| |#2| (-561) (-561)) 29)) (-2548 ((|#2| |#2|) 25)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -1743 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2250 (|#2| |#2|)) (-15 -2080 (|#2| |#2| (-561) (-561)))) (-13 (-362) (-367) (-609 (-561))) (-1245 |#1|)) (T -540))
-((-2080 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1245 *4)))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1245 *3)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1245 *3)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1245 *3)))))
-(-10 -7 (-15 -1743 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2250 (|#2| |#2|)) (-15 -2080 (|#2| |#2| (-561) (-561))))
-((-2855 (((-3 (-561) "failed") |#2| |#1| (-1 (-3 (-561) "failed") |#1|)) 14) (((-3 (-561) "failed") |#2| |#1| (-561) (-1 (-3 (-561) "failed") |#1|)) 13) (((-3 (-561) "failed") |#2| (-561) (-1 (-3 (-561) "failed") |#1|)) 26)))
-(((-541 |#1| |#2|) (-10 -7 (-15 -2855 ((-3 (-561) "failed") |#2| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -2855 ((-3 (-561) "failed") |#2| |#1| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -2855 ((-3 (-561) "failed") |#2| |#1| (-1 (-3 (-561) "failed") |#1|)))) (-1042) (-1230 |#1|)) (T -541))
-((-2855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1230 *4)))) (-2855 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1230 *4)))) (-2855 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-561) "failed") *5)) (-4 *5 (-1042)) (-5 *2 (-561)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1230 *5)))))
-(-10 -7 (-15 -2855 ((-3 (-561) "failed") |#2| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -2855 ((-3 (-561) "failed") |#2| |#1| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -2855 ((-3 (-561) "failed") |#2| |#1| (-1 (-3 (-561) "failed") |#1|))))
-((-3680 (($ $ $) 78)) (-3552 (((-417 $) $) 46)) (-4061 (((-3 (-561) "failed") $) 58)) (-3979 (((-561) $) 36)) (-3063 (((-3 (-406 (-561)) "failed") $) 73)) (-4079 (((-112) $) 23)) (-2573 (((-406 (-561)) $) 71)) (-2725 (((-112) $) 49)) (-3473 (($ $ $ $) 85)) (-1784 (((-112) $) 15)) (-3784 (($ $ $) 56)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 68)) (-2436 (((-3 $ "failed") $) 63)) (-3953 (($ $) 22)) (-3986 (($ $ $) 83)) (-3767 (($) 59)) (-2084 (($ $) 52)) (-1633 (((-417 $) $) 44)) (-2058 (((-112) $) 13)) (-1905 (((-765) $) 27)) (-3922 (($ $ (-765)) NIL) (($ $) 10)) (-4225 (($ $) 16)) (-4216 (((-561) $) NIL) (((-534) $) 35) (((-885 (-561)) $) 39) (((-378) $) 30) (((-224) $) 32)) (-3746 (((-765)) 8)) (-3514 (((-112) $ $) 19)) (-3210 (($ $ $) 54)))
-(((-542 |#1|) (-10 -8 (-15 -3986 (|#1| |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1| |#1|)) (-15 -3953 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3514 ((-112) |#1| |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -4216 ((-224) |#1|)) (-15 -4216 ((-378) |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -3210 (|#1| |#1| |#1|)) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4216 ((-561) |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -1784 ((-112) |#1|)) (-15 -1905 ((-765) |#1|)) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -3746 ((-765)))) (-543)) (T -542))
-((-3746 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543)))))
-(-10 -8 (-15 -3986 (|#1| |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1| |#1|)) (-15 -3953 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3514 ((-112) |#1| |#1|)) (-15 -2058 ((-112) |#1|)) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -4216 ((-224) |#1|)) (-15 -4216 ((-378) |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -3210 (|#1| |#1| |#1|)) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4216 ((-561) |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -1784 ((-112) |#1|)) (-15 -1905 ((-765) |#1|)) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -3746 ((-765))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-3680 (($ $ $) 85)) (-2979 (((-3 $ "failed") $ $) 19)) (-1988 (($ $ $ $) 74)) (-2557 (($ $) 52)) (-3552 (((-417 $) $) 53)) (-3698 (((-112) $ $) 125)) (-1659 (((-561) $) 114)) (-3410 (($ $ $) 88)) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 106)) (-3979 (((-561) $) 107)) (-1792 (($ $ $) 129)) (-3720 (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 104) (((-682 (-561)) (-682 $)) 103)) (-3735 (((-3 $ "failed") $) 33)) (-3063 (((-3 (-406 (-561)) "failed") $) 82)) (-4079 (((-112) $) 84)) (-2573 (((-406 (-561)) $) 83)) (-1362 (($) 81) (($ $) 80)) (-1771 (($ $ $) 128)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 123)) (-2725 (((-112) $) 54)) (-3473 (($ $ $ $) 72)) (-1571 (($ $ $) 86)) (-1784 (((-112) $) 116)) (-3784 (($ $ $) 97)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 100)) (-2252 (((-112) $) 31)) (-2110 (((-112) $) 92)) (-2436 (((-3 $ "failed") $) 94)) (-3271 (((-112) $) 115)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 132)) (-2595 (($ $ $ $) 73)) (-1597 (($ $ $) 117)) (-3017 (($ $ $) 118)) (-3953 (($ $) 76)) (-4310 (($ $) 89)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-3986 (($ $ $) 71)) (-3767 (($) 93 T CONST)) (-4147 (($ $) 78)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-2084 (($ $) 98)) (-1633 (((-417 $) $) 51)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 130)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 124)) (-2058 (((-112) $) 91)) (-1905 (((-765) $) 126)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 127)) (-3922 (($ $ (-765)) 111) (($ $) 109)) (-4076 (($ $) 77)) (-4225 (($ $) 79)) (-4216 (((-561) $) 108) (((-534) $) 102) (((-885 (-561)) $) 101) (((-378) $) 96) (((-224) $) 95)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-561)) 105)) (-3746 (((-765)) 28)) (-3514 (((-112) $ $) 87)) (-3210 (($ $ $) 99)) (-1423 (($) 90)) (-3996 (((-112) $ $) 40)) (-4049 (($ $ $ $) 75)) (-2165 (($ $) 113)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-765)) 112) (($ $) 110)) (-1781 (((-112) $ $) 120)) (-1758 (((-112) $ $) 121)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 119)) (-1746 (((-112) $ $) 122)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-2171 (((-635 |#2|) (-1160 |#1|) |#3|) 83)) (-2172 (((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-404 (-1160 |#1|)) (-1160 |#1|))) 100)) (-2170 (((-1160 |#1|) (-682 |#1|)) 95)))
+(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2170 ((-1160 |#1|) (-682 |#1|))) (-15 -2171 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2172 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-404 (-1160 |#1|)) (-1160 |#1|))))) (-362) (-362) (-13 (-362) (-842))) (T -530))
+((-2172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-404 (-1160 *6)) (-1160 *6))) (-4 *6 (-362)) (-5 *2 (-635 (-2 (|:| |outval| *7) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 *7)))))) (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1160 *4)) (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2170 ((-1160 |#1|) (-682 |#1|))) (-15 -2171 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2172 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-404 (-1160 |#1|)) (-1160 |#1|)))))
+((-2937 (((-684 (-1212)) $ (-1212)) NIL)) (-2938 (((-684 (-547)) $ (-547)) NIL)) (-2936 (((-765) $ (-129)) 39)) (-2939 (((-684 (-128)) $ (-128)) 40)) (-2150 (((-684 (-1212)) $) NIL)) (-2146 (((-684 (-1211)) $) NIL)) (-2148 (((-684 (-1210)) $) NIL)) (-2151 (((-684 (-547)) $) NIL)) (-2147 (((-684 (-546)) $) NIL)) (-2149 (((-684 (-545)) $) NIL)) (-2145 (((-765) $ (-129)) 34)) (-2152 (((-684 (-128)) $) 37)) (-2733 (((-112) $) 29)) (-2734 (((-684 $) (-576) (-947)) 19) (((-684 $) (-489) (-947)) 26)) (-4353 (((-857) $) 49)) (-1844 (($ $) 41)))
+(((-531) (-13 (-761 (-576)) (-608 (-857)) (-10 -8 (-15 -2734 ((-684 $) (-489) (-947)))))) (T -531))
+((-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531))) (-5 *1 (-531)))))
+(-13 (-761 (-576)) (-608 (-857)) (-10 -8 (-15 -2734 ((-684 $) (-489) (-947)))))
+((-2909 (((-836 (-544))) 12)) (-2908 (((-836 (-544))) 14)) (-2893 (((-826 (-544))) 9)))
+(((-532) (-10 -7 (-15 -2893 ((-826 (-544)))) (-15 -2909 ((-836 (-544)))) (-15 -2908 ((-836 (-544)))))) (T -532))
+((-2908 (*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532)))) (-2909 (*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532)))) (-2893 (*1 *2) (-12 (-5 *2 (-826 (-544))) (-5 *1 (-532)))))
+(-10 -7 (-15 -2893 ((-826 (-544)))) (-15 -2909 ((-836 (-544)))) (-15 -2908 ((-836 (-544)))))
+((-2947 (((-112) $ $) NIL)) (-2176 (((-1148) $) 47)) (-3661 (((-112) $) 43)) (-3657 (((-1166) $) 44)) (-3662 (((-112) $) 41)) (-3942 (((-1148) $) 42)) (-2175 (($ (-1148)) 48)) (-3664 (((-112) $) NIL)) (-3666 (((-112) $) NIL)) (-3663 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-2178 (($ $ (-635 (-1166))) 20)) (-2181 (((-51) $) 22)) (-3660 (((-112) $) NIL)) (-3656 (((-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-2518 (($ $ (-635 (-1166)) (-1166)) 60)) (-3659 (((-112) $) NIL)) (-3655 (((-224) $) NIL)) (-2177 (($ $) 38)) (-3654 (((-857) $) NIL)) (-3667 (((-112) $ $) NIL)) (-4206 (($ $ (-544)) NIL) (($ $ (-635 (-544))) NIL)) (-3658 (((-635 $) $) 28)) (-2174 (((-1166) (-635 $)) 49)) (-4377 (($ (-1148)) NIL) (($ (-1166)) 18) (($ (-544)) 8) (($ (-224)) 25) (($ (-857)) NIL) (($ (-635 $)) 56) (((-1093) $) 11) (($ (-1093)) 12)) (-2173 (((-1166) (-1166) (-635 $)) 52)) (-4353 (((-857) $) 46)) (-3652 (($ $) 51)) (-3653 (($ $) 50)) (-2179 (($ $ (-635 $)) 57)) (-3665 (((-112) $) 27)) (-3040 (($) 9 T CONST)) (-3046 (($) 10 T CONST)) (-3437 (((-112) $ $) 61)) (-4356 (($ $ $) 66)) (-4246 (($ $ $) 62)) (** (($ $ (-765)) 65) (($ $ (-544)) 64)) (* (($ $ $) 63)) (-4364 (((-544) $) NIL)))
+(((-533) (-13 (-1094 (-1148) (-1166) (-544) (-224) (-857)) (-609 (-1093)) (-10 -8 (-15 -2181 ((-51) $)) (-15 -4377 ($ (-1093))) (-15 -2179 ($ $ (-635 $))) (-15 -2518 ($ $ (-635 (-1166)) (-1166))) (-15 -2178 ($ $ (-635 (-1166)))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-544))) (-15 0 ($) -4359) (-15 1 ($) -4359) (-15 -2177 ($ $)) (-15 -2176 ((-1148) $)) (-15 -2175 ($ (-1148))) (-15 -2174 ((-1166) (-635 $))) (-15 -2173 ((-1166) (-1166) (-635 $)))))) (T -533))
+((-2181 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-533)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-533)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-533))) (-5 *1 (-533)))) (-2518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1166)) (-5 *1 (-533)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-533)))) (-4246 (*1 *1 *1 *1) (-5 *1 (-533))) (* (*1 *1 *1 *1) (-5 *1 (-533))) (-4356 (*1 *1 *1 *1) (-5 *1 (-533))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-533)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-533)))) (-3040 (*1 *1) (-5 *1 (-533))) (-3046 (*1 *1) (-5 *1 (-533))) (-2177 (*1 *1 *1) (-5 *1 (-533))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-533)))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-533)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-635 (-533))) (-5 *2 (-1166)) (-5 *1 (-533)))) (-2173 (*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-533))) (-5 *1 (-533)))))
+(-13 (-1094 (-1148) (-1166) (-544) (-224) (-857)) (-609 (-1093)) (-10 -8 (-15 -2181 ((-51) $)) (-15 -4377 ($ (-1093))) (-15 -2179 ($ $ (-635 $))) (-15 -2518 ($ $ (-635 (-1166)) (-1166))) (-15 -2178 ($ $ (-635 (-1166)))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-544))) (-15 (-3040) ($) -4359) (-15 (-3046) ($) -4359) (-15 -2177 ($ $)) (-15 -2176 ((-1148) $)) (-15 -2175 ($ (-1148))) (-15 -2174 ((-1166) (-635 $))) (-15 -2173 ((-1166) (-1166) (-635 $)))))
+((-2180 (((-533) (-1166)) 15)) (-2181 ((|#1| (-533)) 20)))
+(((-534 |#1|) (-10 -7 (-15 -2180 ((-533) (-1166))) (-15 -2181 (|#1| (-533)))) (-1204)) (T -534))
+((-2181 (*1 *2 *3) (-12 (-5 *3 (-533)) (-5 *1 (-534 *2)) (-4 *2 (-1204)))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-533)) (-5 *1 (-534 *4)) (-4 *4 (-1204)))))
+(-10 -7 (-15 -2180 ((-533) (-1166))) (-15 -2181 (|#1| (-533))))
+((-3852 ((|#2| |#2|) 17)) (-3850 ((|#2| |#2|) 13)) (-3853 ((|#2| |#2| (-544) (-544)) 20)) (-3851 ((|#2| |#2|) 15)))
+(((-535 |#1| |#2|) (-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544)))) (-13 (-554) (-146)) (-1246 |#1|)) (T -535))
+((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-535 *4 *2)) (-4 *2 (-1246 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))))
+(-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544))))
+((-2184 (((-635 (-292 (-939 |#2|))) (-635 |#2|) (-635 (-1166))) 32)) (-2182 (((-635 |#2|) (-939 |#1|) |#3|) 53) (((-635 |#2|) (-1160 |#1|) |#3|) 52)) (-2183 (((-635 (-635 |#2|)) (-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)) |#3|) 88)))
+(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2182 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2182 ((-635 |#2|) (-939 |#1|) |#3|)) (-15 -2183 ((-635 (-635 |#2|)) (-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)) |#3|)) (-15 -2184 ((-635 (-292 (-939 |#2|))) (-635 |#2|) (-635 (-1166))))) (-450) (-362) (-13 (-362) (-842))) (T -536))
+((-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1166))) (-4 *6 (-362)) (-5 *2 (-635 (-292 (-939 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-13 (-362) (-842))))) (-2183 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-842))))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-939 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2182 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2182 ((-635 |#2|) (-939 |#1|) |#3|)) (-15 -2183 ((-635 (-635 |#2|)) (-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)) |#3|)) (-15 -2184 ((-635 (-292 (-939 |#2|))) (-635 |#2|) (-635 (-1166)))))
+((-2187 ((|#2| |#2| |#1|) 17)) (-2185 ((|#2| (-635 |#2|)) 26)) (-2186 ((|#2| (-635 |#2|)) 45)))
+(((-537 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2185 (|#2| (-635 |#2|))) (-15 -2186 (|#2| (-635 |#2|))) (-15 -2187 (|#2| |#2| |#1|))) (-306) (-1229 |#1|) |#1| (-1 |#1| |#1| (-765))) (T -537))
+((-2187 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765))) (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1229 *3)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
+(-10 -7 (-15 -2185 (|#2| (-635 |#2|))) (-15 -2186 (|#2| (-635 |#2|))) (-15 -2187 (|#2| |#2| |#1|)))
+((-4139 (((-404 (-1160 |#4|)) (-1160 |#4|) (-1 (-404 (-1160 |#3|)) (-1160 |#3|))) 79) (((-404 |#4|) |#4| (-1 (-404 (-1160 |#3|)) (-1160 |#3|))) 167)))
+(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 (-1160 |#3|)) (-1160 |#3|)))) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|) (-1 (-404 (-1160 |#3|)) (-1160 |#3|))))) (-844) (-787) (-13 (-306) (-146)) (-943 |#3| |#2| |#1|)) (T -538))
+((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-943 *7 *6 *5)) (-5 *2 (-404 (-1160 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1160 *8)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3)) (-5 *1 (-538 *5 *6 *7 *3)) (-4 *3 (-943 *7 *6 *5)))))
+(-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 (-1160 |#3|)) (-1160 |#3|)))) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|) (-1 (-404 (-1160 |#3|)) (-1160 |#3|)))))
+((-3852 ((|#4| |#4|) 73)) (-3850 ((|#4| |#4|) 69)) (-3853 ((|#4| |#4| (-544) (-544)) 75)) (-3851 ((|#4| |#4|) 71)))
+(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3850 (|#4| |#4|)) (-15 -3851 (|#4| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -3853 (|#4| |#4| (-544) (-544)))) (-13 (-362) (-367) (-609 (-544))) (-1229 |#1|) (-718 |#1| |#2|) (-1246 |#3|)) (T -539))
+((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-4 *5 (-1229 *4)) (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1246 *6)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))))
+(-10 -7 (-15 -3850 (|#4| |#4|)) (-15 -3851 (|#4| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -3853 (|#4| |#4| (-544) (-544))))
+((-3852 ((|#2| |#2|) 27)) (-3850 ((|#2| |#2|) 23)) (-3853 ((|#2| |#2| (-544) (-544)) 29)) (-3851 ((|#2| |#2|) 25)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544)))) (-13 (-362) (-367) (-609 (-544))) (-1246 |#1|)) (T -540))
+((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1246 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1246 *3)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1246 *3)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1246 *3)))))
+(-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544))))
+((-2188 (((-3 (-544) #1="failed") |#2| |#1| (-1 (-3 (-544) #1#) |#1|)) 14) (((-3 (-544) #1#) |#2| |#1| (-544) (-1 (-3 (-544) #1#) |#1|)) 13) (((-3 (-544) #1#) |#2| (-544) (-1 (-3 (-544) #1#) |#1|)) 26)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -2188 ((-3 (-544) #1="failed") |#2| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-1 (-3 (-544) #1#) |#1|)))) (-1042) (-1229 |#1|)) (T -541))
+((-2188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-544) #1="failed") *4)) (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))) (-2188 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-544) #1#) *4)) (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))) (-2188 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-544) #1#) *5)) (-4 *5 (-1042)) (-5 *2 (-544)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -2188 ((-3 (-544) #1="failed") |#2| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-1 (-3 (-544) #1#) |#1|))))
+((-2197 (($ $ $) 78)) (-4376 (((-404 $) $) 46)) (-3558 (((-3 (-544) "failed") $) 58)) (-3557 (((-544) $) 36)) (-3407 (((-3 (-406 (-544)) "failed") $) 73)) (-3406 (((-112) $) 23)) (-3405 (((-406 (-544)) $) 71)) (-4130 (((-112) $) 49)) (-2190 (($ $ $ $) 85)) (-3587 (((-112) $) 15)) (-1440 (($ $ $) 56)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 68)) (-3848 (((-3 $ "failed") $) 63)) (-2194 (($ $) 22)) (-2189 (($ $ $) 83)) (-3849 (($) 59)) (-1438 (($ $) 52)) (-4139 (((-404 $) $) 44)) (-3056 (((-112) $) 13)) (-1732 (((-765) $) 27)) (-4217 (($ $ (-765)) NIL) (($ $) 10)) (-3804 (($ $) 16)) (-4377 (((-544) $) NIL) (((-533) $) 35) (((-883 (-544)) $) 39) (((-377) $) 30) (((-224) $) 32)) (-3511 (((-765)) 8)) (-2199 (((-112) $ $) 19)) (-3487 (($ $ $) 54)))
+(((-542 |#1|) (-10 -8 (-15 -2189 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1| |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3558 ((-3 (-544) "failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4377 ((-544) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3587 ((-112) |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -3511 ((-765)))) (-543)) (T -542))
+((-3511 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543)))))
+(-10 -8 (-15 -2189 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1| |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3558 ((-3 (-544) "failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4377 ((-544) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3587 ((-112) |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -3511 ((-765))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-2197 (($ $ $) 85)) (-1391 (((-3 $ "failed") $ $) 19)) (-2192 (($ $ $ $) 74)) (-4181 (($ $) 52)) (-4376 (((-404 $) $) 53)) (-1733 (((-112) $ $) 125)) (-4030 (((-544) $) 114)) (-2735 (($ $ $) 88)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) "failed") $) 106)) (-3557 (((-544) $) 107)) (-2943 (($ $ $) 129)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 104) (((-682 (-544)) (-682 $)) 103)) (-3866 (((-3 $ "failed") $) 33)) (-3407 (((-3 (-406 (-544)) "failed") $) 82)) (-3406 (((-112) $) 84)) (-3405 (((-406 (-544)) $) 83)) (-3377 (($) 81) (($ $) 80)) (-2942 (($ $ $) 128)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 123)) (-4130 (((-112) $) 54)) (-2190 (($ $ $ $) 72)) (-2198 (($ $ $) 86)) (-3587 (((-112) $) 116)) (-1440 (($ $ $) 97)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 100)) (-2545 (((-112) $) 31)) (-3055 (((-112) $) 92)) (-3848 (((-3 $ "failed") $) 94)) (-3588 (((-112) $) 115)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 132)) (-2191 (($ $ $ $) 73)) (-2913 (($ $ $) 117)) (-3242 (($ $ $) 118)) (-2194 (($ $) 76)) (-4240 (($ $) 89)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2189 (($ $ $) 71)) (-3849 (($) 93 T CONST)) (-2196 (($ $) 78)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1438 (($ $) 98)) (-4139 (((-404 $) $) 51)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 130)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 124)) (-3056 (((-112) $) 91)) (-1732 (((-765) $) 126)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 127)) (-4217 (($ $ (-765)) 111) (($ $) 109)) (-2195 (($ $) 77)) (-3804 (($ $) 79)) (-4377 (((-544) $) 108) (((-533) $) 102) (((-883 (-544)) $) 101) (((-377) $) 96) (((-224) $) 95)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-544)) 105)) (-3511 (((-765)) 28)) (-2199 (((-112) $ $) 87)) (-3487 (($ $ $) 99)) (-3076 (($) 90)) (-2212 (((-112) $ $) 40)) (-2193 (($ $ $ $) 75)) (-3787 (($ $) 113)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-765)) 112) (($ $) 110)) (-2945 (((-112) $ $) 120)) (-2946 (((-112) $ $) 121)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 119)) (-3067 (((-112) $ $) 122)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-543) (-139)) (T -543))
-((-2110 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-1423 (*1 *1) (-4 *1 (-543))) (-4310 (*1 *1 *1) (-4 *1 (-543))) (-3410 (*1 *1 *1 *1) (-4 *1 (-543))) (-3514 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-1571 (*1 *1 *1 *1) (-4 *1 (-543))) (-3680 (*1 *1 *1 *1) (-4 *1 (-543))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-561))))) (-3063 (*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-561))))) (-1362 (*1 *1) (-4 *1 (-543))) (-1362 (*1 *1 *1) (-4 *1 (-543))) (-4225 (*1 *1 *1) (-4 *1 (-543))) (-4147 (*1 *1 *1) (-4 *1 (-543))) (-4076 (*1 *1 *1) (-4 *1 (-543))) (-3953 (*1 *1 *1) (-4 *1 (-543))) (-4049 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1988 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2595 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-3473 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-3986 (*1 *1 *1 *1) (-4 *1 (-543))))
-(-13 (-1209) (-306) (-814) (-232) (-609 (-561)) (-1031 (-561)) (-634 (-561)) (-609 (-534)) (-609 (-885 (-561))) (-879 (-561)) (-142) (-1015) (-146) (-1141) (-10 -8 (-15 -2110 ((-112) $)) (-15 -2058 ((-112) $)) (-6 -4398) (-15 -1423 ($)) (-15 -4310 ($ $)) (-15 -3410 ($ $ $)) (-15 -3514 ((-112) $ $)) (-15 -1571 ($ $ $)) (-15 -3680 ($ $ $)) (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $)) (-15 -1362 ($)) (-15 -1362 ($ $)) (-15 -4225 ($ $)) (-15 -4147 ($ $)) (-15 -4076 ($ $)) (-15 -3953 ($ $)) (-15 -4049 ($ $ $ $)) (-15 -1988 ($ $ $ $)) (-15 -2595 ($ $ $ $)) (-15 -3473 ($ $ $ $)) (-15 -3986 ($ $ $)) (-6 -4397)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-142) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-378)) . T) ((-609 (-534)) . T) ((-609 (-561)) . T) ((-609 (-885 (-561))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-634 (-561)) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-814) . T) ((-842) . T) ((-844) . T) ((-879 (-561)) . T) ((-913) . T) ((-1015) . T) ((-1031 (-561)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) . T) ((-1209) . T))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
-(((-544) (-838)) (T -544))
-NIL
-(-838)
-((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+((-3055 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3076 (*1 *1) (-4 *1 (-543))) (-4240 (*1 *1 *1) (-4 *1 (-543))) (-2735 (*1 *1 *1 *1) (-4 *1 (-543))) (-2199 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2198 (*1 *1 *1 *1) (-4 *1 (-543))) (-2197 (*1 *1 *1 *1) (-4 *1 (-543))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-544))))) (-3377 (*1 *1) (-4 *1 (-543))) (-3377 (*1 *1 *1) (-4 *1 (-543))) (-3804 (*1 *1 *1) (-4 *1 (-543))) (-2196 (*1 *1 *1) (-4 *1 (-543))) (-2195 (*1 *1 *1) (-4 *1 (-543))) (-2194 (*1 *1 *1) (-4 *1 (-543))) (-2193 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2192 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2191 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2190 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2189 (*1 *1 *1 *1) (-4 *1 (-543))))
+(-13 (-1209) (-306) (-814) (-232) (-609 (-544)) (-1031 (-544)) (-634 (-544)) (-609 (-533)) (-609 (-883 (-544))) (-879 (-544)) (-142) (-1013) (-146) (-1141) (-10 -8 (-15 -3055 ((-112) $)) (-15 -3056 ((-112) $)) (-6 -4399) (-15 -3076 ($)) (-15 -4240 ($ $)) (-15 -2735 ($ $ $)) (-15 -2199 ((-112) $ $)) (-15 -2198 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $)) (-15 -3377 ($)) (-15 -3377 ($ $)) (-15 -3804 ($ $)) (-15 -2196 ($ $)) (-15 -2195 ($ $)) (-15 -2194 ($ $)) (-15 -2193 ($ $ $ $)) (-15 -2192 ($ $ $ $)) (-15 -2191 ($ $ $ $)) (-15 -2190 ($ $ $ $)) (-15 -2189 ($ $ $)) (-6 -4398)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-142) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-377)) . T) ((-609 (-533)) . T) ((-609 (-544)) . T) ((-609 (-883 (-544))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-634 (-544)) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-814) . T) ((-842) . T) ((-844) . T) ((-879 (-544)) . T) ((-914) . T) ((-1013) . T) ((-1031 (-544)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) . T) ((-1209) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 25)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 88)) (-2213 (($ $) 89)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) 43)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) 82)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) NIL)) (-3557 (((-544) $) NIL)) (-2943 (($ $ $) 81)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 62) (((-682 (-544)) (-682 $)) 58)) (-3866 (((-3 $ "failed") $) 85)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($) 64) (($ $) 65)) (-2942 (($ $ $) 80)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) 55)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) 26)) (-3055 (((-112) $) 75)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) 35)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) 44)) (-2913 (($ $ $) 77)) (-3242 (($ $ $) 76)) (-2194 (($ $) NIL)) (-4240 (($ $) 41)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) 54)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2196 (($ $) 31)) (-3644 (((-1110) $) 34)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 119)) (-3545 (($ $ $) 86) (($ (-635 $)) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) 105)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) 84)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 79)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-2195 (($ $) 32)) (-3804 (($ $) 30)) (-4377 (((-544) $) 40) (((-533) $) 52) (((-883 (-544)) $) NIL) (((-377) $) 47) (((-224) $) 49) (((-1148) $) 53)) (-4353 (((-857) $) 38) (($ (-544)) 39) (($ $) NIL) (($ (-544)) 39)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) 29)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) 42)) (-3787 (($ $) 63)) (-3040 (($) 27 T CONST)) (-3046 (($) 28 T CONST)) (-2879 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1259) (-817) $) 23) (((-1259) (-817) $ (-112)) 24)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 66)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 67)) (-4244 (($ $) 68) (($ $ $) 70)) (-4246 (($ $ $) 69)) (** (($ $ (-912)) NIL) (($ $ (-765)) 74)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 72) (($ $ $) 71)))
+(((-544) (-13 (-543) (-609 (-1148)) (-815) (-10 -8 (-15 -3377 ($ $)) (-6 -4387) (-6 -4392) (-6 -4388) (-6 -4382)))) (T -544))
+((-3377 (*1 *1 *1) (-5 *1 (-544))))
+(-13 (-543) (-609 (-1148)) (-815) (-10 -8 (-15 -3377 ($ $)) (-6 -4387) (-6 -4392) (-6 -4388) (-6 -4382)))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
(((-545) (-838)) (T -545))
NIL
(-838)
-((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
(((-546) (-838)) (T -546))
NIL
(-838)
-((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1846 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) NIL)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) NIL)) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 ((|#1| $) NIL (|has| |#1| (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 ((|#1| $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2066 (((-638 |#1|) $) NIL)) (-2492 (((-112) |#1| $) NIL)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2355 (((-638 |#1|) $) NIL)) (-1558 (((-112) |#1| $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#2| $) NIL (|has| |#1| (-844)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-547 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399))) (-1090) (-1090) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399)))) (T -547))
-NIL
-(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399)))
-((-2880 (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1162 |#2|) (-1162 |#2|))) 51)))
-(((-548 |#1| |#2|) (-10 -7 (-15 -2880 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1162 |#2|) (-1162 |#2|))))) (-13 (-844) (-553)) (-13 (-27) (-429 |#1|))) (T -548))
-((-2880 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1 (-1162 *3) (-1162 *3))) (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-844) (-553))) (-5 *2 (-582 *3)) (-5 *1 (-548 *6 *3)))))
-(-10 -7 (-15 -2880 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1162 |#2|) (-1162 |#2|)))))
-((-3577 (((-582 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-2195 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-1813 (((-582 |#5|) |#5| (-1 |#3| |#3|)) 201)))
-(((-549 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1813 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3577 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2195 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-844) (-553) (-1031 (-561))) (-13 (-27) (-429 |#1|)) (-1230 |#2|) (-1230 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -549))
-((-2195 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-27) (-429 *4))) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-4 *7 (-1230 (-406 *6))) (-5 *1 (-549 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1230 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1230 (-406 *7))) (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1230 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1230 (-406 *7))) (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))))
-(-10 -7 (-15 -1813 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3577 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2195 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2900 (((-112) (-561) (-561)) 10)) (-3075 (((-561) (-561)) 7)) (-3186 (((-561) (-561) (-561)) 8)))
-(((-550) (-10 -7 (-15 -3075 ((-561) (-561))) (-15 -3186 ((-561) (-561) (-561))) (-15 -2900 ((-112) (-561) (-561))))) (T -550))
-((-2900 (*1 *2 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-550)))) (-3186 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))) (-3075 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))))
-(-10 -7 (-15 -3075 ((-561) (-561))) (-15 -3186 ((-561) (-561) (-561))) (-15 -2900 ((-112) (-561) (-561))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3739 ((|#1| $) 62)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-3014 (($ $) 92)) (-4106 (($ $) 75)) (-1403 ((|#1| $) 63)) (-2979 (((-3 $ "failed") $ $) 19)) (-1643 (($ $) 74)) (-4213 (($ $) 91)) (-4085 (($ $) 76)) (-3039 (($ $) 90)) (-4130 (($ $) 77)) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 70)) (-3979 (((-561) $) 71)) (-3735 (((-3 $ "failed") $) 33)) (-4041 (($ |#1| |#1|) 67)) (-1784 (((-112) $) 61)) (-4111 (($) 102)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 73)) (-3271 (((-112) $) 60)) (-1597 (($ $ $) 108)) (-3017 (($ $ $) 107)) (-4364 (($ $) 99)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1948 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-561))) 65)) (-3815 ((|#1| $) 64)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1748 (((-3 $ "failed") $ $) 43)) (-3486 (($ $) 100)) (-3052 (($ $) 89)) (-4140 (($ $) 78)) (-3026 (($ $) 88)) (-4118 (($ $) 79)) (-3002 (($ $) 87)) (-4097 (($ $) 80)) (-3071 (((-112) $ |#1|) 59)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-561)) 69)) (-3746 (((-765)) 28)) (-3086 (($ $) 98)) (-4175 (($ $) 86)) (-3996 (((-112) $ $) 40)) (-3064 (($ $) 97)) (-4150 (($ $) 85)) (-3113 (($ $) 96)) (-4192 (($ $) 84)) (-2821 (($ $) 95)) (-4202 (($ $) 83)) (-3099 (($ $) 94)) (-4184 (($ $) 82)) (-3076 (($ $) 93)) (-4162 (($ $) 81)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1781 (((-112) $ $) 105)) (-1758 (((-112) $ $) 104)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 106)) (-1746 (((-112) $ $) 103)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ $) 101) (($ $ (-406 (-561))) 72)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
-(((-551 |#1|) (-139) (-13 (-403) (-1190))) (T -551))
-((-1948 (*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-4041 (*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-1948 (*1 *1 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-1948 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-3071 (*1 *2 *1 *3) (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))))
-(-13 (-450) (-844) (-1190) (-995) (-1031 (-561)) (-10 -8 (-6 -1408) (-15 -1948 ($ |t#1| |t#1|)) (-15 -4041 ($ |t#1| |t#1|)) (-15 -1948 ($ |t#1|)) (-15 -1948 ($ (-406 (-561)))) (-15 -3815 (|t#1| $)) (-15 -1403 (|t#1| $)) (-15 -3739 (|t#1| $)) (-15 -1784 ((-112) $)) (-15 -3271 ((-112) $)) (-15 -3071 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-450) . T) ((-491) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-995) . T) ((-1031 (-561)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) . T) ((-1193) . T))
-((-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 9)) (-3012 (($ $) 11)) (-3163 (((-112) $) 18)) (-3735 (((-3 $ "failed") $) 16)) (-3996 (((-112) $ $) 20)))
-(((-552 |#1|) (-10 -8 (-15 -3163 ((-112) |#1|)) (-15 -3996 ((-112) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -1844 ((-2 (|:| -2385 |#1|) (|:| -4386 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|))) (-553)) (T -552))
-NIL
-(-10 -8 (-15 -3163 ((-112) |#1|)) (-15 -3996 ((-112) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -1844 ((-2 (|:| -2385 |#1|) (|:| -4386 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ $) 43)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
-(((-553) (-139)) (T -553))
-((-1748 (*1 *1 *1 *1) (|partial| -4 *1 (-553))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2385 *1) (|:| -4386 *1) (|:| |associate| *1))) (-4 *1 (-553)))) (-3012 (*1 *1 *1) (-4 *1 (-553))) (-3996 (*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
-(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -1748 ((-3 $ "failed") $ $)) (-15 -1844 ((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $)) (-15 -3012 ($ $)) (-15 -3996 ((-112) $ $)) (-15 -3163 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3216 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-638 |#2|)) 37)) (-3505 (((-582 |#2|) |#2| (-1166)) 62)) (-1699 (((-3 |#2| "failed") |#2| (-1166)) 151)) (-1324 (((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) (-607 |#2|) (-638 (-607 |#2|))) 154)) (-2626 (((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) |#2|) 40)))
-(((-554 |#1| |#2|) (-10 -7 (-15 -2626 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) |#2|)) (-15 -3216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-638 |#2|))) (-15 -1699 ((-3 |#2| "failed") |#2| (-1166))) (-15 -3505 ((-582 |#2|) |#2| (-1166))) (-15 -1324 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) (-607 |#2|) (-638 (-607 |#2|))))) (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -554))
-((-1324 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-638 (-607 *3))) (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3))) (-5 *1 (-554 *7 *3)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-554 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1699 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-554 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-3216 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3)))) (-2626 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
-(-10 -7 (-15 -2626 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) |#2|)) (-15 -3216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-638 |#2|))) (-15 -1699 ((-3 |#2| "failed") |#2| (-1166))) (-15 -3505 ((-582 |#2|) |#2| (-1166))) (-15 -1324 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) (-607 |#2|) (-638 (-607 |#2|)))))
-((-3552 (((-417 |#1|) |#1|) 18)) (-1633 (((-417 |#1|) |#1|) 33)) (-3353 (((-3 |#1| "failed") |#1|) 44)) (-1394 (((-417 |#1|) |#1|) 51)))
-(((-555 |#1|) (-10 -7 (-15 -1633 ((-417 |#1|) |#1|)) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -1394 ((-417 |#1|) |#1|)) (-15 -3353 ((-3 |#1| "failed") |#1|))) (-543)) (T -555))
-((-3353 (*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-543)))) (-1394 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))) (-3552 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))))
-(-10 -7 (-15 -1633 ((-417 |#1|) |#1|)) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -1394 ((-417 |#1|) |#1|)) (-15 -3353 ((-3 |#1| "failed") |#1|)))
-((-1836 (($) 9)) (-1706 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-2066 (((-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-1617 (($ (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1459 (($ (-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2677 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2411 (((-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1739 (((-1259)) 12)))
-(((-556) (-10 -8 (-15 -1836 ($)) (-15 -1739 ((-1259))) (-15 -2066 ((-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1459 ($ (-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1617 ($ (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1706 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2411 ((-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2677 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -556))
-((-2677 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-556)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-556)))) (-1706 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-556)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-556)))) (-1459 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-556)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-556)))) (-1739 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-556)))) (-1836 (*1 *1) (-5 *1 (-556))))
-(-10 -8 (-15 -1836 ($)) (-15 -1739 ((-1259))) (-15 -2066 ((-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1459 ($ (-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1617 ($ (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1706 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2411 ((-638 (-2 (|:| -2285 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2677 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2185 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-1596 (((-1162 (-406 (-1162 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1162 |#2|)) 32)) (-4223 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) |#2| (-1162 |#2|)) 110)) (-3875 (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 80) (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|)) 52)) (-2779 (((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-406 (-1162 |#2|))) 87) (((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1162 |#2|)) 109)) (-2316 (((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) |#2| (-1162 |#2|)) 111)) (-3578 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 128 (|has| |#3| (-649 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|)) 127 (|has| |#3| (-649 |#2|)))) (-1393 ((|#2| (-1162 (-406 (-1162 |#2|))) (-607 |#2|) |#2|) 50)) (-3354 (((-1162 (-406 (-1162 |#2|))) (-1162 |#2|) (-607 |#2|)) 31)))
-(((-557 |#1| |#2| |#3|) (-10 -7 (-15 -3875 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -3875 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -2779 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1162 |#2|))) (-15 -2779 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -4223 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) |#2| (-1162 |#2|))) (-15 -4223 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -2316 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) |#2| (-1162 |#2|))) (-15 -2316 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -1596 ((-1162 (-406 (-1162 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1162 |#2|))) (-15 -1393 (|#2| (-1162 (-406 (-1162 |#2|))) (-607 |#2|) |#2|)) (-15 -3354 ((-1162 (-406 (-1162 |#2|))) (-1162 |#2|) (-607 |#2|))) (IF (|has| |#3| (-649 |#2|)) (PROGN (-15 -3578 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -3578 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))))) |%noBranch|)) (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))) (-13 (-429 |#1|) (-27) (-1190)) (-1090)) (T -557))
-((-3578 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-406 (-1162 *4))) (-4 *4 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))) (-3578 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1162 *4)) (-4 *4 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-1162 (-406 (-1162 *6)))) (-5 *1 (-557 *5 *6 *7)) (-5 *3 (-1162 *6)) (-4 *7 (-1090)))) (-1393 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1162 (-406 (-1162 *2)))) (-5 *4 (-607 *2)) (-4 *2 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-557 *5 *2 *6)) (-4 *6 (-1090)))) (-1596 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-1162 (-406 (-1162 *3)))) (-5 *1 (-557 *6 *3 *7)) (-5 *5 (-1162 *3)) (-4 *7 (-1090)))) (-2316 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-5 *5 (-406 (-1162 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090)))) (-2316 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-5 *5 (-1162 *2)) (-4 *2 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090)))) (-4223 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-5 *6 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090)))) (-4223 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-5 *6 (-1162 *3)) (-4 *3 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090)))) (-2779 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3))) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))) (-2779 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3))) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))) (-3875 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))) (-3875 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))))
-(-10 -7 (-15 -3875 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -3875 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -2779 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1162 |#2|))) (-15 -2779 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -4223 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) |#2| (-1162 |#2|))) (-15 -4223 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -2316 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) |#2| (-1162 |#2|))) (-15 -2316 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -1596 ((-1162 (-406 (-1162 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1162 |#2|))) (-15 -1393 (|#2| (-1162 (-406 (-1162 |#2|))) (-607 |#2|) |#2|)) (-15 -3354 ((-1162 (-406 (-1162 |#2|))) (-1162 |#2|) (-607 |#2|))) (IF (|has| |#3| (-649 |#2|)) (PROGN (-15 -3578 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -3578 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))))) |%noBranch|))
-((-4355 (((-561) (-561) (-765)) 66)) (-1799 (((-561) (-561)) 65)) (-1916 (((-561) (-561)) 64)) (-2858 (((-561) (-561)) 69)) (-3373 (((-561) (-561) (-561)) 49)) (-1612 (((-561) (-561) (-561)) 46)) (-1538 (((-406 (-561)) (-561)) 20)) (-2045 (((-561) (-561)) 21)) (-3829 (((-561) (-561)) 58)) (-1925 (((-561) (-561)) 32)) (-3442 (((-638 (-561)) (-561)) 63)) (-2030 (((-561) (-561) (-561) (-561) (-561)) 44)) (-3729 (((-406 (-561)) (-561)) 41)))
-(((-558) (-10 -7 (-15 -3729 ((-406 (-561)) (-561))) (-15 -2030 ((-561) (-561) (-561) (-561) (-561))) (-15 -3442 ((-638 (-561)) (-561))) (-15 -1925 ((-561) (-561))) (-15 -3829 ((-561) (-561))) (-15 -2045 ((-561) (-561))) (-15 -1538 ((-406 (-561)) (-561))) (-15 -1612 ((-561) (-561) (-561))) (-15 -3373 ((-561) (-561) (-561))) (-15 -2858 ((-561) (-561))) (-15 -1916 ((-561) (-561))) (-15 -1799 ((-561) (-561))) (-15 -4355 ((-561) (-561) (-765))))) (T -558))
-((-4355 (*1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-765)) (-5 *1 (-558)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-1916 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-2858 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-3373 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-1612 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-1538 (*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))) (-2030 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))))
-(-10 -7 (-15 -3729 ((-406 (-561)) (-561))) (-15 -2030 ((-561) (-561) (-561) (-561) (-561))) (-15 -3442 ((-638 (-561)) (-561))) (-15 -1925 ((-561) (-561))) (-15 -3829 ((-561) (-561))) (-15 -2045 ((-561) (-561))) (-15 -1538 ((-406 (-561)) (-561))) (-15 -1612 ((-561) (-561) (-561))) (-15 -3373 ((-561) (-561) (-561))) (-15 -2858 ((-561) (-561))) (-15 -1916 ((-561) (-561))) (-15 -1799 ((-561) (-561))) (-15 -4355 ((-561) (-561) (-765))))
-((-3965 (((-2 (|:| |answer| |#4|) (|:| -3626 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-559 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3965 ((-2 (|:| |answer| |#4|) (|:| -3626 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -559))
-((-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362)) (-4 *7 (-1230 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3626 *3))) (-5 *1 (-559 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))))
-(-10 -7 (-15 -3965 ((-2 (|:| |answer| |#4|) (|:| -3626 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3965 (((-2 (|:| |answer| (-406 |#2|)) (|:| -3626 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18)))
-(((-560 |#1| |#2|) (-10 -7 (-15 -3965 ((-2 (|:| |answer| (-406 |#2|)) (|:| -3626 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1230 |#1|)) (T -560))
-((-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -3626 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-560 *5 *6)) (-5 *3 (-406 *6)))))
-(-10 -7 (-15 -3965 ((-2 (|:| |answer| (-406 |#2|)) (|:| -3626 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 25)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 88)) (-3012 (($ $) 89)) (-3163 (((-112) $) NIL)) (-3680 (($ $ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1988 (($ $ $ $) 43)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL)) (-3410 (($ $ $) 82)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL)) (-3979 (((-561) $) NIL)) (-1792 (($ $ $) 81)) (-3720 (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 62) (((-682 (-561)) (-682 $)) 58)) (-3735 (((-3 $ "failed") $) 85)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL)) (-4079 (((-112) $) NIL)) (-2573 (((-406 (-561)) $) NIL)) (-1362 (($) 64) (($ $) 65)) (-1771 (($ $ $) 80)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-3473 (($ $ $ $) NIL)) (-1571 (($ $ $) 55)) (-1784 (((-112) $) NIL)) (-3784 (($ $ $) NIL)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-2252 (((-112) $) 26)) (-2110 (((-112) $) 75)) (-2436 (((-3 $ "failed") $) NIL)) (-3271 (((-112) $) 35)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2595 (($ $ $ $) 44)) (-1597 (($ $ $) 77)) (-3017 (($ $ $) 76)) (-3953 (($ $) NIL)) (-4310 (($ $) 41)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) 54)) (-3986 (($ $ $) NIL)) (-3767 (($) NIL T CONST)) (-4147 (($ $) 31)) (-1701 (((-1110) $) 34)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 119)) (-1603 (($ $ $) 86) (($ (-638 $)) NIL)) (-2084 (($ $) NIL)) (-1633 (((-417 $) $) 105)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL)) (-1748 (((-3 $ "failed") $ $) 84)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2058 (((-112) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 79)) (-3922 (($ $ (-765)) NIL) (($ $) NIL)) (-4076 (($ $) 32)) (-4225 (($ $) 30)) (-4216 (((-561) $) 40) (((-534) $) 52) (((-885 (-561)) $) NIL) (((-378) $) 47) (((-224) $) 49) (((-1148) $) 53)) (-4064 (((-856) $) 38) (($ (-561)) 39) (($ $) NIL) (($ (-561)) 39)) (-3746 (((-765)) NIL)) (-3514 (((-112) $ $) NIL)) (-3210 (($ $ $) NIL)) (-1423 (($) 29)) (-3996 (((-112) $ $) NIL)) (-4049 (($ $ $ $) 42)) (-2165 (($ $) 63)) (-2246 (($) 27 T CONST)) (-2257 (($) 28 T CONST)) (-3785 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1259) (-816) $) 23) (((-1259) (-816) $ (-112)) 24)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 66)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 67)) (-1819 (($ $) 68) (($ $ $) 70)) (-1810 (($ $ $) 69)) (** (($ $ (-914)) NIL) (($ $ (-765)) 74)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 72) (($ $ $) 71)))
-(((-561) (-13 (-543) (-609 (-1148)) (-822) (-10 -8 (-15 -1362 ($ $)) (-6 -4386) (-6 -4391) (-6 -4387) (-6 -4381)))) (T -561))
-((-1362 (*1 *1 *1) (-5 *1 (-561))))
-(-13 (-543) (-609 (-1148)) (-822) (-10 -8 (-15 -1362 ($ $)) (-6 -4386) (-6 -4391) (-6 -4387) (-6 -4381)))
-((-2008 (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763) (-1054)) 108) (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763)) 110)) (-2563 (((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1166)) 172) (((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1148)) 171) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378) (-1054)) 176) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378)) 177) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378)) 178) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378))))) 179) (((-1028) (-315 (-378)) (-1084 (-837 (-378)))) 167) (((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378)) 166) (((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378)) 162) (((-1028) (-763)) 155) (((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378) (-1054)) 161)))
-(((-562) (-10 -7 (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378) (-1054))) (-15 -2563 ((-1028) (-763))) (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378) (-1054))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -2563 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1148))) (-15 -2563 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1166))))) (T -562))
-((-2563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378)))) (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378)))) (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-2563 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))))
-(-10 -7 (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378) (-1054))) (-15 -2563 ((-1028) (-763))) (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-1084 (-837 (-378))))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378))) (-15 -2563 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378) (-1054))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -2563 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1148))) (-15 -2563 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1166))))
-((-2376 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|)) 183)) (-2542 (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|)) 98)) (-1485 (((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|) 179)) (-3761 (((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166))) 188)) (-3084 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1166)) 196 (|has| |#3| (-649 |#2|)))))
-(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -2542 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|))) (-15 -1485 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|)) (-15 -2376 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|))) (-15 -3761 ((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)))) (IF (|has| |#3| (-649 |#2|)) (-15 -3084 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1166))) |%noBranch|)) (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))) (-13 (-429 |#1|) (-27) (-1190)) (-1090)) (T -563))
-((-3084 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1166)) (-4 *4 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))) (-3761 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-4 *2 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1090)))) (-2376 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1090)))) (-1485 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))) (-2542 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))))
-(-10 -7 (-15 -2542 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|))) (-15 -1485 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|)) (-15 -2376 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|))) (-15 -3761 ((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)))) (IF (|has| |#3| (-649 |#2|)) (-15 -3084 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2615 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1166))) |%noBranch|))
-((-1839 (((-2 (|:| -3322 |#2|) (|:| |nconst| |#2|)) |#2| (-1166)) 63)) (-3166 (((-3 |#2| "failed") |#2| (-1166) (-837 |#2|) (-837 |#2|)) 163 (-12 (|has| |#2| (-1129)) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-879 (-561))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 146 (-12 (|has| |#2| (-624)) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-879 (-561)))))) (-2358 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 147 (-12 (|has| |#2| (-624)) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-879 (-561)))))))
-(((-564 |#1| |#2|) (-10 -7 (-15 -1839 ((-2 (|:| -3322 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (PROGN (IF (|has| |#2| (-624)) (PROGN (-15 -2358 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -3166 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -3166 ((-3 |#2| "failed") |#2| (-1166) (-837 |#2|) (-837 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -564))
-((-3166 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-837 *2)) (-4 *2 (-1129)) (-4 *2 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561))) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *1 (-564 *5 *2)))) (-3166 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561))) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-624)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-2358 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561))) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-624)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *2 (-2 (|:| -3322 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
-(-10 -7 (-15 -1839 ((-2 (|:| -3322 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (PROGN (IF (|has| |#2| (-624)) (PROGN (-15 -2358 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -3166 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -3166 ((-3 |#2| "failed") |#2| (-1166) (-837 |#2|) (-837 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1552 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-638 (-406 |#2|))) 41)) (-2563 (((-582 (-406 |#2|)) (-406 |#2|)) 28)) (-3460 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-1760 (((-3 (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48)))
-(((-565 |#1| |#2|) (-10 -7 (-15 -2563 ((-582 (-406 |#2|)) (-406 |#2|))) (-15 -3460 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -1760 ((-3 (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -1552 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-638 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-561))) (-1230 |#1|)) (T -565))
-((-1552 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-638 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *5 *6)))) (-1760 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| -3413 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))) (-3460 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-13 (-362) (-146) (-1031 (-561)))) (-5 *1 (-565 *3 *4)))) (-2563 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1230 *4)) (-5 *2 (-582 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))))
-(-10 -7 (-15 -2563 ((-582 (-406 |#2|)) (-406 |#2|))) (-15 -3460 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -1760 ((-3 (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -1552 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-638 (-406 |#2|)))))
-((-2842 (((-3 (-561) "failed") |#1|) 14)) (-1765 (((-112) |#1|) 13)) (-1741 (((-561) |#1|) 9)))
-(((-566 |#1|) (-10 -7 (-15 -1741 ((-561) |#1|)) (-15 -1765 ((-112) |#1|)) (-15 -2842 ((-3 (-561) "failed") |#1|))) (-1031 (-561))) (T -566))
-((-2842 (*1 *2 *3) (|partial| -12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-561))))) (-1741 (*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))))
-(-10 -7 (-15 -1741 ((-561) |#1|)) (-15 -1765 ((-112) |#1|)) (-15 -2842 ((-3 (-561) "failed") |#1|)))
-((-1761 (((-3 (-2 (|:| |mainpart| (-406 (-945 |#1|))) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 (-945 |#1|))) (|:| |logand| (-406 (-945 |#1|))))))) "failed") (-406 (-945 |#1|)) (-1166) (-638 (-406 (-945 |#1|)))) 48)) (-2679 (((-582 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-1166)) 28)) (-3866 (((-3 (-406 (-945 |#1|)) "failed") (-406 (-945 |#1|)) (-1166)) 23)) (-4131 (((-3 (-2 (|:| -3413 (-406 (-945 |#1|))) (|:| |coeff| (-406 (-945 |#1|)))) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|))) 35)))
-(((-567 |#1|) (-10 -7 (-15 -2679 ((-582 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -3866 ((-3 (-406 (-945 |#1|)) "failed") (-406 (-945 |#1|)) (-1166))) (-15 -1761 ((-3 (-2 (|:| |mainpart| (-406 (-945 |#1|))) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 (-945 |#1|))) (|:| |logand| (-406 (-945 |#1|))))))) "failed") (-406 (-945 |#1|)) (-1166) (-638 (-406 (-945 |#1|))))) (-15 -4131 ((-3 (-2 (|:| -3413 (-406 (-945 |#1|))) (|:| |coeff| (-406 (-945 |#1|)))) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|))))) (-13 (-553) (-1031 (-561)) (-146))) (T -567))
-((-4131 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-1031 (-561)) (-146))) (-5 *2 (-2 (|:| -3413 (-406 (-945 *5))) (|:| |coeff| (-406 (-945 *5))))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-945 *5))))) (-1761 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 (-406 (-945 *6)))) (-5 *3 (-406 (-945 *6))) (-4 *6 (-13 (-553) (-1031 (-561)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6)))) (-3866 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-1031 (-561)) (-146))) (-5 *1 (-567 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-1031 (-561)) (-146))) (-5 *2 (-582 (-406 (-945 *5)))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-945 *5))))))
-(-10 -7 (-15 -2679 ((-582 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -3866 ((-3 (-406 (-945 |#1|)) "failed") (-406 (-945 |#1|)) (-1166))) (-15 -1761 ((-3 (-2 (|:| |mainpart| (-406 (-945 |#1|))) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 (-945 |#1|))) (|:| |logand| (-406 (-945 |#1|))))))) "failed") (-406 (-945 |#1|)) (-1166) (-638 (-406 (-945 |#1|))))) (-15 -4131 ((-3 (-2 (|:| -3413 (-406 (-945 |#1|))) (|:| |coeff| (-406 (-945 |#1|)))) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)))))
-((-4053 (((-112) $ $) 58)) (-4306 (((-112) $) 36)) (-3739 ((|#1| $) 30)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) 62)) (-3014 (($ $) 122)) (-4106 (($ $) 102)) (-1403 ((|#1| $) 28)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL)) (-4213 (($ $) 124)) (-4085 (($ $) 98)) (-3039 (($ $) 126)) (-4130 (($ $) 106)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) 77)) (-3979 (((-561) $) 79)) (-3735 (((-3 $ "failed") $) 61)) (-4041 (($ |#1| |#1|) 26)) (-1784 (((-112) $) 33)) (-4111 (($) 88)) (-2252 (((-112) $) 43)) (-4343 (($ $ (-561)) NIL)) (-3271 (((-112) $) 34)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4364 (($ $) 90)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1948 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-561))) 76)) (-3815 ((|#1| $) 27)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) 64) (($ (-638 $)) NIL)) (-1748 (((-3 $ "failed") $ $) 63)) (-3486 (($ $) 92)) (-3052 (($ $) 130)) (-4140 (($ $) 104)) (-3026 (($ $) 132)) (-4118 (($ $) 108)) (-3002 (($ $) 128)) (-4097 (($ $) 100)) (-3071 (((-112) $ |#1|) 31)) (-4064 (((-856) $) 84) (($ (-561)) 66) (($ $) NIL) (($ (-561)) 66)) (-3746 (((-765)) 86)) (-3086 (($ $) 144)) (-4175 (($ $) 114)) (-3996 (((-112) $ $) NIL)) (-3064 (($ $) 142)) (-4150 (($ $) 110)) (-3113 (($ $) 140)) (-4192 (($ $) 120)) (-2821 (($ $) 138)) (-4202 (($ $) 118)) (-3099 (($ $) 136)) (-4184 (($ $) 116)) (-3076 (($ $) 134)) (-4162 (($ $) 112)) (-2246 (($) 21 T CONST)) (-2257 (($) 10 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 37)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 35)) (-1819 (($ $) 41) (($ $ $) 42)) (-1810 (($ $ $) 40)) (** (($ $ (-914)) 54) (($ $ (-765)) NIL) (($ $ $) 94) (($ $ (-406 (-561))) 146)) (* (($ (-914) $) 51) (($ (-765) $) NIL) (($ (-561) $) 50) (($ $ $) 48)))
-(((-568 |#1|) (-551 |#1|) (-13 (-403) (-1190))) (T -568))
-NIL
-(-551 |#1|)
-((-1963 (((-3 (-638 (-1162 (-561))) "failed") (-638 (-1162 (-561))) (-1162 (-561))) 24)))
-(((-569) (-10 -7 (-15 -1963 ((-3 (-638 (-1162 (-561))) "failed") (-638 (-1162 (-561))) (-1162 (-561)))))) (T -569))
-((-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 (-561)))) (-5 *3 (-1162 (-561))) (-5 *1 (-569)))))
-(-10 -7 (-15 -1963 ((-3 (-638 (-1162 (-561))) "failed") (-638 (-1162 (-561))) (-1162 (-561)))))
-((-3537 (((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-1166)) 19)) (-2291 (((-638 (-607 |#2|)) (-638 |#2|) (-1166)) 23)) (-2468 (((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-638 (-607 |#2|))) 11)) (-2460 ((|#2| |#2| (-1166)) 53 (|has| |#1| (-553)))) (-2294 ((|#2| |#2| (-1166)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-450))))) (-3553 (((-607 |#2|) (-607 |#2|) (-638 (-607 |#2|)) (-1166)) 25)) (-2704 (((-607 |#2|) (-638 (-607 |#2|))) 24)) (-2304 (((-582 |#2|) |#2| (-1166) (-1 (-582 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-624)) (|has| |#2| (-1031 (-1166))) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-450)) (|has| |#1| (-879 (-561)))))))
-(((-570 |#1| |#2|) (-10 -7 (-15 -3537 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-1166))) (-15 -2704 ((-607 |#2|) (-638 (-607 |#2|)))) (-15 -3553 ((-607 |#2|) (-607 |#2|) (-638 (-607 |#2|)) (-1166))) (-15 -2468 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-638 (-607 |#2|)))) (-15 -2291 ((-638 (-607 |#2|)) (-638 |#2|) (-1166))) (IF (|has| |#1| (-553)) (-15 -2460 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -2294 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (IF (|has| |#2| (-624)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2304 ((-582 |#2|) |#2| (-1166) (-1 (-582 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-844) (-429 |#1|)) (T -570))
-((-2304 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-582 *3) *3 (-1166))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1166))) (-4 *3 (-283)) (-4 *3 (-624)) (-4 *3 (-1031 *4)) (-4 *3 (-429 *7)) (-5 *4 (-1166)) (-4 *7 (-609 (-885 (-561)))) (-4 *7 (-450)) (-4 *7 (-879 (-561))) (-4 *7 (-844)) (-5 *2 (-582 *3)) (-5 *1 (-570 *7 *3)))) (-2294 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-553)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-429 *4)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-1166)) (-4 *6 (-429 *5)) (-4 *5 (-844)) (-5 *2 (-638 (-607 *6))) (-5 *1 (-570 *5 *6)))) (-2468 (*1 *2 *2 *2) (-12 (-5 *2 (-638 (-607 *4))) (-4 *4 (-429 *3)) (-4 *3 (-844)) (-5 *1 (-570 *3 *4)))) (-3553 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-638 (-607 *6))) (-5 *4 (-1166)) (-5 *2 (-607 *6)) (-4 *6 (-429 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-638 (-607 *5))) (-4 *4 (-844)) (-5 *2 (-607 *5)) (-5 *1 (-570 *4 *5)) (-4 *5 (-429 *4)))) (-3537 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-607 *5))) (-5 *3 (-1166)) (-4 *5 (-429 *4)) (-4 *4 (-844)) (-5 *1 (-570 *4 *5)))))
-(-10 -7 (-15 -3537 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-1166))) (-15 -2704 ((-607 |#2|) (-638 (-607 |#2|)))) (-15 -3553 ((-607 |#2|) (-607 |#2|) (-638 (-607 |#2|)) (-1166))) (-15 -2468 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-638 (-607 |#2|)))) (-15 -2291 ((-638 (-607 |#2|)) (-638 |#2|) (-1166))) (IF (|has| |#1| (-553)) (-15 -2460 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -2294 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (IF (|has| |#2| (-624)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2304 ((-582 |#2|) |#2| (-1166) (-1 (-582 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2665 (((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-638 |#1|) "failed") (-561) |#1| |#1|)) 172)) (-4071 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-638 (-406 |#2|))) 148)) (-4303 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-638 (-406 |#2|))) 145)) (-3893 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1867 (((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2173 (((-3 (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 175)) (-2106 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|)) 178)) (-2577 (((-2 (|:| |ir| (-582 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-1921 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2713 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-638 (-406 |#2|))) 152)) (-2969 (((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|)) 137)) (-2221 (((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|)) 162)) (-1632 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-406 |#2|)) 183)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -1867 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2221 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -2665 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-638 |#1|) "failed") (-561) |#1| |#1|))) (-15 -2106 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -1632 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-406 |#2|))) (-15 -4071 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-638 (-406 |#2|)))) (-15 -2713 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-638 (-406 |#2|)))) (-15 -2173 ((-3 (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -4303 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-638 (-406 |#2|)))) (-15 -3893 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2969 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -2577 ((-2 (|:| |ir| (-582 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1921 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1230 |#1|)) (T -571))
-((-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-571 *5 *3)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-582 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-2969 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1599 *4) (|:| |sol?| (-112))) (-561) *4)) (-4 *4 (-362)) (-4 *5 (-1230 *4)) (-5 *1 (-571 *4 *5)))) (-3893 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3413 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1230 *4)))) (-4303 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-638 (-406 *7))) (-4 *7 (-1230 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *7)))) (-2173 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3413 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-2713 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1599 *7) (|:| |sol?| (-112))) (-561) *7)) (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1230 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-4071 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3413 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1230 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-1632 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1599 *6) (|:| |sol?| (-112))) (-561) *6)) (-4 *6 (-362)) (-4 *7 (-1230 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -3413 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2106 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3413 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1230 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -3413 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2665 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-638 *6) "failed") (-561) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1230 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2221 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1599 *6) (|:| |sol?| (-112))) (-561) *6)) (-4 *6 (-362)) (-4 *7 (-1230 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-1867 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3413 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1230 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
-(-10 -7 (-15 -1867 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2221 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -2665 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-638 |#1|) "failed") (-561) |#1| |#1|))) (-15 -2106 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -1632 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-406 |#2|))) (-15 -4071 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-638 (-406 |#2|)))) (-15 -2713 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-638 (-406 |#2|)))) (-15 -2173 ((-3 (-2 (|:| -3413 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -4303 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-638 (-406 |#2|)))) (-15 -3893 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2969 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1599 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -2577 ((-2 (|:| |ir| (-582 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1921 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3754 (((-3 |#2| "failed") |#2| (-1166) (-1166)) 10)))
-(((-572 |#1| |#2|) (-10 -7 (-15 -3754 ((-3 |#2| "failed") |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-1129) (-29 |#1|))) (T -572))
-((-3754 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1190) (-952) (-1129) (-29 *4))))))
-(-10 -7 (-15 -3754 ((-3 |#2| "failed") |#2| (-1166) (-1166))))
-((-4230 (((-684 (-1212)) $ (-1212)) 26)) (-4315 (((-684 (-546)) $ (-546)) 25)) (-3284 (((-765) $ (-128)) 27)) (-4065 (((-684 (-129)) $ (-129)) 24)) (-3083 (((-684 (-1212)) $) 12)) (-1524 (((-684 (-1211)) $) 8)) (-1535 (((-684 (-1210)) $) 10)) (-2394 (((-684 (-546)) $) 13)) (-1548 (((-684 (-545)) $) 9)) (-1564 (((-684 (-544)) $) 11)) (-3430 (((-765) $ (-128)) 7)) (-1429 (((-684 (-129)) $) 14)) (-3550 (($ $) 6)))
+((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
+(((-547) (-838)) (T -547))
+NIL
+(-838)
+((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-548 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400)))) (T -548))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400)))
+((-2200 (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-1 (-1160 |#2|) (-1160 |#2|))) 51)))
+(((-549 |#1| |#2|) (-10 -7 (-15 -2200 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-1 (-1160 |#2|) (-1160 |#2|))))) (-13 (-844) (-554)) (-13 (-27) (-420 |#1|))) (T -549))
+((-2200 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-606 *3)) (-5 *5 (-1 (-1160 *3) (-1160 *3))) (-4 *3 (-13 (-27) (-420 *6))) (-4 *6 (-13 (-844) (-554))) (-5 *2 (-580 *3)) (-5 *1 (-549 *6 *3)))))
+(-10 -7 (-15 -2200 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-1 (-1160 |#2|) (-1160 |#2|)))))
+((-2202 (((-580 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-2203 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2201 (((-580 |#5|) |#5| (-1 |#3| |#3|)) 201)))
+(((-550 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2201 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2202 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2203 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-844) (-554) (-1031 (-544))) (-13 (-27) (-420 |#1|)) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -550))
+((-2203 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-27) (-420 *4))) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-4 *7 (-1229 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5))) (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7))) (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5))) (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7))) (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))))
+(-10 -7 (-15 -2201 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2202 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2203 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2206 (((-112) (-544) (-544)) 10)) (-2204 (((-544) (-544)) 7)) (-2205 (((-544) (-544) (-544)) 8)))
+(((-551) (-10 -7 (-15 -2204 ((-544) (-544))) (-15 -2205 ((-544) (-544) (-544))) (-15 -2206 ((-112) (-544) (-544))))) (T -551))
+((-2206 (*1 *2 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-551)))) (-2205 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551)))))
+(-10 -7 (-15 -2204 ((-544) (-544))) (-15 -2205 ((-544) (-544) (-544))) (-15 -2206 ((-112) (-544) (-544))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2983 ((|#1| $) 62)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-3891 (($ $) 92)) (-4046 (($ $) 75)) (-2778 ((|#1| $) 63)) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $) 74)) (-3889 (($ $) 91)) (-4045 (($ $) 76)) (-3893 (($ $) 90)) (-4044 (($ $) 77)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) "failed") $) 70)) (-3557 (((-544) $) 71)) (-3866 (((-3 $ "failed") $) 33)) (-2209 (($ |#1| |#1|) 67)) (-3587 (((-112) $) 61)) (-4034 (($) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 73)) (-3588 (((-112) $) 60)) (-2913 (($ $ $) 108)) (-3242 (($ $ $) 107)) (-4349 (($ $) 99)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2210 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-544))) 65)) (-2208 ((|#1| $) 64)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3865 (((-3 $ "failed") $ $) 43)) (-4350 (($ $) 100)) (-3894 (($ $) 89)) (-4043 (($ $) 78)) (-3892 (($ $) 88)) (-4042 (($ $) 79)) (-3890 (($ $) 87)) (-4041 (($ $) 80)) (-2207 (((-112) $ |#1|) 59)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-544)) 69)) (-3511 (((-765)) 28)) (-3897 (($ $) 98)) (-3885 (($ $) 86)) (-2212 (((-112) $ $) 40)) (-3895 (($ $) 97)) (-3883 (($ $) 85)) (-3899 (($ $) 96)) (-3887 (($ $) 84)) (-3900 (($ $) 95)) (-3888 (($ $) 83)) (-3898 (($ $) 94)) (-3886 (($ $) 82)) (-3896 (($ $) 93)) (-3884 (($ $) 81)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 105)) (-2946 (((-112) $ $) 104)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 106)) (-3067 (((-112) $ $) 103)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ $) 101) (($ $ (-406 (-544))) 72)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
+(((-552 |#1|) (-139) (-13 (-403) (-1190))) (T -552))
+((-2210 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2209 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2210 (*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2210 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-2207 (*1 *2 *1 *3) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))))
+(-13 (-450) (-844) (-1190) (-995) (-1031 (-544)) (-10 -8 (-6 -4176) (-15 -2210 ($ |t#1| |t#1|)) (-15 -2209 ($ |t#1| |t#1|)) (-15 -2210 ($ |t#1|)) (-15 -2210 ($ (-406 (-544)))) (-15 -2208 (|t#1| $)) (-15 -2778 (|t#1| $)) (-15 -2983 (|t#1| $)) (-15 -3587 ((-112) $)) (-15 -3588 ((-112) $)) (-15 -2207 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-450) . T) ((-491) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-995) . T) ((-1031 (-544)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) . T) ((-1193) . T))
+((-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 9)) (-2213 (($ $) 11)) (-2211 (((-112) $) 18)) (-3866 (((-3 $ "failed") $) 16)) (-2212 (((-112) $ $) 20)))
+(((-553 |#1|) (-10 -8 (-15 -2211 ((-112) |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|))) (-554)) (T -553))
+NIL
+(-10 -8 (-15 -2211 ((-112) |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
+(((-554) (-139)) (T -554))
+((-3865 (*1 *1 *1 *1) (|partial| -4 *1 (-554))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1920 *1) (|:| -4387 *1) (|:| |associate| *1))) (-4 *1 (-554)))) (-2213 (*1 *1 *1) (-4 *1 (-554))) (-2212 (*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))))
+(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -3865 ((-3 $ "failed") $ $)) (-15 -2214 ((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $)) (-15 -2213 ($ $)) (-15 -2212 ((-112) $ $)) (-15 -2211 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2216 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-635 |#2|)) 37)) (-2218 (((-580 |#2|) |#2| (-1166)) 62)) (-2217 (((-3 |#2| "failed") |#2| (-1166)) 151)) (-2219 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1166) (-606 |#2|) (-635 (-606 |#2|))) 154)) (-2215 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1166) |#2|) 40)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -2215 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1166) |#2|)) (-15 -2216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-635 |#2|))) (-15 -2217 ((-3 |#2| "failed") |#2| (-1166))) (-15 -2218 ((-580 |#2|) |#2| (-1166))) (-15 -2219 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1166) (-606 |#2|) (-635 (-606 |#2|))))) (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -555))
+((-2219 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-635 (-606 *3))) (-5 *5 (-606 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *7 *3)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2217 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-2216 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6 *3)))) (-2215 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))))
+(-10 -7 (-15 -2215 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1166) |#2|)) (-15 -2216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-635 |#2|))) (-15 -2217 ((-3 |#2| "failed") |#2| (-1166))) (-15 -2218 ((-580 |#2|) |#2| (-1166))) (-15 -2219 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1166) (-606 |#2|) (-635 (-606 |#2|)))))
+((-4376 (((-404 |#1|) |#1|) 18)) (-4139 (((-404 |#1|) |#1|) 33)) (-2221 (((-3 |#1| "failed") |#1|) 44)) (-2220 (((-404 |#1|) |#1|) 51)))
+(((-556 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -2220 ((-404 |#1|) |#1|)) (-15 -2221 ((-3 |#1| "failed") |#1|))) (-543)) (T -556))
+((-2221 (*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-543)))) (-2220 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))) (-4376 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -2220 ((-404 |#1|) |#1|)) (-15 -2221 ((-3 |#1| "failed") |#1|)))
+((-2222 (($) 9)) (-2225 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-2789 (((-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-4014 (($ (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2224 (($ (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2226 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2351 (((-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2223 (((-1259)) 12)))
+(((-557) (-10 -8 (-15 -2222 ($)) (-15 -2223 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2224 ($ (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2225 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2351 ((-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2226 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -557))
+((-2226 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-557)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-557)))) (-2225 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-557)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-557)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-557)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-557)))) (-2223 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-557)))) (-2222 (*1 *1) (-5 *1 (-557))))
+(-10 -8 (-15 -2222 ($)) (-15 -2223 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2224 ($ (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2225 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2351 ((-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2226 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-3469 (((-1160 (-406 (-1160 |#2|))) |#2| (-606 |#2|) (-606 |#2|) (-1160 |#2|)) 32)) (-2229 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) |#2| (-1160 |#2|)) 110)) (-2227 (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 80) (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|)) 52)) (-2228 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-606 |#2|) (-606 |#2|) |#2| (-606 |#2|) |#2| (-406 (-1160 |#2|))) 87) (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-606 |#2|) (-606 |#2|) |#2| |#2| (-1160 |#2|)) 109)) (-2230 (((-3 |#2| #3="failed") |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) |#2| (-1160 |#2|)) 111)) (-2231 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 128 (|has| |#3| (-651 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|)) 127 (|has| |#3| (-651 |#2|)))) (-3470 ((|#2| (-1160 (-406 (-1160 |#2|))) (-606 |#2|) |#2|) 50)) (-3463 (((-1160 (-406 (-1160 |#2|))) (-1160 |#2|) (-606 |#2|)) 31)))
+(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-606 |#2|) (-606 |#2|) |#2| |#2| (-1160 |#2|))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-606 |#2|) (-606 |#2|) |#2| (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) |#2| (-1160 |#2|))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2230 ((-3 |#2| #3="failed") |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) |#2| (-1160 |#2|))) (-15 -2230 ((-3 |#2| #3#) |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -3469 ((-1160 (-406 (-1160 |#2|))) |#2| (-606 |#2|) (-606 |#2|) (-1160 |#2|))) (-15 -3470 (|#2| (-1160 (-406 (-1160 |#2|))) (-606 |#2|) |#2|)) (-15 -3463 ((-1160 (-406 (-1160 |#2|))) (-1160 |#2|) (-606 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))))) |%noBranch|)) (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))) (-13 (-420 |#1|) (-27) (-1190)) (-1091)) (T -558))
+((-2231 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-606 *4)) (-5 *6 (-406 (-1160 *4))) (-4 *4 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))) (-2231 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-606 *4)) (-5 *6 (-1160 *4)) (-4 *4 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *6)) (-4 *6 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-1160 (-406 (-1160 *6)))) (-5 *1 (-558 *5 *6 *7)) (-5 *3 (-1160 *6)) (-4 *7 (-1091)))) (-3470 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1160 (-406 (-1160 *2)))) (-5 *4 (-606 *2)) (-4 *2 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1091)))) (-3469 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-1160 (-406 (-1160 *3)))) (-5 *1 (-558 *6 *3 *7)) (-5 *5 (-1160 *3)) (-4 *7 (-1091)))) (-2230 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1166))) (-5 *5 (-406 (-1160 *2))) (-4 *2 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091)))) (-2230 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1166))) (-5 *5 (-1160 *2)) (-4 *2 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091)))) (-2229 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-406 (-1160 *3))) (-4 *3 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091)))) (-2229 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1160 *3)) (-4 *3 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091)))) (-2228 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3))) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))) (-2228 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))) (-2227 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3))) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))) (-2227 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))))
+(-10 -7 (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-606 |#2|) (-606 |#2|) |#2| |#2| (-1160 |#2|))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-606 |#2|) (-606 |#2|) |#2| (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) |#2| (-1160 |#2|))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2230 ((-3 |#2| #3="failed") |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) |#2| (-1160 |#2|))) (-15 -2230 ((-3 |#2| #3#) |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -3469 ((-1160 (-406 (-1160 |#2|))) |#2| (-606 |#2|) (-606 |#2|) (-1160 |#2|))) (-15 -3470 (|#2| (-1160 (-406 (-1160 |#2|))) (-606 |#2|) |#2|)) (-15 -3463 ((-1160 (-406 (-1160 |#2|))) (-1160 |#2|) (-606 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))))) |%noBranch|))
+((-2241 (((-544) (-544) (-765)) 66)) (-2240 (((-544) (-544)) 65)) (-2239 (((-544) (-544)) 64)) (-2238 (((-544) (-544)) 69)) (-3187 (((-544) (-544) (-544)) 49)) (-2237 (((-544) (-544) (-544)) 46)) (-2236 (((-406 (-544)) (-544)) 20)) (-2235 (((-544) (-544)) 21)) (-2234 (((-544) (-544)) 58)) (-3184 (((-544) (-544)) 32)) (-2233 (((-635 (-544)) (-544)) 63)) (-2232 (((-544) (-544) (-544) (-544) (-544)) 44)) (-3180 (((-406 (-544)) (-544)) 41)))
+(((-559) (-10 -7 (-15 -3180 ((-406 (-544)) (-544))) (-15 -2232 ((-544) (-544) (-544) (-544) (-544))) (-15 -2233 ((-635 (-544)) (-544))) (-15 -3184 ((-544) (-544))) (-15 -2234 ((-544) (-544))) (-15 -2235 ((-544) (-544))) (-15 -2236 ((-406 (-544)) (-544))) (-15 -2237 ((-544) (-544) (-544))) (-15 -3187 ((-544) (-544) (-544))) (-15 -2238 ((-544) (-544))) (-15 -2239 ((-544) (-544))) (-15 -2240 ((-544) (-544))) (-15 -2241 ((-544) (-544) (-765))))) (T -559))
+((-2241 (*1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-765)) (-5 *1 (-559)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-3187 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))) (-2232 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-3180 (*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))))
+(-10 -7 (-15 -3180 ((-406 (-544)) (-544))) (-15 -2232 ((-544) (-544) (-544) (-544) (-544))) (-15 -2233 ((-635 (-544)) (-544))) (-15 -3184 ((-544) (-544))) (-15 -2234 ((-544) (-544))) (-15 -2235 ((-544) (-544))) (-15 -2236 ((-406 (-544)) (-544))) (-15 -2237 ((-544) (-544) (-544))) (-15 -3187 ((-544) (-544) (-544))) (-15 -2238 ((-544) (-544))) (-15 -2239 ((-544) (-544))) (-15 -2240 ((-544) (-544))) (-15 -2241 ((-544) (-544) (-765))))
+((-2242 (((-2 (|:| |answer| |#4|) (|:| -2289 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-560 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2242 ((-2 (|:| |answer| |#4|) (|:| -2289 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -560))
+((-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2289 *3))) (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))))
+(-10 -7 (-15 -2242 ((-2 (|:| |answer| |#4|) (|:| -2289 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2242 (((-2 (|:| |answer| (-406 |#2|)) (|:| -2289 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18)))
+(((-561 |#1| |#2|) (-10 -7 (-15 -2242 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2289 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -561))
+((-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -2289 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -2242 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2289 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))))
+((-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763) (-1054)) 108) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763)) 110)) (-4219 (((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1166)) 172) (((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1148)) 171) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377) (-1054)) 176) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377)) 177) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377)) 178) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377))))) 179) (((-1028) (-313 (-377)) (-1079 (-836 (-377)))) 167) (((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377)) 166) (((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377)) 162) (((-1028) (-763)) 155) (((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377) (-1054)) 161)))
+(((-562) (-10 -7 (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377) (-1054))) (-15 -4219 ((-1028) (-763))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377) (-1054))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1148))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1166))))) (T -562))
+((-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377)))) (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377)))) (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *5 (-377)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))))
+(-10 -7 (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377) (-1054))) (-15 -4219 ((-1028) (-763))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377) (-1054))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1148))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1166))))
+((-2245 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|)) 183)) (-2243 (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|)) 98)) (-2244 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-606 |#2|) (-606 |#2|) |#2|) 179)) (-2246 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1166))) 188)) (-2247 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-1166)) 196 (|has| |#3| (-651 |#2|)))))
+(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -2243 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|))) (-15 -2244 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-606 |#2|) (-606 |#2|) |#2|)) (-15 -2245 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|))) (-15 -2246 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1166)))) (IF (|has| |#3| (-651 |#2|)) (-15 -2247 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-1166))) |%noBranch|)) (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))) (-13 (-420 |#1|) (-27) (-1190)) (-1091)) (T -563))
+((-2247 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-606 *4)) (-5 *6 (-1166)) (-4 *4 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))) (-2246 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1166))) (-4 *2 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1091)))) (-2245 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1091)))) (-2244 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1091)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1091)))))
+(-10 -7 (-15 -2243 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|))) (-15 -2244 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-606 |#2|) (-606 |#2|) |#2|)) (-15 -2245 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|))) (-15 -2246 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1166)))) (IF (|has| |#3| (-651 |#2|)) (-15 -2247 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-1166))) |%noBranch|))
+((-2248 (((-2 (|:| -2461 |#2|) (|:| |nconst| |#2|)) |#2| (-1166)) 63)) (-2250 (((-3 |#2| "failed") |#2| (-1166) (-836 |#2|) (-836 |#2|)) 163 (-12 (|has| |#2| (-1129)) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-879 (-544))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 146 (-12 (|has| |#2| (-625)) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-879 (-544)))))) (-2249 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 147 (-12 (|has| |#2| (-625)) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-879 (-544)))))))
+(((-564 |#1| |#2|) (-10 -7 (-15 -2248 ((-2 (|:| -2461 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -2249 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -2250 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -2250 ((-3 |#2| "failed") |#2| (-1166) (-836 |#2|) (-836 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-844) (-1031 (-544)) (-450) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -564))
+((-2250 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-836 *2)) (-4 *2 (-1129)) (-4 *2 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-609 (-883 (-544)))) (-4 *5 (-879 (-544))) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *1 (-564 *5 *2)))) (-2250 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544)))) (-4 *5 (-879 (-544))) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2249 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544)))) (-4 *5 (-879 (-544))) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2248 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *2 (-2 (|:| -2461 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))))
+(-10 -7 (-15 -2248 ((-2 (|:| -2461 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -2249 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -2250 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -2250 ((-3 |#2| "failed") |#2| (-1166) (-836 |#2|) (-836 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2253 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))) 41)) (-4219 (((-580 (-406 |#2|)) (-406 |#2|)) 28)) (-2251 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-2252 (((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48)))
+(((-565 |#1| |#2|) (-10 -7 (-15 -4219 ((-580 (-406 |#2|)) (-406 |#2|))) (-15 -2251 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2252 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -2253 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-544))) (-1229 |#1|)) (T -565))
+((-2253 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *5 *6)))) (-2252 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2290 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146) (-1031 (-544)))) (-5 *1 (-565 *3 *4)))) (-4219 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-580 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))))
+(-10 -7 (-15 -4219 ((-580 (-406 |#2|)) (-406 |#2|))) (-15 -2251 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2252 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -2253 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|)))))
+((-2254 (((-3 (-544) "failed") |#1|) 14)) (-3660 (((-112) |#1|) 13)) (-3656 (((-544) |#1|) 9)))
+(((-566 |#1|) (-10 -7 (-15 -3656 ((-544) |#1|)) (-15 -3660 ((-112) |#1|)) (-15 -2254 ((-3 (-544) "failed") |#1|))) (-1031 (-544))) (T -566))
+((-2254 (*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))) (-3660 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-544))))) (-3656 (*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))))
+(-10 -7 (-15 -3656 ((-544) |#1|)) (-15 -3660 ((-112) |#1|)) (-15 -2254 ((-3 (-544) "failed") |#1|)))
+((-2257 (((-3 (-2 (|:| |mainpart| (-406 (-939 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-939 |#1|))) (|:| |logand| (-406 (-939 |#1|))))))) "failed") (-406 (-939 |#1|)) (-1166) (-635 (-406 (-939 |#1|)))) 48)) (-2255 (((-580 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-1166)) 28)) (-2256 (((-3 (-406 (-939 |#1|)) "failed") (-406 (-939 |#1|)) (-1166)) 23)) (-2258 (((-3 (-2 (|:| -2290 (-406 (-939 |#1|))) (|:| |coeff| (-406 (-939 |#1|)))) "failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|))) 35)))
+(((-567 |#1|) (-10 -7 (-15 -2255 ((-580 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2256 ((-3 (-406 (-939 |#1|)) "failed") (-406 (-939 |#1|)) (-1166))) (-15 -2257 ((-3 (-2 (|:| |mainpart| (-406 (-939 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-939 |#1|))) (|:| |logand| (-406 (-939 |#1|))))))) "failed") (-406 (-939 |#1|)) (-1166) (-635 (-406 (-939 |#1|))))) (-15 -2258 ((-3 (-2 (|:| -2290 (-406 (-939 |#1|))) (|:| |coeff| (-406 (-939 |#1|)))) "failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|))))) (-13 (-554) (-1031 (-544)) (-146))) (T -567))
+((-2258 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146))) (-5 *2 (-2 (|:| -2290 (-406 (-939 *5))) (|:| |coeff| (-406 (-939 *5))))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5))))) (-2257 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 (-406 (-939 *6)))) (-5 *3 (-406 (-939 *6))) (-4 *6 (-13 (-554) (-1031 (-544)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6)))) (-2256 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-1031 (-544)) (-146))) (-5 *1 (-567 *4)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146))) (-5 *2 (-580 (-406 (-939 *5)))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5))))))
+(-10 -7 (-15 -2255 ((-580 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2256 ((-3 (-406 (-939 |#1|)) "failed") (-406 (-939 |#1|)) (-1166))) (-15 -2257 ((-3 (-2 (|:| |mainpart| (-406 (-939 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-939 |#1|))) (|:| |logand| (-406 (-939 |#1|))))))) "failed") (-406 (-939 |#1|)) (-1166) (-635 (-406 (-939 |#1|))))) (-15 -2258 ((-3 (-2 (|:| -2290 (-406 (-939 |#1|))) (|:| |coeff| (-406 (-939 |#1|)))) "failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)))))
+((-2947 (((-112) $ $) 58)) (-3589 (((-112) $) 36)) (-2983 ((|#1| $) 30)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) 62)) (-3891 (($ $) 122)) (-4046 (($ $) 102)) (-2778 ((|#1| $) 28)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-3889 (($ $) 124)) (-4045 (($ $) 98)) (-3893 (($ $) 126)) (-4044 (($ $) 106)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) 77)) (-3557 (((-544) $) 79)) (-3866 (((-3 $ "failed") $) 61)) (-2209 (($ |#1| |#1|) 26)) (-3587 (((-112) $) 33)) (-4034 (($) 88)) (-2545 (((-112) $) 43)) (-3394 (($ $ (-544)) NIL)) (-3588 (((-112) $) 34)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4349 (($ $) 90)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2210 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-544))) 76)) (-2208 ((|#1| $) 27)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) 64) (($ (-635 $)) NIL)) (-3865 (((-3 $ "failed") $ $) 63)) (-4350 (($ $) 92)) (-3894 (($ $) 130)) (-4043 (($ $) 104)) (-3892 (($ $) 132)) (-4042 (($ $) 108)) (-3890 (($ $) 128)) (-4041 (($ $) 100)) (-2207 (((-112) $ |#1|) 31)) (-4353 (((-857) $) 84) (($ (-544)) 66) (($ $) NIL) (($ (-544)) 66)) (-3511 (((-765)) 86)) (-3897 (($ $) 144)) (-3885 (($ $) 114)) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) 142)) (-3883 (($ $) 110)) (-3899 (($ $) 140)) (-3887 (($ $) 120)) (-3900 (($ $) 138)) (-3888 (($ $) 118)) (-3898 (($ $) 136)) (-3886 (($ $) 116)) (-3896 (($ $) 134)) (-3884 (($ $) 112)) (-3040 (($) 21 T CONST)) (-3046 (($) 10 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 37)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 35)) (-4244 (($ $) 41) (($ $ $) 42)) (-4246 (($ $ $) 40)) (** (($ $ (-912)) 54) (($ $ (-765)) NIL) (($ $ $) 94) (($ $ (-406 (-544))) 146)) (* (($ (-912) $) 51) (($ (-765) $) NIL) (($ (-544) $) 50) (($ $ $) 48)))
+(((-568 |#1|) (-552 |#1|) (-13 (-403) (-1190))) (T -568))
+NIL
+(-552 |#1|)
+((-3086 (((-3 (-635 (-1160 (-544))) "failed") (-635 (-1160 (-544))) (-1160 (-544))) 24)))
+(((-569) (-10 -7 (-15 -3086 ((-3 (-635 (-1160 (-544))) "failed") (-635 (-1160 (-544))) (-1160 (-544)))))) (T -569))
+((-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 (-544)))) (-5 *3 (-1160 (-544))) (-5 *1 (-569)))))
+(-10 -7 (-15 -3086 ((-3 (-635 (-1160 (-544))) "failed") (-635 (-1160 (-544))) (-1160 (-544)))))
+((-2259 (((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-1166)) 19)) (-2262 (((-635 (-606 |#2|)) (-635 |#2|) (-1166)) 23)) (-3635 (((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-635 (-606 |#2|))) 11)) (-2263 ((|#2| |#2| (-1166)) 53 (|has| |#1| (-554)))) (-2264 ((|#2| |#2| (-1166)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-450))))) (-2261 (((-606 |#2|) (-606 |#2|) (-635 (-606 |#2|)) (-1166)) 25)) (-2260 (((-606 |#2|) (-635 (-606 |#2|))) 24)) (-2265 (((-580 |#2|) |#2| (-1166) (-1 (-580 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-625)) (|has| |#2| (-1031 (-1166))) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-450)) (|has| |#1| (-879 (-544)))))))
+(((-570 |#1| |#2|) (-10 -7 (-15 -2259 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-1166))) (-15 -2260 ((-606 |#2|) (-635 (-606 |#2|)))) (-15 -2261 ((-606 |#2|) (-606 |#2|) (-635 (-606 |#2|)) (-1166))) (-15 -3635 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-635 (-606 |#2|)))) (-15 -2262 ((-635 (-606 |#2|)) (-635 |#2|) (-1166))) (IF (|has| |#1| (-554)) (-15 -2263 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -2264 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2265 ((-580 |#2|) |#2| (-1166) (-1 (-580 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-844) (-420 |#1|)) (T -570))
+((-2265 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-580 *3) *3 (-1166))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1166))) (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1031 *4)) (-4 *3 (-420 *7)) (-5 *4 (-1166)) (-4 *7 (-609 (-883 (-544)))) (-4 *7 (-450)) (-4 *7 (-879 (-544))) (-4 *7 (-844)) (-5 *2 (-580 *3)) (-5 *1 (-570 *7 *3)))) (-2264 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-283)) (-4 *2 (-420 *4)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-554)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-420 *4)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-1166)) (-4 *6 (-420 *5)) (-4 *5 (-844)) (-5 *2 (-635 (-606 *6))) (-5 *1 (-570 *5 *6)))) (-3635 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-606 *4))) (-4 *4 (-420 *3)) (-4 *3 (-844)) (-5 *1 (-570 *3 *4)))) (-2261 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-606 *6))) (-5 *4 (-1166)) (-5 *2 (-606 *6)) (-4 *6 (-420 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-635 (-606 *5))) (-4 *4 (-844)) (-5 *2 (-606 *5)) (-5 *1 (-570 *4 *5)) (-4 *5 (-420 *4)))) (-2259 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-606 *5))) (-5 *3 (-1166)) (-4 *5 (-420 *4)) (-4 *4 (-844)) (-5 *1 (-570 *4 *5)))))
+(-10 -7 (-15 -2259 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-1166))) (-15 -2260 ((-606 |#2|) (-635 (-606 |#2|)))) (-15 -2261 ((-606 |#2|) (-606 |#2|) (-635 (-606 |#2|)) (-1166))) (-15 -3635 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-635 (-606 |#2|)))) (-15 -2262 ((-635 (-606 |#2|)) (-635 |#2|) (-1166))) (IF (|has| |#1| (-554)) (-15 -2263 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -2264 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2265 ((-580 |#2|) |#2| (-1166) (-1 (-580 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2268 (((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-544) |#1| |#1|)) 172)) (-2271 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-635 (-406 |#2|))) 148)) (-2274 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|))) 145)) (-2275 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2266 (((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2273 (((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 175)) (-2269 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-406 |#2|)) 178)) (-2277 (((-2 (|:| |ir| (-580 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-2278 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2272 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-635 (-406 |#2|))) 152)) (-2276 (((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|)) 137)) (-2267 (((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|)) 162)) (-2270 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-406 |#2|)) 183)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2266 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2267 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2268 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-544) |#1| |#1|))) (-15 -2269 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-406 |#2|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-406 |#2|))) (-15 -2271 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-635 (-406 |#2|)))) (-15 -2272 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-635 (-406 |#2|)))) (-15 -2273 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2274 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -2275 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2276 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2277 ((-2 (|:| |ir| (-580 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2278 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -571))
+((-2278 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-571 *5 *3)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-580 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-2276 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112))) (-544) *4)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *1 (-571 *4 *5)))) (-2275 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1229 *4)))) (-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7))) (-4 *7 (-1229 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *7)))) (-2273 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2290 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-2272 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3522 *7) (|:| |sol?| (-112))) (-544) *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-2271 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2290 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-2270 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2269 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-635 *6) "failed") (-544) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2267 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2266 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(-10 -7 (-15 -2266 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2267 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2268 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-544) |#1| |#1|))) (-15 -2269 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-406 |#2|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-406 |#2|))) (-15 -2271 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-635 (-406 |#2|)))) (-15 -2272 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-635 (-406 |#2|)))) (-15 -2273 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2274 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -2275 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2276 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2277 ((-2 (|:| |ir| (-580 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2278 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2279 (((-3 |#2| "failed") |#2| (-1166) (-1166)) 10)))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2279 ((-3 |#2| "failed") |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-1129) (-29 |#1|))) (T -572))
+((-2279 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-1129) (-29 *4))))))
+(-10 -7 (-15 -2279 ((-3 |#2| "failed") |#2| (-1166) (-1166))))
+((-2937 (((-684 (-1212)) $ (-1212)) 26)) (-2938 (((-684 (-547)) $ (-547)) 25)) (-2936 (((-765) $ (-129)) 27)) (-2939 (((-684 (-128)) $ (-128)) 24)) (-2150 (((-684 (-1212)) $) 12)) (-2146 (((-684 (-1211)) $) 8)) (-2148 (((-684 (-1210)) $) 10)) (-2151 (((-684 (-547)) $) 13)) (-2147 (((-684 (-546)) $) 9)) (-2149 (((-684 (-545)) $) 11)) (-2145 (((-765) $ (-129)) 7)) (-2152 (((-684 (-128)) $) 14)) (-1844 (($ $) 6)))
(((-573) (-139)) (T -573))
NIL
-(-13 (-525) (-854))
-(((-172) . T) ((-525) . T) ((-854) . T))
-((-4230 (((-684 (-1212)) $ (-1212)) NIL)) (-4315 (((-684 (-546)) $ (-546)) NIL)) (-3284 (((-765) $ (-128)) NIL)) (-4065 (((-684 (-129)) $ (-129)) NIL)) (-3083 (((-684 (-1212)) $) NIL)) (-1524 (((-684 (-1211)) $) NIL)) (-1535 (((-684 (-1210)) $) NIL)) (-2394 (((-684 (-546)) $) NIL)) (-1548 (((-684 (-545)) $) NIL)) (-1564 (((-684 (-544)) $) NIL)) (-3430 (((-765) $ (-128)) NIL)) (-1429 (((-684 (-129)) $) NIL)) (-1301 (((-112) $) NIL)) (-4148 (($ (-387)) 14) (($ (-1148)) 16)) (-4064 (((-856) $) NIL)) (-3550 (($ $) NIL)))
-(((-574) (-13 (-573) (-608 (-856)) (-10 -8 (-15 -4148 ($ (-387))) (-15 -4148 ($ (-1148))) (-15 -1301 ((-112) $))))) (T -574))
-((-4148 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574)))))
-(-13 (-573) (-608 (-856)) (-10 -8 (-15 -4148 ($ (-387))) (-15 -4148 ($ (-1148))) (-15 -1301 ((-112) $))))
-((-4053 (((-112) $ $) NIL)) (-3519 (($) 7 T CONST)) (-1883 (((-1148) $) NIL)) (-1536 (($) 6 T CONST)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 14)) (-3203 (($) 8 T CONST)) (-1723 (((-112) $ $) 10)))
-(((-575) (-13 (-1090) (-10 -8 (-15 -1536 ($) -1494) (-15 -3519 ($) -1494) (-15 -3203 ($) -1494)))) (T -575))
-((-1536 (*1 *1) (-5 *1 (-575))) (-3519 (*1 *1) (-5 *1 (-575))) (-3203 (*1 *1) (-5 *1 (-575))))
-(-13 (-1090) (-10 -8 (-15 -1536 ($) -1494) (-15 -3519 ($) -1494) (-15 -3203 ($) -1494)))
-((-4053 (((-112) $ $) NIL)) (-3266 (((-684 $) (-489)) 16)) (-1883 (((-1148) $) NIL)) (-3774 (($ (-1148)) 9)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 31)) (-2854 (((-212 4 (-129)) $) 19)) (-1723 (((-112) $ $) 22)))
-(((-576) (-13 (-1090) (-10 -8 (-15 -3774 ($ (-1148))) (-15 -2854 ((-212 4 (-129)) $)) (-15 -3266 ((-684 $) (-489)))))) (T -576))
-((-3774 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-576)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576)))))
-(-13 (-1090) (-10 -8 (-15 -3774 ($ (-1148))) (-15 -2854 ((-212 4 (-129)) $)) (-15 -3266 ((-684 $) (-489)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $ (-561)) 66)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-2865 (($ (-1162 (-561)) (-561)) 72)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) 58)) (-3601 (($ $) 34)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-4027 (((-765) $) 15)) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1448 (((-561)) 29)) (-2114 (((-561) $) 32)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3702 (($ $ (-561)) 21)) (-1748 (((-3 $ "failed") $ $) 59)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) 16)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 61)) (-3679 (((-1146 (-561)) $) 18)) (-3426 (($ $) 23)) (-4064 (((-856) $) 86) (($ (-561)) 52) (($ $) NIL)) (-3746 (((-765)) 14)) (-3996 (((-112) $ $) NIL)) (-1408 (((-561) $ (-561)) 36)) (-2246 (($) 35 T CONST)) (-2257 (($) 19 T CONST)) (-1723 (((-112) $ $) 39)) (-1819 (($ $) 51) (($ $ $) 37)) (-1810 (($ $ $) 50)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 54) (($ $ $) 55)))
-(((-577 |#1| |#2|) (-862 |#1|) (-561) (-112)) (T -577))
-NIL
-(-862 |#1|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 21)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-1499 (((-1178 (-914) (-765)) (-561)) 47)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 $ "failed") $) 75)) (-3979 (($ $) 74)) (-3376 (($ (-1254 $)) 73)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) 32)) (-1362 (($) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) 49)) (-3943 (((-112) $) NIL)) (-3598 (($ $) NIL) (($ $ (-765)) NIL)) (-2725 (((-112) $) NIL)) (-4027 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-2252 (((-112) $) NIL)) (-1946 (($) 37 (|has| $ (-367)))) (-1892 (((-112) $) NIL (|has| $ (-367)))) (-2072 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-2436 (((-3 $ "failed") $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 $) $ (-914)) NIL (|has| $ (-367))) (((-1162 $) $) 83)) (-1335 (((-914) $) 55)) (-2313 (((-1162 $) $) NIL (|has| $ (-367)))) (-1382 (((-3 (-1162 $) "failed") $ $) NIL (|has| $ (-367))) (((-1162 $) $) NIL (|has| $ (-367)))) (-2953 (($ $ (-1162 $)) NIL (|has| $ (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL T CONST)) (-2442 (($ (-914)) 48)) (-3168 (((-112) $) 67)) (-1701 (((-1110) $) NIL)) (-3194 (($) 19 (|has| $ (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 42)) (-1633 (((-417 $) $) NIL)) (-2794 (((-914)) 66) (((-827 (-914))) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-2390 (((-133)) NIL)) (-3922 (($ $ (-765)) NIL) (($ $) NIL)) (-3768 (((-914) $) 65) (((-827 (-914)) $) NIL)) (-3158 (((-1162 $)) 82)) (-2102 (($) 54)) (-3341 (($) 38 (|has| $ (-367)))) (-3752 (((-682 $) (-1254 $)) NIL) (((-1254 $) $) 71)) (-4216 (((-561) $) 28)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) 30) (($ $) NIL) (($ (-406 (-561))) NIL)) (-3666 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3746 (((-765)) 39)) (-2615 (((-1254 $) (-914)) 77) (((-1254 $)) 76)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) 22 T CONST)) (-2257 (($) 18 T CONST)) (-1471 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 26)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 61) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-578 |#1|) (-13 (-348) (-328 $) (-609 (-561))) (-914)) (T -578))
-NIL
-(-13 (-348) (-328 $) (-609 (-561)))
-((-2019 (((-1259) (-1148)) 10)))
-(((-579) (-10 -7 (-15 -2019 ((-1259) (-1148))))) (T -579))
-((-2019 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-579)))))
-(-10 -7 (-15 -2019 ((-1259) (-1148))))
-((-2230 (((-582 |#2|) (-582 |#2|)) 39)) (-3582 (((-638 |#2|) (-582 |#2|)) 41)) (-3200 ((|#2| (-582 |#2|)) 47)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -2230 ((-582 |#2|) (-582 |#2|))) (-15 -3582 ((-638 |#2|) (-582 |#2|))) (-15 -3200 (|#2| (-582 |#2|)))) (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))) (-13 (-29 |#1|) (-1190))) (T -580))
-((-3200 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-13 (-29 *4) (-1190))) (-5 *1 (-580 *4 *2)) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-582 *5)) (-4 *5 (-13 (-29 *4) (-1190))) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-638 *5)) (-5 *1 (-580 *4 *5)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-582 *4)) (-4 *4 (-13 (-29 *3) (-1190))) (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *1 (-580 *3 *4)))))
-(-10 -7 (-15 -2230 ((-582 |#2|) (-582 |#2|))) (-15 -3582 ((-638 |#2|) (-582 |#2|))) (-15 -3200 (|#2| (-582 |#2|))))
-((-4165 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|)) 30)))
-(((-581 |#1| |#2|) (-10 -7 (-15 -4165 ((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|))) (-15 -4165 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4165 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4165 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -581))
-((-4165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-581 *5 *6)))) (-4165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-581 *5 *2)))) (-4165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3413 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -3413 *6) (|:| |coeff| *6))) (-5 *1 (-581 *5 *6)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-582 *6)) (-5 *1 (-581 *5 *6)))))
-(-10 -7 (-15 -4165 ((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|))) (-15 -4165 ((-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3413 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4165 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4165 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 69)) (-3979 ((|#1| $) NIL)) (-3413 ((|#1| $) 26)) (-3842 (((-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-4113 (($ |#1| (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) (-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3626 (((-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) $) 27)) (-1883 (((-1148) $) NIL)) (-1684 (($ |#1| |#1|) 33) (($ |#1| (-1166)) 44 (|has| |#1| (-1031 (-1166))))) (-1701 (((-1110) $) NIL)) (-2761 (((-112) $) 30)) (-3922 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1166)) 82 (|has| |#1| (-893 (-1166))))) (-4064 (((-856) $) 96) (($ |#1|) 25)) (-2246 (($) 16 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) 15) (($ $ $) NIL)) (-1810 (($ $ $) 78)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 14) (($ (-406 (-561)) $) 36) (($ $ (-406 (-561))) NIL)))
-(((-582 |#1|) (-13 (-711 (-406 (-561))) (-1031 |#1|) (-10 -8 (-15 -4113 ($ |#1| (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) (-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3413 (|#1| $)) (-15 -3626 ((-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) $)) (-15 -3842 ((-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2761 ((-112) $)) (-15 -1684 ($ |#1| |#1|)) (-15 -3922 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -3922 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -1684 ($ |#1| (-1166))) |%noBranch|))) (-362)) (T -582))
-((-4113 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *2)) (|:| |logand| (-1162 *2))))) (-5 *4 (-638 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-582 *2)))) (-3413 (*1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *3)) (|:| |logand| (-1162 *3))))) (-5 *1 (-582 *3)) (-4 *3 (-362)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-582 *3)) (-4 *3 (-362)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-362)))) (-1684 (*1 *1 *2 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362)))) (-3922 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-582 *2)) (-4 *2 (-362)))) (-3922 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-582 *2)) (-5 *3 (-1166)))) (-1684 (*1 *1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *1 (-582 *2)) (-4 *2 (-1031 *3)) (-4 *2 (-362)))))
-(-13 (-711 (-406 (-561))) (-1031 |#1|) (-10 -8 (-15 -4113 ($ |#1| (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) (-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3413 (|#1| $)) (-15 -3626 ((-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) $)) (-15 -3842 ((-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2761 ((-112) $)) (-15 -1684 ($ |#1| |#1|)) (-15 -3922 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -3922 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -1684 ($ |#1| (-1166))) |%noBranch|)))
-((-3152 (((-112) |#1|) 16)) (-2868 (((-3 |#1| "failed") |#1|) 14)) (-2515 (((-2 (|:| -1423 |#1|) (|:| -4181 (-765))) |#1|) 30) (((-3 |#1| "failed") |#1| (-765)) 18)) (-1854 (((-112) |#1| (-765)) 19)) (-3370 ((|#1| |#1|) 31)) (-3584 ((|#1| |#1| (-765)) 33)))
-(((-583 |#1|) (-10 -7 (-15 -1854 ((-112) |#1| (-765))) (-15 -2515 ((-3 |#1| "failed") |#1| (-765))) (-15 -2515 ((-2 (|:| -1423 |#1|) (|:| -4181 (-765))) |#1|)) (-15 -3584 (|#1| |#1| (-765))) (-15 -3152 ((-112) |#1|)) (-15 -2868 ((-3 |#1| "failed") |#1|)) (-15 -3370 (|#1| |#1|))) (-543)) (T -583))
-((-3370 (*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2868 (*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-3152 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2515 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1423 *3) (|:| -4181 (-765)))) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-2515 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
-(-10 -7 (-15 -1854 ((-112) |#1| (-765))) (-15 -2515 ((-3 |#1| "failed") |#1| (-765))) (-15 -2515 ((-2 (|:| -1423 |#1|) (|:| -4181 (-765))) |#1|)) (-15 -3584 (|#1| |#1| (-765))) (-15 -3152 ((-112) |#1|)) (-15 -2868 ((-3 |#1| "failed") |#1|)) (-15 -3370 (|#1| |#1|)))
-((-4179 (((-1162 |#1|) (-914)) 26)))
-(((-584 |#1|) (-10 -7 (-15 -4179 ((-1162 |#1|) (-914)))) (-348)) (T -584))
-((-4179 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-584 *4)) (-4 *4 (-348)))))
-(-10 -7 (-15 -4179 ((-1162 |#1|) (-914))))
-((-2230 (((-582 (-406 (-945 |#1|))) (-582 (-406 (-945 |#1|)))) 27)) (-2563 (((-3 (-315 |#1|) (-638 (-315 |#1|))) (-406 (-945 |#1|)) (-1166)) 34 (|has| |#1| (-146)))) (-3582 (((-638 (-315 |#1|)) (-582 (-406 (-945 |#1|)))) 19)) (-2314 (((-315 |#1|) (-406 (-945 |#1|)) (-1166)) 32 (|has| |#1| (-146)))) (-3200 (((-315 |#1|) (-582 (-406 (-945 |#1|)))) 21)))
-(((-585 |#1|) (-10 -7 (-15 -2230 ((-582 (-406 (-945 |#1|))) (-582 (-406 (-945 |#1|))))) (-15 -3582 ((-638 (-315 |#1|)) (-582 (-406 (-945 |#1|))))) (-15 -3200 ((-315 |#1|) (-582 (-406 (-945 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -2563 ((-3 (-315 |#1|) (-638 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -2314 ((-315 |#1|) (-406 (-945 |#1|)) (-1166)))) |%noBranch|)) (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (T -585))
-((-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-315 *5)) (-5 *1 (-585 *5)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-3 (-315 *5) (-638 (-315 *5)))) (-5 *1 (-585 *5)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-582 (-406 (-945 *4)))) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-315 *4)) (-5 *1 (-585 *4)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-582 (-406 (-945 *4)))) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-638 (-315 *4))) (-5 *1 (-585 *4)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-582 (-406 (-945 *3)))) (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *1 (-585 *3)))))
-(-10 -7 (-15 -2230 ((-582 (-406 (-945 |#1|))) (-582 (-406 (-945 |#1|))))) (-15 -3582 ((-638 (-315 |#1|)) (-582 (-406 (-945 |#1|))))) (-15 -3200 ((-315 |#1|) (-582 (-406 (-945 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -2563 ((-3 (-315 |#1|) (-638 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -2314 ((-315 |#1|) (-406 (-945 |#1|)) (-1166)))) |%noBranch|))
-((-3401 (((-638 (-682 (-561))) (-638 (-561)) (-638 (-898 (-561)))) 45) (((-638 (-682 (-561))) (-638 (-561))) 46) (((-682 (-561)) (-638 (-561)) (-898 (-561))) 41)) (-1608 (((-765) (-638 (-561))) 39)))
-(((-586) (-10 -7 (-15 -1608 ((-765) (-638 (-561)))) (-15 -3401 ((-682 (-561)) (-638 (-561)) (-898 (-561)))) (-15 -3401 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -3401 ((-638 (-682 (-561))) (-638 (-561)) (-638 (-898 (-561))))))) (T -586))
-((-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-561))) (-5 *4 (-638 (-898 (-561)))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-586)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-586)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-561))) (-5 *4 (-898 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-586)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-765)) (-5 *1 (-586)))))
-(-10 -7 (-15 -1608 ((-765) (-638 (-561)))) (-15 -3401 ((-682 (-561)) (-638 (-561)) (-898 (-561)))) (-15 -3401 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -3401 ((-638 (-682 (-561))) (-638 (-561)) (-638 (-898 (-561))))))
-((-3913 (((-638 |#5|) |#5| (-112)) 72)) (-3707 (((-112) |#5| (-638 |#5|)) 30)))
-(((-587 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3913 ((-638 |#5|) |#5| (-112))) (-15 -3707 ((-112) |#5| (-638 |#5|)))) (-13 (-306) (-146)) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -587))
-((-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1099 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-587 *5 *6 *7 *8 *3)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-638 *3)) (-5 *1 (-587 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3913 ((-638 |#5|) |#5| (-112))) (-15 -3707 ((-112) |#5| (-638 |#5|))))
-((-4053 (((-112) $ $) NIL)) (-4322 (((-1125) $) 11)) (-4308 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-588) (-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))) (T -588))
-((-4308 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))))
-(-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))
-((-4053 (((-112) $ $) NIL (|has| (-143) (-1090)))) (-1806 (($ $) 34)) (-3242 (($ $) NIL)) (-1647 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-3857 (((-112) $ $) 51)) (-3834 (((-112) $ $ (-561)) 46)) (-2230 (((-638 $) $ (-143)) 59) (((-638 $) $ (-140)) 60)) (-2097 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-1680 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-844))))) (-1318 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 (((-143) $ (-561) (-143)) 45 (|has| $ (-6 -4400))) (((-143) $ (-1221 (-561)) (-143)) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-1914 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1590 (($ $ (-1221 (-561)) $) 44)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-1475 (($ (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4399))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4399)))) (-2041 (((-143) $ (-561) (-143)) NIL (|has| $ (-6 -4400)))) (-1975 (((-143) $ (-561)) NIL)) (-3878 (((-112) $ $) 71)) (-4266 (((-561) (-1 (-112) (-143)) $) NIL) (((-561) (-143) $) NIL (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) 48 (|has| (-143) (-1090))) (((-561) $ $ (-561)) 47) (((-561) (-140) $ (-561)) 50)) (-2368 (((-638 (-143)) $) NIL (|has| $ (-6 -4399)))) (-1458 (($ (-765) (-143)) 9)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 28 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| (-143) (-844)))) (-3405 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-4125 (((-638 (-143)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-1556 (((-561) $) 42 (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-143) (-844)))) (-4265 (((-112) $ $ (-143)) 72)) (-3822 (((-765) $ $ (-143)) 69)) (-2029 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-2857 (($ $) 37)) (-2501 (($ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1926 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-1883 (((-1148) $) 38 (|has| (-143) (-1090)))) (-3350 (($ (-143) $ (-561)) NIL) (($ $ $ (-561)) 23)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-561) $) 68) (((-1110) $) NIL (|has| (-143) (-1090)))) (-1424 (((-143) $) NIL (|has| (-561) (-844)))) (-3202 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3193 (($ $ (-143)) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-2411 (((-638 (-143)) $) NIL)) (-2508 (((-112) $) 12)) (-2910 (($) 10)) (-2315 (((-143) $ (-561) (-143)) NIL) (((-143) $ (-561)) 52) (($ $ (-1221 (-561))) 21) (($ $ $) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-2879 (($ $ $ (-561)) 65 (|has| $ (-6 -4400)))) (-4225 (($ $) 17)) (-4216 (((-534) $) NIL (|has| (-143) (-609 (-534))))) (-4078 (($ (-638 (-143))) NIL)) (-2754 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-638 $)) 66)) (-4064 (($ (-143)) NIL) (((-856) $) 27 (|has| (-143) (-608 (-856))))) (-3715 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1723 (((-112) $ $) 14 (|has| (-143) (-1090)))) (-1770 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1746 (((-112) $ $) 15 (|has| (-143) (-844)))) (-3548 (((-765) $) 13 (|has| $ (-6 -4399)))))
-(((-589 |#1|) (-13 (-1134) (-10 -8 (-15 -1701 ((-561) $)))) (-561)) (T -589))
-((-1701 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-589 *3)) (-14 *3 *2))))
-(-13 (-1134) (-10 -8 (-15 -1701 ((-561) $))))
-((-1621 (((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2| (-1084 |#4|)) 32)))
-(((-590 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1621 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2| (-1084 |#4|))) (-15 -1621 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2|))) (-787) (-844) (-553) (-942 |#3| |#1| |#2|)) (T -590))
-((-1621 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-553)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561)))) (-5 *1 (-590 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) (-1621 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1084 *3)) (-4 *3 (-942 *7 *6 *4)) (-4 *6 (-787)) (-4 *4 (-844)) (-4 *7 (-553)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561)))) (-5 *1 (-590 *6 *4 *7 *3)))))
-(-10 -7 (-15 -1621 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2| (-1084 |#4|))) (-15 -1621 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 63)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-561)) 54) (($ $ (-561) (-561)) 55)) (-4228 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 60)) (-3783 (($ $) 99)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3232 (((-856) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) (-1019 (-837 (-561))) (-1166) |#1| (-406 (-561))) 223)) (-1543 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 34)) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4372 (((-112) $) NIL)) (-4027 (((-561) $) 58) (((-561) $ (-561)) 59)) (-2252 (((-112) $) NIL)) (-3508 (($ $ (-914)) 76)) (-3236 (($ (-1 |#1| (-561)) $) 73)) (-1750 (((-112) $) 25)) (-1381 (($ |#1| (-561)) 22) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) 67)) (-1623 (($ (-1019 (-837 (-561))) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 13)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-2563 (($ $) 149 (|has| |#1| (-38 (-406 (-561)))))) (-4281 (((-3 $ "failed") $ $ (-112)) 98)) (-3019 (($ $ $) 107)) (-1701 (((-1110) $) NIL)) (-3374 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 15)) (-1785 (((-1019 (-837 (-561))) $) 14)) (-3702 (($ $ (-561)) 45)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-561)))))) (-2315 ((|#1| $ (-561)) 57) (($ $ $) NIL (|has| (-561) (-1102)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-3768 (((-561) $) NIL)) (-3426 (($ $) 46)) (-4064 (((-856) $) NIL) (($ (-561)) 28) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 27 (|has| |#1| (-171)))) (-3932 ((|#1| $ (-561)) 56)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) 37)) (-2298 ((|#1| $) NIL)) (-3228 (($ $) 185 (|has| |#1| (-38 (-406 (-561)))))) (-4273 (($ $) 157 (|has| |#1| (-38 (-406 (-561)))))) (-2372 (($ $) 189 (|has| |#1| (-38 (-406 (-561)))))) (-2773 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-1793 (($ $) 188 (|has| |#1| (-38 (-406 (-561)))))) (-3597 (($ $) 161 (|has| |#1| (-38 (-406 (-561)))))) (-2138 (($ $ (-406 (-561))) 165 (|has| |#1| (-38 (-406 (-561)))))) (-1901 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-561)))))) (-3902 (($ $) 191 (|has| |#1| (-38 (-406 (-561)))))) (-3415 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-3800 (($ $) 190 (|has| |#1| (-38 (-406 (-561)))))) (-4305 (($ $) 163 (|has| |#1| (-38 (-406 (-561)))))) (-1811 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-3722 (($ $) 159 (|has| |#1| (-38 (-406 (-561)))))) (-2417 (($ $) 187 (|has| |#1| (-38 (-406 (-561)))))) (-1315 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-3156 (($ $) 196 (|has| |#1| (-38 (-406 (-561)))))) (-2090 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-3050 (($ $) 193 (|has| |#1| (-38 (-406 (-561)))))) (-2533 (($ $) 167 (|has| |#1| (-38 (-406 (-561)))))) (-2740 (($ $) 200 (|has| |#1| (-38 (-406 (-561)))))) (-4134 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-2036 (($ $) 202 (|has| |#1| (-38 (-406 (-561)))))) (-2147 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-2852 (($ $) 198 (|has| |#1| (-38 (-406 (-561)))))) (-4066 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-3201 (($ $) 195 (|has| |#1| (-38 (-406 (-561)))))) (-1670 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1408 ((|#1| $ (-561)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2246 (($) 29 T CONST)) (-2257 (($) 38 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-1723 (((-112) $ $) 65)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) 84) (($ $ $) 64)) (-1810 (($ $ $) 81)) (** (($ $ (-914)) NIL) (($ $ (-765)) 102)) (* (($ (-914) $) 89) (($ (-765) $) 87) (($ (-561) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-591 |#1|) (-13 (-1232 |#1| (-561)) (-10 -8 (-15 -1623 ($ (-1019 (-837 (-561))) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -1785 ((-1019 (-837 (-561))) $)) (-15 -3374 ((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $)) (-15 -1543 ($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -1750 ((-112) $)) (-15 -3236 ($ (-1 |#1| (-561)) $)) (-15 -4281 ((-3 $ "failed") $ $ (-112))) (-15 -3783 ($ $)) (-15 -3019 ($ $ $)) (-15 -3232 ((-856) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) (-1019 (-837 (-561))) (-1166) |#1| (-406 (-561)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $)) (-15 -1901 ($ $ |#1|)) (-15 -2138 ($ $ (-406 (-561)))) (-15 -3415 ($ $)) (-15 -3902 ($ $)) (-15 -2773 ($ $)) (-15 -1315 ($ $)) (-15 -4273 ($ $)) (-15 -3722 ($ $)) (-15 -3597 ($ $)) (-15 -4305 ($ $)) (-15 -2533 ($ $)) (-15 -1670 ($ $)) (-15 -2090 ($ $)) (-15 -4066 ($ $)) (-15 -4134 ($ $)) (-15 -2147 ($ $)) (-15 -2372 ($ $)) (-15 -2417 ($ $)) (-15 -3228 ($ $)) (-15 -1811 ($ $)) (-15 -1793 ($ $)) (-15 -3800 ($ $)) (-15 -3050 ($ $)) (-15 -3201 ($ $)) (-15 -3156 ($ $)) (-15 -2852 ($ $)) (-15 -2740 ($ $)) (-15 -2036 ($ $))) |%noBranch|))) (-1042)) (T -591))
-((-1750 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-1623 (*1 *1 *2 *3) (-12 (-5 *2 (-1019 (-837 (-561)))) (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *4)))) (-4 *4 (-1042)) (-5 *1 (-591 *4)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-1019 (-837 (-561)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3)))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-3236 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-4281 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-3019 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-3232 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *6)))) (-5 *4 (-1019 (-837 (-561)))) (-5 *5 (-1166)) (-5 *7 (-406 (-561))) (-4 *6 (-1042)) (-5 *2 (-856)) (-5 *1 (-591 *6)))) (-2563 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1901 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2138 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1042)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2773 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1315 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-4273 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3722 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3597 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-4305 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2533 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1670 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2090 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-4066 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-4134 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3228 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1811 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1793 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3050 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3201 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2852 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2740 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2036 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(-13 (-1232 |#1| (-561)) (-10 -8 (-15 -1623 ($ (-1019 (-837 (-561))) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -1785 ((-1019 (-837 (-561))) $)) (-15 -3374 ((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $)) (-15 -1543 ($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -1750 ((-112) $)) (-15 -3236 ($ (-1 |#1| (-561)) $)) (-15 -4281 ((-3 $ "failed") $ $ (-112))) (-15 -3783 ($ $)) (-15 -3019 ($ $ $)) (-15 -3232 ((-856) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) (-1019 (-837 (-561))) (-1166) |#1| (-406 (-561)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $)) (-15 -1901 ($ $ |#1|)) (-15 -2138 ($ $ (-406 (-561)))) (-15 -3415 ($ $)) (-15 -3902 ($ $)) (-15 -2773 ($ $)) (-15 -1315 ($ $)) (-15 -4273 ($ $)) (-15 -3722 ($ $)) (-15 -3597 ($ $)) (-15 -4305 ($ $)) (-15 -2533 ($ $)) (-15 -1670 ($ $)) (-15 -2090 ($ $)) (-15 -4066 ($ $)) (-15 -4134 ($ $)) (-15 -2147 ($ $)) (-15 -2372 ($ $)) (-15 -2417 ($ $)) (-15 -3228 ($ $)) (-15 -1811 ($ $)) (-15 -1793 ($ $)) (-15 -3800 ($ $)) (-15 -3050 ($ $)) (-15 -3201 ($ $)) (-15 -3156 ($ $)) (-15 -2852 ($ $)) (-15 -2740 ($ $)) (-15 -2036 ($ $))) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-1543 (($ (-1146 |#1|)) 9)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) 42)) (-4372 (((-112) $) 52)) (-4027 (((-765) $) 55) (((-765) $ (-765)) 54)) (-2252 (((-112) $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ $) 44 (|has| |#1| (-553)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-1146 |#1|) $) 23)) (-3746 (((-765)) 51)) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) 10 T CONST)) (-2257 (($) 14 T CONST)) (-1723 (((-112) $ $) 22)) (-1819 (($ $) 30) (($ $ $) 16)) (-1810 (($ $ $) 25)) (** (($ $ (-914)) NIL) (($ $ (-765)) 49)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-561)) 36)))
-(((-592 |#1|) (-13 (-1042) (-10 -8 (-15 -1868 ((-1146 |#1|) $)) (-15 -1543 ($ (-1146 |#1|))) (-15 -4372 ((-112) $)) (-15 -4027 ((-765) $)) (-15 -4027 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-561))) (IF (|has| |#1| (-553)) (-6 (-553)) |%noBranch|))) (-1042)) (T -592))
-((-1868 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4027 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))))
-(-13 (-1042) (-10 -8 (-15 -1868 ((-1146 |#1|) $)) (-15 -1543 ($ (-1146 |#1|))) (-15 -4372 ((-112) $)) (-15 -4027 ((-765) $)) (-15 -4027 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-561))) (IF (|has| |#1| (-553)) (-6 (-553)) |%noBranch|)))
-((-4165 (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 15)))
-(((-593 |#1| |#2|) (-10 -7 (-15 -4165 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)))) (-1205) (-1205)) (T -593))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6)))))
-(-10 -7 (-15 -4165 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))))
-((-4165 (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1146 |#2|)) 20) (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-596 |#2|)) 19) (((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|)) 18)))
-(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -4165 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4165 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-596 |#2|))) (-15 -4165 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1146 |#2|)))) (-1205) (-1205) (-1205)) (T -594))
-((-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1146 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-596 *8)) (-5 *1 (-594 *6 *7 *8)))))
-(-10 -7 (-15 -4165 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4165 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-596 |#2|))) (-15 -4165 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1146 |#2|))))
-((-2756 ((|#3| |#3| (-638 (-607 |#3|)) (-638 (-1166))) 55)) (-1660 (((-168 |#2|) |#3|) 117)) (-3889 ((|#3| (-168 |#2|)) 44)) (-2440 ((|#2| |#3|) 19)) (-2726 ((|#3| |#2|) 33)))
-(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3889 (|#3| (-168 |#2|))) (-15 -2440 (|#2| |#3|)) (-15 -2726 (|#3| |#2|)) (-15 -1660 ((-168 |#2|) |#3|)) (-15 -2756 (|#3| |#3| (-638 (-607 |#3|)) (-638 (-1166))))) (-13 (-553) (-844)) (-13 (-429 |#1|) (-995) (-1190)) (-13 (-429 (-168 |#1|)) (-995) (-1190))) (T -595))
-((-2756 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-638 (-1166))) (-4 *2 (-13 (-429 (-168 *5)) (-995) (-1190))) (-4 *5 (-13 (-553) (-844))) (-5 *1 (-595 *5 *6 *2)) (-4 *6 (-13 (-429 *5) (-995) (-1190))))) (-1660 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844))) (-5 *2 (-168 *5)) (-5 *1 (-595 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-995) (-1190))) (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))) (-2726 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844))) (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-995) (-1190))))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844))) (-4 *2 (-13 (-429 *4) (-995) (-1190))) (-5 *1 (-595 *4 *2 *3)) (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190))) (-4 *4 (-13 (-553) (-844))) (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *5 *2)))))
-(-10 -7 (-15 -3889 (|#3| (-168 |#2|))) (-15 -2440 (|#2| |#3|)) (-15 -2726 (|#3| |#2|)) (-15 -1660 ((-168 |#2|) |#3|)) (-15 -2756 (|#3| |#3| (-638 (-607 |#3|)) (-638 (-1166)))))
-((-3612 (($ (-1 (-112) |#1|) $) 17)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-2120 (($ (-1 |#1| |#1|) |#1|) 9)) (-3592 (($ (-1 (-112) |#1|) $) 13)) (-3602 (($ (-1 (-112) |#1|) $) 15)) (-4078 (((-1146 |#1|) $) 18)) (-4064 (((-856) $) NIL)))
-(((-596 |#1|) (-13 (-608 (-856)) (-10 -8 (-15 -4165 ($ (-1 |#1| |#1|) $)) (-15 -3592 ($ (-1 (-112) |#1|) $)) (-15 -3602 ($ (-1 (-112) |#1|) $)) (-15 -3612 ($ (-1 (-112) |#1|) $)) (-15 -2120 ($ (-1 |#1| |#1|) |#1|)) (-15 -4078 ((-1146 |#1|) $)))) (-1205)) (T -596))
-((-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-3592 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-3602 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-2120 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1205)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -4165 ($ (-1 |#1| |#1|) $)) (-15 -3592 ($ (-1 (-112) |#1|) $)) (-15 -3602 ($ (-1 (-112) |#1|) $)) (-15 -3612 ($ (-1 (-112) |#1|) $)) (-15 -2120 ($ (-1 |#1| |#1|) |#1|)) (-15 -4078 ((-1146 |#1|) $))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2920 (($ (-765)) NIL (|has| |#1| (-23)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-2832 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-1458 (($ (-765) |#1|) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1463 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3683 (((-112) $ (-765)) NIL)) (-4310 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-3634 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-3738 (($ $ $) NIL (|has| |#1| (-1042)))) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1819 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1810 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-561) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-597 |#1| |#2|) (-1252 |#1|) (-1205) (-561)) (T -597))
+(-13 (-525) (-855))
+(((-172) . T) ((-525) . T) ((-855) . T))
+((-2937 (((-684 (-1212)) $ (-1212)) NIL)) (-2938 (((-684 (-547)) $ (-547)) NIL)) (-2936 (((-765) $ (-129)) NIL)) (-2939 (((-684 (-128)) $ (-128)) NIL)) (-2150 (((-684 (-1212)) $) NIL)) (-2146 (((-684 (-1211)) $) NIL)) (-2148 (((-684 (-1210)) $) NIL)) (-2151 (((-684 (-547)) $) NIL)) (-2147 (((-684 (-546)) $) NIL)) (-2149 (((-684 (-545)) $) NIL)) (-2145 (((-765) $ (-129)) NIL)) (-2152 (((-684 (-128)) $) NIL)) (-2940 (((-112) $) NIL)) (-2280 (($ (-387)) 14) (($ (-1148)) 16)) (-4353 (((-857) $) NIL)) (-1844 (($ $) NIL)))
+(((-574) (-13 (-573) (-608 (-857)) (-10 -8 (-15 -2280 ($ (-387))) (-15 -2280 ($ (-1148))) (-15 -2940 ((-112) $))))) (T -574))
+((-2280 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574)))))
+(-13 (-573) (-608 (-857)) (-10 -8 (-15 -2280 ($ (-387))) (-15 -2280 ($ (-1148))) (-15 -2940 ((-112) $))))
+((-2947 (((-112) $ $) NIL)) (-3859 (($) 7 T CONST)) (-3643 (((-1148) $) NIL)) (-2282 (($) 6 T CONST)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 14)) (-2281 (($) 8 T CONST)) (-3437 (((-112) $ $) 10)))
+(((-575) (-13 (-1091) (-10 -8 (-15 -2282 ($) -4359) (-15 -3859 ($) -4359) (-15 -2281 ($) -4359)))) (T -575))
+((-2282 (*1 *1) (-5 *1 (-575))) (-3859 (*1 *1) (-5 *1 (-575))) (-2281 (*1 *1) (-5 *1 (-575))))
+(-13 (-1091) (-10 -8 (-15 -2282 ($) -4359) (-15 -3859 ($) -4359) (-15 -2281 ($) -4359)))
+((-2947 (((-112) $ $) NIL)) (-2283 (((-684 $) (-489)) 16)) (-3643 (((-1148) $) NIL)) (-2285 (($ (-1148)) 9)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 31)) (-2284 (((-212 4 (-128)) $) 19)) (-3437 (((-112) $ $) 22)))
+(((-576) (-13 (-1091) (-10 -8 (-15 -2285 ($ (-1148))) (-15 -2284 ((-212 4 (-128)) $)) (-15 -2283 ((-684 $) (-489)))))) (T -576))
+((-2285 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-128))) (-5 *1 (-576)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576)))))
+(-13 (-1091) (-10 -8 (-15 -2285 ($ (-1148))) (-15 -2284 ((-212 4 (-128)) $)) (-15 -2283 ((-684 $) (-489)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ (-544)) 66)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2989 (($ (-1160 (-544)) (-544)) 72)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 58)) (-2990 (($ $) 34)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4178 (((-765) $) 15)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 (((-544)) 29)) (-2991 (((-544) $) 32)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4175 (($ $ (-544)) 21)) (-3865 (((-3 $ "failed") $ $) 59)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) 16)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 61)) (-2993 (((-1143 (-544)) $) 18)) (-3274 (($ $) 23)) (-4353 (((-857) $) 86) (($ (-544)) 52) (($ $) NIL)) (-3511 (((-765)) 14)) (-2212 (((-112) $ $) NIL)) (-4176 (((-544) $ (-544)) 36)) (-3040 (($) 35 T CONST)) (-3046 (($) 19 T CONST)) (-3437 (((-112) $ $) 39)) (-4244 (($ $) 51) (($ $ $) 37)) (-4246 (($ $ $) 50)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 54) (($ $ $) 55)))
+(((-577 |#1| |#2|) (-863 |#1|) (-544) (-112)) (T -577))
+NIL
+(-863 |#1|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 21)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) 47)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 $ "failed") $) 75)) (-3557 (($ $) 74)) (-1939 (($ (-1253 $)) 73)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 32)) (-3377 (($) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 49)) (-1824 (((-112) $) NIL)) (-1914 (($ $) NIL) (($ $ (-765)) NIL)) (-4130 (((-112) $) NIL)) (-4178 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-2545 (((-112) $) NIL)) (-2163 (($) 37 (|has| $ (-367)))) (-2161 (((-112) $) NIL (|has| $ (-367)))) (-3517 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 $) $ (-912)) NIL (|has| $ (-367))) (((-1160 $) $) 83)) (-2160 (((-912) $) 55)) (-1752 (((-1160 $) $) NIL (|has| $ (-367)))) (-1751 (((-3 (-1160 $) "failed") $ $) NIL (|has| $ (-367))) (((-1160 $) $) NIL (|has| $ (-367)))) (-1753 (($ $ (-1160 $)) NIL (|has| $ (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL T CONST)) (-2535 (($ (-912)) 48)) (-4338 (((-112) $) 67)) (-3644 (((-1110) $) NIL)) (-2544 (($) 19 (|has| $ (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 42)) (-4139 (((-404 $) $) NIL)) (-4337 (((-912)) 66) (((-826 (-912))) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-4318 (((-133)) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-4355 (((-912) $) 65) (((-826 (-912)) $) NIL)) (-3586 (((-1160 $)) 82)) (-1818 (($) 54)) (-1754 (($) 38 (|has| $ (-367)))) (-3625 (((-682 $) (-1253 $)) NIL) (((-1253 $) $) 71)) (-4377 (((-544) $) 28)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) 30) (($ $) NIL) (($ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3511 (((-765)) 39)) (-2162 (((-1253 $) (-912)) 77) (((-1253 $)) 76)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 22 T CONST)) (-3046 (($) 18 T CONST)) (-4335 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 26)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 61) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-578 |#1|) (-13 (-349) (-328 $) (-609 (-544))) (-912)) (T -578))
+NIL
+(-13 (-349) (-328 $) (-609 (-544)))
+((-2286 (((-1259) (-1148)) 10)))
+(((-579) (-10 -7 (-15 -2286 ((-1259) (-1148))))) (T -579))
+((-2286 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-579)))))
+(-10 -7 (-15 -2286 ((-1259) (-1148))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 69)) (-3557 ((|#1| $) NIL)) (-2290 ((|#1| $) 26)) (-2288 (((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2291 (($ |#1| (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2289 (((-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) $) 27)) (-3643 (((-1148) $) NIL)) (-3214 (($ |#1| |#1|) 33) (($ |#1| (-1166)) 44 (|has| |#1| (-1031 (-1166))))) (-3644 (((-1110) $) NIL)) (-2287 (((-112) $) 30)) (-4217 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1166)) 82 (|has| |#1| (-893 (-1166))))) (-4353 (((-857) $) 96) (($ |#1|) 25)) (-3040 (($) 16 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) 15) (($ $ $) NIL)) (-4246 (($ $ $) 78)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 14) (($ (-406 (-544)) $) 36) (($ $ (-406 (-544))) NIL)))
+(((-580 |#1|) (-13 (-711 (-406 (-544))) (-1031 |#1|) (-10 -8 (-15 -2291 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2290 (|#1| $)) (-15 -2289 ((-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) $)) (-15 -2288 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2287 ((-112) $)) (-15 -3214 ($ |#1| |#1|)) (-15 -4217 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -4217 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -3214 ($ |#1| (-1166))) |%noBranch|))) (-362)) (T -580))
+((-2291 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *2)) (|:| |logand| (-1160 *2))))) (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-580 *2)))) (-2290 (*1 *2 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *3)) (|:| |logand| (-1160 *3))))) (-5 *1 (-580 *3)) (-4 *3 (-362)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-580 *3)) (-4 *3 (-362)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-362)))) (-3214 (*1 *1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362)))) (-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-580 *2)) (-4 *2 (-362)))) (-4217 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-580 *2)) (-5 *3 (-1166)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *1 (-580 *2)) (-4 *2 (-1031 *3)) (-4 *2 (-362)))))
+(-13 (-711 (-406 (-544))) (-1031 |#1|) (-10 -8 (-15 -2291 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2290 (|#1| $)) (-15 -2289 ((-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) $)) (-15 -2288 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2287 ((-112) $)) (-15 -3214 ($ |#1| |#1|)) (-15 -4217 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -4217 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -3214 ($ |#1| (-1166))) |%noBranch|)))
+((-4365 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)) 30)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -4365 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|))) (-15 -4365 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4365 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4365 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -581))
+((-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-581 *5 *6)))) (-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-581 *5 *2)))) (-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2290 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -2290 *6) (|:| |coeff| *6))) (-5 *1 (-581 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-580 *6)) (-5 *1 (-581 *5 *6)))))
+(-10 -7 (-15 -4365 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|))) (-15 -4365 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4365 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4365 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3822 (((-580 |#2|) (-580 |#2|)) 39)) (-4370 (((-635 |#2|) (-580 |#2|)) 41)) (-2299 ((|#2| (-580 |#2|)) 47)))
+(((-582 |#1| |#2|) (-10 -7 (-15 -3822 ((-580 |#2|) (-580 |#2|))) (-15 -4370 ((-635 |#2|) (-580 |#2|))) (-15 -2299 (|#2| (-580 |#2|)))) (-13 (-450) (-1031 (-544)) (-844) (-634 (-544))) (-13 (-29 |#1|) (-1190))) (T -582))
+((-2299 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-13 (-29 *4) (-1190))) (-5 *1 (-582 *4 *2)) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-580 *5)) (-4 *5 (-13 (-29 *4) (-1190))) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-635 *5)) (-5 *1 (-582 *4 *5)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-580 *4)) (-4 *4 (-13 (-29 *3) (-1190))) (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *1 (-582 *3 *4)))))
+(-10 -7 (-15 -3822 ((-580 |#2|) (-580 |#2|))) (-15 -4370 ((-635 |#2|) (-580 |#2|))) (-15 -2299 (|#2| (-580 |#2|))))
+((-2295 (((-112) |#1|) 16)) (-2296 (((-3 |#1| "failed") |#1|) 14)) (-2293 (((-2 (|:| -3076 |#1|) (|:| -2536 (-765))) |#1|) 30) (((-3 |#1| "failed") |#1| (-765)) 18)) (-2292 (((-112) |#1| (-765)) 19)) (-2297 ((|#1| |#1|) 31)) (-2294 ((|#1| |#1| (-765)) 33)))
+(((-583 |#1|) (-10 -7 (-15 -2292 ((-112) |#1| (-765))) (-15 -2293 ((-3 |#1| "failed") |#1| (-765))) (-15 -2293 ((-2 (|:| -3076 |#1|) (|:| -2536 (-765))) |#1|)) (-15 -2294 (|#1| |#1| (-765))) (-15 -2295 ((-112) |#1|)) (-15 -2296 ((-3 |#1| "failed") |#1|)) (-15 -2297 (|#1| |#1|))) (-543)) (T -583))
+((-2297 (*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2296 (*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2295 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-2294 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2293 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3076 *3) (|:| -2536 (-765)))) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-2293 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -2292 ((-112) |#1| (-765))) (-15 -2293 ((-3 |#1| "failed") |#1| (-765))) (-15 -2293 ((-2 (|:| -3076 |#1|) (|:| -2536 (-765))) |#1|)) (-15 -2294 (|#1| |#1| (-765))) (-15 -2295 ((-112) |#1|)) (-15 -2296 ((-3 |#1| "failed") |#1|)) (-15 -2297 (|#1| |#1|)))
+((-2298 (((-1160 |#1|) (-912)) 26)))
+(((-584 |#1|) (-10 -7 (-15 -2298 ((-1160 |#1|) (-912)))) (-349)) (T -584))
+((-2298 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-584 *4)) (-4 *4 (-349)))))
+(-10 -7 (-15 -2298 ((-1160 |#1|) (-912))))
+((-3822 (((-580 (-406 (-939 |#1|))) (-580 (-406 (-939 |#1|)))) 27)) (-4219 (((-3 (-313 |#1|) (-635 (-313 |#1|))) (-406 (-939 |#1|)) (-1166)) 34 (|has| |#1| (-146)))) (-4370 (((-635 (-313 |#1|)) (-580 (-406 (-939 |#1|)))) 19)) (-2300 (((-313 |#1|) (-406 (-939 |#1|)) (-1166)) 32 (|has| |#1| (-146)))) (-2299 (((-313 |#1|) (-580 (-406 (-939 |#1|)))) 21)))
+(((-585 |#1|) (-10 -7 (-15 -3822 ((-580 (-406 (-939 |#1|))) (-580 (-406 (-939 |#1|))))) (-15 -4370 ((-635 (-313 |#1|)) (-580 (-406 (-939 |#1|))))) (-15 -2299 ((-313 |#1|) (-580 (-406 (-939 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -4219 ((-3 (-313 |#1|) (-635 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2300 ((-313 |#1|) (-406 (-939 |#1|)) (-1166)))) |%noBranch|)) (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (T -585))
+((-2300 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *5)) (-5 *1 (-585 *5)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-3 (-313 *5) (-635 (-313 *5)))) (-5 *1 (-585 *5)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-580 (-406 (-939 *4)))) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *4)) (-5 *1 (-585 *4)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-580 (-406 (-939 *4)))) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-635 (-313 *4))) (-5 *1 (-585 *4)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-580 (-406 (-939 *3)))) (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *1 (-585 *3)))))
+(-10 -7 (-15 -3822 ((-580 (-406 (-939 |#1|))) (-580 (-406 (-939 |#1|))))) (-15 -4370 ((-635 (-313 |#1|)) (-580 (-406 (-939 |#1|))))) (-15 -2299 ((-313 |#1|) (-580 (-406 (-939 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -4219 ((-3 (-313 |#1|) (-635 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2300 ((-313 |#1|) (-406 (-939 |#1|)) (-1166)))) |%noBranch|))
+((-2302 (((-635 (-682 (-544))) (-635 (-544)) (-635 (-895 (-544)))) 45) (((-635 (-682 (-544))) (-635 (-544))) 46) (((-682 (-544)) (-635 (-544)) (-895 (-544))) 41)) (-2301 (((-765) (-635 (-544))) 39)))
+(((-586) (-10 -7 (-15 -2301 ((-765) (-635 (-544)))) (-15 -2302 ((-682 (-544)) (-635 (-544)) (-895 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)) (-635 (-895 (-544))))))) (T -586))
+((-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-544))) (-5 *4 (-635 (-895 (-544)))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-544))) (-5 *4 (-895 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-586)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-765)) (-5 *1 (-586)))))
+(-10 -7 (-15 -2301 ((-765) (-635 (-544)))) (-15 -2302 ((-682 (-544)) (-635 (-544)) (-895 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)) (-635 (-895 (-544))))))
+((-3614 (((-635 |#5|) |#5| (-112)) 72)) (-2303 (((-112) |#5| (-635 |#5|)) 30)))
+(((-587 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3614 ((-635 |#5|) |#5| (-112))) (-15 -2303 ((-112) |#5| (-635 |#5|)))) (-13 (-306) (-146)) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -587))
+((-2303 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1099 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-587 *5 *6 *7 *8 *3)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-635 *3)) (-5 *1 (-587 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3614 ((-635 |#5|) |#5| (-112))) (-15 -2303 ((-112) |#5| (-635 |#5|))))
+((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-588) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -588))
+((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))))
+(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))
+((-2947 (((-112) $ $) NIL (|has| (-143) (-1091)))) (-3830 (($ $) 34)) (-3831 (($ $) NIL)) (-3821 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) 51)) (-3827 (((-112) $ $ (-544)) 46)) (-3822 (((-635 $) $ (-143)) 59) (((-635 $) $ (-140)) 60)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-143) (-844))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-143) $ (-544) (-143)) 45 (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-3819 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-3824 (($ $ (-1220 (-544)) $) 44)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3810 (($ (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) NIL (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) NIL)) (-3829 (((-112) $ $) 71)) (-3823 (((-544) (-1 (-112) (-143)) $) NIL) (((-544) (-143) $) NIL (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) 48 (|has| (-143) (-1091))) (((-544) $ $ (-544)) 47) (((-544) (-140) $ (-544)) 50)) (-2096 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) 9)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 28 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2347 (((-544) $) 42 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) 72)) (-3826 (((-765) $ $ (-143)) 69)) (-2100 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-3832 (($ $) 37)) (-3833 (($ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3820 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-3643 (((-1148) $) 38 (|has| (-143) (-1091)))) (-2421 (($ (-143) $ (-544)) NIL) (($ $ $ (-544)) 23)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-544) $) 68) (((-1110) $) NIL (|has| (-143) (-1091)))) (-4207 (((-143) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2345 (($ $ (-143)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) NIL)) (-3807 (((-112) $) 12)) (-3972 (($) 10)) (-4206 (((-143) $ (-544) (-143)) NIL) (((-143) $ (-544)) 52) (($ $ (-1220 (-544))) 21) (($ $ $) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-1875 (($ $ $ (-544)) 65 (|has| $ (-6 -4401)))) (-3804 (($ $) 17)) (-4377 (((-533) $) NIL (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) NIL)) (-4208 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-635 $)) 66)) (-4353 (($ (-143)) NIL) (((-857) $) 27 (|has| (-143) (-608 (-857))))) (-2099 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| (-143) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3437 (((-112) $ $) 14 (|has| (-143) (-1091)))) (-3066 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3067 (((-112) $ $) 15 (|has| (-143) (-844)))) (-4364 (((-765) $) 13 (|has| $ (-6 -4400)))))
+(((-589 |#1|) (-13 (-1134) (-10 -8 (-15 -3644 ((-544) $)))) (-544)) (T -589))
+((-3644 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-589 *3)) (-14 *3 *2))))
+(-13 (-1134) (-10 -8 (-15 -3644 ((-544) $))))
+((-3931 (((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2| (-1079 |#4|)) 32)))
+(((-590 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2| (-1079 |#4|))) (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2|))) (-787) (-844) (-554) (-943 |#3| |#1| |#2|)) (T -590))
+((-3931 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544)))) (-5 *1 (-590 *5 *4 *6 *3)) (-4 *3 (-943 *6 *5 *4)))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1079 *3)) (-4 *3 (-943 *7 *6 *4)) (-4 *6 (-787)) (-4 *4 (-844)) (-4 *7 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544)))) (-5 *1 (-590 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2| (-1079 |#4|))) (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 63)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 54) (($ $ (-544) (-544)) 55)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 60)) (-2334 (($ $) 99)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2332 (((-857) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) (-1019 (-836 (-544))) (-1166) |#1| (-406 (-544))) 223)) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 34)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3275 (((-112) $) NIL)) (-4178 (((-544) $) 58) (((-544) $ (-544)) 59)) (-2545 (((-112) $) NIL)) (-4183 (($ $ (-912)) 76)) (-4222 (($ (-1 |#1| (-544)) $) 73)) (-4344 (((-112) $) 25)) (-3276 (($ |#1| (-544)) 22) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 67)) (-2338 (($ (-1019 (-836 (-544))) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 13)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $) 149 (|has| |#1| (-38 (-406 (-544)))))) (-2335 (((-3 $ "failed") $ $ (-112)) 98)) (-2333 (($ $ $) 107)) (-3644 (((-1110) $) NIL)) (-2336 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 15)) (-2337 (((-1019 (-836 (-544))) $) 14)) (-4175 (($ $ (-544)) 45)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-544)))))) (-4206 ((|#1| $ (-544)) 57) (($ $ $) NIL (|has| (-544) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-4355 (((-544) $) NIL)) (-3274 (($ $) 46)) (-4353 (((-857) $) NIL) (($ (-544)) 28) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 27 (|has| |#1| (-171)))) (-4084 ((|#1| $ (-544)) 56)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 37)) (-4179 ((|#1| $) NIL)) (-2313 (($ $) 185 (|has| |#1| (-38 (-406 (-544)))))) (-2325 (($ $) 157 (|has| |#1| (-38 (-406 (-544)))))) (-2315 (($ $) 189 (|has| |#1| (-38 (-406 (-544)))))) (-2327 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-2311 (($ $) 188 (|has| |#1| (-38 (-406 (-544)))))) (-2323 (($ $) 161 (|has| |#1| (-38 (-406 (-544)))))) (-2330 (($ $ (-406 (-544))) 165 (|has| |#1| (-38 (-406 (-544)))))) (-2331 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-544)))))) (-2328 (($ $) 191 (|has| |#1| (-38 (-406 (-544)))))) (-2329 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-2310 (($ $) 190 (|has| |#1| (-38 (-406 (-544)))))) (-2322 (($ $) 163 (|has| |#1| (-38 (-406 (-544)))))) (-2312 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-2324 (($ $) 159 (|has| |#1| (-38 (-406 (-544)))))) (-2314 (($ $) 187 (|has| |#1| (-38 (-406 (-544)))))) (-2326 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-2307 (($ $) 196 (|has| |#1| (-38 (-406 (-544)))))) (-2319 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-2309 (($ $) 193 (|has| |#1| (-38 (-406 (-544)))))) (-2321 (($ $) 167 (|has| |#1| (-38 (-406 (-544)))))) (-2305 (($ $) 200 (|has| |#1| (-38 (-406 (-544)))))) (-2317 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-2304 (($ $) 202 (|has| |#1| (-38 (-406 (-544)))))) (-2316 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-2306 (($ $) 198 (|has| |#1| (-38 (-406 (-544)))))) (-2318 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-2308 (($ $) 195 (|has| |#1| (-38 (-406 (-544)))))) (-2320 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4176 ((|#1| $ (-544)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3040 (($) 29 T CONST)) (-3046 (($) 38 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-3437 (((-112) $ $) 65)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) 84) (($ $ $) 64)) (-4246 (($ $ $) 81)) (** (($ $ (-912)) NIL) (($ $ (-765)) 102)) (* (($ (-912) $) 89) (($ (-765) $) 87) (($ (-544) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-591 |#1|) (-13 (-1232 |#1| (-544)) (-10 -8 (-15 -2338 ($ (-1019 (-836 (-544))) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -2337 ((-1019 (-836 (-544))) $)) (-15 -2336 ((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $)) (-15 -4225 ($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -4344 ((-112) $)) (-15 -4222 ($ (-1 |#1| (-544)) $)) (-15 -2335 ((-3 $ "failed") $ $ (-112))) (-15 -2334 ($ $)) (-15 -2333 ($ $ $)) (-15 -2332 ((-857) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) (-1019 (-836 (-544))) (-1166) |#1| (-406 (-544)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (-15 -2331 ($ $ |#1|)) (-15 -2330 ($ $ (-406 (-544)))) (-15 -2329 ($ $)) (-15 -2328 ($ $)) (-15 -2327 ($ $)) (-15 -2326 ($ $)) (-15 -2325 ($ $)) (-15 -2324 ($ $)) (-15 -2323 ($ $)) (-15 -2322 ($ $)) (-15 -2321 ($ $)) (-15 -2320 ($ $)) (-15 -2319 ($ $)) (-15 -2318 ($ $)) (-15 -2317 ($ $)) (-15 -2316 ($ $)) (-15 -2315 ($ $)) (-15 -2314 ($ $)) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $)) (-15 -2310 ($ $)) (-15 -2309 ($ $)) (-15 -2308 ($ $)) (-15 -2307 ($ $)) (-15 -2306 ($ $)) (-15 -2305 ($ $)) (-15 -2304 ($ $))) |%noBranch|))) (-1042)) (T -591))
+((-4344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-2338 (*1 *1 *2 *3) (-12 (-5 *2 (-1019 (-836 (-544)))) (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *4)))) (-4 *4 (-1042)) (-5 *1 (-591 *4)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1019 (-836 (-544)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-2335 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-2334 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-2333 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-2332 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *6)))) (-5 *4 (-1019 (-836 (-544)))) (-5 *5 (-1166)) (-5 *7 (-406 (-544))) (-4 *6 (-1042)) (-5 *2 (-857)) (-5 *1 (-591 *6)))) (-4219 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2331 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2330 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1042)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2328 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2327 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2326 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2322 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2321 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2319 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2317 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2316 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2314 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2310 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2309 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2308 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2307 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(-13 (-1232 |#1| (-544)) (-10 -8 (-15 -2338 ($ (-1019 (-836 (-544))) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -2337 ((-1019 (-836 (-544))) $)) (-15 -2336 ((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $)) (-15 -4225 ($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -4344 ((-112) $)) (-15 -4222 ($ (-1 |#1| (-544)) $)) (-15 -2335 ((-3 $ "failed") $ $ (-112))) (-15 -2334 ($ $)) (-15 -2333 ($ $ $)) (-15 -2332 ((-857) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) (-1019 (-836 (-544))) (-1166) |#1| (-406 (-544)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (-15 -2331 ($ $ |#1|)) (-15 -2330 ($ $ (-406 (-544)))) (-15 -2329 ($ $)) (-15 -2328 ($ $)) (-15 -2327 ($ $)) (-15 -2326 ($ $)) (-15 -2325 ($ $)) (-15 -2324 ($ $)) (-15 -2323 ($ $)) (-15 -2322 ($ $)) (-15 -2321 ($ $)) (-15 -2320 ($ $)) (-15 -2319 ($ $)) (-15 -2318 ($ $)) (-15 -2317 ($ $)) (-15 -2316 ($ $)) (-15 -2315 ($ $)) (-15 -2314 ($ $)) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $)) (-15 -2310 ($ $)) (-15 -2309 ($ $)) (-15 -2308 ($ $)) (-15 -2307 ($ $)) (-15 -2306 ($ $)) (-15 -2305 ($ $)) (-15 -2304 ($ $))) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4225 (($ (-1143 |#1|)) 9)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) 42)) (-3275 (((-112) $) 52)) (-4178 (((-765) $) 55) (((-765) $ (-765)) 54)) (-2545 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ "failed") $ $) 44 (|has| |#1| (-554)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-1143 |#1|) $) 23)) (-3511 (((-765)) 51)) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 10 T CONST)) (-3046 (($) 14 T CONST)) (-3437 (((-112) $ $) 22)) (-4244 (($ $) 30) (($ $ $) 16)) (-4246 (($ $ $) 25)) (** (($ $ (-912)) NIL) (($ $ (-765)) 49)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-544)) 36)))
+(((-592 |#1|) (-13 (-1042) (-10 -8 (-15 -4224 ((-1143 |#1|) $)) (-15 -4225 ($ (-1143 |#1|))) (-15 -3275 ((-112) $)) (-15 -4178 ((-765) $)) (-15 -4178 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-544))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|))) (-1042)) (T -592))
+((-4224 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4178 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))))
+(-13 (-1042) (-10 -8 (-15 -4224 ((-1143 |#1|) $)) (-15 -4225 ($ (-1143 |#1|))) (-15 -3275 ((-112) $)) (-15 -4178 ((-765) $)) (-15 -4178 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-544))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|)))
+((-4365 (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 15)))
+(((-593 |#1| |#2|) (-10 -7 (-15 -4365 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)))) (-1204) (-1204)) (T -593))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6)))))
+(-10 -7 (-15 -4365 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))))
+((-4365 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1143 |#2|)) 20) (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-596 |#2|)) 19) (((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|)) 18)))
+(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1143 |#2|)))) (-1204) (-1204) (-1204)) (T -594))
+((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-596 *8)) (-5 *1 (-594 *6 *7 *8)))))
+(-10 -7 (-15 -4365 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1143 |#2|))))
+((-2343 ((|#3| |#3| (-635 (-606 |#3|)) (-635 (-1166))) 55)) (-2342 (((-167 |#2|) |#3|) 117)) (-2339 ((|#3| (-167 |#2|)) 44)) (-2340 ((|#2| |#3|) 19)) (-2341 ((|#3| |#2|) 33)))
+(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -2339 (|#3| (-167 |#2|))) (-15 -2340 (|#2| |#3|)) (-15 -2341 (|#3| |#2|)) (-15 -2342 ((-167 |#2|) |#3|)) (-15 -2343 (|#3| |#3| (-635 (-606 |#3|)) (-635 (-1166))))) (-13 (-554) (-844)) (-13 (-420 |#1|) (-995) (-1190)) (-13 (-420 (-167 |#1|)) (-995) (-1190))) (T -595))
+((-2343 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-635 (-1166))) (-4 *2 (-13 (-420 (-167 *5)) (-995) (-1190))) (-4 *5 (-13 (-554) (-844))) (-5 *1 (-595 *5 *6 *2)) (-4 *6 (-13 (-420 *5) (-995) (-1190))))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844))) (-5 *2 (-167 *5)) (-5 *1 (-595 *4 *5 *3)) (-4 *5 (-13 (-420 *4) (-995) (-1190))) (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190))))) (-2341 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *3 *2)) (-4 *3 (-13 (-420 *4) (-995) (-1190))))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 *4) (-995) (-1190))) (-5 *1 (-595 *4 *2 *3)) (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190))))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190))) (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *5 *2)))))
+(-10 -7 (-15 -2339 (|#3| (-167 |#2|))) (-15 -2340 (|#2| |#3|)) (-15 -2341 (|#3| |#2|)) (-15 -2342 ((-167 |#2|) |#3|)) (-15 -2343 (|#3| |#3| (-635 (-606 |#3|)) (-635 (-1166)))))
+((-4117 (($ (-1 (-112) |#1|) $) 17)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3856 (($ (-1 |#1| |#1|) |#1|) 9)) (-3855 (($ (-1 (-112) |#1|) $) 13)) (-3854 (($ (-1 (-112) |#1|) $) 15)) (-3929 (((-1143 |#1|) $) 18)) (-4353 (((-857) $) NIL)))
+(((-596 |#1|) (-13 (-608 (-857)) (-10 -8 (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $)) (-15 -4117 ($ (-1 (-112) |#1|) $)) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3929 ((-1143 |#1|) $)))) (-1204)) (T -596))
+((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3855 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1204)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $)) (-15 -4117 ($ (-1 (-112) |#1|) $)) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3929 ((-1143 |#1|) $))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765)) NIL (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4239 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-4123 (((-112) $ (-765)) NIL)) (-4240 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4243 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4241 (($ $ $) NIL (|has| |#1| (-1042)))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4246 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-544) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-597 |#1| |#2|) (-1252 |#1|) (-1204) (-544)) (T -597))
NIL
(-1252 |#1|)
-((-1846 (((-1259) $ |#2| |#2|) 36)) (-3950 ((|#2| $) 23)) (-1556 ((|#2| $) 21)) (-2029 (($ (-1 |#3| |#3|) $) 32)) (-4165 (($ (-1 |#3| |#3|) $) 30)) (-1424 ((|#3| $) 26)) (-3193 (($ $ |#3|) 33)) (-3764 (((-112) |#3| $) 17)) (-2411 (((-638 |#3|) $) 15)) (-2315 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-598 |#1| |#2| |#3|) (-10 -8 (-15 -1846 ((-1259) |#1| |#2| |#2|)) (-15 -3193 (|#1| |#1| |#3|)) (-15 -1424 (|#3| |#1|)) (-15 -3950 (|#2| |#1|)) (-15 -1556 (|#2| |#1|)) (-15 -3764 ((-112) |#3| |#1|)) (-15 -2411 ((-638 |#3|) |#1|)) (-15 -2315 (|#3| |#1| |#2|)) (-15 -2315 (|#3| |#1| |#2| |#3|)) (-15 -2029 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4165 (|#1| (-1 |#3| |#3|) |#1|))) (-599 |#2| |#3|) (-1090) (-1205)) (T -598))
-NIL
-(-10 -8 (-15 -1846 ((-1259) |#1| |#2| |#2|)) (-15 -3193 (|#1| |#1| |#3|)) (-15 -1424 (|#3| |#1|)) (-15 -3950 (|#2| |#1|)) (-15 -1556 (|#2| |#1|)) (-15 -3764 ((-112) |#3| |#1|)) (-15 -2411 ((-638 |#3|) |#1|)) (-15 -2315 (|#3| |#1| |#2|)) (-15 -2315 (|#3| |#1| |#2| |#3|)) (-15 -2029 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4165 (|#1| (-1 |#3| |#3|) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#2| (-1090)))) (-1846 (((-1259) $ |#1| |#1|) 40 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4400)))) (-2674 (($) 7 T CONST)) (-2041 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) 51)) (-2368 (((-638 |#2|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-3950 ((|#1| $) 43 (|has| |#1| (-844)))) (-4125 (((-638 |#2|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399))))) (-1556 ((|#1| $) 44 (|has| |#1| (-844)))) (-2029 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#2| (-1090)))) (-2355 (((-638 |#1|) $) 46)) (-1558 (((-112) |#1| $) 47)) (-1701 (((-1110) $) 21 (|has| |#2| (-1090)))) (-1424 ((|#2| $) 42 (|has| |#1| (-844)))) (-3193 (($ $ |#2|) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1714 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4399))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#2| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#2| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-599 |#1| |#2|) (-139) (-1090) (-1205)) (T -599))
-((-2411 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-638 *4)))) (-1558 (*1 *2 *3 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-2355 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-638 *3)))) (-3764 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090)) (-4 *2 (-844)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090)) (-4 *2 (-844)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1090)) (-4 *3 (-844)) (-4 *2 (-1205)))) (-3193 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-1846 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-1259)))))
-(-13 (-487 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -2411 ((-638 |t#2|) $)) (-15 -1558 ((-112) |t#1| $)) (-15 -2355 ((-638 |t#1|) $)) (IF (|has| |t#2| (-1090)) (IF (|has| $ (-6 -4399)) (-15 -3764 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -1556 (|t#1| $)) (-15 -3950 (|t#1| $)) (-15 -1424 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4400)) (PROGN (-15 -3193 ($ $ |t#2|)) (-15 -1846 ((-1259) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1090)) ((-608 (-856)) -4050 (|has| |#2| (-1090)) (|has| |#2| (-608 (-856)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-1090) |has| |#2| (-1090)) ((-1205) . T))
-((-4064 (((-856) $) 17) (($ (-129)) 13) (((-129) $) 14)))
-(((-600) (-13 (-608 (-856)) (-488 (-129)))) (T -600))
-NIL
-(-13 (-608 (-856)) (-488 (-129)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1204) $) 14) (($ (-638 (-1204))) 13)) (-4052 (((-638 (-1204)) $) 10)) (-1723 (((-112) $ $) NIL)))
-(((-601) (-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4064 ($ (-638 (-1204)))) (-15 -4052 ((-638 (-1204)) $))))) (T -601))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601)))))
-(-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4064 ($ (-638 (-1204)))) (-15 -4052 ((-638 (-1204)) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2385 (((-3 $ "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-3625 (((-1254 (-682 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1254 (-682 |#1|)) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-1426 (((-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-2674 (($) NIL T CONST)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-1763 (((-3 $ "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3615 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3230 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-4196 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3884 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3146 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3187 (($ $ (-914)) NIL)) (-3718 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2477 (((-1162 |#1|) $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2137 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-4292 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3172 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3376 (($ (-1254 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1254 |#1|) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3735 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3400 (((-914)) NIL (|has| |#2| (-366 |#1|)))) (-2949 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3425 (($ $ (-914)) NIL)) (-2203 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3787 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3591 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2699 (((-3 $ "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2960 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-1952 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-4208 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3408 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-4291 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2143 (($ $ (-914)) NIL)) (-4178 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3462 (((-1162 |#1|) $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3659 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-4321 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-4112 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1883 (((-1148) $) NIL)) (-2646 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2227 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1871 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1701 (((-1110) $) NIL)) (-1800 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2315 ((|#1| $ (-561)) NIL (|has| |#2| (-416 |#1|)))) (-3752 (((-682 |#1|) (-1254 $)) NIL (|has| |#2| (-416 |#1|))) (((-1254 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1254 $) (-1254 $)) NIL (|has| |#2| (-366 |#1|))) (((-1254 |#1|) $ (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-4216 (($ (-1254 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1254 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3311 (((-638 (-945 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-638 (-945 |#1|)) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3047 (($ $ $) NIL)) (-2619 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4064 (((-856) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2615 (((-1254 $)) NIL (|has| |#2| (-416 |#1|)))) (-2541 (((-638 (-1254 |#1|))) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2748 (($ $ $ $) NIL)) (-3498 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1363 (($ (-682 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-2897 (($ $ $) NIL)) (-1999 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2136 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3030 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2246 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) 24)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-602 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4064 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -602))
-((-4064 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3)))))
-(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4064 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-2254 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) 33)) (-1446 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL) (($) NIL)) (-1846 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-1148) |#1|) 43)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#1| "failed") (-1148) $) 46)) (-2674 (($) NIL T CONST)) (-2848 (($ $ (-1148)) 24)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090))))) (-3222 (((-3 |#1| "failed") (-1148) $) 47) (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (($ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (|has| $ (-6 -4399)))) (-1475 (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (($ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090))))) (-3176 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090))))) (-1769 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) 32)) (-2041 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-1148)) NIL)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399))) (((-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-2190 (($ $) 48)) (-3368 (($ (-387)) 22) (($ (-387) (-1148)) 21)) (-3305 (((-387) $) 34)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-1148) $) NIL (|has| (-1148) (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399))) (((-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (((-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090))))) (-1556 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-2066 (((-638 (-1148)) $) 39)) (-2492 (((-112) (-1148) $) NIL)) (-3391 (((-1148) $) 35)) (-3721 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL)) (-2355 (((-638 (-1148)) $) NIL)) (-1558 (((-112) (-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 ((|#1| $) NIL (|has| (-1148) (-844)))) (-3202 (((-3 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) "failed") (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ $ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ $ (-638 (-293 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 37)) (-2315 ((|#1| $ (-1148) |#1|) NIL) ((|#1| $ (-1148)) 42)) (-3643 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL) (($) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (((-765) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (((-765) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL)) (-4064 (((-856) $) 20)) (-3550 (($ $) 25)) (-1903 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 19)) (-3548 (((-765) $) 41 (|has| $ (-6 -4399)))))
-(((-603 |#1|) (-13 (-363 (-387) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4399) (-15 -2190 ($ $)))) (-1090)) (T -603))
-((-2190 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1090)))))
-(-13 (-363 (-387) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4399) (-15 -2190 ($ $))))
-((-4288 (((-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) $) 15)) (-2066 (((-638 |#2|) $) 19)) (-2492 (((-112) |#2| $) 12)))
-(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -2066 ((-638 |#2|) |#1|)) (-15 -2492 ((-112) |#2| |#1|)) (-15 -4288 ((-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|))) (-605 |#2| |#3|) (-1090) (-1090)) (T -604))
-NIL
-(-10 -8 (-15 -2066 ((-638 |#2|) |#1|)) (-15 -2492 ((-112) |#2| |#1|)) (-15 -4288 ((-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 55 (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) 61)) (-2674 (($) 7 T CONST)) (-1461 (($ $) 58 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 46 (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) 62)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 54 (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 56 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 53 (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 52 (|has| $ (-6 -4399)))) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-2066 (((-638 |#1|) $) 63)) (-2492 (((-112) |#1| $) 64)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 39)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 40)) (-1701 (((-1110) $) 21 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 51)) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 41)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) 26 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 25 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 24 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 23 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-3643 (($) 49) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 48)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 31 (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 50)) (-4064 (((-856) $) 18 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 42)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-605 |#1| |#2|) (-139) (-1090) (-1090)) (T -605))
-((-2492 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-112)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-638 *3)))) (-3222 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-1468 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
-(-13 (-228 (-2 (|:| -2285 |t#1|) (|:| -2677 |t#2|))) (-10 -8 (-15 -2492 ((-112) |t#1| $)) (-15 -2066 ((-638 |t#1|) $)) (-15 -3222 ((-3 |t#2| "failed") |t#1| $)) (-15 -1468 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((-102) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) ((-608 (-856)) -4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856)))) ((-150 #0#) . T) ((-609 (-534)) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-487 #0#) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-1090) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) ((-1205) . T))
-((-3790 (((-607 |#2|) |#1|) 15)) (-2464 (((-3 |#1| "failed") (-607 |#2|)) 19)))
-(((-606 |#1| |#2|) (-10 -7 (-15 -3790 ((-607 |#2|) |#1|)) (-15 -2464 ((-3 |#1| "failed") (-607 |#2|)))) (-844) (-844)) (T -606))
-((-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-607 *4)) (-4 *4 (-844)) (-4 *2 (-844)) (-5 *1 (-606 *2 *4)))) (-3790 (*1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *1 (-606 *3 *4)) (-4 *3 (-844)) (-4 *4 (-844)))))
-(-10 -7 (-15 -3790 ((-607 |#2|) |#1|)) (-15 -2464 ((-3 |#1| "failed") (-607 |#2|))))
-((-4053 (((-112) $ $) NIL)) (-3420 (((-3 (-1166) "failed") $) 37)) (-2636 (((-1259) $ (-765)) 26)) (-4266 (((-765) $) 25)) (-1773 (((-114) $) 12)) (-3305 (((-1166) $) 20)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-4154 (($ (-114) (-638 |#1|) (-765)) 30) (($ (-1166)) 31)) (-4188 (((-112) $ (-114)) 18) (((-112) $ (-1166)) 16)) (-3093 (((-765) $) 22)) (-1701 (((-1110) $) NIL)) (-4216 (((-885 (-561)) $) 77 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 84 (|has| |#1| (-609 (-885 (-378))))) (((-534) $) 69 (|has| |#1| (-609 (-534))))) (-4064 (((-856) $) 55)) (-2774 (((-638 |#1|) $) 24)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 41)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 42)))
-(((-607 |#1|) (-13 (-131) (-877 |#1|) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -1773 ((-114) $)) (-15 -2774 ((-638 |#1|) $)) (-15 -3093 ((-765) $)) (-15 -4154 ($ (-114) (-638 |#1|) (-765))) (-15 -4154 ($ (-1166))) (-15 -3420 ((-3 (-1166) "failed") $)) (-15 -4188 ((-112) $ (-114))) (-15 -4188 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|))) (-844)) (T -607))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-4154 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-844)) (-5 *1 (-607 *5)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-3420 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844)))))
-(-13 (-131) (-877 |#1|) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -1773 ((-114) $)) (-15 -2774 ((-638 |#1|) $)) (-15 -3093 ((-765) $)) (-15 -4154 ($ (-114) (-638 |#1|) (-765))) (-15 -4154 ($ (-1166))) (-15 -3420 ((-3 (-1166) "failed") $)) (-15 -4188 ((-112) $ (-114))) (-15 -4188 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|)))
-((-4064 ((|#1| $) 6)))
-(((-608 |#1|) (-139) (-1205)) (T -608))
-((-4064 (*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1205)))))
-(-13 (-10 -8 (-15 -4064 (|t#1| $))))
-((-4216 ((|#1| $) 6)))
-(((-609 |#1|) (-139) (-1205)) (T -609))
-((-4216 (*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1205)))))
-(-13 (-10 -8 (-15 -4216 (|t#1| $))))
-((-3982 (((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)) 15) (((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16)))
-(((-610 |#1| |#2|) (-10 -7 (-15 -3982 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -3982 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561)))) (-1230 |#1|)) (T -610))
-((-3982 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-1162 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6)))) (-3982 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4)) (-5 *2 (-1162 (-406 *5))) (-5 *1 (-610 *4 *5)) (-5 *3 (-406 *5)))))
-(-10 -7 (-15 -3982 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -3982 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|))))
-((-4064 (($ |#1|) 6)))
-(((-611 |#1|) (-139) (-1205)) (T -611))
-((-4064 (*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1205)))))
-(-13 (-10 -8 (-15 -4064 ($ |t#1|))))
-((-4053 (((-112) $ $) NIL)) (-4375 (($) 8 T CONST)) (-2785 (($) 9 T CONST)) (-2208 (($ $ $) 21)) (-2186 (($ $) 19)) (-1883 (((-1148) $) NIL)) (-2415 (($ $ $) 22)) (-1701 (((-1110) $) NIL)) (-1614 (($) 7 T CONST)) (-2656 (($ $ $) 23)) (-4064 (((-856) $) 27)) (-2234 (((-112) $ (|[\|\|]| -1614)) 16) (((-112) $ (|[\|\|]| -4375)) 18) (((-112) $ (|[\|\|]| -2785)) 14)) (-2198 (($ $ $) 20)) (-1723 (((-112) $ $) 12)))
-(((-612) (-13 (-960) (-10 -8 (-15 -1614 ($) -1494) (-15 -4375 ($) -1494) (-15 -2785 ($) -1494) (-15 -2234 ((-112) $ (|[\|\|]| -1614))) (-15 -2234 ((-112) $ (|[\|\|]| -4375))) (-15 -2234 ((-112) $ (|[\|\|]| -2785)))))) (T -612))
-((-1614 (*1 *1) (-5 *1 (-612))) (-4375 (*1 *1) (-5 *1 (-612))) (-2785 (*1 *1) (-5 *1 (-612))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1614)) (-5 *2 (-112)) (-5 *1 (-612)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4375)) (-5 *2 (-112)) (-5 *1 (-612)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2785)) (-5 *2 (-112)) (-5 *1 (-612)))))
-(-13 (-960) (-10 -8 (-15 -1614 ($) -1494) (-15 -4375 ($) -1494) (-15 -2785 ($) -1494) (-15 -2234 ((-112) $ (|[\|\|]| -1614))) (-15 -2234 ((-112) $ (|[\|\|]| -4375))) (-15 -2234 ((-112) $ (|[\|\|]| -2785)))))
-((-4216 (($ |#1|) 6)))
-(((-613 |#1|) (-139) (-1205)) (T -613))
-((-4216 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1205)))))
-(-13 (-10 -8 (-15 -4216 ($ |t#1|))))
-((-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) 10)))
-(((-614 |#1| |#2|) (-10 -8 (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-615 |#2|) (-1042)) (T -614))
-NIL
-(-10 -8 (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 36)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-615 |#1|) (-139) (-1042)) (T -615))
-((-4064 (*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1042)))))
-(-13 (-1042) (-641 |t#1|) (-10 -8 (-15 -4064 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1659 (((-561) $) NIL (|has| |#1| (-842)))) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-1784 (((-112) $) NIL (|has| |#1| (-842)))) (-2252 (((-112) $) NIL)) (-4077 ((|#1| $) 13)) (-3271 (((-112) $) NIL (|has| |#1| (-842)))) (-1597 (($ $ $) NIL (|has| |#1| (-842)))) (-3017 (($ $ $) NIL (|has| |#1| (-842)))) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4088 ((|#3| $) 15)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL)) (-3746 (((-765)) 20)) (-2165 (($ $) NIL (|has| |#1| (-842)))) (-2246 (($) NIL T CONST)) (-2257 (($) 12 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1828 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-616 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -1828 ($ $ |#3|)) (-15 -1828 ($ |#1| |#3|)) (-15 -4077 (|#1| $)) (-15 -4088 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -616))
-((-1828 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-1828 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-616 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-4077 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-616 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-4088 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -1828 ($ $ |#3|)) (-15 -1828 ($ |#1| |#3|)) (-15 -4077 (|#1| $)) (-15 -4088 (|#3| $))))
-((-3218 ((|#2| |#2| (-1166) (-1166)) 18)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -3218 (|#2| |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-29 |#1|))) (T -617))
-((-3218 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-952) (-29 *4))))))
-(-10 -7 (-15 -3218 (|#2| |#2| (-1166) (-1166))))
-((-4053 (((-112) $ $) 56)) (-4306 (((-112) $) 52)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-1919 ((|#1| $) 49)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2241 (((-2 (|:| -2155 $) (|:| -1353 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) 24)) (-3735 (((-3 $ "failed") $) 75)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-4027 (((-561) $) 19)) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) 36)) (-1381 (($ |#1| (-561)) 21)) (-1572 ((|#1| $) 51)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 101 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1748 (((-3 $ "failed") $ $) 79)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1905 (((-765) $) 100 (|has| |#1| (-362)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 99 (|has| |#1| (-362)))) (-3922 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3768 (((-561) $) 34)) (-4216 (((-406 |#2|) $) 42)) (-4064 (((-856) $) 62) (($ (-561)) 32) (($ $) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 31) (($ |#2|) 22)) (-3932 ((|#1| $ (-561)) 63)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) 29)) (-3996 (((-112) $ $) NIL)) (-2246 (($) 9 T CONST)) (-2257 (($) 12 T CONST)) (-3154 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1723 (((-112) $ $) 17)) (-1819 (($ $) 46) (($ $ $) NIL)) (-1810 (($ $ $) 76)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 26) (($ $ $) 44)))
-(((-618 |#1| |#2|) (-13 (-230 |#2|) (-553) (-609 (-406 |#2|)) (-410 |#1|) (-1031 |#2|) (-10 -8 (-15 -1750 ((-112) $)) (-15 -3768 ((-561) $)) (-15 -4027 ((-561) $)) (-15 -1598 ($ $)) (-15 -1572 (|#1| $)) (-15 -1919 (|#1| $)) (-15 -3932 (|#1| $ (-561))) (-15 -1381 ($ |#1| (-561))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -2241 ((-2 (|:| -2155 $) (|:| -1353 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-553) (-1230 |#1|)) (T -618))
-((-1750 (*1 *2 *1) (-12 (-4 *3 (-553)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1230 *3)))) (-3768 (*1 *2 *1) (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1230 *3)))) (-4027 (*1 *2 *1) (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1230 *3)))) (-1598 (*1 *1 *1) (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1230 *2)))) (-1572 (*1 *2 *1) (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1230 *2)))) (-1919 (*1 *2 *1) (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1230 *2)))) (-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1230 *2)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1230 *2)))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-553)) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| -2155 (-618 *4 *5)) (|:| -1353 (-406 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5)))))
-(-13 (-230 |#2|) (-553) (-609 (-406 |#2|)) (-410 |#1|) (-1031 |#2|) (-10 -8 (-15 -1750 ((-112) $)) (-15 -3768 ((-561) $)) (-15 -4027 ((-561) $)) (-15 -1598 ($ $)) (-15 -1572 (|#1| $)) (-15 -1919 (|#1| $)) (-15 -3932 (|#1| $ (-561))) (-15 -1381 ($ |#1| (-561))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -2241 ((-2 (|:| -2155 $) (|:| -1353 (-406 |#2|))) (-406 |#2|)))) |%noBranch|)))
-((-3742 (((-638 |#6|) (-638 |#4|) (-112)) 46)) (-3403 ((|#6| |#6|) 39)))
-(((-619 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3403 (|#6| |#6|)) (-15 -3742 ((-638 |#6|) (-638 |#4|) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2| |#3| |#4|)) (T -619))
-((-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *10)) (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *10 (-1099 *5 *6 *7 *8)))) (-3403 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-619 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3403 (|#6| |#6|)) (-15 -3742 ((-638 |#6|) (-638 |#4|) (-112))))
-((-2166 (((-112) |#3| (-765) (-638 |#3|)) 23)) (-1931 (((-3 (-2 (|:| |polfac| (-638 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-638 (-1162 |#3|)))) "failed") |#3| (-638 (-1162 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-638 (-2 (|:| |irr| |#4|) (|:| -3453 (-561)))))) (-638 |#3|) (-638 |#1|) (-638 |#3|)) 55)))
-(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2166 ((-112) |#3| (-765) (-638 |#3|))) (-15 -1931 ((-3 (-2 (|:| |polfac| (-638 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-638 (-1162 |#3|)))) "failed") |#3| (-638 (-1162 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-638 (-2 (|:| |irr| |#4|) (|:| -3453 (-561)))))) (-638 |#3|) (-638 |#1|) (-638 |#3|)))) (-844) (-787) (-306) (-942 |#3| |#2| |#1|)) (T -620))
-((-1931 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2762 (-638 (-2 (|:| |irr| *10) (|:| -3453 (-561))))))) (-5 *6 (-638 *3)) (-5 *7 (-638 *8)) (-4 *8 (-844)) (-4 *3 (-306)) (-4 *10 (-942 *3 *9 *8)) (-4 *9 (-787)) (-5 *2 (-2 (|:| |polfac| (-638 *10)) (|:| |correct| *3) (|:| |corrfact| (-638 (-1162 *3))))) (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-638 (-1162 *3))))) (-2166 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-765)) (-5 *5 (-638 *3)) (-4 *3 (-306)) (-4 *6 (-844)) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8)) (-4 *8 (-942 *3 *7 *6)))))
-(-10 -7 (-15 -2166 ((-112) |#3| (-765) (-638 |#3|))) (-15 -1931 ((-3 (-2 (|:| |polfac| (-638 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-638 (-1162 |#3|)))) "failed") |#3| (-638 (-1162 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-638 (-2 (|:| |irr| |#4|) (|:| -3453 (-561)))))) (-638 |#3|) (-638 |#1|) (-638 |#3|))))
-((-4053 (((-112) $ $) NIL)) (-4322 (((-1125) $) 11)) (-4308 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-621) (-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))) (T -621))
-((-4308 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))))
-(-13 (-1073) (-10 -8 (-15 -4308 ((-1125) $)) (-15 -4322 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-2844 (((-638 |#1|) $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-3658 (($ $) 67)) (-4364 (((-657 |#1| |#2|) $) 52)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 70)) (-2980 (((-638 (-293 |#2|)) $ $) 33)) (-1701 (((-1110) $) NIL)) (-3486 (($ (-657 |#1| |#2|)) 48)) (-2076 (($ $ $) NIL)) (-3047 (($ $ $) NIL)) (-4064 (((-856) $) 58) (((-1269 |#1| |#2|) $) NIL) (((-1274 |#1| |#2|) $) 66)) (-2257 (($) 53 T CONST)) (-2554 (((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) 31)) (-1651 (((-638 (-657 |#1| |#2|)) (-638 |#1|)) 65)) (-4299 (((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) 37)) (-1723 (((-112) $ $) 54)) (-1828 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ $ $) 44)))
-(((-622 |#1| |#2| |#3|) (-13 (-471) (-10 -8 (-15 -3486 ($ (-657 |#1| |#2|))) (-15 -4364 ((-657 |#1| |#2|) $)) (-15 -4299 ((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4064 ((-1269 |#1| |#2|) $)) (-15 -4064 ((-1274 |#1| |#2|) $)) (-15 -3658 ($ $)) (-15 -2844 ((-638 |#1|) $)) (-15 -1651 ((-638 (-657 |#1| |#2|)) (-638 |#1|))) (-15 -2554 ((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -2980 ((-638 (-293 |#2|)) $ $)))) (-844) (-13 (-171) (-711 (-406 (-561)))) (-914)) (T -622))
-((-3486 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-5 *1 (-622 *3 *4 *5)) (-14 *5 (-914)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| (-886 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-3658 (*1 *1 *1) (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-13 (-171) (-711 (-406 (-561))))) (-14 *4 (-914)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-657 *4 *5))) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-561))))) (-14 *6 (-914)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| (-665 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-2980 (*1 *2 *1 *1) (-12 (-5 *2 (-638 (-293 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))))
-(-13 (-471) (-10 -8 (-15 -3486 ($ (-657 |#1| |#2|))) (-15 -4364 ((-657 |#1| |#2|) $)) (-15 -4299 ((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4064 ((-1269 |#1| |#2|) $)) (-15 -4064 ((-1274 |#1| |#2|) $)) (-15 -3658 ($ $)) (-15 -2844 ((-638 |#1|) $)) (-15 -1651 ((-638 (-657 |#1| |#2|)) (-638 |#1|))) (-15 -2554 ((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -2980 ((-638 (-293 |#2|)) $ $))))
-((-3742 (((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112)) 71) (((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112)) 57)) (-2256 (((-112) (-638 (-774 |#1| (-858 |#2|)))) 23)) (-2420 (((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112)) 70)) (-2888 (((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112)) 56)) (-1907 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|)))) 27)) (-3136 (((-3 (-638 (-774 |#1| (-858 |#2|))) "failed") (-638 (-774 |#1| (-858 |#2|)))) 26)))
-(((-623 |#1| |#2|) (-10 -7 (-15 -2256 ((-112) (-638 (-774 |#1| (-858 |#2|))))) (-15 -3136 ((-3 (-638 (-774 |#1| (-858 |#2|))) "failed") (-638 (-774 |#1| (-858 |#2|))))) (-15 -1907 ((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))))) (-15 -2888 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2420 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3742 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3742 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112)))) (-450) (-638 (-1166))) (T -623))
-((-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))) (-3136 (*1 *2 *2) (|partial| -12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-638 (-774 *4 (-858 *5)))) (-4 *4 (-450)) (-14 *5 (-638 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5)))))
-(-10 -7 (-15 -2256 ((-112) (-638 (-774 |#1| (-858 |#2|))))) (-15 -3136 ((-3 (-638 (-774 |#1| (-858 |#2|))) "failed") (-638 (-774 |#1| (-858 |#2|))))) (-15 -1907 ((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))))) (-15 -2888 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2420 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3742 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3742 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112))))
-((-3014 (($ $) 38)) (-4106 (($ $) 21)) (-4213 (($ $) 37)) (-4085 (($ $) 22)) (-3039 (($ $) 36)) (-4130 (($ $) 23)) (-4111 (($) 48)) (-4364 (($ $) 45)) (-1977 (($ $) 17)) (-1684 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6)) (-3486 (($ $) 46)) (-4035 (($ $) 15)) (-4072 (($ $) 16)) (-3052 (($ $) 35)) (-4140 (($ $) 24)) (-3026 (($ $) 34)) (-4118 (($ $) 25)) (-3002 (($ $) 33)) (-4097 (($ $) 26)) (-3086 (($ $) 44)) (-4175 (($ $) 32)) (-3064 (($ $) 43)) (-4150 (($ $) 31)) (-3113 (($ $) 42)) (-4192 (($ $) 30)) (-2821 (($ $) 41)) (-4202 (($ $) 29)) (-3099 (($ $) 40)) (-4184 (($ $) 28)) (-3076 (($ $) 39)) (-4162 (($ $) 27)) (-1862 (($ $) 19)) (-1345 (($ $) 20)) (-2604 (($ $) 18)) (** (($ $ $) 47)))
-(((-624) (-139)) (T -624))
-((-1345 (*1 *1 *1) (-4 *1 (-624))) (-1862 (*1 *1 *1) (-4 *1 (-624))) (-2604 (*1 *1 *1) (-4 *1 (-624))) (-1977 (*1 *1 *1) (-4 *1 (-624))) (-4072 (*1 *1 *1) (-4 *1 (-624))) (-4035 (*1 *1 *1) (-4 *1 (-624))))
-(-13 (-952) (-1190) (-10 -8 (-15 -1345 ($ $)) (-15 -1862 ($ $)) (-15 -2604 ($ $)) (-15 -1977 ($ $)) (-15 -4072 ($ $)) (-15 -4035 ($ $))))
-(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-952) . T) ((-1190) . T) ((-1193) . T))
-((-1773 (((-114) (-114)) 83)) (-1977 ((|#2| |#2|) 30)) (-1684 ((|#2| |#2| (-1082 |#2|)) 79) ((|#2| |#2| (-1166)) 52)) (-4035 ((|#2| |#2|) 29)) (-4072 ((|#2| |#2|) 31)) (-3333 (((-112) (-114)) 34)) (-1862 ((|#2| |#2|) 26)) (-1345 ((|#2| |#2|) 28)) (-2604 ((|#2| |#2|) 27)))
-(((-625 |#1| |#2|) (-10 -7 (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -1345 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -1684 (|#2| |#2| (-1166))) (-15 -1684 (|#2| |#2| (-1082 |#2|)))) (-13 (-844) (-553)) (-13 (-429 |#1|) (-995) (-1190))) (T -625))
-((-1684 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-995) (-1190))) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2)))) (-1684 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2)) (-4 *2 (-13 (-429 *4) (-995) (-1190))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-1977 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *4)) (-4 *4 (-13 (-429 *3) (-995) (-1190))))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190))))))
-(-10 -7 (-15 -3333 ((-112) (-114))) (-15 -1773 ((-114) (-114))) (-15 -1345 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -1684 (|#2| |#2| (-1166))) (-15 -1684 (|#2| |#2| (-1082 |#2|))))
-((-3786 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-3385 (((-638 (-246 |#1| |#2|)) (-638 (-479 |#1| |#2|))) 68)) (-4191 (((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-858 |#1|)) 70) (((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)) (-858 |#1|)) 69)) (-3921 (((-2 (|:| |gblist| (-638 (-246 |#1| |#2|))) (|:| |gvlist| (-638 (-561)))) (-638 (-479 |#1| |#2|))) 108)) (-2567 (((-638 (-479 |#1| |#2|)) (-858 |#1|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|))) 83)) (-3125 (((-2 (|:| |glbase| (-638 (-246 |#1| |#2|))) (|:| |glval| (-638 (-561)))) (-638 (-246 |#1| |#2|))) 118)) (-2718 (((-1254 |#2|) (-479 |#1| |#2|) (-638 (-479 |#1| |#2|))) 58)) (-3183 (((-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|))) 41)) (-1972 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|))) 50)) (-2424 (((-246 |#1| |#2|) (-638 |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|))) 91)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -3921 ((-2 (|:| |gblist| (-638 (-246 |#1| |#2|))) (|:| |gvlist| (-638 (-561)))) (-638 (-479 |#1| |#2|)))) (-15 -3125 ((-2 (|:| |glbase| (-638 (-246 |#1| |#2|))) (|:| |glval| (-638 (-561)))) (-638 (-246 |#1| |#2|)))) (-15 -3385 ((-638 (-246 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -4191 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -4191 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -3183 ((-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -2718 ((-1254 |#2|) (-479 |#1| |#2|) (-638 (-479 |#1| |#2|)))) (-15 -2424 ((-246 |#1| |#2|) (-638 |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -2567 ((-638 (-479 |#1| |#2|)) (-858 |#1|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -1972 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -3786 ((-479 |#1| |#2|) (-246 |#1| |#2|)))) (-638 (-1166)) (-450)) (T -626))
-((-3786 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5)))) (-1972 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-2567 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-858 *4)) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-2424 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-246 *5 *6))) (-4 *6 (-450)) (-5 *2 (-246 *5 *6)) (-14 *5 (-638 (-1166))) (-5 *1 (-626 *5 *6)))) (-2718 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-1254 *6)) (-5 *1 (-626 *5 *6)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-638 (-479 *3 *4))) (-14 *3 (-638 (-1166))) (-4 *4 (-450)) (-5 *1 (-626 *3 *4)))) (-4191 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-4191 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-638 (-246 *4 *5))) (-5 *1 (-626 *4 *5)))) (-3125 (*1 *2 *3) (-12 (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |glbase| (-638 (-246 *4 *5))) (|:| |glval| (-638 (-561))))) (-5 *1 (-626 *4 *5)) (-5 *3 (-638 (-246 *4 *5))))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |gblist| (-638 (-246 *4 *5))) (|:| |gvlist| (-638 (-561))))) (-5 *1 (-626 *4 *5)))))
-(-10 -7 (-15 -3921 ((-2 (|:| |gblist| (-638 (-246 |#1| |#2|))) (|:| |gvlist| (-638 (-561)))) (-638 (-479 |#1| |#2|)))) (-15 -3125 ((-2 (|:| |glbase| (-638 (-246 |#1| |#2|))) (|:| |glval| (-638 (-561)))) (-638 (-246 |#1| |#2|)))) (-15 -3385 ((-638 (-246 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -4191 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -4191 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -3183 ((-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -2718 ((-1254 |#2|) (-479 |#1| |#2|) (-638 (-479 |#1| |#2|)))) (-15 -2424 ((-246 |#1| |#2|) (-638 |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -2567 ((-638 (-479 |#1| |#2|)) (-858 |#1|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -1972 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -3786 ((-479 |#1| |#2|) (-246 |#1| |#2|))))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) NIL)) (-1846 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 (((-52) $ (-1148) (-52)) 16) (((-52) $ (-1166) (-52)) 17)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 (-52) "failed") (-1148) $) NIL)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090))))) (-3222 (($ (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-3 (-52) "failed") (-1148) $) NIL)) (-1475 (($ (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $ (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (((-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $ (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-2041 (((-52) $ (-1148) (-52)) NIL (|has| $ (-6 -4400)))) (-1975 (((-52) $ (-1148)) NIL)) (-2368 (((-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-638 (-52)) $) NIL (|has| $ (-6 -4399)))) (-2190 (($ $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-1148) $) NIL (|has| (-1148) (-844)))) (-4125 (((-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-638 (-52)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090))))) (-1556 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1549 (($ (-387)) 9)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090))))) (-2066 (((-638 (-1148)) $) NIL)) (-2492 (((-112) (-1148) $) NIL)) (-3721 (((-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) $) NIL)) (-1617 (($ (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) $) NIL)) (-2355 (((-638 (-1148)) $) NIL)) (-1558 (((-112) (-1148) $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090))))) (-1424 (((-52) $) NIL (|has| (-1148) (-844)))) (-3202 (((-3 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) "failed") (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL)) (-3193 (($ $ (-52)) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (($ $ (-293 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (($ $ (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (($ $ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (($ $ (-638 (-52)) (-638 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-638 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090))))) (-2411 (((-638 (-52)) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 (((-52) $ (-1148)) 14) (((-52) $ (-1148) (-52)) NIL) (((-52) $ (-1166)) 15)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090)))) (((-765) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090)))) (((-765) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-52) (-608 (-856))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 (-52))) (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-627) (-13 (-1181 (-1148) (-52)) (-10 -8 (-15 -1549 ($ (-387))) (-15 -2190 ($ $)) (-15 -2315 ((-52) $ (-1166))) (-15 -4207 ((-52) $ (-1166) (-52)))))) (T -627))
-((-1549 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627)))) (-2190 (*1 *1 *1) (-5 *1 (-627))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-52)) (-5 *1 (-627)))) (-4207 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1166)) (-5 *1 (-627)))))
-(-13 (-1181 (-1148) (-52)) (-10 -8 (-15 -1549 ($ (-387))) (-15 -2190 ($ $)) (-15 -2315 ((-52) $ (-1166))) (-15 -4207 ((-52) $ (-1166) (-52)))))
-((-1828 (($ $ |#2|) 10)))
-(((-628 |#1| |#2|) (-10 -8 (-15 -1828 (|#1| |#1| |#2|))) (-629 |#2|) (-171)) (T -628))
-NIL
-(-10 -8 (-15 -1828 (|#1| |#1| |#2|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4078 (($ $ $) 29)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-629 |#1|) (-139) (-171)) (T -629))
-((-4078 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171)))) (-1828 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
-(-13 (-711 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4078 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -1828 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2385 (((-3 $ "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-3625 (((-1254 (-682 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1254 (-682 |#1|)) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-1426 (((-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-2674 (($) NIL T CONST)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-1763 (((-3 $ "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3615 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3230 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-4196 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3884 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3146 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3187 (($ $ (-914)) NIL)) (-3718 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2477 (((-1162 |#1|) $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2137 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-4292 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3172 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3376 (($ (-1254 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1254 |#1|) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3735 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3400 (((-914)) NIL (|has| |#2| (-366 |#1|)))) (-2949 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3425 (($ $ (-914)) NIL)) (-2203 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3787 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3591 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2699 (((-3 $ "failed")) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2960 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-1952 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-4208 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3408 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-4291 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2143 (($ $ (-914)) NIL)) (-4178 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3462 (((-1162 |#1|) $) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3659 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-4321 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-4112 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1883 (((-1148) $) NIL)) (-2646 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2227 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1871 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1701 (((-1110) $) NIL)) (-1800 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2315 ((|#1| $ (-561)) NIL (|has| |#2| (-416 |#1|)))) (-3752 (((-682 |#1|) (-1254 $)) NIL (|has| |#2| (-416 |#1|))) (((-1254 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1254 $) (-1254 $)) NIL (|has| |#2| (-366 |#1|))) (((-1254 |#1|) $ (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-4216 (($ (-1254 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1254 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3311 (((-638 (-945 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-638 (-945 |#1|)) (-1254 $)) NIL (|has| |#2| (-366 |#1|)))) (-3047 (($ $ $) NIL)) (-2619 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4064 (((-856) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2615 (((-1254 $)) NIL (|has| |#2| (-416 |#1|)))) (-2541 (((-638 (-1254 |#1|))) NIL (-4050 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2748 (($ $ $ $) NIL)) (-3498 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1363 (($ (-682 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-2897 (($ $ $) NIL)) (-1999 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2136 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3030 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2246 (($) 15 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) 17)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-630 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4064 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -630))
-((-4064 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-630 *3 *2)) (-4 *2 (-738 *3)))))
-(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4064 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
-((-1797 (((-3 (-837 |#2|) "failed") |#2| (-293 |#2|) (-1148)) 81) (((-3 (-837 |#2|) (-2 (|:| |leftHandLimit| (-3 (-837 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-837 |#2|) "failed"))) "failed") |#2| (-293 (-837 |#2|))) 103)) (-1929 (((-3 (-827 |#2|) "failed") |#2| (-293 (-827 |#2|))) 108)))
-(((-631 |#1| |#2|) (-10 -7 (-15 -1797 ((-3 (-837 |#2|) (-2 (|:| |leftHandLimit| (-3 (-837 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-837 |#2|) "failed"))) "failed") |#2| (-293 (-837 |#2|)))) (-15 -1929 ((-3 (-827 |#2|) "failed") |#2| (-293 (-827 |#2|)))) (-15 -1797 ((-3 (-837 |#2|) "failed") |#2| (-293 |#2|) (-1148)))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -631))
-((-1797 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1148)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-837 *3)) (-5 *1 (-631 *6 *3)))) (-1929 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-293 (-827 *3))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-827 *3)) (-5 *1 (-631 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-837 *3))) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (-837 *3) (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed")) (|:| |rightHandLimit| (-3 (-837 *3) "failed"))) "failed")) (-5 *1 (-631 *5 *3)))))
-(-10 -7 (-15 -1797 ((-3 (-837 |#2|) (-2 (|:| |leftHandLimit| (-3 (-837 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-837 |#2|) "failed"))) "failed") |#2| (-293 (-837 |#2|)))) (-15 -1929 ((-3 (-827 |#2|) "failed") |#2| (-293 (-827 |#2|)))) (-15 -1797 ((-3 (-837 |#2|) "failed") |#2| (-293 |#2|) (-1148))))
-((-1797 (((-3 (-837 (-406 (-945 |#1|))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))) (-1148)) 80) (((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|)))) 20) (((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-837 (-945 |#1|)))) 35)) (-1929 (((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|)))) 23) (((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-827 (-945 |#1|)))) 43)))
-(((-632 |#1|) (-10 -7 (-15 -1797 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-837 (-945 |#1|))))) (-15 -1797 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1929 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-827 (-945 |#1|))))) (-15 -1929 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1797 ((-3 (-837 (-406 (-945 |#1|))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))) (-1148)))) (-450)) (T -632))
-((-1797 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 (-406 (-945 *6)))) (-5 *5 (-1148)) (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-837 *3)) (-5 *1 (-632 *6)))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-450)) (-5 *2 (-827 *3)) (-5 *1 (-632 *5)))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-827 (-945 *5)))) (-4 *5 (-450)) (-5 *2 (-827 (-406 (-945 *5)))) (-5 *1 (-632 *5)) (-5 *3 (-406 (-945 *5))))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-450)) (-5 *2 (-3 (-837 *3) (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed")) (|:| |rightHandLimit| (-3 (-837 *3) "failed"))) "failed")) (-5 *1 (-632 *5)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-837 (-945 *5)))) (-4 *5 (-450)) (-5 *2 (-3 (-837 (-406 (-945 *5))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 *5))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 *5))) "failed"))) "failed")) (-5 *1 (-632 *5)) (-5 *3 (-406 (-945 *5))))))
-(-10 -7 (-15 -1797 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-837 (-945 |#1|))))) (-15 -1797 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1929 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-827 (-945 |#1|))))) (-15 -1929 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1797 ((-3 (-837 (-406 (-945 |#1|))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))) (-1148))))
-((-2602 (((-3 (-1254 (-406 |#1|)) "failed") (-1254 |#2|) |#2|) 57 (-2186 (|has| |#1| (-362)))) (((-3 (-1254 |#1|) "failed") (-1254 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-2539 (((-112) (-1254 |#2|)) 30)) (-3336 (((-3 (-1254 |#1|) "failed") (-1254 |#2|)) 33)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -2539 ((-112) (-1254 |#2|))) (-15 -3336 ((-3 (-1254 |#1|) "failed") (-1254 |#2|))) (IF (|has| |#1| (-362)) (-15 -2602 ((-3 (-1254 |#1|) "failed") (-1254 |#2|) |#2|)) (-15 -2602 ((-3 (-1254 (-406 |#1|)) "failed") (-1254 |#2|) |#2|)))) (-553) (-634 |#1|)) (T -633))
-((-2602 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 *5)) (-2186 (-4 *5 (-362))) (-4 *5 (-553)) (-5 *2 (-1254 (-406 *5))) (-5 *1 (-633 *5 *4)))) (-2602 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362)) (-4 *5 (-553)) (-5 *2 (-1254 *5)) (-5 *1 (-633 *5 *4)))) (-3336 (*1 *2 *3) (|partial| -12 (-5 *3 (-1254 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553)) (-5 *2 (-1254 *4)) (-5 *1 (-633 *4 *5)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1254 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553)) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
-(-10 -7 (-15 -2539 ((-112) (-1254 |#2|))) (-15 -3336 ((-3 (-1254 |#1|) "failed") (-1254 |#2|))) (IF (|has| |#1| (-362)) (-15 -2602 ((-3 (-1254 |#1|) "failed") (-1254 |#2|) |#2|)) (-15 -2602 ((-3 (-1254 (-406 |#1|)) "failed") (-1254 |#2|) |#2|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3720 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 35)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-2344 (((-1259) $ |#2| |#2|) 36)) (-2346 ((|#2| $) 23)) (-2347 ((|#2| $) 21)) (-2100 (($ (-1 |#3| |#3|) $) 32)) (-4365 (($ (-1 |#3| |#3|) $) 30)) (-4207 ((|#3| $) 26)) (-2345 (($ $ |#3|) 33)) (-2348 (((-112) |#3| $) 17)) (-2351 (((-635 |#3|) $) 15)) (-4206 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-598 |#1| |#2| |#3|) (-10 -8 (-15 -2344 ((-1259) |#1| |#2| |#2|)) (-15 -2345 (|#1| |#1| |#3|)) (-15 -4207 (|#3| |#1|)) (-15 -2346 (|#2| |#1|)) (-15 -2347 (|#2| |#1|)) (-15 -2348 ((-112) |#3| |#1|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|))) (-599 |#2| |#3|) (-1091) (-1204)) (T -598))
+NIL
+(-10 -8 (-15 -2344 ((-1259) |#1| |#2| |#2|)) (-15 -2345 (|#1| |#1| |#3|)) (-15 -4207 (|#3| |#1|)) (-15 -2346 (|#2| |#1|)) (-15 -2347 (|#2| |#1|)) (-15 -2348 ((-112) |#3| |#1|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#2| (-1091)))) (-2344 (((-1259) $ |#1| |#1|) 40 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-1665 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 51)) (-2096 (((-635 |#2|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2346 ((|#1| $) 43 (|has| |#1| (-844)))) (-2554 (((-635 |#2|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-2347 ((|#1| $) 44 (|has| |#1| (-844)))) (-2100 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#2| (-1091)))) (-2349 (((-635 |#1|) $) 46)) (-2350 (((-112) |#1| $) 47)) (-3644 (((-1110) $) 21 (|has| |#2| (-1091)))) (-4207 ((|#2| $) 42 (|has| |#1| (-844)))) (-2345 (($ $ |#2|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2097 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4400))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#2| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#2| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-599 |#1| |#2|) (-139) (-1091) (-1204)) (T -599))
+((-2351 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *4)))) (-2350 (*1 *2 *3 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *3)))) (-2348 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1091)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844)))) (-2346 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1091)) (-4 *3 (-844)) (-4 *2 (-1204)))) (-2345 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-2344 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-1259)))))
+(-13 (-487 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -2351 ((-635 |t#2|) $)) (-15 -2350 ((-112) |t#1| $)) (-15 -2349 ((-635 |t#1|) $)) (IF (|has| |t#2| (-1091)) (IF (|has| $ (-6 -4400)) (-15 -2348 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -2347 (|t#1| $)) (-15 -2346 (|t#1| $)) (-15 -4207 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4401)) (PROGN (-15 -2345 ($ $ |t#2|)) (-15 -2344 ((-1259) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1091)) ((-608 (-857)) -3936 (|has| |#2| (-1091)) (|has| |#2| (-608 (-857)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-1091) |has| |#2| (-1091)) ((-1204) . T))
+((-4353 (((-857) $) 17) (($ (-128)) 13) (((-128) $) 14)))
+(((-600) (-13 (-608 (-857)) (-488 (-128)))) (T -600))
+NIL
+(-13 (-608 (-857)) (-488 (-128)))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1205) $) 14) (($ (-635 (-1205))) 13)) (-2352 (((-635 (-1205)) $) 10)) (-3437 (((-112) $ $) NIL)))
+(((-601) (-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2352 ((-635 (-1205)) $))))) (T -601))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601)))))
+(-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2352 ((-635 (-1205)) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1253 (-682 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1873 (((-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1847 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1935 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1871 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1933 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2539 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2050 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1849 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1937 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1867 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1861 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1939 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1253 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3866 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-3494 (((-912)) NIL (|has| |#2| (-366 |#1|)))) (-1858 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1852 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1856 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1848 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1936 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1872 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1934 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2540 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2054 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1850 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1938 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1868 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1862 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1855 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1857 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4206 ((|#1| $ (-544)) NIL (|has| |#2| (-417 |#1|)))) (-3625 (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $) (-1253 $)) NIL (|has| |#2| (-366 |#1|))) (((-1253 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4377 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2042 (((-635 (-939 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-635 (-939 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4353 (((-857) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2162 (((-1253 $)) NIL (|has| |#2| (-417 |#1|)))) (-1851 (((-635 (-1253 |#1|))) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2927 (($ (-682 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1863 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1859 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 24)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-602 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -602))
+((-4353 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3)))))
+(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-1841 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) 33)) (-4004 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL) (($) NIL)) (-2344 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-1148) |#1|) 43)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#1| #1="failed") (-1148) $) 46)) (-4131 (($) NIL T CONST)) (-1845 (($ $ (-1148)) 24)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-3809 (((-3 |#1| #1#) (-1148) $) 47) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (|has| $ (-6 -4400)))) (-3810 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-4249 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-1842 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) 32)) (-1665 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-1148)) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-2394 (($ $) 48)) (-1846 (($ (-387)) 22) (($ (-387) (-1148)) 21)) (-3949 (((-387) $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (((-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-2347 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2789 (((-635 (-1148)) $) 39)) (-2354 (((-112) (-1148) $) NIL)) (-1843 (((-1148) $) 35)) (-1356 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2349 (((-635 (-1148)) $) NIL)) (-2350 (((-112) (-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 ((|#1| $) NIL (|has| (-1148) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) "failed") (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-635 (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 37)) (-4206 ((|#1| $ (-1148) |#1|) NIL) ((|#1| $ (-1148)) 42)) (-1550 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL) (($) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (((-765) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-765) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-4353 (((-857) $) 20)) (-1844 (($ $) 25)) (-1358 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 19)) (-4364 (((-765) $) 41 (|has| $ (-6 -4400)))))
+(((-603 |#1|) (-13 (-364 (-387) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4400) (-15 -2394 ($ $)))) (-1091)) (T -603))
+((-2394 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1091)))))
+(-13 (-364 (-387) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4400) (-15 -2394 ($ $))))
+((-3646 (((-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 15)) (-2789 (((-635 |#2|) $) 19)) (-2354 (((-112) |#2| $) 12)))
+(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -2789 ((-635 |#2|) |#1|)) (-15 -2354 ((-112) |#2| |#1|)) (-15 -3646 ((-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|))) (-605 |#2| |#3|) (-1091) (-1091)) (T -604))
+NIL
+(-10 -8 (-15 -2789 ((-635 |#2|) |#1|)) (-15 -2354 ((-112) |#2| |#1|)) (-15 -3646 ((-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 55 (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| "failed") |#1| $) 61)) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 46 (|has| $ (-6 -4400))) (((-3 |#2| "failed") |#1| $) 62)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 54 (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 56 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 53 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-2789 (((-635 |#1|) $) 63)) (-2354 (((-112) |#1| $) 64)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 39)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 40)) (-3644 (((-1110) $) 21 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 51)) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 41)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 26 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 25 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 24 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 23 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-1550 (($) 49) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 48)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 31 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 50)) (-4353 (((-857) $) 18 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 42)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-605 |#1| |#2|) (-139) (-1091) (-1091)) (T -605))
+((-2354 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-112)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-635 *3)))) (-3809 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-2353 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))))
+(-13 (-228 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|))) (-10 -8 (-15 -2354 ((-112) |t#1| $)) (-15 -2789 ((-635 |t#1|) $)) (-15 -3809 ((-3 |t#2| "failed") |t#1| $)) (-15 -2353 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-102) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) ((-608 (-857)) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857)))) ((-150 #1#) . T) ((-609 (-533)) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) ((-228 #1#) . T) ((-234 #1#) . T) ((-308 #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-487 #1#) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-1091) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-2355 (((-3 (-1166) "failed") $) 37)) (-1392 (((-1259) $ (-765)) 26)) (-3823 (((-765) $) 25)) (-3430 (((-113) $) 12)) (-3949 (((-1166) $) 20)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2356 (($ (-113) (-635 |#1|) (-765)) 30) (($ (-1166)) 31)) (-3013 (((-112) $ (-113)) 18) (((-112) $ (-1166)) 16)) (-2982 (((-765) $) 22)) (-3644 (((-1110) $) NIL)) (-4377 (((-883 (-544)) $) 77 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 84 (|has| |#1| (-609 (-883 (-377))))) (((-533) $) 69 (|has| |#1| (-609 (-533))))) (-4353 (((-857) $) 55)) (-2357 (((-635 |#1|) $) 24)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 41)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 42)))
+(((-606 |#1|) (-13 (-131) (-877 |#1|) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3430 ((-113) $)) (-15 -2357 ((-635 |#1|) $)) (-15 -2982 ((-765) $)) (-15 -2356 ($ (-113) (-635 |#1|) (-765))) (-15 -2356 ($ (-1166))) (-15 -2355 ((-3 (-1166) "failed") $)) (-15 -3013 ((-112) $ (-113))) (-15 -3013 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|))) (-844)) (T -606))
+((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2356 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-844)) (-5 *1 (-606 *5)))) (-2356 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2355 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844)))))
+(-13 (-131) (-877 |#1|) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3430 ((-113) $)) (-15 -2357 ((-635 |#1|) $)) (-15 -2982 ((-765) $)) (-15 -2356 ($ (-113) (-635 |#1|) (-765))) (-15 -2356 ($ (-1166))) (-15 -2355 ((-3 (-1166) "failed") $)) (-15 -3013 ((-112) $ (-113))) (-15 -3013 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|)))
+((-2358 (((-606 |#2|) |#1|) 15)) (-2359 (((-3 |#1| "failed") (-606 |#2|)) 19)))
+(((-607 |#1| |#2|) (-10 -7 (-15 -2358 ((-606 |#2|) |#1|)) (-15 -2359 ((-3 |#1| "failed") (-606 |#2|)))) (-844) (-844)) (T -607))
+((-2359 (*1 *2 *3) (|partial| -12 (-5 *3 (-606 *4)) (-4 *4 (-844)) (-4 *2 (-844)) (-5 *1 (-607 *2 *4)))) (-2358 (*1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-844)) (-4 *4 (-844)))))
+(-10 -7 (-15 -2358 ((-606 |#2|) |#1|)) (-15 -2359 ((-3 |#1| "failed") (-606 |#2|))))
+((-4353 ((|#1| $) 6)))
+(((-608 |#1|) (-139) (-1204)) (T -608))
+((-4353 (*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1204)))))
+(-13 (-10 -8 (-15 -4353 (|t#1| $))))
+((-4377 ((|#1| $) 6)))
+(((-609 |#1|) (-139) (-1204)) (T -609))
+((-4377 (*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1204)))))
+(-13 (-10 -8 (-15 -4377 (|t#1| $))))
+((-2360 (((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-404 |#2|) |#2|)) 15) (((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-404 |#2|) |#2|)))) (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -610))
+((-2360 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-1160 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6)))) (-2360 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-1160 (-406 *5))) (-5 *1 (-610 *4 *5)) (-5 *3 (-406 *5)))))
+(-10 -7 (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-404 |#2|) |#2|))))
+((-4353 (($ |#1|) 6)))
+(((-611 |#1|) (-139) (-1204)) (T -611))
+((-4353 (*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1204)))))
+(-13 (-10 -8 (-15 -4353 ($ |t#1|))))
+((-2947 (((-112) $ $) NIL)) (-2362 (($) 8 T CONST)) (-2361 (($) 9 T CONST)) (-3239 (($ $ $) 21)) (-3726 (($ $) 19)) (-3643 (((-1148) $) NIL)) (-3238 (($ $ $) 22)) (-3644 (((-1110) $) NIL)) (-2363 (($) 7 T CONST)) (-3237 (($ $ $) 23)) (-4353 (((-857) $) 27)) (-3973 (((-112) $ (|[\|\|]| -2363)) 16) (((-112) $ (|[\|\|]| -2362)) 18) (((-112) $ (|[\|\|]| -2361)) 14)) (-3240 (($ $ $) 20)) (-3437 (((-112) $ $) 12)))
+(((-612) (-13 (-960) (-10 -8 (-15 -2363 ($) -4359) (-15 -2362 ($) -4359) (-15 -2361 ($) -4359) (-15 -3973 ((-112) $ (|[\|\|]| -2363))) (-15 -3973 ((-112) $ (|[\|\|]| -2362))) (-15 -3973 ((-112) $ (|[\|\|]| -2361)))))) (T -612))
+((-2363 (*1 *1) (-5 *1 (-612))) (-2362 (*1 *1) (-5 *1 (-612))) (-2361 (*1 *1) (-5 *1 (-612))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2363)) (-5 *2 (-112)) (-5 *1 (-612)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2362)) (-5 *2 (-112)) (-5 *1 (-612)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-112)) (-5 *1 (-612)))))
+(-13 (-960) (-10 -8 (-15 -2363 ($) -4359) (-15 -2362 ($) -4359) (-15 -2361 ($) -4359) (-15 -3973 ((-112) $ (|[\|\|]| -2363))) (-15 -3973 ((-112) $ (|[\|\|]| -2362))) (-15 -3973 ((-112) $ (|[\|\|]| -2361)))))
+((-4377 (($ |#1|) 6)))
+(((-613 |#1|) (-139) (-1204)) (T -613))
+((-4377 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1204)))))
+(-13 (-10 -8 (-15 -4377 ($ |t#1|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4030 (((-544) $) NIL (|has| |#1| (-842)))) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-3587 (((-112) $) NIL (|has| |#1| (-842)))) (-2545 (((-112) $) NIL)) (-3381 ((|#1| $) 13)) (-3588 (((-112) $) NIL (|has| |#1| (-842)))) (-2913 (($ $ $) NIL (|has| |#1| (-842)))) (-3242 (($ $ $) NIL (|has| |#1| (-842)))) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3380 ((|#3| $) 15)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL)) (-3511 (((-765)) 20)) (-3787 (($ $) NIL (|has| |#1| (-842)))) (-3040 (($) NIL T CONST)) (-3046 (($) 12 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-842)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-842)))) (-4356 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-614 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -614))
+((-4356 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-4356 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-614 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-614 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-3380 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $))))
+((-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) 10)))
+(((-615 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-616 |#2|) (-1042)) (T -615))
+NIL
+(-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 36)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-616 |#1|) (-139) (-1042)) (T -616))
+((-4353 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1042)))))
+(-13 (-1042) (-641 |t#1|) (-10 -8 (-15 -4353 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2364 ((|#2| |#2| (-1166) (-1166)) 18)))
+(((-617 |#1| |#2|) (-10 -7 (-15 -2364 (|#2| |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-29 |#1|))) (T -617))
+((-2364 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-29 *4))))))
+(-10 -7 (-15 -2364 (|#2| |#2| (-1166) (-1166))))
+((-2947 (((-112) $ $) 56)) (-3589 (((-112) $) 52)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2365 ((|#1| $) 49)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4158 (((-2 (|:| -1912 $) (|:| -1911 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 24)) (-3866 (((-3 $ "failed") $) 75)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4178 (((-544) $) 19)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) 36)) (-3276 (($ |#1| (-544)) 21)) (-3575 ((|#1| $) 51)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 101 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ $) 79)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1732 (((-765) $) 100 (|has| |#1| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 99 (|has| |#1| (-362)))) (-4217 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-4355 (((-544) $) 34)) (-4377 (((-406 |#2|) $) 42)) (-4353 (((-857) $) 62) (($ (-544)) 32) (($ $) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 31) (($ |#2|) 22)) (-4084 ((|#1| $ (-544)) 63)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 29)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 9 T CONST)) (-3046 (($) 12 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3437 (((-112) $ $) 17)) (-4244 (($ $) 46) (($ $ $) NIL)) (-4246 (($ $ $) 76)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 26) (($ $ $) 44)))
+(((-618 |#1| |#2|) (-13 (-230 |#2|) (-554) (-609 (-406 |#2|)) (-411 |#1|) (-1031 |#2|) (-10 -8 (-15 -4344 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4178 ((-544) $)) (-15 -4366 ($ $)) (-15 -3575 (|#1| $)) (-15 -2365 (|#1| $)) (-15 -4084 (|#1| $ (-544))) (-15 -3276 ($ |#1| (-544))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -4158 ((-2 (|:| -1912 $) (|:| -1911 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-554) (-1229 |#1|)) (T -618))
+((-4344 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-4355 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-4178 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-4366 (*1 *1 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-3575 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-2365 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) (-4158 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -1912 (-618 *4 *5)) (|:| -1911 (-406 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5)))))
+(-13 (-230 |#2|) (-554) (-609 (-406 |#2|)) (-411 |#1|) (-1031 |#2|) (-10 -8 (-15 -4344 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4178 ((-544) $)) (-15 -4366 ($ $)) (-15 -3575 (|#1| $)) (-15 -2365 (|#1| $)) (-15 -4084 (|#1| $ (-544))) (-15 -3276 ($ |#1| (-544))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -4158 ((-2 (|:| -1912 $) (|:| -1911 (-406 |#2|))) (-406 |#2|)))) |%noBranch|)))
+((-4089 (((-635 |#6|) (-635 |#4|) (-112)) 46)) (-2366 ((|#6| |#6|) 39)))
+(((-619 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2366 (|#6| |#6|)) (-15 -4089 ((-635 |#6|) (-635 |#4|) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2| |#3| |#4|)) (T -619))
+((-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *10)) (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *10 (-1099 *5 *6 *7 *8)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-619 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2366 (|#6| |#6|)) (-15 -4089 ((-635 |#6|) (-635 |#4|) (-112))))
+((-2367 (((-112) |#3| (-765) (-635 |#3|)) 23)) (-2368 (((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1160 |#3|)))) "failed") |#3| (-635 (-1160 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2812 (-635 (-2 (|:| |irr| |#4|) (|:| -2530 (-544)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)) 55)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-112) |#3| (-765) (-635 |#3|))) (-15 -2368 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1160 |#3|)))) "failed") |#3| (-635 (-1160 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2812 (-635 (-2 (|:| |irr| |#4|) (|:| -2530 (-544)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)))) (-844) (-787) (-306) (-943 |#3| |#2| |#1|)) (T -620))
+((-2368 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2812 (-635 (-2 (|:| |irr| *10) (|:| -2530 (-544))))))) (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-844)) (-4 *3 (-306)) (-4 *10 (-943 *3 *9 *8)) (-4 *9 (-787)) (-5 *2 (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3) (|:| |corrfact| (-635 (-1160 *3))))) (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-635 (-1160 *3))))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-765)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-844)) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8)) (-4 *8 (-943 *3 *7 *6)))))
+(-10 -7 (-15 -2367 ((-112) |#3| (-765) (-635 |#3|))) (-15 -2368 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1160 |#3|)))) "failed") |#3| (-635 (-1160 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2812 (-635 (-2 (|:| |irr| |#4|) (|:| -2530 (-544)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|))))
+((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-621) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -621))
+((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))))
+(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-4343 (($ $) 67)) (-4349 (((-657 |#1| |#2|) $) 52)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 70)) (-2369 (((-635 (-292 |#2|)) $ $) 33)) (-3644 (((-1110) $) NIL)) (-4350 (($ (-657 |#1| |#2|)) 48)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 58) (((-1269 |#1| |#2|) $) NIL) (((-1274 |#1| |#2|) $) 66)) (-3046 (($) 53 T CONST)) (-2370 (((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) 31)) (-2371 (((-635 (-657 |#1| |#2|)) (-635 |#1|)) 65)) (-3045 (((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) 37)) (-3437 (((-112) $ $) 54)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ $ $) 44)))
+(((-622 |#1| |#2| |#3|) (-13 (-471) (-10 -8 (-15 -4350 ($ (-657 |#1| |#2|))) (-15 -4349 ((-657 |#1| |#2|) $)) (-15 -3045 ((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1274 |#1| |#2|) $)) (-15 -4343 ($ $)) (-15 -4341 ((-635 |#1|) $)) (-15 -2371 ((-635 (-657 |#1| |#2|)) (-635 |#1|))) (-15 -2370 ((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -2369 ((-635 (-292 |#2|)) $ $)))) (-844) (-13 (-171) (-711 (-406 (-544)))) (-912)) (T -622))
+((-4350 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-5 *1 (-622 *3 *4 *5)) (-14 *5 (-912)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-886 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-13 (-171) (-711 (-406 (-544))))) (-14 *4 (-912)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-657 *4 *5))) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-544))))) (-14 *6 (-912)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-665 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-2369 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-292 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))))
+(-13 (-471) (-10 -8 (-15 -4350 ($ (-657 |#1| |#2|))) (-15 -4349 ((-657 |#1| |#2|) $)) (-15 -3045 ((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1274 |#1| |#2|) $)) (-15 -4343 ($ $)) (-15 -4341 ((-635 |#1|) $)) (-15 -2371 ((-635 (-657 |#1| |#2|)) (-635 |#1|))) (-15 -2370 ((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -2369 ((-635 (-292 |#2|)) $ $))))
+((-4089 (((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112)) 71) (((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112)) 57)) (-2372 (((-112) (-635 (-774 |#1| (-858 |#2|)))) 23)) (-2376 (((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112)) 70)) (-2375 (((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112)) 56)) (-2374 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|)))) 27)) (-2373 (((-3 (-635 (-774 |#1| (-858 |#2|))) "failed") (-635 (-774 |#1| (-858 |#2|)))) 26)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -2372 ((-112) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2373 ((-3 (-635 (-774 |#1| (-858 |#2|))) "failed") (-635 (-774 |#1| (-858 |#2|))))) (-15 -2374 ((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2375 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2376 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112)))) (-450) (-635 (-1166))) (T -623))
+((-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4)))) (-2373 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-635 (-774 *4 (-858 *5)))) (-4 *4 (-450)) (-14 *5 (-635 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5)))))
+(-10 -7 (-15 -2372 ((-112) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2373 ((-3 (-635 (-774 |#1| (-858 |#2|))) "failed") (-635 (-774 |#1| (-858 |#2|))))) (-15 -2374 ((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2375 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2376 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112))))
+((-3430 (((-113) (-113)) 83)) (-2380 ((|#2| |#2|) 30)) (-3214 ((|#2| |#2| (-1082 |#2|)) 79) ((|#2| |#2| (-1166)) 52)) (-2378 ((|#2| |#2|) 29)) (-2379 ((|#2| |#2|) 31)) (-2377 (((-112) (-113)) 34)) (-2382 ((|#2| |#2|) 26)) (-2383 ((|#2| |#2|) 28)) (-2381 ((|#2| |#2|) 27)))
+(((-624 |#1| |#2|) (-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -2383 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3214 (|#2| |#2| (-1166))) (-15 -3214 (|#2| |#2| (-1082 |#2|)))) (-13 (-844) (-554)) (-13 (-420 |#1|) (-995) (-1190))) (T -624))
+((-3214 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-995) (-1190))) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2)))) (-3214 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2)) (-4 *2 (-13 (-420 *4) (-995) (-1190))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2381 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2383 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *4)) (-4 *4 (-13 (-420 *3) (-995) (-1190))))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-624 *4 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190))))))
+(-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -2383 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3214 (|#2| |#2| (-1166))) (-15 -3214 (|#2| |#2| (-1082 |#2|))))
+((-3891 (($ $) 38)) (-4046 (($ $) 21)) (-3889 (($ $) 37)) (-4045 (($ $) 22)) (-3893 (($ $) 36)) (-4044 (($ $) 23)) (-4034 (($) 48)) (-4349 (($ $) 45)) (-2380 (($ $) 17)) (-3214 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6)) (-4350 (($ $) 46)) (-2378 (($ $) 15)) (-2379 (($ $) 16)) (-3894 (($ $) 35)) (-4043 (($ $) 24)) (-3892 (($ $) 34)) (-4042 (($ $) 25)) (-3890 (($ $) 33)) (-4041 (($ $) 26)) (-3897 (($ $) 44)) (-3885 (($ $) 32)) (-3895 (($ $) 43)) (-3883 (($ $) 31)) (-3899 (($ $) 42)) (-3887 (($ $) 30)) (-3900 (($ $) 41)) (-3888 (($ $) 29)) (-3898 (($ $) 40)) (-3886 (($ $) 28)) (-3896 (($ $) 39)) (-3884 (($ $) 27)) (-2382 (($ $) 19)) (-2383 (($ $) 20)) (-2381 (($ $) 18)) (** (($ $ $) 47)))
+(((-625) (-139)) (T -625))
+((-2383 (*1 *1 *1) (-4 *1 (-625))) (-2382 (*1 *1 *1) (-4 *1 (-625))) (-2381 (*1 *1 *1) (-4 *1 (-625))) (-2380 (*1 *1 *1) (-4 *1 (-625))) (-2379 (*1 *1 *1) (-4 *1 (-625))) (-2378 (*1 *1 *1) (-4 *1 (-625))))
+(-13 (-953) (-1190) (-10 -8 (-15 -2383 ($ $)) (-15 -2382 ($ $)) (-15 -2381 ($ $)) (-15 -2380 ($ $)) (-15 -2379 ($ $)) (-15 -2378 ($ $))))
+(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-953) . T) ((-1190) . T) ((-1193) . T))
+((-2393 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-2386 (((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 68)) (-2387 (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-858 |#1|)) 70) (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-858 |#1|)) 69)) (-2384 (((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-544)))) (-635 (-479 |#1| |#2|))) 108)) (-2391 (((-635 (-479 |#1| |#2|)) (-858 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 83)) (-2385 (((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-544)))) (-635 (-246 |#1| |#2|))) 118)) (-2389 (((-1253 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|))) 58)) (-2388 (((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 41)) (-2392 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 50)) (-2390 (((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 91)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -2384 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-544)))) (-635 (-479 |#1| |#2|)))) (-15 -2385 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-544)))) (-635 (-246 |#1| |#2|)))) (-15 -2386 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2388 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2389 ((-1253 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -2390 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2391 ((-635 (-479 |#1| |#2|)) (-858 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2392 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2393 ((-479 |#1| |#2|) (-246 |#1| |#2|)))) (-635 (-1166)) (-450)) (T -626))
+((-2393 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5)))) (-2392 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-2391 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-858 *4)) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-2390 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450)) (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1166))) (-5 *1 (-626 *5 *6)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-1253 *6)) (-5 *1 (-626 *5 *6)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1166))) (-4 *4 (-450)) (-5 *1 (-626 *3 *4)))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-2387 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-626 *4 *5)))) (-2385 (*1 *2 *3) (-12 (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-544))))) (-5 *1 (-626 *4 *5)) (-5 *3 (-635 (-246 *4 *5))))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |gblist| (-635 (-246 *4 *5))) (|:| |gvlist| (-635 (-544))))) (-5 *1 (-626 *4 *5)))))
+(-10 -7 (-15 -2384 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-544)))) (-635 (-479 |#1| |#2|)))) (-15 -2385 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-544)))) (-635 (-246 |#1| |#2|)))) (-15 -2386 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2388 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2389 ((-1253 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -2390 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2391 ((-635 (-479 |#1| |#2|)) (-858 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2392 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2393 ((-479 |#1| |#2|) (-246 |#1| |#2|))))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-2344 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-51) $ (-1148) (-51)) 16) (((-51) $ (-1166) (-51)) 17)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 (-51) #1="failed") (-1148) $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-3 (-51) #1#) (-1148) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-51) $ (-1148) (-51)) NIL (|has| $ (-6 -4401)))) (-3498 (((-51) $ (-1148)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-2394 (($ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2347 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2395 (($ (-387)) 9)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-2789 (((-635 (-1148)) $) NIL)) (-2354 (((-112) (-1148) $) NIL)) (-1356 (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL)) (-2349 (((-635 (-1148)) $) NIL)) (-2350 (((-112) (-1148) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-4207 (((-51) $) NIL (|has| (-1148) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) "failed") (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL)) (-2345 (($ $ (-51)) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-51)) (-635 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-292 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-635 (-292 (-51)))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2351 (((-635 (-51)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-51) $ (-1148)) 14) (((-51) $ (-1148) (-51)) NIL) (((-51) $ (-1166)) 15)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (((-765) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091)))) (((-765) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-608 (-857))) (|has| (-51) (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-627) (-13 (-1181 (-1148) (-51)) (-10 -8 (-15 -2395 ($ (-387))) (-15 -2394 ($ $)) (-15 -4206 ((-51) $ (-1166))) (-15 -4194 ((-51) $ (-1166) (-51)))))) (T -627))
+((-2395 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627)))) (-2394 (*1 *1 *1) (-5 *1 (-627))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-51)) (-5 *1 (-627)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1166)) (-5 *1 (-627)))))
+(-13 (-1181 (-1148) (-51)) (-10 -8 (-15 -2395 ($ (-387))) (-15 -2394 ($ $)) (-15 -4206 ((-51) $ (-1166))) (-15 -4194 ((-51) $ (-1166) (-51)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1253 (-682 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1873 (((-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1847 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1935 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1871 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1933 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2539 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2050 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1849 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1937 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1867 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1861 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1939 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1253 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3866 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-3494 (((-912)) NIL (|has| |#2| (-366 |#1|)))) (-1858 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1852 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1856 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1848 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1936 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1872 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1934 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2540 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2054 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1850 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1938 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1868 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1862 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1855 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1857 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4206 ((|#1| $ (-544)) NIL (|has| |#2| (-417 |#1|)))) (-3625 (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $) (-1253 $)) NIL (|has| |#2| (-366 |#1|))) (((-1253 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4377 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2042 (((-635 (-939 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-635 (-939 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4353 (((-857) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2162 (((-1253 $)) NIL (|has| |#2| (-417 |#1|)))) (-1851 (((-635 (-1253 |#1|))) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2927 (($ (-682 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1863 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1859 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3040 (($) 15 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 17)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-628 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -628))
+((-4353 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-628 *3 *2)) (-4 *2 (-738 *3)))))
+(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
+((-4356 (($ $ |#2|) 10)))
+(((-629 |#1| |#2|) (-10 -8 (-15 -4356 (|#1| |#1| |#2|))) (-630 |#2|) (-171)) (T -629))
+NIL
+(-10 -8 (-15 -4356 (|#1| |#1| |#2|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3929 (($ $ $) 29)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-630 |#1|) (-139) (-171)) (T -630))
+((-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(-13 (-711 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3929 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -4356 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1091) . T))
+((-2397 (((-3 (-836 |#2|) #1="failed") |#2| (-292 |#2|) (-1148)) 81) (((-3 (-836 |#2|) (-2 (|:| |leftHandLimit| (-3 (-836 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-836 |#2|) #1#))) "failed") |#2| (-292 (-836 |#2|))) 103)) (-2396 (((-3 (-826 |#2|) "failed") |#2| (-292 (-826 |#2|))) 108)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -2397 ((-3 (-836 |#2|) (-2 (|:| |leftHandLimit| (-3 (-836 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-836 |#2|) #1#))) "failed") |#2| (-292 (-836 |#2|)))) (-15 -2396 ((-3 (-826 |#2|) "failed") |#2| (-292 (-826 |#2|)))) (-15 -2397 ((-3 (-836 |#2|) #1#) |#2| (-292 |#2|) (-1148)))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -631))
+((-2397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-292 *3)) (-5 *5 (-1148)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-836 *3)) (-5 *1 (-631 *6 *3)))) (-2396 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-292 (-826 *3))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-826 *3)) (-5 *1 (-631 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-836 *3))) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (-836 *3) (-2 (|:| |leftHandLimit| (-3 (-836 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-836 *3) #1#))) "failed")) (-5 *1 (-631 *5 *3)))))
+(-10 -7 (-15 -2397 ((-3 (-836 |#2|) (-2 (|:| |leftHandLimit| (-3 (-836 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-836 |#2|) #1#))) "failed") |#2| (-292 (-836 |#2|)))) (-15 -2396 ((-3 (-826 |#2|) "failed") |#2| (-292 (-826 |#2|)))) (-15 -2397 ((-3 (-836 |#2|) #1#) |#2| (-292 |#2|) (-1148))))
+((-2397 (((-3 (-836 (-406 (-939 |#1|))) #1="failed") (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))) (-1148)) 80) (((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2="failed") (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|)))) 20) (((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2#) (-406 (-939 |#1|)) (-292 (-836 (-939 |#1|)))) 35)) (-2396 (((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|)))) 23) (((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-826 (-939 |#1|)))) 43)))
+(((-632 |#1|) (-10 -7 (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2="failed") (-406 (-939 |#1|)) (-292 (-836 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-826 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) #1#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))) (-1148)))) (-450)) (T -632))
+((-2397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-292 (-406 (-939 *6)))) (-5 *5 (-1148)) (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-836 *3)) (-5 *1 (-632 *6)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450)) (-5 *2 (-826 *3)) (-5 *1 (-632 *5)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-826 (-939 *5)))) (-4 *5 (-450)) (-5 *2 (-826 (-406 (-939 *5)))) (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5))))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450)) (-5 *2 (-3 (-836 *3) (-2 (|:| |leftHandLimit| (-3 (-836 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-836 *3) #1#))) #2="failed")) (-5 *1 (-632 *5)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-836 (-939 *5)))) (-4 *5 (-450)) (-5 *2 (-3 (-836 (-406 (-939 *5))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 *5))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 *5))) #1#))) #2#)) (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5))))))
+(-10 -7 (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2="failed") (-406 (-939 |#1|)) (-292 (-836 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-826 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) #1#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))) (-1148))))
+((-2400 (((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|) 57 (-3726 (|has| |#1| (-362)))) (((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-2398 (((-112) (-1253 |#2|)) 30)) (-2399 (((-3 (-1253 |#1|) "failed") (-1253 |#2|)) 33)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -2398 ((-112) (-1253 |#2|))) (-15 -2399 ((-3 (-1253 |#1|) "failed") (-1253 |#2|))) (IF (|has| |#1| (-362)) (-15 -2400 ((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|)) (-15 -2400 ((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|)))) (-554) (-634 |#1|)) (T -633))
+((-2400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-3726 (-4 *5 (-362))) (-4 *5 (-554)) (-5 *2 (-1253 (-406 *5))) (-5 *1 (-633 *5 *4)))) (-2400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-1253 *5)) (-5 *1 (-633 *5 *4)))) (-2399 (*1 *2 *3) (|partial| -12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554)) (-5 *2 (-1253 *4)) (-5 *1 (-633 *4 *5)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554)) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+(-10 -7 (-15 -2398 ((-112) (-1253 |#2|))) (-15 -2399 ((-3 (-1253 |#1|) "failed") (-1253 |#2|))) (IF (|has| |#1| (-362)) (-15 -2400 ((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|)) (-15 -2400 ((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2401 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 35)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-634 |#1|) (-139) (-1042)) (T -634))
-((-3720 (*1 *2 *3) (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042)) (-5 *2 (-682 *4)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *1)) (-5 *4 (-1254 *1)) (-4 *1 (-634 *5)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2942 (-682 *5)) (|:| |vec| (-1254 *5)))))))
-(-13 (-1042) (-10 -8 (-15 -3720 ((-682 |t#1|) (-682 $))) (-15 -3720 ((-2 (|:| -2942 (-682 |t#1|)) (|:| |vec| (-1254 |t#1|))) (-682 $) (-1254 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3822 ((|#2| (-638 |#1|) (-638 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-638 |#1|) (-638 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) |#2|) 17) ((|#2| (-638 |#1|) (-638 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|)) 12)))
-(((-635 |#1| |#2|) (-10 -7 (-15 -3822 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|))) (-15 -3822 (|#2| (-638 |#1|) (-638 |#2|) |#1|)) (-15 -3822 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) |#2|)) (-15 -3822 (|#2| (-638 |#1|) (-638 |#2|) |#1| |#2|)) (-15 -3822 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) (-1 |#2| |#1|))) (-15 -3822 (|#2| (-638 |#1|) (-638 |#2|) |#1| (-1 |#2| |#1|)))) (-1090) (-1205)) (T -635))
-((-3822 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2)))) (-3822 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-638 *5)) (-5 *4 (-638 *6)) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *1 (-635 *5 *6)))) (-3822 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 *5)) (-4 *6 (-1090)) (-4 *5 (-1205)) (-5 *2 (-1 *5 *6)) (-5 *1 (-635 *6 *5)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *6)) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *2 (-1 *6 *5)) (-5 *1 (-635 *5 *6)))))
-(-10 -7 (-15 -3822 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|))) (-15 -3822 (|#2| (-638 |#1|) (-638 |#2|) |#1|)) (-15 -3822 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) |#2|)) (-15 -3822 (|#2| (-638 |#1|) (-638 |#2|) |#1| |#2|)) (-15 -3822 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) (-1 |#2| |#1|))) (-15 -3822 (|#2| (-638 |#1|) (-638 |#2|) |#1| (-1 |#2| |#1|))))
-((-3522 (((-638 |#2|) (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|) 16)) (-3176 ((|#2| (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|) 18)) (-4165 (((-638 |#2|) (-1 |#2| |#1|) (-638 |#1|)) 13)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -3522 ((-638 |#2|) (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -4165 ((-638 |#2|) (-1 |#2| |#1|) (-638 |#1|)))) (-1205) (-1205)) (T -636))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-638 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-638 *6)) (-5 *1 (-636 *5 *6)))) (-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-638 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-636 *5 *2)))) (-3522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-638 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-638 *5)) (-5 *1 (-636 *6 *5)))))
-(-10 -7 (-15 -3522 ((-638 |#2|) (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -4165 ((-638 |#2|) (-1 |#2| |#1|) (-638 |#1|))))
-((-4165 (((-638 |#3|) (-1 |#3| |#1| |#2|) (-638 |#1|) (-638 |#2|)) 13)))
-(((-637 |#1| |#2| |#3|) (-10 -7 (-15 -4165 ((-638 |#3|) (-1 |#3| |#1| |#2|) (-638 |#1|) (-638 |#2|)))) (-1205) (-1205) (-1205)) (T -637))
-((-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-638 *6)) (-5 *5 (-638 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-638 *8)) (-5 *1 (-637 *6 *7 *8)))))
-(-10 -7 (-15 -4165 ((-638 |#3|) (-1 |#3| |#1| |#2|) (-638 |#1|) (-638 |#2|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) NIL)) (-2333 ((|#1| $) NIL)) (-3164 (($ $) NIL)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1680 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1318 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2956 (($ $ $) NIL (|has| $ (-6 -4400)))) (-3281 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4400))) (($ $ "rest" $) NIL (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-1351 (($ $ $) 31 (|has| |#1| (-1090)))) (-1340 (($ $ $) 33 (|has| |#1| (-1090)))) (-3789 (($ $ $) 36 (|has| |#1| (-1090)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2322 ((|#1| $) NIL)) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1437 (($ $) NIL) (($ $ (-765)) NIL)) (-3299 (($ $) NIL (|has| |#1| (-1090)))) (-1461 (($ $) 30 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-2728 (((-112) $) NIL)) (-4266 (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090))) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) NIL)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-2174 (((-112) $) 9)) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1374 (($) 7)) (-1458 (($ (-765) |#1|) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-2289 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3755 (($ |#1|) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1501 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1617 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3350 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-2391 (((-112) $) NIL)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1221 (-561))) NIL) ((|#1| $ (-561)) 35) ((|#1| $ (-561) |#1|) NIL)) (-4293 (((-561) $ $) NIL)) (-4335 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-2883 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-1650 (((-112) $) NIL)) (-3235 (($ $) NIL)) (-4193 (($ $) NIL (|has| $ (-6 -4400)))) (-2118 (((-765) $) NIL)) (-1491 (($ $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) 44 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-3969 (($ |#1| $) 10)) (-2448 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2754 (($ $ $) 29) (($ |#1| $) NIL) (($ (-638 $)) NIL) (($ $ |#1|) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1589 (($ $ $) 11)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3785 (((-1148) $) 25 (|has| |#1| (-822))) (((-1148) $ (-112)) 26 (|has| |#1| (-822))) (((-1259) (-816) $) 27 (|has| |#1| (-822))) (((-1259) (-816) $ (-112)) 28 (|has| |#1| (-822)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-638 |#1|) (-13 (-659 |#1|) (-10 -8 (-15 -1374 ($)) (-15 -2174 ((-112) $)) (-15 -3969 ($ |#1| $)) (-15 -1589 ($ $ $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -1351 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3789 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|))) (-1205)) (T -638))
-((-1374 (*1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-638 *3)) (-4 *3 (-1205)))) (-3969 (*1 *1 *2 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))) (-1589 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))) (-1351 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))) (-1340 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))) (-3789 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
-(-13 (-659 |#1|) (-10 -8 (-15 -1374 ($)) (-15 -2174 ((-112) $)) (-15 -3969 ($ |#1| $)) (-15 -1589 ($ $ $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -1351 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3789 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 11) (($ (-1171)) NIL) (((-1171) $) NIL) ((|#1| $) 8)) (-1723 (((-112) $ $) NIL)))
-(((-639 |#1|) (-13 (-1073) (-608 |#1|)) (-1090)) (T -639))
+((-2401 (*1 *2 *3) (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042)) (-5 *2 (-682 *4)))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *1)) (-5 *4 (-1253 *1)) (-4 *1 (-634 *5)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 *5)))))))
+(-13 (-1042) (-10 -8 (-15 -2401 ((-682 |t#1|) (-682 $))) (-15 -2401 ((-2 (|:| -1728 (-682 |t#1|)) (|:| |vec| (-1253 |t#1|))) (-682 $) (-1253 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) NIL (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-2404 (($ $ $) 31 (|has| |#1| (-1091)))) (-2403 (($ $ $) 33 (|has| |#1| (-1091)))) (-2402 (($ $ $) 36 (|has| |#1| (-1091)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-4205 (($ $) NIL) (($ $ (-765)) NIL)) (-2498 (($ $) NIL (|has| |#1| (-1091)))) (-1424 (($ $) 30 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091))) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-2406 (((-112) $) 9)) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2407 (($) 7)) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3941 (($ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) 35) ((|#1| $ (-544) |#1|) NIL)) (-3412 (((-544) $ $) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-4040 (((-112) $) NIL)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 44 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-3860 (($ |#1| $) 10)) (-4197 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4208 (($ $ $) 29) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2405 (($ $ $) 11)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2879 (((-1148) $) 25 (|has| |#1| (-815))) (((-1148) $ (-112)) 26 (|has| |#1| (-815))) (((-1259) (-817) $) 27 (|has| |#1| (-815))) (((-1259) (-817) $ (-112)) 28 (|has| |#1| (-815)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-635 |#1|) (-13 (-659 |#1|) (-10 -8 (-15 -2407 ($)) (-15 -2406 ((-112) $)) (-15 -3860 ($ |#1| $)) (-15 -2405 ($ $ $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -2404 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2402 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-1204)) (T -635))
+((-2407 (*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1204)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))) (-2405 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))) (-2404 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))) (-2403 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))) (-2402 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))))
+(-13 (-659 |#1|) (-10 -8 (-15 -2407 ($)) (-15 -2406 ((-112) $)) (-15 -3860 ($ |#1| $)) (-15 -2405 ($ $ $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -2404 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2402 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|)))
+((-4248 (((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 16)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 18)) (-4365 (((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)) 13)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -4248 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)))) (-1204) (-1204)) (T -636))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-635 *6)) (-5 *1 (-636 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-636 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-635 *5)) (-5 *1 (-636 *6 *5)))))
+(-10 -7 (-15 -4248 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|))))
+((-3826 ((|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|) 17) ((|#2| (-635 |#1|) (-635 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|)) 12)))
+(((-637 |#1| |#2|) (-10 -7 (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)))) (-1091) (-1204)) (T -637))
+((-3826 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1091)) (-4 *2 (-1204)) (-5 *1 (-637 *5 *2)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *1 (-637 *5 *6)))) (-3826 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204)) (-5 *1 (-637 *5 *2)))) (-3826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1091)) (-4 *5 (-1204)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) (-3826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204)) (-5 *1 (-637 *5 *2)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6)))))
+(-10 -7 (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|))))
+((-4365 (((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)) 13)))
+(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)))) (-1204) (-1204) (-1204)) (T -638))
+((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-635 *8)) (-5 *1 (-638 *6 *7 *8)))))
+(-10 -7 (-15 -4365 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11) (($ (-1171)) NIL) (((-1171) $) NIL) ((|#1| $) 8)) (-3437 (((-112) $ $) NIL)))
+(((-639 |#1|) (-13 (-1073) (-608 |#1|)) (-1091)) (T -639))
NIL
(-13 (-1073) (-608 |#1|))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1449 (($ |#1| |#1| $) 43)) (-2684 (((-112) $ (-765)) NIL)) (-1954 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-3299 (($ $) 45)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) 51 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 9 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 37)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3721 ((|#1| $) 46)) (-1617 (($ |#1| $) 26) (($ |#1| $ (-765)) 42)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1387 ((|#1| $) 48)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 21)) (-2910 (($) 25)) (-2365 (((-112) $) 49)) (-2341 (((-638 (-2 (|:| -2677 |#1|) (|:| -1714 (-765)))) $) 58)) (-3643 (($) 23) (($ (-638 |#1|)) 18)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) 55 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 19)) (-4216 (((-534) $) 34 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-4064 (((-856) $) 14 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 22)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 60 (|has| |#1| (-1090)))) (-3548 (((-765) $) 16 (|has| $ (-6 -4399)))))
-(((-640 |#1|) (-13 (-688 |#1|) (-10 -8 (-6 -4399) (-15 -2365 ((-112) $)) (-15 -1449 ($ |#1| |#1| $)))) (-1090)) (T -640))
-((-2365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1090)))) (-1449 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1090)))))
-(-13 (-688 |#1|) (-10 -8 (-6 -4399) (-15 -2365 ((-112) $)) (-15 -1449 ($ |#1| |#1| $))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23)))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2408 (($ |#1| |#1| $) 43)) (-1293 (((-112) $ (-765)) NIL)) (-1659 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2498 (($ $) 45)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) 51 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 9 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 37)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 46)) (-4014 (($ |#1| $) 26) (($ |#1| $ (-765)) 42)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 48)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 21)) (-3972 (($) 25)) (-2409 (((-112) $) 49)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 58)) (-1550 (($) 23) (($ (-635 |#1|)) 18)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) 55 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 19)) (-4377 (((-533) $) 34 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4353 (((-857) $) 14 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 22)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 60 (|has| |#1| (-1091)))) (-4364 (((-765) $) 16 (|has| $ (-6 -4400)))))
+(((-640 |#1|) (-13 (-688 |#1|) (-10 -8 (-6 -4400) (-15 -2409 ((-112) $)) (-15 -2408 ($ |#1| |#1| $)))) (-1091)) (T -640))
+((-2409 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1091)))) (-2408 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1091)))))
+(-13 (-688 |#1|) (-10 -8 (-6 -4400) (-15 -2409 ((-112) $)) (-15 -2408 ($ |#1| |#1| $))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23)))
(((-641 |#1|) (-139) (-1049)) (T -641))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1049)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765) $) 15)) (-1427 (($ $ |#1|) 56)) (-4026 (($ $) 32)) (-2659 (($ $) 31)) (-4061 (((-3 |#1| "failed") $) 48)) (-3979 ((|#1| $) NIL)) (-2981 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-2067 (((-856) $ (-1 (-856) (-856) (-856)) (-1 (-856) (-856) (-856)) (-561)) 46)) (-3328 ((|#1| $ (-561)) 30)) (-1895 ((|#2| $ (-561)) 29)) (-4251 (($ (-1 |#1| |#1|) $) 34)) (-4378 (($ (-1 |#2| |#2|) $) 38)) (-2670 (($) 10)) (-2000 (($ |#1| |#2|) 22)) (-3762 (($ (-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|)))) 23)) (-2649 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|))) $) 13)) (-2843 (($ |#1| $) 57)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4235 (((-112) $ $) 60)) (-4064 (((-856) $) 19) (($ |#1|) 16)) (-1723 (((-112) $ $) 25)))
-(((-642 |#1| |#2| |#3|) (-13 (-1090) (-1031 |#1|) (-10 -8 (-15 -2067 ((-856) $ (-1 (-856) (-856) (-856)) (-1 (-856) (-856) (-856)) (-561))) (-15 -2649 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|))) $)) (-15 -2000 ($ |#1| |#2|)) (-15 -3762 ($ (-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|))))) (-15 -1895 (|#2| $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -2659 ($ $)) (-15 -4026 ($ $)) (-15 -1386 ((-765) $)) (-15 -2670 ($)) (-15 -1427 ($ $ |#1|)) (-15 -2843 ($ |#1| $)) (-15 -2981 ($ |#1| |#2| $)) (-15 -2981 ($ $ $)) (-15 -4235 ((-112) $ $)) (-15 -4378 ($ (-1 |#2| |#2|) $)) (-15 -4251 ($ (-1 |#1| |#1|) $)))) (-1090) (-23) |#2|) (T -642))
-((-2067 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-856) (-856) (-856))) (-5 *4 (-561)) (-5 *2 (-856)) (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1090)) (-4 *6 (-23)) (-14 *7 *6))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 *4)))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-2000 (*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-3762 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 *4)))) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5)) (-4 *4 (-1090)) (-14 *5 *2))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-1090)) (-5 *1 (-642 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2659 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-4026 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-2670 (*1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-1427 (*1 *1 *1 *2) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2843 (*1 *1 *2 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2981 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2981 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-4235 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-4378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)))) (-4251 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-642 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1090) (-1031 |#1|) (-10 -8 (-15 -2067 ((-856) $ (-1 (-856) (-856) (-856)) (-1 (-856) (-856) (-856)) (-561))) (-15 -2649 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|))) $)) (-15 -2000 ($ |#1| |#2|)) (-15 -3762 ($ (-638 (-2 (|:| |gen| |#1|) (|:| -3486 |#2|))))) (-15 -1895 (|#2| $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -2659 ($ $)) (-15 -4026 ($ $)) (-15 -1386 ((-765) $)) (-15 -2670 ($)) (-15 -1427 ($ $ |#1|)) (-15 -2843 ($ |#1| $)) (-15 -2981 ($ |#1| |#2| $)) (-15 -2981 ($ $ $)) (-15 -4235 ((-112) $ $)) (-15 -4378 ($ (-1 |#2| |#2|) $)) (-15 -4251 ($ (-1 |#1| |#1|) $))))
-((-1556 (((-561) $) 23)) (-3350 (($ |#2| $ (-561)) 21) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) 12)) (-1558 (((-112) (-561) $) 14)) (-2754 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-638 $)) NIL)))
-(((-643 |#1| |#2|) (-10 -8 (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -1556 ((-561) |#1|)) (-15 -2355 ((-638 (-561)) |#1|)) (-15 -1558 ((-112) (-561) |#1|))) (-644 |#2|) (-1205)) (T -643))
-NIL
-(-10 -8 (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -1556 ((-561) |#1|)) (-15 -2355 ((-638 (-561)) |#1|)) (-15 -1558 ((-112) (-561) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 58 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-1461 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 51)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 42 (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3193 (($ $ |#1|) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1221 (-561))) 63)) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 70)) (-2754 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-644 |#1|) (-139) (-1205)) (T -644))
-((-1458 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2754 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-2754 (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-2754 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-4165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2883 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2883 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-3350 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-3350 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-4207 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1221 (-561))) (|has| *1 (-6 -4400)) (-4 *1 (-644 *2)) (-4 *2 (-1205)))))
-(-13 (-599 (-561) |t#1|) (-150 |t#1|) (-10 -8 (-15 -1458 ($ (-765) |t#1|)) (-15 -2754 ($ $ |t#1|)) (-15 -2754 ($ |t#1| $)) (-15 -2754 ($ $ $)) (-15 -2754 ($ (-638 $))) (-15 -4165 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2315 ($ $ (-1221 (-561)))) (-15 -2883 ($ $ (-561))) (-15 -2883 ($ $ (-1221 (-561)))) (-15 -3350 ($ |t#1| $ (-561))) (-15 -3350 ($ $ $ (-561))) (IF (|has| $ (-6 -4400)) (-15 -4207 (|t#1| $ (-1221 (-561)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4164 (((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-638 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) "failed") |#3| |#2| (-1166)) 44)))
-(((-645 |#1| |#2| |#3|) (-10 -7 (-15 -4164 ((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -4164 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-638 |#2|)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952)) (-649 |#2|)) (T -645))
-((-4164 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-645 *6 *2 *3)) (-4 *3 (-649 *2)))) (-4164 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-952))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2615 (-638 *4)))) (-5 *1 (-645 *6 *4 *3)) (-4 *3 (-649 *4)))))
-(-10 -7 (-15 -4164 ((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -4164 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-638 |#2|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-4295 (($ $) NIL (|has| |#1| (-362)))) (-2396 (($ $ $) NIL (|has| |#1| (-362)))) (-3531 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1882 (($ $ $) NIL (|has| |#1| (-362)))) (-2688 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $ $) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL (|has| |#1| (-362)))) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-2154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2776 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450)))) (-2252 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) NIL)) (-2598 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-1912 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-1522 (((-765) $) NIL)) (-1443 (($ $ $) NIL (|has| |#1| (-362)))) (-4129 (($ $ $) NIL (|has| |#1| (-362)))) (-4021 (($ $ $) NIL (|has| |#1| (-362)))) (-1516 (($ $ $) NIL (|has| |#1| (-362)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1359 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3371 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2315 ((|#1| $ |#1|) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-362)))) (-3768 (((-765) $) NIL)) (-2125 ((|#1| $) NIL (|has| |#1| (-450)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) NIL)) (-3746 (((-765)) NIL)) (-1363 ((|#1| $ |#1| |#1|) NIL)) (-3380 (($ $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($) NIL)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-646 |#1|) (-649 |#1|) (-232)) (T -646))
-NIL
-(-649 |#1|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-4295 (($ $) NIL (|has| |#1| (-362)))) (-2396 (($ $ $) NIL (|has| |#1| (-362)))) (-3531 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1882 (($ $ $) NIL (|has| |#1| (-362)))) (-2688 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $ $) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL (|has| |#1| (-362)))) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-2154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2776 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450)))) (-2252 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) NIL)) (-2598 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-1912 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-1522 (((-765) $) NIL)) (-1443 (($ $ $) NIL (|has| |#1| (-362)))) (-4129 (($ $ $) NIL (|has| |#1| (-362)))) (-4021 (($ $ $) NIL (|has| |#1| (-362)))) (-1516 (($ $ $) NIL (|has| |#1| (-362)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1359 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3371 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2315 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2356 (($ $ $) NIL (|has| |#1| (-362)))) (-3768 (((-765) $) NIL)) (-2125 ((|#1| $) NIL (|has| |#1| (-450)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) NIL)) (-3746 (((-765)) NIL)) (-1363 ((|#1| $ |#1| |#1|) NIL)) (-3380 (($ $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($) NIL)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-647 |#1| |#2|) (-13 (-649 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-641 |#1|) (-10 -8 (-15 -3922 ($ $))))) (T -647))
-NIL
-(-13 (-649 |#1|) (-285 |#2| |#2|))
-((-4295 (($ $) 26)) (-3380 (($ $) 24)) (-3154 (($) 12)))
-(((-648 |#1| |#2|) (-10 -8 (-15 -4295 (|#1| |#1|)) (-15 -3380 (|#1| |#1|)) (-15 -3154 (|#1|))) (-649 |#2|) (-1042)) (T -648))
-NIL
-(-10 -8 (-15 -4295 (|#1| |#1|)) (-15 -3380 (|#1| |#1|)) (-15 -3154 (|#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-4295 (($ $) 81 (|has| |#1| (-362)))) (-2396 (($ $ $) 83 (|has| |#1| (-362)))) (-3531 (($ $ (-765)) 82 (|has| |#1| (-362)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1882 (($ $ $) 44 (|has| |#1| (-362)))) (-2688 (($ $ $) 45 (|has| |#1| (-362)))) (-1619 (($ $ $) 47 (|has| |#1| (-362)))) (-2813 (($ $ $) 42 (|has| |#1| (-362)))) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 41 (|has| |#1| (-362)))) (-2154 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2776 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 46 (|has| |#1| (-362)))) (-4061 (((-3 (-561) "failed") $) 74 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 71 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 68)) (-3979 (((-561) $) 73 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 70 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 69)) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-4229 (($ $) 54 (|has| |#1| (-450)))) (-2252 (((-112) $) 31)) (-1381 (($ |#1| (-765)) 61)) (-2598 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 56 (|has| |#1| (-553)))) (-1912 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 57 (|has| |#1| (-553)))) (-1522 (((-765) $) 65)) (-1443 (($ $ $) 51 (|has| |#1| (-362)))) (-4129 (($ $ $) 52 (|has| |#1| (-362)))) (-4021 (($ $ $) 40 (|has| |#1| (-362)))) (-1516 (($ $ $) 49 (|has| |#1| (-362)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 48 (|has| |#1| (-362)))) (-1359 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-3371 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 53 (|has| |#1| (-362)))) (-1572 ((|#1| $) 64)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-553)))) (-2315 ((|#1| $ |#1|) 86)) (-2356 (($ $ $) 80 (|has| |#1| (-362)))) (-3768 (((-765) $) 66)) (-2125 ((|#1| $) 55 (|has| |#1| (-450)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 72 (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 67)) (-1868 (((-638 |#1|) $) 60)) (-3932 ((|#1| $ (-765)) 62)) (-3746 (((-765)) 28)) (-1363 ((|#1| $ |#1| |#1|) 59)) (-3380 (($ $) 84)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($) 85)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
-(((-649 |#1|) (-139) (-1042)) (T -649))
-((-3154 (*1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)))) (-3380 (*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-649 *3)) (-4 *3 (-1042)) (-4 *3 (-362)))) (-4295 (*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2356 (*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(-13 (-846 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -3154 ($)) (-15 -3380 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2396 ($ $ $)) (-15 -3531 ($ $ (-765))) (-15 -4295 ($ $)) (-15 -2356 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-285 |#1| |#1|) . T) ((-410 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-846 |#1|) . T))
-((-3377 (((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-1633 (((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 17)))
-(((-650 |#1| |#2|) (-10 -7 (-15 -1633 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1633 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)))) (-15 -3377 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1230 |#1|)) (T -650))
-((-3377 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4)) (-5 *2 (-638 (-646 (-406 *5)))) (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5))))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4)) (-5 *2 (-638 (-646 (-406 *5)))) (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5))))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-5 *2 (-638 (-646 (-406 *6)))) (-5 *1 (-650 *5 *6)) (-5 *3 (-646 (-406 *6))))))
-(-10 -7 (-15 -1633 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1633 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)))) (-15 -3377 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-4295 (($ $) NIL (|has| |#1| (-362)))) (-2396 (($ $ $) 28 (|has| |#1| (-362)))) (-3531 (($ $ (-765)) 31 (|has| |#1| (-362)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1882 (($ $ $) NIL (|has| |#1| (-362)))) (-2688 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $ $) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL (|has| |#1| (-362)))) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-2154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2776 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450)))) (-2252 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) NIL)) (-2598 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-1912 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-1522 (((-765) $) NIL)) (-1443 (($ $ $) NIL (|has| |#1| (-362)))) (-4129 (($ $ $) NIL (|has| |#1| (-362)))) (-4021 (($ $ $) NIL (|has| |#1| (-362)))) (-1516 (($ $ $) NIL (|has| |#1| (-362)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1359 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3371 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2315 ((|#1| $ |#1|) 24)) (-2356 (($ $ $) 33 (|has| |#1| (-362)))) (-3768 (((-765) $) NIL)) (-2125 ((|#1| $) NIL (|has| |#1| (-450)))) (-4064 (((-856) $) 20) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) NIL)) (-3746 (((-765)) NIL)) (-1363 ((|#1| $ |#1| |#1|) 23)) (-3380 (($ $) NIL)) (-2246 (($) 21 T CONST)) (-2257 (($) 8 T CONST)) (-3154 (($) NIL)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-651 |#1| |#2|) (-649 |#1|) (-1042) (-1 |#1| |#1|)) (T -651))
-NIL
-(-649 |#1|)
-((-2396 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3531 ((|#2| |#2| (-765) (-1 |#1| |#1|)) 40)) (-2356 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-652 |#1| |#2|) (-10 -7 (-15 -2396 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3531 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -2356 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-649 |#1|)) (T -652))
-((-2356 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2)) (-4 *2 (-649 *4)))) (-3531 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-652 *5 *2)) (-4 *2 (-649 *5)))) (-2396 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2)) (-4 *2 (-649 *4)))))
-(-10 -7 (-15 -2396 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3531 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -2356 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2273 (($ $ $) 9)))
-(((-653 |#1|) (-10 -8 (-15 -2273 (|#1| |#1| |#1|))) (-654)) (T -653))
-NIL
-(-10 -8 (-15 -2273 (|#1| |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-3344 (($ $) 10)) (-2273 (($ $ $) 8)) (-1723 (((-112) $ $) 6)) (-2261 (($ $ $) 9)))
-(((-654) (-139)) (T -654))
-((-3344 (*1 *1 *1) (-4 *1 (-654))) (-2261 (*1 *1 *1 *1) (-4 *1 (-654))) (-2273 (*1 *1 *1 *1) (-4 *1 (-654))))
-(-13 (-102) (-10 -8 (-15 -3344 ($ $)) (-15 -2261 ($ $ $)) (-15 -2273 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765) $) 15)) (-2414 (($ $ |#1|) 56)) (-2416 (($ $) 32)) (-2417 (($ $) 31)) (-3558 (((-3 |#1| "failed") $) 48)) (-3557 ((|#1| $) NIL)) (-2449 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-3932 (((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-544)) 46)) (-2813 ((|#1| $ (-544)) 30)) (-2814 ((|#2| $ (-544)) 29)) (-2410 (($ (-1 |#1| |#1|) $) 34)) (-2411 (($ (-1 |#2| |#2|) $) 38)) (-2415 (($) 10)) (-2419 (($ |#1| |#2|) 22)) (-2418 (($ (-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|)))) 23)) (-2420 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $) 13)) (-2413 (($ |#1| $) 57)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2412 (((-112) $ $) 60)) (-4353 (((-857) $) 19) (($ |#1|) 16)) (-3437 (((-112) $ $) 25)))
+(((-642 |#1| |#2| |#3|) (-13 (-1091) (-1031 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-544))) (-15 -2420 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $)) (-15 -2419 ($ |#1| |#2|)) (-15 -2418 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))))) (-15 -2814 (|#2| $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2417 ($ $)) (-15 -2416 ($ $)) (-15 -3521 ((-765) $)) (-15 -2415 ($)) (-15 -2414 ($ $ |#1|)) (-15 -2413 ($ |#1| $)) (-15 -2449 ($ |#1| |#2| $)) (-15 -2449 ($ $ $)) (-15 -2412 ((-112) $ $)) (-15 -2411 ($ (-1 |#2| |#2|) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)))) (-1091) (-23) |#2|) (T -642))
+((-3932 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-544)) (-5 *2 (-857)) (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1091)) (-4 *6 (-23)) (-14 *7 *6))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4))) (-2419 (*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2418 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5)) (-4 *4 (-1091)) (-14 *5 *2))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-1091)) (-5 *1 (-642 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2416 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4))) (-2415 (*1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2414 (*1 *1 *1 *2) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2413 (*1 *1 *2 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2449 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2449 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2412 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4))) (-2411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-642 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1091) (-1031 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-544))) (-15 -2420 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $)) (-15 -2419 ($ |#1| |#2|)) (-15 -2418 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))))) (-15 -2814 (|#2| $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2417 ($ $)) (-15 -2416 ($ $)) (-15 -3521 ((-765) $)) (-15 -2415 ($)) (-15 -2414 ($ $ |#1|)) (-15 -2413 ($ |#1| $)) (-15 -2449 ($ |#1| |#2| $)) (-15 -2449 ($ $ $)) (-15 -2412 ((-112) $ $)) (-15 -2411 ($ (-1 |#2| |#2|) $)) (-15 -2410 ($ (-1 |#1| |#1|) $))))
+((-2347 (((-544) $) 23)) (-2421 (($ |#2| $ (-544)) 21) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) 12)) (-2350 (((-112) (-544) $) 14)) (-4208 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-635 $)) NIL)))
+(((-643 |#1| |#2|) (-10 -8 (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -2347 ((-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2350 ((-112) (-544) |#1|))) (-644 |#2|) (-1204)) (T -643))
+NIL
+(-10 -8 (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -2347 ((-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2350 ((-112) (-544) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-644 |#1|) (-139) (-1204)) (T -644))
+((-4021 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4208 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-2421 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-2421 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1220 (-544))) (|has| *1 (-6 -4401)) (-4 *1 (-644 *2)) (-4 *2 (-1204)))))
+(-13 (-599 (-544) |t#1|) (-150 |t#1|) (-10 -8 (-15 -4021 ($ (-765) |t#1|)) (-15 -4208 ($ $ |t#1|)) (-15 -4208 ($ |t#1| $)) (-15 -4208 ($ $ $)) (-15 -4208 ($ (-635 $))) (-15 -4365 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4206 ($ $ (-1220 (-544)))) (-15 -2422 ($ $ (-544))) (-15 -2422 ($ $ (-1220 (-544)))) (-15 -2421 ($ |t#1| $ (-544))) (-15 -2421 ($ $ $ (-544))) (IF (|has| $ (-6 -4401)) (-15 -4194 (|t#1| $ (-1220 (-544)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 15)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3381 ((|#1| $) 21)) (-2913 (($ $ $) NIL (|has| |#1| (-785)))) (-3242 (($ $ $) NIL (|has| |#1| (-785)))) (-3643 (((-1148) $) 46)) (-3644 (((-1110) $) NIL)) (-3380 ((|#3| $) 22)) (-4353 (((-857) $) 42)) (-3040 (($) 10 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-785)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-785)))) (-3437 (((-112) $ $) 20)) (-3066 (((-112) $ $) NIL (|has| |#1| (-785)))) (-3067 (((-112) $ $) 24 (|has| |#1| (-785)))) (-4356 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4244 (($ $) 17) (($ $ $) NIL)) (-4246 (($ $ $) 27)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-645 |#1| |#2| |#3|) (-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $)))) (-711 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -645))
+((-4356 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-4356 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-645 *2 *4 *3)) (-4 *2 (-711 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-645 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-3380 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4)))))
+(-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $))))
+((-3980 (((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-635 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) "failed") |#3| |#2| (-1166)) 44)))
+(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -3980 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-635 |#2|)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953)) (-651 |#2|)) (T -646))
+((-3980 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-651 *2)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-953))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4)))) (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-651 *4)))))
+(-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -3980 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-635 |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2423 (($ $) NIL (|has| |#1| (-362)))) (-2425 (($ $ $) 28 (|has| |#1| (-362)))) (-2426 (($ $ (-765)) 31 (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) 24)) (-2427 (($ $ $) 33 (|has| |#1| (-362)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) 20) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) 23)) (-2899 (($ $) NIL)) (-3040 (($) 21 T CONST)) (-3046 (($) 8 T CONST)) (-3051 (($) NIL)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-647 |#1| |#2|) (-651 |#1|) (-1042) (-1 |#1| |#1|)) (T -647))
+NIL
+(-651 |#1|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2423 (($ $) NIL (|has| |#1| (-362)))) (-2425 (($ $ $) NIL (|has| |#1| (-362)))) (-2426 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) NIL)) (-2427 (($ $ $) NIL (|has| |#1| (-362)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) NIL)) (-2899 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($) NIL)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-648 |#1|) (-651 |#1|) (-232)) (T -648))
+NIL
+(-651 |#1|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2423 (($ $) NIL (|has| |#1| (-362)))) (-2425 (($ $ $) NIL (|has| |#1| (-362)))) (-2426 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2427 (($ $ $) NIL (|has| |#1| (-362)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) NIL)) (-2899 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($) NIL)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-649 |#1| |#2|) (-13 (-651 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-641 |#1|) (-10 -8 (-15 -4217 ($ $))))) (T -649))
+NIL
+(-13 (-651 |#1|) (-285 |#2| |#2|))
+((-2423 (($ $) 26)) (-2899 (($ $) 24)) (-3051 (($) 12)))
+(((-650 |#1| |#2|) (-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3051 (|#1|))) (-651 |#2|) (-1042)) (T -650))
+NIL
+(-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3051 (|#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2423 (($ $) 81 (|has| |#1| (-362)))) (-2425 (($ $ $) 83 (|has| |#1| (-362)))) (-2426 (($ $ (-765)) 82 (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2918 (($ $ $) 44 (|has| |#1| (-362)))) (-2919 (($ $ $) 45 (|has| |#1| (-362)))) (-2920 (($ $ $) 47 (|has| |#1| (-362)))) (-2916 (($ $ $) 42 (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 41 (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) 43 (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 46 (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) 74 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) 71 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) 68)) (-3557 (((-544) $) 73 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 70 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 69)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 54 (|has| |#1| (-450)))) (-2545 (((-112) $) 31)) (-3276 (($ |#1| (-765)) 61)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 56 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 57 (|has| |#1| (-554)))) (-3202 (((-765) $) 65)) (-2924 (($ $ $) 51 (|has| |#1| (-362)))) (-2925 (($ $ $) 52 (|has| |#1| (-362)))) (-2914 (($ $ $) 40 (|has| |#1| (-362)))) (-2922 (($ $ $) 49 (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 48 (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) 50 (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 53 (|has| |#1| (-362)))) (-3575 ((|#1| $) 64)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ #1#) $ |#1|) 58 (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) 86)) (-2427 (($ $ $) 80 (|has| |#1| (-362)))) (-4355 (((-765) $) 66)) (-3199 ((|#1| $) 55 (|has| |#1| (-450)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 72 (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 67)) (-4224 (((-635 |#1|) $) 60)) (-4084 ((|#1| $ (-765)) 62)) (-3511 (((-765)) 28)) (-2927 ((|#1| $ |#1| |#1|) 59)) (-2899 (($ $) 84)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($) 85)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(((-651 |#1|) (-139) (-1042)) (T -651))
+((-3051 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)))) (-2899 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)))) (-2425 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-651 *3)) (-4 *3 (-1042)) (-4 *3 (-362)))) (-2423 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2427 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(-13 (-846 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -3051 ($)) (-15 -2899 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2425 ($ $ $)) (-15 -2426 ($ $ (-765))) (-15 -2423 ($ $)) (-15 -2427 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-285 |#1| |#1|) . T) ((-411 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-846 |#1|) . T))
+((-2424 (((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-4139 (((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 17)))
+(((-652 |#1| |#2|) (-10 -7 (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)))) (-15 -2424 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -652))
+((-2424 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-406 *5))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-406 *5))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-648 (-406 *6)))) (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-406 *6))))))
+(-10 -7 (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)))) (-15 -2424 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))))) |%noBranch|))
+((-2425 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2426 ((|#2| |#2| (-765) (-1 |#1| |#1|)) 40)) (-2427 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-653 |#1| |#2|) (-10 -7 (-15 -2425 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2426 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -2427 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-651 |#1|)) (T -653))
+((-2427 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-651 *4)))) (-2426 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-653 *5 *2)) (-4 *2 (-651 *5)))) (-2425 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-651 *4)))))
+(-10 -7 (-15 -2425 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2426 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -2427 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2428 (($ $ $) 9)))
+(((-654 |#1|) (-10 -8 (-15 -2428 (|#1| |#1| |#1|))) (-655)) (T -654))
+NIL
+(-10 -8 (-15 -2428 (|#1| |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-2430 (($ $) 10)) (-2428 (($ $ $) 8)) (-3437 (((-112) $ $) 6)) (-2429 (($ $ $) 9)))
+(((-655) (-139)) (T -655))
+((-2430 (*1 *1 *1) (-4 *1 (-655))) (-2429 (*1 *1 *1 *1) (-4 *1 (-655))) (-2428 (*1 *1 *1 *1) (-4 *1 (-655))))
+(-13 (-102) (-10 -8 (-15 -2430 ($ $)) (-15 -2429 ($ $ $)) (-15 -2428 ($ $ $))))
(((-102) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 15)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4077 ((|#1| $) 21)) (-1597 (($ $ $) NIL (|has| |#1| (-785)))) (-3017 (($ $ $) NIL (|has| |#1| (-785)))) (-1883 (((-1148) $) 46)) (-1701 (((-1110) $) NIL)) (-4088 ((|#3| $) 22)) (-4064 (((-856) $) 42)) (-2246 (($) 10 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-785)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-785)))) (-1723 (((-112) $ $) 20)) (-1770 (((-112) $ $) NIL (|has| |#1| (-785)))) (-1746 (((-112) $ $) 24 (|has| |#1| (-785)))) (-1828 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1819 (($ $) 17) (($ $ $) NIL)) (-1810 (($ $ $) 27)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-655 |#1| |#2| |#3|) (-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -1828 ($ $ |#3|)) (-15 -1828 ($ |#1| |#3|)) (-15 -4077 (|#1| $)) (-15 -4088 (|#3| $)))) (-711 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -655))
-((-1828 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-1828 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-655 *2 *4 *3)) (-4 *2 (-711 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-4077 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-655 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-4088 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4)))))
-(-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -1828 ($ $ |#3|)) (-15 -1828 ($ |#1| |#3|)) (-15 -4077 (|#1| $)) (-15 -4088 (|#3| $))))
-((-4033 (((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|)) 33)))
-(((-656 |#1|) (-10 -7 (-15 -4033 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|)))) (-902)) (T -656))
-((-4033 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *4))) (-5 *3 (-1162 *4)) (-4 *4 (-902)) (-5 *1 (-656 *4)))))
-(-10 -7 (-15 -4033 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2844 (((-638 |#1|) $) 82)) (-2371 (($ $ (-765)) 90)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3395 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 48)) (-4061 (((-3 (-665 |#1|) "failed") $) NIL)) (-3979 (((-665 |#1|) $) NIL)) (-1598 (($ $) 89)) (-2044 (((-765) $) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-3077 (($ (-665 |#1|) |#2|) 68)) (-3658 (($ $) 86)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-2339 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 47)) (-2963 (((-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1557 (((-665 |#1|) $) NIL)) (-1572 ((|#2| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1436 (($ $ |#1| $) 30) (($ $ (-638 |#1|) (-638 $)) 32)) (-3768 (((-765) $) 88)) (-4078 (($ $ $) 20) (($ (-665 |#1|) (-665 |#1|)) 77) (($ (-665 |#1|) $) 75) (($ $ (-665 |#1|)) 76)) (-4064 (((-856) $) NIL) (($ |#1|) 74) (((-1269 |#1| |#2|) $) 58) (((-1278 |#1| |#2|) $) 41) (($ (-665 |#1|)) 25)) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-665 |#1|)) NIL)) (-4226 ((|#2| (-1278 |#1| |#2|) $) 43)) (-2246 (($) 23 T CONST)) (-4299 (((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1332 (((-3 $ "failed") (-1269 |#1| |#2|)) 60)) (-1722 (($ (-665 |#1|)) 14)) (-1723 (((-112) $ $) 44)) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $) 66) (($ $ $) NIL)) (-1810 (($ $ $) 29)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-665 |#1|)) NIL)))
-(((-657 |#1| |#2|) (-13 (-373 |#1| |#2|) (-381 |#2| (-665 |#1|)) (-10 -8 (-15 -1332 ((-3 $ "failed") (-1269 |#1| |#2|))) (-15 -4078 ($ (-665 |#1|) (-665 |#1|))) (-15 -4078 ($ (-665 |#1|) $)) (-15 -4078 ($ $ (-665 |#1|))))) (-844) (-171)) (T -657))
-((-1332 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-657 *3 *4)))) (-4078 (*1 *1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-4078 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))))
-(-13 (-373 |#1| |#2|) (-381 |#2| (-665 |#1|)) (-10 -8 (-15 -1332 ((-3 $ "failed") (-1269 |#1| |#2|))) (-15 -4078 ($ (-665 |#1|) (-665 |#1|))) (-15 -4078 ($ (-665 |#1|) $)) (-15 -4078 ($ $ (-665 |#1|)))))
-((-2097 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-1680 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1954 (($ (-1 (-112) |#2|) $) 27)) (-4026 (($ $) 55)) (-3299 (($ $) 63)) (-3222 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-3176 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-4266 (((-561) |#2| $ (-561)) 60) (((-561) |#2| $) NIL) (((-561) (-1 (-112) |#2|) $) 46)) (-1458 (($ (-765) |#2|) 53)) (-2289 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-3405 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4165 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3755 (($ |#2|) 15)) (-1617 (($ $ $ (-561)) 35) (($ |#2| $ (-561)) 33)) (-3202 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-4335 (($ $ (-1221 (-561))) 43) (($ $ (-561)) 37)) (-2879 (($ $ $ (-561)) 59)) (-4225 (($ $) 57)) (-1746 (((-112) $ $) 65)))
-(((-658 |#1| |#2|) (-10 -8 (-15 -3755 (|#1| |#2|)) (-15 -4335 (|#1| |#1| (-561))) (-15 -4335 (|#1| |#1| (-1221 (-561)))) (-15 -3222 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1617 (|#1| |#2| |#1| (-561))) (-15 -1617 (|#1| |#1| |#1| (-561))) (-15 -2289 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3222 (|#1| |#2| |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -2289 (|#1| |#1| |#1|)) (-15 -3405 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2097 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4266 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4266 ((-561) |#2| |#1|)) (-15 -4266 ((-561) |#2| |#1| (-561))) (-15 -3405 (|#1| |#1| |#1|)) (-15 -2097 ((-112) |#1|)) (-15 -2879 (|#1| |#1| |#1| (-561))) (-15 -4026 (|#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3202 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1458 (|#1| (-765) |#2|)) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1|))) (-659 |#2|) (-1205)) (T -658))
-NIL
-(-10 -8 (-15 -3755 (|#1| |#2|)) (-15 -4335 (|#1| |#1| (-561))) (-15 -4335 (|#1| |#1| (-1221 (-561)))) (-15 -3222 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1617 (|#1| |#2| |#1| (-561))) (-15 -1617 (|#1| |#1| |#1| (-561))) (-15 -2289 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3222 (|#1| |#2| |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -2289 (|#1| |#1| |#1|)) (-15 -3405 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2097 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4266 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4266 ((-561) |#2| |#1|)) (-15 -4266 ((-561) |#2| |#1| (-561))) (-15 -3405 (|#1| |#1| |#1|)) (-15 -2097 ((-112) |#1|)) (-15 -2879 (|#1| |#1| |#1| (-561))) (-15 -4026 (|#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3176 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3202 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1458 (|#1| (-765) |#2|)) (-15 -4165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-2333 ((|#1| $) 65)) (-3164 (($ $) 67)) (-1846 (((-1259) $ (-561) (-561)) 97 (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) 52 (|has| $ (-6 -4400)))) (-2097 (((-112) $) 142 (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1680 (($ $) 146 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4400)))) (-1318 (($ $) 141 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-2956 (($ $ $) 56 (|has| $ (-6 -4400)))) (-3281 ((|#1| $ |#1|) 54 (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) 58 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4400))) (($ $ "rest" $) 55 (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 117 (|has| $ (-6 -4400))) ((|#1| $ (-561) |#1|) 86 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-1954 (($ (-1 (-112) |#1|) $) 129)) (-3612 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4399)))) (-2322 ((|#1| $) 66)) (-2674 (($) 7 T CONST)) (-4026 (($ $) 144 (|has| $ (-6 -4400)))) (-2659 (($ $) 134)) (-1437 (($ $) 73) (($ $ (-765)) 71)) (-3299 (($ $) 131 (|has| |#1| (-1090)))) (-1461 (($ $) 99 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ |#1| $) 130 (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) 125)) (-1475 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4399))) (($ |#1| $) 100 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2041 ((|#1| $ (-561) |#1|) 85 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 87)) (-2728 (((-112) $) 83)) (-4266 (((-561) |#1| $ (-561)) 139 (|has| |#1| (-1090))) (((-561) |#1| $) 138 (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) 137)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-1458 (($ (-765) |#1|) 108)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 95 (|has| (-561) (-844)))) (-1597 (($ $ $) 147 (|has| |#1| (-844)))) (-2289 (($ $ $) 132 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3405 (($ $ $) 140 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 94 (|has| (-561) (-844)))) (-3017 (($ $ $) 148 (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3755 (($ |#1|) 122)) (-3683 (((-112) $ (-765)) 10)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1501 ((|#1| $) 70) (($ $ (-765)) 68)) (-1617 (($ $ $ (-561)) 127) (($ |#1| $ (-561)) 126)) (-3350 (($ $ $ (-561)) 116) (($ |#1| $ (-561)) 115)) (-2355 (((-638 (-561)) $) 92)) (-1558 (((-112) (-561) $) 91)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 76) (($ $ (-765)) 74)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3193 (($ $ |#1|) 96 (|has| $ (-6 -4400)))) (-2391 (((-112) $) 84)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 90)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1221 (-561))) 112) ((|#1| $ (-561)) 89) ((|#1| $ (-561) |#1|) 88)) (-4293 (((-561) $ $) 44)) (-4335 (($ $ (-1221 (-561))) 124) (($ $ (-561)) 123)) (-2883 (($ $ (-1221 (-561))) 114) (($ $ (-561)) 113)) (-1650 (((-112) $) 46)) (-3235 (($ $) 62)) (-4193 (($ $) 59 (|has| $ (-6 -4400)))) (-2118 (((-765) $) 63)) (-1491 (($ $) 64)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2879 (($ $ $ (-561)) 143 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 107)) (-2448 (($ $ $) 61) (($ $ |#1|) 60)) (-2754 (($ $ $) 78) (($ |#1| $) 77) (($ (-638 $)) 110) (($ $ |#1|) 109)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) 150 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 151 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1770 (((-112) $ $) 149 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 152 (|has| |#1| (-844)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-659 |#1|) (-139) (-1205)) (T -659))
-((-3755 (*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1205)))))
-(-13 (-1139 |t#1|) (-372 |t#1|) (-281 |t#1|) (-10 -8 (-15 -3755 ($ |t#1|))))
-(((-34) . T) ((-102) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-281 |#1|) . T) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1003 |#1|) . T) ((-1090) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1139 |#1|) . T) ((-1205) . T) ((-1242 |#1|) . T))
-((-4164 (((-638 (-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|))))) (-638 (-638 |#1|)) (-638 (-1254 |#1|))) 22) (((-638 (-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|))))) (-682 |#1|) (-638 (-1254 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-638 (-638 |#1|)) (-1254 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-682 |#1|) (-1254 |#1|)) 14)) (-3400 (((-765) (-682 |#1|) (-1254 |#1|)) 30)) (-3749 (((-3 (-1254 |#1|) "failed") (-682 |#1|) (-1254 |#1|)) 24)) (-4158 (((-112) (-682 |#1|) (-1254 |#1|)) 27)))
-(((-660 |#1|) (-10 -7 (-15 -4164 ((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-682 |#1|) (-1254 |#1|))) (-15 -4164 ((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-638 (-638 |#1|)) (-1254 |#1|))) (-15 -4164 ((-638 (-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|))))) (-682 |#1|) (-638 (-1254 |#1|)))) (-15 -4164 ((-638 (-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|))))) (-638 (-638 |#1|)) (-638 (-1254 |#1|)))) (-15 -3749 ((-3 (-1254 |#1|) "failed") (-682 |#1|) (-1254 |#1|))) (-15 -4158 ((-112) (-682 |#1|) (-1254 |#1|))) (-15 -3400 ((-765) (-682 |#1|) (-1254 |#1|)))) (-362)) (T -660))
-((-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-660 *5)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-660 *5)))) (-3749 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1254 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *1 (-660 *4)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362)) (-5 *2 (-638 (-2 (|:| |particular| (-3 (-1254 *5) "failed")) (|:| -2615 (-638 (-1254 *5)))))) (-5 *1 (-660 *5)) (-5 *4 (-638 (-1254 *5))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-638 (-2 (|:| |particular| (-3 (-1254 *5) "failed")) (|:| -2615 (-638 (-1254 *5)))))) (-5 *1 (-660 *5)) (-5 *4 (-638 (-1254 *5))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1254 *5) "failed")) (|:| -2615 (-638 (-1254 *5))))) (-5 *1 (-660 *5)) (-5 *4 (-1254 *5)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1254 *5) "failed")) (|:| -2615 (-638 (-1254 *5))))) (-5 *1 (-660 *5)) (-5 *4 (-1254 *5)))))
-(-10 -7 (-15 -4164 ((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-682 |#1|) (-1254 |#1|))) (-15 -4164 ((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-638 (-638 |#1|)) (-1254 |#1|))) (-15 -4164 ((-638 (-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|))))) (-682 |#1|) (-638 (-1254 |#1|)))) (-15 -4164 ((-638 (-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|))))) (-638 (-638 |#1|)) (-638 (-1254 |#1|)))) (-15 -3749 ((-3 (-1254 |#1|) "failed") (-682 |#1|) (-1254 |#1|))) (-15 -4158 ((-112) (-682 |#1|) (-1254 |#1|))) (-15 -3400 ((-765) (-682 |#1|) (-1254 |#1|))))
-((-4164 (((-638 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|)))) |#4| (-638 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|))) |#4| |#3|) 45)) (-3400 (((-765) |#4| |#3|) 17)) (-3749 (((-3 |#3| "failed") |#4| |#3|) 20)) (-4158 (((-112) |#4| |#3|) 13)))
-(((-661 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|))) |#4| |#3|)) (-15 -4164 ((-638 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|)))) |#4| (-638 |#3|))) (-15 -3749 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4158 ((-112) |#4| |#3|)) (-15 -3400 ((-765) |#4| |#3|))) (-362) (-13 (-372 |#1|) (-10 -7 (-6 -4400))) (-13 (-372 |#1|) (-10 -7 (-6 -4400))) (-680 |#1| |#2| |#3|)) (T -661))
-((-3400 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-5 *2 (-765)) (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))) (-4158 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-5 *2 (-112)) (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))) (-3749 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4400)))) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400)))) (-5 *1 (-661 *4 *5 *2 *3)) (-4 *3 (-680 *4 *5 *2)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-5 *2 (-638 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2615 (-638 *7))))) (-5 *1 (-661 *5 *6 *7 *3)) (-5 *4 (-638 *7)) (-4 *3 (-680 *5 *6 *7)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))))
-(-10 -7 (-15 -4164 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|))) |#4| |#3|)) (-15 -4164 ((-638 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|)))) |#4| (-638 |#3|))) (-15 -3749 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4158 ((-112) |#4| |#3|)) (-15 -3400 ((-765) |#4| |#3|)))
-((-2790 (((-2 (|:| |particular| (-3 (-1254 (-406 |#4|)) "failed")) (|:| -2615 (-638 (-1254 (-406 |#4|))))) (-638 |#4|) (-638 |#3|)) 45)))
-(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 ((-2 (|:| |particular| (-3 (-1254 (-406 |#4|)) "failed")) (|:| -2615 (-638 (-1254 (-406 |#4|))))) (-638 |#4|) (-638 |#3|)))) (-553) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -662))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *7)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |particular| (-3 (-1254 (-406 *8)) "failed")) (|:| -2615 (-638 (-1254 (-406 *8)))))) (-5 *1 (-662 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2790 ((-2 (|:| |particular| (-3 (-1254 (-406 |#4|)) "failed")) (|:| -2615 (-638 (-1254 (-406 |#4|))))) (-638 |#4|) (-638 |#3|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2385 (((-3 $ "failed")) NIL (|has| |#2| (-553)))) (-1736 ((|#2| $) NIL)) (-3711 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3625 (((-1254 (-682 |#2|))) NIL) (((-1254 (-682 |#2|)) (-1254 $)) NIL)) (-1711 (((-112) $) NIL)) (-1426 (((-1254 $)) 37)) (-2684 (((-112) $ (-765)) NIL)) (-3256 (($ |#2|) NIL)) (-2674 (($) NIL T CONST)) (-2617 (($ $) NIL (|has| |#2| (-306)))) (-3324 (((-239 |#1| |#2|) $ (-561)) NIL)) (-4108 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (|has| |#2| (-553)))) (-1763 (((-3 $ "failed")) NIL (|has| |#2| (-553)))) (-3615 (((-682 |#2|)) NIL) (((-682 |#2|) (-1254 $)) NIL)) (-3230 ((|#2| $) NIL)) (-4196 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1254 $)) NIL)) (-3884 (((-3 $ "failed") $) NIL (|has| |#2| (-553)))) (-3146 (((-1162 (-945 |#2|))) NIL (|has| |#2| (-362)))) (-3187 (($ $ (-914)) NIL)) (-3718 ((|#2| $) NIL)) (-2477 (((-1162 |#2|) $) NIL (|has| |#2| (-553)))) (-2137 ((|#2|) NIL) ((|#2| (-1254 $)) NIL)) (-4292 (((-1162 |#2|) $) NIL)) (-3172 (((-112)) NIL)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) NIL)) (-3376 (($ (-1254 |#2|)) NIL) (($ (-1254 |#2|) (-1254 $)) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3400 (((-765) $) NIL (|has| |#2| (-553))) (((-914)) 38)) (-1975 ((|#2| $ (-561) (-561)) NIL)) (-2949 (((-112)) NIL)) (-3425 (($ $ (-914)) NIL)) (-2368 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL)) (-1486 (((-765) $) NIL (|has| |#2| (-553)))) (-2351 (((-638 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-553)))) (-3349 (((-765) $) NIL)) (-2203 (((-112)) NIL)) (-3361 (((-765) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3440 ((|#2| $) NIL (|has| |#2| (-6 (-4401 "*"))))) (-3655 (((-561) $) NIL)) (-1355 (((-561) $) NIL)) (-4125 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2475 (((-561) $) NIL)) (-3838 (((-561) $) NIL)) (-2887 (($ (-638 (-638 |#2|))) NIL)) (-2029 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3485 (((-638 (-638 |#2|)) $) NIL)) (-3787 (((-112)) NIL)) (-3591 (((-112)) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1364 (((-3 (-2 (|:| |particular| $) (|:| -2615 (-638 $))) "failed")) NIL (|has| |#2| (-553)))) (-2699 (((-3 $ "failed")) NIL (|has| |#2| (-553)))) (-2960 (((-682 |#2|)) NIL) (((-682 |#2|) (-1254 $)) NIL)) (-1952 ((|#2| $) NIL)) (-4208 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1254 $)) NIL)) (-3408 (((-3 $ "failed") $) NIL (|has| |#2| (-553)))) (-4291 (((-1162 (-945 |#2|))) NIL (|has| |#2| (-362)))) (-2143 (($ $ (-914)) NIL)) (-4178 ((|#2| $) NIL)) (-3462 (((-1162 |#2|) $) NIL (|has| |#2| (-553)))) (-3659 ((|#2|) NIL) ((|#2| (-1254 $)) NIL)) (-4321 (((-1162 |#2|) $) NIL)) (-4112 (((-112)) NIL)) (-1883 (((-1148) $) NIL)) (-2646 (((-112)) NIL)) (-2227 (((-112)) NIL)) (-1871 (((-112)) NIL)) (-1885 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-1701 (((-1110) $) NIL)) (-1800 (((-112)) NIL)) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553)))) (-3977 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ (-561) (-561) |#2|) NIL) ((|#2| $ (-561) (-561)) 22) ((|#2| $ (-561)) NIL)) (-3922 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3124 ((|#2| $) NIL)) (-3557 (($ (-638 |#2|)) NIL)) (-2100 (((-112) $) NIL)) (-2210 (((-239 |#1| |#2|) $) NIL)) (-4105 ((|#2| $) NIL (|has| |#2| (-6 (-4401 "*"))))) (-1714 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-4225 (($ $) NIL)) (-3752 (((-682 |#2|) (-1254 $)) NIL) (((-1254 |#2|) $) NIL) (((-682 |#2|) (-1254 $) (-1254 $)) NIL) (((-1254 |#2|) $ (-1254 $)) 25)) (-4216 (($ (-1254 |#2|)) NIL) (((-1254 |#2|) $) NIL)) (-3311 (((-638 (-945 |#2|))) NIL) (((-638 (-945 |#2|)) (-1254 $)) NIL)) (-3047 (($ $ $) NIL)) (-2619 (((-112)) NIL)) (-2062 (((-239 |#1| |#2|) $ (-561)) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) NIL) (((-682 |#2|) $) NIL)) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) 36)) (-2541 (((-638 (-1254 |#2|))) NIL (|has| |#2| (-553)))) (-2748 (($ $ $ $) NIL)) (-3498 (((-112)) NIL)) (-1363 (($ (-682 |#2|) $) NIL)) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-2841 (((-112) $) NIL)) (-2897 (($ $ $) NIL)) (-1999 (((-112)) NIL)) (-2136 (((-112)) NIL)) (-3030 (((-112)) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#2| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-663 |#1| |#2|) (-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-416 |#2|)) (-914) (-171)) (T -663))
-NIL
-(-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-416 |#2|))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2109 (((-638 (-1125)) $) 10)) (-4064 (((-856) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-664) (-13 (-1073) (-10 -8 (-15 -2109 ((-638 (-1125)) $))))) (T -664))
-((-2109 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-664)))))
-(-13 (-1073) (-10 -8 (-15 -2109 ((-638 (-1125)) $))))
-((-4053 (((-112) $ $) NIL)) (-2844 (((-638 |#1|) $) NIL)) (-1599 (($ $) 51)) (-2160 (((-112) $) NIL)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1442 (((-3 $ "failed") (-813 |#1|)) 23)) (-1899 (((-112) (-813 |#1|)) 15)) (-4253 (($ (-813 |#1|)) 24)) (-1831 (((-112) $ $) 29)) (-4310 (((-914) $) 36)) (-1586 (($ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1633 (((-638 $) (-813 |#1|)) 17)) (-4064 (((-856) $) 42) (($ |#1|) 33) (((-813 |#1|) $) 38) (((-670 |#1|) $) 43)) (-3525 (((-59 (-638 $)) (-638 |#1|) (-914)) 56)) (-1672 (((-638 $) (-638 |#1|) (-914)) 59)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 52)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 37)))
-(((-665 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 -2160 ((-112) $)) (-15 -1586 ($ $)) (-15 -1599 ($ $)) (-15 -4310 ((-914) $)) (-15 -1831 ((-112) $ $)) (-15 -4064 ((-813 |#1|) $)) (-15 -4064 ((-670 |#1|) $)) (-15 -1633 ((-638 $) (-813 |#1|))) (-15 -1899 ((-112) (-813 |#1|))) (-15 -4253 ($ (-813 |#1|))) (-15 -1442 ((-3 $ "failed") (-813 |#1|))) (-15 -2844 ((-638 |#1|) $)) (-15 -3525 ((-59 (-638 $)) (-638 |#1|) (-914))) (-15 -1672 ((-638 $) (-638 |#1|) (-914))))) (-844)) (T -665))
-((-2160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-1599 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-1831 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-665 *4))) (-5 *1 (-665 *4)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-4253 (*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-1442 (*1 *1 *2) (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844)) (-5 *2 (-59 (-638 (-665 *5)))) (-5 *1 (-665 *5)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844)) (-5 *2 (-638 (-665 *5))) (-5 *1 (-665 *5)))))
-(-13 (-844) (-1031 |#1|) (-10 -8 (-15 -2160 ((-112) $)) (-15 -1586 ($ $)) (-15 -1599 ($ $)) (-15 -4310 ((-914) $)) (-15 -1831 ((-112) $ $)) (-15 -4064 ((-813 |#1|) $)) (-15 -4064 ((-670 |#1|) $)) (-15 -1633 ((-638 $) (-813 |#1|))) (-15 -1899 ((-112) (-813 |#1|))) (-15 -4253 ($ (-813 |#1|))) (-15 -1442 ((-3 $ "failed") (-813 |#1|))) (-15 -2844 ((-638 |#1|) $)) (-15 -3525 ((-59 (-638 $)) (-638 |#1|) (-914))) (-15 -1672 ((-638 $) (-638 |#1|) (-914)))))
-((-2506 ((|#2| $) 76)) (-3164 (($ $) 96)) (-2684 (((-112) $ (-765)) 26)) (-1437 (($ $) 85) (($ $ (-765)) 88)) (-2728 (((-112) $) 97)) (-4092 (((-638 $) $) 72)) (-2129 (((-112) $ $) 71)) (-3116 (((-112) $ (-765)) 24)) (-3950 (((-561) $) 46)) (-1556 (((-561) $) 45)) (-3683 (((-112) $ (-765)) 22)) (-3441 (((-112) $) 74)) (-1501 ((|#2| $) 89) (($ $ (-765)) 92)) (-3350 (($ $ $ (-561)) 62) (($ |#2| $ (-561)) 61)) (-2355 (((-638 (-561)) $) 44)) (-1558 (((-112) (-561) $) 42)) (-1424 ((|#2| $) NIL) (($ $ (-765)) 84)) (-3702 (($ $ (-561)) 99)) (-2391 (((-112) $) 98)) (-3977 (((-112) (-1 (-112) |#2|) $) 32)) (-2411 (((-638 |#2|) $) 33)) (-2315 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1221 (-561))) 58) ((|#2| $ (-561)) 40) ((|#2| $ (-561) |#2|) 41)) (-4293 (((-561) $ $) 70)) (-2883 (($ $ (-1221 (-561))) 57) (($ $ (-561)) 51)) (-1650 (((-112) $) 66)) (-3235 (($ $) 81)) (-2118 (((-765) $) 80)) (-1491 (($ $) 79)) (-4078 (($ (-638 |#2|)) 37)) (-3426 (($ $) 100)) (-3770 (((-638 $) $) 69)) (-2552 (((-112) $ $) 68)) (-3715 (((-112) (-1 (-112) |#2|) $) 31)) (-1723 (((-112) $ $) 18)) (-3548 (((-765) $) 29)))
-(((-666 |#1| |#2|) (-10 -8 (-15 -3426 (|#1| |#1|)) (-15 -3702 (|#1| |#1| (-561))) (-15 -2728 ((-112) |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -2315 (|#2| |#1| (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561))) (-15 -2411 ((-638 |#2|) |#1|)) (-15 -1558 ((-112) (-561) |#1|)) (-15 -2355 ((-638 (-561)) |#1|)) (-15 -1556 ((-561) |#1|)) (-15 -3950 ((-561) |#1|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -2883 (|#1| |#1| (-561))) (-15 -2883 (|#1| |#1| (-1221 (-561)))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3235 (|#1| |#1|)) (-15 -2118 ((-765) |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -1501 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "last")) (-15 -1501 (|#2| |#1|)) (-15 -1437 (|#1| |#1| (-765))) (-15 -2315 (|#1| |#1| "rest")) (-15 -1437 (|#1| |#1|)) (-15 -1424 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "first")) (-15 -1424 (|#2| |#1|)) (-15 -2129 ((-112) |#1| |#1|)) (-15 -2552 ((-112) |#1| |#1|)) (-15 -4293 ((-561) |#1| |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -2315 (|#2| |#1| "value")) (-15 -2506 (|#2| |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4092 ((-638 |#1|) |#1|)) (-15 -3770 ((-638 |#1|) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765)))) (-667 |#2|) (-1205)) (T -666))
-NIL
-(-10 -8 (-15 -3426 (|#1| |#1|)) (-15 -3702 (|#1| |#1| (-561))) (-15 -2728 ((-112) |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -2315 (|#2| |#1| (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561))) (-15 -2411 ((-638 |#2|) |#1|)) (-15 -1558 ((-112) (-561) |#1|)) (-15 -2355 ((-638 (-561)) |#1|)) (-15 -1556 ((-561) |#1|)) (-15 -3950 ((-561) |#1|)) (-15 -4078 (|#1| (-638 |#2|))) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -2883 (|#1| |#1| (-561))) (-15 -2883 (|#1| |#1| (-1221 (-561)))) (-15 -3350 (|#1| |#2| |#1| (-561))) (-15 -3350 (|#1| |#1| |#1| (-561))) (-15 -3235 (|#1| |#1|)) (-15 -2118 ((-765) |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -1501 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "last")) (-15 -1501 (|#2| |#1|)) (-15 -1437 (|#1| |#1| (-765))) (-15 -2315 (|#1| |#1| "rest")) (-15 -1437 (|#1| |#1|)) (-15 -1424 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "first")) (-15 -1424 (|#2| |#1|)) (-15 -2129 ((-112) |#1| |#1|)) (-15 -2552 ((-112) |#1| |#1|)) (-15 -4293 ((-561) |#1| |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -2315 (|#2| |#1| "value")) (-15 -2506 (|#2| |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4092 ((-638 |#1|) |#1|)) (-15 -3770 ((-638 |#1|) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3977 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765))))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-2333 ((|#1| $) 65)) (-3164 (($ $) 67)) (-1846 (((-1259) $ (-561) (-561)) 97 (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) 52 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-2956 (($ $ $) 56 (|has| $ (-6 -4400)))) (-3281 ((|#1| $ |#1|) 54 (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) 58 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4400))) (($ $ "rest" $) 55 (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 117 (|has| $ (-6 -4400))) ((|#1| $ (-561) |#1|) 86 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 102)) (-2322 ((|#1| $) 66)) (-2674 (($) 7 T CONST)) (-3600 (($ $) 124)) (-1437 (($ $) 73) (($ $ (-765)) 71)) (-1461 (($ $) 99 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#1| $) 100 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 103)) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2041 ((|#1| $ (-561) |#1|) 85 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 87)) (-2728 (((-112) $) 83)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-1944 (((-765) $) 123)) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-1458 (($ (-765) |#1|) 108)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 95 (|has| (-561) (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 94 (|has| (-561) (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3683 (((-112) $ (-765)) 10)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-3831 (($ $) 126)) (-3798 (((-112) $) 127)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1501 ((|#1| $) 70) (($ $ (-765)) 68)) (-3350 (($ $ $ (-561)) 116) (($ |#1| $ (-561)) 115)) (-2355 (((-638 (-561)) $) 92)) (-1558 (((-112) (-561) $) 91)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2987 ((|#1| $) 125)) (-1424 ((|#1| $) 76) (($ $ (-765)) 74)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3193 (($ $ |#1|) 96 (|has| $ (-6 -4400)))) (-3702 (($ $ (-561)) 122)) (-2391 (((-112) $) 84)) (-1305 (((-112) $) 128)) (-3808 (((-112) $) 129)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 90)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1221 (-561))) 112) ((|#1| $ (-561)) 89) ((|#1| $ (-561) |#1|) 88)) (-4293 (((-561) $ $) 44)) (-2883 (($ $ (-1221 (-561))) 114) (($ $ (-561)) 113)) (-1650 (((-112) $) 46)) (-3235 (($ $) 62)) (-4193 (($ $) 59 (|has| $ (-6 -4400)))) (-2118 (((-765) $) 63)) (-1491 (($ $) 64)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 107)) (-2448 (($ $ $) 61 (|has| $ (-6 -4400))) (($ $ |#1|) 60 (|has| $ (-6 -4400)))) (-2754 (($ $ $) 78) (($ |#1| $) 77) (($ (-638 $)) 110) (($ $ |#1|) 109)) (-3426 (($ $) 121)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-667 |#1|) (-139) (-1205)) (T -667))
-((-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))) (-3600 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-667 *3)) (-4 *3 (-1205)))) (-3426 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
-(-13 (-1139 |t#1|) (-10 -8 (-15 -1475 ($ (-1 (-112) |t#1|) $)) (-15 -3612 ($ (-1 (-112) |t#1|) $)) (-15 -3808 ((-112) $)) (-15 -1305 ((-112) $)) (-15 -3798 ((-112) $)) (-15 -3831 ($ $)) (-15 -2987 (|t#1| $)) (-15 -3600 ($ $)) (-15 -1944 ((-765) $)) (-15 -3702 ($ $ (-561))) (-15 -3426 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1139 |#1|) . T) ((-1205) . T) ((-1242 |#1|) . T))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2574 (($ (-765) (-765) (-765)) 33 (|has| |#1| (-1042)))) (-2684 (((-112) $ (-765)) NIL)) (-3397 ((|#1| $ (-765) (-765) (-765) |#1|) 27)) (-2674 (($) NIL T CONST)) (-2981 (($ $ $) 37 (|has| |#1| (-1042)))) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3944 (((-1254 (-765)) $) 9)) (-2330 (($ (-1166) $ $) 22)) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1349 (($ (-765)) 35 (|has| |#1| (-1042)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-765) (-765) (-765)) 25)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4078 (($ (-638 (-638 (-638 |#1|)))) 44)) (-4064 (($ (-951 (-951 (-951 |#1|)))) 15) (((-951 (-951 (-951 |#1|))) $) 12) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-668 |#1|) (-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -2574 ($ (-765) (-765) (-765))) (-15 -1349 ($ (-765))) (-15 -2981 ($ $ $))) |%noBranch|) (-15 -4078 ($ (-638 (-638 (-638 |#1|))))) (-15 -2315 (|#1| $ (-765) (-765) (-765))) (-15 -3397 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4064 ($ (-951 (-951 (-951 |#1|))))) (-15 -4064 ((-951 (-951 (-951 |#1|))) $)) (-15 -2330 ($ (-1166) $ $)) (-15 -3944 ((-1254 (-765)) $)))) (-1090)) (T -668))
-((-2574 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1090)))) (-1349 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1090)))) (-2981 (*1 *1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1090)))) (-4078 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-638 *3)))) (-4 *3 (-1090)) (-5 *1 (-668 *3)))) (-2315 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090)))) (-3397 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1090)) (-5 *1 (-668 *3)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3)) (-4 *3 (-1090)))) (-2330 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1090)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1254 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1090)))))
-(-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -2574 ($ (-765) (-765) (-765))) (-15 -1349 ($ (-765))) (-15 -2981 ($ $ $))) |%noBranch|) (-15 -4078 ($ (-638 (-638 (-638 |#1|))))) (-15 -2315 (|#1| $ (-765) (-765) (-765))) (-15 -3397 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4064 ($ (-951 (-951 (-951 |#1|))))) (-15 -4064 ((-951 (-951 (-951 |#1|))) $)) (-15 -2330 ($ (-1166) $ $)) (-15 -3944 ((-1254 (-765)) $))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-3149 (((-481) $) 10)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-1125) $) 12)) (-1723 (((-112) $ $) NIL)))
-(((-669) (-13 (-1073) (-10 -8 (-15 -3149 ((-481) $)) (-15 -3316 ((-1125) $))))) (T -669))
-((-3149 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669)))))
-(-13 (-1073) (-10 -8 (-15 -3149 ((-481) $)) (-15 -3316 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-2844 (((-638 |#1|) $) 14)) (-1599 (($ $) 18)) (-2160 (((-112) $) 19)) (-4061 (((-3 |#1| "failed") $) 22)) (-3979 ((|#1| $) 20)) (-1437 (($ $) 36)) (-3658 (($ $) 24)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1831 (((-112) $ $) 41)) (-4310 (((-914) $) 38)) (-1586 (($ $) 17)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 ((|#1| $) 35)) (-4064 (((-856) $) 31) (($ |#1|) 23) (((-813 |#1|) $) 27)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 12)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 40)) (* (($ $ $) 34)))
-(((-670 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4064 ((-813 |#1|) $)) (-15 -1424 (|#1| $)) (-15 -1586 ($ $)) (-15 -4310 ((-914) $)) (-15 -1831 ((-112) $ $)) (-15 -3658 ($ $)) (-15 -1437 ($ $)) (-15 -2160 ((-112) $)) (-15 -1599 ($ $)) (-15 -2844 ((-638 |#1|) $)))) (-844)) (T -670))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-1424 (*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-1831 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-3658 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-1437 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-1599 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))))
-(-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4064 ((-813 |#1|) $)) (-15 -1424 (|#1| $)) (-15 -1586 ($ $)) (-15 -4310 ((-914) $)) (-15 -1831 ((-112) $ $)) (-15 -3658 ($ $)) (-15 -1437 ($ $)) (-15 -2160 ((-112) $)) (-15 -1599 ($ $)) (-15 -2844 ((-638 |#1|) $))))
-((-3060 ((|#1| (-1 |#1| (-765) |#1|) (-765) |#1|) 11)) (-3406 ((|#1| (-1 |#1| |#1|) (-765) |#1|) 9)))
-(((-671 |#1|) (-10 -7 (-15 -3406 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -3060 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|))) (-1090)) (T -671))
-((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1090)) (-5 *1 (-671 *2)))) (-3406 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1090)) (-5 *1 (-671 *2)))))
-(-10 -7 (-15 -3406 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -3060 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|)))
-((-3792 ((|#2| |#1| |#2|) 9)) (-3782 ((|#1| |#1| |#2|) 8)))
-(((-672 |#1| |#2|) (-10 -7 (-15 -3782 (|#1| |#1| |#2|)) (-15 -3792 (|#2| |#1| |#2|))) (-1090) (-1090)) (T -672))
-((-3792 (*1 *2 *3 *2) (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-3782 (*1 *2 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
-(-10 -7 (-15 -3782 (|#1| |#1| |#2|)) (-15 -3792 (|#2| |#1| |#2|)))
-((-4307 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -4307 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1090) (-1090) (-1090)) (T -673))
-((-4307 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)) (-5 *1 (-673 *5 *6 *2)))))
-(-10 -7 (-15 -4307 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4095 (((-1204) $) 20)) (-4034 (((-638 (-1204)) $) 18)) (-1360 (($ (-638 (-1204)) (-1204)) 13)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 29) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1204) $) 21) (($ (-1108)) 10)) (-1723 (((-112) $ $) NIL)))
-(((-674) (-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4064 ($ (-1108))) (-15 -1360 ($ (-638 (-1204)) (-1204))) (-15 -4034 ((-638 (-1204)) $)) (-15 -4095 ((-1204) $))))) (T -674))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-674)))) (-1360 (*1 *1 *2 *3) (-12 (-5 *2 (-638 (-1204))) (-5 *3 (-1204)) (-5 *1 (-674)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-674)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-674)))))
-(-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4064 ($ (-1108))) (-15 -1360 ($ (-638 (-1204)) (-1204))) (-15 -4034 ((-638 (-1204)) $)) (-15 -4095 ((-1204) $))))
-((-3060 (((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)) 23)) (-1662 (((-1 |#1|) |#1|) 8)) (-1418 ((|#1| |#1|) 16)) (-3273 (((-638 |#1|) (-1 (-638 |#1|) (-638 |#1|)) (-561)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4064 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-765)) 20)))
-(((-675 |#1|) (-10 -7 (-15 -1662 ((-1 |#1|) |#1|)) (-15 -4064 ((-1 |#1|) |#1|)) (-15 -3273 (|#1| (-1 |#1| |#1|))) (-15 -3273 ((-638 |#1|) (-1 (-638 |#1|) (-638 |#1|)) (-561))) (-15 -1418 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -3060 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)))) (-1090)) (T -675))
-((-3060 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1090)) (-5 *1 (-675 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1090)) (-5 *1 (-675 *4)))) (-1418 (*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1090)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-638 *5) (-638 *5))) (-5 *4 (-561)) (-5 *2 (-638 *5)) (-5 *1 (-675 *5)) (-4 *5 (-1090)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1090)))) (-4064 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090)))) (-1662 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090)))))
-(-10 -7 (-15 -1662 ((-1 |#1|) |#1|)) (-15 -4064 ((-1 |#1|) |#1|)) (-15 -3273 (|#1| (-1 |#1| |#1|))) (-15 -3273 ((-638 |#1|) (-1 (-638 |#1|) (-638 |#1|)) (-561))) (-15 -1418 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -3060 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|))))
-((-1319 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2423 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1494 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3322 (((-1 |#2| |#1|) |#2|) 11)))
-(((-676 |#1| |#2|) (-10 -7 (-15 -3322 ((-1 |#2| |#1|) |#2|)) (-15 -2423 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1494 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1319 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1090) (-1090)) (T -676))
-((-1319 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)) (-4 *4 (-1090)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5)) (-5 *1 (-676 *4 *5)))) (-3322 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1090)))))
-(-10 -7 (-15 -3322 ((-1 |#2| |#1|) |#2|)) (-15 -2423 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1494 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1319 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-1425 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4279 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2490 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3239 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3020 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -4279 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2490 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3239 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3020 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1425 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1090) (-1090) (-1090)) (T -677))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-1 *7 *5)) (-5 *1 (-677 *5 *6 *7)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1090)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1090)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1090)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6)))))
-(-10 -7 (-15 -4279 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2490 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3239 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3020 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1425 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3176 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4165 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-678 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4165 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4165 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3176 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1042) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|) (-1042) (-372 |#5|) (-372 |#5|) (-680 |#5| |#6| |#7|)) (T -678))
-((-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2)) (-5 *1 (-678 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-680 *5 *6 *7)) (-4 *10 (-680 *2 *8 *9)))) (-4165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-680 *8 *9 *10)) (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-680 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-680 *8 *9 *10)) (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-680 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))))
-(-10 -7 (-15 -4165 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4165 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3176 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2920 (($ (-765) (-765)) 33)) (-2801 (($ $ $) 56)) (-4084 (($ |#3|) 52) (($ $) 53)) (-3711 (((-112) $) 28)) (-3844 (($ $ (-561) (-561)) 58)) (-2271 (($ $ (-561) (-561)) 59)) (-3234 (($ $ (-561) (-561) (-561) (-561)) 63)) (-1526 (($ $) 54)) (-1711 (((-112) $) 14)) (-2727 (($ $ (-561) (-561) $) 64)) (-4207 ((|#2| $ (-561) (-561) |#2|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) 62)) (-3256 (($ (-765) |#2|) 39)) (-2887 (($ (-638 (-638 |#2|))) 37)) (-3485 (((-638 (-638 |#2|)) $) 57)) (-2769 (($ $ $) 55)) (-1748 (((-3 $ "failed") $ |#2|) 91)) (-2315 ((|#2| $ (-561) (-561)) NIL) ((|#2| $ (-561) (-561) |#2|) NIL) (($ $ (-638 (-561)) (-638 (-561))) 61)) (-3557 (($ (-638 |#2|)) 40) (($ (-638 $)) 42)) (-2100 (((-112) $) 24)) (-4064 (($ |#4|) 47) (((-856) $) NIL)) (-2841 (((-112) $) 30)) (-1828 (($ $ |#2|) 93)) (-1819 (($ $ $) 68) (($ $) 71)) (-1810 (($ $ $) 66)) (** (($ $ (-765)) 80) (($ $ (-561)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-561) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-679 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4064 ((-856) |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1828 (|#1| |#1| |#2|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| (-561) (-561) |#1|)) (-15 -3234 (|#1| |#1| (-561) (-561) (-561) (-561))) (-15 -2271 (|#1| |#1| (-561) (-561))) (-15 -3844 (|#1| |#1| (-561) (-561))) (-15 -4207 (|#1| |#1| (-638 (-561)) (-638 (-561)) |#1|)) (-15 -2315 (|#1| |#1| (-638 (-561)) (-638 (-561)))) (-15 -3485 ((-638 (-638 |#2|)) |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -2769 (|#1| |#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -4084 (|#1| |#3|)) (-15 -4064 (|#1| |#4|)) (-15 -3557 (|#1| (-638 |#1|))) (-15 -3557 (|#1| (-638 |#2|))) (-15 -3256 (|#1| (-765) |#2|)) (-15 -2887 (|#1| (-638 (-638 |#2|)))) (-15 -2920 (|#1| (-765) (-765))) (-15 -2841 ((-112) |#1|)) (-15 -3711 ((-112) |#1|)) (-15 -2100 ((-112) |#1|)) (-15 -1711 ((-112) |#1|)) (-15 -4207 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) (-561)))) (-680 |#2| |#3| |#4|) (-1042) (-372 |#2|) (-372 |#2|)) (T -679))
-NIL
-(-10 -8 (-15 -4064 ((-856) |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1828 (|#1| |#1| |#2|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| (-561) (-561) |#1|)) (-15 -3234 (|#1| |#1| (-561) (-561) (-561) (-561))) (-15 -2271 (|#1| |#1| (-561) (-561))) (-15 -3844 (|#1| |#1| (-561) (-561))) (-15 -4207 (|#1| |#1| (-638 (-561)) (-638 (-561)) |#1|)) (-15 -2315 (|#1| |#1| (-638 (-561)) (-638 (-561)))) (-15 -3485 ((-638 (-638 |#2|)) |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -2769 (|#1| |#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -4084 (|#1| |#3|)) (-15 -4064 (|#1| |#4|)) (-15 -3557 (|#1| (-638 |#1|))) (-15 -3557 (|#1| (-638 |#2|))) (-15 -3256 (|#1| (-765) |#2|)) (-15 -2887 (|#1| (-638 (-638 |#2|)))) (-15 -2920 (|#1| (-765) (-765))) (-15 -2841 ((-112) |#1|)) (-15 -3711 ((-112) |#1|)) (-15 -2100 ((-112) |#1|)) (-15 -1711 ((-112) |#1|)) (-15 -4207 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) (-561))))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2920 (($ (-765) (-765)) 97)) (-2801 (($ $ $) 87)) (-4084 (($ |#2|) 91) (($ $) 90)) (-3711 (((-112) $) 99)) (-3844 (($ $ (-561) (-561)) 83)) (-2271 (($ $ (-561) (-561)) 82)) (-3234 (($ $ (-561) (-561) (-561) (-561)) 81)) (-1526 (($ $) 89)) (-1711 (((-112) $) 101)) (-2684 (((-112) $ (-765)) 8)) (-2727 (($ $ (-561) (-561) $) 80)) (-4207 ((|#1| $ (-561) (-561) |#1|) 44) (($ $ (-638 (-561)) (-638 (-561)) $) 84)) (-4019 (($ $ (-561) |#2|) 42)) (-1316 (($ $ (-561) |#3|) 41)) (-3256 (($ (-765) |#1|) 95)) (-2674 (($) 7 T CONST)) (-2617 (($ $) 67 (|has| |#1| (-306)))) (-3324 ((|#2| $ (-561)) 46)) (-3400 (((-765) $) 66 (|has| |#1| (-553)))) (-2041 ((|#1| $ (-561) (-561) |#1|) 43)) (-1975 ((|#1| $ (-561) (-561)) 48)) (-2368 (((-638 |#1|) $) 30)) (-1486 (((-765) $) 65 (|has| |#1| (-553)))) (-2351 (((-638 |#3|) $) 64 (|has| |#1| (-553)))) (-3349 (((-765) $) 51)) (-1458 (($ (-765) (-765) |#1|) 57)) (-3361 (((-765) $) 50)) (-3116 (((-112) $ (-765)) 9)) (-3440 ((|#1| $) 62 (|has| |#1| (-6 (-4401 "*"))))) (-3655 (((-561) $) 55)) (-1355 (((-561) $) 53)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2475 (((-561) $) 54)) (-3838 (((-561) $) 52)) (-2887 (($ (-638 (-638 |#1|))) 96)) (-2029 (($ (-1 |#1| |#1|) $) 34)) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3485 (((-638 (-638 |#1|)) $) 86)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1885 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-2769 (($ $ $) 88)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) 56)) (-1748 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-553)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) (-561)) 49) ((|#1| $ (-561) (-561) |#1|) 47) (($ $ (-638 (-561)) (-638 (-561))) 85)) (-3557 (($ (-638 |#1|)) 94) (($ (-638 $)) 93)) (-2100 (((-112) $) 100)) (-4105 ((|#1| $) 63 (|has| |#1| (-6 (-4401 "*"))))) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-2062 ((|#3| $ (-561)) 45)) (-4064 (($ |#3|) 92) (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-2841 (((-112) $) 98)) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1828 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-1819 (($ $ $) 78) (($ $) 77)) (-1810 (($ $ $) 79)) (** (($ $ (-765)) 70) (($ $ (-561)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-561) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-680 |#1| |#2| |#3|) (-139) (-1042) (-372 |t#1|) (-372 |t#1|)) (T -680))
-((-1711 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2841 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2920 (*1 *1 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3256 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4064 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *2)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (-4084 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *2 *4)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (-4084 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1526 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2769 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2801 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-638 (-638 *3))))) (-2315 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4207 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3844 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2271 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3234 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2727 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-680 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-680 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1748 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-553)))) (-1828 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (-2617 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-306)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-638 *5)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042)))) (-1885 (*1 *1 *1) (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4400) (-6 -4399) (-15 -1711 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -3711 ((-112) $)) (-15 -2841 ((-112) $)) (-15 -2920 ($ (-765) (-765))) (-15 -2887 ($ (-638 (-638 |t#1|)))) (-15 -3256 ($ (-765) |t#1|)) (-15 -3557 ($ (-638 |t#1|))) (-15 -3557 ($ (-638 $))) (-15 -4064 ($ |t#3|)) (-15 -4084 ($ |t#2|)) (-15 -4084 ($ $)) (-15 -1526 ($ $)) (-15 -2769 ($ $ $)) (-15 -2801 ($ $ $)) (-15 -3485 ((-638 (-638 |t#1|)) $)) (-15 -2315 ($ $ (-638 (-561)) (-638 (-561)))) (-15 -4207 ($ $ (-638 (-561)) (-638 (-561)) $)) (-15 -3844 ($ $ (-561) (-561))) (-15 -2271 ($ $ (-561) (-561))) (-15 -3234 ($ $ (-561) (-561) (-561) (-561))) (-15 -2727 ($ $ (-561) (-561) $)) (-15 -1810 ($ $ $)) (-15 -1819 ($ $ $)) (-15 -1819 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-561) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-765))) (IF (|has| |t#1| (-553)) (-15 -1748 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1828 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -2617 ($ $)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -3400 ((-765) $)) (-15 -1486 ((-765) $)) (-15 -2351 ((-638 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4401 "*"))) (PROGN (-15 -4105 (|t#1| $)) (-15 -3440 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -1885 ((-3 $ "failed") $)) (-15 ** ($ $ (-561)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-57 |#1| |#2| |#3|) . T) ((-1205) . T))
-((-2617 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-3400 (((-765) |#4|) 98 (|has| |#1| (-553)))) (-1486 (((-765) |#4|) 75 (|has| |#1| (-553)))) (-2351 (((-638 |#3|) |#4|) 82 (|has| |#1| (-553)))) (-3663 (((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-3440 ((|#1| |#4|) 34)) (-2988 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-553)))) (-1885 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-2379 ((|#4| |#4|) 67 (|has| |#1| (-553)))) (-3923 ((|#4| |#4| |#1| (-561) (-561)) 42)) (-3245 ((|#4| |#4| (-561) (-561)) 37)) (-3267 ((|#4| |#4| |#1| (-561) (-561)) 47)) (-4105 ((|#1| |#4|) 77)) (-3380 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-553)))))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4105 (|#1| |#4|)) (-15 -3440 (|#1| |#4|)) (-15 -3245 (|#4| |#4| (-561) (-561))) (-15 -3923 (|#4| |#4| |#1| (-561) (-561))) (-15 -3267 (|#4| |#4| |#1| (-561) (-561))) (IF (|has| |#1| (-553)) (PROGN (-15 -3400 ((-765) |#4|)) (-15 -1486 ((-765) |#4|)) (-15 -2351 ((-638 |#3|) |#4|)) (-15 -2379 (|#4| |#4|)) (-15 -2988 ((-3 |#4| "failed") |#4|)) (-15 -3380 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2617 (|#4| |#4|)) (-15 -3663 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1885 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -681))
-((-1885 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-3663 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-681 *3 *4 *5 *6)) (-4 *6 (-680 *3 *4 *5)))) (-2617 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-3380 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-2988 (*1 *2 *2) (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-3400 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-3267 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-680 *3 *5 *6)))) (-3923 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-680 *3 *5 *6)))) (-3245 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *1 (-681 *4 *5 *6 *2)) (-4 *2 (-680 *4 *5 *6)))) (-3440 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5)))) (-4105 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5)))))
-(-10 -7 (-15 -4105 (|#1| |#4|)) (-15 -3440 (|#1| |#4|)) (-15 -3245 (|#4| |#4| (-561) (-561))) (-15 -3923 (|#4| |#4| |#1| (-561) (-561))) (-15 -3267 (|#4| |#4| |#1| (-561) (-561))) (IF (|has| |#1| (-553)) (PROGN (-15 -3400 ((-765) |#4|)) (-15 -1486 ((-765) |#4|)) (-15 -2351 ((-638 |#3|) |#4|)) (-15 -2379 (|#4| |#4|)) (-15 -2988 ((-3 |#4| "failed") |#4|)) (-15 -3380 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2617 (|#4| |#4|)) (-15 -3663 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1885 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2920 (($ (-765) (-765)) 47)) (-2801 (($ $ $) NIL)) (-4084 (($ (-1254 |#1|)) NIL) (($ $) NIL)) (-3711 (((-112) $) NIL)) (-3844 (($ $ (-561) (-561)) 12)) (-2271 (($ $ (-561) (-561)) NIL)) (-3234 (($ $ (-561) (-561) (-561) (-561)) NIL)) (-1526 (($ $) NIL)) (-1711 (((-112) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2727 (($ $ (-561) (-561) $) NIL)) (-4207 ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) NIL)) (-4019 (($ $ (-561) (-1254 |#1|)) NIL)) (-1316 (($ $ (-561) (-1254 |#1|)) NIL)) (-3256 (($ (-765) |#1|) 22)) (-2674 (($) NIL T CONST)) (-2617 (($ $) 31 (|has| |#1| (-306)))) (-3324 (((-1254 |#1|) $ (-561)) NIL)) (-3400 (((-765) $) 33 (|has| |#1| (-553)))) (-2041 ((|#1| $ (-561) (-561) |#1|) 51)) (-1975 ((|#1| $ (-561) (-561)) NIL)) (-2368 (((-638 |#1|) $) NIL)) (-1486 (((-765) $) 35 (|has| |#1| (-553)))) (-2351 (((-638 (-1254 |#1|)) $) 38 (|has| |#1| (-553)))) (-3349 (((-765) $) 20)) (-1458 (($ (-765) (-765) |#1|) 16)) (-3361 (((-765) $) 21)) (-3116 (((-112) $ (-765)) NIL)) (-3440 ((|#1| $) 29 (|has| |#1| (-6 (-4401 "*"))))) (-3655 (((-561) $) 9)) (-1355 (((-561) $) 10)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2475 (((-561) $) 11)) (-3838 (((-561) $) 48)) (-2887 (($ (-638 (-638 |#1|))) NIL)) (-2029 (($ (-1 |#1| |#1|) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3485 (((-638 (-638 |#1|)) $) 60)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1885 (((-3 $ "failed") $) 45 (|has| |#1| (-362)))) (-2769 (($ $ $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3193 (($ $ |#1|) NIL)) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561))) NIL)) (-3557 (($ (-638 |#1|)) NIL) (($ (-638 $)) NIL) (($ (-1254 |#1|)) 52)) (-2100 (((-112) $) NIL)) (-4105 ((|#1| $) 27 (|has| |#1| (-6 (-4401 "*"))))) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4216 (((-534) $) 64 (|has| |#1| (-609 (-534))))) (-2062 (((-1254 |#1|) $ (-561)) NIL)) (-4064 (($ (-1254 |#1|)) NIL) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2841 (((-112) $) NIL)) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $ $) NIL) (($ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) 23) (($ $ (-561)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-561) $) NIL) (((-1254 |#1|) $ (-1254 |#1|)) NIL) (((-1254 |#1|) (-1254 |#1|) $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-682 |#1|) (-13 (-680 |#1| (-1254 |#1|) (-1254 |#1|)) (-10 -8 (-15 -3557 ($ (-1254 |#1|))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1885 ((-3 $ "failed") $)) |%noBranch|))) (-1042)) (T -682))
-((-1885 (*1 *1 *1) (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3)))))
-(-13 (-680 |#1| (-1254 |#1|) (-1254 |#1|)) (-10 -8 (-15 -3557 ($ (-1254 |#1|))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1885 ((-3 $ "failed") $)) |%noBranch|)))
-((-3991 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 25)) (-2696 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 21)) (-2357 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765)) 26)) (-2135 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 14)) (-1575 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 18) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 16)) (-2028 (((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|)) 20)) (-2587 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 12)) (** (((-682 |#1|) (-682 |#1|) (-765)) 30)))
-(((-683 |#1|) (-10 -7 (-15 -2587 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2135 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1575 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1575 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2028 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -2696 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -3991 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2357 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765)))) (-1042)) (T -683))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-2357 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-3991 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2696 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2028 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-1575 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-1575 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2135 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2587 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
-(-10 -7 (-15 -2587 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2135 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1575 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1575 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2028 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -2696 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -3991 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2357 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765))))
-((-4061 (((-3 |#1| "failed") $) 17)) (-3979 ((|#1| $) NIL)) (-1872 (($) 7 T CONST)) (-2168 (($ |#1|) 8)) (-4064 (($ |#1|) 15) (((-856) $) 22)) (-2234 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -1872)) 11)) (-4252 ((|#1| $) 14)))
-(((-684 |#1|) (-13 (-1249) (-1031 |#1|) (-608 (-856)) (-10 -8 (-15 -2168 ($ |#1|)) (-15 -2234 ((-112) $ (|[\|\|]| |#1|))) (-15 -2234 ((-112) $ (|[\|\|]| -1872))) (-15 -4252 (|#1| $)) (-15 -1872 ($) -1494))) (-608 (-856))) (T -684))
-((-2168 (*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-856))) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1872)) (-5 *2 (-112)) (-5 *1 (-684 *4)) (-4 *4 (-608 (-856))))) (-4252 (*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))) (-1872 (*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))))
-(-13 (-1249) (-1031 |#1|) (-608 (-856)) (-10 -8 (-15 -2168 ($ |#1|)) (-15 -2234 ((-112) $ (|[\|\|]| |#1|))) (-15 -2234 ((-112) $ (|[\|\|]| -1872))) (-15 -4252 (|#1| $)) (-15 -1872 ($) -1494)))
-((-3819 ((|#2| |#2| |#4|) 25)) (-1693 (((-682 |#2|) |#3| |#4|) 31)) (-3810 (((-682 |#2|) |#2| |#4|) 30)) (-2196 (((-1254 |#2|) |#2| |#4|) 16)) (-1910 ((|#2| |#3| |#4|) 24)) (-2772 (((-682 |#2|) |#3| |#4| (-765) (-765)) 38)) (-2407 (((-682 |#2|) |#2| |#4| (-765)) 37)))
-(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2196 ((-1254 |#2|) |#2| |#4|)) (-15 -1910 (|#2| |#3| |#4|)) (-15 -3819 (|#2| |#2| |#4|)) (-15 -3810 ((-682 |#2|) |#2| |#4|)) (-15 -2407 ((-682 |#2|) |#2| |#4| (-765))) (-15 -1693 ((-682 |#2|) |#3| |#4|)) (-15 -2772 ((-682 |#2|) |#3| |#4| (-765) (-765)))) (-1090) (-893 |#1|) (-372 |#2|) (-13 (-372 |#1|) (-10 -7 (-6 -4399)))) (T -685))
-((-2772 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *7 (-893 *6)) (-5 *2 (-682 *7)) (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-372 *7)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4399)))))) (-1693 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6)) (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-372 *6)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))) (-2407 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *3 (-893 *6)) (-5 *2 (-682 *3)) (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-372 *3)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4399)))))) (-3810 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))) (-3819 (*1 *2 *2 *3) (-12 (-4 *4 (-1090)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4399)))))) (-1910 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))) (-2196 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-1254 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))))
-(-10 -7 (-15 -2196 ((-1254 |#2|) |#2| |#4|)) (-15 -1910 (|#2| |#3| |#4|)) (-15 -3819 (|#2| |#2| |#4|)) (-15 -3810 ((-682 |#2|) |#2| |#4|)) (-15 -2407 ((-682 |#2|) |#2| |#4| (-765))) (-15 -1693 ((-682 |#2|) |#3| |#4|)) (-15 -2772 ((-682 |#2|) |#3| |#4| (-765) (-765))))
-((-4189 (((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)) 20)) (-1930 ((|#1| (-682 |#2|)) 9)) (-3027 (((-682 |#1|) (-682 |#2|)) 18)))
-(((-686 |#1| |#2|) (-10 -7 (-15 -1930 (|#1| (-682 |#2|))) (-15 -3027 ((-682 |#1|) (-682 |#2|))) (-15 -4189 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)))) (-553) (-985 |#1|)) (T -686))
-((-4189 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4))) (-5 *1 (-686 *4 *5)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553)) (-5 *2 (-682 *4)) (-5 *1 (-686 *4 *5)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-686 *2 *4)))))
-(-10 -7 (-15 -1930 (|#1| (-682 |#2|))) (-15 -3027 ((-682 |#1|) (-682 |#2|))) (-15 -4189 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-3287 (((-682 (-692))) NIL) (((-682 (-692)) (-1254 $)) NIL)) (-1736 (((-692) $) NIL)) (-3014 (($ $) NIL (|has| (-692) (-1190)))) (-4106 (($ $) NIL (|has| (-692) (-1190)))) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-692) (-348)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-2557 (($ $) NIL (-4050 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-3552 (((-417 $) $) NIL (-4050 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-1643 (($ $) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-3698 (((-112) $ $) NIL (|has| (-692) (-306)))) (-1386 (((-765)) NIL (|has| (-692) (-367)))) (-4213 (($ $) NIL (|has| (-692) (-1190)))) (-4085 (($ $) NIL (|has| (-692) (-1190)))) (-3039 (($ $) NIL (|has| (-692) (-1190)))) (-4130 (($ $) NIL (|has| (-692) (-1190)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-692) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-692) (-1031 (-406 (-561)))))) (-3979 (((-561) $) NIL) (((-692) $) NIL) (((-406 (-561)) $) NIL (|has| (-692) (-1031 (-406 (-561)))))) (-3376 (($ (-1254 (-692))) NIL) (($ (-1254 (-692)) (-1254 $)) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-692) (-348)))) (-1792 (($ $ $) NIL (|has| (-692) (-306)))) (-2405 (((-682 (-692)) $) NIL) (((-682 (-692)) $ (-1254 $)) NIL)) (-3720 (((-682 (-692)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-692))) (|:| |vec| (-1254 (-692)))) (-682 $) (-1254 $)) NIL) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-692) (-634 (-561)))) (((-682 (-561)) (-682 $)) NIL (|has| (-692) (-634 (-561))))) (-3176 (((-3 $ "failed") (-406 (-1162 (-692)))) NIL (|has| (-692) (-362))) (($ (-1162 (-692))) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1655 (((-692) $) 29)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL (|has| (-692) (-543)))) (-4079 (((-112) $) NIL (|has| (-692) (-543)))) (-2573 (((-406 (-561)) $) NIL (|has| (-692) (-543)))) (-3400 (((-914)) NIL)) (-1362 (($) NIL (|has| (-692) (-367)))) (-1771 (($ $ $) NIL (|has| (-692) (-306)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| (-692) (-306)))) (-3985 (($) NIL (|has| (-692) (-348)))) (-3943 (((-112) $) NIL (|has| (-692) (-348)))) (-3598 (($ $) NIL (|has| (-692) (-348))) (($ $ (-765)) NIL (|has| (-692) (-348)))) (-2725 (((-112) $) NIL (-4050 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-3257 (((-2 (|:| |r| (-692)) (|:| |phi| (-692))) $) NIL (-12 (|has| (-692) (-1051)) (|has| (-692) (-1190))))) (-4111 (($) NIL (|has| (-692) (-1190)))) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-692) (-879 (-378)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-692) (-879 (-561))))) (-4027 (((-827 (-914)) $) NIL (|has| (-692) (-348))) (((-914) $) NIL (|has| (-692) (-348)))) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-2072 (((-692) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| (-692) (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-692) (-306)))) (-1588 (((-1162 (-692)) $) NIL (|has| (-692) (-362)))) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4165 (($ (-1 (-692) (-692)) $) NIL)) (-1335 (((-914) $) NIL (|has| (-692) (-367)))) (-4364 (($ $) NIL (|has| (-692) (-1190)))) (-3354 (((-1162 (-692)) $) NIL)) (-1563 (($ (-638 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| (-692) (-362)))) (-3767 (($) NIL (|has| (-692) (-348)) CONST)) (-2442 (($ (-914)) NIL (|has| (-692) (-367)))) (-1658 (($) NIL)) (-1665 (((-692) $) 31)) (-1701 (((-1110) $) NIL)) (-3194 (($) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| (-692) (-306)))) (-1603 (($ (-638 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| (-692) (-348)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-1633 (((-417 $) $) NIL (-4050 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-692) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| (-692) (-306)))) (-1748 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-692)) NIL (|has| (-692) (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-692) (-306)))) (-3486 (($ $) NIL (|has| (-692) (-1190)))) (-1436 (($ $ (-1166) (-692)) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-638 (-1166)) (-638 (-692))) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-638 (-293 (-692)))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-293 (-692))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-692) (-692)) NIL (|has| (-692) (-308 (-692)))) (($ $ (-638 (-692)) (-638 (-692))) NIL (|has| (-692) (-308 (-692))))) (-1905 (((-765) $) NIL (|has| (-692) (-306)))) (-2315 (($ $ (-692)) NIL (|has| (-692) (-285 (-692) (-692))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| (-692) (-306)))) (-2753 (((-692)) NIL) (((-692) (-1254 $)) NIL)) (-2768 (((-3 (-765) "failed") $ $) NIL (|has| (-692) (-348))) (((-765) $) NIL (|has| (-692) (-348)))) (-3922 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-3885 (((-682 (-692)) (-1254 $) (-1 (-692) (-692))) NIL (|has| (-692) (-362)))) (-3158 (((-1162 (-692))) NIL)) (-3052 (($ $) NIL (|has| (-692) (-1190)))) (-4140 (($ $) NIL (|has| (-692) (-1190)))) (-2102 (($) NIL (|has| (-692) (-348)))) (-3026 (($ $) NIL (|has| (-692) (-1190)))) (-4118 (($ $) NIL (|has| (-692) (-1190)))) (-3002 (($ $) NIL (|has| (-692) (-1190)))) (-4097 (($ $) NIL (|has| (-692) (-1190)))) (-3752 (((-682 (-692)) (-1254 $)) NIL) (((-1254 (-692)) $) NIL) (((-682 (-692)) (-1254 $) (-1254 $)) NIL) (((-1254 (-692)) $ (-1254 $)) NIL)) (-4216 (((-534) $) NIL (|has| (-692) (-609 (-534)))) (((-168 (-224)) $) NIL (|has| (-692) (-1015))) (((-168 (-378)) $) NIL (|has| (-692) (-1015))) (((-885 (-378)) $) NIL (|has| (-692) (-609 (-885 (-378))))) (((-885 (-561)) $) NIL (|has| (-692) (-609 (-885 (-561))))) (($ (-1162 (-692))) NIL) (((-1162 (-692)) $) NIL) (($ (-1254 (-692))) NIL) (((-1254 (-692)) $) NIL)) (-2076 (($ $) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-4050 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-902))) (|has| (-692) (-348))))) (-1417 (($ (-692) (-692)) 12)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-561)) NIL) (($ (-692)) NIL) (($ (-168 (-378))) 13) (($ (-168 (-561))) 19) (($ (-168 (-692))) 28) (($ (-168 (-694))) 25) (((-168 (-378)) $) 33) (($ (-406 (-561))) NIL (-4050 (|has| (-692) (-1031 (-406 (-561)))) (|has| (-692) (-362))))) (-3666 (($ $) NIL (|has| (-692) (-348))) (((-3 $ "failed") $) NIL (-4050 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-902))) (|has| (-692) (-144))))) (-3934 (((-1162 (-692)) $) NIL)) (-3746 (((-765)) NIL)) (-2615 (((-1254 $)) NIL)) (-3086 (($ $) NIL (|has| (-692) (-1190)))) (-4175 (($ $) NIL (|has| (-692) (-1190)))) (-3996 (((-112) $ $) NIL)) (-3064 (($ $) NIL (|has| (-692) (-1190)))) (-4150 (($ $) NIL (|has| (-692) (-1190)))) (-3113 (($ $) NIL (|has| (-692) (-1190)))) (-4192 (($ $) NIL (|has| (-692) (-1190)))) (-2774 (((-692) $) NIL (|has| (-692) (-1190)))) (-2821 (($ $) NIL (|has| (-692) (-1190)))) (-4202 (($ $) NIL (|has| (-692) (-1190)))) (-3099 (($ $) NIL (|has| (-692) (-1190)))) (-4184 (($ $) NIL (|has| (-692) (-1190)))) (-3076 (($ $) NIL (|has| (-692) (-1190)))) (-4162 (($ $) NIL (|has| (-692) (-1190)))) (-2165 (($ $) NIL (|has| (-692) (-1051)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL (|has| (-692) (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| (-692) (-1190))) (($ $ (-406 (-561))) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190)))) (($ $ (-561)) NIL (|has| (-692) (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ (-692) $) NIL) (($ $ (-692)) NIL) (($ (-406 (-561)) $) NIL (|has| (-692) (-362))) (($ $ (-406 (-561))) NIL (|has| (-692) (-362)))))
-(((-687) (-13 (-386) (-165 (-692)) (-10 -8 (-15 -4064 ($ (-168 (-378)))) (-15 -4064 ($ (-168 (-561)))) (-15 -4064 ($ (-168 (-692)))) (-15 -4064 ($ (-168 (-694)))) (-15 -4064 ((-168 (-378)) $))))) (T -687))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-168 (-561))) (-5 *1 (-687)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-168 (-692))) (-5 *1 (-687)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-168 (-694))) (-5 *1 (-687)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687)))))
-(-13 (-386) (-165 (-692)) (-10 -8 (-15 -4064 ($ (-168 (-378)))) (-15 -4064 ($ (-168 (-561)))) (-15 -4064 ($ (-168 (-692)))) (-15 -4064 ($ (-168 (-694)))) (-15 -4064 ((-168 (-378)) $))))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-1954 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-3299 (($ $) 62)) (-1461 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ |#1| $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2341 (((-638 (-2 (|:| -2677 |#1|) (|:| -1714 (-765)))) $) 61)) (-3643 (($) 49) (($ (-638 |#1|)) 48)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 50)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-688 |#1|) (-139) (-1090)) (T -688))
-((-1617 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1090)))) (-3299 (*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1090)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-688 *3)) (-4 *3 (-1090)) (-5 *2 (-638 (-2 (|:| -2677 *3) (|:| -1714 (-765))))))))
-(-13 (-234 |t#1|) (-10 -8 (-15 -1617 ($ |t#1| $ (-765))) (-15 -3299 ($ $)) (-15 -2341 ((-638 (-2 (|:| -2677 |t#1|) (|:| -1714 (-765)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-2697 (((-638 |#1|) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))) (-561)) 47)) (-3621 ((|#1| |#1| (-561)) 46)) (-1603 ((|#1| |#1| |#1| (-561)) 36)) (-1633 (((-638 |#1|) |#1| (-561)) 39)) (-3211 ((|#1| |#1| (-561) |#1| (-561)) 32)) (-4371 (((-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))) |#1| (-561)) 45)))
-(((-689 |#1|) (-10 -7 (-15 -1603 (|#1| |#1| |#1| (-561))) (-15 -3621 (|#1| |#1| (-561))) (-15 -1633 ((-638 |#1|) |#1| (-561))) (-15 -4371 ((-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))) |#1| (-561))) (-15 -2697 ((-638 |#1|) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))) (-561))) (-15 -3211 (|#1| |#1| (-561) |#1| (-561)))) (-1230 (-561))) (T -689))
-((-3211 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1230 *3)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| -1633 *5) (|:| -3768 (-561))))) (-5 *4 (-561)) (-4 *5 (-1230 *4)) (-5 *2 (-638 *5)) (-5 *1 (-689 *5)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-5 *2 (-638 (-2 (|:| -1633 *3) (|:| -3768 *4)))) (-5 *1 (-689 *3)) (-4 *3 (-1230 *4)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-5 *2 (-638 *3)) (-5 *1 (-689 *3)) (-4 *3 (-1230 *4)))) (-3621 (*1 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1230 *3)))) (-1603 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1230 *3)))))
-(-10 -7 (-15 -1603 (|#1| |#1| |#1| (-561))) (-15 -3621 (|#1| |#1| (-561))) (-15 -1633 ((-638 |#1|) |#1| (-561))) (-15 -4371 ((-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))) |#1| (-561))) (-15 -2697 ((-638 |#1|) (-638 (-2 (|:| -1633 |#1|) (|:| -3768 (-561)))) (-561))) (-15 -3211 (|#1| |#1| (-561) |#1| (-561))))
-((-2488 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-3174 (((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 40) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 42) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 44)) (-2861 (((-1123 (-224)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-638 (-262))) NIL)) (-1922 (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 45)))
-(((-690) (-10 -7 (-15 -3174 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3174 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3174 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -1922 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2861 ((-1123 (-224)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2488 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -690))
-((-2488 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690)))) (-2861 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-1922 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-3174 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-224))) (-5 *5 (-638 (-262))) (-5 *1 (-690)))) (-3174 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-224))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-3174 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))))
-(-10 -7 (-15 -3174 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3174 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3174 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -1922 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2861 ((-1123 (-224)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2488 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
-((-1633 (((-417 (-1162 |#4|)) (-1162 |#4|)) 73) (((-417 |#4|) |#4|) 220)))
-(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1633 ((-417 |#4|) |#4|)) (-15 -1633 ((-417 (-1162 |#4|)) (-1162 |#4|)))) (-844) (-787) (-348) (-942 |#3| |#2| |#1|)) (T -691))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
-(-10 -7 (-15 -1633 ((-417 |#4|) |#4|)) (-15 -1633 ((-417 (-1162 |#4|)) (-1162 |#4|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 84)) (-3892 (((-561) $) 30)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-1991 (($ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1643 (($ $) NIL)) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL)) (-2674 (($) NIL T CONST)) (-3588 (($ $) NIL)) (-4061 (((-3 (-561) "failed") $) 73) (((-3 (-406 (-561)) "failed") $) 26) (((-3 (-378) "failed") $) 70)) (-3979 (((-561) $) 75) (((-406 (-561)) $) 67) (((-378) $) 68)) (-1792 (($ $ $) 96)) (-3735 (((-3 $ "failed") $) 87)) (-1771 (($ $ $) 95)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-4008 (((-914)) 77) (((-914) (-914)) 76)) (-1784 (((-112) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL)) (-4027 (((-561) $) NIL)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL)) (-2072 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3907 (((-561) (-561)) 81) (((-561)) 82)) (-1597 (($ $ $) NIL) (($) NIL (-12 (-2186 (|has| $ (-6 -4382))) (-2186 (|has| $ (-6 -4390)))))) (-1648 (((-561) (-561)) 79) (((-561)) 80)) (-3017 (($ $ $) NIL) (($) NIL (-12 (-2186 (|has| $ (-6 -4382))) (-2186 (|has| $ (-6 -4390)))))) (-3966 (((-561) $) 16)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 91)) (-2918 (((-914) (-561)) NIL (|has| $ (-6 -4390)))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL)) (-4020 (($ $) NIL)) (-4242 (($ (-561) (-561)) NIL) (($ (-561) (-561) (-914)) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) 92)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-4181 (((-561) $) 22)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 94)) (-3679 (((-914)) NIL) (((-914) (-914)) NIL (|has| $ (-6 -4390)))) (-1725 (((-914) (-561)) NIL (|has| $ (-6 -4390)))) (-4216 (((-378) $) NIL) (((-224) $) NIL) (((-885 (-378)) $) NIL)) (-4064 (((-856) $) 52) (($ (-561)) 63) (($ $) NIL) (($ (-406 (-561))) 66) (($ (-561)) 63) (($ (-406 (-561))) 66) (($ (-378)) 60) (((-378) $) 50) (($ (-694)) 55)) (-3746 (((-765)) 103)) (-2737 (($ (-561) (-561) (-914)) 44)) (-2449 (($ $) NIL)) (-2860 (((-914)) NIL) (((-914) (-914)) NIL (|has| $ (-6 -4390)))) (-1423 (((-914)) 35) (((-914) (-914)) 78)) (-3996 (((-112) $ $) NIL)) (-2165 (($ $) NIL)) (-2246 (($) 32 T CONST)) (-2257 (($) 17 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 83)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 101)) (-1828 (($ $ $) 65)) (-1819 (($ $) 99) (($ $ $) 100)) (-1810 (($ $ $) 98)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ $ (-406 (-561))) 90)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 97) (($ $ $) 88) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-692) (-13 (-403) (-386) (-362) (-1031 (-378)) (-1031 (-406 (-561))) (-146) (-10 -8 (-15 -4008 ((-914) (-914))) (-15 -4008 ((-914))) (-15 -1423 ((-914) (-914))) (-15 -1648 ((-561) (-561))) (-15 -1648 ((-561))) (-15 -3907 ((-561) (-561))) (-15 -3907 ((-561))) (-15 -4064 ((-378) $)) (-15 -4064 ($ (-694))) (-15 -3966 ((-561) $)) (-15 -4181 ((-561) $)) (-15 -2737 ($ (-561) (-561) (-914)))))) (T -692))
-((-4181 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-4008 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-1648 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-3907 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-692)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-692)))) (-2737 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-5 *1 (-692)))))
-(-13 (-403) (-386) (-362) (-1031 (-378)) (-1031 (-406 (-561))) (-146) (-10 -8 (-15 -4008 ((-914) (-914))) (-15 -4008 ((-914))) (-15 -1423 ((-914) (-914))) (-15 -1648 ((-561) (-561))) (-15 -1648 ((-561))) (-15 -3907 ((-561) (-561))) (-15 -3907 ((-561))) (-15 -4064 ((-378) $)) (-15 -4064 ($ (-694))) (-15 -3966 ((-561) $)) (-15 -4181 ((-561) $)) (-15 -2737 ($ (-561) (-561) (-914)))))
-((-3917 (((-682 |#1|) (-682 |#1|) |#1| |#1|) 65)) (-2617 (((-682 |#1|) (-682 |#1|) |#1|) 48)) (-2884 (((-682 |#1|) (-682 |#1|) |#1|) 66)) (-2787 (((-682 |#1|) (-682 |#1|)) 49)) (-3663 (((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|) 64)))
-(((-693 |#1|) (-10 -7 (-15 -2787 ((-682 |#1|) (-682 |#1|))) (-15 -2617 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2884 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -3917 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -3663 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|))) (-306)) (T -693))
-((-3663 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-693 *3)) (-4 *3 (-306)))) (-3917 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2884 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2617 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
-(-10 -7 (-15 -2787 ((-682 |#1|) (-682 |#1|))) (-15 -2617 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2884 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -3917 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -3663 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-3680 (($ $ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1988 (($ $ $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL)) (-3410 (($ $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) 27)) (-3979 (((-561) $) 25)) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL)) (-4079 (((-112) $) NIL)) (-2573 (((-406 (-561)) $) NIL)) (-1362 (($ $) NIL) (($) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-3473 (($ $ $ $) NIL)) (-1571 (($ $ $) NIL)) (-1784 (((-112) $) NIL)) (-3784 (($ $ $) NIL)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-2252 (((-112) $) NIL)) (-2110 (((-112) $) NIL)) (-2436 (((-3 $ "failed") $) NIL)) (-3271 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2595 (($ $ $ $) NIL)) (-1597 (($ $ $) NIL)) (-1829 (((-914) (-914)) 10) (((-914)) 9)) (-3017 (($ $ $) NIL)) (-3953 (($ $) NIL)) (-4310 (($ $) NIL)) (-1563 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-3986 (($ $ $) NIL)) (-3767 (($) NIL T CONST)) (-4147 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ (-638 $)) NIL) (($ $ $) NIL)) (-2084 (($ $) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2058 (((-112) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL) (($ $ (-765)) NIL)) (-4076 (($ $) NIL)) (-4225 (($ $) NIL)) (-4216 (((-224) $) NIL) (((-378) $) NIL) (((-885 (-561)) $) NIL) (((-534) $) NIL) (((-561) $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) 24) (($ $) NIL) (($ (-561)) 24) (((-315 $) (-315 (-561))) 18)) (-3746 (((-765)) NIL)) (-3514 (((-112) $ $) NIL)) (-3210 (($ $ $) NIL)) (-1423 (($) NIL)) (-3996 (((-112) $ $) NIL)) (-4049 (($ $ $ $) NIL)) (-2165 (($ $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $) NIL) (($ $ (-765)) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
-(((-694) (-13 (-386) (-543) (-10 -8 (-15 -1829 ((-914) (-914))) (-15 -1829 ((-914))) (-15 -4064 ((-315 $) (-315 (-561))))))) (T -694))
-((-1829 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694)))) (-1829 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-315 (-561))) (-5 *2 (-315 (-694))) (-5 *1 (-694)))))
-(-13 (-386) (-543) (-10 -8 (-15 -1829 ((-914) (-914))) (-15 -1829 ((-914))) (-15 -4064 ((-315 $) (-315 (-561))))))
-((-2150 (((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)) 19)) (-2006 (((-1 |#4| |#2| |#3|) (-1166)) 12)))
-(((-695 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -2150 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)))) (-609 (-534)) (-1205) (-1205) (-1205)) (T -695))
-((-2150 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7)) (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)) (-4 *7 (-1205)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7)) (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)) (-4 *7 (-1205)))))
-(-10 -7 (-15 -2006 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -2150 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166))))
-((-4053 (((-112) $ $) NIL)) (-2636 (((-1259) $ (-765)) 14)) (-4266 (((-765) $) 12)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 25)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 24)))
-(((-696 |#1|) (-13 (-131) (-488 |#1|)) (-1090)) (T -696))
+((-2431 (((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|)) 33)))
+(((-656 |#1|) (-10 -7 (-15 -2431 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|)))) (-903)) (T -656))
+((-2431 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *4))) (-5 *3 (-1160 *4)) (-4 *4 (-903)) (-5 *1 (-656 *4)))))
+(-10 -7 (-15 -2431 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 82)) (-4354 (($ $ (-765)) 90)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4346 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 48)) (-3558 (((-3 (-665 |#1|) "failed") $) NIL)) (-3557 (((-665 |#1|) $) NIL)) (-4366 (($ $) 89)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-665 |#1|) |#2|) 68)) (-4343 (($ $) 86)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4347 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 47)) (-1893 (((-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-665 |#1|) $) NIL)) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4174 (($ $ |#1| $) 30) (($ $ (-635 |#1|) (-635 $)) 32)) (-4355 (((-765) $) 88)) (-3929 (($ $ $) 20) (($ (-665 |#1|) (-665 |#1|)) 77) (($ (-665 |#1|) $) 75) (($ $ (-665 |#1|)) 76)) (-4353 (((-857) $) NIL) (($ |#1|) 74) (((-1269 |#1| |#2|) $) 58) (((-1278 |#1| |#2|) $) 41) (($ (-665 |#1|)) 25)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-665 |#1|)) NIL)) (-4361 ((|#2| (-1278 |#1| |#2|) $) 43)) (-3040 (($) 23 T CONST)) (-3045 (((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4352 (((-3 $ "failed") (-1269 |#1| |#2|)) 60)) (-1877 (($ (-665 |#1|)) 14)) (-3437 (((-112) $ $) 44)) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) 66) (($ $ $) NIL)) (-4246 (($ $ $) 29)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-665 |#1|)) NIL)))
+(((-657 |#1| |#2|) (-13 (-373 |#1| |#2|) (-383 |#2| (-665 |#1|)) (-10 -8 (-15 -4352 ((-3 $ "failed") (-1269 |#1| |#2|))) (-15 -3929 ($ (-665 |#1|) (-665 |#1|))) (-15 -3929 ($ (-665 |#1|) $)) (-15 -3929 ($ $ (-665 |#1|))))) (-844) (-171)) (T -657))
+((-4352 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-657 *3 *4)))) (-3929 (*1 *1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-3929 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))))
+(-13 (-373 |#1| |#2|) (-383 |#2| (-665 |#1|)) (-10 -8 (-15 -4352 ((-3 $ "failed") (-1269 |#1| |#2|))) (-15 -3929 ($ (-665 |#1|) (-665 |#1|))) (-15 -3929 ($ (-665 |#1|) $)) (-15 -3929 ($ $ (-665 |#1|)))))
+((-1876 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-1874 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1659 (($ (-1 (-112) |#2|) $) 27)) (-2416 (($ $) 55)) (-2498 (($ $) 63)) (-3809 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-4249 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-3823 (((-544) |#2| $ (-544)) 60) (((-544) |#2| $) NIL) (((-544) (-1 (-112) |#2|) $) 46)) (-4021 (($ (-765) |#2|) 53)) (-3241 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-3917 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4365 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3941 (($ |#2|) 15)) (-4014 (($ $ $ (-544)) 35) (($ |#2| $ (-544)) 33)) (-1425 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-1660 (($ $ (-1220 (-544))) 43) (($ $ (-544)) 37)) (-1875 (($ $ $ (-544)) 59)) (-3804 (($ $) 57)) (-3067 (((-112) $ $) 65)))
+(((-658 |#1| |#2|) (-10 -8 (-15 -3941 (|#1| |#2|)) (-15 -1660 (|#1| |#1| (-544))) (-15 -1660 (|#1| |#1| (-1220 (-544)))) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4014 (|#1| |#2| |#1| (-544))) (-15 -4014 (|#1| |#1| |#1| (-544))) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -2498 (|#1| |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -2416 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4021 (|#1| (-765) |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|))) (-659 |#2|) (-1204)) (T -658))
+NIL
+(-10 -8 (-15 -3941 (|#1| |#2|)) (-15 -1660 (|#1| |#1| (-544))) (-15 -1660 (|#1| |#1| (-1220 (-544)))) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4014 (|#1| |#2| |#1| (-544))) (-15 -4014 (|#1| |#1| |#1| (-544))) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -2498 (|#1| |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -2416 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4021 (|#1| (-765) |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-2344 (((-1259) $ (-544) (-544)) 97 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1876 (((-112) $) 142 (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1874 (($ $) 146 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4401)))) (-3292 (($ $) 141 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 117 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 86 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) 129)) (-4117 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4400)))) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-2416 (($ $) 144 (|has| $ (-6 -4401)))) (-2417 (($ $) 134)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-2498 (($ $) 131 (|has| |#1| (-1091)))) (-1424 (($ $) 99 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 130 (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) 125)) (-3810 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4400))) (($ |#1| $) 100 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1665 ((|#1| $ (-544) |#1|) 85 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 87)) (-3846 (((-112) $) 83)) (-3823 (((-544) |#1| $ (-544)) 139 (|has| |#1| (-1091))) (((-544) |#1| $) 138 (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) 137)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) 108)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 95 (|has| (-544) (-844)))) (-2913 (($ $ $) 147 (|has| |#1| (-844)))) (-3241 (($ $ $) 132 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3917 (($ $ $) 140 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 94 (|has| (-544) (-844)))) (-3242 (($ $ $) 148 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3941 (($ |#1|) 122)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-4014 (($ $ $ (-544)) 127) (($ |#1| $ (-544)) 126)) (-2421 (($ $ $ (-544)) 116) (($ |#1| $ (-544)) 115)) (-2349 (((-635 (-544)) $) 92)) (-2350 (((-112) (-544) $) 91)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2345 (($ $ |#1|) 96 (|has| $ (-6 -4401)))) (-3847 (((-112) $) 84)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 90)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1220 (-544))) 112) ((|#1| $ (-544)) 89) ((|#1| $ (-544) |#1|) 88)) (-3412 (((-544) $ $) 44)) (-1660 (($ $ (-1220 (-544))) 124) (($ $ (-544)) 123)) (-2422 (($ $ (-1220 (-544))) 114) (($ $ (-544)) 113)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 143 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 107)) (-4197 (($ $ $) 61) (($ $ |#1|) 60)) (-4208 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 150 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 151 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 149 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 152 (|has| |#1| (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-659 |#1|) (-139) (-1204)) (T -659))
+((-3941 (*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1204)))))
+(-13 (-1139 |t#1|) (-371 |t#1|) (-281 |t#1|) (-10 -8 (-15 -3941 ($ |t#1|))))
+(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-281 |#1|) . T) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1003 |#1|) . T) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1139 |#1|) . T) ((-1204) . T) ((-1242 |#1|) . T))
+((-3980 (((-635 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2162 (-635 |#3|)))) |#4| (-635 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2162 (-635 |#3|))) |#4| |#3|) 45)) (-3494 (((-765) |#4| |#3|) 17)) (-3744 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2432 (((-112) |#4| |#3|) 13)))
+(((-660 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|)) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2162 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -3744 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2432 ((-112) |#4| |#3|)) (-15 -3494 ((-765) |#4| |#3|))) (-362) (-13 (-371 |#1|) (-10 -7 (-6 -4401))) (-13 (-371 |#1|) (-10 -7 (-6 -4401))) (-679 |#1| |#2| |#3|)) (T -660))
+((-3494 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-765)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) (-2432 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-112)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) (-3744 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-371 *4) (-10 -7 (-6 -4401)))) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))) (-5 *1 (-660 *4 *5 *2 *3)) (-4 *3 (-679 *4 *5 *2)))) (-3980 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *7 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-635 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2162 (-635 *7))))) (-5 *1 (-660 *5 *6 *7 *3)) (-5 *4 (-635 *7)) (-4 *3 (-679 *5 *6 *7)))) (-3980 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))))
+(-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|)) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2162 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -3744 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2432 ((-112) |#4| |#3|)) (-15 -3494 ((-765) |#4| |#3|)))
+((-3980 (((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1="failed")) (|:| -2162 (-635 (-1253 |#1|))))) (-635 (-635 |#1|)) (-635 (-1253 |#1|))) 22) (((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-682 |#1|) (-635 (-1253 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-635 (-635 |#1|)) (-1253 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)) 14)) (-3494 (((-765) (-682 |#1|) (-1253 |#1|)) 30)) (-3744 (((-3 (-1253 |#1|) #1#) (-682 |#1|) (-1253 |#1|)) 24)) (-2432 (((-112) (-682 |#1|) (-1253 |#1|)) 27)))
+(((-661 |#1|) (-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1="failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))) (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-635 (-635 |#1|)) (-1253 |#1|))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-682 |#1|) (-635 (-1253 |#1|)))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-635 (-635 |#1|)) (-635 (-1253 |#1|)))) (-15 -3744 ((-3 (-1253 |#1|) #1#) (-682 |#1|) (-1253 |#1|))) (-15 -2432 ((-112) (-682 |#1|) (-1253 |#1|))) (-15 -3494 ((-765) (-682 |#1|) (-1253 |#1|)))) (-362)) (T -661))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-661 *5)))) (-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-661 *5)))) (-3744 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1253 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *1 (-661 *4)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1253 *5) #1="failed")) (|:| -2162 (-635 (-1253 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1253 *5) #1#)) (|:| -2162 (-635 (-1253 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *5) #1#)) (|:| -2162 (-635 (-1253 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1253 *5)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *5) #1#)) (|:| -2162 (-635 (-1253 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1253 *5)))))
+(-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1="failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))) (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-635 (-635 |#1|)) (-1253 |#1|))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-682 |#1|) (-635 (-1253 |#1|)))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-635 (-635 |#1|)) (-635 (-1253 |#1|)))) (-15 -3744 ((-3 (-1253 |#1|) #1#) (-682 |#1|) (-1253 |#1|))) (-15 -2432 ((-112) (-682 |#1|) (-1253 |#1|))) (-15 -3494 ((-765) (-682 |#1|) (-1253 |#1|))))
+((-2433 (((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -2162 (-635 (-1253 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)) 45)))
+(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2433 ((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -2162 (-635 (-1253 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)))) (-554) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -662))
+((-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 (-406 *8)) "failed")) (|:| -2162 (-635 (-1253 (-406 *8)))))) (-5 *1 (-662 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2433 ((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -2162 (-635 (-1253 (-406 |#4|))))) (-635 |#4|) (-635 |#3|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (|has| |#2| (-554)))) (-3734 ((|#2| $) NIL)) (-3506 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#2|))) NIL) (((-1253 (-682 |#2|)) (-1253 $)) NIL)) (-3508 (((-112) $) NIL)) (-1873 (((-1253 $)) 37)) (-1293 (((-112) $ (-765)) NIL)) (-3737 (($ |#2|) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) NIL (|has| |#2| (-306)))) (-3497 (((-238 |#1| |#2|) $ (-544)) NIL)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#2| (-554)))) (-1847 (((-3 $ #1#)) NIL (|has| |#2| (-554)))) (-1935 (((-682 |#2|)) NIL) (((-682 |#2|) (-1253 $)) NIL)) (-1871 ((|#2| $) NIL)) (-1933 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1253 $)) NIL)) (-2539 (((-3 $ #1#) $) NIL (|has| |#2| (-554)))) (-2050 (((-1160 (-939 |#2|))) NIL (|has| |#2| (-362)))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#2| $) NIL)) (-1849 (((-1160 |#2|) $) NIL (|has| |#2| (-554)))) (-1937 ((|#2|) NIL) ((|#2| (-1253 $)) NIL)) (-1867 (((-1160 |#2|) $) NIL)) (-1861 (((-112)) NIL)) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) NIL)) (-1939 (($ (-1253 |#2|)) NIL) (($ (-1253 |#2|) (-1253 $)) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3494 (((-765) $) NIL (|has| |#2| (-554))) (((-912)) 38)) (-3498 ((|#2| $ (-544) (-544)) NIL)) (-1858 (((-112)) NIL)) (-2567 (($ $ (-912)) NIL)) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL)) (-3493 (((-765) $) NIL (|has| |#2| (-554)))) (-3492 (((-635 (-238 |#1| |#2|)) $) NIL (|has| |#2| (-554)))) (-3500 (((-765) $) NIL)) (-1854 (((-112)) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#2| $) NIL (|has| |#2| (-6 (-4402 #3="*"))))) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#2|))) NIL)) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4000 (((-635 (-635 |#2|)) $) NIL)) (-1852 (((-112)) NIL)) (-1856 (((-112)) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#2| (-554)))) (-1848 (((-3 $ #1#)) NIL (|has| |#2| (-554)))) (-1936 (((-682 |#2|)) NIL) (((-682 |#2|) (-1253 $)) NIL)) (-1872 ((|#2| $) NIL)) (-1934 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1253 $)) NIL)) (-2540 (((-3 $ #1#) $) NIL (|has| |#2| (-554)))) (-2054 (((-1160 (-939 |#2|))) NIL (|has| |#2| (-362)))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#2| $) NIL)) (-1850 (((-1160 |#2|) $) NIL (|has| |#2| (-554)))) (-1938 ((|#2|) NIL) ((|#2| (-1253 $)) NIL)) (-1868 (((-1160 |#2|) $) NIL)) (-1862 (((-112)) NIL)) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL)) (-1855 (((-112)) NIL)) (-1857 (((-112)) NIL)) (-3996 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) NIL)) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) (-544) |#2|) NIL) ((|#2| $ (-544) (-544)) 22) ((|#2| $ (-544)) NIL)) (-4217 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3733 ((|#2| $) NIL)) (-3736 (($ (-635 |#2|)) NIL)) (-3507 (((-112) $) NIL)) (-3735 (((-238 |#1| |#2|) $) NIL)) (-3732 ((|#2| $) NIL (|has| |#2| (-6 (-4402 #3#))))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-3625 (((-682 |#2|) (-1253 $)) NIL) (((-1253 |#2|) $) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $ (-1253 $)) 25)) (-4377 (($ (-1253 |#2|)) NIL) (((-1253 |#2|) $) NIL)) (-2042 (((-635 (-939 |#2|))) NIL) (((-635 (-939 |#2|)) (-1253 $)) NIL)) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL)) (-3496 (((-238 |#1| |#2|) $ (-544)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) NIL) (((-682 |#2|) $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) 36)) (-1851 (((-635 (-1253 |#2|))) NIL (|has| |#2| (-554)))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL)) (-2927 (($ (-682 |#2|) $) NIL)) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL)) (-1863 (((-112)) NIL)) (-1859 (((-112)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#2| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-238 |#1| |#2|) $ (-238 |#1| |#2|)) NIL) (((-238 |#1| |#2|) (-238 |#1| |#2|) $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-663 |#1| |#2|) (-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-417 |#2|)) (-912) (-171)) (T -663))
+NIL
+(-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-417 |#2|))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3649 (((-635 (-1125)) $) 10)) (-4353 (((-857) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-664) (-13 (-1073) (-10 -8 (-15 -3649 ((-635 (-1125)) $))))) (T -664))
+((-3649 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-664)))))
+(-13 (-1073) (-10 -8 (-15 -3649 ((-635 (-1125)) $))))
+((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) NIL)) (-3522 (($ $) 51)) (-3044 (((-112) $) NIL)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-2436 (((-3 $ "failed") (-813 |#1|)) 23)) (-2438 (((-112) (-813 |#1|)) 15)) (-2437 (($ (-813 |#1|)) 24)) (-2818 (((-112) $ $) 29)) (-4240 (((-912) $) 36)) (-3523 (($ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4139 (((-635 $) (-813 |#1|)) 17)) (-4353 (((-857) $) 42) (($ |#1|) 33) (((-813 |#1|) $) 38) (((-670 |#1|) $) 43)) (-2435 (((-58 (-635 $)) (-635 |#1|) (-912)) 56)) (-2434 (((-635 $) (-635 |#1|) (-912)) 59)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 52)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 37)))
+(((-665 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ((-670 |#1|) $)) (-15 -4139 ((-635 $) (-813 |#1|))) (-15 -2438 ((-112) (-813 |#1|))) (-15 -2437 ($ (-813 |#1|))) (-15 -2436 ((-3 $ "failed") (-813 |#1|))) (-15 -4341 ((-635 |#1|) $)) (-15 -2435 ((-58 (-635 $)) (-635 |#1|) (-912))) (-15 -2434 ((-635 $) (-635 |#1|) (-912))))) (-844)) (T -665))
+((-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-665 *4))) (-5 *1 (-665 *4)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-2436 (*1 *1 *2) (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844)) (-5 *2 (-58 (-635 (-665 *5)))) (-5 *1 (-665 *5)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844)) (-5 *2 (-635 (-665 *5))) (-5 *1 (-665 *5)))))
+(-13 (-844) (-1031 |#1|) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ((-670 |#1|) $)) (-15 -4139 ((-635 $) (-813 |#1|))) (-15 -2438 ((-112) (-813 |#1|))) (-15 -2437 ($ (-813 |#1|))) (-15 -2436 ((-3 $ "failed") (-813 |#1|))) (-15 -4341 ((-635 |#1|) $)) (-15 -2435 ((-58 (-635 $)) (-635 |#1|) (-912))) (-15 -2434 ((-635 $) (-635 |#1|) (-912)))))
+((-3806 ((|#2| $) 76)) (-4203 (($ $) 96)) (-1293 (((-112) $ (-765)) 26)) (-4205 (($ $) 85) (($ $ (-765)) 88)) (-3846 (((-112) $) 97)) (-3414 (((-635 $) $) 72)) (-3410 (((-112) $ $) 71)) (-4126 (((-112) $ (-765)) 24)) (-2346 (((-544) $) 46)) (-2347 (((-544) $) 45)) (-4123 (((-112) $ (-765)) 22)) (-3926 (((-112) $) 74)) (-4204 ((|#2| $) 89) (($ $ (-765)) 92)) (-2421 (($ $ $ (-544)) 62) (($ |#2| $ (-544)) 61)) (-2349 (((-635 (-544)) $) 44)) (-2350 (((-112) (-544) $) 42)) (-4207 ((|#2| $) NIL) (($ $ (-765)) 84)) (-4175 (($ $ (-544)) 99)) (-3847 (((-112) $) 98)) (-2098 (((-112) (-1 (-112) |#2|) $) 32)) (-2351 (((-635 |#2|) $) 33)) (-4206 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1220 (-544))) 58) ((|#2| $ (-544)) 40) ((|#2| $ (-544) |#2|) 41)) (-3412 (((-544) $ $) 70)) (-2422 (($ $ (-1220 (-544))) 57) (($ $ (-544)) 51)) (-4040 (((-112) $) 66)) (-4198 (($ $) 81)) (-4199 (((-765) $) 80)) (-4200 (($ $) 79)) (-3929 (($ (-635 |#2|)) 37)) (-3274 (($ $) 100)) (-3921 (((-635 $) $) 69)) (-3411 (((-112) $ $) 68)) (-2099 (((-112) (-1 (-112) |#2|) $) 31)) (-3437 (((-112) $ $) 18)) (-4364 (((-765) $) 29)))
+(((-666 |#1| |#2|) (-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -4175 (|#1| |#1| (-544))) (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2351 ((-635 |#2|) |#1|)) (-15 -2350 ((-112) (-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2347 ((-544) |#1|)) (-15 -2346 ((-544) |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "first")) (-15 -4207 (|#2| |#1|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -3412 ((-544) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| "value")) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765)))) (-667 |#2|) (-1204)) (T -666))
+NIL
+(-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -4175 (|#1| |#1| (-544))) (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2351 ((-635 |#2|) |#1|)) (-15 -2350 ((-112) (-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2347 ((-544) |#1|)) (-15 -2346 ((-544) |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "first")) (-15 -4207 (|#2| |#1|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -3412 ((-544) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| "value")) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-2344 (((-1259) $ (-544) (-544)) 97 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 117 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 86 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 102)) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-2440 (($ $) 124)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-1424 (($ $) 99 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 100 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 103)) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1665 ((|#1| $ (-544) |#1|) 85 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 87)) (-3846 (((-112) $) 83)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-2439 (((-765) $) 123)) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) 108)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 95 (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 94 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-2442 (($ $) 126)) (-2443 (((-112) $) 127)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-2421 (($ $ $ (-544)) 116) (($ |#1| $ (-544)) 115)) (-2349 (((-635 (-544)) $) 92)) (-2350 (((-112) (-544) $) 91)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2441 ((|#1| $) 125)) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2345 (($ $ |#1|) 96 (|has| $ (-6 -4401)))) (-4175 (($ $ (-544)) 122)) (-3847 (((-112) $) 84)) (-2444 (((-112) $) 128)) (-2445 (((-112) $) 129)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 90)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1220 (-544))) 112) ((|#1| $ (-544)) 89) ((|#1| $ (-544) |#1|) 88)) (-3412 (((-544) $ $) 44)) (-2422 (($ $ (-1220 (-544))) 114) (($ $ (-544)) 113)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 107)) (-4197 (($ $ $) 61 (|has| $ (-6 -4401))) (($ $ |#1|) 60 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-3274 (($ $) 121)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-667 |#1|) (-139) (-1204)) (T -667))
+((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))) (-2440 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) (-3274 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))))
+(-13 (-1139 |t#1|) (-10 -8 (-15 -3810 ($ (-1 (-112) |t#1|) $)) (-15 -4117 ($ (-1 (-112) |t#1|) $)) (-15 -2445 ((-112) $)) (-15 -2444 ((-112) $)) (-15 -2443 ((-112) $)) (-15 -2442 ($ $)) (-15 -2441 (|t#1| $)) (-15 -2440 ($ $)) (-15 -2439 ((-765) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1139 |#1|) . T) ((-1204) . T) ((-1242 |#1|) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2451 (($ (-765) (-765) (-765)) 33 (|has| |#1| (-1042)))) (-1293 (((-112) $ (-765)) NIL)) (-2448 ((|#1| $ (-765) (-765) (-765) |#1|) 27)) (-4131 (($) NIL T CONST)) (-2449 (($ $ $) 37 (|has| |#1| (-1042)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2446 (((-1253 (-765)) $) 9)) (-2447 (($ (-1166) $ $) 22)) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2450 (($ (-765)) 35 (|has| |#1| (-1042)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-765) (-765) (-765)) 25)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3929 (($ (-635 (-635 (-635 |#1|)))) 44)) (-4353 (($ (-951 (-951 (-951 |#1|)))) 15) (((-951 (-951 (-951 |#1|))) $) 12) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-668 |#1|) (-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -2451 ($ (-765) (-765) (-765))) (-15 -2450 ($ (-765))) (-15 -2449 ($ $ $))) |%noBranch|) (-15 -3929 ($ (-635 (-635 (-635 |#1|))))) (-15 -4206 (|#1| $ (-765) (-765) (-765))) (-15 -2448 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4353 ($ (-951 (-951 (-951 |#1|))))) (-15 -4353 ((-951 (-951 (-951 |#1|))) $)) (-15 -2447 ($ (-1166) $ $)) (-15 -2446 ((-1253 (-765)) $)))) (-1091)) (T -668))
+((-2451 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091)))) (-2449 (*1 *1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1091)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3)))) (-4206 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091)))) (-2448 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3)) (-4 *3 (-1091)))) (-2447 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1091)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-1253 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1091)))))
+(-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -2451 ($ (-765) (-765) (-765))) (-15 -2450 ($ (-765))) (-15 -2449 ($ $ $))) |%noBranch|) (-15 -3929 ($ (-635 (-635 (-635 |#1|))))) (-15 -4206 (|#1| $ (-765) (-765) (-765))) (-15 -2448 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4353 ($ (-951 (-951 (-951 |#1|))))) (-15 -4353 ((-951 (-951 (-951 |#1|))) $)) (-15 -2447 ($ (-1166) $ $)) (-15 -2446 ((-1253 (-765)) $))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3579 (((-481) $) 10)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 12)) (-3437 (((-112) $ $) NIL)))
+(((-669) (-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3634 ((-1125) $))))) (T -669))
+((-3579 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669)))))
+(-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3634 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) 14)) (-3522 (($ $) 18)) (-3044 (((-112) $) 19)) (-3558 (((-3 |#1| "failed") $) 22)) (-3557 ((|#1| $) 20)) (-4205 (($ $) 36)) (-4343 (($ $) 24)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-2818 (((-112) $ $) 41)) (-4240 (((-912) $) 38)) (-3523 (($ $) 17)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 ((|#1| $) 35)) (-4353 (((-857) $) 31) (($ |#1|) 23) (((-813 |#1|) $) 27)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 12)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 40)) (* (($ $ $) 34)))
+(((-670 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4207 (|#1| $)) (-15 -3523 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4343 ($ $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -3522 ($ $)) (-15 -4341 ((-635 |#1|) $)))) (-844)) (T -670))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-4207 (*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4205 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))))
+(-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4207 (|#1| $)) (-15 -3523 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4343 ($ $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -3522 ($ $)) (-15 -4341 ((-635 |#1|) $))))
+((-2460 ((|#1| (-1 |#1| (-765) |#1|) (-765) |#1|) 11)) (-2452 ((|#1| (-1 |#1| |#1|) (-765) |#1|) 9)))
+(((-671 |#1|) (-10 -7 (-15 -2452 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -2460 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|))) (-1091)) (T -671))
+((-2460 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1091)) (-5 *1 (-671 *2)))) (-2452 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1091)) (-5 *1 (-671 *2)))))
+(-10 -7 (-15 -2452 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -2460 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|)))
+((-2454 ((|#2| |#1| |#2|) 9)) (-2453 ((|#1| |#1| |#2|) 8)))
+(((-672 |#1| |#2|) (-10 -7 (-15 -2453 (|#1| |#1| |#2|)) (-15 -2454 (|#2| |#1| |#2|))) (-1091) (-1091)) (T -672))
+((-2454 (*1 *2 *3 *2) (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-2453 (*1 *2 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
+(-10 -7 (-15 -2453 (|#1| |#1| |#2|)) (-15 -2454 (|#2| |#1| |#2|)))
+((-2455 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -2455 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1091) (-1091) (-1091)) (T -673))
+((-2455 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)) (-5 *1 (-673 *5 *6 *2)))))
+(-10 -7 (-15 -2455 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 20)) (-3718 (((-635 (-1205)) $) 18)) (-2456 (($ (-635 (-1205)) (-1205)) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 29) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1205) $) 21) (($ (-1105)) 10)) (-3437 (((-112) $ $) NIL)))
+(((-674) (-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-1105))) (-15 -2456 ($ (-635 (-1205)) (-1205))) (-15 -3718 ((-635 (-1205)) $)) (-15 -3719 ((-1205) $))))) (T -674))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-674)))) (-2456 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1205))) (-5 *3 (-1205)) (-5 *1 (-674)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-674)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-674)))))
+(-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-1105))) (-15 -2456 ($ (-635 (-1205)) (-1205))) (-15 -3718 ((-635 (-1205)) $)) (-15 -3719 ((-1205) $))))
+((-2460 (((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)) 23)) (-2457 (((-1 |#1|) |#1|) 8)) (-2459 ((|#1| |#1|) 16)) (-2458 (((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-544)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4353 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-765)) 20)))
+(((-675 |#1|) (-10 -7 (-15 -2457 ((-1 |#1|) |#1|)) (-15 -4353 ((-1 |#1|) |#1|)) (-15 -2458 (|#1| (-1 |#1| |#1|))) (-15 -2458 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-544))) (-15 -2459 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -2460 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)))) (-1091)) (T -675))
+((-2460 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1091)) (-5 *1 (-675 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1091)) (-5 *1 (-675 *4)))) (-2459 (*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1091)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-544)) (-5 *2 (-635 *5)) (-5 *1 (-675 *5)) (-4 *5 (-1091)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1091)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091)))) (-2457 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091)))))
+(-10 -7 (-15 -2457 ((-1 |#1|) |#1|)) (-15 -4353 ((-1 |#1|) |#1|)) (-15 -2458 (|#1| (-1 |#1| |#1|))) (-15 -2458 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-544))) (-15 -2459 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -2460 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|))))
+((-2463 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2462 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4359 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2461 (((-1 |#2| |#1|) |#2|) 11)))
+(((-676 |#1| |#2|) (-10 -7 (-15 -2461 ((-1 |#2| |#1|) |#2|)) (-15 -2462 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4359 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2463 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1091) (-1091)) (T -676))
+((-2463 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)) (-4 *4 (-1091)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5)) (-5 *1 (-676 *4 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1091)) (-4 *3 (-1091)))))
+(-10 -7 (-15 -2461 ((-1 |#2| |#1|) |#2|)) (-15 -2462 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4359 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2463 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2468 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2464 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2465 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2466 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2467 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -2464 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2465 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2466 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2467 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2468 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1091) (-1091) (-1091)) (T -677))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-1 *7 *5)) (-5 *1 (-677 *5 *6 *7)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1091)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1091)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1091)) (-4 *4 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6)))))
+(-10 -7 (-15 -2464 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2465 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2466 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2467 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2468 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-4245 (($ (-765) (-765)) 33)) (-2473 (($ $ $) 56)) (-3818 (($ |#3|) 52) (($ $) 53)) (-3506 (((-112) $) 28)) (-2472 (($ $ (-544) (-544)) 58)) (-2471 (($ $ (-544) (-544)) 59)) (-2470 (($ $ (-544) (-544) (-544) (-544)) 63)) (-2475 (($ $) 54)) (-3508 (((-112) $) 14)) (-2469 (($ $ (-544) (-544) $) 64)) (-4194 ((|#2| $ (-544) (-544) |#2|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) 62)) (-3737 (($ (-765) |#2|) 39)) (-3509 (($ (-635 (-635 |#2|))) 37)) (-4000 (((-635 (-635 |#2|)) $) 57)) (-2474 (($ $ $) 55)) (-3865 (((-3 $ "failed") $ |#2|) 91)) (-4206 ((|#2| $ (-544) (-544)) NIL) ((|#2| $ (-544) (-544) |#2|) NIL) (($ $ (-635 (-544)) (-635 (-544))) 61)) (-3736 (($ (-635 |#2|)) 40) (($ (-635 $)) 42)) (-3507 (((-112) $) 24)) (-4353 (($ |#4|) 47) (((-857) $) NIL)) (-3505 (((-112) $) 30)) (-4356 (($ $ |#2|) 93)) (-4244 (($ $ $) 68) (($ $) 71)) (-4246 (($ $ $) 66)) (** (($ $ (-765)) 80) (($ $ (-544)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-544) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-678 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#2|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -2469 (|#1| |#1| (-544) (-544) |#1|)) (-15 -2470 (|#1| |#1| (-544) (-544) (-544) (-544))) (-15 -2471 (|#1| |#1| (-544) (-544))) (-15 -2472 (|#1| |#1| (-544) (-544))) (-15 -4194 (|#1| |#1| (-635 (-544)) (-635 (-544)) |#1|)) (-15 -4206 (|#1| |#1| (-635 (-544)) (-635 (-544)))) (-15 -4000 ((-635 (-635 |#2|)) |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3818 (|#1| |#3|)) (-15 -4353 (|#1| |#4|)) (-15 -3736 (|#1| (-635 |#1|))) (-15 -3736 (|#1| (-635 |#2|))) (-15 -3737 (|#1| (-765) |#2|)) (-15 -3509 (|#1| (-635 (-635 |#2|)))) (-15 -4245 (|#1| (-765) (-765))) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544)))) (-679 |#2| |#3| |#4|) (-1042) (-371 |#2|) (-371 |#2|)) (T -678))
+NIL
+(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#2|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -2469 (|#1| |#1| (-544) (-544) |#1|)) (-15 -2470 (|#1| |#1| (-544) (-544) (-544) (-544))) (-15 -2471 (|#1| |#1| (-544) (-544))) (-15 -2472 (|#1| |#1| (-544) (-544))) (-15 -4194 (|#1| |#1| (-635 (-544)) (-635 (-544)) |#1|)) (-15 -4206 (|#1| |#1| (-635 (-544)) (-635 (-544)))) (-15 -4000 ((-635 (-635 |#2|)) |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3818 (|#1| |#3|)) (-15 -4353 (|#1| |#4|)) (-15 -3736 (|#1| (-635 |#1|))) (-15 -3736 (|#1| (-635 |#2|))) (-15 -3737 (|#1| (-765) |#2|)) (-15 -3509 (|#1| (-635 (-635 |#2|)))) (-15 -4245 (|#1| (-765) (-765))) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544))))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) 97)) (-2473 (($ $ $) 87)) (-3818 (($ |#2|) 91) (($ $) 90)) (-3506 (((-112) $) 99)) (-2472 (($ $ (-544) (-544)) 83)) (-2471 (($ $ (-544) (-544)) 82)) (-2470 (($ $ (-544) (-544) (-544) (-544)) 81)) (-2475 (($ $) 89)) (-3508 (((-112) $) 101)) (-1293 (((-112) $ (-765)) 8)) (-2469 (($ $ (-544) (-544) $) 80)) (-4194 ((|#1| $ (-544) (-544) |#1|) 44) (($ $ (-635 (-544)) (-635 (-544)) $) 84)) (-1332 (($ $ (-544) |#2|) 42)) (-1331 (($ $ (-544) |#3|) 41)) (-3737 (($ (-765) |#1|) 95)) (-4131 (($) 7 T CONST)) (-3495 (($ $) 67 (|has| |#1| (-306)))) (-3497 ((|#2| $ (-544)) 46)) (-3494 (((-765) $) 66 (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) 43)) (-3498 ((|#1| $ (-544) (-544)) 48)) (-2096 (((-635 |#1|) $) 30)) (-3493 (((-765) $) 65 (|has| |#1| (-554)))) (-3492 (((-635 |#3|) $) 64 (|has| |#1| (-554)))) (-3500 (((-765) $) 51)) (-4021 (($ (-765) (-765) |#1|) 57)) (-3499 (((-765) $) 50)) (-4126 (((-112) $ (-765)) 9)) (-3731 ((|#1| $) 62 (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) 55)) (-3502 (((-544) $) 53)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 54)) (-3501 (((-544) $) 52)) (-3509 (($ (-635 (-635 |#1|))) 96)) (-2100 (($ (-1 |#1| |#1|) $) 34)) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4000 (((-635 (-635 |#1|)) $) 86)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3996 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-2474 (($ $ $) 88)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) 56)) (-3865 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) (-544)) 49) ((|#1| $ (-544) (-544) |#1|) 47) (($ $ (-635 (-544)) (-635 (-544))) 85)) (-3736 (($ (-635 |#1|)) 94) (($ (-635 $)) 93)) (-3507 (((-112) $) 100)) (-3732 ((|#1| $) 63 (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-3496 ((|#3| $ (-544)) 45)) (-4353 (($ |#3|) 92) (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3505 (((-112) $) 98)) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-4244 (($ $ $) 78) (($ $) 77)) (-4246 (($ $ $) 79)) (** (($ $ (-765)) 70) (($ $ (-544)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-544) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-679 |#1| |#2| |#3|) (-139) (-1042) (-371 |t#1|) (-371 |t#1|)) (T -679))
+((-3508 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-4245 (*1 *1 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3737 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *2)) (-4 *4 (-371 *3)) (-4 *2 (-371 *3)))) (-3818 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *2 *4)) (-4 *2 (-371 *3)) (-4 *4 (-371 *3)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-2475 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-2474 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-2473 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-635 (-635 *3))))) (-4206 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4194 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2472 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2471 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2470 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2469 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4246 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-679 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *2 (-371 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-679 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-371 *3)) (-4 *4 (-371 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-554)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-362)))) (-3495 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-306)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-635 *5)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (|has| *2 (-6 (-4402 #1="*"))) (-4 *2 (-1042)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (|has| *2 (-6 (-4402 #1#))) (-4 *2 (-1042)))) (-3996 (*1 *1 *1) (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-362)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -3508 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -3506 ((-112) $)) (-15 -3505 ((-112) $)) (-15 -4245 ($ (-765) (-765))) (-15 -3509 ($ (-635 (-635 |t#1|)))) (-15 -3737 ($ (-765) |t#1|)) (-15 -3736 ($ (-635 |t#1|))) (-15 -3736 ($ (-635 $))) (-15 -4353 ($ |t#3|)) (-15 -3818 ($ |t#2|)) (-15 -3818 ($ $)) (-15 -2475 ($ $)) (-15 -2474 ($ $ $)) (-15 -2473 ($ $ $)) (-15 -4000 ((-635 (-635 |t#1|)) $)) (-15 -4206 ($ $ (-635 (-544)) (-635 (-544)))) (-15 -4194 ($ $ (-635 (-544)) (-635 (-544)) $)) (-15 -2472 ($ $ (-544) (-544))) (-15 -2471 ($ $ (-544) (-544))) (-15 -2470 ($ $ (-544) (-544) (-544) (-544))) (-15 -2469 ($ $ (-544) (-544) $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-544) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-765))) (IF (|has| |t#1| (-554)) (-15 -3865 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -4356 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -3495 ($ $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -3494 ((-765) $)) (-15 -3493 ((-765) $)) (-15 -3492 ((-635 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4402 "*"))) (PROGN (-15 -3732 (|t#1| $)) (-15 -3731 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -3996 ((-3 $ "failed") $)) (-15 ** ($ $ (-544)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-57 |#1| |#2| |#3|) . T) ((-1204) . T))
+((-4249 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4365 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-680 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4365 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4249 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1042) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|) (-1042) (-371 |#5|) (-371 |#5|) (-679 |#5| |#6| |#7|)) (T -680))
+((-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *8 (-371 *2)) (-4 *9 (-371 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-679 *5 *6 *7)) (-4 *10 (-679 *2 *8 *9)))) (-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7)) (-4 *9 (-371 *8)) (-4 *10 (-371 *8)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7)) (-4 *9 (-371 *8)) (-4 *10 (-371 *8)))))
+(-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4365 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4249 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3495 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-3494 (((-765) |#4|) 98 (|has| |#1| (-554)))) (-3493 (((-765) |#4|) 75 (|has| |#1| (-554)))) (-3492 (((-635 |#3|) |#4|) 82 (|has| |#1| (-554)))) (-2514 (((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-3731 ((|#1| |#4|) 34)) (-2480 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-554)))) (-3996 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-2479 ((|#4| |#4|) 67 (|has| |#1| (-554)))) (-2477 ((|#4| |#4| |#1| (-544) (-544)) 42)) (-2476 ((|#4| |#4| (-544) (-544)) 37)) (-2478 ((|#4| |#4| |#1| (-544) (-544)) 47)) (-3732 ((|#1| |#4|) 77)) (-2899 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-554)))))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 (|#1| |#4|)) (-15 -3731 (|#1| |#4|)) (-15 -2476 (|#4| |#4| (-544) (-544))) (-15 -2477 (|#4| |#4| |#1| (-544) (-544))) (-15 -2478 (|#4| |#4| |#1| (-544) (-544))) (IF (|has| |#1| (-554)) (PROGN (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (-15 -3492 ((-635 |#3|) |#4|)) (-15 -2479 (|#4| |#4|)) (-15 -2480 ((-3 |#4| "failed") |#4|)) (-15 -2899 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -3495 (|#4| |#4|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -681))
+((-3996 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2514 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-681 *3 *4 *5 *6)) (-4 *6 (-679 *3 *4 *5)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-2480 (*1 *2 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-3492 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-635 *6)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3493 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3494 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-2478 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6)))) (-2477 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6)))) (-2476 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *1 (-681 *4 *5 *6 *2)) (-4 *2 (-679 *4 *5 *6)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))))
+(-10 -7 (-15 -3732 (|#1| |#4|)) (-15 -3731 (|#1| |#4|)) (-15 -2476 (|#4| |#4| (-544) (-544))) (-15 -2477 (|#4| |#4| |#1| (-544) (-544))) (-15 -2478 (|#4| |#4| |#1| (-544) (-544))) (IF (|has| |#1| (-554)) (PROGN (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (-15 -3492 ((-635 |#3|) |#4|)) (-15 -2479 (|#4| |#4|)) (-15 -2480 ((-3 |#4| "failed") |#4|)) (-15 -2899 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -3495 (|#4| |#4|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) 47)) (-2473 (($ $ $) NIL)) (-3818 (($ (-1253 |#1|)) NIL) (($ $) NIL)) (-3506 (((-112) $) NIL)) (-2472 (($ $ (-544) (-544)) 12)) (-2471 (($ $ (-544) (-544)) NIL)) (-2470 (($ $ (-544) (-544) (-544) (-544)) NIL)) (-2475 (($ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-2469 (($ $ (-544) (-544) $) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) NIL)) (-1332 (($ $ (-544) (-1253 |#1|)) NIL)) (-1331 (($ $ (-544) (-1253 |#1|)) NIL)) (-3737 (($ (-765) |#1|) 22)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 31 (|has| |#1| (-306)))) (-3497 (((-1253 |#1|) $ (-544)) NIL)) (-3494 (((-765) $) 33 (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) 51)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3493 (((-765) $) 35 (|has| |#1| (-554)))) (-3492 (((-635 (-1253 |#1|)) $) 38 (|has| |#1| (-554)))) (-3500 (((-765) $) 20)) (-4021 (($ (-765) (-765) |#1|) 16)) (-3499 (((-765) $) 21)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#1| $) 29 (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) 9)) (-3502 (((-544) $) 10)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) 11)) (-3501 (((-544) $) 48)) (-3509 (($ (-635 (-635 |#1|))) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4000 (((-635 (-635 |#1|)) $) 60)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3996 (((-3 $ #2="failed") $) 45 (|has| |#1| (-362)))) (-2474 (($ $ $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-3865 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544))) NIL)) (-3736 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL) (($ (-1253 |#1|)) 52)) (-3507 (((-112) $) NIL)) (-3732 ((|#1| $) 27 (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 64 (|has| |#1| (-609 (-533))))) (-3496 (((-1253 |#1|) $ (-544)) NIL)) (-4353 (($ (-1253 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) 23) (($ $ (-544)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-544) $) NIL) (((-1253 |#1|) $ (-1253 |#1|)) NIL) (((-1253 |#1|) (-1253 |#1|) $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-682 |#1|) (-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 -3736 ($ (-1253 |#1|))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 $ "failed") $)) |%noBranch|))) (-1042)) (T -682))
+((-3996 (*1 *1 *1) (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3)))))
+(-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 -3736 ($ (-1253 |#1|))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 $ "failed") $)) |%noBranch|)))
+((-2486 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 25)) (-2485 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 21)) (-2487 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765)) 26)) (-2482 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 14)) (-2483 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 18) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 16)) (-2484 (((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|)) 20)) (-2481 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 12)) (** (((-682 |#1|) (-682 |#1|) (-765)) 30)))
+(((-683 |#1|) (-10 -7 (-15 -2481 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2482 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2484 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -2485 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2486 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2487 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765)))) (-1042)) (T -683))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-2487 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-2486 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2485 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2484 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2483 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2482 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2481 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(-10 -7 (-15 -2481 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2482 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2484 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -2485 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2486 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2487 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765))))
+((-3558 (((-3 |#1| "failed") $) 17)) (-3557 ((|#1| $) NIL)) (-2488 (($) 7 T CONST)) (-2489 (($ |#1|) 8)) (-4353 (($ |#1|) 15) (((-857) $) 22)) (-3973 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2488)) 11)) (-3979 ((|#1| $) 14)))
+(((-684 |#1|) (-13 (-1249) (-1031 |#1|) (-608 (-857)) (-10 -8 (-15 -2489 ($ |#1|)) (-15 -3973 ((-112) $ (|[\|\|]| |#1|))) (-15 -3973 ((-112) $ (|[\|\|]| -2488))) (-15 -3979 (|#1| $)) (-15 -2488 ($) -4359))) (-608 (-857))) (T -684))
+((-2489 (*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-857))) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2488)) (-5 *2 (-112)) (-5 *1 (-684 *4)) (-4 *4 (-608 (-857))))) (-3979 (*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))) (-2488 (*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))))
+(-13 (-1249) (-1031 |#1|) (-608 (-857)) (-10 -8 (-15 -2489 ($ |#1|)) (-15 -3973 ((-112) $ (|[\|\|]| |#1|))) (-15 -3973 ((-112) $ (|[\|\|]| -2488))) (-15 -3979 (|#1| $)) (-15 -2488 ($) -4359)))
+((-2492 ((|#2| |#2| |#4|) 25)) (-2495 (((-682 |#2|) |#3| |#4|) 31)) (-2493 (((-682 |#2|) |#2| |#4|) 30)) (-2490 (((-1253 |#2|) |#2| |#4|) 16)) (-2491 ((|#2| |#3| |#4|) 24)) (-2496 (((-682 |#2|) |#3| |#4| (-765) (-765)) 38)) (-2494 (((-682 |#2|) |#2| |#4| (-765)) 37)))
+(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2490 ((-1253 |#2|) |#2| |#4|)) (-15 -2491 (|#2| |#3| |#4|)) (-15 -2492 (|#2| |#2| |#4|)) (-15 -2493 ((-682 |#2|) |#2| |#4|)) (-15 -2494 ((-682 |#2|) |#2| |#4| (-765))) (-15 -2495 ((-682 |#2|) |#3| |#4|)) (-15 -2496 ((-682 |#2|) |#3| |#4| (-765) (-765)))) (-1091) (-893 |#1|) (-371 |#2|) (-13 (-371 |#1|) (-10 -7 (-6 -4400)))) (T -685))
+((-2496 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *7 (-893 *6)) (-5 *2 (-682 *7)) (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-371 *7)) (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400)))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6)) (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-371 *6)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))) (-2494 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *3 (-893 *6)) (-5 *2 (-682 *3)) (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-371 *3)) (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400)))))) (-2493 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))) (-2492 (*1 *2 *2 *3) (-12 (-4 *4 (-1091)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3)) (-4 *5 (-371 *2)) (-4 *3 (-13 (-371 *4) (-10 -7 (-6 -4400)))))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))) (-2490 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-1253 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))))
+(-10 -7 (-15 -2490 ((-1253 |#2|) |#2| |#4|)) (-15 -2491 (|#2| |#3| |#4|)) (-15 -2492 (|#2| |#2| |#4|)) (-15 -2493 ((-682 |#2|) |#2| |#4|)) (-15 -2494 ((-682 |#2|) |#2| |#4| (-765))) (-15 -2495 ((-682 |#2|) |#3| |#4|)) (-15 -2496 ((-682 |#2|) |#3| |#4| (-765) (-765))))
+((-4148 (((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)) 20)) (-4146 ((|#1| (-682 |#2|)) 9)) (-4147 (((-682 |#1|) (-682 |#2|)) 18)))
+(((-686 |#1| |#2|) (-10 -7 (-15 -4146 (|#1| (-682 |#2|))) (-15 -4147 ((-682 |#1|) (-682 |#2|))) (-15 -4148 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)))) (-554) (-984 |#1|)) (T -686))
+((-4148 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4))) (-5 *1 (-686 *4 *5)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554)) (-5 *2 (-682 *4)) (-5 *1 (-686 *4 *5)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-686 *2 *4)))))
+(-10 -7 (-15 -4146 (|#1| (-682 |#2|))) (-15 -4147 ((-682 |#1|) (-682 |#2|))) (-15 -4148 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1929 (((-682 (-692))) NIL) (((-682 (-692)) (-1253 $)) NIL)) (-3734 (((-692) $) NIL)) (-3891 (($ $) NIL (|has| (-692) (-1190)))) (-4046 (($ $) NIL (|has| (-692) (-1190)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-692) (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-4181 (($ $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-4376 (((-404 $) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-3420 (($ $) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-1733 (((-112) $ $) NIL (|has| (-692) (-306)))) (-3521 (((-765)) NIL (|has| (-692) (-367)))) (-3889 (($ $) NIL (|has| (-692) (-1190)))) (-4045 (($ $) NIL (|has| (-692) (-1190)))) (-3893 (($ $) NIL (|has| (-692) (-1190)))) (-4044 (($ $) NIL (|has| (-692) (-1190)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-692) #2#) $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-692) (-1031 (-406 (-544)))))) (-3557 (((-544) $) NIL) (((-692) $) NIL) (((-406 (-544)) $) NIL (|has| (-692) (-1031 (-406 (-544)))))) (-1939 (($ (-1253 (-692))) NIL) (($ (-1253 (-692)) (-1253 $)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-692) (-349)))) (-2943 (($ $ $) NIL (|has| (-692) (-306)))) (-1928 (((-682 (-692)) $) NIL) (((-682 (-692)) $ (-1253 $)) NIL)) (-2401 (((-682 (-692)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-692))) (|:| |vec| (-1253 (-692)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-692) (-634 (-544)))) (((-682 (-544)) (-682 $)) NIL (|has| (-692) (-634 (-544))))) (-4249 (((-3 $ "failed") (-406 (-1160 (-692)))) NIL (|has| (-692) (-362))) (($ (-1160 (-692))) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4050 (((-692) $) 29)) (-3407 (((-3 (-406 (-544)) #3="failed") $) NIL (|has| (-692) (-543)))) (-3406 (((-112) $) NIL (|has| (-692) (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| (-692) (-543)))) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| (-692) (-367)))) (-2942 (($ $ $) NIL (|has| (-692) (-306)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| (-692) (-306)))) (-3215 (($) NIL (|has| (-692) (-349)))) (-1824 (((-112) $) NIL (|has| (-692) (-349)))) (-1914 (($ $) NIL (|has| (-692) (-349))) (($ $ (-765)) NIL (|has| (-692) (-349)))) (-4130 (((-112) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-1446 (((-2 (|:| |r| (-692)) (|:| |phi| (-692))) $) NIL (-12 (|has| (-692) (-1051)) (|has| (-692) (-1190))))) (-4034 (($) NIL (|has| (-692) (-1190)))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-692) (-879 (-377)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-692) (-879 (-544))))) (-4178 (((-826 (-912)) $) NIL (|has| (-692) (-349))) (((-912) $) NIL (|has| (-692) (-349)))) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-3517 (((-692) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-692) (-349)))) (-1730 (((-3 (-635 $) #4="failed") (-635 $) $) NIL (|has| (-692) (-306)))) (-2164 (((-1160 (-692)) $) NIL (|has| (-692) (-362)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 (-692) (-692)) $) NIL)) (-2160 (((-912) $) NIL (|has| (-692) (-367)))) (-4349 (($ $) NIL (|has| (-692) (-1190)))) (-3463 (((-1160 (-692)) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| (-692) (-362)))) (-3849 (($) NIL (|has| (-692) (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| (-692) (-367)))) (-1448 (($) NIL)) (-4051 (((-692) $) 31)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| (-692) (-306)))) (-3545 (($ (-635 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-692) (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-4139 (((-404 $) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-692) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| (-692) (-306)))) (-3865 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-692)) NIL (|has| (-692) (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-692) (-306)))) (-4350 (($ $) NIL (|has| (-692) (-1190)))) (-4174 (($ $ (-1166) (-692)) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-635 (-1166)) (-635 (-692))) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-635 (-292 (-692)))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-292 (-692))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-692) (-692)) NIL (|has| (-692) (-308 (-692)))) (($ $ (-635 (-692)) (-635 (-692))) NIL (|has| (-692) (-308 (-692))))) (-1732 (((-765) $) NIL (|has| (-692) (-306)))) (-4206 (($ $ (-692)) NIL (|has| (-692) (-285 (-692) (-692))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| (-692) (-306)))) (-4164 (((-692)) NIL) (((-692) (-1253 $)) NIL)) (-1915 (((-3 (-765) "failed") $ $) NIL (|has| (-692) (-349))) (((-765) $) NIL (|has| (-692) (-349)))) (-4217 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-2543 (((-682 (-692)) (-1253 $) (-1 (-692) (-692))) NIL (|has| (-692) (-362)))) (-3586 (((-1160 (-692))) NIL)) (-3894 (($ $) NIL (|has| (-692) (-1190)))) (-4043 (($ $) NIL (|has| (-692) (-1190)))) (-1818 (($) NIL (|has| (-692) (-349)))) (-3892 (($ $) NIL (|has| (-692) (-1190)))) (-4042 (($ $) NIL (|has| (-692) (-1190)))) (-3890 (($ $) NIL (|has| (-692) (-1190)))) (-4041 (($ $) NIL (|has| (-692) (-1190)))) (-3625 (((-682 (-692)) (-1253 $)) NIL) (((-1253 (-692)) $) NIL) (((-682 (-692)) (-1253 $) (-1253 $)) NIL) (((-1253 (-692)) $ (-1253 $)) NIL)) (-4377 (((-533) $) NIL (|has| (-692) (-609 (-533)))) (((-167 (-224)) $) NIL (|has| (-692) (-1013))) (((-167 (-377)) $) NIL (|has| (-692) (-1013))) (((-883 (-377)) $) NIL (|has| (-692) (-609 (-883 (-377))))) (((-883 (-544)) $) NIL (|has| (-692) (-609 (-883 (-544))))) (($ (-1160 (-692))) NIL) (((-1160 (-692)) $) NIL) (($ (-1253 (-692))) NIL) (((-1253 (-692)) $) NIL)) (-3392 (($ $) NIL)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-903))) (|has| (-692) (-349))))) (-1447 (($ (-692) (-692)) 12)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-544)) NIL) (($ (-692)) NIL) (($ (-167 (-377))) 13) (($ (-167 (-544))) 19) (($ (-167 (-692))) 28) (($ (-167 (-694))) 25) (((-167 (-377)) $) 33) (($ (-406 (-544))) NIL (-3936 (|has| (-692) (-362)) (|has| (-692) (-1031 (-406 (-544))))))) (-3084 (($ $) NIL (|has| (-692) (-349))) (((-3 $ #1#) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-903))) (|has| (-692) (-144))))) (-2743 (((-1160 (-692)) $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL)) (-3897 (($ $) NIL (|has| (-692) (-1190)))) (-3885 (($ $) NIL (|has| (-692) (-1190)))) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) NIL (|has| (-692) (-1190)))) (-3883 (($ $) NIL (|has| (-692) (-1190)))) (-3899 (($ $) NIL (|has| (-692) (-1190)))) (-3887 (($ $) NIL (|has| (-692) (-1190)))) (-2357 (((-692) $) NIL (|has| (-692) (-1190)))) (-3900 (($ $) NIL (|has| (-692) (-1190)))) (-3888 (($ $) NIL (|has| (-692) (-1190)))) (-3898 (($ $) NIL (|has| (-692) (-1190)))) (-3886 (($ $) NIL (|has| (-692) (-1190)))) (-3896 (($ $) NIL (|has| (-692) (-1190)))) (-3884 (($ $) NIL (|has| (-692) (-1190)))) (-3787 (($ $) NIL (|has| (-692) (-1051)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-692) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| (-692) (-1190))) (($ $ (-406 (-544))) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190)))) (($ $ (-544)) NIL (|has| (-692) (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ (-692) $) NIL) (($ $ (-692)) NIL) (($ (-406 (-544)) $) NIL (|has| (-692) (-362))) (($ $ (-406 (-544))) NIL (|has| (-692) (-362)))))
+(((-687) (-13 (-386) (-165 (-692)) (-10 -8 (-15 -4353 ($ (-167 (-377)))) (-15 -4353 ($ (-167 (-544)))) (-15 -4353 ($ (-167 (-692)))) (-15 -4353 ($ (-167 (-694)))) (-15 -4353 ((-167 (-377)) $))))) (T -687))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-544))) (-5 *1 (-687)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-692))) (-5 *1 (-687)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-694))) (-5 *1 (-687)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687)))))
+(-13 (-386) (-165 (-692)) (-10 -8 (-15 -4353 ($ (-167 (-377)))) (-15 -4353 ($ (-167 (-544)))) (-15 -4353 ($ (-167 (-692)))) (-15 -4353 ($ (-167 (-694)))) (-15 -4353 ((-167 (-377)) $))))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 62)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 61)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-688 |#1|) (-139) (-1091)) (T -688))
+((-4014 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1091)))) (-2498 (*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1091)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-688 *3)) (-4 *3 (-1091)) (-5 *2 (-635 (-2 (|:| -2226 *3) (|:| -2097 (-765))))))))
+(-13 (-234 |t#1|) (-10 -8 (-15 -4014 ($ |t#1| $ (-765))) (-15 -2498 ($ $)) (-15 -2497 ((-635 (-2 (|:| -2226 |t#1|) (|:| -2097 (-765)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2501 (((-635 |#1|) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) (-544)) 47)) (-2499 ((|#1| |#1| (-544)) 46)) (-3545 ((|#1| |#1| |#1| (-544)) 36)) (-4139 (((-635 |#1|) |#1| (-544)) 39)) (-2502 ((|#1| |#1| (-544) |#1| (-544)) 32)) (-2500 (((-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) |#1| (-544)) 45)))
+(((-689 |#1|) (-10 -7 (-15 -3545 (|#1| |#1| |#1| (-544))) (-15 -2499 (|#1| |#1| (-544))) (-15 -4139 ((-635 |#1|) |#1| (-544))) (-15 -2500 ((-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) |#1| (-544))) (-15 -2501 ((-635 |#1|) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) (-544))) (-15 -2502 (|#1| |#1| (-544) |#1| (-544)))) (-1229 (-544))) (T -689))
+((-2502 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| -4139 *5) (|:| -4355 (-544))))) (-5 *4 (-544)) (-4 *5 (-1229 *4)) (-5 *2 (-635 *5)) (-5 *1 (-689 *5)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -4355 *4)))) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-5 *2 (-635 *3)) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))) (-3545 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -3545 (|#1| |#1| |#1| (-544))) (-15 -2499 (|#1| |#1| (-544))) (-15 -4139 ((-635 |#1|) |#1| (-544))) (-15 -2500 ((-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) |#1| (-544))) (-15 -2501 ((-635 |#1|) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) (-544))) (-15 -2502 (|#1| |#1| (-544) |#1| (-544))))
+((-2506 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-2503 (((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 40) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 42) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined") (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 44)) (-2505 (((-1123 (-224)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-635 (-260))) NIL)) (-2504 (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1#) (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 45)))
+(((-690) (-10 -7 (-15 -2503 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined") (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2504 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1#) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2505 ((-1123 (-224)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2506 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -690))
+((-2506 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690)))) (-2505 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2504 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined")) (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2503 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-224))) (-5 *5 (-635 (-260))) (-5 *1 (-690)))) (-2503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-224))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2503 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) #1#)) (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))))
+(-10 -7 (-15 -2503 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined") (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2504 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1#) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2505 ((-1123 (-224)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2506 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
+((-4139 (((-404 (-1160 |#4|)) (-1160 |#4|)) 73) (((-404 |#4|) |#4|) 220)))
+(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|)))) (-844) (-787) (-349) (-943 |#3| |#2| |#1|)) (T -691))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4)))))
+(-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 84)) (-3514 (((-544) $) 30)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4177 (($ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-4131 (($) NIL T CONST)) (-3512 (($ $) NIL)) (-3558 (((-3 (-544) #1="failed") $) 73) (((-3 (-406 (-544)) #1#) $) 26) (((-3 (-377) #1#) $) 70)) (-3557 (((-544) $) 75) (((-406 (-544)) $) 67) (((-377) $) 68)) (-2943 (($ $ $) 96)) (-3866 (((-3 $ "failed") $) 87)) (-2942 (($ $ $) 95)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2509 (((-912)) 77) (((-912) (-912)) 76)) (-3587 (((-112) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL)) (-4178 (((-544) $) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3517 (($ $) NIL)) (-3588 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2507 (((-544) (-544)) 81) (((-544)) 82)) (-2913 (($ $ $) NIL) (($) NIL (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2508 (((-544) (-544)) 79) (((-544)) 80)) (-3242 (($ $ $) NIL) (($) NIL (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2510 (((-544) $) 16)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 91)) (-1917 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL)) (-3515 (($ $) NIL)) (-3655 (($ (-544) (-544)) NIL) (($ (-544) (-544) (-912)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) 92)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2536 (((-544) $) 22)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 94)) (-2993 (((-912)) NIL) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-1916 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-4377 (((-377) $) NIL) (((-224) $) NIL) (((-883 (-377)) $) NIL)) (-4353 (((-857) $) 52) (($ (-544)) 63) (($ $) NIL) (($ (-406 (-544))) 66) (($ (-544)) 63) (($ (-406 (-544))) 66) (($ (-377)) 60) (((-377) $) 50) (($ (-694)) 55)) (-3511 (((-765)) 103)) (-3330 (($ (-544) (-544) (-912)) 44)) (-3516 (($ $) NIL)) (-1918 (((-912)) NIL) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-3076 (((-912)) 35) (((-912) (-912)) 78)) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) 32 T CONST)) (-3046 (($) 17 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 83)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 101)) (-4356 (($ $ $) 65)) (-4244 (($ $) 99) (($ $ $) 100)) (-4246 (($ $ $) 98)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ $ (-406 (-544))) 90)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 97) (($ $ $) 88) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-692) (-13 (-403) (-386) (-362) (-1031 (-377)) (-1031 (-406 (-544))) (-146) (-10 -8 (-15 -2509 ((-912) (-912))) (-15 -2509 ((-912))) (-15 -3076 ((-912) (-912))) (-15 -2508 ((-544) (-544))) (-15 -2508 ((-544))) (-15 -2507 ((-544) (-544))) (-15 -2507 ((-544))) (-15 -4353 ((-377) $)) (-15 -4353 ($ (-694))) (-15 -2510 ((-544) $)) (-15 -2536 ((-544) $)) (-15 -3330 ($ (-544) (-544) (-912)))))) (T -692))
+((-2536 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2509 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) (-2508 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2508 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2507 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-377)) (-5 *1 (-692)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-692)))) (-3330 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-5 *1 (-692)))))
+(-13 (-403) (-386) (-362) (-1031 (-377)) (-1031 (-406 (-544))) (-146) (-10 -8 (-15 -2509 ((-912) (-912))) (-15 -2509 ((-912))) (-15 -3076 ((-912) (-912))) (-15 -2508 ((-544) (-544))) (-15 -2508 ((-544))) (-15 -2507 ((-544) (-544))) (-15 -2507 ((-544))) (-15 -4353 ((-377) $)) (-15 -4353 ($ (-694))) (-15 -2510 ((-544) $)) (-15 -2536 ((-544) $)) (-15 -3330 ($ (-544) (-544) (-912)))))
+((-2513 (((-682 |#1|) (-682 |#1|) |#1| |#1|) 65)) (-3495 (((-682 |#1|) (-682 |#1|) |#1|) 48)) (-2512 (((-682 |#1|) (-682 |#1|) |#1|) 66)) (-2511 (((-682 |#1|) (-682 |#1|)) 49)) (-2514 (((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|) 64)))
+(((-693 |#1|) (-10 -7 (-15 -2511 ((-682 |#1|) (-682 |#1|))) (-15 -3495 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2512 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2513 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|))) (-306)) (T -693))
+((-2514 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-693 *3)) (-4 *3 (-306)))) (-2513 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2512 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-3495 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2511 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(-10 -7 (-15 -2511 ((-682 |#1|) (-682 |#1|))) (-15 -3495 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2512 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2513 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) 27)) (-3557 (((-544) $) 25)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($ $) NIL) (($) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) NIL)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) NIL)) (-2913 (($ $ $) NIL)) (-2515 (((-912) (-912)) 10) (((-912)) 9)) (-3242 (($ $ $) NIL)) (-2194 (($ $) NIL)) (-4240 (($ $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2196 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL) (($ $ (-765)) NIL)) (-2195 (($ $) NIL)) (-3804 (($ $) NIL)) (-4377 (((-224) $) NIL) (((-377) $) NIL) (((-883 (-544)) $) NIL) (((-533) $) NIL) (((-544) $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) 24) (($ $) NIL) (($ (-544)) 24) (((-313 $) (-313 (-544))) 18)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) NIL)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL) (($ $ (-765)) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL)))
+(((-694) (-13 (-386) (-543) (-10 -8 (-15 -2515 ((-912) (-912))) (-15 -2515 ((-912))) (-15 -4353 ((-313 $) (-313 (-544))))))) (T -694))
+((-2515 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694)))) (-2515 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-313 (-544))) (-5 *2 (-313 (-694))) (-5 *1 (-694)))))
+(-13 (-386) (-543) (-10 -8 (-15 -2515 ((-912) (-912))) (-15 -2515 ((-912))) (-15 -4353 ((-313 $) (-313 (-544))))))
+((-2521 (((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)) 19)) (-2516 (((-1 |#4| |#2| |#3|) (-1166)) 12)))
+(((-695 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2516 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -2521 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)))) (-609 (-533)) (-1204) (-1204) (-1204)) (T -695))
+((-2521 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7)) (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7)) (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204)))))
+(-10 -7 (-15 -2516 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -2521 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166))))
+((-2947 (((-112) $ $) NIL)) (-1392 (((-1259) $ (-765)) 14)) (-3823 (((-765) $) 12)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 25)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 24)))
+(((-696 |#1|) (-13 (-131) (-488 |#1|)) (-1091)) (T -696))
NIL
(-13 (-131) (-488 |#1|))
-((-3731 (((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)) 34) (((-1 (-224) (-224)) |#1| (-1166)) 39)))
-(((-697 |#1|) (-10 -7 (-15 -3731 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -3731 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)))) (-609 (-534))) (T -697))
-((-3731 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-534))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-534))))))
-(-10 -7 (-15 -3731 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -3731 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166))))
-((-1411 (((-1166) |#1| (-1166) (-638 (-1166))) 9) (((-1166) |#1| (-1166) (-1166) (-1166)) 12) (((-1166) |#1| (-1166) (-1166)) 11) (((-1166) |#1| (-1166)) 10)))
-(((-698 |#1|) (-10 -7 (-15 -1411 ((-1166) |#1| (-1166))) (-15 -1411 ((-1166) |#1| (-1166) (-1166))) (-15 -1411 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -1411 ((-1166) |#1| (-1166) (-638 (-1166))))) (-609 (-534))) (T -698))
-((-1411 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))) (-1411 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))) (-1411 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))) (-1411 (*1 *2 *3 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))))
-(-10 -7 (-15 -1411 ((-1166) |#1| (-1166))) (-15 -1411 ((-1166) |#1| (-1166) (-1166))) (-15 -1411 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -1411 ((-1166) |#1| (-1166) (-638 (-1166)))))
-((-3669 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-699 |#1| |#2|) (-10 -7 (-15 -3669 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1205) (-1205)) (T -699))
-((-3669 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-699 *3 *4)) (-4 *3 (-1205)) (-4 *4 (-1205)))))
-(-10 -7 (-15 -3669 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2863 (((-1 |#3| |#2|) (-1166)) 11)) (-2150 (((-1 |#3| |#2|) |#1| (-1166)) 21)))
-(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -2863 ((-1 |#3| |#2|) (-1166))) (-15 -2150 ((-1 |#3| |#2|) |#1| (-1166)))) (-609 (-534)) (-1205) (-1205)) (T -700))
-((-2150 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6)) (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))))
-(-10 -7 (-15 -2863 ((-1 |#3| |#2|) (-1166))) (-15 -2150 ((-1 |#3| |#2|) |#1| (-1166))))
-((-2214 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#4|)) (-638 |#3|) (-638 |#4|) (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| |#4|)))) (-638 (-765)) (-1254 (-638 (-1162 |#3|))) |#3|) 61)) (-3417 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#3|)) (-638 |#3|) (-638 |#4|) (-638 (-765)) |#3|) 74)) (-3283 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 |#3|) (-638 (-765)) (-638 (-1162 |#4|)) (-1254 (-638 (-1162 |#3|))) |#3|) 34)))
-(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3283 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 |#3|) (-638 (-765)) (-638 (-1162 |#4|)) (-1254 (-638 (-1162 |#3|))) |#3|)) (-15 -3417 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#3|)) (-638 |#3|) (-638 |#4|) (-638 (-765)) |#3|)) (-15 -2214 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#4|)) (-638 |#3|) (-638 |#4|) (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| |#4|)))) (-638 (-765)) (-1254 (-638 (-1162 |#3|))) |#3|))) (-787) (-844) (-306) (-942 |#3| |#1| |#2|)) (T -701))
-((-2214 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-638 (-1162 *13))) (-5 *3 (-1162 *13)) (-5 *4 (-638 *12)) (-5 *5 (-638 *10)) (-5 *6 (-638 *13)) (-5 *7 (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| *13))))) (-5 *8 (-638 (-765))) (-5 *9 (-1254 (-638 (-1162 *10)))) (-4 *12 (-844)) (-4 *10 (-306)) (-4 *13 (-942 *10 *11 *12)) (-4 *11 (-787)) (-5 *1 (-701 *11 *12 *10 *13)))) (-3417 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-638 *11)) (-5 *5 (-638 (-1162 *9))) (-5 *6 (-638 *9)) (-5 *7 (-638 *12)) (-5 *8 (-638 (-765))) (-4 *11 (-844)) (-4 *9 (-306)) (-4 *12 (-942 *9 *10 *11)) (-4 *10 (-787)) (-5 *2 (-638 (-1162 *12))) (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1162 *12)))) (-3283 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-638 (-1162 *11))) (-5 *3 (-1162 *11)) (-5 *4 (-638 *10)) (-5 *5 (-638 *8)) (-5 *6 (-638 (-765))) (-5 *7 (-1254 (-638 (-1162 *8)))) (-4 *10 (-844)) (-4 *8 (-306)) (-4 *11 (-942 *8 *9 *10)) (-4 *9 (-787)) (-5 *1 (-701 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3283 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 |#3|) (-638 (-765)) (-638 (-1162 |#4|)) (-1254 (-638 (-1162 |#3|))) |#3|)) (-15 -3417 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#3|)) (-638 |#3|) (-638 |#4|) (-638 (-765)) |#3|)) (-15 -2214 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#4|)) (-638 |#3|) (-638 |#4|) (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| |#4|)))) (-638 (-765)) (-1254 (-638 (-1162 |#3|))) |#3|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1598 (($ $) 42)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1381 (($ |#1| (-765)) 40)) (-1522 (((-765) $) 44)) (-1572 ((|#1| $) 43)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3768 (((-765) $) 45)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-3932 ((|#1| $ (-765)) 41)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
+((-2517 (((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)) 34) (((-1 (-224) (-224)) |#1| (-1166)) 39)))
+(((-697 |#1|) (-10 -7 (-15 -2517 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -2517 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)))) (-609 (-533))) (T -697))
+((-2517 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-533))))) (-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-533))))))
+(-10 -7 (-15 -2517 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -2517 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166))))
+((-2518 (((-1166) |#1| (-1166) (-635 (-1166))) 9) (((-1166) |#1| (-1166) (-1166) (-1166)) 12) (((-1166) |#1| (-1166) (-1166)) 11) (((-1166) |#1| (-1166)) 10)))
+(((-698 |#1|) (-10 -7 (-15 -2518 ((-1166) |#1| (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-635 (-1166))))) (-609 (-533))) (T -698))
+((-2518 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) (-2518 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) (-2518 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) (-2518 (*1 *2 *3 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))))
+(-10 -7 (-15 -2518 ((-1166) |#1| (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-635 (-1166)))))
+((-2519 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-699 |#1| |#2|) (-10 -7 (-15 -2519 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1204) (-1204)) (T -699))
+((-2519 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-699 *3 *4)) (-4 *3 (-1204)) (-4 *4 (-1204)))))
+(-10 -7 (-15 -2519 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2520 (((-1 |#3| |#2|) (-1166)) 11)) (-2521 (((-1 |#3| |#2|) |#1| (-1166)) 21)))
+(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -2520 ((-1 |#3| |#2|) (-1166))) (-15 -2521 ((-1 |#3| |#2|) |#1| (-1166)))) (-609 (-533)) (-1204) (-1204)) (T -700))
+((-2521 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6)) (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)))))
+(-10 -7 (-15 -2520 ((-1 |#3| |#2|) (-1166))) (-15 -2521 ((-1 |#3| |#2|) |#1| (-1166))))
+((-2524 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#4|)))) (-635 (-765)) (-1253 (-635 (-1160 |#3|))) |#3|) 61)) (-2523 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-765)) |#3|) 74)) (-2522 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-765)) (-635 (-1160 |#4|)) (-1253 (-635 (-1160 |#3|))) |#3|) 34)))
+(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-765)) (-635 (-1160 |#4|)) (-1253 (-635 (-1160 |#3|))) |#3|)) (-15 -2523 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-765)) |#3|)) (-15 -2524 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#4|)))) (-635 (-765)) (-1253 (-635 (-1160 |#3|))) |#3|))) (-787) (-844) (-306) (-943 |#3| |#1| |#2|)) (T -701))
+((-2524 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-635 (-1160 *13))) (-5 *3 (-1160 *13)) (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13)) (-5 *7 (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *13))))) (-5 *8 (-635 (-765))) (-5 *9 (-1253 (-635 (-1160 *10)))) (-4 *12 (-844)) (-4 *10 (-306)) (-4 *13 (-943 *10 *11 *12)) (-4 *11 (-787)) (-5 *1 (-701 *11 *12 *10 *13)))) (-2523 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1160 *9))) (-5 *6 (-635 *9)) (-5 *7 (-635 *12)) (-5 *8 (-635 (-765))) (-4 *11 (-844)) (-4 *9 (-306)) (-4 *12 (-943 *9 *10 *11)) (-4 *10 (-787)) (-5 *2 (-635 (-1160 *12))) (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1160 *12)))) (-2522 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-635 (-1160 *11))) (-5 *3 (-1160 *11)) (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-765))) (-5 *7 (-1253 (-635 (-1160 *8)))) (-4 *10 (-844)) (-4 *8 (-306)) (-4 *11 (-943 *8 *9 *10)) (-4 *9 (-787)) (-5 *1 (-701 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2522 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-765)) (-635 (-1160 |#4|)) (-1253 (-635 (-1160 |#3|))) |#3|)) (-15 -2523 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-765)) |#3|)) (-15 -2524 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#4|)))) (-635 (-765)) (-1253 (-635 (-1160 |#3|))) |#3|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 42)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3276 (($ |#1| (-765)) 40)) (-3202 (((-765) $) 44)) (-3575 ((|#1| $) 43)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 (((-765) $) 45)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-4084 ((|#1| $ (-765)) 41)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
(((-702 |#1|) (-139) (-1042)) (T -702))
-((-3768 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-1598 (*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))))
-(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3768 ((-765) $)) (-15 -1522 ((-765) $)) (-15 -1572 (|t#1| $)) (-15 -1598 ($ $)) (-15 -3932 (|t#1| $ (-765))) (-15 -1381 ($ |t#1| (-765)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4165 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-703 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4165 (|#6| (-1 |#4| |#1|) |#3|))) (-553) (-1230 |#1|) (-1230 (-406 |#2|)) (-553) (-1230 |#4|) (-1230 (-406 |#5|))) (T -703))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-553)) (-4 *7 (-553)) (-4 *6 (-1230 *5)) (-4 *2 (-1230 (-406 *8))) (-5 *1 (-703 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1230 (-406 *6))) (-4 *8 (-1230 *7)))))
-(-10 -7 (-15 -4165 (|#6| (-1 |#4| |#1|) |#3|)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1809 (((-1148) (-856)) 31)) (-1479 (((-1259) (-1148)) 28)) (-4210 (((-1148) (-856)) 24)) (-1354 (((-1148) (-856)) 25)) (-4064 (((-856) $) NIL) (((-1148) (-856)) 23)) (-1723 (((-112) $ $) NIL)))
-(((-704) (-13 (-1090) (-10 -7 (-15 -4064 ((-1148) (-856))) (-15 -4210 ((-1148) (-856))) (-15 -1354 ((-1148) (-856))) (-15 -1809 ((-1148) (-856))) (-15 -1479 ((-1259) (-1148)))))) (T -704))
-((-4064 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-704)))))
-(-13 (-1090) (-10 -7 (-15 -4064 ((-1148) (-856))) (-15 -4210 ((-1148) (-856))) (-15 -1354 ((-1148) (-856))) (-15 -1809 ((-1148) (-856))) (-15 -1479 ((-1259) (-1148)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) NIL)) (-3176 (($ |#1| |#2|) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1448 ((|#2| $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2075 (((-3 $ "failed") $ $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) ((|#1| $) NIL)) (-3746 (((-765)) NIL)) (-3996 (((-112) $ $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-705 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -1448 (|#2| $)) (-15 -4064 (|#1| $)) (-15 -3176 ($ |#1| |#2|)) (-15 -2075 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -705))
-((-1448 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4064 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3176 (*1 *1 *2 *3) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2075 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-362) (-10 -8 (-15 -1448 (|#2| $)) (-15 -4064 (|#1| $)) (-15 -3176 ($ |#1| |#2|)) (-15 -2075 ((-3 $ "failed") $ $))))
-((-4053 (((-112) $ $) 77)) (-4306 (((-112) $) 30)) (-2811 (((-1254 |#1|) $ (-765)) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-1493 (($ (-1162 |#1|)) NIL)) (-1596 (((-1162 $) $ (-1072)) NIL) (((-1162 |#1|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3431 (($ $ $) NIL (|has| |#1| (-553)))) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1386 (((-765)) 46 (|has| |#1| (-367)))) (-2525 (($ $ (-765)) NIL)) (-2613 (($ $ (-765)) NIL)) (-2751 ((|#2| |#2|) 43)) (-2241 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1072) $) NIL)) (-2395 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) 33)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3176 (($ |#2|) 41)) (-3735 (((-3 $ "failed") $) 85)) (-1362 (($) 50 (|has| |#1| (-367)))) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-1666 (($ $ $) NIL)) (-3022 (($ $ $) NIL (|has| |#1| (-553)))) (-2566 (((-2 (|:| -4226 |#1|) (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3453 (((-951 $)) 79)) (-3227 (($ $ |#1| (-765) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4027 (((-765) $ $) NIL (|has| |#1| (-553)))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-1393 (($ (-1162 |#1|) (-1072)) NIL) (($ (-1162 $) (-1072)) NIL)) (-3508 (($ $ (-765)) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) 76) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-1072)) NIL) (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-1448 ((|#2|) 44)) (-1522 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-765) (-765)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1709 (((-1162 |#1|) $) NIL)) (-2830 (((-3 (-1072) "failed") $) NIL)) (-1335 (((-914) $) NIL (|has| |#1| (-367)))) (-3354 ((|#2| $) 40)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) 28)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-4311 (((-2 (|:| -2970 $) (|:| -1744 $)) $ (-765)) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-1072)) (|:| -4181 (-765))) "failed") $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3767 (($) NIL (|has| |#1| (-1141)) CONST)) (-2442 (($ (-914)) NIL (|has| |#1| (-367)))) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2027 (($ $) 78 (|has| |#1| (-348)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-638 (-1072)) (-638 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-553)))) (-3559 (((-3 $ "failed") $ (-765)) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 86 (|has| |#1| (-362)))) (-2753 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-3922 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3768 (((-765) $) 31) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-3006 (((-951 $)) 35)) (-2280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-553)))) (-4064 (((-856) $) 60) (($ (-561)) NIL) (($ |#1|) 57) (($ (-1072)) NIL) (($ |#2|) 67) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) 62) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) 20 T CONST)) (-2414 (((-1254 |#1|) $) 74)) (-3023 (($ (-1254 |#1|)) 49)) (-2257 (($) 8 T CONST)) (-3154 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1307 (((-1254 |#1|) $) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) 68)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) 71) (($ $ $) NIL)) (-1810 (($ $ $) 32)) (** (($ $ (-914)) NIL) (($ $ (-765)) 80)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 56) (($ $ $) 73) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-706 |#1| |#2|) (-13 (-1230 |#1|) (-611 |#2|) (-10 -8 (-15 -2751 (|#2| |#2|)) (-15 -1448 (|#2|)) (-15 -3176 ($ |#2|)) (-15 -3354 (|#2| $)) (-15 -2414 ((-1254 |#1|) $)) (-15 -3023 ($ (-1254 |#1|))) (-15 -1307 ((-1254 |#1|) $)) (-15 -3453 ((-951 $))) (-15 -3006 ((-951 $))) (IF (|has| |#1| (-348)) (-15 -2027 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1042) (-1230 |#1|)) (T -706))
-((-2751 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1230 *3)))) (-1448 (*1 *2) (-12 (-4 *2 (-1230 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-3176 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1230 *3)))) (-3354 (*1 *2 *1) (-12 (-4 *2 (-1230 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-2414 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1254 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1230 *3)))) (-3023 (*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1230 *3)))) (-1307 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1254 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1230 *3)))) (-3453 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1230 *3)))) (-3006 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1230 *3)))) (-2027 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3)) (-4 *3 (-1230 *2)))))
-(-13 (-1230 |#1|) (-611 |#2|) (-10 -8 (-15 -2751 (|#2| |#2|)) (-15 -1448 (|#2|)) (-15 -3176 ($ |#2|)) (-15 -3354 (|#2| $)) (-15 -2414 ((-1254 |#1|) $)) (-15 -3023 ($ (-1254 |#1|))) (-15 -1307 ((-1254 |#1|) $)) (-15 -3453 ((-951 $))) (-15 -3006 ((-951 $))) (IF (|has| |#1| (-348)) (-15 -2027 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 ((|#1| $) 13)) (-1701 (((-1110) $) NIL)) (-4181 ((|#2| $) 12)) (-4078 (($ |#1| |#2|) 16)) (-4064 (((-856) $) NIL) (($ (-2 (|:| -2442 |#1|) (|:| -4181 |#2|))) 15) (((-2 (|:| -2442 |#1|) (|:| -4181 |#2|)) $) 14)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 11)))
-(((-707 |#1| |#2| |#3|) (-13 (-844) (-488 (-2 (|:| -2442 |#1|) (|:| -4181 |#2|))) (-10 -8 (-15 -4181 (|#2| $)) (-15 -2442 (|#1| $)) (-15 -4078 ($ |#1| |#2|)))) (-844) (-1090) (-1 (-112) (-2 (|:| -2442 |#1|) (|:| -4181 |#2|)) (-2 (|:| -2442 |#1|) (|:| -4181 |#2|)))) (T -707))
-((-4181 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844)) (-14 *4 (-1 (-112) (-2 (|:| -2442 *3) (|:| -4181 *2)) (-2 (|:| -2442 *3) (|:| -4181 *2)))))) (-2442 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1090)) (-14 *4 (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *3)) (-2 (|:| -2442 *2) (|:| -4181 *3)))))) (-4078 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1090)) (-14 *4 (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *3)) (-2 (|:| -2442 *2) (|:| -4181 *3)))))))
-(-13 (-844) (-488 (-2 (|:| -2442 |#1|) (|:| -4181 |#2|))) (-10 -8 (-15 -4181 (|#2| $)) (-15 -2442 (|#1| $)) (-15 -4078 ($ |#1| |#2|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 59)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-3979 ((|#1| $) NIL) (((-114) $) 39)) (-3735 (((-3 $ "failed") $) 90)) (-3409 ((|#2| (-114) |#2|) 82)) (-2252 (((-112) $) NIL)) (-3894 (($ |#1| (-360 (-114))) 14)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2463 (($ $ (-1 |#2| |#2|)) 58)) (-3331 (($ $ (-1 |#2| |#2|)) 44)) (-2315 ((|#2| $ |#2|) 33)) (-3484 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-4064 (((-856) $) 66) (($ (-561)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) 37)) (-3380 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-2246 (($) 21 T CONST)) (-2257 (($) 9 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) 48) (($ $ $) NIL)) (-1810 (($ $ $) 73)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ (-114) (-561)) NIL) (($ $ (-561)) 57)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171)))))
-(((-708 |#1| |#2|) (-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3380 ($ $)) (-15 -3380 ($ $ $)) (-15 -3484 (|#1| |#1|))) |%noBranch|) (-15 -3331 ($ $ (-1 |#2| |#2|))) (-15 -2463 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -3409 (|#2| (-114) |#2|)) (-15 -3894 ($ |#1| (-360 (-114)))))) (-1042) (-641 |#1|)) (T -708))
-((-3380 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-3380 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-3484 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (-2463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *5)) (-4 *5 (-641 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)) (-4 *4 (-641 *3)))) (-3409 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2)) (-4 *2 (-641 *4)))) (-3894 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4)) (-4 *4 (-641 *2)))))
-(-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3380 ($ $)) (-15 -3380 ($ $ $)) (-15 -3484 (|#1| |#1|))) |%noBranch|) (-15 -3331 ($ $ (-1 |#2| |#2|))) (-15 -2463 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -3409 (|#2| (-114) |#2|)) (-15 -3894 ($ |#1| (-360 (-114))))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 33)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3176 (($ |#1| |#2|) 25)) (-3735 (((-3 $ "failed") $) 48)) (-2252 (((-112) $) 35)) (-1448 ((|#2| $) 12)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 49)) (-1701 (((-1110) $) NIL)) (-2075 (((-3 $ "failed") $ $) 47)) (-4064 (((-856) $) 24) (($ (-561)) 19) ((|#1| $) 13)) (-3746 (((-765)) 28)) (-2246 (($) 16 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 38)) (-1819 (($ $) 43) (($ $ $) 37)) (-1810 (($ $ $) 40)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 21) (($ $ $) 20)))
-(((-709 |#1| |#2| |#3| |#4| |#5|) (-13 (-1042) (-10 -8 (-15 -1448 (|#2| $)) (-15 -4064 (|#1| $)) (-15 -3176 ($ |#1| |#2|)) (-15 -2075 ((-3 $ "failed") $ $)) (-15 -3735 ((-3 $ "failed") $)) (-15 -1519 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -709))
-((-3735 (*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1448 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4064 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3176 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2075 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1519 (*1 *1 *1) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1042) (-10 -8 (-15 -1448 (|#2| $)) (-15 -4064 (|#1| $)) (-15 -3176 ($ |#1| |#2|)) (-15 -2075 ((-3 $ "failed") $ $)) (-15 -3735 ((-3 $ "failed") $)) (-15 -1519 ($ $))))
-((* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-710 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-711 |#2|) (-171)) (T -710))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-4355 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))))
+(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4355 ((-765) $)) (-15 -3202 ((-765) $)) (-15 -3575 (|t#1| $)) (-15 -4366 ($ $)) (-15 -4084 (|t#1| $ (-765))) (-15 -3276 ($ |t#1| (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-4365 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-703 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4365 (|#6| (-1 |#4| |#1|) |#3|))) (-554) (-1229 |#1|) (-1229 (-406 |#2|)) (-554) (-1229 |#4|) (-1229 (-406 |#5|))) (T -703))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) (-4 *6 (-1229 *5)) (-4 *2 (-1229 (-406 *8))) (-5 *1 (-703 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1229 (-406 *6))) (-4 *8 (-1229 *7)))))
+(-10 -7 (-15 -4365 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2525 (((-1148) (-857)) 31)) (-4024 (((-1259) (-1148)) 28)) (-2527 (((-1148) (-857)) 24)) (-2526 (((-1148) (-857)) 25)) (-4353 (((-857) $) NIL) (((-1148) (-857)) 23)) (-3437 (((-112) $ $) NIL)))
+(((-704) (-13 (-1091) (-10 -7 (-15 -4353 ((-1148) (-857))) (-15 -2527 ((-1148) (-857))) (-15 -2526 ((-1148) (-857))) (-15 -2525 ((-1148) (-857))) (-15 -4024 ((-1259) (-1148)))))) (T -704))
+((-4353 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-704)))))
+(-13 (-1091) (-10 -7 (-15 -4353 ((-1148) (-857))) (-15 -2527 ((-1148) (-857))) (-15 -2526 ((-1148) (-857))) (-15 -2525 ((-1148) (-857))) (-15 -4024 ((-1259) (-1148)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-4249 (($ |#1| |#2|) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 ((|#2| $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2537 (((-3 $ "failed") $ $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) ((|#1| $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-705 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -705))
+((-2992 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4353 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-362) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $))))
+((-2947 (((-112) $ $) 77)) (-3589 (((-112) $) 30)) (-4173 (((-1253 |#1|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#1|)) NIL)) (-3469 (((-1160 $) $ (-1072)) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) NIL (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3521 (((-765)) 46 (|has| |#1| (-367)))) (-4167 (($ $ (-765)) NIL)) (-4166 (($ $ (-765)) NIL)) (-2534 ((|#2| |#2|) 43)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1072) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 33)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-4249 (($ |#2|) 41)) (-3866 (((-3 $ "failed") $) 85)) (-3377 (($) 50 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4165 (($ $ $) NIL)) (-4160 (($ $ $) NIL (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-2530 (((-951 $)) 79)) (-1749 (($ $ |#1| (-765) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ $) NIL (|has| |#1| (-554)))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) NIL) (($ (-1160 $) (-1072)) NIL)) (-4183 (($ $ (-765)) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 76) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2992 ((|#2|) 44)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4172 (((-1160 |#1|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-3463 ((|#2| $) 40)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) 28)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) NIL)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2528 (($ $) 78 (|has| |#1| (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-635 (-1072)) (-635 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 86 (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4355 (((-765) $) 31) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-2529 (((-951 $)) 35)) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#1| (-554)))) (-4353 (((-857) $) 60) (($ (-544)) NIL) (($ |#1|) 57) (($ (-1072)) NIL) (($ |#2|) 67) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) 62) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 20 T CONST)) (-2533 (((-1253 |#1|) $) 74)) (-2532 (($ (-1253 |#1|)) 49)) (-3046 (($) 8 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2531 (((-1253 |#1|) $) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 68)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) 71) (($ $ $) NIL)) (-4246 (($ $ $) 32)) (** (($ $ (-912)) NIL) (($ $ (-765)) 80)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 56) (($ $ $) 73) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
+(((-706 |#1| |#2|) (-13 (-1229 |#1|) (-611 |#2|) (-10 -8 (-15 -2534 (|#2| |#2|)) (-15 -2992 (|#2|)) (-15 -4249 ($ |#2|)) (-15 -3463 (|#2| $)) (-15 -2533 ((-1253 |#1|) $)) (-15 -2532 ($ (-1253 |#1|))) (-15 -2531 ((-1253 |#1|) $)) (-15 -2530 ((-951 $))) (-15 -2529 ((-951 $))) (IF (|has| |#1| (-349)) (-15 -2528 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1042) (-1229 |#1|)) (T -706))
+((-2534 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))) (-2992 (*1 *2) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-4249 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))) (-3463 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-2533 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2531 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2530 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2529 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2528 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3)) (-4 *3 (-1229 *2)))))
+(-13 (-1229 |#1|) (-611 |#2|) (-10 -8 (-15 -2534 (|#2| |#2|)) (-15 -2992 (|#2|)) (-15 -4249 ($ |#2|)) (-15 -3463 (|#2| $)) (-15 -2533 ((-1253 |#1|) $)) (-15 -2532 ($ (-1253 |#1|))) (-15 -2531 ((-1253 |#1|) $)) (-15 -2530 ((-951 $))) (-15 -2529 ((-951 $))) (IF (|has| |#1| (-349)) (-15 -2528 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 ((|#1| $) 13)) (-3644 (((-1110) $) NIL)) (-2536 ((|#2| $) 12)) (-3929 (($ |#1| |#2|) 16)) (-4353 (((-857) $) NIL) (($ (-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) 15) (((-2 (|:| -2535 |#1|) (|:| -2536 |#2|)) $) 14)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 11)))
+(((-707 |#1| |#2| |#3|) (-13 (-844) (-488 (-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) (-10 -8 (-15 -2536 (|#2| $)) (-15 -2535 (|#1| $)) (-15 -3929 ($ |#1| |#2|)))) (-844) (-1091) (-1 (-112) (-2 (|:| -2535 |#1|) (|:| -2536 |#2|)) (-2 (|:| -2535 |#1|) (|:| -2536 |#2|)))) (T -707))
+((-2536 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844)) (-14 *4 (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *2)) (-2 (|:| -2535 *3) (|:| -2536 *2)))))) (-2535 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1091)) (-14 *4 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3)) (-2 (|:| -2535 *2) (|:| -2536 *3)))))) (-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1091)) (-14 *4 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3)) (-2 (|:| -2535 *2) (|:| -2536 *3)))))))
+(-13 (-844) (-488 (-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) (-10 -8 (-15 -2536 (|#2| $)) (-15 -2535 (|#1| $)) (-15 -3929 ($ |#1| |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 59)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3557 ((|#1| $) NIL) (((-113) $) 39)) (-3866 (((-3 $ "failed") $) 90)) (-2895 ((|#2| (-113) |#2|) 82)) (-2545 (((-112) $) NIL)) (-2894 (($ |#1| (-360 (-113))) 14)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2896 (($ $ (-1 |#2| |#2|)) 58)) (-2897 (($ $ (-1 |#2| |#2|)) 44)) (-4206 ((|#2| $ |#2|) 33)) (-2898 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-4353 (((-857) $) 66) (($ (-544)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 37)) (-2899 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-3040 (($) 21 T CONST)) (-3046 (($) 9 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) 48) (($ $ $) NIL)) (-4246 (($ $ $) 73)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ (-113) (-544)) NIL) (($ $ (-544)) 57)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171)))))
+(((-708 |#1| |#2|) (-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#2| |#2|))) (-15 -2896 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#2| (-113) |#2|)) (-15 -2894 ($ |#1| (-360 (-113)))))) (-1042) (-641 |#1|)) (T -708))
+((-2899 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2899 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2898 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *5)) (-4 *5 (-641 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)) (-4 *4 (-641 *3)))) (-2895 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2)) (-4 *2 (-641 *4)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-113))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4)) (-4 *4 (-641 *2)))))
+(-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#2| |#2|))) (-15 -2896 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#2| (-113) |#2|)) (-15 -2894 ($ |#1| (-360 (-113))))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 33)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ |#1| |#2|) 25)) (-3866 (((-3 $ "failed") $) 48)) (-2545 (((-112) $) 35)) (-2992 ((|#2| $) 12)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 49)) (-3644 (((-1110) $) NIL)) (-2537 (((-3 $ "failed") $ $) 47)) (-4353 (((-857) $) 24) (($ (-544)) 19) ((|#1| $) 13)) (-3511 (((-765)) 28)) (-3040 (($) 16 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 38)) (-4244 (($ $) 43) (($ $ $) 37)) (-4246 (($ $ $) 40)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 21) (($ $ $) 20)))
+(((-709 |#1| |#2| |#3| |#4| |#5|) (-13 (-1042) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -709))
+((-3866 (*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2992 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4353 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2779 (*1 *1 *1) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-1042) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $))))
+((* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-710 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-711 |#2|) (-171)) (T -710))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-711 |#1|) (-139) (-171)) (T -711))
NIL
(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-1048 |#1|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-3410 (($ |#1|) 17) (($ $ |#1|) 20)) (-2643 (($ |#1|) 18) (($ $ |#1|) 21)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2252 (((-112) $) NIL)) (-1833 (($ |#1| |#1| |#1| |#1|) 8)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 16)) (-1701 (((-1110) $) NIL)) (-1436 ((|#1| $ |#1|) 24) (((-827 |#1|) $ (-827 |#1|)) 32)) (-2076 (($ $ $) NIL)) (-3047 (($ $ $) NIL)) (-4064 (((-856) $) 39)) (-2257 (($) 9 T CONST)) (-1723 (((-112) $ $) 44)) (-1828 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ $ $) 14)))
-(((-712 |#1|) (-13 (-471) (-10 -8 (-15 -1833 ($ |#1| |#1| |#1| |#1|)) (-15 -3410 ($ |#1|)) (-15 -2643 ($ |#1|)) (-15 -3735 ($)) (-15 -3410 ($ $ |#1|)) (-15 -2643 ($ $ |#1|)) (-15 -3735 ($ $)) (-15 -1436 (|#1| $ |#1|)) (-15 -1436 ((-827 |#1|) $ (-827 |#1|))))) (-362)) (T -712))
-((-1833 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3410 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-2643 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3735 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-2643 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3735 (*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-1436 (*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-1436 (*1 *2 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3)))))
-(-13 (-471) (-10 -8 (-15 -1833 ($ |#1| |#1| |#1| |#1|)) (-15 -3410 ($ |#1|)) (-15 -2643 ($ |#1|)) (-15 -3735 ($)) (-15 -3410 ($ $ |#1|)) (-15 -2643 ($ $ |#1|)) (-15 -3735 ($ $)) (-15 -1436 (|#1| $ |#1|)) (-15 -1436 ((-827 |#1|) $ (-827 |#1|)))))
-((-3187 (($ $ (-914)) 12)) (-2143 (($ $ (-914)) 13)) (** (($ $ (-914)) 10)))
-(((-713 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-914))) (-15 -2143 (|#1| |#1| (-914))) (-15 -3187 (|#1| |#1| (-914)))) (-714)) (T -713))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-914))) (-15 -2143 (|#1| |#1| (-914))) (-15 -3187 (|#1| |#1| (-914))))
-((-4053 (((-112) $ $) 7)) (-3187 (($ $ (-914)) 15)) (-2143 (($ $ (-914)) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)) (** (($ $ (-914)) 13)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-1048 |#1|) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-2735 (($ |#1|) 17) (($ $ |#1|) 20)) (-4254 (($ |#1|) 18) (($ $ |#1|) 21)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2545 (((-112) $) NIL)) (-2538 (($ |#1| |#1| |#1| |#1|) 8)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 16)) (-3644 (((-1110) $) NIL)) (-4174 ((|#1| $ |#1|) 24) (((-826 |#1|) $ (-826 |#1|)) 32)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 39)) (-3046 (($) 9 T CONST)) (-3437 (((-112) $ $) 44)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ $ $) 14)))
+(((-712 |#1|) (-13 (-471) (-10 -8 (-15 -2538 ($ |#1| |#1| |#1| |#1|)) (-15 -2735 ($ |#1|)) (-15 -4254 ($ |#1|)) (-15 -3866 ($)) (-15 -2735 ($ $ |#1|)) (-15 -4254 ($ $ |#1|)) (-15 -3866 ($ $)) (-15 -4174 (|#1| $ |#1|)) (-15 -4174 ((-826 |#1|) $ (-826 |#1|))))) (-362)) (T -712))
+((-2538 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-2735 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4254 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3866 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4254 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3866 (*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4174 (*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4174 (*1 *2 *1 *2) (-12 (-5 *2 (-826 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3)))))
+(-13 (-471) (-10 -8 (-15 -2538 ($ |#1| |#1| |#1| |#1|)) (-15 -2735 ($ |#1|)) (-15 -4254 ($ |#1|)) (-15 -3866 ($)) (-15 -2735 ($ $ |#1|)) (-15 -4254 ($ $ |#1|)) (-15 -3866 ($ $)) (-15 -4174 (|#1| $ |#1|)) (-15 -4174 ((-826 |#1|) $ (-826 |#1|)))))
+((-2542 (($ $ (-912)) 12)) (-2541 (($ $ (-912)) 13)) (** (($ $ (-912)) 10)))
+(((-713 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912)))) (-714)) (T -713))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912))))
+((-2947 (((-112) $ $) 7)) (-2542 (($ $ (-912)) 15)) (-2541 (($ $ (-912)) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13)) (* (($ $ $) 16)))
(((-714) (-139)) (T -714))
-((* (*1 *1 *1 *1) (-4 *1 (-714))) (-3187 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914)))) (-2143 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914)))))
-(-13 (-1090) (-10 -8 (-15 * ($ $ $)) (-15 -3187 ($ $ (-914))) (-15 -2143 ($ $ (-914))) (-15 ** ($ $ (-914)))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-3187 (($ $ (-914)) NIL) (($ $ (-765)) 17)) (-2252 (((-112) $) 10)) (-2143 (($ $ (-914)) NIL) (($ $ (-765)) 18)) (** (($ $ (-914)) NIL) (($ $ (-765)) 15)))
-(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -2143 (|#1| |#1| (-765))) (-15 -3187 (|#1| |#1| (-765))) (-15 -2252 ((-112) |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 -2143 (|#1| |#1| (-914))) (-15 -3187 (|#1| |#1| (-914)))) (-716)) (T -715))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -2143 (|#1| |#1| (-765))) (-15 -3187 (|#1| |#1| (-765))) (-15 -2252 ((-112) |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 -2143 (|#1| |#1| (-914))) (-15 -3187 (|#1| |#1| (-914))))
-((-4053 (((-112) $ $) 7)) (-3884 (((-3 $ "failed") $) 17)) (-3187 (($ $ (-914)) 15) (($ $ (-765)) 22)) (-3735 (((-3 $ "failed") $) 19)) (-2252 (((-112) $) 23)) (-3408 (((-3 $ "failed") $) 18)) (-2143 (($ $ (-914)) 14) (($ $ (-765)) 21)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2257 (($) 24 T CONST)) (-1723 (((-112) $ $) 6)) (** (($ $ (-914)) 13) (($ $ (-765)) 20)) (* (($ $ $) 16)))
+((* (*1 *1 *1 *1) (-4 *1 (-714))) (-2542 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))))
+(-13 (-1091) (-10 -8 (-15 * ($ $ $)) (-15 -2542 ($ $ (-912))) (-15 -2541 ($ $ (-912))) (-15 ** ($ $ (-912)))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2542 (($ $ (-912)) NIL) (($ $ (-765)) 17)) (-2545 (((-112) $) 10)) (-2541 (($ $ (-912)) NIL) (($ $ (-765)) 18)) (** (($ $ (-912)) NIL) (($ $ (-765)) 15)))
+(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -2541 (|#1| |#1| (-765))) (-15 -2542 (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912)))) (-716)) (T -715))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -2541 (|#1| |#1| (-765))) (-15 -2542 (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912))))
+((-2947 (((-112) $ $) 7)) (-2539 (((-3 $ "failed") $) 17)) (-2542 (($ $ (-912)) 15) (($ $ (-765)) 22)) (-3866 (((-3 $ "failed") $) 19)) (-2545 (((-112) $) 23)) (-2540 (((-3 $ "failed") $) 18)) (-2541 (($ $ (-912)) 14) (($ $ (-765)) 21)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3046 (($) 24 T CONST)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13) (($ $ (-765)) 20)) (* (($ $ $) 16)))
(((-716) (-139)) (T -716))
-((-2257 (*1 *1) (-4 *1 (-716))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112)))) (-3187 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-2143 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-3735 (*1 *1 *1) (|partial| -4 *1 (-716))) (-3408 (*1 *1 *1) (|partial| -4 *1 (-716))) (-3884 (*1 *1 *1) (|partial| -4 *1 (-716))))
-(-13 (-714) (-10 -8 (-15 (-2257) ($) -1494) (-15 -2252 ((-112) $)) (-15 -3187 ($ $ (-765))) (-15 -2143 ($ $ (-765))) (-15 ** ($ $ (-765))) (-15 -3735 ((-3 $ "failed") $)) (-15 -3408 ((-3 $ "failed") $)) (-15 -3884 ((-3 $ "failed") $))))
-(((-102) . T) ((-608 (-856)) . T) ((-714) . T) ((-1090) . T))
-((-1386 (((-765)) 35)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3979 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 22)) (-3176 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-3735 (((-3 $ "failed") $) 65)) (-1362 (($) 39)) (-2072 ((|#2| $) 20)) (-3194 (($) 17)) (-3922 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3885 (((-682 |#2|) (-1254 $) (-1 |#2| |#2|)) 60)) (-4216 (((-1254 |#2|) $) NIL) (($ (-1254 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3934 ((|#3| $) 32)) (-2615 (((-1254 $)) 29)))
-(((-717 |#1| |#2| |#3|) (-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -1362 (|#1|)) (-15 -1386 ((-765))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3885 ((-682 |#2|) (-1254 |#1|) (-1 |#2| |#2|))) (-15 -3176 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4216 (|#1| |#3|)) (-15 -3176 (|#1| |#3|)) (-15 -3194 (|#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4216 (|#3| |#1|)) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -2615 ((-1254 |#1|))) (-15 -3934 (|#3| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|))) (-718 |#2| |#3|) (-171) (-1230 |#2|)) (T -717))
-((-1386 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-765)) (-5 *1 (-717 *3 *4 *5)) (-4 *3 (-718 *4 *5)))))
-(-10 -8 (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -1362 (|#1|)) (-15 -1386 ((-765))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3885 ((-682 |#2|) (-1254 |#1|) (-1 |#2| |#2|))) (-15 -3176 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4216 (|#1| |#3|)) (-15 -3176 (|#1| |#3|)) (-15 -3194 (|#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4216 (|#3| |#1|)) (-15 -4216 (|#1| (-1254 |#2|))) (-15 -4216 ((-1254 |#2|) |#1|)) (-15 -2615 ((-1254 |#1|))) (-15 -3934 (|#3| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -3735 ((-3 |#1| "failed") |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-3012 (($ $) 94 (|has| |#1| (-362)))) (-3163 (((-112) $) 96 (|has| |#1| (-362)))) (-3287 (((-682 |#1|) (-1254 $)) 47) (((-682 |#1|)) 62)) (-1736 ((|#1| $) 53)) (-1499 (((-1178 (-914) (-765)) (-561)) 146 (|has| |#1| (-348)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 113 (|has| |#1| (-362)))) (-3552 (((-417 $) $) 114 (|has| |#1| (-362)))) (-3698 (((-112) $ $) 104 (|has| |#1| (-362)))) (-1386 (((-765)) 87 (|has| |#1| (-367)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 169 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 167 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 164)) (-3979 (((-561) $) 168 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 166 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 165)) (-3376 (($ (-1254 |#1|) (-1254 $)) 49) (($ (-1254 |#1|)) 65)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1792 (($ $ $) 108 (|has| |#1| (-362)))) (-2405 (((-682 |#1|) $ (-1254 $)) 54) (((-682 |#1|) $) 60)) (-3720 (((-682 (-561)) (-682 $)) 163 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 162 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-3176 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-3735 (((-3 $ "failed") $) 33)) (-3400 (((-914)) 55)) (-1362 (($) 90 (|has| |#1| (-367)))) (-1771 (($ $ $) 107 (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 102 (|has| |#1| (-362)))) (-3985 (($) 148 (|has| |#1| (-348)))) (-3943 (((-112) $) 149 (|has| |#1| (-348)))) (-3598 (($ $ (-765)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2725 (((-112) $) 115 (|has| |#1| (-362)))) (-4027 (((-914) $) 151 (|has| |#1| (-348))) (((-827 (-914)) $) 137 (|has| |#1| (-348)))) (-2252 (((-112) $) 31)) (-2072 ((|#1| $) 52)) (-2436 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 111 (|has| |#1| (-362)))) (-1588 ((|#2| $) 45 (|has| |#1| (-362)))) (-1335 (((-914) $) 89 (|has| |#1| (-367)))) (-3354 ((|#2| $) 155)) (-1563 (($ (-638 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-1883 (((-1148) $) 9)) (-1519 (($ $) 116 (|has| |#1| (-362)))) (-3767 (($) 142 (|has| |#1| (-348)) CONST)) (-2442 (($ (-914)) 88 (|has| |#1| (-367)))) (-1701 (((-1110) $) 10)) (-3194 (($) 159)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 101 (|has| |#1| (-362)))) (-1603 (($ (-638 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) 145 (|has| |#1| (-348)))) (-1633 (((-417 $) $) 112 (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 109 (|has| |#1| (-362)))) (-1748 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 103 (|has| |#1| (-362)))) (-1905 (((-765) $) 105 (|has| |#1| (-362)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 106 (|has| |#1| (-362)))) (-2753 ((|#1| (-1254 $)) 48) ((|#1|) 61)) (-2768 (((-765) $) 150 (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-348)))) (-3922 (($ $) 136 (-4050 (-2198 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) 134 (-4050 (-2198 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) 132 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166))) 131 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 130 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-765))) 129 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-3885 (((-682 |#1|) (-1254 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3158 ((|#2|) 158)) (-2102 (($) 147 (|has| |#1| (-348)))) (-3752 (((-1254 |#1|) $ (-1254 $)) 51) (((-682 |#1|) (-1254 $) (-1254 $)) 50) (((-1254 |#1|) $) 67) (((-682 |#1|) (-1254 $)) 66)) (-4216 (((-1254 |#1|) $) 64) (($ (-1254 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 144 (|has| |#1| (-348)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-561))) 86 (-4050 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-3666 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3934 ((|#2| $) 46)) (-3746 (((-765)) 28)) (-2615 (((-1254 $)) 68)) (-3996 (((-112) $ $) 95 (|has| |#1| (-362)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $) 135 (-4050 (-2198 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) 133 (-4050 (-2198 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) 128 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166))) 127 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 126 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-765))) 125 (-2198 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 120 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 117 (|has| |#1| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-561)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-561))) 118 (|has| |#1| (-362)))))
-(((-718 |#1| |#2|) (-139) (-171) (-1230 |t#1|)) (T -718))
-((-3194 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1230 *2)))) (-3158 (*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1230 *3)))) (-3176 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1230 *3)))) (-4216 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1230 *3)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1230 *3)))) (-3176 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-718 *3 *4)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *3 (-1254 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1230 *5)) (-5 *2 (-682 *5)))))
-(-13 (-408 |t#1| |t#2|) (-171) (-609 |t#2|) (-410 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3194 ($)) (-15 -3158 (|t#2|)) (-15 -3176 ($ |t#2|)) (-15 -4216 ($ |t#2|)) (-15 -3354 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -3176 ((-3 $ "failed") (-406 |t#2|))) (-15 -3885 ((-682 |t#1|) (-1254 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-102) . T) ((-111 #0# #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4050 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) . T) ((-609 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -4050 (|has| |#1| (-348)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-289) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-306) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-362) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4050 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| |#2|) . T) ((-408 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-553) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-641 #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166)))) ((-913) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-348)) ((-1209) -4050 (|has| |#1| (-348)) (|has| |#1| (-362))))
-((-2674 (($) 11)) (-3735 (((-3 $ "failed") $) 13)) (-2252 (((-112) $) 10)) (** (($ $ (-914)) NIL) (($ $ (-765)) 18)))
-(((-719 |#1|) (-10 -8 (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -2252 ((-112) |#1|)) (-15 -2674 (|#1|)) (-15 ** (|#1| |#1| (-914)))) (-720)) (T -719))
-NIL
-(-10 -8 (-15 -3735 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -2252 ((-112) |#1|)) (-15 -2674 (|#1|)) (-15 ** (|#1| |#1| (-914))))
-((-4053 (((-112) $ $) 7)) (-2674 (($) 18 T CONST)) (-3735 (((-3 $ "failed") $) 15)) (-2252 (((-112) $) 17)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2257 (($) 19 T CONST)) (-1723 (((-112) $ $) 6)) (** (($ $ (-914)) 13) (($ $ (-765)) 16)) (* (($ $ $) 14)))
+((-3046 (*1 *1) (-4 *1 (-716))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112)))) (-2542 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-3866 (*1 *1 *1) (|partial| -4 *1 (-716))) (-2540 (*1 *1 *1) (|partial| -4 *1 (-716))) (-2539 (*1 *1 *1) (|partial| -4 *1 (-716))))
+(-13 (-714) (-10 -8 (-15 (-3046) ($) -4359) (-15 -2545 ((-112) $)) (-15 -2542 ($ $ (-765))) (-15 -2541 ($ $ (-765))) (-15 ** ($ $ (-765))) (-15 -3866 ((-3 $ "failed") $)) (-15 -2540 ((-3 $ "failed") $)) (-15 -2539 ((-3 $ "failed") $))))
+(((-102) . T) ((-608 (-857)) . T) ((-714) . T) ((-1091) . T))
+((-3521 (((-765)) 35)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 22)) (-4249 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-3866 (((-3 $ "failed") $) 65)) (-3377 (($) 39)) (-3517 ((|#2| $) 20)) (-2544 (($) 17)) (-4217 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-2543 (((-682 |#2|) (-1253 $) (-1 |#2| |#2|)) 60)) (-4377 (((-1253 |#2|) $) NIL) (($ (-1253 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2743 ((|#3| $) 32)) (-2162 (((-1253 $)) 29)))
+(((-717 |#1| |#2| |#3|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3377 (|#1|)) (-15 -3521 ((-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -2543 ((-682 |#2|) (-1253 |#1|) (-1 |#2| |#2|))) (-15 -4249 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4377 (|#1| |#3|)) (-15 -4249 (|#1| |#3|)) (-15 -2544 (|#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 (|#3| |#1|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -2162 ((-1253 |#1|))) (-15 -2743 (|#3| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|))) (-718 |#2| |#3|) (-171) (-1229 |#2|)) (T -717))
+((-3521 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-765)) (-5 *1 (-717 *3 *4 *5)) (-4 *3 (-718 *4 *5)))))
+(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3377 (|#1|)) (-15 -3521 ((-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -2543 ((-682 |#2|) (-1253 |#1|) (-1 |#2| |#2|))) (-15 -4249 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4377 (|#1| |#3|)) (-15 -4249 (|#1| |#3|)) (-15 -2544 (|#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 (|#3| |#1|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -2162 ((-1253 |#1|))) (-15 -2743 (|#3| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-2213 (($ $) 94 (|has| |#1| (-362)))) (-2211 (((-112) $) 96 (|has| |#1| (-362)))) (-1929 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-3734 ((|#1| $) 53)) (-1819 (((-1177 (-912) (-765)) (-544)) 146 (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 113 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 114 (|has| |#1| (-362)))) (-1733 (((-112) $ $) 104 (|has| |#1| (-362)))) (-3521 (((-765)) 87 (|has| |#1| (-367)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 169 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 167 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 164)) (-3557 (((-544) $) 168 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 166 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 165)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-2943 (($ $ $) 108 (|has| |#1| (-362)))) (-1928 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-2401 (((-682 (-544)) (-682 $)) 163 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 162 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-4249 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-912)) 55)) (-3377 (($) 90 (|has| |#1| (-367)))) (-2942 (($ $ $) 107 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 102 (|has| |#1| (-362)))) (-3215 (($) 148 (|has| |#1| (-349)))) (-1824 (((-112) $) 149 (|has| |#1| (-349)))) (-1914 (($ $ (-765)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4130 (((-112) $) 115 (|has| |#1| (-362)))) (-4178 (((-912) $) 151 (|has| |#1| (-349))) (((-826 (-912)) $) 137 (|has| |#1| (-349)))) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 52)) (-3848 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 111 (|has| |#1| (-362)))) (-2164 ((|#2| $) 45 (|has| |#1| (-362)))) (-2160 (((-912) $) 89 (|has| |#1| (-367)))) (-3463 ((|#2| $) 155)) (-2041 (($ (-635 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 116 (|has| |#1| (-362)))) (-3849 (($) 142 (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) 88 (|has| |#1| (-367)))) (-3644 (((-1110) $) 10)) (-2544 (($) 159)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 101 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 145 (|has| |#1| (-349)))) (-4139 (((-404 $) $) 112 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 109 (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-362)))) (-1732 (((-765) $) 105 (|has| |#1| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106 (|has| |#1| (-362)))) (-4164 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-1915 (((-765) $) 150 (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-349)))) (-4217 (($ $) 136 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) 134 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) 132 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166))) 131 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 130 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-765))) 129 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3586 ((|#2|) 158)) (-1818 (($) 147 (|has| |#1| (-349)))) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4377 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 144 (|has| |#1| (-349)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-544))) 86 (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2743 ((|#2| $) 46)) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 68)) (-2212 (((-112) $ $) 95 (|has| |#1| (-362)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 135 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) 133 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) 128 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166))) 127 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 126 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-765))) 125 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 120 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 117 (|has| |#1| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-544)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-544))) 118 (|has| |#1| (-362)))))
+(((-718 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -718))
+((-2544 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1229 *2)))) (-3586 (*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-4249 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) (-4377 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-4249 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-718 *3 *4)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *5)))))
+(-13 (-409 |t#1| |t#2|) (-171) (-609 |t#2|) (-411 |t#1|) (-376 |t#1|) (-10 -8 (-15 -2544 ($)) (-15 -3586 (|t#2|)) (-15 -4249 ($ |t#2|)) (-15 -4377 ($ |t#2|)) (-15 -3463 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -4249 ((-3 $ "failed") (-406 |t#2|))) (-15 -2543 ((-682 |t#1|) (-1253 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-349)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-349)) (|has| |#1| (-362))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) . T) ((-609 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -3936 (|has| |#1| (-349)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-289) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-306) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-362) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-401) |has| |#1| (-349)) ((-367) -3936 (|has| |#1| (-349)) (|has| |#1| (-367))) ((-349) |has| |#1| (-349)) ((-369 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-554) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-641 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166)))) ((-914) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-349)) ((-1209) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))))
+((-4131 (($) 11)) (-3866 (((-3 $ "failed") $) 13)) (-2545 (((-112) $) 10)) (** (($ $ (-912)) NIL) (($ $ (-765)) 18)))
+(((-719 |#1|) (-10 -8 (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 ** (|#1| |#1| (-912)))) (-720)) (T -719))
+NIL
+(-10 -8 (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 ** (|#1| |#1| (-912))))
+((-2947 (((-112) $ $) 7)) (-4131 (($) 18 T CONST)) (-3866 (((-3 $ "failed") $) 15)) (-2545 (((-112) $) 17)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3046 (($) 19 T CONST)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13) (($ $ (-765)) 16)) (* (($ $ $) 14)))
(((-720) (-139)) (T -720))
-((-2257 (*1 *1) (-4 *1 (-720))) (-2674 (*1 *1) (-4 *1 (-720))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765)))) (-3735 (*1 *1 *1) (|partial| -4 *1 (-720))))
-(-13 (-1102) (-10 -8 (-15 (-2257) ($) -1494) (-15 -2674 ($) -1494) (-15 -2252 ((-112) $)) (-15 ** ($ $ (-765))) (-15 -3735 ((-3 $ "failed") $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1102) . T) ((-1090) . T))
-((-3504 (((-2 (|:| -2430 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2230 (((-2 (|:| -2430 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2896 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-4261 (((-2 (|:| |poly| |#2|) (|:| -2430 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47)))
-(((-721 |#1| |#2|) (-10 -7 (-15 -2230 ((-2 (|:| -2430 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3504 ((-2 (|:| -2430 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2896 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -4261 ((-2 (|:| |poly| |#2|) (|:| -2430 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1230 |#1|)) (T -721))
-((-4261 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2430 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1230 *5)) (-5 *1 (-721 *5 *2)) (-4 *5 (-362)))) (-3504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2430 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-721 *5 *3)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2430 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3)))))
-(-10 -7 (-15 -2230 ((-2 (|:| -2430 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3504 ((-2 (|:| -2430 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2896 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -4261 ((-2 (|:| |poly| |#2|) (|:| -2430 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|))))
-((-4172 ((|#7| (-638 |#5|) |#6|) NIL)) (-4165 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-722 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4165 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4172 (|#7| (-638 |#5|) |#6|))) (-844) (-787) (-787) (-1042) (-1042) (-942 |#4| |#2| |#1|) (-942 |#5| |#3| |#1|)) (T -722))
-((-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-1042)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-942 *8 *6 *5)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-942 *8 *6 *5)))))
-(-10 -7 (-15 -4165 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4172 (|#7| (-638 |#5|) |#6|)))
-((-4165 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-723 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4165 (|#7| (-1 |#2| |#1|) |#6|))) (-844) (-844) (-787) (-787) (-1042) (-942 |#5| |#3| |#1|) (-942 |#5| |#4| |#2|)) (T -723))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-4 *7 (-787)) (-4 *9 (-1042)) (-4 *2 (-942 *9 *8 *6)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-787)) (-4 *4 (-942 *9 *7 *5)))))
-(-10 -7 (-15 -4165 (|#7| (-1 |#2| |#1|) |#6|)))
-((-1633 (((-417 |#4|) |#4|) 41)))
-(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1633 ((-417 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166))))) (-306) (-942 (-945 |#3|) |#1| |#2|)) (T -724))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166)))))) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-942 (-945 *6) *4 *5)))))
-(-10 -7 (-15 -1633 ((-417 |#4|) |#4|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-858 |#1|)) $) NIL)) (-1596 (((-1162 $) $ (-858 |#1|)) NIL) (((-1162 |#2|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-3012 (($ $) NIL (|has| |#2| (-553)))) (-3163 (((-112) $) NIL (|has| |#2| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2557 (($ $) NIL (|has| |#2| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3979 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-2395 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-902)))) (-3227 (($ $ |#2| (-529 (-858 |#1|)) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1393 (($ (-1162 |#2|) (-858 |#1|)) NIL) (($ (-1162 $) (-858 |#1|)) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#2| (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-858 |#1|)) NIL)) (-1522 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-1597 (($ $ $) NIL (|has| |#2| (-844)))) (-3017 (($ $ $) NIL (|has| |#2| (-844)))) (-1368 (($ (-1 (-529 (-858 |#1|)) (-529 (-858 |#1|))) $) NIL)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-2830 (((-3 (-858 |#1|) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#2| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1883 (((-1148) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4181 (-765))) "failed") $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#2| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-638 (-858 |#1|)) (-638 $)) NIL)) (-2753 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3922 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3768 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-2125 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ $) NIL (|has| |#2| (-553))) (($ (-406 (-561))) NIL (-4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))))) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-725 |#1| |#2|) (-942 |#2| (-529 (-858 |#1|)) (-858 |#1|)) (-638 (-1166)) (-1042)) (T -725))
-NIL
-(-942 |#2| (-529 (-858 |#1|)) (-858 |#1|))
-((-2723 (((-2 (|:| -1403 (-945 |#3|)) (|:| -3815 (-945 |#3|))) |#4|) 14)) (-3423 ((|#4| |#4| |#2|) 33)) (-3285 ((|#4| (-406 (-945 |#3|)) |#2|) 64)) (-3221 ((|#4| (-1162 (-945 |#3|)) |#2|) 77)) (-3207 ((|#4| (-1162 |#4|) |#2|) 51)) (-4145 ((|#4| |#4| |#2|) 54)) (-1633 (((-417 |#4|) |#4|) 40)))
-(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2723 ((-2 (|:| -1403 (-945 |#3|)) (|:| -3815 (-945 |#3|))) |#4|)) (-15 -4145 (|#4| |#4| |#2|)) (-15 -3207 (|#4| (-1162 |#4|) |#2|)) (-15 -3423 (|#4| |#4| |#2|)) (-15 -3221 (|#4| (-1162 (-945 |#3|)) |#2|)) (-15 -3285 (|#4| (-406 (-945 |#3|)) |#2|)) (-15 -1633 ((-417 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)))) (-553) (-942 (-406 (-945 |#3|)) |#1| |#2|)) (T -726))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *6 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-942 (-406 (-945 *6)) *4 *5)))) (-3285 (*1 *2 *3 *4) (-12 (-4 *6 (-553)) (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-5 *3 (-406 (-945 *6))) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 (-945 *6))) (-4 *6 (-553)) (-4 *2 (-942 (-406 (-945 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))))) (-3423 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *5 (-553)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *2)) (-4 *2 (-942 (-406 (-945 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *6 (-553)))) (-4145 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *5 (-553)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3)))) (-2723 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *6 (-553)) (-5 *2 (-2 (|:| -1403 (-945 *6)) (|:| -3815 (-945 *6)))) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-942 (-406 (-945 *6)) *4 *5)))))
-(-10 -7 (-15 -2723 ((-2 (|:| -1403 (-945 |#3|)) (|:| -3815 (-945 |#3|))) |#4|)) (-15 -4145 (|#4| |#4| |#2|)) (-15 -3207 (|#4| (-1162 |#4|) |#2|)) (-15 -3423 (|#4| |#4| |#2|)) (-15 -3221 (|#4| (-1162 (-945 |#3|)) |#2|)) (-15 -3285 (|#4| (-406 (-945 |#3|)) |#2|)) (-15 -1633 ((-417 |#4|) |#4|)))
-((-1633 (((-417 |#4|) |#4|) 52)))
-(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1633 ((-417 |#4|) |#4|))) (-787) (-844) (-13 (-306) (-146)) (-942 (-406 |#3|) |#1| |#2|)) (T -727))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-942 (-406 *6) *4 *5)))))
-(-10 -7 (-15 -1633 ((-417 |#4|) |#4|)))
-((-4165 (((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)) 18)))
-(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -4165 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)))) (-1042) (-1042) (-720)) (T -728))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *7 (-720)) (-5 *2 (-729 *6 *7)) (-5 *1 (-728 *5 *6 *7)))))
-(-10 -7 (-15 -4165 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 28)) (-4228 (((-638 (-2 (|:| -4226 |#1|) (|:| -3077 |#2|))) $) 29)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1386 (((-765)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3979 ((|#2| $) NIL) ((|#1| $) NIL)) (-1598 (($ $) 79 (|has| |#2| (-844)))) (-3735 (((-3 $ "failed") $) 65)) (-1362 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) 55)) (-1859 (((-638 $) $) 39)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| |#2|) 16)) (-4165 (($ (-1 |#1| |#1|) $) 54)) (-1335 (((-914) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1557 ((|#2| $) 78 (|has| |#2| (-844)))) (-1572 ((|#1| $) 77 (|has| |#2| (-844)))) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 76) (($ (-561)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-638 (-2 (|:| -4226 |#1|) (|:| -3077 |#2|)))) 11)) (-1868 (((-638 |#1|) $) 41)) (-3932 ((|#1| $ |#2|) 87)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2246 (($) 12 T CONST)) (-2257 (($) 33 T CONST)) (-1723 (((-112) $ $) 80)) (-1819 (($ $) 47) (($ $ $) NIL)) (-1810 (($ $ $) 26)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-729 |#1| |#2|) (-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -1381 ($ |#1| |#2|)) (-15 -3932 (|#1| $ |#2|)) (-15 -4064 ($ (-638 (-2 (|:| -4226 |#1|) (|:| -3077 |#2|))))) (-15 -4228 ((-638 (-2 (|:| -4226 |#1|) (|:| -3077 |#2|))) $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (-15 -1750 ((-112) $)) (-15 -1868 ((-638 |#1|) $)) (-15 -1859 ((-638 $) $)) (-15 -2044 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -1557 (|#2| $)) (-15 -1572 (|#1| $)) (-15 -1598 ($ $))) |%noBranch|))) (-1042) (-720)) (T -729))
-((-1381 (*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720)))) (-3932 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -4226 *3) (|:| -3077 *4)))) (-4 *3 (-1042)) (-4 *4 (-720)) (-5 *1 (-729 *3 *4)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -4226 *3) (|:| -3077 *4)))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4)) (-4 *4 (-720)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-638 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-1557 (*1 *2 *1) (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2)) (-4 *3 (-1042)))) (-1572 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *3 (-720)))) (-1598 (*1 *1 *1) (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042)) (-4 *3 (-720)))))
-(-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -1381 ($ |#1| |#2|)) (-15 -3932 (|#1| $ |#2|)) (-15 -4064 ($ (-638 (-2 (|:| -4226 |#1|) (|:| -3077 |#2|))))) (-15 -4228 ((-638 (-2 (|:| -4226 |#1|) (|:| -3077 |#2|))) $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (-15 -1750 ((-112) $)) (-15 -1868 ((-638 |#1|) $)) (-15 -1859 ((-638 $) $)) (-15 -2044 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -1557 (|#2| $)) (-15 -1572 (|#1| $)) (-15 -1598 ($ $))) |%noBranch|)))
-((-4053 (((-112) $ $) 19)) (-2468 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2327 (($ $ $) 72)) (-3856 (((-112) $ $) 73)) (-2684 (((-112) $ (-765)) 8)) (-1605 (($ (-638 |#1|)) 68) (($) 67)) (-1954 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-3299 (($ $) 62)) (-1461 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ |#1| $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3713 (((-112) $ $) 64)) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22)) (-1338 (($ $ $) 69)) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-1701 (((-1110) $) 21)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2341 (((-638 (-2 (|:| -2677 |#1|) (|:| -1714 (-765)))) $) 61)) (-1533 (($ $ |#1|) 71) (($ $ $) 70)) (-3643 (($) 49) (($ (-638 |#1|)) 48)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 50)) (-4064 (((-856) $) 18)) (-1697 (($ (-638 |#1|)) 66) (($) 65)) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20)) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-730 |#1|) (-139) (-1090)) (T -730))
-NIL
-(-13 (-688 |t#1|) (-1088 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-688 |#1|) . T) ((-1088 |#1|) . T) ((-1090) . T) ((-1205) . T))
-((-4053 (((-112) $ $) NIL)) (-2468 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2327 (($ $ $) 79)) (-3856 (((-112) $ $) 83)) (-2684 (((-112) $ (-765)) NIL)) (-1605 (($ (-638 |#1|)) 24) (($) 16)) (-1954 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-3299 (($ $) 71)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) 61 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 65 (|has| $ (-6 -4399))) (($ |#1| $ (-561)) 63) (($ (-1 (-112) |#1|) $ (-561)) 66)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (($ |#1| $ (-561)) 68) (($ (-1 (-112) |#1|) $ (-561)) 69)) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 32 (|has| $ (-6 -4399)))) (-3713 (((-112) $ $) 82)) (-2427 (($) 14) (($ |#1|) 26) (($ (-638 |#1|)) 21)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) 38)) (-4288 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 75)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1338 (($ $ $) 77)) (-3721 ((|#1| $) 55)) (-1617 (($ |#1| $) 56) (($ |#1| $ (-765)) 72)) (-1701 (((-1110) $) NIL)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1387 ((|#1| $) 54)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 50)) (-2910 (($) 13)) (-2341 (((-638 (-2 (|:| -2677 |#1|) (|:| -1714 (-765)))) $) 48)) (-1533 (($ $ |#1|) NIL) (($ $ $) 78)) (-3643 (($) 15) (($ (-638 |#1|)) 23)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) 60 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 67)) (-4216 (((-534) $) 36 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 20)) (-4064 (((-856) $) 44)) (-1697 (($ (-638 |#1|)) 25) (($) 17)) (-1903 (($ (-638 |#1|)) 22)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 81)) (-3548 (((-765) $) 59 (|has| $ (-6 -4399)))))
-(((-731 |#1|) (-13 (-730 |#1|) (-10 -8 (-6 -4399) (-6 -4400) (-15 -2427 ($)) (-15 -2427 ($ |#1|)) (-15 -2427 ($ (-638 |#1|))) (-15 -4125 ((-638 |#1|) $)) (-15 -1475 ($ |#1| $ (-561))) (-15 -1475 ($ (-1 (-112) |#1|) $ (-561))) (-15 -3222 ($ |#1| $ (-561))) (-15 -3222 ($ (-1 (-112) |#1|) $ (-561))))) (-1090)) (T -731))
-((-2427 (*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-2427 (*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-731 *3)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-731 *3)) (-4 *3 (-1090)))) (-1475 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-1475 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090)) (-5 *1 (-731 *4)))) (-3222 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-3222 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090)) (-5 *1 (-731 *4)))))
-(-13 (-730 |#1|) (-10 -8 (-6 -4399) (-6 -4400) (-15 -2427 ($)) (-15 -2427 ($ |#1|)) (-15 -2427 ($ (-638 |#1|))) (-15 -4125 ((-638 |#1|) $)) (-15 -1475 ($ |#1| $ (-561))) (-15 -1475 ($ (-1 (-112) |#1|) $ (-561))) (-15 -3222 ($ |#1| $ (-561))) (-15 -3222 ($ (-1 (-112) |#1|) $ (-561)))))
-((-2399 (((-1259) (-1148)) 8)))
-(((-732) (-10 -7 (-15 -2399 ((-1259) (-1148))))) (T -732))
-((-2399 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-732)))))
-(-10 -7 (-15 -2399 ((-1259) (-1148))))
-((-2788 (((-638 |#1|) (-638 |#1|) (-638 |#1|)) 10)))
-(((-733 |#1|) (-10 -7 (-15 -2788 ((-638 |#1|) (-638 |#1|) (-638 |#1|)))) (-844)) (T -733))
-((-2788 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3)))))
-(-10 -7 (-15 -2788 ((-638 |#1|) (-638 |#1|) (-638 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 |#2|) $) 139)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 132 (|has| |#1| (-553)))) (-3012 (($ $) 131 (|has| |#1| (-553)))) (-3163 (((-112) $) 129 (|has| |#1| (-553)))) (-3014 (($ $) 88 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 71 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) 19)) (-1643 (($ $) 70 (|has| |#1| (-38 (-406 (-561)))))) (-4213 (($ $) 87 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 72 (|has| |#1| (-38 (-406 (-561)))))) (-3039 (($ $) 86 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 73 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) 17 T CONST)) (-1598 (($ $) 123)) (-3735 (((-3 $ "failed") $) 33)) (-2001 (((-945 |#1|) $ (-765)) 101) (((-945 |#1|) $ (-765) (-765)) 100)) (-4372 (((-112) $) 140)) (-4111 (($) 98 (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-765) $ |#2|) 103) (((-765) $ |#2| (-765)) 102)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 69 (|has| |#1| (-38 (-406 (-561)))))) (-1750 (((-112) $) 121)) (-1381 (($ $ (-638 |#2|) (-638 (-529 |#2|))) 138) (($ $ |#2| (-529 |#2|)) 137) (($ |#1| (-529 |#2|)) 122) (($ $ |#2| (-765)) 105) (($ $ (-638 |#2|) (-638 (-765))) 104)) (-4165 (($ (-1 |#1| |#1|) $) 120)) (-4364 (($ $) 95 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) 118)) (-1572 ((|#1| $) 117)) (-1883 (((-1148) $) 9)) (-2563 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) 10)) (-3702 (($ $ (-765)) 106)) (-1748 (((-3 $ "failed") $ $) 133 (|has| |#1| (-553)))) (-3486 (($ $) 96 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (($ $ |#2| $) 114) (($ $ (-638 |#2|) (-638 $)) 113) (($ $ (-638 (-293 $))) 112) (($ $ (-293 $)) 111) (($ $ $ $) 110) (($ $ (-638 $) (-638 $)) 109)) (-3922 (($ $ |#2|) 42) (($ $ (-638 |#2|)) 41) (($ $ |#2| (-765)) 40) (($ $ (-638 |#2|) (-638 (-765))) 39)) (-3768 (((-529 |#2|) $) 119)) (-3052 (($ $) 85 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 74 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 84 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 75 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 83 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 76 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 141)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-553))) (($ (-406 (-561))) 126 (|has| |#1| (-38 (-406 (-561)))))) (-3932 ((|#1| $ (-529 |#2|)) 124) (($ $ |#2| (-765)) 108) (($ $ (-638 |#2|) (-638 (-765))) 107)) (-3666 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-3086 (($ $) 94 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 82 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) 130 (|has| |#1| (-553)))) (-3064 (($ $) 93 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 81 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 92 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 80 (|has| |#1| (-38 (-406 (-561)))))) (-2821 (($ $) 91 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 79 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 90 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 78 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 89 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 77 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ |#2|) 38) (($ $ (-638 |#2|)) 37) (($ $ |#2| (-765)) 36) (($ $ (-638 |#2|) (-638 (-765))) 35)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 68 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 128 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 127 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
+((-3046 (*1 *1) (-4 *1 (-720))) (-4131 (*1 *1) (-4 *1 (-720))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765)))) (-3866 (*1 *1 *1) (|partial| -4 *1 (-720))))
+(-13 (-1102) (-10 -8 (-15 (-3046) ($) -4359) (-15 -4131 ($) -4359) (-15 -2545 ((-112) $)) (-15 ** ($ $ (-765))) (-15 -3866 ((-3 $ "failed") $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1102) . T) ((-1091) . T))
+((-2546 (((-2 (|:| -3475 (-404 |#2|)) (|:| |special| (-404 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3822 (((-2 (|:| -3475 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2547 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-3839 (((-2 (|:| |poly| |#2|) (|:| -3475 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47)))
+(((-721 |#1| |#2|) (-10 -7 (-15 -3822 ((-2 (|:| -3475 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2546 ((-2 (|:| -3475 (-404 |#2|)) (|:| |special| (-404 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2547 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3839 ((-2 (|:| |poly| |#2|) (|:| -3475 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -721))
+((-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3475 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6)))) (-2547 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-721 *5 *2)) (-4 *5 (-362)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3475 (-404 *3)) (|:| |special| (-404 *3)))) (-5 *1 (-721 *5 *3)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3475 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3)))))
+(-10 -7 (-15 -3822 ((-2 (|:| -3475 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2546 ((-2 (|:| -3475 (-404 |#2|)) (|:| |special| (-404 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2547 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3839 ((-2 (|:| |poly| |#2|) (|:| -3475 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|))))
+((-2548 ((|#7| (-635 |#5|) |#6|) NIL)) (-4365 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-722 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4365 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2548 (|#7| (-635 |#5|) |#6|))) (-844) (-787) (-787) (-1042) (-1042) (-943 |#4| |#2| |#1|) (-943 |#5| |#3| |#1|)) (T -722))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-1042)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5)))))
+(-10 -7 (-15 -4365 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2548 (|#7| (-635 |#5|) |#6|)))
+((-4365 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-723 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4365 (|#7| (-1 |#2| |#1|) |#6|))) (-844) (-844) (-787) (-787) (-1042) (-943 |#5| |#3| |#1|) (-943 |#5| |#4| |#2|)) (T -723))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-4 *7 (-787)) (-4 *9 (-1042)) (-4 *2 (-943 *9 *8 *6)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-787)) (-4 *4 (-943 *9 *7 *5)))))
+(-10 -7 (-15 -4365 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4139 (((-404 |#4|) |#4|) 41)))
+(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))) (-306) (-943 (-939 |#3|) |#1| |#2|)) (T -724))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166)))))) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-943 (-939 *6) *4 *5)))))
+(-10 -7 (-15 -4139 ((-404 |#4|) |#4|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-858 |#1|)) $) NIL)) (-3469 (((-1160 $) $ (-858 |#1|)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-529 (-858 |#1|)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) NIL) (($ (-1160 $) (-858 |#1|)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-529 (-858 |#1|)) (-529 (-858 |#1|))) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-635 (-858 |#1|)) (-635 $)) NIL)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ $) NIL (|has| |#2| (-554))) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-725 |#1| |#2|) (-943 |#2| (-529 (-858 |#1|)) (-858 |#1|)) (-635 (-1166)) (-1042)) (T -725))
+NIL
+(-943 |#2| (-529 (-858 |#1|)) (-858 |#1|))
+((-2549 (((-2 (|:| -2778 (-939 |#3|)) (|:| -2208 (-939 |#3|))) |#4|) 14)) (-3369 ((|#4| |#4| |#2|) 33)) (-2552 ((|#4| (-406 (-939 |#3|)) |#2|) 64)) (-2551 ((|#4| (-1160 (-939 |#3|)) |#2|) 77)) (-2550 ((|#4| (-1160 |#4|) |#2|) 51)) (-3368 ((|#4| |#4| |#2|) 54)) (-4139 (((-404 |#4|) |#4|) 40)))
+(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2549 ((-2 (|:| -2778 (-939 |#3|)) (|:| -2208 (-939 |#3|))) |#4|)) (-15 -3368 (|#4| |#4| |#2|)) (-15 -2550 (|#4| (-1160 |#4|) |#2|)) (-15 -3369 (|#4| |#4| |#2|)) (-15 -2551 (|#4| (-1160 (-939 |#3|)) |#2|)) (-15 -2552 (|#4| (-406 (-939 |#3|)) |#2|)) (-15 -4139 ((-404 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))) (-554) (-943 (-406 (-939 |#3|)) |#1| |#2|)) (T -726))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-943 (-406 (-939 *6)) *4 *5)))) (-2552 (*1 *2 *3 *4) (-12 (-4 *6 (-554)) (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-5 *3 (-406 (-939 *6))) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 (-939 *6))) (-4 *6 (-554)) (-4 *2 (-943 (-406 (-939 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))))) (-3369 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-943 (-406 (-939 *5)) *4 *3)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-943 (-406 (-939 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554)))) (-3368 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-943 (-406 (-939 *5)) *4 *3)))) (-2549 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554)) (-5 *2 (-2 (|:| -2778 (-939 *6)) (|:| -2208 (-939 *6)))) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-943 (-406 (-939 *6)) *4 *5)))))
+(-10 -7 (-15 -2549 ((-2 (|:| -2778 (-939 |#3|)) (|:| -2208 (-939 |#3|))) |#4|)) (-15 -3368 (|#4| |#4| |#2|)) (-15 -2550 (|#4| (-1160 |#4|) |#2|)) (-15 -3369 (|#4| |#4| |#2|)) (-15 -2551 (|#4| (-1160 (-939 |#3|)) |#2|)) (-15 -2552 (|#4| (-406 (-939 |#3|)) |#2|)) (-15 -4139 ((-404 |#4|) |#4|)))
+((-4139 (((-404 |#4|) |#4|) 52)))
+(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|))) (-787) (-844) (-13 (-306) (-146)) (-943 (-406 |#3|) |#1| |#2|)) (T -727))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-943 (-406 *6) *4 *5)))))
+(-10 -7 (-15 -4139 ((-404 |#4|) |#4|)))
+((-4365 (((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)) 18)))
+(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)))) (-1042) (-1042) (-720)) (T -728))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *7 (-720)) (-5 *2 (-729 *6 *7)) (-5 *1 (-728 *5 *6 *7)))))
+(-10 -7 (-15 -4365 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 28)) (-4180 (((-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))) $) 29)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3557 ((|#2| $) NIL) ((|#1| $) NIL)) (-4366 (($ $) 79 (|has| |#2| (-844)))) (-3866 (((-3 $ "failed") $) 65)) (-3377 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 55)) (-3203 (((-635 $) $) 39)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| |#2|) 16)) (-4365 (($ (-1 |#1| |#1|) $) 54)) (-2160 (((-912) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3277 ((|#2| $) 78 (|has| |#2| (-844)))) (-3575 ((|#1| $) 77 (|has| |#2| (-844)))) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 76) (($ (-544)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|)))) 11)) (-4224 (((-635 |#1|) $) 41)) (-4084 ((|#1| $ |#2|) 87)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3040 (($) 12 T CONST)) (-3046 (($) 33 T CONST)) (-3437 (((-112) $ $) 80)) (-4244 (($ $) 47) (($ $ $) NIL)) (-4246 (($ $ $) 26)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-729 |#1| |#2|) (-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -3276 ($ |#1| |#2|)) (-15 -4084 (|#1| $ |#2|)) (-15 -4353 ($ (-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))))) (-15 -4180 ((-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))) $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -4344 ((-112) $)) (-15 -4224 ((-635 |#1|) $)) (-15 -3203 ((-635 $) $)) (-15 -2553 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -3277 (|#2| $)) (-15 -3575 (|#1| $)) (-15 -4366 ($ $))) |%noBranch|))) (-1042) (-720)) (T -729))
+((-3276 (*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-4 *3 (-1042)) (-4 *4 (-720)) (-5 *1 (-729 *3 *4)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4)) (-4 *4 (-720)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-635 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-3277 (*1 *2 *1) (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2)) (-4 *3 (-1042)))) (-3575 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *3 (-720)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042)) (-4 *3 (-720)))))
+(-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -3276 ($ |#1| |#2|)) (-15 -4084 (|#1| $ |#2|)) (-15 -4353 ($ (-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))))) (-15 -4180 ((-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))) $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -4344 ((-112) $)) (-15 -4224 ((-635 |#1|) $)) (-15 -3203 ((-635 $) $)) (-15 -2553 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -3277 (|#2| $)) (-15 -3575 (|#1| $)) (-15 -4366 ($ $))) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-3635 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3637 (($ $ $) 79)) (-3636 (((-112) $ $) 83)) (-1293 (((-112) $ (-765)) NIL)) (-3640 (($ (-635 |#1|)) 24) (($) 16)) (-1659 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2498 (($ $) 71)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) 61 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 65 (|has| $ (-6 -4400))) (($ |#1| $ (-544)) 63) (($ (-1 (-112) |#1|) $ (-544)) 66)) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $ (-544)) 68) (($ (-1 (-112) |#1|) $ (-544)) 69)) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 32 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 82)) (-2555 (($) 14) (($ |#1|) 26) (($ (-635 |#1|)) 21)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) 38)) (-3646 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 75)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 77)) (-1356 ((|#1| $) 55)) (-4014 (($ |#1| $) 56) (($ |#1| $ (-765)) 72)) (-3644 (((-1110) $) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 54)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 50)) (-3972 (($) 13)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 48)) (-3638 (($ $ |#1|) NIL) (($ $ $) 78)) (-1550 (($) 15) (($ (-635 |#1|)) 23)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) 60 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 67)) (-4377 (((-533) $) 36 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 20)) (-4353 (((-857) $) 44)) (-3641 (($ (-635 |#1|)) 25) (($) 17)) (-1358 (($ (-635 |#1|)) 22)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 81)) (-4364 (((-765) $) 59 (|has| $ (-6 -4400)))))
+(((-730 |#1|) (-13 (-731 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -2555 ($)) (-15 -2555 ($ |#1|)) (-15 -2555 ($ (-635 |#1|))) (-15 -2554 ((-635 |#1|) $)) (-15 -3810 ($ |#1| $ (-544))) (-15 -3810 ($ (-1 (-112) |#1|) $ (-544))) (-15 -3809 ($ |#1| $ (-544))) (-15 -3809 ($ (-1 (-112) |#1|) $ (-544))))) (-1091)) (T -730))
+((-2555 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-2555 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-730 *3)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-730 *3)) (-4 *3 (-1091)))) (-3810 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-3810 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091)) (-5 *1 (-730 *4)))) (-3809 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-3809 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091)) (-5 *1 (-730 *4)))))
+(-13 (-731 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -2555 ($)) (-15 -2555 ($ |#1|)) (-15 -2555 ($ (-635 |#1|))) (-15 -2554 ((-635 |#1|) $)) (-15 -3810 ($ |#1| $ (-544))) (-15 -3810 ($ (-1 (-112) |#1|) $ (-544))) (-15 -3809 ($ |#1| $ (-544))) (-15 -3809 ($ (-1 (-112) |#1|) $ (-544)))))
+((-2947 (((-112) $ $) 19)) (-3635 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3637 (($ $ $) 72)) (-3636 (((-112) $ $) 73)) (-1293 (((-112) $ (-765)) 8)) (-3640 (($ (-635 |#1|)) 68) (($) 67)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 62)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 64)) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22)) (-3639 (($ $ $) 69)) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-3644 (((-1110) $) 21)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 61)) (-3638 (($ $ |#1|) 71) (($ $ $) 70)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18)) (-3641 (($ (-635 |#1|)) 66) (($) 65)) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-731 |#1|) (-139) (-1091)) (T -731))
+NIL
+(-13 (-688 |t#1|) (-1089 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-688 |#1|) . T) ((-1089 |#1|) . T) ((-1091) . T) ((-1204) . T))
+((-2556 (((-1259) (-1148)) 8)))
+(((-732) (-10 -7 (-15 -2556 ((-1259) (-1148))))) (T -732))
+((-2556 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-732)))))
+(-10 -7 (-15 -2556 ((-1259) (-1148))))
+((-2557 (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 10)))
+(((-733 |#1|) (-10 -7 (-15 -2557 ((-635 |#1|) (-635 |#1|) (-635 |#1|)))) (-844)) (T -733))
+((-2557 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3)))))
+(-10 -7 (-15 -2557 ((-635 |#1|) (-635 |#1|) (-635 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#2|) $) 139)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 132 (|has| |#1| (-554)))) (-2213 (($ $) 131 (|has| |#1| (-554)))) (-2211 (((-112) $) 129 (|has| |#1| (-554)))) (-3891 (($ $) 88 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 71 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $) 70 (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 87 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 72 (|has| |#1| (-38 (-406 (-544)))))) (-3893 (($ $) 86 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 73 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-4366 (($ $) 123)) (-3866 (((-3 $ "failed") $) 33)) (-4221 (((-939 |#1|) $ (-765)) 101) (((-939 |#1|) $ (-765) (-765)) 100)) (-3275 (((-112) $) 140)) (-4034 (($) 98 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $ |#2|) 103) (((-765) $ |#2| (-765)) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 69 (|has| |#1| (-38 (-406 (-544)))))) (-4344 (((-112) $) 121)) (-3276 (($ $ (-635 |#2|) (-635 (-529 |#2|))) 138) (($ $ |#2| (-529 |#2|)) 137) (($ |#1| (-529 |#2|)) 122) (($ $ |#2| (-765)) 105) (($ $ (-635 |#2|) (-635 (-765))) 104)) (-4365 (($ (-1 |#1| |#1|) $) 120)) (-4349 (($ $) 95 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 118)) (-3575 ((|#1| $) 117)) (-3643 (((-1148) $) 9)) (-4219 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) 10)) (-4175 (($ $ (-765)) 106)) (-3865 (((-3 $ "failed") $ $) 133 (|has| |#1| (-554)))) (-4350 (($ $) 96 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (($ $ |#2| $) 114) (($ $ (-635 |#2|) (-635 $)) 113) (($ $ (-635 (-292 $))) 112) (($ $ (-292 $)) 111) (($ $ $ $) 110) (($ $ (-635 $) (-635 $)) 109)) (-4217 (($ $ |#2|) 42) (($ $ (-635 |#2|)) 41) (($ $ |#2| (-765)) 40) (($ $ (-635 |#2|) (-635 (-765))) 39)) (-4355 (((-529 |#2|) $) 119)) (-3894 (($ $) 85 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 74 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 84 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 75 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 83 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 76 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 141)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-554))) (($ (-406 (-544))) 126 (|has| |#1| (-38 (-406 (-544)))))) (-4084 ((|#1| $ (-529 |#2|)) 124) (($ $ |#2| (-765)) 108) (($ $ (-635 |#2|) (-635 (-765))) 107)) (-3084 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-3897 (($ $) 94 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 82 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 130 (|has| |#1| (-554)))) (-3895 (($ $) 93 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 81 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 92 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 80 (|has| |#1| (-38 (-406 (-544)))))) (-3900 (($ $) 91 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 79 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 90 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 78 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 89 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 77 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#2|) 38) (($ $ (-635 |#2|)) 37) (($ $ |#2| (-765)) 36) (($ $ (-635 |#2|) (-635 (-765))) 35)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 68 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 128 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 127 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
(((-734 |#1| |#2|) (-139) (-1042) (-844)) (T -734))
-((-3932 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-844)))) (-1381 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-1381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4027 (*1 *2 *1 *3) (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4027 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)))) (-2001 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-945 *4)))) (-2001 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-945 *4)))) (-2563 (*1 *1 *1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)) (-4 *3 (-38 (-406 (-561)))))))
-(-13 (-893 |t#2|) (-966 |t#1| (-529 |t#2|) |t#2|) (-512 |t#2| $) (-308 $) (-10 -8 (-15 -3932 ($ $ |t#2| (-765))) (-15 -3932 ($ $ (-638 |t#2|) (-638 (-765)))) (-15 -3702 ($ $ (-765))) (-15 -1381 ($ $ |t#2| (-765))) (-15 -1381 ($ $ (-638 |t#2|) (-638 (-765)))) (-15 -4027 ((-765) $ |t#2|)) (-15 -4027 ((-765) $ |t#2| (-765))) (-15 -2001 ((-945 |t#1|) $ (-765))) (-15 -2001 ((-945 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $ |t#2|)) (-6 (-995)) (-6 (-1190))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-529 |#2|)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-289) |has| |#1| (-553)) ((-308 $) . T) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-512 |#2| $) . T) ((-512 $ $) . T) ((-553) |has| |#1| (-553)) ((-641 #1#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-893 |#2|) . T) ((-966 |#1| #0# |#2|) . T) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))))
-((-1633 (((-417 (-1162 |#4|)) (-1162 |#4|)) 30) (((-417 |#4|) |#4|) 26)))
-(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1633 ((-417 |#4|) |#4|)) (-15 -1633 ((-417 (-1162 |#4|)) (-1162 |#4|)))) (-844) (-787) (-13 (-306) (-146)) (-942 |#3| |#2| |#1|)) (T -735))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-735 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
-(-10 -7 (-15 -1633 ((-417 |#4|) |#4|)) (-15 -1633 ((-417 (-1162 |#4|)) (-1162 |#4|))))
-((-1392 (((-417 |#4|) |#4| |#2|) 118)) (-1627 (((-417 |#4|) |#4|) NIL)) (-3552 (((-417 (-1162 |#4|)) (-1162 |#4|)) 109) (((-417 |#4|) |#4|) 40)) (-2916 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-638 (-2 (|:| -1633 (-1162 |#4|)) (|:| -4181 (-561)))))) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|))) 68)) (-2875 (((-1162 |#3|) (-1162 |#3|) (-561)) 136)) (-3214 (((-638 (-765)) (-1162 |#4|) (-638 |#2|) (-765)) 60)) (-3354 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-1162 |#3|) (-1162 |#3|) |#4| (-638 |#2|) (-638 (-765)) (-638 |#3|)) 64)) (-3988 (((-2 (|:| |upol| (-1162 |#3|)) (|:| |Lval| (-638 |#3|)) (|:| |Lfact| (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561))))) (|:| |ctpol| |#3|)) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|))) 25)) (-2013 (((-2 (|:| -3590 (-1162 |#4|)) (|:| |polval| (-1162 |#3|))) (-1162 |#4|) (-1162 |#3|) (-561)) 56)) (-2800 (((-561) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561))))) 133)) (-2822 ((|#4| (-561) (-417 |#4|)) 57)) (-1804 (((-112) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561)))) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561))))) NIL)))
-(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3552 ((-417 |#4|) |#4|)) (-15 -3552 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -1627 ((-417 |#4|) |#4|)) (-15 -2800 ((-561) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561)))))) (-15 -1392 ((-417 |#4|) |#4| |#2|)) (-15 -2013 ((-2 (|:| -3590 (-1162 |#4|)) (|:| |polval| (-1162 |#3|))) (-1162 |#4|) (-1162 |#3|) (-561))) (-15 -2916 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-638 (-2 (|:| -1633 (-1162 |#4|)) (|:| -4181 (-561)))))) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -3988 ((-2 (|:| |upol| (-1162 |#3|)) (|:| |Lval| (-638 |#3|)) (|:| |Lfact| (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561))))) (|:| |ctpol| |#3|)) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -2822 (|#4| (-561) (-417 |#4|))) (-15 -1804 ((-112) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561)))) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561)))))) (-15 -3354 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-1162 |#3|) (-1162 |#3|) |#4| (-638 |#2|) (-638 (-765)) (-638 |#3|))) (-15 -3214 ((-638 (-765)) (-1162 |#4|) (-638 |#2|) (-765))) (-15 -2875 ((-1162 |#3|) (-1162 |#3|) (-561)))) (-787) (-844) (-306) (-942 |#3| |#1| |#2|)) (T -736))
-((-2875 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 *6)) (-5 *3 (-561)) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-3214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-4 *7 (-844)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306)) (-5 *2 (-638 (-765))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765)))) (-3354 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1162 *11)) (-5 *6 (-638 *10)) (-5 *7 (-638 (-765))) (-5 *8 (-638 *11)) (-4 *10 (-844)) (-4 *11 (-306)) (-4 *9 (-787)) (-4 *5 (-942 *11 *9 *10)) (-5 *2 (-638 (-1162 *5))) (-5 *1 (-736 *9 *10 *11 *5)) (-5 *3 (-1162 *5)))) (-1804 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-2 (|:| -1633 (-1162 *6)) (|:| -4181 (-561))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-561)) (-5 *4 (-417 *2)) (-4 *2 (-942 *7 *5 *6)) (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-306)))) (-3988 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |upol| (-1162 *8)) (|:| |Lval| (-638 *8)) (|:| |Lfact| (-638 (-2 (|:| -1633 (-1162 *8)) (|:| -4181 (-561))))) (|:| |ctpol| *8))) (-5 *1 (-736 *6 *7 *8 *9)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *6 (-787)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-638 (-2 (|:| -1633 (-1162 *9)) (|:| -4181 (-561))))))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)))) (-2013 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-561)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| -3590 (-1162 *9)) (|:| |polval| (-1162 *8)))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)) (-5 *4 (-1162 *8)))) (-1392 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1633 (-1162 *6)) (|:| -4181 (-561))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-1627 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))))
-(-10 -7 (-15 -3552 ((-417 |#4|) |#4|)) (-15 -3552 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -1627 ((-417 |#4|) |#4|)) (-15 -2800 ((-561) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561)))))) (-15 -1392 ((-417 |#4|) |#4| |#2|)) (-15 -2013 ((-2 (|:| -3590 (-1162 |#4|)) (|:| |polval| (-1162 |#3|))) (-1162 |#4|) (-1162 |#3|) (-561))) (-15 -2916 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-638 (-2 (|:| -1633 (-1162 |#4|)) (|:| -4181 (-561)))))) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -3988 ((-2 (|:| |upol| (-1162 |#3|)) (|:| |Lval| (-638 |#3|)) (|:| |Lfact| (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561))))) (|:| |ctpol| |#3|)) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -2822 (|#4| (-561) (-417 |#4|))) (-15 -1804 ((-112) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561)))) (-638 (-2 (|:| -1633 (-1162 |#3|)) (|:| -4181 (-561)))))) (-15 -3354 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-1162 |#3|) (-1162 |#3|) |#4| (-638 |#2|) (-638 (-765)) (-638 |#3|))) (-15 -3214 ((-638 (-765)) (-1162 |#4|) (-638 |#2|) (-765))) (-15 -2875 ((-1162 |#3|) (-1162 |#3|) (-561))))
-((-3425 (($ $ (-914)) 12)))
-(((-737 |#1| |#2|) (-10 -8 (-15 -3425 (|#1| |#1| (-914)))) (-738 |#2|) (-171)) (T -737))
-NIL
-(-10 -8 (-15 -3425 (|#1| |#1| (-914))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3187 (($ $ (-914)) 28)) (-3425 (($ $ (-914)) 33)) (-2143 (($ $ (-914)) 29)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3047 (($ $ $) 25)) (-4064 (((-856) $) 11)) (-2748 (($ $ $ $) 26)) (-2897 (($ $ $) 24)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4178 (*1 *2 *1 *3) (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4178 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-939 *4)))) (-4221 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-939 *4)))) (-4219 (*1 *1 *1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)) (-4 *3 (-38 (-406 (-544)))))))
+(-13 (-893 |t#2|) (-966 |t#1| (-529 |t#2|) |t#2|) (-512 |t#2| $) (-308 $) (-10 -8 (-15 -4084 ($ $ |t#2| (-765))) (-15 -4084 ($ $ (-635 |t#2|) (-635 (-765)))) (-15 -4175 ($ $ (-765))) (-15 -3276 ($ $ |t#2| (-765))) (-15 -3276 ($ $ (-635 |t#2|) (-635 (-765)))) (-15 -4178 ((-765) $ |t#2|)) (-15 -4178 ((-765) $ |t#2| (-765))) (-15 -4221 ((-939 |t#1|) $ (-765))) (-15 -4221 ((-939 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ |t#2|)) (-6 (-995)) (-6 (-1190))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-529 |#2|)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-289) |has| |#1| (-554)) ((-308 $) . T) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-512 |#2| $) . T) ((-512 $ $) . T) ((-554) |has| |#1| (-554)) ((-641 #2#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-893 |#2|) . T) ((-966 |#1| #1# |#2|) . T) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))))
+((-4139 (((-404 (-1160 |#4|)) (-1160 |#4|)) 30) (((-404 |#4|) |#4|) 26)))
+(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|)))) (-844) (-787) (-13 (-306) (-146)) (-943 |#3| |#2| |#1|)) (T -735))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-735 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4)))))
+(-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|))))
+((-2560 (((-404 |#4|) |#4| |#2|) 118)) (-2558 (((-404 |#4|) |#4|) NIL)) (-4376 (((-404 (-1160 |#4|)) (-1160 |#4|)) 109) (((-404 |#4|) |#4|) 40)) (-2562 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 |#4|)) (|:| -2536 (-544)))))) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 68)) (-2566 (((-1160 |#3|) (-1160 |#3|) (-544)) 136)) (-2565 (((-635 (-765)) (-1160 |#4|) (-635 |#2|) (-765)) 60)) (-3463 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-1160 |#3|) (-1160 |#3|) |#4| (-635 |#2|) (-635 (-765)) (-635 |#3|)) 64)) (-2563 (((-2 (|:| |upol| (-1160 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) (|:| |ctpol| |#3|)) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 25)) (-2561 (((-2 (|:| -2154 (-1160 |#4|)) (|:| |polval| (-1160 |#3|))) (-1160 |#4|) (-1160 |#3|) (-544)) 56)) (-2559 (((-544) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) 133)) (-2564 ((|#4| (-544) (-404 |#4|)) 57)) (-3761 (((-112) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) NIL)))
+(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-404 |#4|) |#4|)) (-15 -4376 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -2558 ((-404 |#4|) |#4|)) (-15 -2559 ((-544) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -2560 ((-404 |#4|) |#4| |#2|)) (-15 -2561 ((-2 (|:| -2154 (-1160 |#4|)) (|:| |polval| (-1160 |#3|))) (-1160 |#4|) (-1160 |#3|) (-544))) (-15 -2562 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 |#4|)) (|:| -2536 (-544)))))) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2563 ((-2 (|:| |upol| (-1160 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) (|:| |ctpol| |#3|)) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2564 (|#4| (-544) (-404 |#4|))) (-15 -3761 ((-112) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -3463 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-1160 |#3|) (-1160 |#3|) |#4| (-635 |#2|) (-635 (-765)) (-635 |#3|))) (-15 -2565 ((-635 (-765)) (-1160 |#4|) (-635 |#2|) (-765))) (-15 -2566 ((-1160 |#3|) (-1160 |#3|) (-544)))) (-787) (-844) (-306) (-943 |#3| |#1| |#2|)) (T -736))
+((-2566 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 *6)) (-5 *3 (-544)) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-4 *7 (-844)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306)) (-5 *2 (-635 (-765))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765)))) (-3463 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1160 *11)) (-5 *6 (-635 *10)) (-5 *7 (-635 (-765))) (-5 *8 (-635 *11)) (-4 *10 (-844)) (-4 *11 (-306)) (-4 *9 (-787)) (-4 *5 (-943 *11 *9 *10)) (-5 *2 (-635 (-1160 *5))) (-5 *1 (-736 *9 *10 *11 *5)) (-5 *3 (-1160 *5)))) (-3761 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-544)) (-5 *4 (-404 *2)) (-4 *2 (-943 *7 *5 *6)) (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-306)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |upol| (-1160 *8)) (|:| |Lval| (-635 *8)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 *8)) (|:| -2536 (-544))))) (|:| |ctpol| *8))) (-5 *1 (-736 *6 *7 *8 *9)))) (-2562 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *6 (-787)) (-4 *9 (-943 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 *9)) (|:| -2536 (-544))))))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9)))) (-2561 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-544)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-943 *8 *6 *7)) (-5 *2 (-2 (|:| -2154 (-1160 *9)) (|:| |polval| (-1160 *8)))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9)) (-5 *4 (-1160 *8)))) (-2560 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-943 *6 *5 *4)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-2558 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5)))))
+(-10 -7 (-15 -4376 ((-404 |#4|) |#4|)) (-15 -4376 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -2558 ((-404 |#4|) |#4|)) (-15 -2559 ((-544) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -2560 ((-404 |#4|) |#4| |#2|)) (-15 -2561 ((-2 (|:| -2154 (-1160 |#4|)) (|:| |polval| (-1160 |#3|))) (-1160 |#4|) (-1160 |#3|) (-544))) (-15 -2562 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 |#4|)) (|:| -2536 (-544)))))) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2563 ((-2 (|:| |upol| (-1160 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) (|:| |ctpol| |#3|)) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2564 (|#4| (-544) (-404 |#4|))) (-15 -3761 ((-112) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -3463 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-1160 |#3|) (-1160 |#3|) |#4| (-635 |#2|) (-635 (-765)) (-635 |#3|))) (-15 -2565 ((-635 (-765)) (-1160 |#4|) (-635 |#2|) (-765))) (-15 -2566 ((-1160 |#3|) (-1160 |#3|) (-544))))
+((-2567 (($ $ (-912)) 12)))
+(((-737 |#1| |#2|) (-10 -8 (-15 -2567 (|#1| |#1| (-912)))) (-738 |#2|) (-171)) (T -737))
+NIL
+(-10 -8 (-15 -2567 (|#1| |#1| (-912))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2542 (($ $ (-912)) 28)) (-2567 (($ $ (-912)) 33)) (-2541 (($ $ (-912)) 29)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-2729 (($ $ $) 25)) (-4353 (((-857) $) 11)) (-2730 (($ $ $ $) 26)) (-2728 (($ $ $) 24)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-738 |#1|) (-139) (-171)) (T -738))
-((-3425 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-738 *3)) (-4 *3 (-171)))))
-(-13 (-755) (-711 |t#1|) (-10 -8 (-15 -3425 ($ $ (-914)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1090) . T))
-((-2499 (((-1028) (-682 (-224)) (-561) (-112) (-561)) 25)) (-3191 (((-1028) (-682 (-224)) (-561) (-112) (-561)) 24)))
-(((-739) (-10 -7 (-15 -3191 ((-1028) (-682 (-224)) (-561) (-112) (-561))) (-15 -2499 ((-1028) (-682 (-224)) (-561) (-112) (-561))))) (T -739))
-((-2499 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739)))) (-3191 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739)))))
-(-10 -7 (-15 -3191 ((-1028) (-682 (-224)) (-561) (-112) (-561))) (-15 -2499 ((-1028) (-682 (-224)) (-561) (-112) (-561))))
-((-2826 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-2054 (((-1028) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-1687 (((-1028) (-224) (-224) (-224) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) 32)))
-(((-740) (-10 -7 (-15 -1687 ((-1028) (-224) (-224) (-224) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -2054 ((-1028) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2826 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -740))
-((-2826 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-2054 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-1687 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) (-5 *2 (-1028)) (-5 *1 (-740)))))
-(-10 -7 (-15 -1687 ((-1028) (-224) (-224) (-224) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -2054 ((-1028) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2826 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))
-((-1852 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 34)) (-1565 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 33)) (-3734 (((-1028) (-561) (-682 (-224)) (-561)) 32)) (-1851 (((-1028) (-561) (-682 (-224)) (-561)) 31)) (-4376 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 30)) (-3097 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 29)) (-2144 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561)) 28)) (-2707 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561)) 27)) (-4110 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 24)) (-1949 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561)) 23)) (-3205 (((-1028) (-561) (-682 (-224)) (-561)) 22)) (-1464 (((-1028) (-561) (-682 (-224)) (-561)) 21)))
-(((-741) (-10 -7 (-15 -1464 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3205 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -1949 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4110 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2707 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2144 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3097 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4376 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1851 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3734 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -1565 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -1852 ((-1028) (-561) (-561) (-682 (-224)) (-561))))) (T -741))
-((-1852 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-1565 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-3734 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-1851 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-4376 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-3097 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2144 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2707 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-4110 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-1949 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-3205 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-1464 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
-(-10 -7 (-15 -1464 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3205 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -1949 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4110 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2707 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2144 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3097 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4376 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1851 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3734 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -1565 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -1852 ((-1028) (-561) (-561) (-682 (-224)) (-561))))
-((-2553 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3510 (((-1028) (-682 (-224)) (-682 (-224)) (-561) (-561)) 51)) (-4302 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3528 (((-1028) (-224) (-224) (-561) (-561) (-561) (-561)) 46)) (-4296 (((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 45)) (-4058 (((-1028) (-224) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 44)) (-3899 (((-1028) (-224) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 43)) (-2240 (((-1028) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 42)) (-2572 (((-1028) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) 38)) (-1365 (((-1028) (-224) (-224) (-561) (-682 (-224)) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) 37)) (-1529 (((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) 33)) (-1430 (((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) 32)))
-(((-742) (-10 -7 (-15 -1430 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -1529 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -1365 ((-1028) (-224) (-224) (-561) (-682 (-224)) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -2572 ((-1028) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -2240 ((-1028) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3899 ((-1028) (-224) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4058 ((-1028) (-224) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4296 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3528 ((-1028) (-224) (-224) (-561) (-561) (-561) (-561))) (-15 -4302 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -3510 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-561))) (-15 -2553 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))) (T -742))
-((-2553 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-3510 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-4302 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-3528 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-4296 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-4058 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-3899 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2240 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2572 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-1365 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-1529 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-1430 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) (-5 *2 (-1028)) (-5 *1 (-742)))))
-(-10 -7 (-15 -1430 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -1529 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -1365 ((-1028) (-224) (-224) (-561) (-682 (-224)) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -2572 ((-1028) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))) (-15 -2240 ((-1028) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3899 ((-1028) (-224) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4058 ((-1028) (-224) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4296 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3528 ((-1028) (-224) (-224) (-561) (-561) (-561) (-561))) (-15 -4302 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -3510 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-561))) (-15 -2553 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))
-((-1308 (((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3931 (((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387)) 69) (((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) 68)) (-4054 (((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) 57)) (-3112 (((-1028) (-682 (-224)) (-682 (-224)) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 50)) (-2141 (((-1028) (-224) (-561) (-561) (-1148) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3081 (((-1028) (-224) (-561) (-561) (-224) (-1148) (-224) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 45)) (-4132 (((-1028) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 42)) (-2621 (((-1028) (-224) (-561) (-561) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-743) (-10 -7 (-15 -2621 ((-1028) (-224) (-561) (-561) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -4132 ((-1028) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3081 ((-1028) (-224) (-561) (-561) (-224) (-1148) (-224) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2141 ((-1028) (-224) (-561) (-561) (-1148) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3112 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -4054 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -3931 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -3931 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -1308 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -743))
-((-1308 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3931 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3931 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-4054 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3112 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2141 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3081 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-4132 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2621 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
-(-10 -7 (-15 -2621 ((-1028) (-224) (-561) (-561) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -4132 ((-1028) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3081 ((-1028) (-224) (-561) (-561) (-224) (-1148) (-224) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2141 ((-1028) (-224) (-561) (-561) (-1148) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3112 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -4054 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -3931 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -3931 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -1308 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2040 (((-1028) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-668 (-224)) (-561)) 45)) (-3914 (((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-1148) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) 41)) (-2518 (((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 23)))
-(((-744) (-10 -7 (-15 -2518 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3914 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-1148) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -2040 ((-1028) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-668 (-224)) (-561))))) (T -744))
-((-2040 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))) (-3914 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1028)) (-5 *1 (-744)))) (-2518 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))))
-(-10 -7 (-15 -2518 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3914 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-1148) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -2040 ((-1028) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-668 (-224)) (-561))))
-((-2491 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-561)) 35)) (-3900 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-224) (-224) (-561)) 34)) (-4098 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-682 (-224)) (-224) (-224) (-561)) 33)) (-3300 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 29)) (-1923 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 28)) (-2052 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561)) 27)) (-4068 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561)) 24)) (-3139 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561)) 23)) (-3327 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561)) 22)) (-2578 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561)) 21)))
-(((-745) (-10 -7 (-15 -2578 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -3327 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3139 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -4068 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -2052 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561))) (-15 -1923 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3300 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4098 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-682 (-224)) (-224) (-224) (-561))) (-15 -3900 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-224) (-224) (-561))) (-15 -2491 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-561))))) (T -745))
-((-2491 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-3900 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-4098 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224)) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-3300 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-1923 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2052 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-4068 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-3139 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-3327 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2578 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
-(-10 -7 (-15 -2578 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -3327 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3139 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -4068 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -2052 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561))) (-15 -1923 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3300 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4098 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-682 (-224)) (-224) (-224) (-561))) (-15 -3900 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-224) (-224) (-561))) (-15 -2491 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-561))))
-((-1656 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561)) 45)) (-1920 (((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-561)) 44)) (-3942 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561)) 43)) (-3250 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 42)) (-2243 (((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561)) 41)) (-3534 (((-1028) (-1148) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561)) 40)) (-1390 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561) (-561) (-561) (-224) (-682 (-224)) (-561)) 39)) (-3078 (((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561))) 38)) (-2037 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561)) 35)) (-3319 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561)) 34)) (-3066 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561)) 33)) (-1560 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 32)) (-3427 (((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561)) 31)) (-3624 (((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-561)) 30)) (-1376 (((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-561) (-561) (-561)) 29)) (-3695 (((-1028) (-561) (-561) (-561) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-561)) (-561) (-561) (-561)) 28)) (-3312 (((-1028) (-561) (-682 (-224)) (-224) (-561)) 24)) (-3649 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 21)))
-(((-746) (-10 -7 (-15 -3649 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3312 ((-1028) (-561) (-682 (-224)) (-224) (-561))) (-15 -3695 ((-1028) (-561) (-561) (-561) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-561)) (-561) (-561) (-561))) (-15 -1376 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -3624 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-561))) (-15 -3427 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561))) (-15 -1560 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3066 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561))) (-15 -3319 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561))) (-15 -2037 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3078 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)))) (-15 -1390 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561) (-561) (-561) (-224) (-682 (-224)) (-561))) (-15 -3534 ((-1028) (-1148) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -2243 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3250 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3942 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -1920 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1656 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))))) (T -746))
-((-1656 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1920 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3942 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3250 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2243 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3534 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1390 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224)) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3078 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2037 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3319 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3066 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1560 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3427 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3624 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1376 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3695 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3312 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3649 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
-(-10 -7 (-15 -3649 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3312 ((-1028) (-561) (-682 (-224)) (-224) (-561))) (-15 -3695 ((-1028) (-561) (-561) (-561) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-561)) (-561) (-561) (-561))) (-15 -1376 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -3624 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-561))) (-15 -3427 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561))) (-15 -1560 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3066 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561))) (-15 -3319 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561))) (-15 -2037 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3078 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)))) (-15 -1390 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561) (-561) (-561) (-224) (-682 (-224)) (-561))) (-15 -3534 ((-1028) (-1148) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -2243 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3250 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3942 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -1920 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1656 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))))
-((-4357 (((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-561) (-682 (-224)) (-561)) 63)) (-3229 (((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-112) (-224) (-561) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-561) (-561) (-561) (-561) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2579 (((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-561) (-561) (-682 (-224)) (-682 (-561)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-2807 (((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-561) (-561) (-682 (-224)) (-561)) 51)) (-1348 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3599 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3558 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2510 (((-1028) (-561) (-224) (-224) (-561) (-224) (-112) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-747) (-10 -7 (-15 -2510 ((-1028) (-561) (-224) (-224) (-561) (-224) (-112) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3558 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3599 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -1348 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2807 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-561) (-561) (-682 (-224)) (-561))) (-15 -2579 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-561) (-561) (-682 (-224)) (-682 (-561)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3229 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-112) (-224) (-561) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-561) (-561) (-561) (-561) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -4357 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-561) (-682 (-224)) (-561))))) (T -747))
-((-4357 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-3229 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-682 (-561))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2579 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-561))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2807 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-1348 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-3599 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-3558 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2510 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
-(-10 -7 (-15 -2510 ((-1028) (-561) (-224) (-224) (-561) (-224) (-112) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3558 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3599 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -1348 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2807 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-561) (-561) (-682 (-224)) (-561))) (-15 -2579 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-561) (-561) (-682 (-224)) (-682 (-561)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3229 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-112) (-224) (-561) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-561) (-561) (-561) (-561) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -4357 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-561) (-682 (-224)) (-561))))
-((-1826 (((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561)) 47)) (-1517 (((-1028) (-1148) (-1148) (-561) (-561) (-682 (-168 (-224))) (-561) (-682 (-168 (-224))) (-561) (-561) (-682 (-168 (-224))) (-561)) 46)) (-2461 (((-1028) (-561) (-561) (-561) (-682 (-168 (-224))) (-561)) 45)) (-2159 (((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 40)) (-1990 (((-1028) (-1148) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)) (-561)) 39)) (-2984 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-561)) 36)) (-2846 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561)) 35)) (-3192 (((-1028) (-561) (-561) (-561) (-561) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-224) (-224) (-561)) 34)) (-2446 (((-1028) (-561) (-561) (-561) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-112) (-224) (-112) (-682 (-561)) (-682 (-224)) (-561)) 33)) (-2752 (((-1028) (-561) (-561) (-561) (-561) (-224) (-112) (-112) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-561)) 32)))
-(((-748) (-10 -7 (-15 -2752 ((-1028) (-561) (-561) (-561) (-561) (-224) (-112) (-112) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-561))) (-15 -2446 ((-1028) (-561) (-561) (-561) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-112) (-224) (-112) (-682 (-561)) (-682 (-224)) (-561))) (-15 -3192 ((-1028) (-561) (-561) (-561) (-561) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-224) (-224) (-561))) (-15 -2846 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561))) (-15 -2984 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -1990 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)) (-561))) (-15 -2159 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2461 ((-1028) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -1517 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-168 (-224))) (-561) (-682 (-168 (-224))) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -1826 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))) (T -748))
-((-1826 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-1517 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2461 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2159 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-1990 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2984 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2846 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-3192 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-638 (-112))) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *7 (-224)) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2446 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-682 (-561))) (-5 *5 (-112)) (-5 *7 (-682 (-224))) (-5 *3 (-561)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2752 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-638 (-112))) (-5 *7 (-682 (-224))) (-5 *8 (-682 (-561))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-748)))))
-(-10 -7 (-15 -2752 ((-1028) (-561) (-561) (-561) (-561) (-224) (-112) (-112) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-561))) (-15 -2446 ((-1028) (-561) (-561) (-561) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-112) (-224) (-112) (-682 (-561)) (-682 (-224)) (-561))) (-15 -3192 ((-1028) (-561) (-561) (-561) (-561) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-224) (-224) (-561))) (-15 -2846 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561))) (-15 -2984 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -1990 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)) (-561))) (-15 -2159 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2461 ((-1028) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -1517 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-168 (-224))) (-561) (-682 (-168 (-224))) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -1826 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))
-((-3416 (((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561)) 66)) (-2733 (((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561)) 61)) (-1869 (((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-4341 (((-1028) (-561) (-561) (-561) (-224) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561)) 37)) (-4182 (((-1028) (-561) (-561) (-224) (-224) (-561) (-561) (-682 (-224)) (-561)) 33)) (-3970 (((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561) (-561)) 30)) (-4141 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 29)) (-3780 (((-1028) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 28)) (-3208 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 27)) (-1553 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561)) 26)) (-4325 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 25)) (-3793 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 24)) (-3727 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 23)) (-2287 (((-1028) (-682 (-224)) (-561) (-561) (-561) (-561)) 22)) (-4294 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 21)))
-(((-749) (-10 -7 (-15 -4294 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -2287 ((-1028) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -3727 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3793 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4325 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -1553 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -3208 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3780 ((-1028) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4141 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3970 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -4182 ((-1028) (-561) (-561) (-224) (-224) (-561) (-561) (-682 (-224)) (-561))) (-15 -4341 ((-1028) (-561) (-561) (-561) (-224) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1869 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -1869 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -2733 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3416 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))) (T -749))
-((-3416 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2733 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-1869 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-1869 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4341 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4182 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3970 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4141 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3780 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3208 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-1553 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4325 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3793 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3727 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2287 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4294 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
-(-10 -7 (-15 -4294 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -2287 ((-1028) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -3727 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3793 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4325 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -1553 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -3208 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3780 ((-1028) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4141 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3970 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -4182 ((-1028) (-561) (-561) (-224) (-224) (-561) (-561) (-682 (-224)) (-561))) (-15 -4341 ((-1028) (-561) (-561) (-561) (-224) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1869 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -1869 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -2733 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3416 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))
-((-3869 (((-1028) (-561) (-561) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-2233 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561)) 57)) (-2374 (((-1028) (-561) (-682 (-224)) (-112) (-224) (-561) (-561) (-561) (-561) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-2894 (((-1028) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561)) 37)) (-2180 (((-1028) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-561)) 36)) (-1287 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 33)) (-3676 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224))) 32)) (-2108 (((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561)) 28)) (-3151 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561)) 27)) (-3142 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561)) 26)) (-1718 (((-1028) (-561) (-682 (-168 (-224))) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-561)) 22)))
-(((-750) (-10 -7 (-15 -1718 ((-1028) (-561) (-682 (-168 (-224))) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -3142 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -3151 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -2108 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561))) (-15 -3676 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)))) (-15 -1287 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2180 ((-1028) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2894 ((-1028) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -2374 ((-1028) (-561) (-682 (-224)) (-112) (-224) (-561) (-561) (-561) (-561) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2233 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -3869 ((-1028) (-561) (-561) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -750))
-((-3869 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2233 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2374 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2894 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2180 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-1287 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-3676 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2108 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-3151 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-3142 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-1718 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-750)))))
-(-10 -7 (-15 -1718 ((-1028) (-561) (-682 (-168 (-224))) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -3142 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -3151 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -2108 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561))) (-15 -3676 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)))) (-15 -1287 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2180 ((-1028) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2894 ((-1028) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -2374 ((-1028) (-561) (-682 (-224)) (-112) (-224) (-561) (-561) (-561) (-561) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2233 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -3869 ((-1028) (-561) (-561) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))
-((-3532 (((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-561) (-682 (-224))) 29)) (-2851 (((-1028) (-1148) (-561) (-561) (-682 (-224))) 28)) (-2519 (((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-224))) 27)) (-3167 (((-1028) (-561) (-561) (-561) (-682 (-224))) 21)))
-(((-751) (-10 -7 (-15 -3167 ((-1028) (-561) (-561) (-561) (-682 (-224)))) (-15 -2519 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-224)))) (-15 -2851 ((-1028) (-1148) (-561) (-561) (-682 (-224)))) (-15 -3532 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)))))) (T -751))
-((-3532 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2851 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2519 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-751)))) (-3167 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))))
-(-10 -7 (-15 -3167 ((-1028) (-561) (-561) (-561) (-682 (-224)))) (-15 -2519 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-224)))) (-15 -2851 ((-1028) (-1148) (-561) (-561) (-682 (-224)))) (-15 -3532 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)))))
-((-3939 (((-1028) (-224) (-224) (-224) (-224) (-561)) 62)) (-2689 (((-1028) (-224) (-224) (-224) (-561)) 61)) (-3538 (((-1028) (-224) (-224) (-224) (-561)) 60)) (-4336 (((-1028) (-224) (-224) (-561)) 59)) (-2628 (((-1028) (-224) (-561)) 58)) (-2530 (((-1028) (-224) (-561)) 57)) (-3061 (((-1028) (-224) (-561)) 56)) (-3393 (((-1028) (-224) (-561)) 55)) (-4135 (((-1028) (-224) (-561)) 54)) (-1726 (((-1028) (-224) (-561)) 53)) (-2148 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 52)) (-2485 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 51)) (-1679 (((-1028) (-224) (-561)) 50)) (-1294 (((-1028) (-224) (-561)) 49)) (-4043 (((-1028) (-224) (-561)) 48)) (-3700 (((-1028) (-224) (-561)) 47)) (-1652 (((-1028) (-561) (-224) (-168 (-224)) (-561) (-1148) (-561)) 46)) (-3189 (((-1028) (-1148) (-168 (-224)) (-1148) (-561)) 45)) (-3837 (((-1028) (-1148) (-168 (-224)) (-1148) (-561)) 44)) (-3533 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 43)) (-1344 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 42)) (-4183 (((-1028) (-224) (-561)) 39)) (-1531 (((-1028) (-224) (-561)) 38)) (-4109 (((-1028) (-224) (-561)) 37)) (-1996 (((-1028) (-224) (-561)) 36)) (-3593 (((-1028) (-224) (-561)) 35)) (-2736 (((-1028) (-224) (-561)) 34)) (-4044 (((-1028) (-224) (-561)) 33)) (-3483 (((-1028) (-224) (-561)) 32)) (-3903 (((-1028) (-224) (-561)) 31)) (-2484 (((-1028) (-224) (-561)) 30)) (-2685 (((-1028) (-224) (-224) (-224) (-561)) 29)) (-2692 (((-1028) (-224) (-561)) 28)) (-1856 (((-1028) (-224) (-561)) 27)) (-4099 (((-1028) (-224) (-561)) 26)) (-3175 (((-1028) (-224) (-561)) 25)) (-2938 (((-1028) (-224) (-561)) 24)) (-3763 (((-1028) (-168 (-224)) (-561)) 21)))
-(((-752) (-10 -7 (-15 -3763 ((-1028) (-168 (-224)) (-561))) (-15 -2938 ((-1028) (-224) (-561))) (-15 -3175 ((-1028) (-224) (-561))) (-15 -4099 ((-1028) (-224) (-561))) (-15 -1856 ((-1028) (-224) (-561))) (-15 -2692 ((-1028) (-224) (-561))) (-15 -2685 ((-1028) (-224) (-224) (-224) (-561))) (-15 -2484 ((-1028) (-224) (-561))) (-15 -3903 ((-1028) (-224) (-561))) (-15 -3483 ((-1028) (-224) (-561))) (-15 -4044 ((-1028) (-224) (-561))) (-15 -2736 ((-1028) (-224) (-561))) (-15 -3593 ((-1028) (-224) (-561))) (-15 -1996 ((-1028) (-224) (-561))) (-15 -4109 ((-1028) (-224) (-561))) (-15 -1531 ((-1028) (-224) (-561))) (-15 -4183 ((-1028) (-224) (-561))) (-15 -1344 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3533 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3837 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -3189 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -1652 ((-1028) (-561) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3700 ((-1028) (-224) (-561))) (-15 -4043 ((-1028) (-224) (-561))) (-15 -1294 ((-1028) (-224) (-561))) (-15 -1679 ((-1028) (-224) (-561))) (-15 -2485 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -2148 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -1726 ((-1028) (-224) (-561))) (-15 -4135 ((-1028) (-224) (-561))) (-15 -3393 ((-1028) (-224) (-561))) (-15 -3061 ((-1028) (-224) (-561))) (-15 -2530 ((-1028) (-224) (-561))) (-15 -2628 ((-1028) (-224) (-561))) (-15 -4336 ((-1028) (-224) (-224) (-561))) (-15 -3538 ((-1028) (-224) (-224) (-224) (-561))) (-15 -2689 ((-1028) (-224) (-224) (-224) (-561))) (-15 -3939 ((-1028) (-224) (-224) (-224) (-224) (-561))))) (T -752))
-((-3939 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3538 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4336 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2628 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2148 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2485 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1679 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1294 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1652 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-561)) (-5 *5 (-168 (-224))) (-5 *6 (-1148)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3189 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3837 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3533 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1344 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3593 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4044 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3903 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2685 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(-10 -7 (-15 -3763 ((-1028) (-168 (-224)) (-561))) (-15 -2938 ((-1028) (-224) (-561))) (-15 -3175 ((-1028) (-224) (-561))) (-15 -4099 ((-1028) (-224) (-561))) (-15 -1856 ((-1028) (-224) (-561))) (-15 -2692 ((-1028) (-224) (-561))) (-15 -2685 ((-1028) (-224) (-224) (-224) (-561))) (-15 -2484 ((-1028) (-224) (-561))) (-15 -3903 ((-1028) (-224) (-561))) (-15 -3483 ((-1028) (-224) (-561))) (-15 -4044 ((-1028) (-224) (-561))) (-15 -2736 ((-1028) (-224) (-561))) (-15 -3593 ((-1028) (-224) (-561))) (-15 -1996 ((-1028) (-224) (-561))) (-15 -4109 ((-1028) (-224) (-561))) (-15 -1531 ((-1028) (-224) (-561))) (-15 -4183 ((-1028) (-224) (-561))) (-15 -1344 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3533 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3837 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -3189 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -1652 ((-1028) (-561) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3700 ((-1028) (-224) (-561))) (-15 -4043 ((-1028) (-224) (-561))) (-15 -1294 ((-1028) (-224) (-561))) (-15 -1679 ((-1028) (-224) (-561))) (-15 -2485 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -2148 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -1726 ((-1028) (-224) (-561))) (-15 -4135 ((-1028) (-224) (-561))) (-15 -3393 ((-1028) (-224) (-561))) (-15 -3061 ((-1028) (-224) (-561))) (-15 -2530 ((-1028) (-224) (-561))) (-15 -2628 ((-1028) (-224) (-561))) (-15 -4336 ((-1028) (-224) (-224) (-561))) (-15 -3538 ((-1028) (-224) (-224) (-224) (-561))) (-15 -2689 ((-1028) (-224) (-224) (-224) (-561))) (-15 -3939 ((-1028) (-224) (-224) (-224) (-224) (-561))))
-((-1504 (((-1259)) 18)) (-1864 (((-1148)) 22)) (-2229 (((-1148)) 21)) (-2269 (((-1094) (-1166) (-682 (-561))) 37) (((-1094) (-1166) (-682 (-224))) 32)) (-2712 (((-112)) 16)) (-2824 (((-1148) (-1148)) 25)))
-(((-753) (-10 -7 (-15 -2229 ((-1148))) (-15 -1864 ((-1148))) (-15 -2824 ((-1148) (-1148))) (-15 -2269 ((-1094) (-1166) (-682 (-224)))) (-15 -2269 ((-1094) (-1166) (-682 (-561)))) (-15 -2712 ((-112))) (-15 -1504 ((-1259))))) (T -753))
-((-1504 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-753)))) (-2712 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-561))) (-5 *2 (-1094)) (-5 *1 (-753)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1094)) (-5 *1 (-753)))) (-2824 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-1864 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-2229 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
-(-10 -7 (-15 -2229 ((-1148))) (-15 -1864 ((-1148))) (-15 -2824 ((-1148) (-1148))) (-15 -2269 ((-1094) (-1166) (-682 (-224)))) (-15 -2269 ((-1094) (-1166) (-682 (-561)))) (-15 -2712 ((-112))) (-15 -1504 ((-1259))))
-((-3047 (($ $ $) 10)) (-2748 (($ $ $ $) 9)) (-2897 (($ $ $) 12)))
-(((-754 |#1|) (-10 -8 (-15 -2897 (|#1| |#1| |#1|)) (-15 -3047 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1| |#1|))) (-755)) (T -754))
-NIL
-(-10 -8 (-15 -2897 (|#1| |#1| |#1|)) (-15 -3047 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3187 (($ $ (-914)) 28)) (-2143 (($ $ (-914)) 29)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3047 (($ $ $) 25)) (-4064 (((-856) $) 11)) (-2748 (($ $ $ $) 26)) (-2897 (($ $ $) 24)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27)))
+((-2567 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-738 *3)) (-4 *3 (-171)))))
+(-13 (-755) (-711 |t#1|) (-10 -8 (-15 -2567 ($ $ (-912)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1091) . T))
+((-2569 (((-1028) (-682 (-224)) (-544) (-112) (-544)) 25)) (-2568 (((-1028) (-682 (-224)) (-544) (-112) (-544)) 24)))
+(((-739) (-10 -7 (-15 -2568 ((-1028) (-682 (-224)) (-544) (-112) (-544))) (-15 -2569 ((-1028) (-682 (-224)) (-544) (-112) (-544))))) (T -739))
+((-2569 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739)))) (-2568 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739)))))
+(-10 -7 (-15 -2568 ((-1028) (-682 (-224)) (-544) (-112) (-544))) (-15 -2569 ((-1028) (-682 (-224)) (-544) (-112) (-544))))
+((-2572 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-2571 (((-1028) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-2570 (((-1028) (-224) (-224) (-224) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 32)))
+(((-740) (-10 -7 (-15 -2570 ((-1028) (-224) (-224) (-224) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2571 ((-1028) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2572 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -740))
+((-2572 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-2571 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-2570 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-740)))))
+(-10 -7 (-15 -2570 ((-1028) (-224) (-224) (-224) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2571 ((-1028) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2572 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))
+((-2584 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 34)) (-2583 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 33)) (-2582 (((-1028) (-544) (-682 (-224)) (-544)) 32)) (-2581 (((-1028) (-544) (-682 (-224)) (-544)) 31)) (-2580 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 30)) (-2579 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 29)) (-2578 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544)) 28)) (-2577 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544)) 27)) (-2576 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 24)) (-2575 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544)) 23)) (-2574 (((-1028) (-544) (-682 (-224)) (-544)) 22)) (-2573 (((-1028) (-544) (-682 (-224)) (-544)) 21)))
+(((-741) (-10 -7 (-15 -2573 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2574 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2575 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2576 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2577 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2578 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2579 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2580 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2581 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2582 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2583 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2584 ((-1028) (-544) (-544) (-682 (-224)) (-544))))) (T -741))
+((-2584 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2583 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2582 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2581 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2580 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2579 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2578 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2577 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2576 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2575 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2574 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2573 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(-10 -7 (-15 -2573 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2574 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2575 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2576 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2577 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2578 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2579 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2580 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2581 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2582 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2583 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2584 ((-1028) (-544) (-544) (-682 (-224)) (-544))))
+((-2596 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) 52)) (-2595 (((-1028) (-682 (-224)) (-682 (-224)) (-544) (-544)) 51)) (-2594 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) 50)) (-2593 (((-1028) (-224) (-224) (-544) (-544) (-544) (-544)) 46)) (-2592 (((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 45)) (-2591 (((-1028) (-224) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 44)) (-2590 (((-1028) (-224) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 43)) (-2589 (((-1028) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 42)) (-2588 (((-1028) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 38)) (-2587 (((-1028) (-224) (-224) (-544) (-682 (-224)) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 37)) (-2586 (((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 33)) (-2585 (((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 32)))
+(((-742) (-10 -7 (-15 -2585 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2586 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2587 ((-1028) (-224) (-224) (-544) (-682 (-224)) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2588 ((-1028) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2589 ((-1028) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2590 ((-1028) (-224) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2591 ((-1028) (-224) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2592 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2593 ((-1028) (-224) (-224) (-544) (-544) (-544) (-544))) (-15 -2594 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN))))) (-15 -2595 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-544))) (-15 -2596 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN))))))) (T -742))
+((-2596 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2595 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2594 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2593 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2592 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2591 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2590 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2589 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2588 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2587 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2586 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-742)))))
+(-10 -7 (-15 -2585 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2586 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2587 ((-1028) (-224) (-224) (-544) (-682 (-224)) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2588 ((-1028) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2589 ((-1028) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2590 ((-1028) (-224) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2591 ((-1028) (-224) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2592 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2593 ((-1028) (-224) (-224) (-544) (-544) (-544) (-544))) (-15 -2594 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN))))) (-15 -2595 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-544))) (-15 -2596 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN))))))
+((-2604 (((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76)) (-2603 (((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))) (-387) (-387)) 69) (((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) 68)) (-2602 (((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG)))) 57)) (-2601 (((-1028) (-682 (-224)) (-682 (-224)) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) 50)) (-2600 (((-1028) (-224) (-544) (-544) (-1148) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2599 (((-1028) (-224) (-544) (-544) (-224) (-1148) (-224) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2598 (((-1028) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) 42)) (-2597 (((-1028) (-224) (-544) (-544) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) 38)))
+(((-743) (-10 -7 (-15 -2597 ((-1028) (-224) (-544) (-544) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2598 ((-1028) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2599 ((-1028) (-224) (-544) (-544) (-224) (-1148) (-224) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2600 ((-1028) (-224) (-544) (-544) (-1148) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2601 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2602 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))) (-387) (-387))) (-15 -2604 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -743))
+((-2604 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2603 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2603 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2602 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2601 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2600 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2599 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2598 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2597 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+(-10 -7 (-15 -2597 ((-1028) (-224) (-544) (-544) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2598 ((-1028) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2599 ((-1028) (-224) (-544) (-544) (-224) (-1148) (-224) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2600 ((-1028) (-224) (-544) (-544) (-1148) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2601 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2602 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))) (-387) (-387))) (-15 -2604 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP))))))
+((-2607 (((-1028) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-668 (-224)) (-544)) 45)) (-2606 (((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-1148) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY)))) 41)) (-2605 (((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 23)))
+(((-744) (-10 -7 (-15 -2605 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2606 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-1148) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY))))) (-15 -2607 ((-1028) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-668 (-224)) (-544))))) (T -744))
+((-2607 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))) (-2606 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1028)) (-5 *1 (-744)))) (-2605 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))))
+(-10 -7 (-15 -2605 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2606 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-1148) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY))))) (-15 -2607 ((-1028) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-668 (-224)) (-544))))
+((-2617 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-544)) 35)) (-2616 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-224) (-224) (-544)) 34)) (-2615 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-682 (-224)) (-224) (-224) (-544)) 33)) (-2614 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 29)) (-2613 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 28)) (-2612 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544)) 27)) (-2611 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544)) 24)) (-2610 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544)) 23)) (-2609 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544)) 22)) (-2608 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544)) 21)))
+(((-745) (-10 -7 (-15 -2608 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2609 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2610 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2611 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2612 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2613 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2614 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2615 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2616 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-224) (-224) (-544))) (-15 -2617 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-544))))) (T -745))
+((-2617 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2616 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2615 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2614 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2613 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2612 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2611 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2610 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2609 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2608 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(-10 -7 (-15 -2608 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2609 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2610 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2611 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2612 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2613 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2614 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2615 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2616 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-224) (-224) (-544))) (-15 -2617 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-544))))
+((-2635 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544)) 45)) (-2634 (((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-544)) 44)) (-2633 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544)) 43)) (-2632 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 42)) (-2631 (((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544)) 41)) (-2630 (((-1028) (-1148) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544)) 40)) (-2629 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544) (-544) (-544) (-224) (-682 (-224)) (-544)) 39)) (-2628 (((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544))) 38)) (-2627 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544)) 35)) (-2626 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544)) 34)) (-2625 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544)) 33)) (-2624 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 32)) (-2623 (((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544)) 31)) (-2622 (((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-544)) 30)) (-2621 (((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-544) (-544) (-544)) 29)) (-2620 (((-1028) (-544) (-544) (-544) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-544)) (-544) (-544) (-544)) 28)) (-2619 (((-1028) (-544) (-682 (-224)) (-224) (-544)) 24)) (-2618 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 21)))
+(((-746) (-10 -7 (-15 -2618 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2619 ((-1028) (-544) (-682 (-224)) (-224) (-544))) (-15 -2620 ((-1028) (-544) (-544) (-544) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-544)) (-544) (-544) (-544))) (-15 -2621 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2622 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-544))) (-15 -2623 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544))) (-15 -2624 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2625 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544))) (-15 -2626 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544))) (-15 -2627 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2628 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)))) (-15 -2629 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544) (-544) (-544) (-224) (-682 (-224)) (-544))) (-15 -2630 ((-1028) (-1148) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2631 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2632 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2633 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2634 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2635 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))))) (T -746))
+((-2635 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2634 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2633 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2632 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2631 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2630 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2629 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2628 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2627 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2626 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2625 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2624 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2623 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2622 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2621 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2620 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *3 (-544)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2619 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2618 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(-10 -7 (-15 -2618 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2619 ((-1028) (-544) (-682 (-224)) (-224) (-544))) (-15 -2620 ((-1028) (-544) (-544) (-544) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-544)) (-544) (-544) (-544))) (-15 -2621 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2622 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-544))) (-15 -2623 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544))) (-15 -2624 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2625 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544))) (-15 -2626 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544))) (-15 -2627 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2628 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)))) (-15 -2629 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544) (-544) (-544) (-224) (-682 (-224)) (-544))) (-15 -2630 ((-1028) (-1148) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2631 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2632 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2633 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2634 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2635 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))))
+((-2643 (((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-544) (-682 (-224)) (-544)) 63)) (-2642 (((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-112) (-224) (-544) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-544) (-544) (-544) (-544) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) 62)) (-2641 (((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-544) (-544) (-682 (-224)) (-682 (-544)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-2640 (((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-544) (-544) (-682 (-224)) (-544)) 51)) (-2639 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2638 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2)))) 46)) (-2637 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2636 (((-1028) (-544) (-224) (-224) (-544) (-224) (-112) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) 38)))
+(((-747) (-10 -7 (-15 -2636 ((-1028) (-544) (-224) (-224) (-544) (-224) (-112) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2637 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2638 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2))))) (-15 -2639 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2640 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-544) (-544) (-682 (-224)) (-544))) (-15 -2641 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-544) (-544) (-682 (-224)) (-682 (-544)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -2642 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-112) (-224) (-544) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-544) (-544) (-544) (-544) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2643 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-544) (-682 (-224)) (-544))))) (T -747))
+((-2643 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2642 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-682 (-544))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2641 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-544))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-544)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2640 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2639 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2638 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2637 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2636 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
+(-10 -7 (-15 -2636 ((-1028) (-544) (-224) (-224) (-544) (-224) (-112) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2637 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2638 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2))))) (-15 -2639 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2640 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-544) (-544) (-682 (-224)) (-544))) (-15 -2641 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-544) (-544) (-682 (-224)) (-682 (-544)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -2642 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-112) (-224) (-544) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-544) (-544) (-544) (-544) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2643 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-544) (-682 (-224)) (-544))))
+((-2653 (((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544)) 47)) (-2652 (((-1028) (-1148) (-1148) (-544) (-544) (-682 (-167 (-224))) (-544) (-682 (-167 (-224))) (-544) (-544) (-682 (-167 (-224))) (-544)) 46)) (-2651 (((-1028) (-544) (-544) (-544) (-682 (-167 (-224))) (-544)) 45)) (-2650 (((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 40)) (-2649 (((-1028) (-1148) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)) (-544)) 39)) (-2648 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-544)) 36)) (-2647 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544)) 35)) (-2646 (((-1028) (-544) (-544) (-544) (-544) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-224) (-224) (-544)) 34)) (-2645 (((-1028) (-544) (-544) (-544) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-112) (-224) (-112) (-682 (-544)) (-682 (-224)) (-544)) 33)) (-2644 (((-1028) (-544) (-544) (-544) (-544) (-224) (-112) (-112) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-544)) 32)))
+(((-748) (-10 -7 (-15 -2644 ((-1028) (-544) (-544) (-544) (-544) (-224) (-112) (-112) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-544))) (-15 -2645 ((-1028) (-544) (-544) (-544) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-112) (-224) (-112) (-682 (-544)) (-682 (-224)) (-544))) (-15 -2646 ((-1028) (-544) (-544) (-544) (-544) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-224) (-224) (-544))) (-15 -2647 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544))) (-15 -2648 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2649 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)) (-544))) (-15 -2650 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2651 ((-1028) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2652 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-167 (-224))) (-544) (-682 (-167 (-224))) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2653 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544))))) (T -748))
+((-2653 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2652 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2651 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2650 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2649 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2648 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2647 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2646 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-635 (-112))) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *7 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2645 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-682 (-544))) (-5 *5 (-112)) (-5 *7 (-682 (-224))) (-5 *3 (-544)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2644 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-635 (-112))) (-5 *7 (-682 (-224))) (-5 *8 (-682 (-544))) (-5 *3 (-544)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-748)))))
+(-10 -7 (-15 -2644 ((-1028) (-544) (-544) (-544) (-544) (-224) (-112) (-112) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-544))) (-15 -2645 ((-1028) (-544) (-544) (-544) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-112) (-224) (-112) (-682 (-544)) (-682 (-224)) (-544))) (-15 -2646 ((-1028) (-544) (-544) (-544) (-544) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-224) (-224) (-544))) (-15 -2647 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544))) (-15 -2648 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2649 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)) (-544))) (-15 -2650 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2651 ((-1028) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2652 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-167 (-224))) (-544) (-682 (-167 (-224))) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2653 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544))))
+((-2668 (((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544)) 66)) (-2667 (((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544)) 61)) (-2666 (((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-2665 (((-1028) (-544) (-544) (-544) (-224) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544)) 37)) (-2664 (((-1028) (-544) (-544) (-224) (-224) (-544) (-544) (-682 (-224)) (-544)) 33)) (-2663 (((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544) (-544)) 30)) (-2662 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 29)) (-2661 (((-1028) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 28)) (-2660 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 27)) (-2659 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544)) 26)) (-2658 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 25)) (-2657 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 24)) (-2656 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 23)) (-2655 (((-1028) (-682 (-224)) (-544) (-544) (-544) (-544)) 22)) (-2654 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 21)))
+(((-749) (-10 -7 (-15 -2654 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2655 ((-1028) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2656 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2657 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2658 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2659 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2660 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2661 ((-1028) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2662 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2663 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2664 ((-1028) (-544) (-544) (-224) (-224) (-544) (-544) (-682 (-224)) (-544))) (-15 -2665 ((-1028) (-544) (-544) (-544) (-224) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -2667 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2668 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544))))) (T -749))
+((-2668 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2667 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2666 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2666 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2665 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2664 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2663 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2662 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2661 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2660 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2659 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2658 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2657 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2656 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2655 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2654 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(-10 -7 (-15 -2654 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2655 ((-1028) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2656 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2657 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2658 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2659 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2660 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2661 ((-1028) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2662 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2663 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2664 ((-1028) (-544) (-544) (-224) (-224) (-544) (-544) (-682 (-224)) (-544))) (-15 -2665 ((-1028) (-544) (-544) (-544) (-224) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -2667 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2668 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544))))
+((-2679 (((-1028) (-544) (-544) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-2678 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544)) 57)) (-2677 (((-1028) (-544) (-682 (-224)) (-112) (-224) (-544) (-544) (-544) (-544) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-2676 (((-1028) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544)) 37)) (-2675 (((-1028) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-544)) 36)) (-2674 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 33)) (-2673 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224))) 32)) (-2672 (((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544)) 28)) (-2671 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544)) 27)) (-2670 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544)) 26)) (-2669 (((-1028) (-544) (-682 (-167 (-224))) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-544)) 22)))
+(((-750) (-10 -7 (-15 -2669 ((-1028) (-544) (-682 (-167 (-224))) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2670 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2671 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2672 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544))) (-15 -2673 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)))) (-15 -2674 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2675 ((-1028) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2676 ((-1028) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2677 ((-1028) (-544) (-682 (-224)) (-112) (-224) (-544) (-544) (-544) (-544) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2678 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2679 ((-1028) (-544) (-544) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -750))
+((-2679 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2678 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2677 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2676 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2675 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2674 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2673 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2672 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2671 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2670 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2669 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-750)))))
+(-10 -7 (-15 -2669 ((-1028) (-544) (-682 (-167 (-224))) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2670 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2671 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2672 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544))) (-15 -2673 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)))) (-15 -2674 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2675 ((-1028) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2676 ((-1028) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2677 ((-1028) (-544) (-682 (-224)) (-112) (-224) (-544) (-544) (-544) (-544) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2678 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2679 ((-1028) (-544) (-544) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))
+((-2683 (((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-544) (-682 (-224))) 29)) (-2682 (((-1028) (-1148) (-544) (-544) (-682 (-224))) 28)) (-2681 (((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-224))) 27)) (-2680 (((-1028) (-544) (-544) (-544) (-682 (-224))) 21)))
+(((-751) (-10 -7 (-15 -2680 ((-1028) (-544) (-544) (-544) (-682 (-224)))) (-15 -2681 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-224)))) (-15 -2682 ((-1028) (-1148) (-544) (-544) (-682 (-224)))) (-15 -2683 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)))))) (T -751))
+((-2683 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2682 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2681 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2680 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))))
+(-10 -7 (-15 -2680 ((-1028) (-544) (-544) (-544) (-682 (-224)))) (-15 -2681 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-224)))) (-15 -2682 ((-1028) (-1148) (-544) (-544) (-682 (-224)))) (-15 -2683 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)))))
+((-2721 (((-1028) (-224) (-224) (-224) (-224) (-544)) 62)) (-2720 (((-1028) (-224) (-224) (-224) (-544)) 61)) (-2719 (((-1028) (-224) (-224) (-224) (-544)) 60)) (-2718 (((-1028) (-224) (-224) (-544)) 59)) (-2717 (((-1028) (-224) (-544)) 58)) (-2716 (((-1028) (-224) (-544)) 57)) (-2715 (((-1028) (-224) (-544)) 56)) (-2714 (((-1028) (-224) (-544)) 55)) (-2713 (((-1028) (-224) (-544)) 54)) (-2712 (((-1028) (-224) (-544)) 53)) (-2711 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 52)) (-2710 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 51)) (-2709 (((-1028) (-224) (-544)) 50)) (-2708 (((-1028) (-224) (-544)) 49)) (-2707 (((-1028) (-224) (-544)) 48)) (-2706 (((-1028) (-224) (-544)) 47)) (-2705 (((-1028) (-544) (-224) (-167 (-224)) (-544) (-1148) (-544)) 46)) (-2704 (((-1028) (-1148) (-167 (-224)) (-1148) (-544)) 45)) (-2703 (((-1028) (-1148) (-167 (-224)) (-1148) (-544)) 44)) (-2702 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 43)) (-2701 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 42)) (-2700 (((-1028) (-224) (-544)) 39)) (-2699 (((-1028) (-224) (-544)) 38)) (-2698 (((-1028) (-224) (-544)) 37)) (-2697 (((-1028) (-224) (-544)) 36)) (-2696 (((-1028) (-224) (-544)) 35)) (-2695 (((-1028) (-224) (-544)) 34)) (-2694 (((-1028) (-224) (-544)) 33)) (-2693 (((-1028) (-224) (-544)) 32)) (-2692 (((-1028) (-224) (-544)) 31)) (-2691 (((-1028) (-224) (-544)) 30)) (-2690 (((-1028) (-224) (-224) (-224) (-544)) 29)) (-2689 (((-1028) (-224) (-544)) 28)) (-2688 (((-1028) (-224) (-544)) 27)) (-2687 (((-1028) (-224) (-544)) 26)) (-2686 (((-1028) (-224) (-544)) 25)) (-2685 (((-1028) (-224) (-544)) 24)) (-2684 (((-1028) (-167 (-224)) (-544)) 21)))
+(((-752) (-10 -7 (-15 -2684 ((-1028) (-167 (-224)) (-544))) (-15 -2685 ((-1028) (-224) (-544))) (-15 -2686 ((-1028) (-224) (-544))) (-15 -2687 ((-1028) (-224) (-544))) (-15 -2688 ((-1028) (-224) (-544))) (-15 -2689 ((-1028) (-224) (-544))) (-15 -2690 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2691 ((-1028) (-224) (-544))) (-15 -2692 ((-1028) (-224) (-544))) (-15 -2693 ((-1028) (-224) (-544))) (-15 -2694 ((-1028) (-224) (-544))) (-15 -2695 ((-1028) (-224) (-544))) (-15 -2696 ((-1028) (-224) (-544))) (-15 -2697 ((-1028) (-224) (-544))) (-15 -2698 ((-1028) (-224) (-544))) (-15 -2699 ((-1028) (-224) (-544))) (-15 -2700 ((-1028) (-224) (-544))) (-15 -2701 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2702 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2703 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2704 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2705 ((-1028) (-544) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2706 ((-1028) (-224) (-544))) (-15 -2707 ((-1028) (-224) (-544))) (-15 -2708 ((-1028) (-224) (-544))) (-15 -2709 ((-1028) (-224) (-544))) (-15 -2710 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2711 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2712 ((-1028) (-224) (-544))) (-15 -2713 ((-1028) (-224) (-544))) (-15 -2714 ((-1028) (-224) (-544))) (-15 -2715 ((-1028) (-224) (-544))) (-15 -2716 ((-1028) (-224) (-544))) (-15 -2717 ((-1028) (-224) (-544))) (-15 -2718 ((-1028) (-224) (-224) (-544))) (-15 -2719 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2720 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2721 ((-1028) (-224) (-224) (-224) (-224) (-544))))) (T -752))
+((-2721 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2720 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2719 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2718 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2711 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2710 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2705 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-544)) (-5 *5 (-167 (-224))) (-5 *6 (-1148)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2704 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2702 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2701 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2690 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2685 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(-10 -7 (-15 -2684 ((-1028) (-167 (-224)) (-544))) (-15 -2685 ((-1028) (-224) (-544))) (-15 -2686 ((-1028) (-224) (-544))) (-15 -2687 ((-1028) (-224) (-544))) (-15 -2688 ((-1028) (-224) (-544))) (-15 -2689 ((-1028) (-224) (-544))) (-15 -2690 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2691 ((-1028) (-224) (-544))) (-15 -2692 ((-1028) (-224) (-544))) (-15 -2693 ((-1028) (-224) (-544))) (-15 -2694 ((-1028) (-224) (-544))) (-15 -2695 ((-1028) (-224) (-544))) (-15 -2696 ((-1028) (-224) (-544))) (-15 -2697 ((-1028) (-224) (-544))) (-15 -2698 ((-1028) (-224) (-544))) (-15 -2699 ((-1028) (-224) (-544))) (-15 -2700 ((-1028) (-224) (-544))) (-15 -2701 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2702 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2703 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2704 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2705 ((-1028) (-544) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2706 ((-1028) (-224) (-544))) (-15 -2707 ((-1028) (-224) (-544))) (-15 -2708 ((-1028) (-224) (-544))) (-15 -2709 ((-1028) (-224) (-544))) (-15 -2710 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2711 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2712 ((-1028) (-224) (-544))) (-15 -2713 ((-1028) (-224) (-544))) (-15 -2714 ((-1028) (-224) (-544))) (-15 -2715 ((-1028) (-224) (-544))) (-15 -2716 ((-1028) (-224) (-544))) (-15 -2717 ((-1028) (-224) (-544))) (-15 -2718 ((-1028) (-224) (-224) (-544))) (-15 -2719 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2720 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2721 ((-1028) (-224) (-224) (-224) (-224) (-544))))
+((-2727 (((-1259)) 18)) (-2723 (((-1148)) 22)) (-2722 (((-1148)) 21)) (-2725 (((-1093) (-1166) (-682 (-544))) 37) (((-1093) (-1166) (-682 (-224))) 32)) (-2726 (((-112)) 16)) (-2724 (((-1148) (-1148)) 25)))
+(((-753) (-10 -7 (-15 -2722 ((-1148))) (-15 -2723 ((-1148))) (-15 -2724 ((-1148) (-1148))) (-15 -2725 ((-1093) (-1166) (-682 (-224)))) (-15 -2725 ((-1093) (-1166) (-682 (-544)))) (-15 -2726 ((-112))) (-15 -2727 ((-1259))))) (T -753))
+((-2727 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-753)))) (-2726 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-544))) (-5 *2 (-1093)) (-5 *1 (-753)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1093)) (-5 *1 (-753)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-2723 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-2722 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(-10 -7 (-15 -2722 ((-1148))) (-15 -2723 ((-1148))) (-15 -2724 ((-1148) (-1148))) (-15 -2725 ((-1093) (-1166) (-682 (-224)))) (-15 -2725 ((-1093) (-1166) (-682 (-544)))) (-15 -2726 ((-112))) (-15 -2727 ((-1259))))
+((-2729 (($ $ $) 10)) (-2730 (($ $ $ $) 9)) (-2728 (($ $ $) 12)))
+(((-754 |#1|) (-10 -8 (-15 -2728 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2730 (|#1| |#1| |#1| |#1|))) (-755)) (T -754))
+NIL
+(-10 -8 (-15 -2728 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2730 (|#1| |#1| |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2542 (($ $ (-912)) 28)) (-2541 (($ $ (-912)) 29)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-2729 (($ $ $) 25)) (-4353 (((-857) $) 11)) (-2730 (($ $ $ $) 26)) (-2728 (($ $ $) 24)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27)))
(((-755) (-139)) (T -755))
-((-2748 (*1 *1 *1 *1 *1) (-4 *1 (-755))) (-3047 (*1 *1 *1 *1) (-4 *1 (-755))) (-2897 (*1 *1 *1 *1) (-4 *1 (-755))))
-(-13 (-21) (-714) (-10 -8 (-15 -2748 ($ $ $ $)) (-15 -3047 ($ $ $)) (-15 -2897 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-714) . T) ((-1090) . T))
-((-4064 (((-856) $) NIL) (($ (-561)) 10)))
-(((-756 |#1|) (-10 -8 (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-757)) (T -756))
-NIL
-(-10 -8 (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3884 (((-3 $ "failed") $) 40)) (-3187 (($ $ (-914)) 28) (($ $ (-765)) 35)) (-3735 (((-3 $ "failed") $) 38)) (-2252 (((-112) $) 34)) (-3408 (((-3 $ "failed") $) 39)) (-2143 (($ $ (-914)) 29) (($ $ (-765)) 36)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3047 (($ $ $) 25)) (-4064 (((-856) $) 11) (($ (-561)) 31)) (-3746 (((-765)) 32)) (-2748 (($ $ $ $) 26)) (-2897 (($ $ $) 24)) (-2246 (($) 18 T CONST)) (-2257 (($) 33 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 30) (($ $ (-765)) 37)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27)))
+((-2730 (*1 *1 *1 *1 *1) (-4 *1 (-755))) (-2729 (*1 *1 *1 *1) (-4 *1 (-755))) (-2728 (*1 *1 *1 *1) (-4 *1 (-755))))
+(-13 (-21) (-714) (-10 -8 (-15 -2730 ($ $ $ $)) (-15 -2729 ($ $ $)) (-15 -2728 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-714) . T) ((-1091) . T))
+((-4353 (((-857) $) NIL) (($ (-544)) 10)))
+(((-756 |#1|) (-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-757)) (T -756))
+NIL
+(-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2539 (((-3 $ #1="failed") $) 40)) (-2542 (($ $ (-912)) 28) (($ $ (-765)) 35)) (-3866 (((-3 $ #1#) $) 38)) (-2545 (((-112) $) 34)) (-2540 (((-3 $ #1#) $) 39)) (-2541 (($ $ (-912)) 29) (($ $ (-765)) 36)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-2729 (($ $ $) 25)) (-4353 (((-857) $) 11) (($ (-544)) 31)) (-3511 (((-765)) 32)) (-2730 (($ $ $ $) 26)) (-2728 (($ $ $) 24)) (-3040 (($) 18 T CONST)) (-3046 (($) 33 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30) (($ $ (-765)) 37)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27)))
(((-757) (-139)) (T -757))
-((-3746 (*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-757)))))
-(-13 (-755) (-716) (-10 -8 (-15 -3746 ((-765))) (-15 -4064 ($ (-561)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-714) . T) ((-716) . T) ((-755) . T) ((-1090) . T))
-((-2431 (((-638 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 |#1|)))))) (-682 (-168 (-406 (-561)))) |#1|) 33)) (-1624 (((-638 (-168 |#1|)) (-682 (-168 (-406 (-561)))) |#1|) 23)) (-3934 (((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))) (-1166)) 20) (((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561))))) 19)))
-(((-758 |#1|) (-10 -7 (-15 -3934 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))))) (-15 -3934 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))) (-1166))) (-15 -1624 ((-638 (-168 |#1|)) (-682 (-168 (-406 (-561)))) |#1|)) (-15 -2431 ((-638 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 |#1|)))))) (-682 (-168 (-406 (-561)))) |#1|))) (-13 (-362) (-842))) (T -758))
-((-2431 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-638 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 *4))))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *4 (-1166)) (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *5)) (-4 *5 (-13 (-362) (-842))))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
-(-10 -7 (-15 -3934 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))))) (-15 -3934 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))) (-1166))) (-15 -1624 ((-638 (-168 |#1|)) (-682 (-168 (-406 (-561)))) |#1|)) (-15 -2431 ((-638 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 |#1|)))))) (-682 (-168 (-406 (-561)))) |#1|)))
-((-1337 (((-173 (-561)) |#1|) 25)))
-(((-759 |#1|) (-10 -7 (-15 -1337 ((-173 (-561)) |#1|))) (-403)) (T -759))
-((-1337 (*1 *2 *3) (-12 (-5 *2 (-173 (-561))) (-5 *1 (-759 *3)) (-4 *3 (-403)))))
-(-10 -7 (-15 -1337 ((-173 (-561)) |#1|)))
-((-1443 ((|#1| |#1| |#1|) 24)) (-4129 ((|#1| |#1| |#1|) 23)) (-4021 ((|#1| |#1| |#1|) 32)) (-1516 ((|#1| |#1| |#1|) 28)) (-1359 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3371 (((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|) 22)))
-(((-760 |#1| |#2|) (-10 -7 (-15 -3371 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -4129 (|#1| |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 -1359 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 -4021 (|#1| |#1| |#1|))) (-702 |#2|) (-362)) (T -760))
-((-4021 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-1516 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-1359 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-1443 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-4129 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-3371 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4)))))
-(-10 -7 (-15 -3371 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -4129 (|#1| |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 -1359 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 -4021 (|#1| |#1| |#1|)))
-((-4230 (((-684 (-1212)) $ (-1212)) 26)) (-4315 (((-684 (-546)) $ (-546)) 25)) (-3284 (((-765) $ (-128)) 27)) (-4065 (((-684 (-129)) $ (-129)) 24)) (-3083 (((-684 (-1212)) $) 12)) (-1524 (((-684 (-1211)) $) 8)) (-1535 (((-684 (-1210)) $) 10)) (-2394 (((-684 (-546)) $) 13)) (-1548 (((-684 (-545)) $) 9)) (-1564 (((-684 (-544)) $) 11)) (-3430 (((-765) $ (-128)) 7)) (-1429 (((-684 (-129)) $) 14)) (-3549 (((-112) $) 31)) (-3094 (((-684 $) |#1| (-947)) 32)) (-3550 (($ $) 6)))
-(((-761 |#1|) (-139) (-1090)) (T -761))
-((-3094 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *3 (-1090)) (-5 *2 (-684 *1)) (-4 *1 (-761 *3)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
-(-13 (-573) (-10 -8 (-15 -3094 ((-684 $) |t#1| (-947))) (-15 -3549 ((-112) $))))
-(((-172) . T) ((-525) . T) ((-573) . T) ((-854) . T))
-((-4258 (((-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))) (-561)) 59)) (-3637 (((-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561))))) 57)) (-2753 (((-561)) 70)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -2753 ((-561))) (-15 -3637 ((-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))))) (-15 -4258 ((-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))) (-561)))) (-1230 (-561)) (-408 (-561) |#1|)) (T -762))
-((-4258 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-1230 *3)) (-5 *2 (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-762 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3637 (*1 *2) (-12 (-4 *3 (-1230 (-561))) (-5 *2 (-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561))))) (-5 *1 (-762 *3 *4)) (-4 *4 (-408 (-561) *3)))) (-2753 (*1 *2) (-12 (-4 *3 (-1230 *2)) (-5 *2 (-561)) (-5 *1 (-762 *3 *4)) (-4 *4 (-408 *2 *3)))))
-(-10 -7 (-15 -2753 ((-561))) (-15 -3637 ((-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))))) (-15 -4258 ((-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))) (-561))))
-((-4053 (((-112) $ $) NIL)) (-3979 (((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 20) (($ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-1723 (((-112) $ $) NIL)))
-(((-763) (-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4064 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4064 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3979 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -763))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763)))))
-(-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4064 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4064 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3979 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))
-((-4045 (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|))) 18) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166))) 17)) (-4164 (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|))) 20) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166))) 19)))
-(((-764 |#1|) (-10 -7 (-15 -4045 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -4045 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|))))) (-553)) (T -764))
-((-4164 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5)))))
-(-10 -7 (-15 -4045 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -4045 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1403 (($ $ $) 6)) (-2979 (((-3 $ "failed") $ $) 9)) (-3410 (($ $ (-561)) 7)) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($ $) NIL)) (-1771 (($ $ $) NIL)) (-2252 (((-112) $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1603 (($ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-4064 (((-856) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ $ $) NIL)))
-(((-765) (-13 (-787) (-720) (-10 -8 (-15 -1771 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1603 ($ $ $)) (-15 -1421 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -1748 ((-3 $ "failed") $ $)) (-15 -3410 ($ $ (-561))) (-15 -1362 ($ $)) (-6 (-4401 "*"))))) (T -765))
-((-1771 (*1 *1 *1 *1) (-5 *1 (-765))) (-1792 (*1 *1 *1 *1) (-5 *1 (-765))) (-1603 (*1 *1 *1 *1) (-5 *1 (-765))) (-1421 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2970 (-765)) (|:| -1744 (-765)))) (-5 *1 (-765)))) (-1748 (*1 *1 *1 *1) (|partial| -5 *1 (-765))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-765)))) (-1362 (*1 *1 *1) (-5 *1 (-765))))
-(-13 (-787) (-720) (-10 -8 (-15 -1771 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1603 ($ $ $)) (-15 -1421 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -1748 ((-3 $ "failed") $ $)) (-15 -3410 ($ $ (-561))) (-15 -1362 ($ $)) (-6 (-4401 "*"))))
-((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4164 (((-3 |#2| "failed") |#2| |#2| (-114) (-1166)) 35)))
-(((-766 |#1| |#2|) (-10 -7 (-15 -4164 ((-3 |#2| "failed") |#2| |#2| (-114) (-1166)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952))) (T -766))
-((-4164 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-952))))))
-(-10 -7 (-15 -4164 ((-3 |#2| "failed") |#2| |#2| (-114) (-1166))))
-((-4064 (((-768) |#1|) 8)))
-(((-767 |#1|) (-10 -7 (-15 -4064 ((-768) |#1|))) (-1205)) (T -767))
-((-4064 (*1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-767 *3)) (-4 *3 (-1205)))))
-(-10 -7 (-15 -4064 ((-768) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 7)) (-1723 (((-112) $ $) 9)))
-(((-768) (-1090)) (T -768))
-NIL
-(-1090)
-((-2072 ((|#2| |#4|) 35)))
-(((-769 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2072 (|#2| |#4|))) (-450) (-1230 |#1|) (-718 |#1| |#2|) (-1230 |#3|)) (T -769))
-((-2072 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1230 *4)) (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1230 *5)))))
-(-10 -7 (-15 -2072 (|#2| |#4|)))
-((-3735 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2687 (((-1259) (-1148) (-1148) |#4| |#5|) 33)) (-4156 ((|#4| |#4| |#5|) 72)) (-3073 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|) 76)) (-2536 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 16)))
-(((-770 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3735 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4156 (|#4| |#4| |#5|)) (-15 -3073 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2687 ((-1259) (-1148) (-1148) |#4| |#5|)) (-15 -2536 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -770))
-((-2536 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2687 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1259)) (-5 *1 (-770 *6 *7 *8 *4 *5)) (-4 *5 (-1062 *6 *7 *8 *4)))) (-3073 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-4156 (*1 *2 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *2 (-1056 *4 *5 *6)) (-5 *1 (-770 *4 *5 *6 *2 *3)) (-4 *3 (-1062 *4 *5 *6 *2)))) (-3735 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3735 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4156 (|#4| |#4| |#5|)) (-15 -3073 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2687 ((-1259) (-1148) (-1148) |#4| |#5|)) (-15 -2536 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)))
-((-4061 (((-3 (-1162 (-1162 |#1|)) "failed") |#4|) 43)) (-4136 (((-638 |#4|) |#4|) 15)) (-1471 ((|#4| |#4|) 11)))
-(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4136 ((-638 |#4|) |#4|)) (-15 -4061 ((-3 (-1162 (-1162 |#1|)) "failed") |#4|)) (-15 -1471 (|#4| |#4|))) (-348) (-328 |#1|) (-1230 |#2|) (-1230 |#3|) (-914)) (T -771))
-((-1471 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1230 *4)) (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1230 *5)) (-14 *6 (-914)))) (-4061 (*1 *2 *3) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1230 *5)) (-5 *2 (-1162 (-1162 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1230 *6)) (-14 *7 (-914)))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1230 *5)) (-5 *2 (-638 *3)) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1230 *6)) (-14 *7 (-914)))))
-(-10 -7 (-15 -4136 ((-638 |#4|) |#4|)) (-15 -4061 ((-3 (-1162 (-1162 |#1|)) "failed") |#4|)) (-15 -1471 (|#4| |#4|)))
-((-2161 (((-2 (|:| |deter| (-638 (-1162 |#5|))) (|:| |dterm| (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-638 |#1|)) (|:| |nlead| (-638 |#5|))) (-1162 |#5|) (-638 |#1|) (-638 |#5|)) 53)) (-1545 (((-638 (-765)) |#1|) 13)))
-(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2161 ((-2 (|:| |deter| (-638 (-1162 |#5|))) (|:| |dterm| (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-638 |#1|)) (|:| |nlead| (-638 |#5|))) (-1162 |#5|) (-638 |#1|) (-638 |#5|))) (-15 -1545 ((-638 (-765)) |#1|))) (-1230 |#4|) (-787) (-844) (-306) (-942 |#4| |#2| |#3|)) (T -772))
-((-1545 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-638 (-765))) (-5 *1 (-772 *3 *4 *5 *6 *7)) (-4 *3 (-1230 *6)) (-4 *7 (-942 *6 *4 *5)))) (-2161 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1230 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306)) (-4 *10 (-942 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-638 (-1162 *10))) (|:| |dterm| (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| *10))))) (|:| |nfacts| (-638 *6)) (|:| |nlead| (-638 *10)))) (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1162 *10)) (-5 *4 (-638 *6)) (-5 *5 (-638 *10)))))
-(-10 -7 (-15 -2161 ((-2 (|:| |deter| (-638 (-1162 |#5|))) (|:| |dterm| (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-638 |#1|)) (|:| |nlead| (-638 |#5|))) (-1162 |#5|) (-638 |#1|) (-638 |#5|))) (-15 -1545 ((-638 (-765)) |#1|)))
-((-4248 (((-638 (-2 (|:| |outval| |#1|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#1|))))) (-682 (-406 (-561))) |#1|) 31)) (-3303 (((-638 |#1|) (-682 (-406 (-561))) |#1|) 21)) (-3934 (((-945 (-406 (-561))) (-682 (-406 (-561))) (-1166)) 18) (((-945 (-406 (-561))) (-682 (-406 (-561)))) 17)))
-(((-773 |#1|) (-10 -7 (-15 -3934 ((-945 (-406 (-561))) (-682 (-406 (-561))))) (-15 -3934 ((-945 (-406 (-561))) (-682 (-406 (-561))) (-1166))) (-15 -3303 ((-638 |#1|) (-682 (-406 (-561))) |#1|)) (-15 -4248 ((-638 (-2 (|:| |outval| |#1|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#1|))))) (-682 (-406 (-561))) |#1|))) (-13 (-362) (-842))) (T -773))
-((-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-638 (-2 (|:| |outval| *4) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 *4)))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-3303 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *4 (-1166)) (-5 *2 (-945 (-406 (-561)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-362) (-842))))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-945 (-406 (-561)))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))))
-(-10 -7 (-15 -3934 ((-945 (-406 (-561))) (-682 (-406 (-561))))) (-15 -3934 ((-945 (-406 (-561))) (-682 (-406 (-561))) (-1166))) (-15 -3303 ((-638 |#1|) (-682 (-406 (-561))) |#1|)) (-15 -4248 ((-638 (-2 (|:| |outval| |#1|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#1|))))) (-682 (-406 (-561))) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 34)) (-1405 (((-638 |#2|) $) NIL)) (-1596 (((-1162 $) $ |#2|) NIL) (((-1162 |#1|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 |#2|)) NIL)) (-3164 (($ $) 28)) (-3725 (((-112) $ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3431 (($ $ $) 92 (|has| |#1| (-553)))) (-3082 (((-638 $) $ $) 105 (|has| |#1| (-553)))) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-945 (-406 (-561)))) NIL (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))))) (((-3 $ "failed") (-945 (-561))) NIL (-4050 (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-38 (-406 (-561)))))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166)))))) (((-3 $ "failed") (-945 |#1|)) NIL (-4050 (-12 (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-38 (-406 (-561))))) (-2186 (|has| |#1| (-38 (-561))))) (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-38 (-406 (-561))))) (-2186 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-985 (-561))))))) (((-3 (-1115 |#1| |#2|) "failed") $) 18)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) ((|#2| $) NIL) (($ (-945 (-406 (-561)))) NIL (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))))) (($ (-945 (-561))) NIL (-4050 (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-38 (-406 (-561)))))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166)))))) (($ (-945 |#1|)) NIL (-4050 (-12 (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-38 (-406 (-561))))) (-2186 (|has| |#1| (-38 (-561))))) (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-38 (-406 (-561))))) (-2186 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-985 (-561))))))) (((-1115 |#1| |#2|) $) NIL)) (-2395 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-553)))) (-1598 (($ $) NIL) (($ $ |#2|) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-2282 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1400 (((-112) $) NIL)) (-2566 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 69)) (-2538 (($ $) 118 (|has| |#1| (-450)))) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-4331 (($ $) NIL (|has| |#1| (-553)))) (-4177 (($ $) NIL (|has| |#1| (-553)))) (-1610 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-2352 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3227 (($ $ |#1| (-529 |#2|) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-2369 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-2249 (($ $ $ $ $) 89 (|has| |#1| (-553)))) (-1994 ((|#2| $) 19)) (-1393 (($ (-1162 |#1|) |#2|) NIL) (($ (-1162 $) |#2|) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 36) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-2404 (($ $ $) 60)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |#2|) NIL)) (-3147 (((-112) $) NIL)) (-1522 (((-529 |#2|) $) NIL) (((-765) $ |#2|) NIL) (((-638 (-765)) $ (-638 |#2|)) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-4245 (((-765) $) 20)) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-2830 (((-3 |#2| "failed") $) NIL)) (-1613 (($ $) NIL (|has| |#1| (-450)))) (-3811 (($ $) NIL (|has| |#1| (-450)))) (-1609 (((-638 $) $) NIL)) (-4100 (($ $) 37)) (-4006 (($ $) NIL (|has| |#1| (-450)))) (-2278 (((-638 $) $) 41)) (-3269 (($ $) 39)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3018 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3523 (-765))) $ $) 81)) (-2209 (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $) 66) (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $ |#2|) NIL)) (-2305 (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $) NIL) (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $ |#2|) NIL)) (-1397 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-2011 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-1883 (((-1148) $) NIL)) (-2940 (($ $ $) 107 (|has| |#1| (-553)))) (-2408 (((-638 $) $) 30)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| |#2|) (|:| -4181 (-765))) "failed") $) NIL)) (-3067 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-3641 (($ $ $) NIL)) (-3767 (($ $) 21)) (-4345 (((-112) $ $) NIL)) (-2871 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-2903 (($ $ $) NIL)) (-3149 (($ $) 23)) (-1701 (((-1110) $) NIL)) (-2171 (((-2 (|:| -1603 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-553)))) (-1453 (((-2 (|:| -1603 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-553)))) (-1530 (((-112) $) 52)) (-1542 ((|#1| $) 55)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 ((|#1| |#1| $) 115 (|has| |#1| (-450))) (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-2911 (((-2 (|:| -1603 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-553)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-553)))) (-1645 (($ $ |#1|) 111 (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-3007 (($ $ |#1|) 110 (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-638 |#2|) (-638 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-638 |#2|) (-638 $)) NIL)) (-2753 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-3922 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-3768 (((-529 |#2|) $) NIL) (((-765) $ |#2|) 43) (((-638 (-765)) $ (-638 |#2|)) NIL)) (-2086 (($ $) NIL)) (-3280 (($ $) 33)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534))))) (($ (-945 (-406 (-561)))) NIL (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))))) (($ (-945 (-561))) NIL (-4050 (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2186 (|has| |#1| (-38 (-406 (-561)))))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166)))))) (($ (-945 |#1|)) NIL (|has| |#2| (-609 (-1166)))) (((-1148) $) NIL (-12 (|has| |#1| (-1031 (-561))) (|has| |#2| (-609 (-1166))))) (((-945 |#1|) $) NIL (|has| |#2| (-609 (-1166))))) (-2125 ((|#1| $) 114 (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-945 |#1|) $) NIL (|has| |#2| (-609 (-1166)))) (((-1115 |#1| |#2|) $) 15) (($ (-1115 |#1| |#2|)) 16) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) 44) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) 13 T CONST)) (-3161 (((-3 (-112) "failed") $ $) NIL)) (-2257 (($) 35 T CONST)) (-2926 (($ $ $ $ (-765)) 87 (|has| |#1| (-553)))) (-1649 (($ $ $ (-765)) 86 (|has| |#1| (-553)))) (-3154 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) 54)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) 63)) (-1810 (($ $ $) 73)) (** (($ $ (-914)) NIL) (($ $ (-765)) 61)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 59) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+((-3511 (*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-757)))))
+(-13 (-755) (-716) (-10 -8 (-15 -3511 ((-765))) (-15 -4353 ($ (-544)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-714) . T) ((-716) . T) ((-755) . T) ((-1091) . T))
+((-2732 (((-635 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 |#1|)))))) (-682 (-167 (-406 (-544)))) |#1|) 33)) (-2731 (((-635 (-167 |#1|)) (-682 (-167 (-406 (-544)))) |#1|) 23)) (-2743 (((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))) (-1166)) 20) (((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544))))) 19)))
+(((-758 |#1|) (-10 -7 (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))))) (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))) (-1166))) (-15 -2731 ((-635 (-167 |#1|)) (-682 (-167 (-406 (-544)))) |#1|)) (-15 -2732 ((-635 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 |#1|)))))) (-682 (-167 (-406 (-544)))) |#1|))) (-13 (-362) (-842))) (T -758))
+((-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-635 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 *4))))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *4 (-1166)) (-5 *2 (-939 (-167 (-406 (-544))))) (-5 *1 (-758 *5)) (-4 *5 (-13 (-362) (-842))))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-939 (-167 (-406 (-544))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))))) (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))) (-1166))) (-15 -2731 ((-635 (-167 |#1|)) (-682 (-167 (-406 (-544)))) |#1|)) (-15 -2732 ((-635 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 |#1|)))))) (-682 (-167 (-406 (-544)))) |#1|)))
+((-2994 (((-173 (-544)) |#1|) 25)))
+(((-759 |#1|) (-10 -7 (-15 -2994 ((-173 (-544)) |#1|))) (-403)) (T -759))
+((-2994 (*1 *2 *3) (-12 (-5 *2 (-173 (-544))) (-5 *1 (-759 *3)) (-4 *3 (-403)))))
+(-10 -7 (-15 -2994 ((-173 (-544)) |#1|)))
+((-2924 ((|#1| |#1| |#1|) 24)) (-2925 ((|#1| |#1| |#1|) 23)) (-2914 ((|#1| |#1| |#1|) 32)) (-2922 ((|#1| |#1| |#1|) 28)) (-2923 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2930 (((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|) 22)))
+(((-760 |#1| |#2|) (-10 -7 (-15 -2930 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2914 (|#1| |#1| |#1|))) (-702 |#2|) (-362)) (T -760))
+((-2914 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2922 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2923 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2924 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2925 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2930 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4)))))
+(-10 -7 (-15 -2930 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2914 (|#1| |#1| |#1|)))
+((-2937 (((-684 (-1212)) $ (-1212)) 26)) (-2938 (((-684 (-547)) $ (-547)) 25)) (-2936 (((-765) $ (-129)) 27)) (-2939 (((-684 (-128)) $ (-128)) 24)) (-2150 (((-684 (-1212)) $) 12)) (-2146 (((-684 (-1211)) $) 8)) (-2148 (((-684 (-1210)) $) 10)) (-2151 (((-684 (-547)) $) 13)) (-2147 (((-684 (-546)) $) 9)) (-2149 (((-684 (-545)) $) 11)) (-2145 (((-765) $ (-129)) 7)) (-2152 (((-684 (-128)) $) 14)) (-2733 (((-112) $) 31)) (-2734 (((-684 $) |#1| (-947)) 32)) (-1844 (($ $) 6)))
+(((-761 |#1|) (-139) (-1091)) (T -761))
+((-2734 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *3 (-1091)) (-5 *2 (-684 *1)) (-4 *1 (-761 *3)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(-13 (-573) (-10 -8 (-15 -2734 ((-684 $) |t#1| (-947))) (-15 -2733 ((-112) $))))
+(((-172) . T) ((-525) . T) ((-573) . T) ((-855) . T))
+((-4326 (((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))) (-544)) 59)) (-4325 (((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544))))) 57)) (-4164 (((-544)) 70)))
+(((-762 |#1| |#2|) (-10 -7 (-15 -4164 ((-544))) (-15 -4325 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))))) (-15 -4326 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))) (-544)))) (-1229 (-544)) (-409 (-544) |#1|)) (T -762))
+((-4326 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-762 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4325 (*1 *2) (-12 (-4 *3 (-1229 (-544))) (-5 *2 (-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544))))) (-5 *1 (-762 *3 *4)) (-4 *4 (-409 (-544) *3)))) (-4164 (*1 *2) (-12 (-4 *3 (-1229 *2)) (-5 *2 (-544)) (-5 *1 (-762 *3 *4)) (-4 *4 (-409 *2 *3)))))
+(-10 -7 (-15 -4164 ((-544))) (-15 -4325 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))))) (-15 -4326 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))) (-544))))
+((-2947 (((-112) $ $) NIL)) (-3557 (((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-3437 (((-112) $ $) NIL)))
+(((-763) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3557 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -763))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763)))))
+(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3557 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))
+((-2809 (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|))) 18) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166))) 17)) (-3980 (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|))) 20) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166))) 19)))
+(((-764 |#1|) (-10 -7 (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|))))) (-554)) (T -764))
+((-3980 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4)))) (-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5)))))
+(-10 -7 (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2778 (($ $ $) 6)) (-1391 (((-3 $ "failed") $ $) 9)) (-2735 (($ $ (-544)) 7)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($ $) NIL)) (-2942 (($ $ $) NIL)) (-2545 (((-112) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3545 (($ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ $ $) NIL)))
+(((-765) (-13 (-787) (-720) (-10 -8 (-15 -2942 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -3545 ($ $ $)) (-15 -3264 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3865 ((-3 $ "failed") $ $)) (-15 -2735 ($ $ (-544))) (-15 -3377 ($ $)) (-6 (-4402 "*"))))) (T -765))
+((-2942 (*1 *1 *1 *1) (-5 *1 (-765))) (-2943 (*1 *1 *1 *1) (-5 *1 (-765))) (-3545 (*1 *1 *1 *1) (-5 *1 (-765))) (-3264 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2124 (-765)) (|:| -3285 (-765)))) (-5 *1 (-765)))) (-3865 (*1 *1 *1 *1) (|partial| -5 *1 (-765))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-765)))) (-3377 (*1 *1 *1) (-5 *1 (-765))))
+(-13 (-787) (-720) (-10 -8 (-15 -2942 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -3545 ($ $ $)) (-15 -3264 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3865 ((-3 $ "failed") $ $)) (-15 -2735 ($ $ (-544))) (-15 -3377 ($ $)) (-6 (-4402 "*"))))
+((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-3980 (((-3 |#2| "failed") |#2| |#2| (-113) (-1166)) 35)))
+(((-766 |#1| |#2|) (-10 -7 (-15 -3980 ((-3 |#2| "failed") |#2| |#2| (-113) (-1166)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953))) (T -766))
+((-3980 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-953))))))
+(-10 -7 (-15 -3980 ((-3 |#2| "failed") |#2| |#2| (-113) (-1166))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 7)) (-3437 (((-112) $ $) 9)))
+(((-767) (-1091)) (T -767))
+NIL
+(-1091)
+((-4353 (((-767) |#1|) 8)))
+(((-768 |#1|) (-10 -7 (-15 -4353 ((-767) |#1|))) (-1204)) (T -768))
+((-4353 (*1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-768 *3)) (-4 *3 (-1204)))))
+(-10 -7 (-15 -4353 ((-767) |#1|)))
+((-3517 ((|#2| |#4|) 35)))
+(((-769 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3517 (|#2| |#4|))) (-450) (-1229 |#1|) (-718 |#1| |#2|) (-1229 |#3|)) (T -769))
+((-3517 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -3517 (|#2| |#4|)))
+((-3866 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2738 (((-1259) (-1148) (-1148) |#4| |#5|) 33)) (-2736 ((|#4| |#4| |#5|) 72)) (-2737 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|) 76)) (-2739 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 16)))
+(((-770 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3866 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2736 (|#4| |#4| |#5|)) (-15 -2737 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -2738 ((-1259) (-1148) (-1148) |#4| |#5|)) (-15 -2739 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -770))
+((-2739 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2738 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1259)) (-5 *1 (-770 *6 *7 *8 *4 *5)) (-4 *5 (-1062 *6 *7 *8 *4)))) (-2737 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2736 (*1 *2 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *2 (-1056 *4 *5 *6)) (-5 *1 (-770 *4 *5 *6 *2 *3)) (-4 *3 (-1062 *4 *5 *6 *2)))) (-3866 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3866 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2736 (|#4| |#4| |#5|)) (-15 -2737 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -2738 ((-1259) (-1148) (-1148) |#4| |#5|)) (-15 -2739 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)))
+((-3558 (((-3 (-1160 (-1160 |#1|)) "failed") |#4|) 43)) (-2740 (((-635 |#4|) |#4|) 15)) (-4335 ((|#4| |#4|) 11)))
+(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2740 ((-635 |#4|) |#4|)) (-15 -3558 ((-3 (-1160 (-1160 |#1|)) "failed") |#4|)) (-15 -4335 (|#4| |#4|))) (-349) (-328 |#1|) (-1229 |#2|) (-1229 |#3|) (-912)) (T -771))
+((-4335 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-328 *3)) (-4 *5 (-1229 *4)) (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1229 *5)) (-14 *6 (-912)))) (-3558 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-1160 (-1160 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-912)))) (-2740 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-635 *3)) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-912)))))
+(-10 -7 (-15 -2740 ((-635 |#4|) |#4|)) (-15 -3558 ((-3 (-1160 (-1160 |#1|)) "failed") |#4|)) (-15 -4335 (|#4| |#4|)))
+((-2741 (((-2 (|:| |deter| (-635 (-1160 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1160 |#5|) (-635 |#1|) (-635 |#5|)) 53)) (-2742 (((-635 (-765)) |#1|) 13)))
+(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2741 ((-2 (|:| |deter| (-635 (-1160 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1160 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2742 ((-635 (-765)) |#1|))) (-1229 |#4|) (-787) (-844) (-306) (-943 |#4| |#2| |#3|)) (T -772))
+((-2742 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-635 (-765))) (-5 *1 (-772 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *6)) (-4 *7 (-943 *6 *4 *5)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1229 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306)) (-4 *10 (-943 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-635 (-1160 *10))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *10))))) (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10)))) (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1160 *10)) (-5 *4 (-635 *6)) (-5 *5 (-635 *10)))))
+(-10 -7 (-15 -2741 ((-2 (|:| |deter| (-635 (-1160 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1160 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2742 ((-635 (-765)) |#1|)))
+((-2745 (((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#1|))))) (-682 (-406 (-544))) |#1|) 31)) (-2744 (((-635 |#1|) (-682 (-406 (-544))) |#1|) 21)) (-2743 (((-939 (-406 (-544))) (-682 (-406 (-544))) (-1166)) 18) (((-939 (-406 (-544))) (-682 (-406 (-544)))) 17)))
+(((-773 |#1|) (-10 -7 (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))))) (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))) (-1166))) (-15 -2744 ((-635 |#1|) (-682 (-406 (-544))) |#1|)) (-15 -2745 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#1|))))) (-682 (-406 (-544))) |#1|))) (-13 (-362) (-842))) (T -773))
+((-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-635 (-2 (|:| |outval| *4) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 *4)))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *4 (-1166)) (-5 *2 (-939 (-406 (-544)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-362) (-842))))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-939 (-406 (-544)))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))))) (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))) (-1166))) (-15 -2744 ((-635 |#1|) (-682 (-406 (-544))) |#1|)) (-15 -2745 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#1|))))) (-682 (-406 (-544))) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 34)) (-3467 (((-635 |#2|) $) NIL)) (-3469 (((-1160 $) $ |#2|) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 |#2|)) NIL)) (-4203 (($ $) 28)) (-3567 (((-112) $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) 92 (|has| |#1| (-554)))) (-3549 (((-635 $) $ $) 105 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-939 (-406 (-544)))) NIL (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))))) (((-3 $ #3#) (-939 (-544))) NIL (-3936 (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544)))))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166)))))) (((-3 $ #3#) (-939 |#1|)) NIL (-3936 (-12 (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544))))) (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-984 (-544))))))) (((-3 (-1115 |#1| |#2|) #2#) $) 18)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) ((|#2| $) NIL) (($ (-939 (-406 (-544)))) NIL (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))))) (($ (-939 (-544))) NIL (-3936 (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544)))))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166)))))) (($ (-939 |#1|)) NIL (-3936 (-12 (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544))))) (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-984 (-544))))))) (((-1115 |#1| |#2|) $) NIL)) (-4163 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-554)))) (-4366 (($ $) NIL) (($ $ |#2|) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-4101 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3573 (((-112) $) NIL)) (-4159 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 69)) (-3544 (($ $) 118 (|has| |#1| (-450)))) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-3555 (($ $) NIL (|has| |#1| (-554)))) (-3556 (($ $) NIL (|has| |#1| (-554)))) (-3566 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-3565 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-1749 (($ $ |#1| (-529 |#2|) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-4102 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-3546 (($ $ $ $ $) 89 (|has| |#1| (-554)))) (-3581 ((|#2| $) 19)) (-3470 (($ (-1160 |#1|) |#2|) NIL) (($ (-1160 $) |#2|) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 36) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3560 (($ $ $) 60)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#2|) NIL)) (-3574 (((-112) $) NIL)) (-3202 (((-529 |#2|) $) NIL) (((-765) $ |#2|) NIL) (((-635 (-765)) $ (-635 |#2|)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3580 (((-765) $) 20)) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3468 (((-3 |#2| #4="failed") $) NIL)) (-3541 (($ $) NIL (|has| |#1| (-450)))) (-3542 (($ $) NIL (|has| |#1| (-450)))) (-3569 (((-635 $) $) NIL)) (-3572 (($ $) 37)) (-3543 (($ $) NIL (|has| |#1| (-450)))) (-3570 (((-635 $) $) 41)) (-3571 (($ $) 39)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $) 81)) (-3561 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 66) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |#2|) NIL)) (-3562 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $) NIL) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |#2|) NIL)) (-3564 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-3563 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3643 (((-1148) $) NIL)) (-3591 (($ $ $) 107 (|has| |#1| (-554)))) (-3577 (((-635 $) $) 30)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-765))) #4#) $) NIL)) (-4098 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-4093 (($ $ $) NIL)) (-3849 (($ $) 21)) (-4106 (((-112) $ $) NIL)) (-4099 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-4094 (($ $ $) NIL)) (-3579 (($ $) 23)) (-3644 (((-1110) $) NIL)) (-3550 (((-2 (|:| -3545 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-554)))) (-3551 (((-2 (|:| -3545 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-554)))) (-1944 (((-112) $) 52)) (-1943 ((|#1| $) 55)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 ((|#1| |#1| $) 115 (|has| |#1| (-450))) (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3552 (((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-554)))) (-3553 (($ $ |#1|) 111 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-3554 (($ $ |#1|) 110 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-635 |#2|) (-635 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-635 |#2|) (-635 $)) NIL)) (-4164 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4217 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4355 (((-529 |#2|) $) NIL) (((-765) $ |#2|) 43) (((-635 (-765)) $ (-635 |#2|)) NIL)) (-3578 (($ $) NIL)) (-3576 (($ $) 33)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533))))) (($ (-939 (-406 (-544)))) NIL (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))))) (($ (-939 (-544))) NIL (-3936 (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544)))))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166)))))) (($ (-939 |#1|)) NIL (|has| |#2| (-609 (-1166)))) (((-1148) $) NIL (-12 (|has| |#1| (-1031 (-544))) (|has| |#2| (-609 (-1166))))) (((-939 |#1|) $) NIL (|has| |#2| (-609 (-1166))))) (-3199 ((|#1| $) 114 (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-939 |#1|) $) NIL (|has| |#2| (-609 (-1166)))) (((-1115 |#1| |#2|) $) 15) (($ (-1115 |#1| |#2|)) 16) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) 44) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 13 T CONST)) (-3568 (((-3 (-112) #3#) $ $) NIL)) (-3046 (($) 35 T CONST)) (-3547 (($ $ $ $ (-765)) 87 (|has| |#1| (-554)))) (-3548 (($ $ $ (-765)) 86 (|has| |#1| (-554)))) (-3051 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 54)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 63)) (-4246 (($ $ $) 73)) (** (($ $ (-912)) NIL) (($ $ (-765)) 61)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 59) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
(((-774 |#1| |#2|) (-13 (-1056 |#1| (-529 |#2|) |#2|) (-608 (-1115 |#1| |#2|)) (-1031 (-1115 |#1| |#2|))) (-1042) (-844)) (T -774))
NIL
(-13 (-1056 |#1| (-529 |#2|) |#2|) (-608 (-1115 |#1| |#2|)) (-1031 (-1115 |#1| |#2|)))
-((-4165 (((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|)) 13)))
-(((-775 |#1| |#2|) (-10 -7 (-15 -4165 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|)))) (-1042) (-1042)) (T -775))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6)))))
-(-10 -7 (-15 -4165 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 12)) (-2811 (((-1254 |#1|) $ (-765)) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-1493 (($ (-1162 |#1|)) NIL)) (-1596 (((-1162 $) $ (-1072)) NIL) (((-1162 |#1|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2584 (((-638 $) $ $) 39 (|has| |#1| (-553)))) (-3431 (($ $ $) 35 (|has| |#1| (-553)))) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2525 (($ $ (-765)) NIL)) (-2613 (($ $ (-765)) NIL)) (-2241 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL) (((-3 (-1162 |#1|) "failed") $) 10)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1072) $) NIL) (((-1162 |#1|) $) NIL)) (-2395 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-1666 (($ $ $) NIL)) (-3022 (($ $ $) 71 (|has| |#1| (-553)))) (-2566 (((-2 (|:| -4226 |#1|) (|:| -2970 $) (|:| -1744 $)) $ $) 70 (|has| |#1| (-553)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-765) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4027 (((-765) $ $) NIL (|has| |#1| (-553)))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-1393 (($ (-1162 |#1|) (-1072)) NIL) (($ (-1162 $) (-1072)) NIL)) (-3508 (($ $ (-765)) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-2404 (($ $ $) 20)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-1072)) NIL) (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-1522 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-765) (-765)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1709 (((-1162 |#1|) $) NIL)) (-2830 (((-3 (-1072) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3018 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3523 (-765))) $ $) 26)) (-3378 (($ $ $) 29)) (-2320 (($ $ $) 32)) (-2209 (((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $) 31)) (-1883 (((-1148) $) NIL)) (-2940 (($ $ $) 41 (|has| |#1| (-553)))) (-4311 (((-2 (|:| -2970 $) (|:| -1744 $)) $ (-765)) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-1072)) (|:| -4181 (-765))) "failed") $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3767 (($) NIL (|has| |#1| (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2171 (((-2 (|:| -1603 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-553)))) (-1453 (((-2 (|:| -1603 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-553)))) (-1297 (((-2 (|:| -2395 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-553)))) (-2571 (((-2 (|:| -2395 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-553)))) (-1530 (((-112) $) 13)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3960 (($ $ (-765) |#1| $) 19)) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-2911 (((-2 (|:| -1603 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-553)))) (-2218 (((-2 (|:| -2395 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-553)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-638 (-1072)) (-638 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-553)))) (-3559 (((-3 $ "failed") $ (-765)) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-2753 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-3922 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3768 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-2280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-553)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-1072)) NIL) (((-1162 |#1|) $) 7) (($ (-1162 |#1|)) 8) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) 21 T CONST)) (-2257 (($) 24 T CONST)) (-3154 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) 28) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-776 |#1|) (-13 (-1230 |#1|) (-608 (-1162 |#1|)) (-1031 (-1162 |#1|)) (-10 -8 (-15 -3960 ($ $ (-765) |#1| $)) (-15 -2404 ($ $ $)) (-15 -3018 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3523 (-765))) $ $)) (-15 -3378 ($ $ $)) (-15 -2209 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -2320 ($ $ $)) (IF (|has| |#1| (-553)) (PROGN (-15 -2584 ((-638 $) $ $)) (-15 -2940 ($ $ $)) (-15 -2911 ((-2 (|:| -1603 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1453 ((-2 (|:| -1603 $) (|:| |coef1| $)) $ $)) (-15 -2171 ((-2 (|:| -1603 $) (|:| |coef2| $)) $ $)) (-15 -2218 ((-2 (|:| -2395 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2571 ((-2 (|:| -2395 |#1|) (|:| |coef1| $)) $ $)) (-15 -1297 ((-2 (|:| -2395 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1042)) (T -776))
-((-3960 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-776 *3)) (-4 *3 (-1042)))) (-2404 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))) (-3018 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-776 *3)) (|:| |polden| *3) (|:| -3523 (-765)))) (-5 *1 (-776 *3)) (-4 *3 (-1042)))) (-3378 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))) (-2209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4226 *3) (|:| |gap| (-765)) (|:| -2970 (-776 *3)) (|:| -1744 (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-1042)))) (-2320 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))) (-2584 (*1 *2 *1 *1) (-12 (-5 *2 (-638 (-776 *3))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-2940 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-553)) (-4 *2 (-1042)))) (-2911 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1603 (-776 *3)) (|:| |coef1| (-776 *3)) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-1453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1603 (-776 *3)) (|:| |coef1| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-2171 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1603 (-776 *3)) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-2218 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2395 *3) (|:| |coef1| (-776 *3)) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-2571 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2395 *3) (|:| |coef1| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-1297 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2395 *3) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
-(-13 (-1230 |#1|) (-608 (-1162 |#1|)) (-1031 (-1162 |#1|)) (-10 -8 (-15 -3960 ($ $ (-765) |#1| $)) (-15 -2404 ($ $ $)) (-15 -3018 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3523 (-765))) $ $)) (-15 -3378 ($ $ $)) (-15 -2209 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -2320 ($ $ $)) (IF (|has| |#1| (-553)) (PROGN (-15 -2584 ((-638 $) $ $)) (-15 -2940 ($ $ $)) (-15 -2911 ((-2 (|:| -1603 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1453 ((-2 (|:| -1603 $) (|:| |coef1| $)) $ $)) (-15 -2171 ((-2 (|:| -1603 $) (|:| |coef2| $)) $ $)) (-15 -2218 ((-2 (|:| -2395 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2571 ((-2 (|:| -2395 |#1|) (|:| |coef1| $)) $ $)) (-15 -1297 ((-2 (|:| -2395 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-3771 ((|#1| (-765) |#1|) 32 (|has| |#1| (-38 (-406 (-561)))))) (-2732 ((|#1| (-765) |#1|) 22)) (-3629 ((|#1| (-765) |#1|) 34 (|has| |#1| (-38 (-406 (-561)))))))
-(((-777 |#1|) (-10 -7 (-15 -2732 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -3629 (|#1| (-765) |#1|)) (-15 -3771 (|#1| (-765) |#1|))) |%noBranch|)) (-171)) (T -777))
-((-3771 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-171)))) (-3629 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-171)))) (-2732 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171)))))
-(-10 -7 (-15 -2732 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -3629 (|#1| (-765) |#1|)) (-15 -3771 (|#1| (-765) |#1|))) |%noBranch|))
-((-4053 (((-112) $ $) 7)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) 85)) (-3742 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1405 (((-638 |#3|) $) 33)) (-4214 (((-112) $) 26)) (-2444 (((-112) $) 17 (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) 101) (((-112) $) 97)) (-4089 ((|#4| |#4| $) 92)) (-2557 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) 27)) (-2684 (((-112) $ (-765)) 44)) (-3612 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) 79)) (-2674 (($) 45 T CONST)) (-3853 (((-112) $) 22 (|has| |#1| (-553)))) (-3733 (((-112) $ $) 24 (|has| |#1| (-553)))) (-4338 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1577 (((-112) $) 25 (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3293 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) 36)) (-3979 (($ (-638 |#4|)) 35)) (-1437 (((-3 $ "failed") $) 82)) (-2471 ((|#4| |#4| $) 89)) (-1461 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2310 ((|#4| |#4| $) 87)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) 105)) (-2207 (((-112) |#4| $) 136)) (-1775 (((-112) |#4| $) 133)) (-2101 (((-112) |#4| $) 137) (((-112) $) 134)) (-2368 (((-638 |#4|) $) 52 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) 104) (((-112) $) 103)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) 43)) (-4125 (((-638 |#4|) $) 53 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 47)) (-2597 (((-638 |#3|) $) 32)) (-2247 (((-112) |#3| $) 31)) (-3683 (((-112) $ (-765)) 42)) (-1883 (((-1148) $) 9)) (-1413 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-2940 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1501 (((-3 |#4| "failed") $) 83)) (-1465 (((-638 $) |#4| $) 129)) (-4220 (((-3 (-112) (-638 $)) |#4| $) 132)) (-4151 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1338 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-1747 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-3589 (((-638 |#4|) $) 107)) (-3067 (((-112) |#4| $) 99) (((-112) $) 95)) (-3641 ((|#4| |#4| $) 90)) (-4345 (((-112) $ $) 110)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) 100) (((-112) $) 96)) (-2903 ((|#4| |#4| $) 91)) (-1701 (((-1110) $) 10)) (-1424 (((-3 |#4| "failed") $) 84)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2336 (((-3 $ "failed") $ |#4|) 78)) (-3702 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-3977 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) 38)) (-2508 (((-112) $) 41)) (-2910 (($) 40)) (-3768 (((-765) $) 106)) (-1714 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4399)))) (-4225 (($ $) 39)) (-4216 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-2049 (($ $ |#3|) 30)) (-1768 (($ $) 88)) (-2983 (($ $ |#3|) 29)) (-4064 (((-856) $) 11) (((-638 |#4|) $) 37)) (-3513 (((-765) $) 76 (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2909 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) 81)) (-2283 (((-112) |#4| $) 135)) (-4024 (((-112) |#3| $) 80)) (-1723 (((-112) $ $) 6)) (-3548 (((-765) $) 46 (|has| $ (-6 -4399)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 12)) (-4173 (((-1253 |#1|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#1|)) NIL)) (-3469 (((-1160 $) $ (-1072)) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2749 (((-635 $) $ $) 39 (|has| |#1| (-554)))) (-4162 (($ $ $) 35 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4167 (($ $ (-765)) NIL)) (-4166 (($ $ (-765)) NIL)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL) (((-3 (-1160 |#1|) #2#) $) 10)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1072) $) NIL) (((-1160 |#1|) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4165 (($ $ $) NIL)) (-4160 (($ $ $) 71 (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) 70 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-765) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ $) NIL (|has| |#1| (-554)))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) NIL) (($ (-1160 $) (-1072)) NIL)) (-4183 (($ $ (-765)) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3560 (($ $ $) 20)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4172 (((-1160 |#1|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3880 (-765))) $ $) 26)) (-2751 (($ $ $) 29)) (-2750 (($ $ $) 32)) (-3561 (((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 31)) (-3643 (((-1148) $) NIL)) (-3591 (($ $ $) 41 (|has| |#1| (-554)))) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) NIL)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3550 (((-2 (|:| -3545 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-554)))) (-3551 (((-2 (|:| -3545 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-554)))) (-2746 (((-2 (|:| -4163 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-554)))) (-2747 (((-2 (|:| -4163 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-554)))) (-1944 (((-112) $) 13)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4145 (($ $ (-765) |#1| $) 19)) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3552 (((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-554)))) (-2748 (((-2 (|:| -4163 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-554)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-635 (-1072)) (-635 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4355 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#1| (-554)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-1072)) NIL) (((-1160 |#1|) $) 7) (($ (-1160 |#1|)) 8) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 21 T CONST)) (-3046 (($) 24 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) 28) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-775 |#1|) (-13 (-1229 |#1|) (-608 (-1160 |#1|)) (-1031 (-1160 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#1| $)) (-15 -3560 ($ $ $)) (-15 -3559 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3880 (-765))) $ $)) (-15 -2751 ($ $ $)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2750 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -2749 ((-635 $) $ $)) (-15 -3591 ($ $ $)) (-15 -3552 ((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3551 ((-2 (|:| -3545 $) (|:| |coef1| $)) $ $)) (-15 -3550 ((-2 (|:| -3545 $) (|:| |coef2| $)) $ $)) (-15 -2748 ((-2 (|:| -4163 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2747 ((-2 (|:| -4163 |#1|) (|:| |coef1| $)) $ $)) (-15 -2746 ((-2 (|:| -4163 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1042)) (T -775))
+((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-775 *3)) (-4 *3 (-1042)))) (-3560 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))) (-3559 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-775 *3)) (|:| |polden| *3) (|:| -3880 (-765)))) (-5 *1 (-775 *3)) (-4 *3 (-1042)))) (-2751 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))) (-3561 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4361 *3) (|:| |gap| (-765)) (|:| -2124 (-775 *3)) (|:| -3285 (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-1042)))) (-2750 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))) (-2749 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-775 *3))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-3591 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-554)) (-4 *2 (-1042)))) (-3552 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-3551 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-3550 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-2748 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-2747 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-2746 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))))
+(-13 (-1229 |#1|) (-608 (-1160 |#1|)) (-1031 (-1160 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#1| $)) (-15 -3560 ($ $ $)) (-15 -3559 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3880 (-765))) $ $)) (-15 -2751 ($ $ $)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2750 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -2749 ((-635 $) $ $)) (-15 -3591 ($ $ $)) (-15 -3552 ((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3551 ((-2 (|:| -3545 $) (|:| |coef1| $)) $ $)) (-15 -3550 ((-2 (|:| -3545 $) (|:| |coef2| $)) $ $)) (-15 -2748 ((-2 (|:| -4163 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2747 ((-2 (|:| -4163 |#1|) (|:| |coef1| $)) $ $)) (-15 -2746 ((-2 (|:| -4163 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4365 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 13)))
+(((-776 |#1| |#2|) (-10 -7 (-15 -4365 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)))) (-1042) (-1042)) (T -776))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6)))))
+(-10 -7 (-15 -4365 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))))
+((-2753 ((|#1| (-765) |#1|) 32 (|has| |#1| (-38 (-406 (-544)))))) (-3183 ((|#1| (-765) |#1|) 22)) (-2752 ((|#1| (-765) |#1|) 34 (|has| |#1| (-38 (-406 (-544)))))))
+(((-777 |#1|) (-10 -7 (-15 -3183 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -2752 (|#1| (-765) |#1|)) (-15 -2753 (|#1| (-765) |#1|))) |%noBranch|)) (-171)) (T -777))
+((-2753 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-171)))) (-2752 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-171)))) (-3183 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171)))))
+(-10 -7 (-15 -3183 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -2752 (|#1| (-765) |#1|)) (-15 -2753 (|#1| (-765) |#1|))) |%noBranch|))
+((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400)))))
(((-778 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -778))
NIL
(-13 (-1062 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
-((-3610 (((-3 (-378) "failed") (-315 |#1|) (-914)) 62 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-378) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-378) "failed") (-406 (-945 |#1|)) (-914)) 41 (|has| |#1| (-553))) (((-3 (-378) "failed") (-406 (-945 |#1|))) 40 (|has| |#1| (-553))) (((-3 (-378) "failed") (-945 |#1|) (-914)) 31 (|has| |#1| (-1042))) (((-3 (-378) "failed") (-945 |#1|)) 30 (|has| |#1| (-1042)))) (-2309 (((-378) (-315 |#1|) (-914)) 99 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-378) (-315 |#1|)) 94 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-378) (-406 (-945 |#1|)) (-914)) 91 (|has| |#1| (-553))) (((-378) (-406 (-945 |#1|))) 90 (|has| |#1| (-553))) (((-378) (-945 |#1|) (-914)) 86 (|has| |#1| (-1042))) (((-378) (-945 |#1|)) 85 (|has| |#1| (-1042))) (((-378) |#1| (-914)) 76) (((-378) |#1|) 22)) (-3045 (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-914)) 71 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-315 |#1|) (-914)) 63 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))) (-914)) 46 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|)))) 45 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)) (-914)) 39 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-406 (-945 |#1|))) 38 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-945 |#1|) (-914)) 28 (|has| |#1| (-1042))) (((-3 (-168 (-378)) "failed") (-945 |#1|)) 26 (|has| |#1| (-1042))) (((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)) (-914)) 18 (|has| |#1| (-171))) (((-3 (-168 (-378)) "failed") (-945 (-168 |#1|))) 15 (|has| |#1| (-171)))) (-1559 (((-168 (-378)) (-315 (-168 |#1|)) (-914)) 102 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-315 |#1|) (-914)) 100 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-315 |#1|)) 98 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-406 (-945 (-168 |#1|))) (-914)) 93 (|has| |#1| (-553))) (((-168 (-378)) (-406 (-945 (-168 |#1|)))) 92 (|has| |#1| (-553))) (((-168 (-378)) (-406 (-945 |#1|)) (-914)) 89 (|has| |#1| (-553))) (((-168 (-378)) (-406 (-945 |#1|))) 88 (|has| |#1| (-553))) (((-168 (-378)) (-945 |#1|) (-914)) 84 (|has| |#1| (-1042))) (((-168 (-378)) (-945 |#1|)) 83 (|has| |#1| (-1042))) (((-168 (-378)) (-945 (-168 |#1|)) (-914)) 78 (|has| |#1| (-171))) (((-168 (-378)) (-945 (-168 |#1|))) 77 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|) (-914)) 80 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|)) 79 (|has| |#1| (-171))) (((-168 (-378)) |#1| (-914)) 27) (((-168 (-378)) |#1|) 25)))
-(((-779 |#1|) (-10 -7 (-15 -2309 ((-378) |#1|)) (-15 -2309 ((-378) |#1| (-914))) (-15 -1559 ((-168 (-378)) |#1|)) (-15 -1559 ((-168 (-378)) |#1| (-914))) (IF (|has| |#1| (-171)) (PROGN (-15 -1559 ((-168 (-378)) (-168 |#1|))) (-15 -1559 ((-168 (-378)) (-168 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-945 (-168 |#1|)))) (-15 -1559 ((-168 (-378)) (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2309 ((-378) (-945 |#1|))) (-15 -2309 ((-378) (-945 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-945 |#1|))) (-15 -1559 ((-168 (-378)) (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2309 ((-378) (-406 (-945 |#1|)))) (-15 -2309 ((-378) (-406 (-945 |#1|)) (-914))) (-15 -1559 ((-168 (-378)) (-406 (-945 |#1|)))) (-15 -1559 ((-168 (-378)) (-406 (-945 |#1|)) (-914))) (-15 -1559 ((-168 (-378)) (-406 (-945 (-168 |#1|))))) (-15 -1559 ((-168 (-378)) (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -2309 ((-378) (-315 |#1|))) (-15 -2309 ((-378) (-315 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-315 |#1|))) (-15 -1559 ((-168 (-378)) (-315 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1559 ((-168 (-378)) (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -3610 ((-3 (-378) "failed") (-945 |#1|))) (-15 -3610 ((-3 (-378) "failed") (-945 |#1|) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 |#1|))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -3610 ((-3 (-378) "failed") (-406 (-945 |#1|)))) (-15 -3610 ((-3 (-378) "failed") (-406 (-945 |#1|)) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -3610 ((-3 (-378) "failed") (-315 |#1|))) (-15 -3610 ((-3 (-378) "failed") (-315 |#1|) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|)) (-609 (-378))) (T -779))
-((-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3610 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-3610 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3610 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-3610 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3610 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-3610 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-914)) (-4 *5 (-171)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-168 (-378))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-378))))) (-1559 (*1 *2 *3) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-378))))) (-2309 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-378)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))) (-2309 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))))
-(-10 -7 (-15 -2309 ((-378) |#1|)) (-15 -2309 ((-378) |#1| (-914))) (-15 -1559 ((-168 (-378)) |#1|)) (-15 -1559 ((-168 (-378)) |#1| (-914))) (IF (|has| |#1| (-171)) (PROGN (-15 -1559 ((-168 (-378)) (-168 |#1|))) (-15 -1559 ((-168 (-378)) (-168 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-945 (-168 |#1|)))) (-15 -1559 ((-168 (-378)) (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2309 ((-378) (-945 |#1|))) (-15 -2309 ((-378) (-945 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-945 |#1|))) (-15 -1559 ((-168 (-378)) (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2309 ((-378) (-406 (-945 |#1|)))) (-15 -2309 ((-378) (-406 (-945 |#1|)) (-914))) (-15 -1559 ((-168 (-378)) (-406 (-945 |#1|)))) (-15 -1559 ((-168 (-378)) (-406 (-945 |#1|)) (-914))) (-15 -1559 ((-168 (-378)) (-406 (-945 (-168 |#1|))))) (-15 -1559 ((-168 (-378)) (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -2309 ((-378) (-315 |#1|))) (-15 -2309 ((-378) (-315 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-315 |#1|))) (-15 -1559 ((-168 (-378)) (-315 |#1|) (-914))) (-15 -1559 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1559 ((-168 (-378)) (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -3610 ((-3 (-378) "failed") (-945 |#1|))) (-15 -3610 ((-3 (-378) "failed") (-945 |#1|) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 |#1|))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -3610 ((-3 (-378) "failed") (-406 (-945 |#1|)))) (-15 -3610 ((-3 (-378) "failed") (-406 (-945 |#1|)) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -3610 ((-3 (-378) "failed") (-315 |#1|))) (-15 -3610 ((-3 (-378) "failed") (-315 |#1|) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-914))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -3045 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|))
-((-3701 (((-914) (-1148)) 64)) (-2494 (((-3 (-378) "failed") (-1148)) 32)) (-2164 (((-378) (-1148)) 30)) (-2393 (((-914) (-1148)) 53)) (-3411 (((-1148) (-914)) 54)) (-1329 (((-1148) (-914)) 52)))
-(((-780) (-10 -7 (-15 -1329 ((-1148) (-914))) (-15 -2393 ((-914) (-1148))) (-15 -3411 ((-1148) (-914))) (-15 -3701 ((-914) (-1148))) (-15 -2164 ((-378) (-1148))) (-15 -2494 ((-3 (-378) "failed") (-1148))))) (T -780))
-((-2494 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))))
-(-10 -7 (-15 -1329 ((-1148) (-914))) (-15 -2393 ((-914) (-1148))) (-15 -3411 ((-1148) (-914))) (-15 -3701 ((-914) (-1148))) (-15 -2164 ((-378) (-1148))) (-15 -2494 ((-3 (-378) "failed") (-1148))))
-((-4053 (((-112) $ $) 7)) (-1667 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 15) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 13)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)))
+(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T))
+((-2756 (((-3 (-377) "failed") (-313 |#1|) (-912)) 62 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-377) "failed") (-313 |#1|)) 54 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-377) "failed") (-406 (-939 |#1|)) (-912)) 41 (|has| |#1| (-554))) (((-3 (-377) "failed") (-406 (-939 |#1|))) 40 (|has| |#1| (-554))) (((-3 (-377) "failed") (-939 |#1|) (-912)) 31 (|has| |#1| (-1042))) (((-3 (-377) "failed") (-939 |#1|)) 30 (|has| |#1| (-1042)))) (-2754 (((-377) (-313 |#1|) (-912)) 99 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-377) (-313 |#1|)) 94 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-377) (-406 (-939 |#1|)) (-912)) 91 (|has| |#1| (-554))) (((-377) (-406 (-939 |#1|))) 90 (|has| |#1| (-554))) (((-377) (-939 |#1|) (-912)) 86 (|has| |#1| (-1042))) (((-377) (-939 |#1|)) 85 (|has| |#1| (-1042))) (((-377) |#1| (-912)) 76) (((-377) |#1|) 22)) (-2757 (((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)) (-912)) 71 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-313 (-167 |#1|))) 70 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-313 |#1|) (-912)) 63 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-313 |#1|)) 61 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))) (-912)) 46 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|)))) 45 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)) (-912)) 39 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-406 (-939 |#1|))) 38 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-939 |#1|) (-912)) 28 (|has| |#1| (-1042))) (((-3 (-167 (-377)) "failed") (-939 |#1|)) 26 (|has| |#1| (-1042))) (((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)) (-912)) 18 (|has| |#1| (-171))) (((-3 (-167 (-377)) "failed") (-939 (-167 |#1|))) 15 (|has| |#1| (-171)))) (-2755 (((-167 (-377)) (-313 (-167 |#1|)) (-912)) 102 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-313 (-167 |#1|))) 101 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-313 |#1|) (-912)) 100 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-313 |#1|)) 98 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-406 (-939 (-167 |#1|))) (-912)) 93 (|has| |#1| (-554))) (((-167 (-377)) (-406 (-939 (-167 |#1|)))) 92 (|has| |#1| (-554))) (((-167 (-377)) (-406 (-939 |#1|)) (-912)) 89 (|has| |#1| (-554))) (((-167 (-377)) (-406 (-939 |#1|))) 88 (|has| |#1| (-554))) (((-167 (-377)) (-939 |#1|) (-912)) 84 (|has| |#1| (-1042))) (((-167 (-377)) (-939 |#1|)) 83 (|has| |#1| (-1042))) (((-167 (-377)) (-939 (-167 |#1|)) (-912)) 78 (|has| |#1| (-171))) (((-167 (-377)) (-939 (-167 |#1|))) 77 (|has| |#1| (-171))) (((-167 (-377)) (-167 |#1|) (-912)) 80 (|has| |#1| (-171))) (((-167 (-377)) (-167 |#1|)) 79 (|has| |#1| (-171))) (((-167 (-377)) |#1| (-912)) 27) (((-167 (-377)) |#1|) 25)))
+(((-779 |#1|) (-10 -7 (-15 -2754 ((-377) |#1|)) (-15 -2754 ((-377) |#1| (-912))) (-15 -2755 ((-167 (-377)) |#1|)) (-15 -2755 ((-167 (-377)) |#1| (-912))) (IF (|has| |#1| (-171)) (PROGN (-15 -2755 ((-167 (-377)) (-167 |#1|))) (-15 -2755 ((-167 (-377)) (-167 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2754 ((-377) (-939 |#1|))) (-15 -2754 ((-377) (-939 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 |#1|))) (-15 -2755 ((-167 (-377)) (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2754 ((-377) (-406 (-939 |#1|)))) (-15 -2754 ((-377) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2754 ((-377) (-313 |#1|))) (-15 -2754 ((-377) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 |#1|))) (-15 -2755 ((-167 (-377)) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-939 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-939 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)))) (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-313 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|)) (-609 (-377))) (T -779))
+((-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-167 (-377))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-377))))) (-2755 (*1 *2 *3) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-377))))) (-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))) (-2754 (*1 *2 *3) (-12 (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))))
+(-10 -7 (-15 -2754 ((-377) |#1|)) (-15 -2754 ((-377) |#1| (-912))) (-15 -2755 ((-167 (-377)) |#1|)) (-15 -2755 ((-167 (-377)) |#1| (-912))) (IF (|has| |#1| (-171)) (PROGN (-15 -2755 ((-167 (-377)) (-167 |#1|))) (-15 -2755 ((-167 (-377)) (-167 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2754 ((-377) (-939 |#1|))) (-15 -2754 ((-377) (-939 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 |#1|))) (-15 -2755 ((-167 (-377)) (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2754 ((-377) (-406 (-939 |#1|)))) (-15 -2754 ((-377) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2754 ((-377) (-313 |#1|))) (-15 -2754 ((-377) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 |#1|))) (-15 -2755 ((-167 (-377)) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-939 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-939 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)))) (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-313 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|))
+((-2761 (((-912) (-1148)) 64)) (-2763 (((-3 (-377) "failed") (-1148)) 32)) (-2762 (((-377) (-1148)) 30)) (-2759 (((-912) (-1148)) 53)) (-2760 (((-1148) (-912)) 54)) (-2758 (((-1148) (-912)) 52)))
+(((-780) (-10 -7 (-15 -2758 ((-1148) (-912))) (-15 -2759 ((-912) (-1148))) (-15 -2760 ((-1148) (-912))) (-15 -2761 ((-912) (-1148))) (-15 -2762 ((-377) (-1148))) (-15 -2763 ((-3 (-377) "failed") (-1148))))) (T -780))
+((-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780)))))
+(-10 -7 (-15 -2758 ((-1148) (-912))) (-15 -2759 ((-912) (-1148))) (-15 -2760 ((-1148) (-912))) (-15 -2761 ((-912) (-1148))) (-15 -2762 ((-377) (-1148))) (-15 -2763 ((-3 (-377) "failed") (-1148))))
+((-2947 (((-112) $ $) 7)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 15) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 13)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)))
(((-781) (-139)) (T -781))
-((-2008 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-1667 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-2008 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-1667 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
-(-13 (-1090) (-10 -7 (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1667 ((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1667 ((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-3604 (((-1259) (-1254 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))) (-378) (-1254 (-378)) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378))) 44) (((-1259) (-1254 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))) (-378) (-1254 (-378)) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378))) 43)) (-4133 (((-1259) (-1254 (-378)) (-561) (-378) (-378) (-561) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378))) 50)) (-4270 (((-1259) (-1254 (-378)) (-561) (-378) (-378) (-378) (-378) (-561) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378))) 41)) (-2223 (((-1259) (-1254 (-378)) (-561) (-378) (-378) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378))) 52) (((-1259) (-1254 (-378)) (-561) (-378) (-378) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378))) 51)))
-(((-782) (-10 -7 (-15 -2223 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))) (-15 -2223 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)))) (-15 -4270 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-378) (-378) (-561) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))) (-15 -3604 ((-1259) (-1254 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))) (-378) (-1254 (-378)) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))) (-15 -3604 ((-1259) (-1254 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))) (-378) (-1254 (-378)) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)))) (-15 -4133 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-561) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))))) (T -782))
-((-4133 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378))) (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-3604 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-561)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378)))) (-5 *7 (-1 (-1259) (-1254 *5) (-1254 *5) (-378))) (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-3604 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-561)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378)))) (-5 *7 (-1 (-1259) (-1254 *5) (-1254 *5) (-378))) (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-4270 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378))) (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2223 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378))) (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2223 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378))) (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259)) (-5 *1 (-782)))))
-(-10 -7 (-15 -2223 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))) (-15 -2223 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)))) (-15 -4270 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-378) (-378) (-561) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))) (-15 -3604 ((-1259) (-1254 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))) (-378) (-1254 (-378)) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))) (-15 -3604 ((-1259) (-1254 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))) (-378) (-1254 (-378)) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)) (-1254 (-378)))) (-15 -4133 ((-1259) (-1254 (-378)) (-561) (-378) (-378) (-561) (-1 (-1259) (-1254 (-378)) (-1254 (-378)) (-378)))))
-((-3003 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 53)) (-3173 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 31)) (-2600 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 52)) (-3005 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 29)) (-2870 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 51)) (-3664 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 19)) (-2706 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561)) 32)) (-3272 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561)) 30)) (-2581 (((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561)) 28)))
-(((-783) (-10 -7 (-15 -2581 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -3272 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -2706 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -3664 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -3005 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -3173 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2870 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2600 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -3003 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))))) (T -783))
-((-3003 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-2600 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-2870 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-3173 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-3005 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-3664 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-2706 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-3272 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-2581 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))))
-(-10 -7 (-15 -2581 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -3272 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -2706 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -3664 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -3005 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -3173 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2870 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2600 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -3003 ((-2 (|:| -2506 (-378)) (|:| -3984 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))))
-((-3962 (((-1200 |#1|) |#1| (-224) (-561)) 46)))
-(((-784 |#1|) (-10 -7 (-15 -3962 ((-1200 |#1|) |#1| (-224) (-561)))) (-967)) (T -784))
-((-3962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-561)) (-5 *2 (-1200 *3)) (-5 *1 (-784 *3)) (-4 *3 (-967)))))
-(-10 -7 (-15 -3962 ((-1200 |#1|) |#1| (-224) (-561))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 24)) (-2979 (((-3 $ "failed") $ $) 26)) (-2674 (($) 23 T CONST)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1819 (($ $ $) 28) (($ $) 27)) (-1810 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25) (($ (-561) $) 29)))
+((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-2764 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-2764 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
+(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2764 ((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2764 ((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2767 (((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377))) 44) (((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 43)) (-2768 (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 50)) (-2766 (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 41)) (-2765 (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377))) 52) (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 51)))
+(((-782) (-10 -7 (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2766 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2768 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))))) (T -782))
+((-2768 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2767 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-544)) (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377)))) (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2767 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-544)) (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377)))) (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2766 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2765 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2765 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))))
+(-10 -7 (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2766 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2768 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))))
+((-2777 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 53)) (-2774 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 31)) (-2776 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 52)) (-2773 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 29)) (-2775 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 51)) (-2772 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 19)) (-2771 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544)) 32)) (-2770 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544)) 30)) (-2769 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544)) 28)))
+(((-783) (-10 -7 (-15 -2769 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2770 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2771 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2772 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2773 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2774 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2775 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2776 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2777 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))))) (T -783))
+((-2777 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2776 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2775 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2774 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2773 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2772 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2771 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2770 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2769 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))))
+(-10 -7 (-15 -2769 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2770 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2771 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2772 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2773 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2774 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2775 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2776 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2777 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))))
+((-4112 (((-1200 |#1|) |#1| (-224) (-544)) 46)))
+(((-784 |#1|) (-10 -7 (-15 -4112 ((-1200 |#1|) |#1| (-224) (-544)))) (-967)) (T -784))
+((-4112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-544)) (-5 *2 (-1200 *3)) (-5 *1 (-784 *3)) (-4 *3 (-967)))))
+(-10 -7 (-15 -4112 ((-1200 |#1|) |#1| (-224) (-544))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4244 (($ $ $) 28) (($ $) 27)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25) (($ (-544) $) 29)))
(((-785) (-139)) (T -785))
NIL
-(-13 (-789) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-844) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 24)) (-2674 (($) 23 T CONST)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1810 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25)))
+(-13 (-791) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-844) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25)))
(((-786) (-139)) (T -786))
NIL
(-13 (-788) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-788) . T) ((-844) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 24)) (-1403 (($ $ $) 27)) (-2979 (((-3 $ "failed") $ $) 26)) (-2674 (($) 23 T CONST)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1810 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-788) . T) ((-844) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-2778 (($ $ $) 27)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25)))
(((-787) (-139)) (T -787))
-((-1403 (*1 *1 *1 *1) (-4 *1 (-787))))
-(-13 (-789) (-10 -8 (-15 -1403 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-844) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1810 (($ $ $) 20)) (* (($ (-914) $) 21)))
+((-2778 (*1 *1 *1 *1) (-4 *1 (-787))))
+(-13 (-791) (-10 -8 (-15 -2778 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-844) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21)))
(((-788) (-139)) (T -788))
NIL
(-13 (-844) (-25))
-(((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-844) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 24)) (-2979 (((-3 $ "failed") $ $) 26)) (-2674 (($) 23 T CONST)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1810 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25)))
-(((-789) (-139)) (T -789))
+(((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-844) . T) ((-1091) . T))
+((-3589 (((-112) $) 41)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 42)) (-3407 (((-3 (-406 (-544)) "failed") $) 78)) (-3406 (((-112) $) 72)) (-3405 (((-406 (-544)) $) 76)) (-3517 ((|#2| $) 26)) (-4365 (($ (-1 |#2| |#2|) $) 23)) (-2779 (($ $) 61)) (-4377 (((-533) $) 67)) (-3392 (($ $) 21)) (-4353 (((-857) $) 56) (($ (-544)) 39) (($ |#2|) 37) (($ (-406 (-544))) NIL)) (-3511 (((-765)) 10)) (-3787 ((|#2| $) 71)) (-3437 (((-112) $ $) 29)) (-3067 (((-112) $ $) 69)) (-4244 (($ $) 31) (($ $ $) NIL)) (-4246 (($ $ $) 30)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-789 |#1| |#2|) (-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-790 |#2|) (-171)) (T -789))
+((-3511 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-789 *3 *4)) (-4 *3 (-790 *4)))))
+(-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-3521 (((-765)) 52 (|has| |#1| (-367)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 94 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 91 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 88)) (-3557 (((-544) $) 93 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 90 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 89)) (-3866 (((-3 $ "failed") $) 33)) (-4050 ((|#1| $) 78)) (-3407 (((-3 (-406 (-544)) "failed") $) 65 (|has| |#1| (-543)))) (-3406 (((-112) $) 67 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 66 (|has| |#1| (-543)))) (-3377 (($) 55 (|has| |#1| (-367)))) (-2545 (((-112) $) 31)) (-2784 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3517 ((|#1| $) 70)) (-2913 (($ $ $) 61 (|has| |#1| (-844)))) (-3242 (($ $ $) 60 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 80)) (-2160 (((-912) $) 54 (|has| |#1| (-367)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 64 (|has| |#1| (-362)))) (-2535 (($ (-912)) 53 (|has| |#1| (-367)))) (-2781 ((|#1| $) 75)) (-2782 ((|#1| $) 76)) (-2783 ((|#1| $) 77)) (-3389 ((|#1| $) 71)) (-3390 ((|#1| $) 72)) (-3391 ((|#1| $) 73)) (-2780 ((|#1| $) 74)) (-3644 (((-1110) $) 10)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 82 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 81 (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-4377 (((-533) $) 62 (|has| |#1| (-609 (-533))))) (-3392 (($ $) 79)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ (-406 (-544))) 92 (|has| |#1| (-1031 (-406 (-544)))))) (-3084 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-3787 ((|#1| $) 68 (|has| |#1| (-1051)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 58 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 57 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 59 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 56 (|has| |#1| (-844)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-790 |#1|) (-139) (-171)) (T -790))
+((-3392 (*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2784 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(-13 (-38 |t#1|) (-411 |t#1|) (-337 |t#1|) (-10 -8 (-15 -3392 ($ $)) (-15 -4050 (|t#1| $)) (-15 -2783 (|t#1| $)) (-15 -2782 (|t#1| $)) (-15 -2781 (|t#1| $)) (-15 -2780 (|t#1| $)) (-15 -3391 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -3389 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -2784 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3787 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -2779 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-411 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25)))
+(((-791) (-139)) (T -791))
NIL
(-13 (-786) (-130))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-786) . T) ((-788) . T) ((-844) . T) ((-1090) . T))
-((-4306 (((-112) $) 41)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3979 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 42)) (-3063 (((-3 (-406 (-561)) "failed") $) 78)) (-4079 (((-112) $) 72)) (-2573 (((-406 (-561)) $) 76)) (-2072 ((|#2| $) 26)) (-4165 (($ (-1 |#2| |#2|) $) 23)) (-1519 (($ $) 61)) (-4216 (((-534) $) 67)) (-2076 (($ $) 21)) (-4064 (((-856) $) 56) (($ (-561)) 39) (($ |#2|) 37) (($ (-406 (-561))) NIL)) (-3746 (((-765)) 10)) (-2165 ((|#2| $) 71)) (-1723 (((-112) $ $) 29)) (-1746 (((-112) $ $) 69)) (-1819 (($ $) 31) (($ $ $) NIL)) (-1810 (($ $ $) 30)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-790 |#1| |#2|) (-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -2165 (|#2| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -4306 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|))) (-791 |#2|) (-171)) (T -790))
-((-3746 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-790 *3 *4)) (-4 *3 (-791 *4)))))
-(-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -2165 (|#2| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -4306 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-1386 (((-765)) 52 (|has| |#1| (-367)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 94 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 91 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 88)) (-3979 (((-561) $) 93 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 90 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 89)) (-3735 (((-3 $ "failed") $) 33)) (-1655 ((|#1| $) 78)) (-3063 (((-3 (-406 (-561)) "failed") $) 65 (|has| |#1| (-543)))) (-4079 (((-112) $) 67 (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) 66 (|has| |#1| (-543)))) (-1362 (($) 55 (|has| |#1| (-367)))) (-2252 (((-112) $) 31)) (-3475 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-2072 ((|#1| $) 70)) (-1597 (($ $ $) 61 (|has| |#1| (-844)))) (-3017 (($ $ $) 60 (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) 80)) (-1335 (((-914) $) 54 (|has| |#1| (-367)))) (-1883 (((-1148) $) 9)) (-1519 (($ $) 64 (|has| |#1| (-362)))) (-2442 (($ (-914)) 53 (|has| |#1| (-367)))) (-3288 ((|#1| $) 75)) (-2746 ((|#1| $) 76)) (-3021 ((|#1| $) 77)) (-4017 ((|#1| $) 71)) (-3616 ((|#1| $) 72)) (-1636 ((|#1| $) 73)) (-3748 ((|#1| $) 74)) (-1701 (((-1110) $) 10)) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 82 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 81 (|has| |#1| (-512 (-1166) |#1|)))) (-2315 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-4216 (((-534) $) 62 (|has| |#1| (-609 (-534))))) (-2076 (($ $) 79)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ (-406 (-561))) 92 (|has| |#1| (-1031 (-406 (-561)))))) (-3666 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2165 ((|#1| $) 68 (|has| |#1| (-1051)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1781 (((-112) $ $) 58 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 57 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 59 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 56 (|has| |#1| (-844)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-791 |#1|) (-139) (-171)) (T -791))
-((-2076 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3475 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-2165 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-3063 (*1 *2 *1) (|partial| -12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-1519 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
-(-13 (-38 |t#1|) (-410 |t#1|) (-337 |t#1|) (-10 -8 (-15 -2076 ($ $)) (-15 -1655 (|t#1| $)) (-15 -3021 (|t#1| $)) (-15 -2746 (|t#1| $)) (-15 -3288 (|t#1| $)) (-15 -3748 (|t#1| $)) (-15 -1636 (|t#1| $)) (-15 -3616 (|t#1| $)) (-15 -4017 (|t#1| $)) (-15 -2072 (|t#1| $)) (-15 -3475 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -2165 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1519 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4165 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-792 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#3| (-1 |#4| |#2|) |#1|))) (-791 |#2|) (-171) (-791 |#4|) (-171)) (T -792))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-791 *6)) (-5 *1 (-792 *4 *5 *2 *6)) (-4 *4 (-791 *5)))))
-(-10 -7 (-15 -4165 (|#3| (-1 |#4| |#2|) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1386 (((-765)) NIL (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-992 |#1|) "failed") $) 35) (((-3 (-561) "failed") $) NIL (-4050 (|has| (-992 |#1|) (-1031 (-561))) (|has| |#1| (-1031 (-561))))) (((-3 (-406 (-561)) "failed") $) NIL (-4050 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-3979 ((|#1| $) NIL) (((-992 |#1|) $) 33) (((-561) $) NIL (-4050 (|has| (-992 |#1|) (-1031 (-561))) (|has| |#1| (-1031 (-561))))) (((-406 (-561)) $) NIL (-4050 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-3735 (((-3 $ "failed") $) NIL)) (-1655 ((|#1| $) 16)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-543)))) (-4079 (((-112) $) NIL (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) NIL (|has| |#1| (-543)))) (-1362 (($) NIL (|has| |#1| (-367)))) (-2252 (((-112) $) NIL)) (-3475 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-992 |#1|) (-992 |#1|)) 29)) (-2072 ((|#1| $) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1335 (((-914) $) NIL (|has| |#1| (-367)))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-2442 (($ (-914)) NIL (|has| |#1| (-367)))) (-3288 ((|#1| $) 22)) (-2746 ((|#1| $) 20)) (-3021 ((|#1| $) 18)) (-4017 ((|#1| $) 26)) (-3616 ((|#1| $) 25)) (-1636 ((|#1| $) 24)) (-3748 ((|#1| $) 23)) (-1701 (((-1110) $) NIL)) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-2315 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-2076 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-992 |#1|)) 30) (($ (-406 (-561))) NIL (-4050 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2165 ((|#1| $) NIL (|has| |#1| (-1051)))) (-2246 (($) 8 T CONST)) (-2257 (($) 12 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-793 |#1|) (-13 (-791 |#1|) (-410 (-992 |#1|)) (-10 -8 (-15 -3475 ($ (-992 |#1|) (-992 |#1|))))) (-171)) (T -793))
-((-3475 (*1 *1 *2 *2) (-12 (-5 *2 (-992 *3)) (-4 *3 (-171)) (-5 *1 (-793 *3)))))
-(-13 (-791 |#1|) (-410 (-992 |#1|)) (-10 -8 (-15 -3475 ($ (-992 |#1|) (-992 |#1|)))))
-((-4053 (((-112) $ $) 7)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-4081 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-1723 (((-112) $ $) 6)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-786) . T) ((-788) . T) ((-844) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #1="failed") $) NIL) (((-3 (-989 |#1|) #1#) $) 35) (((-3 (-544) #1#) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-544))) (|has| |#1| (-1031 (-544))))) (((-3 (-406 (-544)) #1#) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 ((|#1| $) NIL) (((-989 |#1|) $) 33) (((-544) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-544))) (|has| |#1| (-1031 (-544))))) (((-406 (-544)) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3866 (((-3 $ "failed") $) NIL)) (-4050 ((|#1| $) 16)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL (|has| |#1| (-543)))) (-3406 (((-112) $) NIL (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| |#1| (-543)))) (-3377 (($) NIL (|has| |#1| (-367)))) (-2545 (((-112) $) NIL)) (-2784 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-989 |#1|) (-989 |#1|)) 29)) (-3517 ((|#1| $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-2781 ((|#1| $) 22)) (-2782 ((|#1| $) 20)) (-2783 ((|#1| $) 18)) (-3389 ((|#1| $) 26)) (-3390 ((|#1| $) 25)) (-3391 ((|#1| $) 24)) (-2780 ((|#1| $) 23)) (-3644 (((-1110) $) NIL)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3392 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-989 |#1|)) 30) (($ (-406 (-544))) NIL (-3936 (|has| (-989 |#1|) (-1031 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3787 ((|#1| $) NIL (|has| |#1| (-1051)))) (-3040 (($) 8 T CONST)) (-3046 (($) 12 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-792 |#1|) (-13 (-790 |#1|) (-411 (-989 |#1|)) (-10 -8 (-15 -2784 ($ (-989 |#1|) (-989 |#1|))))) (-171)) (T -792))
+((-2784 (*1 *1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-792 *3)))))
+(-13 (-790 |#1|) (-411 (-989 |#1|)) (-10 -8 (-15 -2784 ($ (-989 |#1|) (-989 |#1|)))))
+((-4365 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) (-790 |#2|) (-171) (-790 |#4|) (-171)) (T -793))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-790 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-790 *5)))))
+(-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-3437 (((-112) $ $) 6)))
(((-794) (-139)) (T -794))
-((-2008 (*1 *2 *3 *4) (-12 (-4 *1 (-794)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)))))) (-4081 (*1 *2 *3) (-12 (-4 *1 (-794)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1028)))))
-(-13 (-1090) (-10 -7 (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4081 ((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-2672 (((-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#3| |#2| (-1166)) 19)))
-(((-795 |#1| |#2| |#3|) (-10 -7 (-15 -2672 ((-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#3| |#2| (-1166)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952)) (-649 |#2|)) (T -795))
-((-2672 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-952))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2615 (-638 *4)))) (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-649 *4)))))
-(-10 -7 (-15 -2672 ((-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#3| |#2| (-1166))))
-((-4164 (((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-638 |#2|)) 28) (((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#2| "failed") |#2| (-114) (-1166)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1166)) 18) (((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-638 |#2|) (-638 (-114)) (-1166)) 24) (((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-638 (-293 |#2|)) (-638 (-114)) (-1166)) 26) (((-3 (-638 (-1254 |#2|)) "failed") (-682 |#2|) (-1166)) 37) (((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-682 |#2|) (-1254 |#2|) (-1166)) 35)))
-(((-796 |#1| |#2|) (-10 -7 (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-682 |#2|) (-1254 |#2|) (-1166))) (-15 -4164 ((-3 (-638 (-1254 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-638 (-293 |#2|)) (-638 (-114)) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-638 |#2|) (-638 (-114)) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#2| "failed") |#2| (-114) (-1166))) (-15 -4164 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -4164 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-638 |#2|)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952))) (T -796))
-((-4164 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-638 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-796 *6 *2)))) (-4164 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-638 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-5 *1 (-796 *6 *2)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2615 (-638 *3))) *3 "failed")) (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-952))))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2615 (-638 *7))) *7 "failed")) (-5 *1 (-796 *6 *7)))) (-4164 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-2 (|:| |particular| (-1254 *7)) (|:| -2615 (-638 (-1254 *7))))) (-5 *1 (-796 *6 *7)))) (-4164 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-2 (|:| |particular| (-1254 *7)) (|:| -2615 (-638 (-1254 *7))))) (-5 *1 (-796 *6 *7)))) (-4164 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166)) (-4 *6 (-13 (-29 *5) (-1190) (-952))) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-1254 *6))) (-5 *1 (-796 *5 *6)))) (-4164 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-2 (|:| |particular| (-1254 *7)) (|:| -2615 (-638 (-1254 *7))))) (-5 *1 (-796 *6 *7)) (-5 *4 (-1254 *7)))))
-(-10 -7 (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-682 |#2|) (-1254 |#2|) (-1166))) (-15 -4164 ((-3 (-638 (-1254 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-638 (-293 |#2|)) (-638 (-114)) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#2|)) (|:| -2615 (-638 (-1254 |#2|)))) "failed") (-638 |#2|) (-638 (-114)) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1166))) (-15 -4164 ((-3 (-2 (|:| |particular| |#2|) (|:| -2615 (-638 |#2|))) |#2| "failed") |#2| (-114) (-1166))) (-15 -4164 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -4164 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-638 |#2|))))
-((-2500 (($) 9)) (-2473 (((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-2066 (((-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-1617 (($ (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) 25)) (-2403 (($ (-638 (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) 23)) (-2103 (((-1259)) 12)))
-(((-797) (-10 -8 (-15 -2500 ($)) (-15 -2103 ((-1259))) (-15 -2066 ((-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2403 ($ (-638 (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -1617 ($ (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2473 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -797))
-((-2473 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *1 (-797)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) (-5 *1 (-797)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-5 *1 (-797)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-797)))) (-2103 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-797)))) (-2500 (*1 *1) (-5 *1 (-797))))
-(-10 -8 (-15 -2500 ($)) (-15 -2103 ((-1259))) (-15 -2066 ((-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2403 ($ (-638 (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -1617 ($ (-2 (|:| -2285 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2677 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2473 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-3530 ((|#2| |#2| (-1166)) 16)) (-3871 ((|#2| |#2| (-1166)) 51)) (-1734 (((-1 |#2| |#2|) (-1166)) 11)))
-(((-798 |#1| |#2|) (-10 -7 (-15 -3530 (|#2| |#2| (-1166))) (-15 -3871 (|#2| |#2| (-1166))) (-15 -1734 ((-1 |#2| |#2|) (-1166)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952))) (T -798))
-((-1734 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-798 *4 *5)) (-4 *5 (-13 (-29 *4) (-1190) (-952))))) (-3871 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952))))) (-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952))))))
-(-10 -7 (-15 -3530 (|#2| |#2| (-1166))) (-15 -3871 (|#2| |#2| (-1166))) (-15 -1734 ((-1 |#2| |#2|) (-1166))))
-((-4164 (((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378) (-378)) 116) (((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378)) 117) (((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-638 (-378)) (-378)) 119) (((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-378)) 120) (((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-378)) 121) (((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378))) 122) (((-1028) (-802) (-1054)) 108) (((-1028) (-802)) 109)) (-2008 (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802) (-1054)) 75) (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802)) 77)))
-(((-799) (-10 -7 (-15 -4164 ((-1028) (-802))) (-15 -4164 ((-1028) (-802) (-1054))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-638 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378) (-378))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802) (-1054))))) (T -799))
-((-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-799)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-799)))) (-4164 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1254 (-315 *4))) (-5 *5 (-638 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-4164 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1254 (-315 *4))) (-5 *5 (-638 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-4164 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1254 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-4164 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1254 (-315 *4))) (-5 *5 (-638 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-4164 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1254 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-4164 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1254 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799)))))
-(-10 -7 (-15 -4164 ((-1028) (-802))) (-15 -4164 ((-1028) (-802) (-1054))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-638 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378))) (-15 -4164 ((-1028) (-1254 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378) (-378))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802) (-1054))))
-((-1729 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2615 (-638 |#4|))) (-646 |#4|) |#4|) 35)))
-(((-800 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1729 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2615 (-638 |#4|))) (-646 |#4|) |#4|))) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -800))
-((-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-800 *5 *6 *7 *4)))))
-(-10 -7 (-15 -1729 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2615 (-638 |#4|))) (-646 |#4|) |#4|)))
-((-4189 (((-2 (|:| -3394 |#3|) (|:| |rh| (-638 (-406 |#2|)))) |#4| (-638 (-406 |#2|))) 52)) (-1870 (((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#4| |#2|) 60) (((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#4|) 59) (((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#3| |#2|) 20) (((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#3|) 21)) (-2517 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3736 ((|#2| |#3| (-638 (-406 |#2|))) 94) (((-3 |#2| "failed") |#3| (-406 |#2|)) 91)))
-(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3736 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -3736 (|#2| |#3| (-638 (-406 |#2|)))) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#3|)) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#3| |#2|)) (-15 -2517 (|#2| |#3| |#1|)) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#4|)) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#4| |#2|)) (-15 -2517 (|#2| |#4| |#1|)) (-15 -4189 ((-2 (|:| -3394 |#3|) (|:| |rh| (-638 (-406 |#2|)))) |#4| (-638 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-406 (-561)))) (-1230 |#1|) (-649 |#2|) (-649 (-406 |#2|))) (T -801))
-((-4189 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-5 *2 (-2 (|:| -3394 *7) (|:| |rh| (-638 (-406 *6))))) (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-638 (-406 *6))) (-4 *7 (-649 *6)) (-4 *3 (-649 (-406 *6))))) (-2517 (*1 *2 *3 *4) (-12 (-4 *2 (-1230 *4)) (-5 *1 (-801 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-649 *2)) (-4 *3 (-649 (-406 *2))))) (-1870 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *4 (-1230 *5)) (-5 *2 (-638 (-2 (|:| -2298 *4) (|:| -3723 *4)))) (-5 *1 (-801 *5 *4 *6 *3)) (-4 *6 (-649 *4)) (-4 *3 (-649 (-406 *4))))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4)) (-5 *2 (-638 (-2 (|:| -2298 *5) (|:| -3723 *5)))) (-5 *1 (-801 *4 *5 *6 *3)) (-4 *6 (-649 *5)) (-4 *3 (-649 (-406 *5))))) (-2517 (*1 *2 *3 *4) (-12 (-4 *2 (-1230 *4)) (-5 *1 (-801 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *5 (-649 (-406 *2))))) (-1870 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *4 (-1230 *5)) (-5 *2 (-638 (-2 (|:| -2298 *4) (|:| -3723 *4)))) (-5 *1 (-801 *5 *4 *3 *6)) (-4 *3 (-649 *4)) (-4 *6 (-649 (-406 *4))))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4)) (-5 *2 (-638 (-2 (|:| -2298 *5) (|:| -3723 *5)))) (-5 *1 (-801 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-649 (-406 *5))))) (-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-406 *2))) (-4 *2 (-1230 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *6 (-649 (-406 *2))))) (-3736 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1230 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *6 (-649 *4)))))
-(-10 -7 (-15 -3736 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -3736 (|#2| |#3| (-638 (-406 |#2|)))) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#3|)) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#3| |#2|)) (-15 -2517 (|#2| |#3| |#1|)) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#4|)) (-15 -1870 ((-638 (-2 (|:| -2298 |#2|) (|:| -3723 |#2|))) |#4| |#2|)) (-15 -2517 (|#2| |#4| |#1|)) (-15 -4189 ((-2 (|:| -3394 |#3|) (|:| |rh| (-638 (-406 |#2|)))) |#4| (-638 (-406 |#2|)))))
-((-4053 (((-112) $ $) NIL)) (-3979 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-1723 (((-112) $ $) NIL)))
-(((-802) (-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3979 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -802))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802)))))
-(-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3979 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))
-((-1873 (((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3394 |#3|))) |#3| (-1 (-638 |#2|) |#2| (-1162 |#2|)) (-1 (-417 |#2|) |#2|)) 117)) (-2149 (((-638 (-2 (|:| |poly| |#2|) (|:| -3394 |#3|))) |#3| (-1 (-638 |#1|) |#2|)) 46)) (-3212 (((-638 (-2 (|:| |deg| (-765)) (|:| -3394 |#2|))) |#3|) 94)) (-2177 ((|#2| |#3|) 37)) (-4290 (((-638 (-2 (|:| -1494 |#1|) (|:| -3394 |#3|))) |#3| (-1 (-638 |#1|) |#2|)) 81)) (-3159 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
-(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2177 (|#2| |#3|)) (-15 -3212 ((-638 (-2 (|:| |deg| (-765)) (|:| -3394 |#2|))) |#3|)) (-15 -4290 ((-638 (-2 (|:| -1494 |#1|) (|:| -3394 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -2149 ((-638 (-2 (|:| |poly| |#2|) (|:| -3394 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -1873 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3394 |#3|))) |#3| (-1 (-638 |#2|) |#2| (-1162 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3159 (|#3| |#3| |#2|)) (-15 -3159 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-406 (-561)))) (-1230 |#1|) (-649 |#2|) (-649 (-406 |#2|))) (T -803))
-((-3159 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-649 *5)) (-4 *6 (-649 *3)))) (-3159 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-1230 *4)) (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-649 *3)) (-4 *5 (-649 (-406 *3))))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-638 *7) *7 (-1162 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1230 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-5 *2 (-638 (-2 (|:| |frac| (-406 *7)) (|:| -3394 *3)))) (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-649 *7)) (-4 *8 (-649 (-406 *7))))) (-2149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3394 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6)) (-4 *7 (-649 (-406 *6))))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-5 *2 (-638 (-2 (|:| -1494 *5) (|:| -3394 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6)) (-4 *7 (-649 (-406 *6))))) (-3212 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4)) (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -3394 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-649 (-406 *5))))) (-2177 (*1 *2 *3) (-12 (-4 *2 (-1230 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *5 (-649 (-406 *2))))))
-(-10 -7 (-15 -2177 (|#2| |#3|)) (-15 -3212 ((-638 (-2 (|:| |deg| (-765)) (|:| -3394 |#2|))) |#3|)) (-15 -4290 ((-638 (-2 (|:| -1494 |#1|) (|:| -3394 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -2149 ((-638 (-2 (|:| |poly| |#2|) (|:| -3394 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -1873 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3394 |#3|))) |#3| (-1 (-638 |#2|) |#2| (-1162 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3159 (|#3| |#3| |#2|)) (-15 -3159 (|#3| |#3| (-406 |#2|))))
-((-1877 (((-2 (|:| -2615 (-638 (-406 |#2|))) (|:| -2942 (-682 |#1|))) (-647 |#2| (-406 |#2|)) (-638 (-406 |#2|))) 122) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2615 (-638 (-406 |#2|)))) (-647 |#2| (-406 |#2|)) (-406 |#2|)) 121) (((-2 (|:| -2615 (-638 (-406 |#2|))) (|:| -2942 (-682 |#1|))) (-646 (-406 |#2|)) (-638 (-406 |#2|))) 116) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2615 (-638 (-406 |#2|)))) (-646 (-406 |#2|)) (-406 |#2|)) 114)) (-2360 ((|#2| (-647 |#2| (-406 |#2|))) 80) ((|#2| (-646 (-406 |#2|))) 83)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -1877 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2615 (-638 (-406 |#2|)))) (-646 (-406 |#2|)) (-406 |#2|))) (-15 -1877 ((-2 (|:| -2615 (-638 (-406 |#2|))) (|:| -2942 (-682 |#1|))) (-646 (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -1877 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2615 (-638 (-406 |#2|)))) (-647 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -1877 ((-2 (|:| -2615 (-638 (-406 |#2|))) (|:| -2942 (-682 |#1|))) (-647 |#2| (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -2360 (|#2| (-646 (-406 |#2|)))) (-15 -2360 (|#2| (-647 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1230 |#1|)) (T -804))
-((-2360 (*1 *2 *3) (-12 (-5 *3 (-647 *2 (-406 *2))) (-4 *2 (-1230 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-646 (-406 *2))) (-4 *2 (-1230 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| -2615 (-638 (-406 *6))) (|:| -2942 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6))))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-804 *5 *6)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| -2615 (-638 (-406 *6))) (|:| -2942 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6))))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-804 *5 *6)))))
-(-10 -7 (-15 -1877 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2615 (-638 (-406 |#2|)))) (-646 (-406 |#2|)) (-406 |#2|))) (-15 -1877 ((-2 (|:| -2615 (-638 (-406 |#2|))) (|:| -2942 (-682 |#1|))) (-646 (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -1877 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2615 (-638 (-406 |#2|)))) (-647 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -1877 ((-2 (|:| -2615 (-638 (-406 |#2|))) (|:| -2942 (-682 |#1|))) (-647 |#2| (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -2360 (|#2| (-646 (-406 |#2|)))) (-15 -2360 (|#2| (-647 |#2| (-406 |#2|)))))
-((-3685 (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#1|))) |#5| |#4|) 48)))
-(((-805 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3685 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#1|))) |#5| |#4|))) (-362) (-649 |#1|) (-1230 |#1|) (-718 |#1| |#3|) (-649 |#4|)) (T -805))
-((-3685 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1230 *5)) (-4 *4 (-718 *5 *7)) (-5 *2 (-2 (|:| -2942 (-682 *6)) (|:| |vec| (-1254 *5)))) (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-649 *5)) (-4 *3 (-649 *4)))))
-(-10 -7 (-15 -3685 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#1|))) |#5| |#4|)))
-((-1873 (((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3394 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 47)) (-3507 (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-646 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38) (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 39) (((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36) (((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 37)) (-2149 (((-638 (-2 (|:| |poly| |#2|) (|:| -3394 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 83)))
-(((-806 |#1| |#2|) (-10 -7 (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -1873 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3394 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2149 ((-638 (-2 (|:| |poly| |#2|) (|:| -3394 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)))) (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1230 |#1|)) (T -806))
-((-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-647 *5 (-406 *5))) (-4 *5 (-1230 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-646 (-406 *5))) (-4 *5 (-1230 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3394 (-647 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-2 (|:| |frac| (-406 *6)) (|:| -3394 (-647 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))) (-3507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *7 (-406 *7))) (-5 *4 (-1 (-638 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *7 (-1230 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-3507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-406 *7))) (-5 *4 (-1 (-638 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *7 (-1230 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))))
-(-10 -7 (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -1873 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3394 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2149 ((-638 (-2 (|:| |poly| |#2|) (|:| -3394 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)))) (-15 -3507 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)))) (-15 -3507 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|))
-((-2429 (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#1|))) (-682 |#2|) (-1254 |#1|)) 85) (((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1254 |#1|)) (|:| -3394 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1254 |#1|)) 15)) (-4045 (((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-682 |#2|) (-1254 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2615 (-638 |#1|))) |#2| |#1|)) 92)) (-4164 (((-3 (-2 (|:| |particular| (-1254 |#1|)) (|:| -2615 (-682 |#1|))) "failed") (-682 |#1|) (-1254 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2615 (-638 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-807 |#1| |#2|) (-10 -7 (-15 -2429 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1254 |#1|)) (|:| -3394 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1254 |#1|))) (-15 -2429 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#1|))) (-682 |#2|) (-1254 |#1|))) (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#1|)) (|:| -2615 (-682 |#1|))) "failed") (-682 |#1|) (-1254 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2615 (-638 |#1|))) "failed") |#2| |#1|))) (-15 -4045 ((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-682 |#2|) (-1254 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2615 (-638 |#1|))) |#2| |#1|)))) (-362) (-649 |#1|)) (T -807))
-((-4045 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2615 (-638 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-649 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1254 *6) "failed")) (|:| -2615 (-638 (-1254 *6))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1254 *6)))) (-4164 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2615 (-638 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-649 *6)) (-5 *2 (-2 (|:| |particular| (-1254 *6)) (|:| -2615 (-682 *6)))) (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1254 *6)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-649 *5)) (-5 *2 (-2 (|:| -2942 (-682 *6)) (|:| |vec| (-1254 *5)))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1254 *5)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-682 *5)) (|:| |eqs| (-638 (-2 (|:| C (-682 *5)) (|:| |g| (-1254 *5)) (|:| -3394 *6) (|:| |rh| *5)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1254 *5)) (-4 *6 (-649 *5)))))
-(-10 -7 (-15 -2429 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1254 |#1|)) (|:| -3394 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1254 |#1|))) (-15 -2429 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#1|))) (-682 |#2|) (-1254 |#1|))) (-15 -4164 ((-3 (-2 (|:| |particular| (-1254 |#1|)) (|:| -2615 (-682 |#1|))) "failed") (-682 |#1|) (-1254 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2615 (-638 |#1|))) "failed") |#2| |#1|))) (-15 -4045 ((-2 (|:| |particular| (-3 (-1254 |#1|) "failed")) (|:| -2615 (-638 (-1254 |#1|)))) (-682 |#2|) (-1254 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2615 (-638 |#1|))) |#2| |#1|))))
-((-3620 (((-682 |#1|) (-638 |#1|) (-765)) 13) (((-682 |#1|) (-638 |#1|)) 14)) (-2112 (((-3 (-1254 |#1|) "failed") |#2| |#1| (-638 |#1|)) 34)) (-3749 (((-3 |#1| "failed") |#2| |#1| (-638 |#1|) (-1 |#1| |#1|)) 42)))
-(((-808 |#1| |#2|) (-10 -7 (-15 -3620 ((-682 |#1|) (-638 |#1|))) (-15 -3620 ((-682 |#1|) (-638 |#1|) (-765))) (-15 -2112 ((-3 (-1254 |#1|) "failed") |#2| |#1| (-638 |#1|))) (-15 -3749 ((-3 |#1| "failed") |#2| |#1| (-638 |#1|) (-1 |#1| |#1|)))) (-362) (-649 |#1|)) (T -808))
-((-3749 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-638 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-808 *2 *3)) (-4 *3 (-649 *2)))) (-2112 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-1254 *4)) (-5 *1 (-808 *4 *3)) (-4 *3 (-649 *4)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-682 *5)) (-5 *1 (-808 *5 *6)) (-4 *6 (-649 *5)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)) (-5 *1 (-808 *4 *5)) (-4 *5 (-649 *4)))))
-(-10 -7 (-15 -3620 ((-682 |#1|) (-638 |#1|))) (-15 -3620 ((-682 |#1|) (-638 |#1|) (-765))) (-15 -2112 ((-3 (-1254 |#1|) "failed") |#2| |#1| (-638 |#1|))) (-15 -3749 ((-3 |#1| "failed") |#2| |#1| (-638 |#1|) (-1 |#1| |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-4306 (((-112) $) NIL (|has| |#2| (-130)))) (-2274 (($ (-914)) NIL (|has| |#2| (-1042)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-1403 (($ $ $) NIL (|has| |#2| (-787)))) (-2979 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2684 (((-112) $ (-765)) NIL)) (-1386 (((-765)) NIL (|has| |#2| (-367)))) (-1659 (((-561) $) NIL (|has| |#2| (-842)))) (-4207 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1090)))) (-3979 (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) NIL (|has| |#2| (-1090)))) (-3720 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3735 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-1362 (($) NIL (|has| |#2| (-367)))) (-2041 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ (-561)) NIL)) (-1784 (((-112) $) NIL (|has| |#2| (-842)))) (-2368 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL (|has| |#2| (-720)))) (-3271 (((-112) $) NIL (|has| |#2| (-842)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4125 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2029 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-1335 (((-914) $) NIL (|has| |#2| (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#2| (-1090)))) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-2442 (($ (-914)) NIL (|has| |#2| (-367)))) (-1701 (((-1110) $) NIL (|has| |#2| (-1090)))) (-1424 ((|#2| $) NIL (|has| (-561) (-844)))) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) NIL)) (-3634 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1675 (($ (-1254 |#2|)) NIL)) (-2390 (((-133)) NIL (|has| |#2| (-362)))) (-3922 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1714 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-1254 |#2|) $) NIL) (($ (-561)) NIL (-4050 (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) NIL (|has| |#2| (-1090))) (((-856) $) NIL (|has| |#2| (-608 (-856))))) (-3746 (((-765)) NIL (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-2165 (($ $) NIL (|has| |#2| (-842)))) (-2246 (($) NIL (|has| |#2| (-130)) CONST)) (-2257 (($) NIL (|has| |#2| (-720)) CONST)) (-3154 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1781 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1758 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1723 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-1770 (((-112) $ $) NIL (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1746 (((-112) $ $) 11 (-4050 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-1810 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-914)) NIL (|has| |#2| (-720)))) (* (($ (-561) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-914) $) NIL (|has| |#2| (-25)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-809 |#1| |#2| |#3|) (-237 |#1| |#2|) (-765) (-787) (-1 (-112) (-1254 |#2|) (-1254 |#2|))) (T -809))
+((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-794)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-2785 (*1 *2 *3) (-12 (-4 *1 (-794)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1028)))))
+(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2785 ((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2786 (((-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#3| |#2| (-1166)) 19)))
+(((-795 |#1| |#2| |#3|) (-10 -7 (-15 -2786 ((-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#3| |#2| (-1166)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953)) (-651 |#2|)) (T -795))
+((-2786 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-953))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4)))) (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-651 *4)))))
+(-10 -7 (-15 -2786 ((-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#3| |#2| (-1166))))
+((-3980 (((-3 |#2| #1="failed") |#2| (-113) (-292 |#2|) (-635 |#2|)) 28) (((-3 |#2| #1#) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #2="failed") |#2| (-113) (-1166)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #2#) (-292 |#2|) (-113) (-1166)) 18) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 |#2|) (-635 (-113)) (-1166)) 24) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 (-292 |#2|)) (-635 (-113)) (-1166)) 26) (((-3 (-635 (-1253 |#2|)) "failed") (-682 |#2|) (-1166)) 37) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166)) 35)))
+(((-796 |#1| |#2|) (-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166))) (-15 -3980 ((-3 (-635 (-1253 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 (-292 |#2|)) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 |#2|) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1="failed") (-292 |#2|) (-113) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1#) |#2| (-113) (-1166))) (-15 -3980 ((-3 |#2| #2="failed") (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -3980 ((-3 |#2| #2#) |#2| (-113) (-292 |#2|) (-635 |#2|)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953))) (T -796))
+((-3980 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-292 *2)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-796 *6 *2)))) (-3980 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-292 *2)) (-5 *4 (-113)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-5 *1 (-796 *6 *2)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))))) (-3980 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2162 (-635 *3))) *3 #1="failed")) (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-953))))) (-3980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2162 (-635 *7))) *7 #1#)) (-5 *1 (-796 *6 *7)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) (-5 *1 (-796 *6 *7)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) (-5 *1 (-796 *6 *7)))) (-3980 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166)) (-4 *6 (-13 (-29 *5) (-1190) (-953))) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-1253 *6))) (-5 *1 (-796 *5 *6)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) (-5 *1 (-796 *6 *7)) (-5 *4 (-1253 *7)))))
+(-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166))) (-15 -3980 ((-3 (-635 (-1253 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 (-292 |#2|)) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 |#2|) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1="failed") (-292 |#2|) (-113) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1#) |#2| (-113) (-1166))) (-15 -3980 ((-3 |#2| #2="failed") (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -3980 ((-3 |#2| #2#) |#2| (-113) (-292 |#2|) (-635 |#2|))))
+((-2787 (($) 9)) (-2791 (((-3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-2789 (((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-4014 (($ (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))) 25)) (-2790 (($ (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) 23)) (-2788 (((-1259)) 12)))
+(((-797) (-10 -8 (-15 -2787 ($)) (-15 -2788 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2790 ($ (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) (-15 -2791 ((-3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -797))
+((-2791 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))) (-5 *1 (-797)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))) (-5 *1 (-797)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) (-5 *1 (-797)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-797)))) (-2788 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-797)))) (-2787 (*1 *1) (-5 *1 (-797))))
+(-10 -8 (-15 -2787 ($)) (-15 -2788 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2790 ($ (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) (-15 -2791 ((-3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-3869 ((|#2| |#2| (-1166)) 16)) (-2792 ((|#2| |#2| (-1166)) 51)) (-2793 (((-1 |#2| |#2|) (-1166)) 11)))
+(((-798 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2| (-1166))) (-15 -2792 (|#2| |#2| (-1166))) (-15 -2793 ((-1 |#2| |#2|) (-1166)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953))) (T -798))
+((-2793 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-798 *4 *5)) (-4 *5 (-13 (-29 *4) (-1190) (-953))))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953))))) (-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953))))))
+(-10 -7 (-15 -3869 (|#2| |#2| (-1166))) (-15 -2792 (|#2| |#2| (-1166))) (-15 -2793 ((-1 |#2| |#2|) (-1166))))
+((-3980 (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377) (-377)) 116) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377)) 117) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-635 (-377)) (-377)) 119) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-377)) 120) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-377)) 121) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377))) 122) (((-1028) (-802) (-1054)) 108) (((-1028) (-802)) 109)) (-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802) (-1054)) 75) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802)) 77)))
+(((-799) (-10 -7 (-15 -3980 ((-1028) (-802))) (-15 -3980 ((-1028) (-802) (-1054))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377) (-377))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802) (-1054))))) (T -799))
+((-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-799)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799)))))
+(-10 -7 (-15 -3980 ((-1028) (-802))) (-15 -3980 ((-1028) (-802) (-1054))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377) (-377))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802) (-1054))))
+((-2794 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2162 (-635 |#4|))) (-648 |#4|) |#4|) 35)))
+(((-800 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2794 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2162 (-635 |#4|))) (-648 |#4|) |#4|))) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -800))
+((-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-800 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2794 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2162 (-635 |#4|))) (-648 |#4|) |#4|)))
+((-4148 (((-2 (|:| -3667 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))) 52)) (-2796 (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4| |#2|) 60) (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4|) 59) (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3| |#2|) 20) (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3|) 21)) (-2797 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2795 ((|#2| |#3| (-635 (-406 |#2|))) 94) (((-3 |#2| "failed") |#3| (-406 |#2|)) 91)))
+(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2795 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3| |#2|)) (-15 -2797 (|#2| |#3| |#1|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4| |#2|)) (-15 -2797 (|#2| |#4| |#1|)) (-15 -4148 ((-2 (|:| -3667 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-406 (-544)))) (-1229 |#1|) (-651 |#2|) (-651 (-406 |#2|))) (T -801))
+((-4148 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-2 (|:| -3667 *7) (|:| |rh| (-635 (-406 *6))))) (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6))) (-4 *7 (-651 *6)) (-4 *3 (-651 (-406 *6))))) (-2797 (*1 *2 *3 *4) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-651 *2)) (-4 *3 (-651 (-406 *2))))) (-2796 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *6 *3)) (-4 *6 (-651 *4)) (-4 *3 (-651 (-406 *4))))) (-2796 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *6 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 (-406 *5))))) (-2797 (*1 *2 *3 *4) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-406 *2))))) (-2796 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *3 *6)) (-4 *3 (-651 *4)) (-4 *6 (-651 (-406 *4))))) (-2796 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5))))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *6 (-651 (-406 *2))))) (-2795 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *6 (-651 *4)))))
+(-10 -7 (-15 -2795 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2795 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3| |#2|)) (-15 -2797 (|#2| |#3| |#1|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4| |#2|)) (-15 -2797 (|#2| |#4| |#1|)) (-15 -4148 ((-2 (|:| -3667 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|)))))
+((-2947 (((-112) $ $) NIL)) (-3557 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-3437 (((-112) $ $) NIL)))
+(((-802) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3557 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -802))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802)))))
+(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3557 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))
+((-2805 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1160 |#2|)) (-1 (-404 |#2|) |#2|)) 117)) (-2806 (((-635 (-2 (|:| |poly| |#2|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 46)) (-2799 (((-635 (-2 (|:| |deg| (-765)) (|:| -3667 |#2|))) |#3|) 94)) (-2798 ((|#2| |#3|) 37)) (-2800 (((-635 (-2 (|:| -4359 |#1|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 81)) (-2801 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2798 (|#2| |#3|)) (-15 -2799 ((-635 (-2 (|:| |deg| (-765)) (|:| -3667 |#2|))) |#3|)) (-15 -2800 ((-635 (-2 (|:| -4359 |#1|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1160 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2801 (|#3| |#3| |#2|)) (-15 -2801 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-406 (-544)))) (-1229 |#1|) (-651 |#2|) (-651 (-406 |#2|))) (T -803))
+((-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-1229 *4)) (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-651 *3)) (-4 *5 (-651 (-406 *3))))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-635 *7) *7 (-1160 *7))) (-5 *5 (-1 (-404 *7) *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -3667 *3)))) (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-651 *7)) (-4 *8 (-651 (-406 *7))))) (-2806 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6))))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -4359 *5) (|:| -3667 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6))))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -3667 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5))))) (-2798 (*1 *2 *3) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-406 *2))))))
+(-10 -7 (-15 -2798 (|#2| |#3|)) (-15 -2799 ((-635 (-2 (|:| |deg| (-765)) (|:| -3667 |#2|))) |#3|)) (-15 -2800 ((-635 (-2 (|:| -4359 |#1|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1160 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2801 (|#3| |#3| |#2|)) (-15 -2801 (|#3| |#3| (-406 |#2|))))
+((-2802 (((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-649 |#2| (-406 |#2|)) (-635 (-406 |#2|))) 122) (((-2 (|:| |particular| (-3 (-406 |#2|) #1="failed")) (|:| -2162 (-635 (-406 |#2|)))) (-649 |#2| (-406 |#2|)) (-406 |#2|)) 121) (((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-648 (-406 |#2|)) (-635 (-406 |#2|))) 116) (((-2 (|:| |particular| (-3 (-406 |#2|) #1#)) (|:| -2162 (-635 (-406 |#2|)))) (-648 (-406 |#2|)) (-406 |#2|)) 114)) (-2803 ((|#2| (-649 |#2| (-406 |#2|))) 80) ((|#2| (-648 (-406 |#2|))) 83)))
+(((-804 |#1| |#2|) (-10 -7 (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1="failed")) (|:| -2162 (-635 (-406 |#2|)))) (-648 (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-648 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1#)) (|:| -2162 (-635 (-406 |#2|)))) (-649 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-649 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2803 (|#2| (-648 (-406 |#2|)))) (-15 -2803 (|#2| (-649 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -804))
+((-2803 (*1 *2 *3) (-12 (-5 *3 (-649 *2 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-648 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-804 *5 *6)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) (-5 *1 (-804 *5 *6)))))
+(-10 -7 (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1="failed")) (|:| -2162 (-635 (-406 |#2|)))) (-648 (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-648 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1#)) (|:| -2162 (-635 (-406 |#2|)))) (-649 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-649 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2803 (|#2| (-648 (-406 |#2|)))) (-15 -2803 (|#2| (-649 |#2| (-406 |#2|)))))
+((-2804 (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|) 48)))
+(((-805 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2804 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|))) (-362) (-651 |#1|) (-1229 |#1|) (-718 |#1| |#3|) (-651 |#4|)) (T -805))
+((-2804 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1229 *5)) (-4 *4 (-718 *5 *7)) (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5)))) (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4)))))
+(-10 -7 (-15 -2804 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|)))
+((-2805 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)) 47)) (-2807 (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-404 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-648 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|)) 38) (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 39) (((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|)) 36) (((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 37)) (-2806 (((-635 (-2 (|:| |poly| |#2|) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 83)))
+(((-806 |#1| |#2|) (-10 -7 (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -806))
+((-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-649 *5 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-648 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 (-649 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6))))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *6)) (|:| -3667 (-649 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6))))) (-2807 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-404 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-2807 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-648 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-404 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))))
+(-10 -7 (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)))) |%noBranch|))
+((-2808 (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|)) 85) (((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3667 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|)) 15)) (-2809 (((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2162 (-635 |#1|))) |#2| |#1|)) 92)) (-3980 (((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -2162 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -2808 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3667 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|))) (-15 -2808 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -2162 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -2809 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2162 (-635 |#1|))) |#2| |#1|)))) (-362) (-651 |#1|)) (T -807))
+((-2809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2162 (-635 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *6) "failed")) (|:| -2162 (-635 (-1253 *6))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1253 *6)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2162 (-635 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-1253 *6)) (|:| -2162 (-682 *6)))) (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *6)))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-651 *5)) (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5)))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *5)))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-682 *5)) (|:| |eqs| (-635 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5)) (|:| -3667 *6) (|:| |rh| *5)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *6 (-651 *5)))))
+(-10 -7 (-15 -2808 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3667 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|))) (-15 -2808 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -2162 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -2809 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2162 (-635 |#1|))) |#2| |#1|))))
+((-2810 (((-682 |#1|) (-635 |#1|) (-765)) 13) (((-682 |#1|) (-635 |#1|)) 14)) (-2811 (((-3 (-1253 |#1|) "failed") |#2| |#1| (-635 |#1|)) 34)) (-3744 (((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)) 42)))
+(((-808 |#1| |#2|) (-10 -7 (-15 -2810 ((-682 |#1|) (-635 |#1|))) (-15 -2810 ((-682 |#1|) (-635 |#1|) (-765))) (-15 -2811 ((-3 (-1253 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -3744 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)))) (-362) (-651 |#1|)) (T -808))
+((-3744 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-808 *2 *3)) (-4 *3 (-651 *2)))) (-2811 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1253 *4)) (-5 *1 (-808 *4 *3)) (-4 *3 (-651 *4)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-682 *5)) (-5 *1 (-808 *5 *6)) (-4 *6 (-651 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)) (-5 *1 (-808 *4 *5)) (-4 *5 (-651 *4)))))
+(-10 -7 (-15 -2810 ((-682 |#1|) (-635 |#1|))) (-15 -2810 ((-682 |#1|) (-635 |#1|) (-765))) (-15 -2811 ((-3 (-1253 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -3744 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|))))
+((-2947 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3589 (((-112) $) NIL (|has| |#2| (-130)))) (-4114 (($ (-912)) NIL (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#2| (-367)))) (-4030 (((-544) $) NIL (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) NIL (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-3377 (($) NIL (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) NIL)) (-3587 (((-112) $) NIL (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#2| (-720)))) (-3588 (((-112) $) NIL (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#2| (-367)))) (-3644 (((-1110) $) NIL (|has| |#2| (-1091)))) (-4207 ((|#2| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) NIL)) (-4243 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) NIL)) (-4318 (((-133)) NIL (|has| |#2| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#2|) $) NIL) (($ (-544)) NIL (-3936 (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) NIL (|has| |#2| (-1091))) (((-857) $) NIL (|has| |#2| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#2| (-842)))) (-3040 (($) NIL (|has| |#2| (-130)) CONST)) (-3046 (($) NIL (|has| |#2| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3437 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3067 (((-112) $ $) 11 (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-4246 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-912)) NIL (|has| |#2| (-720)))) (* (($ (-544) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-912) $) NIL (|has| |#2| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-809 |#1| |#2| |#3|) (-237 |#1| |#2|) (-765) (-787) (-1 (-112) (-1253 |#2|) (-1253 |#2|))) (T -809))
NIL
(-237 |#1| |#2|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2714 (((-638 (-765)) $) NIL) (((-638 (-765)) $ (-1166)) NIL)) (-2211 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-1405 (((-638 (-812 (-1166))) $) NIL)) (-1596 (((-1162 $) $ (-812 (-1166))) NIL) (((-1162 |#1|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-812 (-1166)))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-4334 (($ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-812 (-1166)) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL) (((-3 (-1115 |#1| (-1166)) "failed") $) NIL)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-812 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-2395 (($ $ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-529 (-812 (-1166))) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4027 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1393 (($ (-1162 |#1|) (-812 (-1166))) NIL) (($ (-1162 $) (-812 (-1166))) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-812 (-1166))) NIL)) (-1522 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-638 (-765)) $ (-638 (-812 (-1166)))) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-529 (-812 (-1166))) (-529 (-812 (-1166)))) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1607 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-2830 (((-3 (-812 (-1166)) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-3776 (((-812 (-1166)) $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-2378 (((-112) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-812 (-1166))) (|:| -4181 (-765))) "failed") $) NIL)) (-3646 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-812 (-1166)) |#1|) NIL) (($ $ (-638 (-812 (-1166))) (-638 |#1|)) NIL) (($ $ (-812 (-1166)) $) NIL) (($ $ (-638 (-812 (-1166))) (-638 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-232)))) (-2753 (($ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-3922 (($ $ (-812 (-1166))) NIL) (($ $ (-638 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2995 (((-638 (-1166)) $) NIL)) (-3768 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-638 (-765)) $ (-638 (-812 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-812 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-812 (-1166))) NIL) (($ $ (-638 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1571 (((-635 (-765)) $) NIL) (((-635 (-765)) $ (-1166)) NIL)) (-1605 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-3467 (((-635 (-812 (-1166))) $) NIL)) (-3469 (((-1160 $) $ (-812 (-1166))) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-812 (-1166)))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1567 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-812 (-1166)) #2#) $) NIL) (((-3 (-1166) #2#) $) NIL) (((-3 (-1115 |#1| (-1166)) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-812 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-4163 (($ $ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 (-812 (-1166))) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) (-812 (-1166))) NIL) (($ (-1160 $) (-812 (-1166))) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-812 (-1166))) NIL)) (-3202 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-635 (-765)) $ (-635 (-812 (-1166)))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 (-812 (-1166))) (-529 (-812 (-1166)))) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1606 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-3468 (((-3 (-812 (-1166)) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-1569 (((-812 (-1166)) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1570 (((-112) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-812 (-1166))) (|:| -2536 (-765))) #3#) $) NIL)) (-1568 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-812 (-1166)) |#1|) NIL) (($ $ (-635 (-812 (-1166))) (-635 |#1|)) NIL) (($ $ (-812 (-1166)) $) NIL) (($ $ (-635 (-812 (-1166))) (-635 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-4164 (($ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-812 (-1166))) NIL) (($ $ (-635 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-635 (-1166)) $) NIL)) (-4355 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-635 (-765)) $ (-635 (-812 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-812 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-812 (-1166))) NIL) (($ $ (-635 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-810 |#1|) (-13 (-252 |#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) (-1031 (-1115 |#1| (-1166)))) (-1042)) (T -810))
NIL
(-13 (-252 |#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) (-1031 (-1115 |#1| (-1166))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-3012 (($ $) NIL (|has| |#2| (-362)))) (-3163 (((-112) $) NIL (|has| |#2| (-362)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#2| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#2| (-362)))) (-3698 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) NIL (|has| |#2| (-362)))) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL (|has| |#2| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#2| (-362)))) (-2725 (((-112) $) NIL (|has| |#2| (-362)))) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-1563 (($ (-638 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 20 (|has| |#2| (-362)))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-1633 (((-417 $) $) NIL (|has| |#2| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#2| (-362)))) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-1905 (((-765) $) NIL (|has| |#2| (-362)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#2| (-362)))) (-3922 (($ $ (-765)) NIL) (($ $) 13)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-561))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-3746 (((-765)) NIL)) (-3996 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) 15 (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL) (($ $ (-561)) 18 (|has| |#2| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-561)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-561))) NIL (|has| |#2| (-362)))))
-(((-811 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1090) (-893 |#1|) |#1|) (T -811))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-2213 (($ $) NIL (|has| |#2| (-362)))) (-2211 (((-112) $) NIL (|has| |#2| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#2| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-362)))) (-1733 (((-112) $ $) NIL (|has| |#2| (-362)))) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL (|has| |#2| (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#2| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-4130 (((-112) $) NIL (|has| |#2| (-362)))) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-2041 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 20 (|has| |#2| (-362)))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-1732 (((-765) $) NIL (|has| |#2| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-4217 (($ $ (-765)) NIL) (($ $) 13)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-544))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL (|has| |#2| (-362)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) 15 (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL) (($ $ (-544)) 18 (|has| |#2| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-544)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-544))) NIL (|has| |#2| (-362)))))
+(((-811 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1091) (-893 |#1|) |#1|) (T -811))
NIL
(-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-2211 (((-765) $) NIL)) (-2421 ((|#1| $) 10)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-4027 (((-765) $) 11)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1607 (($ |#1| (-765)) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3922 (($ $) NIL) (($ $ (-765)) NIL)) (-4064 (((-856) $) NIL) (($ |#1|) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+((-2947 (((-112) $ $) NIL)) (-1605 (((-765) $) NIL)) (-4238 ((|#1| $) 10)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-4178 (((-765) $) 11)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-1606 (($ |#1| (-765)) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4217 (($ $) NIL) (($ $ (-765)) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
(((-812 |#1|) (-265 |#1|) (-844)) (T -812))
NIL
(-265 |#1|)
-((-4053 (((-112) $ $) NIL)) (-2844 (((-638 |#1|) $) 29)) (-1386 (((-765) $) NIL)) (-2674 (($) NIL T CONST)) (-3395 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-1437 (($ $) 31)) (-3735 (((-3 $ "failed") $) NIL)) (-1817 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2252 (((-112) $) NIL)) (-3328 ((|#1| $ (-561)) NIL)) (-1895 (((-765) $ (-561)) NIL)) (-3658 (($ $) 35)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-2339 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1831 (((-112) $ $) 33)) (-4310 (((-765) $) 25)) (-1883 (((-1148) $) NIL)) (-3240 (($ $ $) NIL)) (-3820 (($ $ $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 ((|#1| $) 30)) (-2762 (((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-765)))) $) NIL)) (-1759 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4064 (((-856) $) NIL) (($ |#1|) NIL)) (-2257 (($) 15 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 34)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-813 |#1|) (-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -1424 (|#1| $)) (-15 -1437 ($ $)) (-15 -3658 ($ $)) (-15 -1831 ((-112) $ $)) (-15 -3820 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -2339 ((-3 $ "failed") $ $)) (-15 -3395 ((-3 $ "failed") $ $)) (-15 -2339 ((-3 $ "failed") $ |#1|)) (-15 -3395 ((-3 $ "failed") $ |#1|)) (-15 -1759 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1817 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1386 ((-765) $)) (-15 -1895 ((-765) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -2762 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-765)))) $)) (-15 -4310 ((-765) $)) (-15 -2844 ((-638 |#1|) $)))) (-844)) (T -813))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1424 (*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1437 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-3658 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1831 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-3820 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-3240 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2339 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-3395 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2339 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-3395 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1759 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-1817 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 (-765))))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844)))))
-(-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -1424 (|#1| $)) (-15 -1437 ($ $)) (-15 -3658 ($ $)) (-15 -1831 ((-112) $ $)) (-15 -3820 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -2339 ((-3 $ "failed") $ $)) (-15 -3395 ((-3 $ "failed") $ $)) (-15 -2339 ((-3 $ "failed") $ |#1|)) (-15 -3395 ((-3 $ "failed") $ |#1|)) (-15 -1759 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1817 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1386 ((-765) $)) (-15 -1895 ((-765) $ (-561))) (-15 -3328 (|#1| $ (-561))) (-15 -2762 ((-638 (-2 (|:| |gen| |#1|) (|:| -3486 (-765)))) $)) (-15 -4310 ((-765) $)) (-15 -2844 ((-638 |#1|) $))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-1659 (((-561) $) 54)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-1784 (((-112) $) 52)) (-2252 (((-112) $) 31)) (-3271 (((-112) $) 53)) (-1597 (($ $ $) 51)) (-3017 (($ $ $) 50)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ $) 43)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2165 (($ $) 55)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1781 (((-112) $ $) 48)) (-1758 (((-112) $ $) 47)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 49)) (-1746 (((-112) $ $) 46)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) 29)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-4346 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-4205 (($ $) 31)) (-3866 (((-3 $ "failed") $) NIL)) (-2815 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2545 (((-112) $) NIL)) (-2813 ((|#1| $ (-544)) NIL)) (-2814 (((-765) $ (-544)) NIL)) (-4343 (($ $) 35)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4347 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2818 (((-112) $ $) 33)) (-4240 (((-765) $) 25)) (-3643 (((-1148) $) NIL)) (-2816 (($ $ $) NIL)) (-2817 (($ $ $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 ((|#1| $) 30)) (-2812 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $) NIL)) (-2944 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-3046 (($) 15 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 34)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-813 |#1|) (-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -4207 (|#1| $)) (-15 -4205 ($ $)) (-15 -4343 ($ $)) (-15 -2818 ((-112) $ $)) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -4347 ((-3 $ "failed") $ |#1|)) (-15 -4346 ((-3 $ "failed") $ |#1|)) (-15 -2944 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -4240 ((-765) $)) (-15 -4341 ((-635 |#1|) $)))) (-844)) (T -813))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4207 (*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4205 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2817 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2816 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4347 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4346 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4347 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4346 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2944 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2815 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844)))))
+(-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -4207 (|#1| $)) (-15 -4205 ($ $)) (-15 -4343 ($ $)) (-15 -2818 ((-112) $ $)) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -4347 ((-3 $ "failed") $ |#1|)) (-15 -4346 ((-3 $ "failed") $ |#1|)) (-15 -2944 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -4240 ((-765) $)) (-15 -4341 ((-635 |#1|) $))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4030 (((-544) $) 54)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-3587 (((-112) $) 52)) (-2545 (((-112) $) 31)) (-3588 (((-112) $) 53)) (-2913 (($ $ $) 51)) (-3242 (($ $ $) 50)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 55)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 48)) (-2946 (((-112) $ $) 47)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 49)) (-3067 (((-112) $ $) 46)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-814) (-139)) (T -814))
NIL
-(-13 (-553) (-842))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-2549 (($ (-1110)) 7)) (-4031 (((-112) $ (-1148) (-1110)) 15)) (-2978 (((-816) $) 12)) (-2020 (((-816) $) 11)) (-3576 (((-1259) $) 9)) (-2359 (((-112) $ (-1110)) 16)))
-(((-815) (-10 -8 (-15 -2549 ($ (-1110))) (-15 -3576 ((-1259) $)) (-15 -2020 ((-816) $)) (-15 -2978 ((-816) $)) (-15 -4031 ((-112) $ (-1148) (-1110))) (-15 -2359 ((-112) $ (-1110))))) (T -815))
-((-2359 (*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))) (-4031 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-815)))) (-2549 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-815)))))
-(-10 -8 (-15 -2549 ($ (-1110))) (-15 -3576 ((-1259) $)) (-15 -2020 ((-816) $)) (-15 -2978 ((-816) $)) (-15 -4031 ((-112) $ (-1148) (-1110))) (-15 -2359 ((-112) $ (-1110))))
-((-2070 (((-1259) $ (-817)) 12)) (-2189 (((-1259) $ (-1166)) 32)) (-1842 (((-1259) $ (-1148) (-1148)) 34)) (-1855 (((-1259) $ (-1148)) 33)) (-3772 (((-1259) $) 19)) (-3741 (((-1259) $ (-561)) 28)) (-3278 (((-1259) $ (-224)) 30)) (-3042 (((-1259) $) 18)) (-1728 (((-1259) $) 26)) (-2840 (((-1259) $) 25)) (-2719 (((-1259) $) 23)) (-3957 (((-1259) $) 24)) (-3095 (((-1259) $) 22)) (-1957 (((-1259) $) 21)) (-4274 (((-1259) $) 20)) (-3004 (((-1259) $) 16)) (-3594 (((-1259) $) 17)) (-2115 (((-1259) $) 15)) (-4142 (((-1259) $) 14)) (-4201 (((-1259) $) 13)) (-1956 (($ (-1148) (-817)) 9)) (-4337 (($ (-1148) (-1148) (-817)) 8)) (-3681 (((-1166) $) 51)) (-1772 (((-1166) $) 55)) (-2170 (((-2 (|:| |cd| (-1148)) (|:| -3305 (-1148))) $) 54)) (-1878 (((-1148) $) 52)) (-2766 (((-1259) $) 41)) (-4036 (((-561) $) 49)) (-4312 (((-224) $) 50)) (-4149 (((-1259) $) 40)) (-1762 (((-1259) $) 48)) (-3675 (((-1259) $) 47)) (-3123 (((-1259) $) 45)) (-2516 (((-1259) $) 46)) (-1865 (((-1259) $) 44)) (-2145 (((-1259) $) 43)) (-3740 (((-1259) $) 42)) (-2458 (((-1259) $) 38)) (-4227 (((-1259) $) 39)) (-3898 (((-1259) $) 37)) (-2886 (((-1259) $) 36)) (-3129 (((-1259) $) 35)) (-2827 (((-1259) $) 11)))
-(((-816) (-10 -8 (-15 -4337 ($ (-1148) (-1148) (-817))) (-15 -1956 ($ (-1148) (-817))) (-15 -2827 ((-1259) $)) (-15 -2070 ((-1259) $ (-817))) (-15 -4201 ((-1259) $)) (-15 -4142 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -3004 ((-1259) $)) (-15 -3594 ((-1259) $)) (-15 -3042 ((-1259) $)) (-15 -3772 ((-1259) $)) (-15 -4274 ((-1259) $)) (-15 -1957 ((-1259) $)) (-15 -3095 ((-1259) $)) (-15 -2719 ((-1259) $)) (-15 -3957 ((-1259) $)) (-15 -2840 ((-1259) $)) (-15 -1728 ((-1259) $)) (-15 -3741 ((-1259) $ (-561))) (-15 -3278 ((-1259) $ (-224))) (-15 -2189 ((-1259) $ (-1166))) (-15 -1855 ((-1259) $ (-1148))) (-15 -1842 ((-1259) $ (-1148) (-1148))) (-15 -3129 ((-1259) $)) (-15 -2886 ((-1259) $)) (-15 -3898 ((-1259) $)) (-15 -2458 ((-1259) $)) (-15 -4227 ((-1259) $)) (-15 -4149 ((-1259) $)) (-15 -2766 ((-1259) $)) (-15 -3740 ((-1259) $)) (-15 -2145 ((-1259) $)) (-15 -1865 ((-1259) $)) (-15 -3123 ((-1259) $)) (-15 -2516 ((-1259) $)) (-15 -3675 ((-1259) $)) (-15 -1762 ((-1259) $)) (-15 -4036 ((-561) $)) (-15 -4312 ((-224) $)) (-15 -3681 ((-1166) $)) (-15 -1878 ((-1148) $)) (-15 -2170 ((-2 (|:| |cd| (-1148)) (|:| -3305 (-1148))) $)) (-15 -1772 ((-1166) $)))) (T -816))
-((-1772 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3305 (-1148)))) (-5 *1 (-816)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-816)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-816)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-816)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-1842 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-816)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-816)))) (-2189 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-816)))) (-3278 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1259)) (-5 *1 (-816)))) (-3741 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-816)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1259)) (-5 *1 (-816)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-1956 (*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))) (-4337 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))))
-(-10 -8 (-15 -4337 ($ (-1148) (-1148) (-817))) (-15 -1956 ($ (-1148) (-817))) (-15 -2827 ((-1259) $)) (-15 -2070 ((-1259) $ (-817))) (-15 -4201 ((-1259) $)) (-15 -4142 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -3004 ((-1259) $)) (-15 -3594 ((-1259) $)) (-15 -3042 ((-1259) $)) (-15 -3772 ((-1259) $)) (-15 -4274 ((-1259) $)) (-15 -1957 ((-1259) $)) (-15 -3095 ((-1259) $)) (-15 -2719 ((-1259) $)) (-15 -3957 ((-1259) $)) (-15 -2840 ((-1259) $)) (-15 -1728 ((-1259) $)) (-15 -3741 ((-1259) $ (-561))) (-15 -3278 ((-1259) $ (-224))) (-15 -2189 ((-1259) $ (-1166))) (-15 -1855 ((-1259) $ (-1148))) (-15 -1842 ((-1259) $ (-1148) (-1148))) (-15 -3129 ((-1259) $)) (-15 -2886 ((-1259) $)) (-15 -3898 ((-1259) $)) (-15 -2458 ((-1259) $)) (-15 -4227 ((-1259) $)) (-15 -4149 ((-1259) $)) (-15 -2766 ((-1259) $)) (-15 -3740 ((-1259) $)) (-15 -2145 ((-1259) $)) (-15 -1865 ((-1259) $)) (-15 -3123 ((-1259) $)) (-15 -2516 ((-1259) $)) (-15 -3675 ((-1259) $)) (-15 -1762 ((-1259) $)) (-15 -4036 ((-561) $)) (-15 -4312 ((-224) $)) (-15 -3681 ((-1166) $)) (-15 -1878 ((-1148) $)) (-15 -2170 ((-2 (|:| |cd| (-1148)) (|:| -3305 (-1148))) $)) (-15 -1772 ((-1166) $)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 10)) (-3867 (($) 13)) (-3712 (($) 11)) (-3365 (($) 14)) (-2550 (($) 12)) (-1723 (((-112) $ $) 8)))
-(((-817) (-13 (-1090) (-10 -8 (-15 -3712 ($)) (-15 -3867 ($)) (-15 -3365 ($)) (-15 -2550 ($))))) (T -817))
-((-3712 (*1 *1) (-5 *1 (-817))) (-3867 (*1 *1) (-5 *1 (-817))) (-3365 (*1 *1) (-5 *1 (-817))) (-2550 (*1 *1) (-5 *1 (-817))))
-(-13 (-1090) (-10 -8 (-15 -3712 ($)) (-15 -3867 ($)) (-15 -3365 ($)) (-15 -2550 ($))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 21) (($ (-1166)) 17)) (-2683 (((-112) $) 10)) (-2721 (((-112) $) 9)) (-3209 (((-112) $) 11)) (-3572 (((-112) $) 8)) (-1723 (((-112) $ $) 19)))
-(((-818) (-13 (-1090) (-10 -8 (-15 -4064 ($ (-1166))) (-15 -3572 ((-112) $)) (-15 -2721 ((-112) $)) (-15 -2683 ((-112) $)) (-15 -3209 ((-112) $))))) (T -818))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-818)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
-(-13 (-1090) (-10 -8 (-15 -4064 ($ (-1166))) (-15 -3572 ((-112) $)) (-15 -2721 ((-112) $)) (-15 -2683 ((-112) $)) (-15 -3209 ((-112) $))))
-((-4053 (((-112) $ $) NIL)) (-4074 (($ (-818) (-638 (-1166))) 24)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4344 (((-818) $) 25)) (-2046 (((-638 (-1166)) $) 26)) (-4064 (((-856) $) 23)) (-1723 (((-112) $ $) NIL)))
-(((-819) (-13 (-1090) (-10 -8 (-15 -4344 ((-818) $)) (-15 -2046 ((-638 (-1166)) $)) (-15 -4074 ($ (-818) (-638 (-1166))))))) (T -819))
-((-4344 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-819)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-819)))) (-4074 (*1 *1 *2 *3) (-12 (-5 *2 (-818)) (-5 *3 (-638 (-1166))) (-5 *1 (-819)))))
-(-13 (-1090) (-10 -8 (-15 -4344 ((-818) $)) (-15 -2046 ((-638 (-1166)) $)) (-15 -4074 ($ (-818) (-638 (-1166))))))
-((-3785 (((-1259) (-816) (-315 |#1|) (-112)) 23) (((-1259) (-816) (-315 |#1|)) 79) (((-1148) (-315 |#1|) (-112)) 78) (((-1148) (-315 |#1|)) 77)))
-(((-820 |#1|) (-10 -7 (-15 -3785 ((-1148) (-315 |#1|))) (-15 -3785 ((-1148) (-315 |#1|) (-112))) (-15 -3785 ((-1259) (-816) (-315 |#1|))) (-15 -3785 ((-1259) (-816) (-315 |#1|) (-112)))) (-13 (-822) (-844) (-1042))) (T -820))
-((-3785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-816)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-822) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-820 *6)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-820 *5)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-820 *5)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-822) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-820 *4)))))
-(-10 -7 (-15 -3785 ((-1148) (-315 |#1|))) (-15 -3785 ((-1148) (-315 |#1|) (-112))) (-15 -3785 ((-1259) (-816) (-315 |#1|))) (-15 -3785 ((-1259) (-816) (-315 |#1|) (-112))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-2053 ((|#1| $) 10)) (-2409 (($ |#1|) 9)) (-2252 (((-112) $) NIL)) (-1381 (($ |#2| (-765)) NIL)) (-1522 (((-765) $) NIL)) (-1572 ((|#2| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3922 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-3768 (((-765) $) NIL)) (-4064 (((-856) $) 17) (($ (-561)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-3932 ((|#2| $ (-765)) NIL)) (-3746 (((-765)) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-821 |#1| |#2|) (-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2409 ($ |#1|)) (-15 -2053 (|#1| $)))) (-702 |#2|) (-1042)) (T -821))
-((-2409 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-821 *2 *3)) (-4 *2 (-702 *3)))) (-2053 (*1 *2 *1) (-12 (-4 *2 (-702 *3)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1042)))))
-(-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2409 ($ |#1|)) (-15 -2053 (|#1| $))))
-((-3785 (((-1259) (-816) $ (-112)) 9) (((-1259) (-816) $) 8) (((-1148) $ (-112)) 7) (((-1148) $) 6)))
-(((-822) (-139)) (T -822))
-((-3785 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *4 (-112)) (-5 *2 (-1259)))) (-3785 (*1 *2 *3 *1) (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *2 (-1259)))) (-3785 (*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-112)) (-5 *2 (-1148)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-822)) (-5 *2 (-1148)))))
-(-13 (-10 -8 (-15 -3785 ((-1148) $)) (-15 -3785 ((-1148) $ (-112))) (-15 -3785 ((-1259) (-816) $)) (-15 -3785 ((-1259) (-816) $ (-112)))))
-((-2418 (((-311) (-1148) (-1148)) 12)) (-3862 (((-112) (-1148) (-1148)) 33)) (-1730 (((-112) (-1148)) 32)) (-2204 (((-52) (-1148)) 25)) (-1966 (((-52) (-1148)) 23)) (-2081 (((-52) (-816)) 17)) (-3260 (((-638 (-1148)) (-1148)) 28)) (-2837 (((-638 (-1148))) 27)))
-(((-823) (-10 -7 (-15 -2081 ((-52) (-816))) (-15 -1966 ((-52) (-1148))) (-15 -2204 ((-52) (-1148))) (-15 -2837 ((-638 (-1148)))) (-15 -3260 ((-638 (-1148)) (-1148))) (-15 -1730 ((-112) (-1148))) (-15 -3862 ((-112) (-1148) (-1148))) (-15 -2418 ((-311) (-1148) (-1148))))) (T -823))
-((-2418 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-823)))) (-3862 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-3260 (*1 *2 *3) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148)))) (-2837 (*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-823)))))
-(-10 -7 (-15 -2081 ((-52) (-816))) (-15 -1966 ((-52) (-1148))) (-15 -2204 ((-52) (-1148))) (-15 -2837 ((-638 (-1148)))) (-15 -3260 ((-638 (-1148)) (-1148))) (-15 -1730 ((-112) (-1148))) (-15 -3862 ((-112) (-1148) (-1148))) (-15 -2418 ((-311) (-1148) (-1148))))
-((-4053 (((-112) $ $) 19)) (-2468 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2327 (($ $ $) 72)) (-3856 (((-112) $ $) 73)) (-2684 (((-112) $ (-765)) 8)) (-1605 (($ (-638 |#1|)) 68) (($) 67)) (-1954 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-3299 (($ $) 62)) (-1461 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ |#1| $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3713 (((-112) $ $) 64)) (-3116 (((-112) $ (-765)) 9)) (-1597 ((|#1| $) 78)) (-2289 (($ $ $) 81)) (-3405 (($ $ $) 80)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3017 ((|#1| $) 79)) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22)) (-1338 (($ $ $) 69)) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-1701 (((-1110) $) 21)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2341 (((-638 (-2 (|:| -2677 |#1|) (|:| -1714 (-765)))) $) 61)) (-1533 (($ $ |#1|) 71) (($ $ $) 70)) (-3643 (($) 49) (($ (-638 |#1|)) 48)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 50)) (-4064 (((-856) $) 18)) (-1697 (($ (-638 |#1|)) 66) (($) 65)) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20)) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
+(-13 (-554) (-842))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2879 (((-1259) (-817) $ (-112)) 9) (((-1259) (-817) $) 8) (((-1148) $ (-112)) 7) (((-1148) $) 6)))
+(((-815) (-139)) (T -815))
+((-2879 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1259)))) (-2879 (*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *2 (-1259)))) (-2879 (*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1148)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1148)))))
+(-13 (-10 -8 (-15 -2879 ((-1148) $)) (-15 -2879 ((-1148) $ (-112))) (-15 -2879 ((-1259) (-817) $)) (-15 -2879 ((-1259) (-817) $ (-112)))))
+((-2819 (($ (-1110)) 7)) (-2823 (((-112) $ (-1148) (-1110)) 15)) (-2822 (((-817) $) 12)) (-2821 (((-817) $) 11)) (-2820 (((-1259) $) 9)) (-2824 (((-112) $ (-1110)) 16)))
+(((-816) (-10 -8 (-15 -2819 ($ (-1110))) (-15 -2820 ((-1259) $)) (-15 -2821 ((-817) $)) (-15 -2822 ((-817) $)) (-15 -2823 ((-112) $ (-1148) (-1110))) (-15 -2824 ((-112) $ (-1110))))) (T -816))
+((-2824 (*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2823 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-816)))))
+(-10 -8 (-15 -2819 ($ (-1110))) (-15 -2820 ((-1259) $)) (-15 -2821 ((-817) $)) (-15 -2822 ((-817) $)) (-15 -2823 ((-112) $ (-1148) (-1110))) (-15 -2824 ((-112) $ (-1110))))
+((-2828 (((-1259) $ (-818)) 12)) (-2845 (((-1259) $ (-1166)) 32)) (-2847 (((-1259) $ (-1148) (-1148)) 34)) (-2846 (((-1259) $ (-1148)) 33)) (-2835 (((-1259) $) 19)) (-2843 (((-1259) $ (-544)) 28)) (-2844 (((-1259) $ (-224)) 30)) (-2834 (((-1259) $) 18)) (-2842 (((-1259) $) 26)) (-2841 (((-1259) $) 25)) (-2839 (((-1259) $) 23)) (-2840 (((-1259) $) 24)) (-2838 (((-1259) $) 22)) (-2837 (((-1259) $) 21)) (-2836 (((-1259) $) 20)) (-2832 (((-1259) $) 16)) (-2833 (((-1259) $) 17)) (-2831 (((-1259) $) 15)) (-2830 (((-1259) $) 14)) (-2829 (((-1259) $) 13)) (-2826 (($ (-1148) (-818)) 9)) (-2825 (($ (-1148) (-1148) (-818)) 8)) (-2864 (((-1166) $) 51)) (-2867 (((-1166) $) 55)) (-2866 (((-2 (|:| |cd| (-1148)) (|:| -3949 (-1148))) $) 54)) (-2865 (((-1148) $) 52)) (-2854 (((-1259) $) 41)) (-2862 (((-544) $) 49)) (-2863 (((-224) $) 50)) (-2853 (((-1259) $) 40)) (-2861 (((-1259) $) 48)) (-2860 (((-1259) $) 47)) (-2858 (((-1259) $) 45)) (-2859 (((-1259) $) 46)) (-2857 (((-1259) $) 44)) (-2856 (((-1259) $) 43)) (-2855 (((-1259) $) 42)) (-2851 (((-1259) $) 38)) (-2852 (((-1259) $) 39)) (-2850 (((-1259) $) 37)) (-2849 (((-1259) $) 36)) (-2848 (((-1259) $) 35)) (-2827 (((-1259) $) 11)))
+(((-817) (-10 -8 (-15 -2825 ($ (-1148) (-1148) (-818))) (-15 -2826 ($ (-1148) (-818))) (-15 -2827 ((-1259) $)) (-15 -2828 ((-1259) $ (-818))) (-15 -2829 ((-1259) $)) (-15 -2830 ((-1259) $)) (-15 -2831 ((-1259) $)) (-15 -2832 ((-1259) $)) (-15 -2833 ((-1259) $)) (-15 -2834 ((-1259) $)) (-15 -2835 ((-1259) $)) (-15 -2836 ((-1259) $)) (-15 -2837 ((-1259) $)) (-15 -2838 ((-1259) $)) (-15 -2839 ((-1259) $)) (-15 -2840 ((-1259) $)) (-15 -2841 ((-1259) $)) (-15 -2842 ((-1259) $)) (-15 -2843 ((-1259) $ (-544))) (-15 -2844 ((-1259) $ (-224))) (-15 -2845 ((-1259) $ (-1166))) (-15 -2846 ((-1259) $ (-1148))) (-15 -2847 ((-1259) $ (-1148) (-1148))) (-15 -2848 ((-1259) $)) (-15 -2849 ((-1259) $)) (-15 -2850 ((-1259) $)) (-15 -2851 ((-1259) $)) (-15 -2852 ((-1259) $)) (-15 -2853 ((-1259) $)) (-15 -2854 ((-1259) $)) (-15 -2855 ((-1259) $)) (-15 -2856 ((-1259) $)) (-15 -2857 ((-1259) $)) (-15 -2858 ((-1259) $)) (-15 -2859 ((-1259) $)) (-15 -2860 ((-1259) $)) (-15 -2861 ((-1259) $)) (-15 -2862 ((-544) $)) (-15 -2863 ((-224) $)) (-15 -2864 ((-1166) $)) (-15 -2865 ((-1148) $)) (-15 -2866 ((-2 (|:| |cd| (-1148)) (|:| -3949 (-1148))) $)) (-15 -2867 ((-1166) $)))) (T -817))
+((-2867 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3949 (-1148)))) (-5 *1 (-817)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-817)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-817)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2847 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2846 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2845 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2828 (*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2826 (*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817)))) (-2825 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817)))))
+(-10 -8 (-15 -2825 ($ (-1148) (-1148) (-818))) (-15 -2826 ($ (-1148) (-818))) (-15 -2827 ((-1259) $)) (-15 -2828 ((-1259) $ (-818))) (-15 -2829 ((-1259) $)) (-15 -2830 ((-1259) $)) (-15 -2831 ((-1259) $)) (-15 -2832 ((-1259) $)) (-15 -2833 ((-1259) $)) (-15 -2834 ((-1259) $)) (-15 -2835 ((-1259) $)) (-15 -2836 ((-1259) $)) (-15 -2837 ((-1259) $)) (-15 -2838 ((-1259) $)) (-15 -2839 ((-1259) $)) (-15 -2840 ((-1259) $)) (-15 -2841 ((-1259) $)) (-15 -2842 ((-1259) $)) (-15 -2843 ((-1259) $ (-544))) (-15 -2844 ((-1259) $ (-224))) (-15 -2845 ((-1259) $ (-1166))) (-15 -2846 ((-1259) $ (-1148))) (-15 -2847 ((-1259) $ (-1148) (-1148))) (-15 -2848 ((-1259) $)) (-15 -2849 ((-1259) $)) (-15 -2850 ((-1259) $)) (-15 -2851 ((-1259) $)) (-15 -2852 ((-1259) $)) (-15 -2853 ((-1259) $)) (-15 -2854 ((-1259) $)) (-15 -2855 ((-1259) $)) (-15 -2856 ((-1259) $)) (-15 -2857 ((-1259) $)) (-15 -2858 ((-1259) $)) (-15 -2859 ((-1259) $)) (-15 -2860 ((-1259) $)) (-15 -2861 ((-1259) $)) (-15 -2862 ((-544) $)) (-15 -2863 ((-224) $)) (-15 -2864 ((-1166) $)) (-15 -2865 ((-1148) $)) (-15 -2866 ((-2 (|:| |cd| (-1148)) (|:| -3949 (-1148))) $)) (-15 -2867 ((-1166) $)))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 10)) (-2870 (($) 13)) (-2871 (($) 11)) (-2869 (($) 14)) (-2868 (($) 12)) (-3437 (((-112) $ $) 8)))
+(((-818) (-13 (-1091) (-10 -8 (-15 -2871 ($)) (-15 -2870 ($)) (-15 -2869 ($)) (-15 -2868 ($))))) (T -818))
+((-2871 (*1 *1) (-5 *1 (-818))) (-2870 (*1 *1) (-5 *1 (-818))) (-2869 (*1 *1) (-5 *1 (-818))) (-2868 (*1 *1) (-5 *1 (-818))))
+(-13 (-1091) (-10 -8 (-15 -2871 ($)) (-15 -2870 ($)) (-15 -2869 ($)) (-15 -2868 ($))))
+((-2947 (((-112) $ $) NIL)) (-2872 (($ (-820) (-635 (-1166))) 24)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2874 (((-820) $) 25)) (-2873 (((-635 (-1166)) $) 26)) (-4353 (((-857) $) 23)) (-3437 (((-112) $ $) NIL)))
+(((-819) (-13 (-1091) (-10 -8 (-15 -2874 ((-820) $)) (-15 -2873 ((-635 (-1166)) $)) (-15 -2872 ($ (-820) (-635 (-1166))))))) (T -819))
+((-2874 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-819)))) (-2872 (*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-635 (-1166))) (-5 *1 (-819)))))
+(-13 (-1091) (-10 -8 (-15 -2874 ((-820) $)) (-15 -2873 ((-635 (-1166)) $)) (-15 -2872 ($ (-820) (-635 (-1166))))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1166)) 17)) (-2876 (((-112) $) 10)) (-2877 (((-112) $) 9)) (-2875 (((-112) $) 11)) (-2878 (((-112) $) 8)) (-3437 (((-112) $ $) 19)))
+(((-820) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -2878 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -2876 ((-112) $)) (-15 -2875 ((-112) $))))) (T -820))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-820)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
+(-13 (-1091) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -2878 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -2876 ((-112) $)) (-15 -2875 ((-112) $))))
+((-2879 (((-1259) (-817) (-313 |#1|) (-112)) 23) (((-1259) (-817) (-313 |#1|)) 79) (((-1148) (-313 |#1|) (-112)) 78) (((-1148) (-313 |#1|)) 77)))
+(((-821 |#1|) (-10 -7 (-15 -2879 ((-1148) (-313 |#1|))) (-15 -2879 ((-1148) (-313 |#1|) (-112))) (-15 -2879 ((-1259) (-817) (-313 |#1|))) (-15 -2879 ((-1259) (-817) (-313 |#1|) (-112)))) (-13 (-815) (-844) (-1042))) (T -821))
+((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-817)) (-5 *4 (-313 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-815) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-821 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-313 *5)) (-4 *5 (-13 (-815) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-821 *5)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-313 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-815) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-821 *5)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-313 *4)) (-4 *4 (-13 (-815) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-821 *4)))))
+(-10 -7 (-15 -2879 ((-1148) (-313 |#1|))) (-15 -2879 ((-1148) (-313 |#1|) (-112))) (-15 -2879 ((-1259) (-817) (-313 |#1|))) (-15 -2879 ((-1259) (-817) (-313 |#1|) (-112))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2880 ((|#1| $) 10)) (-2881 (($ |#1|) 9)) (-2545 (((-112) $) NIL)) (-3276 (($ |#2| (-765)) NIL)) (-3202 (((-765) $) NIL)) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4217 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-4355 (((-765) $) NIL)) (-4353 (((-857) $) 17) (($ (-544)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-4084 ((|#2| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-822 |#1| |#2|) (-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2881 ($ |#1|)) (-15 -2880 (|#1| $)))) (-702 |#2|) (-1042)) (T -822))
+((-2881 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-822 *2 *3)) (-4 *2 (-702 *3)))) (-2880 (*1 *2 *1) (-12 (-4 *2 (-702 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1042)))))
+(-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2881 ($ |#1|)) (-15 -2880 (|#1| $))))
+((-2889 (((-310) (-1148) (-1148)) 12)) (-2888 (((-112) (-1148) (-1148)) 33)) (-2887 (((-112) (-1148)) 32)) (-2884 (((-51) (-1148)) 25)) (-2883 (((-51) (-1148)) 23)) (-2882 (((-51) (-817)) 17)) (-2886 (((-635 (-1148)) (-1148)) 28)) (-2885 (((-635 (-1148))) 27)))
+(((-823) (-10 -7 (-15 -2882 ((-51) (-817))) (-15 -2883 ((-51) (-1148))) (-15 -2884 ((-51) (-1148))) (-15 -2885 ((-635 (-1148)))) (-15 -2886 ((-635 (-1148)) (-1148))) (-15 -2887 ((-112) (-1148))) (-15 -2888 ((-112) (-1148) (-1148))) (-15 -2889 ((-310) (-1148) (-1148))))) (T -823))
+((-2889 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-823)))) (-2888 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-2886 (*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148)))) (-2885 (*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-51)) (-5 *1 (-823)))))
+(-10 -7 (-15 -2882 ((-51) (-817))) (-15 -2883 ((-51) (-1148))) (-15 -2884 ((-51) (-1148))) (-15 -2885 ((-635 (-1148)))) (-15 -2886 ((-635 (-1148)) (-1148))) (-15 -2887 ((-112) (-1148))) (-15 -2888 ((-112) (-1148) (-1148))) (-15 -2889 ((-310) (-1148) (-1148))))
+((-2947 (((-112) $ $) 19)) (-3635 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3637 (($ $ $) 72)) (-3636 (((-112) $ $) 73)) (-1293 (((-112) $ (-765)) 8)) (-3640 (($ (-635 |#1|)) 68) (($) 67)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 62)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 64)) (-4126 (((-112) $ (-765)) 9)) (-2913 ((|#1| $) 78)) (-3241 (($ $ $) 81)) (-3917 (($ $ $) 80)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3242 ((|#1| $) 79)) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22)) (-3639 (($ $ $) 69)) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-3644 (((-1110) $) 21)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 61)) (-3638 (($ $ |#1|) 71) (($ $ $) 70)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18)) (-3641 (($ (-635 |#1|)) 66) (($) 65)) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
(((-824 |#1|) (-139) (-844)) (T -824))
-((-1597 (*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844)))))
-(-13 (-730 |t#1|) (-961 |t#1|) (-10 -8 (-15 -1597 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-688 |#1|) . T) ((-730 |#1|) . T) ((-961 |#1|) . T) ((-1088 |#1|) . T) ((-1090) . T) ((-1205) . T))
-((-2193 (((-1259) (-1110) (-1110)) 47)) (-1776 (((-1259) (-815) (-52)) 44)) (-3974 (((-52) (-815)) 16)))
-(((-825) (-10 -7 (-15 -3974 ((-52) (-815))) (-15 -1776 ((-1259) (-815) (-52))) (-15 -2193 ((-1259) (-1110) (-1110))))) (T -825))
-((-2193 (*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1259)) (-5 *1 (-825)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-815)) (-5 *4 (-52)) (-5 *2 (-1259)) (-5 *1 (-825)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-815)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(-10 -7 (-15 -3974 ((-52) (-815))) (-15 -1776 ((-1259) (-815) (-52))) (-15 -2193 ((-1259) (-1110) (-1110))))
-((-4165 (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|)) 12) (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)) 13)))
-(((-826 |#1| |#2|) (-10 -7 (-15 -4165 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))) (-15 -4165 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|)))) (-1090) (-1090)) (T -826))
-((-4165 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-827 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-826 *5 *6)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6)))))
-(-10 -7 (-15 -4165 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))) (-15 -4165 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL (|has| |#1| (-21)))) (-2979 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1659 (((-561) $) NIL (|has| |#1| (-842)))) (-2674 (($) NIL (|has| |#1| (-21)) CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 15)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 9)) (-3735 (((-3 $ "failed") $) 40 (|has| |#1| (-842)))) (-3063 (((-3 (-406 (-561)) "failed") $) 49 (|has| |#1| (-543)))) (-4079 (((-112) $) 43 (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) 46 (|has| |#1| (-543)))) (-1784 (((-112) $) NIL (|has| |#1| (-842)))) (-2252 (((-112) $) NIL (|has| |#1| (-842)))) (-3271 (((-112) $) NIL (|has| |#1| (-842)))) (-1597 (($ $ $) NIL (|has| |#1| (-842)))) (-3017 (($ $ $) NIL (|has| |#1| (-842)))) (-1883 (((-1148) $) NIL)) (-4122 (($) 13)) (-3928 (((-112) $) 12)) (-1701 (((-1110) $) NIL)) (-3457 (((-112) $) 11)) (-4064 (((-856) $) 18) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 8) (($ (-561)) NIL (-4050 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))))) (-3746 (((-765)) 34 (|has| |#1| (-842)))) (-2165 (($ $) NIL (|has| |#1| (-842)))) (-2246 (($) 22 (|has| |#1| (-21)) CONST)) (-2257 (($) 31 (|has| |#1| (-842)) CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1723 (((-112) $ $) 20)) (-1770 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1746 (((-112) $ $) 42 (|has| |#1| (-842)))) (-1819 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1810 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-914)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 37 (|has| |#1| (-842))) (($ (-561) $) 25 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-914) $) NIL (|has| |#1| (-21)))))
-(((-827 |#1|) (-13 (-1090) (-410 |#1|) (-10 -8 (-15 -4122 ($)) (-15 -3457 ((-112) $)) (-15 -3928 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|))) (-1090)) (T -827))
-((-4122 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1090)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-3063 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))))
-(-13 (-1090) (-410 |#1|) (-10 -8 (-15 -4122 ($)) (-15 -3457 ((-112) $)) (-15 -3928 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|)))
-((-4064 (((-856) $) 11)))
-(((-828 |#1| |#2|) (-10 -8 (-15 -4064 ((-856) |#1|))) (-829 |#2|) (-1090)) (T -828))
-NIL
-(-10 -8 (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-3305 ((|#1| $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2004 (((-55) $) 13)) (-1723 (((-112) $ $) 6)))
-(((-829 |#1|) (-139) (-1090)) (T -829))
-((-3305 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1090)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1090)) (-5 *2 (-55)))))
-(-13 (-1090) (-10 -8 (-15 -3305 (|t#1| $)) (-15 -2004 ((-55) $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3979 ((|#1| $) NIL) (((-114) $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3409 ((|#1| (-114) |#1|) NIL)) (-2252 (((-112) $) NIL)) (-3894 (($ |#1| (-360 (-114))) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2463 (($ $ (-1 |#1| |#1|)) NIL)) (-3331 (($ $ (-1 |#1| |#1|)) NIL)) (-2315 ((|#1| $ |#1|) NIL)) (-3484 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-3380 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ (-114) (-561)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-830 |#1|) (-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3380 ($ $)) (-15 -3380 ($ $ $)) (-15 -3484 (|#1| |#1|))) |%noBranch|) (-15 -3331 ($ $ (-1 |#1| |#1|))) (-15 -2463 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -3409 (|#1| (-114) |#1|)) (-15 -3894 ($ |#1| (-360 (-114)))))) (-1042)) (T -830))
-((-3380 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-3380 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-3484 (*1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))) (-2463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-5 *1 (-830 *4)) (-4 *4 (-1042)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-830 *3)) (-4 *3 (-1042)))) (-3409 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-830 *2)) (-4 *2 (-1042)))) (-3894 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-5 *1 (-830 *2)) (-4 *2 (-1042)))))
-(-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3380 ($ $)) (-15 -3380 ($ $ $)) (-15 -3484 (|#1| |#1|))) |%noBranch|) (-15 -3331 ($ $ (-1 |#1| |#1|))) (-15 -2463 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -3409 (|#1| (-114) |#1|)) (-15 -3894 ($ |#1| (-360 (-114))))))
-((-1801 (((-213 (-500)) (-1148)) 9)))
-(((-831) (-10 -7 (-15 -1801 ((-213 (-500)) (-1148))))) (T -831))
-((-1801 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831)))))
-(-10 -7 (-15 -1801 ((-213 (-500)) (-1148))))
-((-4053 (((-112) $ $) NIL)) (-2838 (((-1108) $) 10)) (-3305 (((-504) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4078 (($ (-504) (-1108)) 8)) (-4064 (((-856) $) 26)) (-2004 (((-55) $) 19)) (-1723 (((-112) $ $) 12)))
-(((-832) (-13 (-829 (-504)) (-10 -8 (-15 -2838 ((-1108) $)) (-15 -4078 ($ (-504) (-1108)))))) (T -832))
-((-2838 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-832)))) (-4078 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-832)))))
-(-13 (-829 (-504)) (-10 -8 (-15 -2838 ((-1108) $)) (-15 -4078 ($ (-504) (-1108)))))
-((-4053 (((-112) $ $) 7)) (-1673 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 14) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 13)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 16) (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 15)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)))
+((-2913 (*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844)))))
+(-13 (-731 |t#1|) (-961 |t#1|) (-10 -8 (-15 -2913 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-688 |#1|) . T) ((-731 |#1|) . T) ((-961 |#1|) . T) ((-1089 |#1|) . T) ((-1091) . T) ((-1204) . T))
+((-2892 (((-1259) (-1110) (-1110)) 47)) (-2891 (((-1259) (-816) (-51)) 44)) (-2890 (((-51) (-816)) 16)))
+(((-825) (-10 -7 (-15 -2890 ((-51) (-816))) (-15 -2891 ((-1259) (-816) (-51))) (-15 -2892 ((-1259) (-1110) (-1110))))) (T -825))
+((-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1259)) (-5 *1 (-825)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-51)) (-5 *2 (-1259)) (-5 *1 (-825)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-51)) (-5 *1 (-825)))))
+(-10 -7 (-15 -2890 ((-51) (-816))) (-15 -2891 ((-1259) (-816) (-51))) (-15 -2892 ((-1259) (-1110) (-1110))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL (|has| |#1| (-21)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4030 (((-544) $) NIL (|has| |#1| (-842)))) (-4131 (($) NIL (|has| |#1| (-21)) CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 15)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 9)) (-3866 (((-3 $ "failed") $) 40 (|has| |#1| (-842)))) (-3407 (((-3 (-406 (-544)) "failed") $) 49 (|has| |#1| (-543)))) (-3406 (((-112) $) 43 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 46 (|has| |#1| (-543)))) (-3587 (((-112) $) NIL (|has| |#1| (-842)))) (-2545 (((-112) $) NIL (|has| |#1| (-842)))) (-3588 (((-112) $) NIL (|has| |#1| (-842)))) (-2913 (($ $ $) NIL (|has| |#1| (-842)))) (-3242 (($ $ $) NIL (|has| |#1| (-842)))) (-3643 (((-1148) $) NIL)) (-2893 (($) 13)) (-2906 (((-112) $) 12)) (-3644 (((-1110) $) NIL)) (-2907 (((-112) $) 11)) (-4353 (((-857) $) 18) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 8) (($ (-544)) NIL (-3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))))) (-3511 (((-765)) 34 (|has| |#1| (-842)))) (-3787 (($ $) NIL (|has| |#1| (-842)))) (-3040 (($) 22 (|has| |#1| (-21)) CONST)) (-3046 (($) 31 (|has| |#1| (-842)) CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-842)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3437 (((-112) $ $) 20)) (-3066 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3067 (((-112) $ $) 42 (|has| |#1| (-842)))) (-4244 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4246 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-912)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 37 (|has| |#1| (-842))) (($ (-544) $) 25 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-912) $) NIL (|has| |#1| (-21)))))
+(((-826 |#1|) (-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2893 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|))) (-1091)) (T -826))
+((-2893 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1091)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3407 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))))
+(-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2893 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|)))
+((-4365 (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|)) 12) (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)) 13)))
+(((-827 |#1| |#2|) (-10 -7 (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|))) (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|)))) (-1091) (-1091)) (T -827))
+((-4365 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-826 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *1 (-827 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-826 *6)) (-5 *1 (-827 *5 *6)))))
+(-10 -7 (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|))) (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3557 ((|#1| $) NIL) (((-113) $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2895 ((|#1| (-113) |#1|) NIL)) (-2545 (((-112) $) NIL)) (-2894 (($ |#1| (-360 (-113))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2896 (($ $ (-1 |#1| |#1|)) NIL)) (-2897 (($ $ (-1 |#1| |#1|)) NIL)) (-4206 ((|#1| $ |#1|) NIL)) (-2898 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-2899 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ (-113) (-544)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-828 |#1|) (-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#1| |#1|))) (-15 -2896 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#1| (-113) |#1|)) (-15 -2894 ($ |#1| (-360 (-113)))))) (-1042)) (T -828))
+((-2899 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2899 (*1 *1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2898 (*1 *2 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-5 *1 (-828 *4)) (-4 *4 (-1042)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-828 *3)) (-4 *3 (-1042)))) (-2895 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-828 *2)) (-4 *2 (-1042)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-113))) (-5 *1 (-828 *2)) (-4 *2 (-1042)))))
+(-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#1| |#1|))) (-15 -2896 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#1| (-113) |#1|)) (-15 -2894 ($ |#1| (-360 (-113))))))
+((-4353 (((-857) $) 11)))
+(((-829 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|))) (-830 |#2|) (-1091)) (T -829))
+NIL
+(-10 -8 (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3949 ((|#1| $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2900 (((-55) $) 13)) (-3437 (((-112) $ $) 6)))
+(((-830 |#1|) (-139) (-1091)) (T -830))
+((-3949 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1091)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1091)) (-5 *2 (-55)))))
+(-13 (-1091) (-10 -8 (-15 -3949 (|t#1| $)) (-15 -2900 ((-55) $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2901 (((-213 (-500)) (-1148)) 9)))
+(((-831) (-10 -7 (-15 -2901 ((-213 (-500)) (-1148))))) (T -831))
+((-2901 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831)))))
+(-10 -7 (-15 -2901 ((-213 (-500)) (-1148))))
+((-2947 (((-112) $ $) NIL)) (-3720 (((-1105) $) 10)) (-3949 (((-504) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3929 (($ (-504) (-1105)) 8)) (-4353 (((-857) $) 26)) (-2900 (((-55) $) 19)) (-3437 (((-112) $ $) 12)))
+(((-832) (-13 (-830 (-504)) (-10 -8 (-15 -3720 ((-1105) $)) (-15 -3929 ($ (-504) (-1105)))))) (T -832))
+((-3720 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-832)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-832)))))
+(-13 (-830 (-504)) (-10 -8 (-15 -3720 ((-1105) $)) (-15 -3929 ($ (-504) (-1105)))))
+((-2947 (((-112) $ $) 7)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 14) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 13)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 16) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 15)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)))
(((-833) (-139)) (T -833))
-((-2008 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)))))) (-2008 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)))))) (-1673 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) (-5 *2 (-1028)))) (-1673 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *2 (-1028)))))
-(-13 (-1090) (-10 -7 (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -1673 ((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -1673 ((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-2915 (((-1028) (-638 (-315 (-378))) (-638 (-378))) 147) (((-1028) (-315 (-378)) (-638 (-378))) 145) (((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-837 (-378)))) 144) (((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-315 (-378))) (-638 (-837 (-378)))) 143) (((-1028) (-835)) 117) (((-1028) (-835) (-1054)) 116)) (-2008 (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835) (-1054)) 82) (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835)) 84)) (-3219 (((-1028) (-638 (-315 (-378))) (-638 (-378))) 148) (((-1028) (-835)) 133)))
-(((-834) (-10 -7 (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835) (-1054))) (-15 -2915 ((-1028) (-835) (-1054))) (-15 -2915 ((-1028) (-835))) (-15 -3219 ((-1028) (-835))) (-15 -2915 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-315 (-378))) (-638 (-837 (-378))))) (-15 -2915 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-837 (-378))))) (-15 -2915 ((-1028) (-315 (-378)) (-638 (-378)))) (-15 -2915 ((-1028) (-638 (-315 (-378))) (-638 (-378)))) (-15 -3219 ((-1028) (-638 (-315 (-378))) (-638 (-378)))))) (T -834))
-((-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2915 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378))) (-5 *5 (-638 (-837 (-378)))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2915 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-638 (-378))) (-5 *5 (-638 (-837 (-378)))) (-5 *6 (-638 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-834)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-834)))))
-(-10 -7 (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835) (-1054))) (-15 -2915 ((-1028) (-835) (-1054))) (-15 -2915 ((-1028) (-835))) (-15 -3219 ((-1028) (-835))) (-15 -2915 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-315 (-378))) (-638 (-837 (-378))))) (-15 -2915 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-837 (-378))))) (-15 -2915 ((-1028) (-315 (-378)) (-638 (-378)))) (-15 -2915 ((-1028) (-638 (-315 (-378))) (-638 (-378)))) (-15 -3219 ((-1028) (-638 (-315 (-378))) (-638 (-378)))))
-((-4053 (((-112) $ $) NIL)) (-3979 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) $) 21)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 20) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 14) (($ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))))) 18)) (-1723 (((-112) $ $) NIL)))
-(((-835) (-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -4064 ($ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -4064 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))))) (-15 -3979 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) $))))) (T -835))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *1 (-835)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))) (-5 *1 (-835)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))))) (-5 *1 (-835)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224))))))) (-5 *1 (-835)))))
-(-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -4064 ($ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) (-15 -4064 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))))) (-15 -3979 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))) $))))
-((-4165 (((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|) (-837 |#2|)) 13) (((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|)) 14)))
-(((-836 |#1| |#2|) (-10 -7 (-15 -4165 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|))) (-15 -4165 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|) (-837 |#2|)))) (-1090) (-1090)) (T -836))
-((-4165 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-837 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-836 *5 *6)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-837 *6)) (-5 *1 (-836 *5 *6)))))
-(-10 -7 (-15 -4165 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|))) (-15 -4165 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|) (-837 |#2|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL (|has| |#1| (-21)))) (-4280 (((-1110) $) 24)) (-2979 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1659 (((-561) $) NIL (|has| |#1| (-842)))) (-2674 (($) NIL (|has| |#1| (-21)) CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 16)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 9)) (-3735 (((-3 $ "failed") $) 47 (|has| |#1| (-842)))) (-3063 (((-3 (-406 (-561)) "failed") $) 54 (|has| |#1| (-543)))) (-4079 (((-112) $) 49 (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) 52 (|has| |#1| (-543)))) (-1784 (((-112) $) NIL (|has| |#1| (-842)))) (-3657 (($) 13)) (-2252 (((-112) $) NIL (|has| |#1| (-842)))) (-3271 (((-112) $) NIL (|has| |#1| (-842)))) (-3667 (($) 14)) (-1597 (($ $ $) NIL (|has| |#1| (-842)))) (-3017 (($ $ $) NIL (|has| |#1| (-842)))) (-1883 (((-1148) $) NIL)) (-3928 (((-112) $) 12)) (-1701 (((-1110) $) NIL)) (-3457 (((-112) $) 11)) (-4064 (((-856) $) 22) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 8) (($ (-561)) NIL (-4050 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))))) (-3746 (((-765)) 41 (|has| |#1| (-842)))) (-2165 (($ $) NIL (|has| |#1| (-842)))) (-2246 (($) 29 (|has| |#1| (-21)) CONST)) (-2257 (($) 38 (|has| |#1| (-842)) CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1723 (((-112) $ $) 27)) (-1770 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1746 (((-112) $ $) 48 (|has| |#1| (-842)))) (-1819 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1810 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-914)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 44 (|has| |#1| (-842))) (($ (-561) $) 32 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-914) $) NIL (|has| |#1| (-21)))))
-(((-837 |#1|) (-13 (-1090) (-410 |#1|) (-10 -8 (-15 -3657 ($)) (-15 -3667 ($)) (-15 -3457 ((-112) $)) (-15 -3928 ((-112) $)) (-15 -4280 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|))) (-1090)) (T -837))
-((-3657 (*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))) (-3667 (*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-3063 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))))
-(-13 (-1090) (-410 |#1|) (-10 -8 (-15 -3657 ($)) (-15 -3667 ($)) (-15 -3457 ((-112) $)) (-15 -3928 ((-112) $)) (-15 -4280 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|)))
-((-4053 (((-112) $ $) 7)) (-1386 (((-765)) 22)) (-1362 (($) 25)) (-1597 (($ $ $) 13) (($) 21 T CONST)) (-3017 (($ $ $) 14) (($) 20 T CONST)) (-1335 (((-914) $) 24)) (-1883 (((-1148) $) 9)) (-2442 (($ (-914)) 23)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
+((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-2902 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-1028)))) (-2902 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *2 (-1028)))))
+(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -2902 ((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -2902 ((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2903 (((-1028) (-635 (-313 (-377))) (-635 (-377))) 147) (((-1028) (-313 (-377)) (-635 (-377))) 145) (((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-836 (-377)))) 144) (((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-313 (-377))) (-635 (-836 (-377)))) 143) (((-1028) (-835)) 117) (((-1028) (-835) (-1054)) 116)) (-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835) (-1054)) 82) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835)) 84)) (-2904 (((-1028) (-635 (-313 (-377))) (-635 (-377))) 148) (((-1028) (-835)) 133)))
+(((-834) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835) (-1054))) (-15 -2903 ((-1028) (-835) (-1054))) (-15 -2903 ((-1028) (-835))) (-15 -2904 ((-1028) (-835))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-313 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)))) (-15 -2903 ((-1028) (-635 (-313 (-377))) (-635 (-377)))) (-15 -2904 ((-1028) (-635 (-313 (-377))) (-635 (-377)))))) (T -834))
+((-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377)))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377)))) (-5 *6 (-635 (-313 (-377)))) (-5 *3 (-313 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-834)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-834)))))
+(-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835) (-1054))) (-15 -2903 ((-1028) (-835) (-1054))) (-15 -2903 ((-1028) (-835))) (-15 -2904 ((-1028) (-835))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-313 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)))) (-15 -2903 ((-1028) (-635 (-313 (-377))) (-635 (-377)))) (-15 -2904 ((-1028) (-635 (-313 (-377))) (-635 (-377)))))
+((-2947 (((-112) $ $) NIL)) (-3557 (((-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) $) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 14) (($ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) 18)) (-3437 (((-112) $ $) NIL)))
+(((-835) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -4353 ($ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4353 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))) (-15 -3557 ((-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) $))))) (T -835))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *1 (-835)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *1 (-835)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) (-5 *1 (-835)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) (-5 *1 (-835)))))
+(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -4353 ($ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4353 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))) (-15 -3557 ((-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL (|has| |#1| (-21)))) (-2905 (((-1110) $) 24)) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4030 (((-544) $) NIL (|has| |#1| (-842)))) (-4131 (($) NIL (|has| |#1| (-21)) CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 16)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 9)) (-3866 (((-3 $ "failed") $) 47 (|has| |#1| (-842)))) (-3407 (((-3 (-406 (-544)) "failed") $) 54 (|has| |#1| (-543)))) (-3406 (((-112) $) 49 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 52 (|has| |#1| (-543)))) (-3587 (((-112) $) NIL (|has| |#1| (-842)))) (-2909 (($) 13)) (-2545 (((-112) $) NIL (|has| |#1| (-842)))) (-3588 (((-112) $) NIL (|has| |#1| (-842)))) (-2908 (($) 14)) (-2913 (($ $ $) NIL (|has| |#1| (-842)))) (-3242 (($ $ $) NIL (|has| |#1| (-842)))) (-3643 (((-1148) $) NIL)) (-2906 (((-112) $) 12)) (-3644 (((-1110) $) NIL)) (-2907 (((-112) $) 11)) (-4353 (((-857) $) 22) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 8) (($ (-544)) NIL (-3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))))) (-3511 (((-765)) 41 (|has| |#1| (-842)))) (-3787 (($ $) NIL (|has| |#1| (-842)))) (-3040 (($) 29 (|has| |#1| (-21)) CONST)) (-3046 (($) 38 (|has| |#1| (-842)) CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-842)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3437 (((-112) $ $) 27)) (-3066 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3067 (((-112) $ $) 48 (|has| |#1| (-842)))) (-4244 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4246 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-912)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 44 (|has| |#1| (-842))) (($ (-544) $) 32 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-912) $) NIL (|has| |#1| (-21)))))
+(((-836 |#1|) (-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2908 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (-15 -2905 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|))) (-1091)) (T -836))
+((-2909 (*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091)))) (-2908 (*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3407 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))))
+(-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2908 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (-15 -2905 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|)))
+((-4365 (((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|) (-836 |#2|) (-836 |#2|)) 13) (((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)) 14)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|))) (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|) (-836 |#2|) (-836 |#2|)))) (-1091) (-1091)) (T -837))
+((-4365 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-836 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *1 (-837 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-836 *6)) (-5 *1 (-837 *5 *6)))))
+(-10 -7 (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|))) (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|) (-836 |#2|) (-836 |#2|))))
+((-2947 (((-112) $ $) 7)) (-3521 (((-765)) 22)) (-3377 (($) 25)) (-2913 (($ $ $) 13) (($) 21 T CONST)) (-3242 (($ $ $) 14) (($) 20 T CONST)) (-2160 (((-912) $) 24)) (-3643 (((-1148) $) 9)) (-2535 (($ (-912)) 23)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)))
(((-838) (-139)) (T -838))
-((-1597 (*1 *1) (-4 *1 (-838))) (-3017 (*1 *1) (-4 *1 (-838))))
-(-13 (-844) (-367) (-10 -8 (-15 -1597 ($) -1494) (-15 -3017 ($) -1494)))
-(((-102) . T) ((-608 (-856)) . T) ((-367) . T) ((-844) . T) ((-1090) . T))
-((-1861 (((-112) (-1254 |#2|) (-1254 |#2|)) 17)) (-1915 (((-112) (-1254 |#2|) (-1254 |#2|)) 18)) (-4250 (((-112) (-1254 |#2|) (-1254 |#2|)) 14)))
-(((-839 |#1| |#2|) (-10 -7 (-15 -4250 ((-112) (-1254 |#2|) (-1254 |#2|))) (-15 -1861 ((-112) (-1254 |#2|) (-1254 |#2|))) (-15 -1915 ((-112) (-1254 |#2|) (-1254 |#2|)))) (-765) (-786)) (T -839))
-((-1915 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-1861 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-4250 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
-(-10 -7 (-15 -4250 ((-112) (-1254 |#2|) (-1254 |#2|))) (-15 -1861 ((-112) (-1254 |#2|) (-1254 |#2|))) (-15 -1915 ((-112) (-1254 |#2|) (-1254 |#2|))))
-((-4053 (((-112) $ $) 7)) (-2674 (($) 23 T CONST)) (-3735 (((-3 $ "failed") $) 26)) (-2252 (((-112) $) 24)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2257 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (** (($ $ (-914)) 21) (($ $ (-765)) 25)) (* (($ $ $) 20)))
+((-2913 (*1 *1) (-4 *1 (-838))) (-3242 (*1 *1) (-4 *1 (-838))))
+(-13 (-844) (-367) (-10 -8 (-15 -2913 ($) -4359) (-15 -3242 ($) -4359)))
+(((-102) . T) ((-608 (-857)) . T) ((-367) . T) ((-844) . T) ((-1091) . T))
+((-2911 (((-112) (-1253 |#2|) (-1253 |#2|)) 17)) (-2912 (((-112) (-1253 |#2|) (-1253 |#2|)) 18)) (-2910 (((-112) (-1253 |#2|) (-1253 |#2|)) 14)))
+(((-839 |#1| |#2|) (-10 -7 (-15 -2910 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2911 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2912 ((-112) (-1253 |#2|) (-1253 |#2|)))) (-765) (-786)) (T -839))
+((-2912 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-2911 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-2910 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
+(-10 -7 (-15 -2910 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2911 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2912 ((-112) (-1253 |#2|) (-1253 |#2|))))
+((-2947 (((-112) $ $) 7)) (-4131 (($) 23 T CONST)) (-3866 (((-3 $ "failed") $) 26)) (-2545 (((-112) $) 24)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3046 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (** (($ $ (-912)) 21) (($ $ (-765)) 25)) (* (($ $ $) 20)))
(((-840) (-139)) (T -840))
NIL
(-13 (-851) (-720))
-(((-102) . T) ((-608 (-856)) . T) ((-720) . T) ((-851) . T) ((-844) . T) ((-1102) . T) ((-1090) . T))
-((-1659 (((-561) $) 17)) (-1784 (((-112) $) 10)) (-3271 (((-112) $) 11)) (-2165 (($ $) 19)))
-(((-841 |#1|) (-10 -8 (-15 -2165 (|#1| |#1|)) (-15 -1659 ((-561) |#1|)) (-15 -3271 ((-112) |#1|)) (-15 -1784 ((-112) |#1|))) (-842)) (T -841))
+(((-102) . T) ((-608 (-857)) . T) ((-720) . T) ((-851) . T) ((-844) . T) ((-1102) . T) ((-1091) . T))
+((-4030 (((-544) $) 17)) (-3587 (((-112) $) 10)) (-3588 (((-112) $) 11)) (-3787 (($ $) 19)))
+(((-841 |#1|) (-10 -8 (-15 -3787 (|#1| |#1|)) (-15 -4030 ((-544) |#1|)) (-15 -3588 ((-112) |#1|)) (-15 -3587 ((-112) |#1|))) (-842)) (T -841))
NIL
-(-10 -8 (-15 -2165 (|#1| |#1|)) (-15 -1659 ((-561) |#1|)) (-15 -3271 ((-112) |#1|)) (-15 -1784 ((-112) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 24)) (-2979 (((-3 $ "failed") $ $) 26)) (-1659 (((-561) $) 34)) (-2674 (($) 23 T CONST)) (-3735 (((-3 $ "failed") $) 39)) (-1784 (((-112) $) 36)) (-2252 (((-112) $) 41)) (-3271 (((-112) $) 35)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 43)) (-3746 (((-765)) 44)) (-2165 (($ $) 33)) (-2246 (($) 22 T CONST)) (-2257 (($) 42 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1819 (($ $ $) 28) (($ $) 27)) (-1810 (($ $ $) 20)) (** (($ $ (-765)) 40) (($ $ (-914)) 37)) (* (($ (-914) $) 21) (($ (-765) $) 25) (($ (-561) $) 29) (($ $ $) 38)))
+(-10 -8 (-15 -3787 (|#1| |#1|)) (-15 -4030 ((-544) |#1|)) (-15 -3588 ((-112) |#1|)) (-15 -3587 ((-112) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-1391 (((-3 $ "failed") $ $) 26)) (-4030 (((-544) $) 34)) (-4131 (($) 23 T CONST)) (-3866 (((-3 $ "failed") $) 39)) (-3587 (((-112) $) 36)) (-2545 (((-112) $) 41)) (-3588 (((-112) $) 35)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 43)) (-3511 (((-765)) 44)) (-3787 (($ $) 33)) (-3040 (($) 22 T CONST)) (-3046 (($) 42 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4244 (($ $ $) 28) (($ $) 27)) (-4246 (($ $ $) 20)) (** (($ $ (-765)) 40) (($ $ (-912)) 37)) (* (($ (-912) $) 21) (($ (-765) $) 25) (($ (-544) $) 29) (($ $ $) 38)))
(((-842) (-139)) (T -842))
-((-1784 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-561)))) (-2165 (*1 *1 *1) (-4 *1 (-842))))
-(-13 (-785) (-1042) (-720) (-10 -8 (-15 -1784 ((-112) $)) (-15 -3271 ((-112) $)) (-15 -1659 ((-561) $)) (-15 -2165 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-844) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-1597 (($ $ $) 10)) (-3017 (($ $ $) 9)) (-1781 (((-112) $ $) 12)) (-1758 (((-112) $ $) 11)) (-1770 (((-112) $ $) 13)))
-(((-843 |#1|) (-10 -8 (-15 -1597 (|#1| |#1| |#1|)) (-15 -3017 (|#1| |#1| |#1|)) (-15 -1770 ((-112) |#1| |#1|)) (-15 -1781 ((-112) |#1| |#1|)) (-15 -1758 ((-112) |#1| |#1|))) (-844)) (T -843))
-NIL
-(-10 -8 (-15 -1597 (|#1| |#1| |#1|)) (-15 -3017 (|#1| |#1| |#1|)) (-15 -1770 ((-112) |#1| |#1|)) (-15 -1781 ((-112) |#1| |#1|)) (-15 -1758 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
+((-3587 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-544)))) (-3787 (*1 *1 *1) (-4 *1 (-842))))
+(-13 (-785) (-1042) (-720) (-10 -8 (-15 -3587 ((-112) $)) (-15 -3588 ((-112) $)) (-15 -4030 ((-544) $)) (-15 -3787 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-844) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2913 (($ $ $) 10)) (-3242 (($ $ $) 9)) (-2945 (((-112) $ $) 12)) (-2946 (((-112) $ $) 11)) (-3066 (((-112) $ $) 13)))
+(((-843 |#1|) (-10 -8 (-15 -2913 (|#1| |#1| |#1|)) (-15 -3242 (|#1| |#1| |#1|)) (-15 -3066 ((-112) |#1| |#1|)) (-15 -2945 ((-112) |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-844)) (T -843))
+NIL
+(-10 -8 (-15 -2913 (|#1| |#1| |#1|)) (-15 -3242 (|#1| |#1| |#1|)) (-15 -3066 ((-112) |#1| |#1|)) (-15 -2945 ((-112) |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)))
(((-844) (-139)) (T -844))
-((-1746 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1758 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1781 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1770 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3017 (*1 *1 *1 *1) (-4 *1 (-844))) (-1597 (*1 *1 *1 *1) (-4 *1 (-844))))
-(-13 (-1090) (-10 -8 (-15 -1746 ((-112) $ $)) (-15 -1758 ((-112) $ $)) (-15 -1781 ((-112) $ $)) (-15 -1770 ((-112) $ $)) (-15 -3017 ($ $ $)) (-15 -1597 ($ $ $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-1882 (($ $ $) 45)) (-2688 (($ $ $) 44)) (-1619 (($ $ $) 42)) (-2813 (($ $ $) 51)) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 46)) (-2154 (((-3 $ "failed") $ $) 49)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-4229 (($ $) 35)) (-1443 (($ $ $) 39)) (-4129 (($ $ $) 38)) (-4021 (($ $ $) 47)) (-1516 (($ $ $) 53)) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 41)) (-1359 (((-3 $ "failed") $ $) 48)) (-1748 (((-3 $ "failed") $ |#2|) 28)) (-2125 ((|#2| $) 32)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ |#2|) 12)) (-1868 (((-638 |#2|) $) 18)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-845 |#1| |#2|) (-10 -8 (-15 -4021 (|#1| |#1| |#1|)) (-15 -4238 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3194 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2154 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1| |#1|)) (-15 -1702 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3194 |#1|)) |#1| |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 -1359 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 -4129 (|#1| |#1| |#1|)) (-15 -4229 (|#1| |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1868 ((-638 |#2|) |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -4064 ((-856) |#1|))) (-846 |#2|) (-1042)) (T -845))
-NIL
-(-10 -8 (-15 -4021 (|#1| |#1| |#1|)) (-15 -4238 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3194 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2154 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1| |#1|)) (-15 -1702 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3194 |#1|)) |#1| |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 -1359 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 -4129 (|#1| |#1| |#1|)) (-15 -4229 (|#1| |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -1748 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1868 ((-638 |#2|) |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1882 (($ $ $) 44 (|has| |#1| (-362)))) (-2688 (($ $ $) 45 (|has| |#1| (-362)))) (-1619 (($ $ $) 47 (|has| |#1| (-362)))) (-2813 (($ $ $) 42 (|has| |#1| (-362)))) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 41 (|has| |#1| (-362)))) (-2154 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2776 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 46 (|has| |#1| (-362)))) (-4061 (((-3 (-561) "failed") $) 74 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 71 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 68)) (-3979 (((-561) $) 73 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 70 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 69)) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-4229 (($ $) 54 (|has| |#1| (-450)))) (-2252 (((-112) $) 31)) (-1381 (($ |#1| (-765)) 61)) (-2598 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 56 (|has| |#1| (-553)))) (-1912 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 57 (|has| |#1| (-553)))) (-1522 (((-765) $) 65)) (-1443 (($ $ $) 51 (|has| |#1| (-362)))) (-4129 (($ $ $) 52 (|has| |#1| (-362)))) (-4021 (($ $ $) 40 (|has| |#1| (-362)))) (-1516 (($ $ $) 49 (|has| |#1| (-362)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 48 (|has| |#1| (-362)))) (-1359 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-3371 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 53 (|has| |#1| (-362)))) (-1572 ((|#1| $) 64)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-553)))) (-3768 (((-765) $) 66)) (-2125 ((|#1| $) 55 (|has| |#1| (-450)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 72 (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 67)) (-1868 (((-638 |#1|) $) 60)) (-3932 ((|#1| $ (-765)) 62)) (-3746 (((-765)) 28)) (-1363 ((|#1| $ |#1| |#1|) 59)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+((-3067 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2946 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2945 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3066 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3242 (*1 *1 *1 *1) (-4 *1 (-844))) (-2913 (*1 *1 *1 *1) (-4 *1 (-844))))
+(-13 (-1091) (-10 -8 (-15 -3067 ((-112) $ $)) (-15 -2946 ((-112) $ $)) (-15 -2945 ((-112) $ $)) (-15 -3066 ((-112) $ $)) (-15 -3242 ($ $ $)) (-15 -2913 ($ $ $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2918 (($ $ $) 45)) (-2919 (($ $ $) 44)) (-2920 (($ $ $) 42)) (-2916 (($ $ $) 51)) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 46)) (-2917 (((-3 $ "failed") $ $) 49)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3902 (($ $) 35)) (-2924 (($ $ $) 39)) (-2925 (($ $ $) 38)) (-2914 (($ $ $) 47)) (-2922 (($ $ $) 53)) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 41)) (-2923 (((-3 $ "failed") $ $) 48)) (-3865 (((-3 $ "failed") $ |#2|) 28)) (-3199 ((|#2| $) 32)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ |#2|) 12)) (-4224 (((-635 |#2|) $) 18)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-845 |#1| |#2|) (-10 -8 (-15 -2914 (|#1| |#1| |#1|)) (-15 -2915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2918 (|#1| |#1| |#1|)) (-15 -2919 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -2921 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4353 ((-857) |#1|))) (-846 |#2|) (-1042)) (T -845))
+NIL
+(-10 -8 (-15 -2914 (|#1| |#1| |#1|)) (-15 -2915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2918 (|#1| |#1| |#1|)) (-15 -2919 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -2921 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2918 (($ $ $) 44 (|has| |#1| (-362)))) (-2919 (($ $ $) 45 (|has| |#1| (-362)))) (-2920 (($ $ $) 47 (|has| |#1| (-362)))) (-2916 (($ $ $) 42 (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 41 (|has| |#1| (-362)))) (-2917 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 46 (|has| |#1| (-362)))) (-3558 (((-3 (-544) #1="failed") $) 74 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 71 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 68)) (-3557 (((-544) $) 73 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 70 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 69)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 54 (|has| |#1| (-450)))) (-2545 (((-112) $) 31)) (-3276 (($ |#1| (-765)) 61)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 56 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 57 (|has| |#1| (-554)))) (-3202 (((-765) $) 65)) (-2924 (($ $ $) 51 (|has| |#1| (-362)))) (-2925 (($ $ $) 52 (|has| |#1| (-362)))) (-2914 (($ $ $) 40 (|has| |#1| (-362)))) (-2922 (($ $ $) 49 (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 48 (|has| |#1| (-362)))) (-2923 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 53 (|has| |#1| (-362)))) (-3575 ((|#1| $) 64)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-554)))) (-4355 (((-765) $) 66)) (-3199 ((|#1| $) 55 (|has| |#1| (-450)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 72 (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 67)) (-4224 (((-635 |#1|) $) 60)) (-4084 ((|#1| $ (-765)) 62)) (-3511 (((-765)) 28)) (-2927 ((|#1| $ |#1| |#1|) 59)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
(((-846 |#1|) (-139) (-1042)) (T -846))
-((-3768 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-1598 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-638 *3)))) (-1363 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-1748 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-1912 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3)))) (-2598 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-4229 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-3371 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3)))) (-4129 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1443 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1359 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1516 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1702 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3194 *1))) (-4 *1 (-846 *3)))) (-1619 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2776 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3)))) (-2688 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1882 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2154 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2813 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-4238 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3194 *1))) (-4 *1 (-846 *3)))) (-4021 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(-13 (-1042) (-111 |t#1| |t#1|) (-410 |t#1|) (-10 -8 (-15 -3768 ((-765) $)) (-15 -1522 ((-765) $)) (-15 -1572 (|t#1| $)) (-15 -1598 ($ $)) (-15 -3932 (|t#1| $ (-765))) (-15 -1381 ($ |t#1| (-765))) (-15 -1868 ((-638 |t#1|) $)) (-15 -1363 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -1748 ((-3 $ "failed") $ |t#1|)) (-15 -1912 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -2598 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -2125 (|t#1| $)) (-15 -4229 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -3371 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -4129 ($ $ $)) (-15 -1443 ($ $ $)) (-15 -1359 ((-3 $ "failed") $ $)) (-15 -1516 ($ $ $)) (-15 -1702 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $)) (-15 -1619 ($ $ $)) (-15 -2776 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -2688 ($ $ $)) (-15 -1882 ($ $ $)) (-15 -2154 ((-3 $ "failed") $ $)) (-15 -2813 ($ $ $)) (-15 -4238 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $)) (-15 -4021 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-410 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-3028 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2776 (((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-2598 (((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-553)))) (-1912 (((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-553)))) (-3371 (((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-1363 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
-(((-847 |#1| |#2|) (-10 -7 (-15 -3028 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1363 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-553)) (PROGN (-15 -1912 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2598 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3371 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2776 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1042) (-846 |#1|)) (T -847))
-((-2776 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-3371 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2598 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-1912 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-1363 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042)) (-5 *1 (-847 *2 *3)) (-4 *3 (-846 *2)))) (-3028 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042)) (-5 *1 (-847 *5 *2)) (-4 *2 (-846 *5)))))
-(-10 -7 (-15 -3028 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1363 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-553)) (PROGN (-15 -1912 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2598 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3371 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2776 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1882 (($ $ $) NIL (|has| |#1| (-362)))) (-2688 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $ $) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL (|has| |#1| (-362)))) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-2154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2776 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 32 (|has| |#1| (-362)))) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450)))) (-2067 (((-856) $ (-856)) NIL)) (-2252 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) NIL)) (-2598 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 28 (|has| |#1| (-553)))) (-1912 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 26 (|has| |#1| (-553)))) (-1522 (((-765) $) NIL)) (-1443 (($ $ $) NIL (|has| |#1| (-362)))) (-4129 (($ $ $) NIL (|has| |#1| (-362)))) (-4021 (($ $ $) NIL (|has| |#1| (-362)))) (-1516 (($ $ $) NIL (|has| |#1| (-362)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1359 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3371 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 30 (|has| |#1| (-362)))) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-3768 (((-765) $) NIL)) (-2125 ((|#1| $) NIL (|has| |#1| (-450)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) NIL)) (-3746 (((-765)) NIL)) (-1363 ((|#1| $ |#1| |#1|) 15)) (-2246 (($) NIL T CONST)) (-2257 (($) 20 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) 19) (($ $ (-765)) 22)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-848 |#1| |#2| |#3|) (-13 (-846 |#1|) (-10 -8 (-15 -2067 ((-856) $ (-856))))) (-1042) (-99 |#1|) (-1 |#1| |#1|)) (T -848))
-((-2067 (*1 *2 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-846 |#1|) (-10 -8 (-15 -2067 ((-856) $ (-856)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-1882 (($ $ $) NIL (|has| |#2| (-362)))) (-2688 (($ $ $) NIL (|has| |#2| (-362)))) (-1619 (($ $ $) NIL (|has| |#2| (-362)))) (-2813 (($ $ $) NIL (|has| |#2| (-362)))) (-4238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#2| (-362)))) (-2154 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-2776 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#2| (-362)))) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) NIL)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#2| (-450)))) (-2252 (((-112) $) NIL)) (-1381 (($ |#2| (-765)) 16)) (-2598 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#2| (-553)))) (-1912 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#2| (-553)))) (-1522 (((-765) $) NIL)) (-1443 (($ $ $) NIL (|has| |#2| (-362)))) (-4129 (($ $ $) NIL (|has| |#2| (-362)))) (-4021 (($ $ $) NIL (|has| |#2| (-362)))) (-1516 (($ $ $) NIL (|has| |#2| (-362)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#2| (-362)))) (-1359 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3371 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#2| (-362)))) (-1572 ((|#2| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553)))) (-3768 (((-765) $) NIL)) (-2125 ((|#2| $) NIL (|has| |#2| (-450)))) (-4064 (((-856) $) 23) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) NIL) (($ (-1250 |#1|)) 18)) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-765)) NIL)) (-3746 (((-765)) NIL)) (-1363 ((|#2| $ |#2| |#2|) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) 13 T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+((-4355 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-635 *3)))) (-2927 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-2928 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-2930 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-2925 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2924 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2923 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2922 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2921 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) (-4 *1 (-846 *3)))) (-2920 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2931 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-2919 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2918 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2917 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2916 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2915 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) (-4 *1 (-846 *3)))) (-2914 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(-13 (-1042) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -4355 ((-765) $)) (-15 -3202 ((-765) $)) (-15 -3575 (|t#1| $)) (-15 -4366 ($ $)) (-15 -4084 (|t#1| $ (-765))) (-15 -3276 ($ |t#1| (-765))) (-15 -4224 ((-635 |t#1|) $)) (-15 -2927 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -3865 ((-3 $ "failed") $ |t#1|)) (-15 -2928 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2929 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3199 (|t#1| $)) (-15 -3902 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -2930 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2925 ($ $ $)) (-15 -2924 ($ $ $)) (-15 -2923 ((-3 $ "failed") $ $)) (-15 -2922 ($ $ $)) (-15 -2921 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $)) (-15 -2920 ($ $ $)) (-15 -2931 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2919 ($ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ((-3 $ "failed") $ $)) (-15 -2916 ($ $ $)) (-15 -2915 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $)) (-15 -2914 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-411 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2926 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2931 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-2929 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-554)))) (-2930 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-2927 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
+(((-847 |#1| |#2|) (-10 -7 (-15 -2926 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2927 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -2928 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2929 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2930 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2931 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1042) (-846 |#1|)) (T -847))
+((-2931 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2930 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2929 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2928 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2927 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042)) (-5 *1 (-847 *2 *3)) (-4 *3 (-846 *2)))) (-2926 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042)) (-5 *1 (-847 *5 *2)) (-4 *2 (-846 *5)))))
+(-10 -7 (-15 -2926 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2927 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -2928 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2929 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2930 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2931 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 32 (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-3932 (((-857) $ (-857)) NIL)) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 28 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 26 (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 30 (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) 15)) (-3040 (($) NIL T CONST)) (-3046 (($) 20 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 19) (($ $ (-765)) 22)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-848 |#1| |#2| |#3|) (-13 (-846 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857))))) (-1042) (-99 |#1|) (-1 |#1| |#1|)) (T -848))
+((-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-846 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#2| (-362)))) (-2919 (($ $ $) NIL (|has| |#2| (-362)))) (-2920 (($ $ $) NIL (|has| |#2| (-362)))) (-2916 (($ $ $) NIL (|has| |#2| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#2| (-765)) 16)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#2| (-362)))) (-2925 (($ $ $) NIL (|has| |#2| (-362)))) (-2914 (($ $ $) NIL (|has| |#2| (-362)))) (-2922 (($ $ $) NIL (|has| |#2| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#2| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-554)))) (-4355 (((-765) $) NIL)) (-3199 ((|#2| $) NIL (|has| |#2| (-450)))) (-4353 (((-857) $) 23) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) NIL) (($ (-1250 |#1|)) 18)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#2| $ |#2| |#2|) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) 13 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
(((-849 |#1| |#2| |#3| |#4|) (-13 (-846 |#2|) (-611 (-1250 |#1|))) (-1166) (-1042) (-99 |#2|) (-1 |#2| |#2|)) (T -849))
NIL
(-13 (-846 |#2|) (-611 (-1250 |#1|)))
-((-3606 ((|#1| (-765) |#1|) 35 (|has| |#1| (-38 (-406 (-561)))))) (-4104 ((|#1| (-765) (-765) |#1|) 27) ((|#1| (-765) |#1|) 20)) (-3737 ((|#1| (-765) |#1|) 31)) (-3816 ((|#1| (-765) |#1|) 29)) (-2181 ((|#1| (-765) |#1|) 28)))
-(((-850 |#1|) (-10 -7 (-15 -2181 (|#1| (-765) |#1|)) (-15 -3816 (|#1| (-765) |#1|)) (-15 -3737 (|#1| (-765) |#1|)) (-15 -4104 (|#1| (-765) |#1|)) (-15 -4104 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -3606 (|#1| (-765) |#1|)) |%noBranch|)) (-171)) (T -850))
-((-3606 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-171)))) (-4104 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-4104 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-3737 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-3816 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-2181 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
-(-10 -7 (-15 -2181 (|#1| (-765) |#1|)) (-15 -3816 (|#1| (-765) |#1|)) (-15 -3737 (|#1| (-765) |#1|)) (-15 -4104 (|#1| (-765) |#1|)) (-15 -4104 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -3606 (|#1| (-765) |#1|)) |%noBranch|))
-((-4053 (((-112) $ $) 7)) (-1597 (($ $ $) 13)) (-3017 (($ $ $) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (** (($ $ (-914)) 21)) (* (($ $ $) 20)))
+((-2934 ((|#1| (-765) |#1|) 35 (|has| |#1| (-38 (-406 (-544)))))) (-2933 ((|#1| (-765) (-765) |#1|) 27) ((|#1| (-765) |#1|) 20)) (-2932 ((|#1| (-765) |#1|) 31)) (-3182 ((|#1| (-765) |#1|) 29)) (-3181 ((|#1| (-765) |#1|) 28)))
+(((-850 |#1|) (-10 -7 (-15 -3181 (|#1| (-765) |#1|)) (-15 -3182 (|#1| (-765) |#1|)) (-15 -2932 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -2934 (|#1| (-765) |#1|)) |%noBranch|)) (-171)) (T -850))
+((-2934 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-171)))) (-2933 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-2933 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-2932 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-3182 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-3181 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
+(-10 -7 (-15 -3181 (|#1| (-765) |#1|)) (-15 -3182 (|#1| (-765) |#1|)) (-15 -2932 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -2934 (|#1| (-765) |#1|)) |%noBranch|))
+((-2947 (((-112) $ $) 7)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (** (($ $ (-912)) 21)) (* (($ $ $) 20)))
(((-851) (-139)) (T -851))
NIL
(-13 (-844) (-1102))
-(((-102) . T) ((-608 (-856)) . T) ((-844) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-2506 (((-561) $) 12)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 18) (($ (-561)) 11)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 8)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 9)))
-(((-852) (-13 (-844) (-10 -8 (-15 -4064 ($ (-561))) (-15 -2506 ((-561) $))))) (T -852))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-852)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-852)))))
-(-13 (-844) (-10 -8 (-15 -4064 ($ (-561))) (-15 -2506 ((-561) $))))
-((-4230 (((-684 (-1212)) $ (-1212)) 15)) (-4315 (((-684 (-546)) $ (-546)) 12)) (-3284 (((-765) $ (-128)) 24)))
-(((-853 |#1|) (-10 -8 (-15 -3284 ((-765) |#1| (-128))) (-15 -4230 ((-684 (-1212)) |#1| (-1212))) (-15 -4315 ((-684 (-546)) |#1| (-546)))) (-854)) (T -853))
-NIL
-(-10 -8 (-15 -3284 ((-765) |#1| (-128))) (-15 -4230 ((-684 (-1212)) |#1| (-1212))) (-15 -4315 ((-684 (-546)) |#1| (-546))))
-((-4230 (((-684 (-1212)) $ (-1212)) 8)) (-4315 (((-684 (-546)) $ (-546)) 9)) (-3284 (((-765) $ (-128)) 7)) (-4065 (((-684 (-129)) $ (-129)) 10)) (-3550 (($ $) 6)))
-(((-854) (-139)) (T -854))
-((-4065 (*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *2 (-684 (-129))) (-5 *3 (-129)))) (-4315 (*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *2 (-684 (-546))) (-5 *3 (-546)))) (-4230 (*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *2 (-684 (-1212))) (-5 *3 (-1212)))) (-3284 (*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *3 (-128)) (-5 *2 (-765)))))
-(-13 (-172) (-10 -8 (-15 -4065 ((-684 (-129)) $ (-129))) (-15 -4315 ((-684 (-546)) $ (-546))) (-15 -4230 ((-684 (-1212)) $ (-1212))) (-15 -3284 ((-765) $ (-128)))))
+(((-102) . T) ((-608 (-857)) . T) ((-844) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3806 (((-544) $) 12)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18) (($ (-544)) 11)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 8)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 9)))
+(((-852) (-13 (-844) (-10 -8 (-15 -4353 ($ (-544))) (-15 -3806 ((-544) $))))) (T -852))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-852)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-852)))))
+(-13 (-844) (-10 -8 (-15 -4353 ($ (-544))) (-15 -3806 ((-544) $))))
+((-2935 (((-1259) (-635 (-51))) 24)) (-3859 (((-1259) (-1148) (-857)) 14) (((-1259) (-857)) 9) (((-1259) (-1148)) 11)))
+(((-853) (-10 -7 (-15 -3859 ((-1259) (-1148))) (-15 -3859 ((-1259) (-857))) (-15 -3859 ((-1259) (-1148) (-857))) (-15 -2935 ((-1259) (-635 (-51)))))) (T -853))
+((-2935 (*1 *2 *3) (-12 (-5 *3 (-635 (-51))) (-5 *2 (-1259)) (-5 *1 (-853)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-853)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-853)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-853)))))
+(-10 -7 (-15 -3859 ((-1259) (-1148))) (-15 -3859 ((-1259) (-857))) (-15 -3859 ((-1259) (-1148) (-857))) (-15 -2935 ((-1259) (-635 (-51)))))
+((-2937 (((-684 (-1212)) $ (-1212)) 15)) (-2938 (((-684 (-547)) $ (-547)) 12)) (-2936 (((-765) $ (-129)) 24)))
+(((-854 |#1|) (-10 -8 (-15 -2936 ((-765) |#1| (-129))) (-15 -2937 ((-684 (-1212)) |#1| (-1212))) (-15 -2938 ((-684 (-547)) |#1| (-547)))) (-855)) (T -854))
+NIL
+(-10 -8 (-15 -2936 ((-765) |#1| (-129))) (-15 -2937 ((-684 (-1212)) |#1| (-1212))) (-15 -2938 ((-684 (-547)) |#1| (-547))))
+((-2937 (((-684 (-1212)) $ (-1212)) 8)) (-2938 (((-684 (-547)) $ (-547)) 9)) (-2936 (((-765) $ (-129)) 7)) (-2939 (((-684 (-128)) $ (-128)) 10)) (-1844 (($ $) 6)))
+(((-855) (-139)) (T -855))
+((-2939 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-128))) (-5 *3 (-128)))) (-2938 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-547))) (-5 *3 (-547)))) (-2937 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-1212))) (-5 *3 (-1212)))) (-2936 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-129)) (-5 *2 (-765)))))
+(-13 (-172) (-10 -8 (-15 -2939 ((-684 (-128)) $ (-128))) (-15 -2938 ((-684 (-547)) $ (-547))) (-15 -2937 ((-684 (-1212)) $ (-1212))) (-15 -2936 ((-765) $ (-129)))))
(((-172) . T))
-((-4230 (((-684 (-1212)) $ (-1212)) NIL)) (-4315 (((-684 (-546)) $ (-546)) NIL)) (-3284 (((-765) $ (-128)) NIL)) (-4065 (((-684 (-129)) $ (-129)) 21)) (-2676 (($ (-387)) 12) (($ (-1148)) 14)) (-1301 (((-112) $) 18)) (-4064 (((-856) $) 25)) (-3550 (($ $) 22)))
-(((-855) (-13 (-854) (-608 (-856)) (-10 -8 (-15 -2676 ($ (-387))) (-15 -2676 ($ (-1148))) (-15 -1301 ((-112) $))))) (T -855))
-((-2676 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-855)))) (-2676 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-855)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855)))))
-(-13 (-854) (-608 (-856)) (-10 -8 (-15 -2676 ($ (-387))) (-15 -2676 ($ (-1148))) (-15 -1301 ((-112) $))))
-((-4053 (((-112) $ $) NIL) (($ $ $) 77)) (-4282 (($ $ $) 114)) (-3739 (((-561) $) 31) (((-561)) 36)) (-1384 (($ (-561)) 45)) (-1438 (($ $ $) 46) (($ (-638 $)) 76)) (-1993 (($ $ (-638 $)) 74)) (-3351 (((-561) $) 34)) (-2847 (($ $ $) 65)) (-1621 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-3855 (((-561) $) 33)) (-3309 (($ $ $) 64)) (-3651 (($ $) 104)) (-3910 (($ $ $) 118)) (-3636 (($ (-638 $)) 53)) (-4323 (($ $ (-638 $)) 71)) (-4173 (($ (-561) (-561)) 47)) (-2865 (($ $) 115) (($ $ $) 116)) (-1599 (($ $ (-561)) 41) (($ $) 44)) (-1792 (($ $ $) 89)) (-2326 (($ $ $) 121)) (-2179 (($ $) 105)) (-1771 (($ $ $) 90)) (-3046 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3255 (((-1259) $) 10)) (-2425 (($ $) 108) (($ $ (-765)) 111)) (-1460 (($ $ $) 67)) (-2690 (($ $ $) 66)) (-2130 (($ $ (-638 $)) 100)) (-1601 (($ $ $) 103)) (-1333 (($ (-638 $)) 51)) (-1719 (($ $) 62) (($ (-638 $)) 63)) (-1366 (($ $ $) 112)) (-2780 (($ $) 106)) (-1302 (($ $ $) 117)) (-2067 (($ (-561)) 21) (($ (-1166)) 23) (($ (-1148)) 30) (($ (-224)) 25)) (-2208 (($ $ $) 93)) (-2186 (($ $) 94)) (-3845 (((-1259) (-1148)) 15)) (-3908 (($ (-1148)) 14)) (-2887 (($ (-638 (-638 $))) 50)) (-1586 (($ $ (-561)) 40) (($ $) 43)) (-1883 (((-1148) $) NIL)) (-1782 (($ $ $) 120)) (-3530 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3941 (((-112) $) 98)) (-4262 (($ $ (-638 $)) 101) (($ $ $ $) 102)) (-1932 (($ (-561)) 37)) (-3093 (((-561) $) 32) (((-561)) 35)) (-2568 (($ $ $) 38) (($ (-638 $)) 75)) (-1701 (((-1110) $) NIL)) (-1748 (($ $ $) 91)) (-2910 (($) 13)) (-2315 (($ $ (-638 $)) 99)) (-3797 (((-1148) (-1148)) 8)) (-3634 (($ $) 107) (($ $ (-765)) 110)) (-1759 (($ $ $) 88)) (-3922 (($ $ (-765)) 126)) (-2163 (($ (-638 $)) 52)) (-4064 (((-856) $) 19)) (-2298 (($ $ (-561)) 39) (($ $) 42)) (-3611 (($ $) 60) (($ (-638 $)) 61)) (-1697 (($ $) 58) (($ (-638 $)) 59)) (-3402 (($ $) 113)) (-2017 (($ (-638 $)) 57)) (-3210 (($ $ $) 97)) (-3355 (($ $ $) 119)) (-2198 (($ $ $) 92)) (-3890 (($ $ $) 95) (($ $) 96)) (-1781 (($ $ $) 81)) (-1758 (($ $ $) 79)) (-1723 (((-112) $ $) 16) (($ $ $) 17)) (-1770 (($ $ $) 80)) (-1746 (($ $ $) 78)) (-1828 (($ $ $) 86)) (-1819 (($ $ $) 83) (($ $) 84)) (-1810 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-856) (-13 (-1090) (-10 -8 (-15 -3255 ((-1259) $)) (-15 -3908 ($ (-1148))) (-15 -3845 ((-1259) (-1148))) (-15 -2067 ($ (-561))) (-15 -2067 ($ (-1166))) (-15 -2067 ($ (-1148))) (-15 -2067 ($ (-224))) (-15 -2910 ($)) (-15 -3797 ((-1148) (-1148))) (-15 -3739 ((-561) $)) (-15 -3093 ((-561) $)) (-15 -3739 ((-561))) (-15 -3093 ((-561))) (-15 -3855 ((-561) $)) (-15 -3351 ((-561) $)) (-15 -1932 ($ (-561))) (-15 -1384 ($ (-561))) (-15 -4173 ($ (-561) (-561))) (-15 -1586 ($ $ (-561))) (-15 -1599 ($ $ (-561))) (-15 -2298 ($ $ (-561))) (-15 -1586 ($ $)) (-15 -1599 ($ $)) (-15 -2298 ($ $)) (-15 -2568 ($ $ $)) (-15 -1438 ($ $ $)) (-15 -2568 ($ (-638 $))) (-15 -1438 ($ (-638 $))) (-15 -2130 ($ $ (-638 $))) (-15 -4262 ($ $ (-638 $))) (-15 -4262 ($ $ $ $)) (-15 -1601 ($ $ $)) (-15 -3941 ((-112) $)) (-15 -2315 ($ $ (-638 $))) (-15 -3651 ($ $)) (-15 -1782 ($ $ $)) (-15 -3402 ($ $)) (-15 -2887 ($ (-638 (-638 $)))) (-15 -4282 ($ $ $)) (-15 -2865 ($ $)) (-15 -2865 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -3910 ($ $ $)) (-15 -3355 ($ $ $)) (-15 -2326 ($ $ $)) (-15 -3922 ($ $ (-765))) (-15 -3210 ($ $ $)) (-15 -3309 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -2690 ($ $ $)) (-15 -1460 ($ $ $)) (-15 -4323 ($ $ (-638 $))) (-15 -1993 ($ $ (-638 $))) (-15 -2179 ($ $)) (-15 -3634 ($ $)) (-15 -3634 ($ $ (-765))) (-15 -2425 ($ $)) (-15 -2425 ($ $ (-765))) (-15 -2780 ($ $)) (-15 -1366 ($ $ $)) (-15 -1621 ($ $)) (-15 -1621 ($ $ $)) (-15 -1621 ($ $ $ $)) (-15 -3046 ($ $)) (-15 -3046 ($ $ $)) (-15 -3046 ($ $ $ $)) (-15 -3530 ($ $)) (-15 -3530 ($ $ $)) (-15 -3530 ($ $ $ $)) (-15 -1697 ($ $)) (-15 -1697 ($ (-638 $))) (-15 -3611 ($ $)) (-15 -3611 ($ (-638 $))) (-15 -1719 ($ $)) (-15 -1719 ($ (-638 $))) (-15 -1333 ($ (-638 $))) (-15 -2163 ($ (-638 $))) (-15 -3636 ($ (-638 $))) (-15 -2017 ($ (-638 $))) (-15 -1723 ($ $ $)) (-15 -4053 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -1758 ($ $ $)) (-15 -1770 ($ $ $)) (-15 -1781 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -1819 ($ $ $)) (-15 -1819 ($ $)) (-15 * ($ $ $)) (-15 -1828 ($ $ $)) (-15 ** ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1748 ($ $ $)) (-15 -2198 ($ $ $)) (-15 -2208 ($ $ $)) (-15 -2186 ($ $)) (-15 -3890 ($ $ $)) (-15 -3890 ($ $))))) (T -856))
-((-3255 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-856)))) (-3908 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-856)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-856)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-856)))) (-2910 (*1 *1) (-5 *1 (-856))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3739 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3093 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-4173 (*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1586 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1599 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1586 (*1 *1 *1) (-5 *1 (-856))) (-1599 (*1 *1 *1) (-5 *1 (-856))) (-2298 (*1 *1 *1) (-5 *1 (-856))) (-2568 (*1 *1 *1 *1) (-5 *1 (-856))) (-1438 (*1 *1 *1 *1) (-5 *1 (-856))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-4262 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-1601 (*1 *1 *1 *1) (-5 *1 (-856))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-3651 (*1 *1 *1) (-5 *1 (-856))) (-1782 (*1 *1 *1 *1) (-5 *1 (-856))) (-3402 (*1 *1 *1) (-5 *1 (-856))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-856)))) (-4282 (*1 *1 *1 *1) (-5 *1 (-856))) (-2865 (*1 *1 *1) (-5 *1 (-856))) (-2865 (*1 *1 *1 *1) (-5 *1 (-856))) (-1302 (*1 *1 *1 *1) (-5 *1 (-856))) (-3910 (*1 *1 *1 *1) (-5 *1 (-856))) (-3355 (*1 *1 *1 *1) (-5 *1 (-856))) (-2326 (*1 *1 *1 *1) (-5 *1 (-856))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856)))) (-3210 (*1 *1 *1 *1) (-5 *1 (-856))) (-3309 (*1 *1 *1 *1) (-5 *1 (-856))) (-2847 (*1 *1 *1 *1) (-5 *1 (-856))) (-2690 (*1 *1 *1 *1) (-5 *1 (-856))) (-1460 (*1 *1 *1 *1) (-5 *1 (-856))) (-4323 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1993 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2179 (*1 *1 *1) (-5 *1 (-856))) (-3634 (*1 *1 *1) (-5 *1 (-856))) (-3634 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856)))) (-2425 (*1 *1 *1) (-5 *1 (-856))) (-2425 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856)))) (-2780 (*1 *1 *1) (-5 *1 (-856))) (-1366 (*1 *1 *1 *1) (-5 *1 (-856))) (-1621 (*1 *1 *1) (-5 *1 (-856))) (-1621 (*1 *1 *1 *1) (-5 *1 (-856))) (-1621 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-3046 (*1 *1 *1) (-5 *1 (-856))) (-3046 (*1 *1 *1 *1) (-5 *1 (-856))) (-3046 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-3530 (*1 *1 *1) (-5 *1 (-856))) (-3530 (*1 *1 *1 *1) (-5 *1 (-856))) (-3530 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-1697 (*1 *1 *1) (-5 *1 (-856))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-3611 (*1 *1 *1) (-5 *1 (-856))) (-3611 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1719 (*1 *1 *1) (-5 *1 (-856))) (-1719 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1333 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2163 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1723 (*1 *1 *1 *1) (-5 *1 (-856))) (-4053 (*1 *1 *1 *1) (-5 *1 (-856))) (-1746 (*1 *1 *1 *1) (-5 *1 (-856))) (-1758 (*1 *1 *1 *1) (-5 *1 (-856))) (-1770 (*1 *1 *1 *1) (-5 *1 (-856))) (-1781 (*1 *1 *1 *1) (-5 *1 (-856))) (-1810 (*1 *1 *1 *1) (-5 *1 (-856))) (-1819 (*1 *1 *1 *1) (-5 *1 (-856))) (-1819 (*1 *1 *1) (-5 *1 (-856))) (* (*1 *1 *1 *1) (-5 *1 (-856))) (-1828 (*1 *1 *1 *1) (-5 *1 (-856))) (** (*1 *1 *1 *1) (-5 *1 (-856))) (-1759 (*1 *1 *1 *1) (-5 *1 (-856))) (-1792 (*1 *1 *1 *1) (-5 *1 (-856))) (-1771 (*1 *1 *1 *1) (-5 *1 (-856))) (-1748 (*1 *1 *1 *1) (-5 *1 (-856))) (-2198 (*1 *1 *1 *1) (-5 *1 (-856))) (-2208 (*1 *1 *1 *1) (-5 *1 (-856))) (-2186 (*1 *1 *1) (-5 *1 (-856))) (-3890 (*1 *1 *1 *1) (-5 *1 (-856))) (-3890 (*1 *1 *1) (-5 *1 (-856))))
-(-13 (-1090) (-10 -8 (-15 -3255 ((-1259) $)) (-15 -3908 ($ (-1148))) (-15 -3845 ((-1259) (-1148))) (-15 -2067 ($ (-561))) (-15 -2067 ($ (-1166))) (-15 -2067 ($ (-1148))) (-15 -2067 ($ (-224))) (-15 -2910 ($)) (-15 -3797 ((-1148) (-1148))) (-15 -3739 ((-561) $)) (-15 -3093 ((-561) $)) (-15 -3739 ((-561))) (-15 -3093 ((-561))) (-15 -3855 ((-561) $)) (-15 -3351 ((-561) $)) (-15 -1932 ($ (-561))) (-15 -1384 ($ (-561))) (-15 -4173 ($ (-561) (-561))) (-15 -1586 ($ $ (-561))) (-15 -1599 ($ $ (-561))) (-15 -2298 ($ $ (-561))) (-15 -1586 ($ $)) (-15 -1599 ($ $)) (-15 -2298 ($ $)) (-15 -2568 ($ $ $)) (-15 -1438 ($ $ $)) (-15 -2568 ($ (-638 $))) (-15 -1438 ($ (-638 $))) (-15 -2130 ($ $ (-638 $))) (-15 -4262 ($ $ (-638 $))) (-15 -4262 ($ $ $ $)) (-15 -1601 ($ $ $)) (-15 -3941 ((-112) $)) (-15 -2315 ($ $ (-638 $))) (-15 -3651 ($ $)) (-15 -1782 ($ $ $)) (-15 -3402 ($ $)) (-15 -2887 ($ (-638 (-638 $)))) (-15 -4282 ($ $ $)) (-15 -2865 ($ $)) (-15 -2865 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -3910 ($ $ $)) (-15 -3355 ($ $ $)) (-15 -2326 ($ $ $)) (-15 -3922 ($ $ (-765))) (-15 -3210 ($ $ $)) (-15 -3309 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -2690 ($ $ $)) (-15 -1460 ($ $ $)) (-15 -4323 ($ $ (-638 $))) (-15 -1993 ($ $ (-638 $))) (-15 -2179 ($ $)) (-15 -3634 ($ $)) (-15 -3634 ($ $ (-765))) (-15 -2425 ($ $)) (-15 -2425 ($ $ (-765))) (-15 -2780 ($ $)) (-15 -1366 ($ $ $)) (-15 -1621 ($ $)) (-15 -1621 ($ $ $)) (-15 -1621 ($ $ $ $)) (-15 -3046 ($ $)) (-15 -3046 ($ $ $)) (-15 -3046 ($ $ $ $)) (-15 -3530 ($ $)) (-15 -3530 ($ $ $)) (-15 -3530 ($ $ $ $)) (-15 -1697 ($ $)) (-15 -1697 ($ (-638 $))) (-15 -3611 ($ $)) (-15 -3611 ($ (-638 $))) (-15 -1719 ($ $)) (-15 -1719 ($ (-638 $))) (-15 -1333 ($ (-638 $))) (-15 -2163 ($ (-638 $))) (-15 -3636 ($ (-638 $))) (-15 -2017 ($ (-638 $))) (-15 -1723 ($ $ $)) (-15 -4053 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -1758 ($ $ $)) (-15 -1770 ($ $ $)) (-15 -1781 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -1819 ($ $ $)) (-15 -1819 ($ $)) (-15 * ($ $ $)) (-15 -1828 ($ $ $)) (-15 ** ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1748 ($ $ $)) (-15 -2198 ($ $ $)) (-15 -2208 ($ $ $)) (-15 -2186 ($ $)) (-15 -3890 ($ $ $)) (-15 -3890 ($ $))))
-((-1911 (((-1259) (-638 (-52))) 24)) (-3519 (((-1259) (-1148) (-856)) 14) (((-1259) (-856)) 9) (((-1259) (-1148)) 11)))
-(((-857) (-10 -7 (-15 -3519 ((-1259) (-1148))) (-15 -3519 ((-1259) (-856))) (-15 -3519 ((-1259) (-1148) (-856))) (-15 -1911 ((-1259) (-638 (-52)))))) (T -857))
-((-1911 (*1 *2 *3) (-12 (-5 *3 (-638 (-52))) (-5 *2 (-1259)) (-5 *1 (-857)))) (-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1259)) (-5 *1 (-857)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-857)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-857)))))
-(-10 -7 (-15 -3519 ((-1259) (-1148))) (-15 -3519 ((-1259) (-856))) (-15 -3519 ((-1259) (-1148) (-856))) (-15 -1911 ((-1259) (-638 (-52)))))
-((-4053 (((-112) $ $) NIL)) (-2421 (((-3 $ "failed") (-1166)) 33)) (-1386 (((-765)) 31)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) 29)) (-1883 (((-1148) $) 39)) (-2442 (($ (-914)) 28)) (-1701 (((-1110) $) NIL)) (-4216 (((-1166) $) 13) (((-534) $) 19) (((-885 (-378)) $) 26) (((-885 (-561)) $) 22)) (-4064 (((-856) $) 16)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 36)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 35)))
-(((-858 |#1|) (-13 (-838) (-609 (-1166)) (-609 (-534)) (-609 (-885 (-378))) (-609 (-885 (-561))) (-10 -8 (-15 -2421 ((-3 $ "failed") (-1166))))) (-638 (-1166))) (T -858))
-((-2421 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-638 *2)))))
-(-13 (-838) (-609 (-1166)) (-609 (-534)) (-609 (-885 (-378))) (-609 (-885 (-561))) (-10 -8 (-15 -2421 ((-3 $ "failed") (-1166)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-945 |#1|)) NIL) (((-945 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-3746 (((-765)) NIL)) (-2350 (((-1259) (-765)) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1828 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-859 |#1| |#2| |#3| |#4|) (-13 (-1042) (-488 (-945 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1828 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2350 ((-1259) (-765))))) (-1042) (-638 (-1166)) (-638 (-765)) (-765)) (T -859))
-((-1828 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-765))) (-14 *5 (-765)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *4 (-1042)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 *3)) (-14 *7 *3))))
-(-13 (-1042) (-488 (-945 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1828 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2350 ((-1259) (-765)))))
-((-3254 (((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|) 31)) (-4004 (((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|) 24)))
-(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -4004 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -3254 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|))) (-362) (-1245 |#1|) (-1230 |#1|)) (T -860))
-((-3254 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1245 *5)) (-4 *6 (-1230 *5)))) (-4004 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1245 *5)) (-4 *6 (-1230 *5)))))
-(-10 -7 (-15 -4004 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -3254 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|)))
-((-4004 (((-3 (-406 (-1227 |#2| |#1|)) "failed") (-765) (-765) (-1246 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1227 |#2| |#1|)) "failed") (-765) (-765) (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) 26)))
-(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -4004 ((-3 (-406 (-1227 |#2| |#1|)) "failed") (-765) (-765) (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) (-15 -4004 ((-3 (-406 (-1227 |#2| |#1|)) "failed") (-765) (-765) (-1246 |#1| |#2| |#3|)))) (-362) (-1166) |#1|) (T -861))
-((-4004 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1227 *6 *5))) (-5 *1 (-861 *5 *6 *7)))) (-4004 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1227 *6 *5))) (-5 *1 (-861 *5 *6 *7)))))
-(-10 -7 (-15 -4004 ((-3 (-406 (-1227 |#2| |#1|)) "failed") (-765) (-765) (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) (-15 -4004 ((-3 (-406 (-1227 |#2| |#1|)) "failed") (-765) (-765) (-1246 |#1| |#2| |#3|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-1643 (($ $ (-561)) 63)) (-3698 (((-112) $ $) 60)) (-2674 (($) 17 T CONST)) (-2865 (($ (-1162 (-561)) (-561)) 62)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-3601 (($ $) 65)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-4027 (((-765) $) 70)) (-2252 (((-112) $) 31)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1448 (((-561)) 67)) (-2114 (((-561) $) 66)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3702 (($ $ (-561)) 69)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-3679 (((-1146 (-561)) $) 71)) (-3426 (($ $) 68)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-1408 (((-561) $ (-561)) 64)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
-(((-862 |#1|) (-139) (-561)) (T -862))
-((-3679 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-1146 (-561))))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-765)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-3426 (*1 *1 *1) (-4 *1 (-862 *2))) (-1448 (*1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-2114 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-3601 (*1 *1 *1) (-4 *1 (-862 *2))) (-1408 (*1 *2 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-1643 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-2865 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *3 (-561)) (-4 *1 (-862 *4)))))
-(-13 (-306) (-146) (-10 -8 (-15 -3679 ((-1146 (-561)) $)) (-15 -4027 ((-765) $)) (-15 -3702 ($ $ (-561))) (-15 -3426 ($ $)) (-15 -1448 ((-561))) (-15 -2114 ((-561) $)) (-15 -3601 ($ $)) (-15 -1408 ((-561) $ (-561))) (-15 -1643 ($ $ (-561))) (-15 -2865 ($ (-1162 (-561)) (-561)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $ (-561)) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-2865 (($ (-1162 (-561)) (-561)) NIL)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3601 (($ $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-4027 (((-765) $) NIL)) (-2252 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1448 (((-561)) NIL)) (-2114 (((-561) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3702 (($ $ (-561)) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3679 (((-1146 (-561)) $) NIL)) (-3426 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL)) (-3746 (((-765)) NIL)) (-3996 (((-112) $ $) NIL)) (-1408 (((-561) $ (-561)) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
-(((-863 |#1|) (-862 |#1|) (-561)) (T -863))
-NIL
-(-862 |#1|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 (((-863 |#1|) $) NIL (|has| (-863 |#1|) (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| (-863 |#1|) (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-863 |#1|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-863 |#1|) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-863 |#1|) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-863 |#1|) (-1031 (-561))))) (-3979 (((-863 |#1|) $) NIL) (((-1166) $) NIL (|has| (-863 |#1|) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-863 |#1|) (-1031 (-561)))) (((-561) $) NIL (|has| (-863 |#1|) (-1031 (-561))))) (-1857 (($ $) NIL) (($ (-561) $) NIL)) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-863 |#1|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-863 |#1|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-863 |#1|))) (|:| |vec| (-1254 (-863 |#1|)))) (-682 $) (-1254 $)) NIL) (((-682 (-863 |#1|)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-863 |#1|) (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| (-863 |#1|) (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-863 |#1|) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-863 |#1|) (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 (((-863 |#1|) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-1141)))) (-3271 (((-112) $) NIL (|has| (-863 |#1|) (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| (-863 |#1|) (-844)))) (-3017 (($ $ $) NIL (|has| (-863 |#1|) (-844)))) (-4165 (($ (-1 (-863 |#1|) (-863 |#1|)) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-863 |#1|) (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| (-863 |#1|) (-306)))) (-4020 (((-863 |#1|) $) NIL (|has| (-863 |#1|) (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 (-863 |#1|)) (-638 (-863 |#1|))) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-863 |#1|) (-863 |#1|)) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-293 (-863 |#1|))) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-638 (-293 (-863 |#1|)))) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-638 (-1166)) (-638 (-863 |#1|))) NIL (|has| (-863 |#1|) (-512 (-1166) (-863 |#1|)))) (($ $ (-1166) (-863 |#1|)) NIL (|has| (-863 |#1|) (-512 (-1166) (-863 |#1|))))) (-1905 (((-765) $) NIL)) (-2315 (($ $ (-863 |#1|)) NIL (|has| (-863 |#1|) (-285 (-863 |#1|) (-863 |#1|))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| (-863 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-863 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1 (-863 |#1|) (-863 |#1|)) (-765)) NIL) (($ $ (-1 (-863 |#1|) (-863 |#1|))) NIL)) (-1969 (($ $) NIL)) (-4088 (((-863 |#1|) $) NIL)) (-4216 (((-885 (-561)) $) NIL (|has| (-863 |#1|) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-863 |#1|) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-863 |#1|) (-609 (-534)))) (((-378) $) NIL (|has| (-863 |#1|) (-1015))) (((-224) $) NIL (|has| (-863 |#1|) (-1015)))) (-1337 (((-173 (-406 (-561))) $) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-863 |#1|) (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-863 |#1|)) NIL) (($ (-1166)) NIL (|has| (-863 |#1|) (-1031 (-1166))))) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-863 |#1|) (-902))) (|has| (-863 |#1|) (-144))))) (-3746 (((-765)) NIL)) (-2449 (((-863 |#1|) $) NIL (|has| (-863 |#1|) (-543)))) (-3996 (((-112) $ $) NIL)) (-1408 (((-406 (-561)) $ (-561)) NIL)) (-2165 (($ $) NIL (|has| (-863 |#1|) (-814)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $) NIL (|has| (-863 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-863 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1 (-863 |#1|) (-863 |#1|)) (-765)) NIL) (($ $ (-1 (-863 |#1|) (-863 |#1|))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1828 (($ $ $) NIL) (($ (-863 |#1|) (-863 |#1|)) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-863 |#1|) $) NIL) (($ $ (-863 |#1|)) NIL)))
-(((-864 |#1|) (-13 (-985 (-863 |#1|)) (-10 -8 (-15 -1408 ((-406 (-561)) $ (-561))) (-15 -1337 ((-173 (-406 (-561))) $)) (-15 -1857 ($ $)) (-15 -1857 ($ (-561) $)))) (-561)) (T -864))
-((-1408 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-864 *4)) (-14 *4 *3) (-5 *3 (-561)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-864 *3)) (-14 *3 (-561)))) (-1857 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-561)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-864 *3)) (-14 *3 *2))))
-(-13 (-985 (-863 |#1|)) (-10 -8 (-15 -1408 ((-406 (-561)) $ (-561))) (-15 -1337 ((-173 (-406 (-561))) $)) (-15 -1857 ($ $)) (-15 -1857 ($ (-561) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 ((|#2| $) NIL (|has| |#2| (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| |#2| (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| |#2| (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561))))) (-3979 ((|#2| $) NIL) (((-1166) $) NIL (|has| |#2| (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-561)))) (((-561) $) NIL (|has| |#2| (-1031 (-561))))) (-1857 (($ $) 31) (($ (-561) $) 32)) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) 53)) (-1362 (($) NIL (|has| |#2| (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) NIL (|has| |#2| (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| |#2| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| |#2| (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 ((|#2| $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-3271 (((-112) $) NIL (|has| |#2| (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| |#2| (-844)))) (-3017 (($ $ $) NIL (|has| |#2| (-844)))) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 49)) (-3767 (($) NIL (|has| |#2| (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| |#2| (-306)))) (-4020 ((|#2| $) NIL (|has| |#2| (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 |#2|) (-638 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-293 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-638 (-293 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-638 (-1166)) (-638 |#2|)) NIL (|has| |#2| (-512 (-1166) |#2|))) (($ $ (-1166) |#2|) NIL (|has| |#2| (-512 (-1166) |#2|)))) (-1905 (((-765) $) NIL)) (-2315 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1969 (($ $) NIL)) (-4088 ((|#2| $) NIL)) (-4216 (((-885 (-561)) $) NIL (|has| |#2| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#2| (-609 (-885 (-378))))) (((-534) $) NIL (|has| |#2| (-609 (-534)))) (((-378) $) NIL (|has| |#2| (-1015))) (((-224) $) NIL (|has| |#2| (-1015)))) (-1337 (((-173 (-406 (-561))) $) 68)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4064 (((-856) $) 86) (($ (-561)) 19) (($ $) NIL) (($ (-406 (-561))) 24) (($ |#2|) 18) (($ (-1166)) NIL (|has| |#2| (-1031 (-1166))))) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-3746 (((-765)) NIL)) (-2449 ((|#2| $) NIL (|has| |#2| (-543)))) (-3996 (((-112) $ $) NIL)) (-1408 (((-406 (-561)) $ (-561)) 60)) (-2165 (($ $) NIL (|has| |#2| (-814)))) (-2246 (($) 14 T CONST)) (-2257 (($) 16 T CONST)) (-3154 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1723 (((-112) $ $) 35)) (-1770 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1828 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1819 (($ $) 39) (($ $ $) 41)) (-1810 (($ $ $) 37)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 50)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 42) (($ $ $) 44) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-865 |#1| |#2|) (-13 (-985 |#2|) (-10 -8 (-15 -1408 ((-406 (-561)) $ (-561))) (-15 -1337 ((-173 (-406 (-561))) $)) (-15 -1857 ($ $)) (-15 -1857 ($ (-561) $)))) (-561) (-862 |#1|)) (T -865))
-((-1408 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-561))) (-5 *1 (-865 *4 *5)) (-5 *3 (-561)) (-4 *5 (-862 *4)))) (-1337 (*1 *2 *1) (-12 (-14 *3 (-561)) (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-865 *3 *4)) (-4 *4 (-862 *3)))) (-1857 (*1 *1 *1) (-12 (-14 *2 (-561)) (-5 *1 (-865 *2 *3)) (-4 *3 (-862 *2)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-14 *3 *2) (-5 *1 (-865 *3 *4)) (-4 *4 (-862 *3)))))
-(-13 (-985 |#2|) (-10 -8 (-15 -1408 ((-406 (-561)) $ (-561))) (-15 -1337 ((-173 (-406 (-561))) $)) (-15 -1857 ($ $)) (-15 -1857 ($ (-561) $))))
-((-4053 (((-112) $ $) NIL (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))) (-2322 ((|#2| $) 12)) (-2470 (($ |#1| |#2|) 9)) (-1883 (((-1148) $) NIL (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))) (-1701 (((-1110) $) NIL (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#1| $) 11)) (-4078 (($ |#1| |#2|) 10)) (-4064 (((-856) $) 18 (-4050 (-12 (|has| |#1| (-608 (-856))) (|has| |#2| (-608 (-856)))) (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))))) (-1723 (((-112) $ $) 22 (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))))
-(((-866 |#1| |#2|) (-13 (-1205) (-10 -8 (IF (|has| |#1| (-608 (-856))) (IF (|has| |#2| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1090)) (IF (|has| |#2| (-1090)) (-6 (-1090)) |%noBranch|) |%noBranch|) (-15 -2470 ($ |#1| |#2|)) (-15 -4078 ($ |#1| |#2|)) (-15 -1424 (|#1| $)) (-15 -2322 (|#2| $)))) (-1205) (-1205)) (T -866))
-((-2470 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205)))) (-4078 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205)))) (-1424 (*1 *2 *1) (-12 (-4 *2 (-1205)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1205)))) (-2322 (*1 *2 *1) (-12 (-4 *2 (-1205)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1205)))))
-(-13 (-1205) (-10 -8 (IF (|has| |#1| (-608 (-856))) (IF (|has| |#2| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1090)) (IF (|has| |#2| (-1090)) (-6 (-1090)) |%noBranch|) |%noBranch|) (-15 -2470 ($ |#1| |#2|)) (-15 -4078 ($ |#1| |#2|)) (-15 -1424 (|#1| $)) (-15 -2322 (|#2| $))))
-((-4053 (((-112) $ $) NIL)) (-3248 (((-561) $) 15)) (-2098 (($ (-156)) 11)) (-4060 (($ (-156)) 12)) (-1883 (((-1148) $) NIL)) (-3640 (((-156) $) 13)) (-1701 (((-1110) $) NIL)) (-2192 (($ (-156)) 9)) (-4187 (($ (-156)) 8)) (-4064 (((-856) $) 23) (($ (-156)) 16)) (-4001 (($ (-156)) 10)) (-1723 (((-112) $ $) NIL)))
-(((-867) (-13 (-1090) (-10 -8 (-15 -4187 ($ (-156))) (-15 -2192 ($ (-156))) (-15 -4001 ($ (-156))) (-15 -2098 ($ (-156))) (-15 -4060 ($ (-156))) (-15 -3640 ((-156) $)) (-15 -3248 ((-561) $)) (-15 -4064 ($ (-156)))))) (T -867))
-((-4187 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-4001 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-4060 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-867)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
-(-13 (-1090) (-10 -8 (-15 -4187 ($ (-156))) (-15 -2192 ($ (-156))) (-15 -4001 ($ (-156))) (-15 -2098 ($ (-156))) (-15 -4060 ($ (-156))) (-15 -3640 ((-156) $)) (-15 -3248 ((-561) $)) (-15 -4064 ($ (-156)))))
-((-4064 (((-315 (-561)) (-406 (-945 (-48)))) 23) (((-315 (-561)) (-945 (-48))) 18)))
-(((-868) (-10 -7 (-15 -4064 ((-315 (-561)) (-945 (-48)))) (-15 -4064 ((-315 (-561)) (-406 (-945 (-48))))))) (T -868))
-((-4064 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 (-48)))) (-5 *2 (-315 (-561))) (-5 *1 (-868)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-945 (-48))) (-5 *2 (-315 (-561))) (-5 *1 (-868)))))
-(-10 -7 (-15 -4064 ((-315 (-561)) (-945 (-48)))) (-15 -4064 ((-315 (-561)) (-406 (-945 (-48))))))
-((-4165 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 14)))
-(((-869 |#1| |#2|) (-10 -7 (-15 -4165 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1205) (-1205)) (T -869))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6)))))
-(-10 -7 (-15 -4165 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|))))
-((-2083 (($ |#1| |#1|) 8)) (-1940 ((|#1| $ (-765)) 10)))
-(((-870 |#1|) (-10 -8 (-15 -2083 ($ |#1| |#1|)) (-15 -1940 (|#1| $ (-765)))) (-1205)) (T -870))
-((-1940 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1205)))) (-2083 (*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1205)))))
-(-10 -8 (-15 -2083 ($ |#1| |#1|)) (-15 -1940 (|#1| $ (-765))))
-((-4165 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14)))
-(((-871 |#1| |#2|) (-10 -7 (-15 -4165 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1205) (-1205)) (T -871))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))))
-(-10 -7 (-15 -4165 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))
-((-2083 (($ |#1| |#1| |#1|) 8)) (-1940 ((|#1| $ (-765)) 10)))
-(((-872 |#1|) (-10 -8 (-15 -2083 ($ |#1| |#1| |#1|)) (-15 -1940 (|#1| $ (-765)))) (-1205)) (T -872))
-((-1940 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1205)))) (-2083 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1205)))))
-(-10 -8 (-15 -2083 ($ |#1| |#1| |#1|)) (-15 -1940 (|#1| $ (-765))))
-((-3730 (((-638 (-1171)) (-1148)) 9)))
-(((-873) (-10 -7 (-15 -3730 ((-638 (-1171)) (-1148))))) (T -873))
-((-3730 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-873)))))
-(-10 -7 (-15 -3730 ((-638 (-1171)) (-1148))))
-((-4165 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14)))
-(((-874 |#1| |#2|) (-10 -7 (-15 -4165 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1205) (-1205)) (T -874))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))))
-(-10 -7 (-15 -4165 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
-((-1295 (($ |#1| |#1| |#1|) 8)) (-1940 ((|#1| $ (-765)) 10)))
-(((-875 |#1|) (-10 -8 (-15 -1295 ($ |#1| |#1| |#1|)) (-15 -1940 (|#1| $ (-765)))) (-1205)) (T -875))
-((-1940 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1205)))) (-1295 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1205)))))
-(-10 -8 (-15 -1295 ($ |#1| |#1| |#1|)) (-15 -1940 (|#1| $ (-765))))
-((-1310 (((-1146 (-638 (-561))) (-638 (-561)) (-1146 (-638 (-561)))) 30)) (-1951 (((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561))) 26)) (-2543 (((-1146 (-638 (-561))) (-638 (-561))) 39) (((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561))) 38)) (-1299 (((-1146 (-638 (-561))) (-561)) 40)) (-2520 (((-1146 (-638 (-561))) (-561) (-561)) 22) (((-1146 (-638 (-561))) (-561)) 16) (((-1146 (-638 (-561))) (-561) (-561) (-561)) 12)) (-3225 (((-1146 (-638 (-561))) (-1146 (-638 (-561)))) 24)) (-2076 (((-638 (-561)) (-638 (-561))) 23)))
-(((-876) (-10 -7 (-15 -2520 ((-1146 (-638 (-561))) (-561) (-561) (-561))) (-15 -2520 ((-1146 (-638 (-561))) (-561))) (-15 -2520 ((-1146 (-638 (-561))) (-561) (-561))) (-15 -2076 ((-638 (-561)) (-638 (-561)))) (-15 -3225 ((-1146 (-638 (-561))) (-1146 (-638 (-561))))) (-15 -1951 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -1310 ((-1146 (-638 (-561))) (-638 (-561)) (-1146 (-638 (-561))))) (-15 -2543 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -2543 ((-1146 (-638 (-561))) (-638 (-561)))) (-15 -1299 ((-1146 (-638 (-561))) (-561))))) (T -876))
-((-1299 (*1 *2 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))) (-2543 (*1 *2 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-638 (-561))))) (-2543 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-638 (-561))))) (-1310 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *3 (-638 (-561))) (-5 *1 (-876)))) (-1951 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-638 (-561))))) (-3225 (*1 *2 *2) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-876)))) (-2520 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))) (-2520 (*1 *2 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))) (-2520 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))))
-(-10 -7 (-15 -2520 ((-1146 (-638 (-561))) (-561) (-561) (-561))) (-15 -2520 ((-1146 (-638 (-561))) (-561))) (-15 -2520 ((-1146 (-638 (-561))) (-561) (-561))) (-15 -2076 ((-638 (-561)) (-638 (-561)))) (-15 -3225 ((-1146 (-638 (-561))) (-1146 (-638 (-561))))) (-15 -1951 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -1310 ((-1146 (-638 (-561))) (-638 (-561)) (-1146 (-638 (-561))))) (-15 -2543 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -2543 ((-1146 (-638 (-561))) (-638 (-561)))) (-15 -1299 ((-1146 (-638 (-561))) (-561))))
-((-4216 (((-885 (-378)) $) 9 (|has| |#1| (-609 (-885 (-378))))) (((-885 (-561)) $) 8 (|has| |#1| (-609 (-885 (-561)))))))
-(((-877 |#1|) (-139) (-1205)) (T -877))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-609 (-885 (-561)))) (-6 (-609 (-885 (-561)))) |%noBranch|) (IF (|has| |t#1| (-609 (-885 (-378)))) (-6 (-609 (-885 (-378)))) |%noBranch|)))
-(((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))))
-((-4053 (((-112) $ $) NIL)) (-1458 (($) 14)) (-1989 (($ (-882 |#1| |#2|) (-882 |#1| |#3|)) 27)) (-3479 (((-882 |#1| |#3|) $) 16)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3973 (((-112) $) 22)) (-4256 (($) 19)) (-4064 (((-856) $) 30)) (-2666 (((-882 |#1| |#2|) $) 15)) (-1723 (((-112) $ $) 25)))
-(((-878 |#1| |#2| |#3|) (-13 (-1090) (-10 -8 (-15 -3973 ((-112) $)) (-15 -4256 ($)) (-15 -1458 ($)) (-15 -1989 ($ (-882 |#1| |#2|) (-882 |#1| |#3|))) (-15 -2666 ((-882 |#1| |#2|) $)) (-15 -3479 ((-882 |#1| |#3|) $)))) (-1090) (-1090) (-659 |#2|)) (T -878))
-((-3973 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-659 *4)))) (-4256 (*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-659 *3)))) (-1458 (*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-659 *3)))) (-1989 (*1 *1 *2 *3) (-12 (-5 *2 (-882 *4 *5)) (-5 *3 (-882 *4 *6)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6)))) (-2666 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *4)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-659 *4)))) (-3479 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *5)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-659 *4)))))
-(-13 (-1090) (-10 -8 (-15 -3973 ((-112) $)) (-15 -4256 ($)) (-15 -1458 ($)) (-15 -1989 ($ (-882 |#1| |#2|) (-882 |#1| |#3|))) (-15 -2666 ((-882 |#1| |#2|) $)) (-15 -3479 ((-882 |#1| |#3|) $))))
-((-4053 (((-112) $ $) 7)) (-2199 (((-882 |#1| $) $ (-885 |#1|) (-882 |#1| $)) 13)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)))
-(((-879 |#1|) (-139) (-1090)) (T -879))
-((-2199 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-882 *4 *1)) (-5 *3 (-885 *4)) (-4 *1 (-879 *4)) (-4 *4 (-1090)))))
-(-13 (-1090) (-10 -8 (-15 -2199 ((-882 |t#1| $) $ (-885 |t#1|) (-882 |t#1| $)))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4188 (((-112) (-638 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-3705 (((-882 |#1| |#2|) |#2| |#3|) 42 (-12 (-2186 (|has| |#2| (-1031 (-1166)))) (-2186 (|has| |#2| (-1042))))) (((-638 (-293 (-945 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1042)) (-2186 (|has| |#2| (-1031 (-1166)))))) (((-638 (-293 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1031 (-1166)))) (((-878 |#1| |#2| (-638 |#2|)) (-638 |#2|) |#3|) 20)))
-(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -4188 ((-112) |#2| |#3|)) (-15 -4188 ((-112) (-638 |#2|) |#3|)) (-15 -3705 ((-878 |#1| |#2| (-638 |#2|)) (-638 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -3705 ((-638 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -3705 ((-638 (-293 (-945 |#2|))) |#2| |#3|)) (-15 -3705 ((-882 |#1| |#2|) |#2| |#3|))))) (-1090) (-879 |#1|) (-609 (-885 |#1|))) (T -880))
-((-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-882 *5 *3)) (-5 *1 (-880 *5 *3 *4)) (-2186 (-4 *3 (-1031 (-1166)))) (-2186 (-4 *3 (-1042))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))) (-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 (-945 *3)))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1042)) (-2186 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))) (-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 *3))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))) (-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-638 *6))) (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-638 *6)) (-4 *4 (-609 (-885 *5))))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-885 *5))))) (-4188 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))))
-(-10 -7 (-15 -4188 ((-112) |#2| |#3|)) (-15 -4188 ((-112) (-638 |#2|) |#3|)) (-15 -3705 ((-878 |#1| |#2| (-638 |#2|)) (-638 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -3705 ((-638 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -3705 ((-638 (-293 (-945 |#2|))) |#2| |#3|)) (-15 -3705 ((-882 |#1| |#2|) |#2| |#3|)))))
-((-4165 (((-882 |#1| |#3|) (-1 |#3| |#2|) (-882 |#1| |#2|)) 22)))
-(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -4165 ((-882 |#1| |#3|) (-1 |#3| |#2|) (-882 |#1| |#2|)))) (-1090) (-1090) (-1090)) (T -881))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-882 *5 *6)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-882 *5 *7)) (-5 *1 (-881 *5 *6 *7)))))
-(-10 -7 (-15 -4165 ((-882 |#1| |#3|) (-1 |#3| |#2|) (-882 |#1| |#2|))))
-((-4053 (((-112) $ $) NIL)) (-2468 (($ $ $) 39)) (-1834 (((-3 (-112) "failed") $ (-885 |#1|)) 36)) (-1458 (($) 12)) (-1883 (((-1148) $) NIL)) (-2107 (($ (-885 |#1|) |#2| $) 20)) (-1701 (((-1110) $) NIL)) (-3443 (((-3 |#2| "failed") (-885 |#1|) $) 50)) (-3973 (((-112) $) 15)) (-4256 (($) 13)) (-1707 (((-638 (-2 (|:| -2285 (-1166)) (|:| -2677 |#2|))) $) 25)) (-4078 (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 |#2|)))) 23)) (-4064 (((-856) $) 44)) (-3118 (($ (-885 |#1|) |#2| $ |#2|) 48)) (-2817 (($ (-885 |#1|) |#2| $) 47)) (-1723 (((-112) $ $) 41)))
-(((-882 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -3973 ((-112) $)) (-15 -4256 ($)) (-15 -1458 ($)) (-15 -2468 ($ $ $)) (-15 -3443 ((-3 |#2| "failed") (-885 |#1|) $)) (-15 -2817 ($ (-885 |#1|) |#2| $)) (-15 -2107 ($ (-885 |#1|) |#2| $)) (-15 -3118 ($ (-885 |#1|) |#2| $ |#2|)) (-15 -1707 ((-638 (-2 (|:| -2285 (-1166)) (|:| -2677 |#2|))) $)) (-15 -4078 ($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 |#2|))))) (-15 -1834 ((-3 (-112) "failed") $ (-885 |#1|))))) (-1090) (-1090)) (T -882))
-((-3973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4256 (*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1458 (*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-2468 (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-3443 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-4 *2 (-1090)) (-5 *1 (-882 *4 *2)))) (-2817 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1090)))) (-2107 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1090)))) (-3118 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1090)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 *4)))) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4078 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 *4)))) (-4 *4 (-1090)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)))) (-1834 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1090)))))
-(-13 (-1090) (-10 -8 (-15 -3973 ((-112) $)) (-15 -4256 ($)) (-15 -1458 ($)) (-15 -2468 ($ $ $)) (-15 -3443 ((-3 |#2| "failed") (-885 |#1|) $)) (-15 -2817 ($ (-885 |#1|) |#2| $)) (-15 -2107 ($ (-885 |#1|) |#2| $)) (-15 -3118 ($ (-885 |#1|) |#2| $ |#2|)) (-15 -1707 ((-638 (-2 (|:| -2285 (-1166)) (|:| -2677 |#2|))) $)) (-15 -4078 ($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 |#2|))))) (-15 -1834 ((-3 (-112) "failed") $ (-885 |#1|)))))
-((-3220 (((-885 |#1|) (-885 |#1|) (-638 (-1166)) (-1 (-112) (-638 |#2|))) 32) (((-885 |#1|) (-885 |#1|) (-638 (-1 (-112) |#2|))) 43) (((-885 |#1|) (-885 |#1|) (-1 (-112) |#2|)) 35)) (-1834 (((-112) (-638 |#2|) (-885 |#1|)) 40) (((-112) |#2| (-885 |#1|)) 36)) (-3040 (((-1 (-112) |#2|) (-885 |#1|)) 16)) (-2795 (((-638 |#2|) (-885 |#1|)) 24)) (-4000 (((-885 |#1|) (-885 |#1|) |#2|) 20)))
-(((-883 |#1| |#2|) (-10 -7 (-15 -3220 ((-885 |#1|) (-885 |#1|) (-1 (-112) |#2|))) (-15 -3220 ((-885 |#1|) (-885 |#1|) (-638 (-1 (-112) |#2|)))) (-15 -3220 ((-885 |#1|) (-885 |#1|) (-638 (-1166)) (-1 (-112) (-638 |#2|)))) (-15 -3040 ((-1 (-112) |#2|) (-885 |#1|))) (-15 -1834 ((-112) |#2| (-885 |#1|))) (-15 -1834 ((-112) (-638 |#2|) (-885 |#1|))) (-15 -4000 ((-885 |#1|) (-885 |#1|) |#2|)) (-15 -2795 ((-638 |#2|) (-885 |#1|)))) (-1090) (-1205)) (T -883))
-((-2795 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-638 *5)) (-5 *1 (-883 *4 *5)) (-4 *5 (-1205)))) (-4000 (*1 *2 *2 *3) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1205)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3)) (-4 *3 (-1205)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-883 *4 *5)) (-4 *5 (-1205)))) (-3220 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-885 *5)) (-5 *3 (-638 (-1166))) (-5 *4 (-1 (-112) (-638 *6))) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *1 (-883 *5 *6)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *2 (-885 *4)) (-5 *3 (-638 (-1 (-112) *5))) (-4 *4 (-1090)) (-4 *5 (-1205)) (-5 *1 (-883 *4 *5)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *2 (-885 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1090)) (-4 *5 (-1205)) (-5 *1 (-883 *4 *5)))))
-(-10 -7 (-15 -3220 ((-885 |#1|) (-885 |#1|) (-1 (-112) |#2|))) (-15 -3220 ((-885 |#1|) (-885 |#1|) (-638 (-1 (-112) |#2|)))) (-15 -3220 ((-885 |#1|) (-885 |#1|) (-638 (-1166)) (-1 (-112) (-638 |#2|)))) (-15 -3040 ((-1 (-112) |#2|) (-885 |#1|))) (-15 -1834 ((-112) |#2| (-885 |#1|))) (-15 -1834 ((-112) (-638 |#2|) (-885 |#1|))) (-15 -4000 ((-885 |#1|) (-885 |#1|) |#2|)) (-15 -2795 ((-638 |#2|) (-885 |#1|))))
-((-4165 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 19)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -4165 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1090) (-1090)) (T -884))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))))
-(-10 -7 (-15 -4165 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
-((-4053 (((-112) $ $) NIL)) (-3392 (($ $ (-638 (-52))) 62)) (-1405 (((-638 $) $) 116)) (-2793 (((-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))) $) 23)) (-1541 (((-112) $) 29)) (-3545 (($ $ (-638 (-1166)) (-52)) 24)) (-3821 (($ $ (-638 (-52))) 61)) (-4061 (((-3 |#1| "failed") $) 59) (((-3 (-1166) "failed") $) 138)) (-3979 ((|#1| $) 56) (((-1166) $) NIL)) (-2985 (($ $) 106)) (-1902 (((-112) $) 44)) (-2296 (((-638 (-52)) $) 42)) (-3364 (($ (-1166) (-112) (-112) (-112)) 63)) (-3672 (((-3 (-638 $) "failed") (-638 $)) 70)) (-3997 (((-112) $) 47)) (-4180 (((-112) $) 46)) (-1883 (((-1148) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) 33)) (-3032 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-1703 (((-3 (-2 (|:| |val| $) (|:| -4181 $)) "failed") $) 81)) (-2540 (((-3 (-638 $) "failed") $) 32)) (-2633 (((-3 (-638 $) "failed") $ (-114)) 105) (((-3 (-2 (|:| -2409 (-114)) (|:| |arg| (-638 $))) "failed") $) 93)) (-4139 (((-3 (-638 $) "failed") $) 34)) (-3276 (((-3 (-2 (|:| |val| $) (|:| -4181 (-765))) "failed") $) 37)) (-1979 (((-112) $) 28)) (-1701 (((-1110) $) NIL)) (-2377 (((-112) $) 20)) (-4276 (((-112) $) 43)) (-1638 (((-638 (-52)) $) 109)) (-4358 (((-112) $) 45)) (-2315 (($ (-114) (-638 $)) 90)) (-1433 (((-765) $) 27)) (-4225 (($ $) 60)) (-4216 (($ (-638 $)) 57)) (-1480 (((-112) $) 25)) (-4064 (((-856) $) 51) (($ |#1|) 18) (($ (-1166)) 64)) (-4000 (($ $ (-52)) 108)) (-2246 (($) 89 T CONST)) (-2257 (($) 71 T CONST)) (-1723 (((-112) $ $) 77)) (-1828 (($ $ $) 98)) (-1810 (($ $ $) 102)) (** (($ $ (-765)) 97) (($ $ $) 52)) (* (($ $ $) 103)))
-(((-885 |#1|) (-13 (-1090) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 0 ($) -1494) (-15 1 ($) -1494) (-15 -2540 ((-3 (-638 $) "failed") $)) (-15 -4174 ((-3 (-638 $) "failed") $)) (-15 -2633 ((-3 (-638 $) "failed") $ (-114))) (-15 -2633 ((-3 (-2 (|:| -2409 (-114)) (|:| |arg| (-638 $))) "failed") $)) (-15 -3276 ((-3 (-2 (|:| |val| $) (|:| -4181 (-765))) "failed") $)) (-15 -3032 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4139 ((-3 (-638 $) "failed") $)) (-15 -1703 ((-3 (-2 (|:| |val| $) (|:| -4181 $)) "failed") $)) (-15 -2315 ($ (-114) (-638 $))) (-15 -1810 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -1828 ($ $ $)) (-15 -1433 ((-765) $)) (-15 -4216 ($ (-638 $))) (-15 -4225 ($ $)) (-15 -1979 ((-112) $)) (-15 -1902 ((-112) $)) (-15 -1541 ((-112) $)) (-15 -1480 ((-112) $)) (-15 -4358 ((-112) $)) (-15 -4180 ((-112) $)) (-15 -3997 ((-112) $)) (-15 -4276 ((-112) $)) (-15 -2296 ((-638 (-52)) $)) (-15 -3821 ($ $ (-638 (-52)))) (-15 -3392 ($ $ (-638 (-52)))) (-15 -3364 ($ (-1166) (-112) (-112) (-112))) (-15 -3545 ($ $ (-638 (-1166)) (-52))) (-15 -2793 ((-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))) $)) (-15 -2377 ((-112) $)) (-15 -2985 ($ $)) (-15 -4000 ($ $ (-52))) (-15 -1638 ((-638 (-52)) $)) (-15 -1405 ((-638 $) $)) (-15 -3672 ((-3 (-638 $) "failed") (-638 $))))) (-1090)) (T -885))
-((-2246 (*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-2257 (*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-2540 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4174 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2633 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-885 *4))) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-2633 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2409 (-114)) (|:| |arg| (-638 (-885 *3))))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3276 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4181 (-765)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3032 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-885 *3)) (|:| |den| (-885 *3)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4139 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1703 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4181 (-885 *3)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2315 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 (-885 *4))) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-1810 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-1828 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4225 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3821 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3364 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-3545 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-52)) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2985 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-4000 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3672 (*1 *2 *2) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(-13 (-1090) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 (-2246) ($) -1494) (-15 (-2257) ($) -1494) (-15 -2540 ((-3 (-638 $) "failed") $)) (-15 -4174 ((-3 (-638 $) "failed") $)) (-15 -2633 ((-3 (-638 $) "failed") $ (-114))) (-15 -2633 ((-3 (-2 (|:| -2409 (-114)) (|:| |arg| (-638 $))) "failed") $)) (-15 -3276 ((-3 (-2 (|:| |val| $) (|:| -4181 (-765))) "failed") $)) (-15 -3032 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4139 ((-3 (-638 $) "failed") $)) (-15 -1703 ((-3 (-2 (|:| |val| $) (|:| -4181 $)) "failed") $)) (-15 -2315 ($ (-114) (-638 $))) (-15 -1810 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -1828 ($ $ $)) (-15 -1433 ((-765) $)) (-15 -4216 ($ (-638 $))) (-15 -4225 ($ $)) (-15 -1979 ((-112) $)) (-15 -1902 ((-112) $)) (-15 -1541 ((-112) $)) (-15 -1480 ((-112) $)) (-15 -4358 ((-112) $)) (-15 -4180 ((-112) $)) (-15 -3997 ((-112) $)) (-15 -4276 ((-112) $)) (-15 -2296 ((-638 (-52)) $)) (-15 -3821 ($ $ (-638 (-52)))) (-15 -3392 ($ $ (-638 (-52)))) (-15 -3364 ($ (-1166) (-112) (-112) (-112))) (-15 -3545 ($ $ (-638 (-1166)) (-52))) (-15 -2793 ((-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))) $)) (-15 -2377 ((-112) $)) (-15 -2985 ($ $)) (-15 -4000 ($ $ (-52))) (-15 -1638 ((-638 (-52)) $)) (-15 -1405 ((-638 $) $)) (-15 -3672 ((-3 (-638 $) "failed") (-638 $)))))
-((-4053 (((-112) $ $) NIL)) (-2844 (((-638 |#1|) $) 16)) (-2160 (((-112) $) 38)) (-4061 (((-3 (-665 |#1|) "failed") $) 43)) (-3979 (((-665 |#1|) $) 41)) (-1437 (($ $) 18)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-4310 (((-765) $) 46)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-665 |#1|) $) 17)) (-4064 (((-856) $) 37) (($ (-665 |#1|)) 21) (((-813 |#1|) $) 27) (($ |#1|) 20)) (-2257 (($) 8 T CONST)) (-4299 (((-638 (-665 |#1|)) $) 23)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 11)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 49)))
-(((-886 |#1|) (-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 1 ($) -1494) (-15 -4064 ((-813 |#1|) $)) (-15 -4064 ($ |#1|)) (-15 -1424 ((-665 |#1|) $)) (-15 -4310 ((-765) $)) (-15 -4299 ((-638 (-665 |#1|)) $)) (-15 -1437 ($ $)) (-15 -2160 ((-112) $)) (-15 -2844 ((-638 |#1|) $)))) (-844)) (T -886))
-((-2257 (*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4064 (*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-638 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-1437 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
-(-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 (-2257) ($) -1494) (-15 -4064 ((-813 |#1|) $)) (-15 -4064 ($ |#1|)) (-15 -1424 ((-665 |#1|) $)) (-15 -4310 ((-765) $)) (-15 -4299 ((-638 (-665 |#1|)) $)) (-15 -1437 ($ $)) (-15 -2160 ((-112) $)) (-15 -2844 ((-638 |#1|) $))))
-((-2342 ((|#1| |#1| |#1|) 19)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -2342 (|#1| |#1| |#1|))) (-1230 |#2|) (-1042)) (T -887))
-((-2342 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1230 *3)))))
-(-10 -7 (-15 -2342 (|#1| |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-2008 (((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 14)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2653 (((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 13)) (-1723 (((-112) $ $) 6)))
+((-2937 (((-684 (-1212)) $ (-1212)) NIL)) (-2938 (((-684 (-547)) $ (-547)) NIL)) (-2936 (((-765) $ (-129)) NIL)) (-2939 (((-684 (-128)) $ (-128)) 21)) (-2941 (($ (-387)) 12) (($ (-1148)) 14)) (-2940 (((-112) $) 18)) (-4353 (((-857) $) 25)) (-1844 (($ $) 22)))
+(((-856) (-13 (-855) (-608 (-857)) (-10 -8 (-15 -2941 ($ (-387))) (-15 -2941 ($ (-1148))) (-15 -2940 ((-112) $))))) (T -856))
+((-2941 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856)))))
+(-13 (-855) (-608 (-857)) (-10 -8 (-15 -2941 ($ (-387))) (-15 -2941 ($ (-1148))) (-15 -2940 ((-112) $))))
+((-2947 (((-112) $ $) NIL) (($ $ $) 77)) (-2968 (($ $ $) 114)) (-2983 (((-544) $) 31) (((-544)) 36)) (-2978 (($ (-544)) 45)) (-2975 (($ $ $) 46) (($ (-635 $)) 76)) (-2959 (($ $ (-635 $)) 74)) (-2980 (((-544) $) 34)) (-2962 (($ $ $) 65)) (-3931 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2981 (((-544) $) 33)) (-2963 (($ $ $) 64)) (-3942 (($ $) 104)) (-2966 (($ $ $) 118)) (-2949 (($ (-635 $)) 53)) (-3947 (($ $ (-635 $)) 71)) (-2977 (($ (-544) (-544)) 47)) (-2989 (($ $) 115) (($ $ $) 116)) (-3522 (($ $ (-544)) 41) (($ $) 44)) (-2943 (($ $ $) 89)) (-2964 (($ $ $) 121)) (-2958 (($ $) 105)) (-2942 (($ $ $) 90)) (-2954 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3219 (((-1259) $) 10)) (-2957 (($ $) 108) (($ $ (-765)) 111)) (-2960 (($ $ $) 67)) (-2961 (($ $ $) 66)) (-2974 (($ $ (-635 $)) 100)) (-2972 (($ $ $) 103)) (-2951 (($ (-635 $)) 51)) (-2952 (($ $) 62) (($ (-635 $)) 63)) (-2955 (($ $ $) 112)) (-2956 (($ $) 106)) (-2967 (($ $ $) 117)) (-3932 (($ (-544)) 21) (($ (-1166)) 23) (($ (-1148)) 30) (($ (-224)) 25)) (-3239 (($ $ $) 93)) (-3726 (($ $) 94)) (-2985 (((-1259) (-1148)) 15)) (-2986 (($ (-1148)) 14)) (-3509 (($ (-635 (-635 $))) 50)) (-3523 (($ $ (-544)) 40) (($ $) 43)) (-3643 (((-1148) $) NIL)) (-2970 (($ $ $) 120)) (-3869 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2971 (((-112) $) 98)) (-2973 (($ $ (-635 $)) 101) (($ $ $ $) 102)) (-2979 (($ (-544)) 37)) (-2982 (((-544) $) 32) (((-544)) 35)) (-2976 (($ $ $) 38) (($ (-635 $)) 75)) (-3644 (((-1110) $) NIL)) (-3865 (($ $ $) 91)) (-3972 (($) 13)) (-4206 (($ $ (-635 $)) 99)) (-2984 (((-1148) (-1148)) 8)) (-4243 (($ $) 107) (($ $ (-765)) 110)) (-2944 (($ $ $) 88)) (-4217 (($ $ (-765)) 126)) (-2950 (($ (-635 $)) 52)) (-4353 (((-857) $) 19)) (-4179 (($ $ (-544)) 39) (($ $) 42)) (-2953 (($ $) 60) (($ (-635 $)) 61)) (-3641 (($ $) 58) (($ (-635 $)) 59)) (-2969 (($ $) 113)) (-2948 (($ (-635 $)) 57)) (-3487 (($ $ $) 97)) (-2965 (($ $ $) 119)) (-3240 (($ $ $) 92)) (-4144 (($ $ $) 95) (($ $) 96)) (-2945 (($ $ $) 81)) (-2946 (($ $ $) 79)) (-3437 (((-112) $ $) 16) (($ $ $) 17)) (-3066 (($ $ $) 80)) (-3067 (($ $ $) 78)) (-4356 (($ $ $) 86)) (-4244 (($ $ $) 83) (($ $) 84)) (-4246 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-857) (-13 (-1091) (-10 -8 (-15 -3219 ((-1259) $)) (-15 -2986 ($ (-1148))) (-15 -2985 ((-1259) (-1148))) (-15 -3932 ($ (-544))) (-15 -3932 ($ (-1166))) (-15 -3932 ($ (-1148))) (-15 -3932 ($ (-224))) (-15 -3972 ($)) (-15 -2984 ((-1148) (-1148))) (-15 -2983 ((-544) $)) (-15 -2982 ((-544) $)) (-15 -2983 ((-544))) (-15 -2982 ((-544))) (-15 -2981 ((-544) $)) (-15 -2980 ((-544) $)) (-15 -2979 ($ (-544))) (-15 -2978 ($ (-544))) (-15 -2977 ($ (-544) (-544))) (-15 -3523 ($ $ (-544))) (-15 -3522 ($ $ (-544))) (-15 -4179 ($ $ (-544))) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4179 ($ $)) (-15 -2976 ($ $ $)) (-15 -2975 ($ $ $)) (-15 -2976 ($ (-635 $))) (-15 -2975 ($ (-635 $))) (-15 -2974 ($ $ (-635 $))) (-15 -2973 ($ $ (-635 $))) (-15 -2973 ($ $ $ $)) (-15 -2972 ($ $ $)) (-15 -2971 ((-112) $)) (-15 -4206 ($ $ (-635 $))) (-15 -3942 ($ $)) (-15 -2970 ($ $ $)) (-15 -2969 ($ $)) (-15 -3509 ($ (-635 (-635 $)))) (-15 -2968 ($ $ $)) (-15 -2989 ($ $)) (-15 -2989 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -4217 ($ $ (-765))) (-15 -3487 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -3947 ($ $ (-635 $))) (-15 -2959 ($ $ (-635 $))) (-15 -2958 ($ $)) (-15 -4243 ($ $)) (-15 -4243 ($ $ (-765))) (-15 -2957 ($ $)) (-15 -2957 ($ $ (-765))) (-15 -2956 ($ $)) (-15 -2955 ($ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -2954 ($ $)) (-15 -2954 ($ $ $)) (-15 -2954 ($ $ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -3641 ($ $)) (-15 -3641 ($ (-635 $))) (-15 -2953 ($ $)) (-15 -2953 ($ (-635 $))) (-15 -2952 ($ $)) (-15 -2952 ($ (-635 $))) (-15 -2951 ($ (-635 $))) (-15 -2950 ($ (-635 $))) (-15 -2949 ($ (-635 $))) (-15 -2948 ($ (-635 $))) (-15 -3437 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -3865 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3726 ($ $)) (-15 -4144 ($ $ $)) (-15 -4144 ($ $))))) (T -857))
+((-3219 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-857)))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857)))) (-3972 (*1 *1) (-5 *1 (-857))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2983 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2982 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2979 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2978 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2977 (*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-4179 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3523 (*1 *1 *1) (-5 *1 (-857))) (-3522 (*1 *1 *1) (-5 *1 (-857))) (-4179 (*1 *1 *1) (-5 *1 (-857))) (-2976 (*1 *1 *1 *1) (-5 *1 (-857))) (-2975 (*1 *1 *1 *1) (-5 *1 (-857))) (-2976 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2973 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-2972 (*1 *1 *1 *1) (-5 *1 (-857))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-3942 (*1 *1 *1) (-5 *1 (-857))) (-2970 (*1 *1 *1 *1) (-5 *1 (-857))) (-2969 (*1 *1 *1) (-5 *1 (-857))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-857)))) (-2968 (*1 *1 *1 *1) (-5 *1 (-857))) (-2989 (*1 *1 *1) (-5 *1 (-857))) (-2989 (*1 *1 *1 *1) (-5 *1 (-857))) (-2967 (*1 *1 *1 *1) (-5 *1 (-857))) (-2966 (*1 *1 *1 *1) (-5 *1 (-857))) (-2965 (*1 *1 *1 *1) (-5 *1 (-857))) (-2964 (*1 *1 *1 *1) (-5 *1 (-857))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) (-3487 (*1 *1 *1 *1) (-5 *1 (-857))) (-2963 (*1 *1 *1 *1) (-5 *1 (-857))) (-2962 (*1 *1 *1 *1) (-5 *1 (-857))) (-2961 (*1 *1 *1 *1) (-5 *1 (-857))) (-2960 (*1 *1 *1 *1) (-5 *1 (-857))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2959 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2958 (*1 *1 *1) (-5 *1 (-857))) (-4243 (*1 *1 *1) (-5 *1 (-857))) (-4243 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) (-2957 (*1 *1 *1) (-5 *1 (-857))) (-2957 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) (-2956 (*1 *1 *1) (-5 *1 (-857))) (-2955 (*1 *1 *1 *1) (-5 *1 (-857))) (-3931 (*1 *1 *1) (-5 *1 (-857))) (-3931 (*1 *1 *1 *1) (-5 *1 (-857))) (-3931 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-2954 (*1 *1 *1) (-5 *1 (-857))) (-2954 (*1 *1 *1 *1) (-5 *1 (-857))) (-2954 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-3869 (*1 *1 *1) (-5 *1 (-857))) (-3869 (*1 *1 *1 *1) (-5 *1 (-857))) (-3869 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-3641 (*1 *1 *1) (-5 *1 (-857))) (-3641 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2953 (*1 *1 *1) (-5 *1 (-857))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2952 (*1 *1 *1) (-5 *1 (-857))) (-2952 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2949 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2948 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-3437 (*1 *1 *1 *1) (-5 *1 (-857))) (-2947 (*1 *1 *1 *1) (-5 *1 (-857))) (-3067 (*1 *1 *1 *1) (-5 *1 (-857))) (-2946 (*1 *1 *1 *1) (-5 *1 (-857))) (-3066 (*1 *1 *1 *1) (-5 *1 (-857))) (-2945 (*1 *1 *1 *1) (-5 *1 (-857))) (-4246 (*1 *1 *1 *1) (-5 *1 (-857))) (-4244 (*1 *1 *1 *1) (-5 *1 (-857))) (-4244 (*1 *1 *1) (-5 *1 (-857))) (* (*1 *1 *1 *1) (-5 *1 (-857))) (-4356 (*1 *1 *1 *1) (-5 *1 (-857))) (** (*1 *1 *1 *1) (-5 *1 (-857))) (-2944 (*1 *1 *1 *1) (-5 *1 (-857))) (-2943 (*1 *1 *1 *1) (-5 *1 (-857))) (-2942 (*1 *1 *1 *1) (-5 *1 (-857))) (-3865 (*1 *1 *1 *1) (-5 *1 (-857))) (-3240 (*1 *1 *1 *1) (-5 *1 (-857))) (-3239 (*1 *1 *1 *1) (-5 *1 (-857))) (-3726 (*1 *1 *1) (-5 *1 (-857))) (-4144 (*1 *1 *1 *1) (-5 *1 (-857))) (-4144 (*1 *1 *1) (-5 *1 (-857))))
+(-13 (-1091) (-10 -8 (-15 -3219 ((-1259) $)) (-15 -2986 ($ (-1148))) (-15 -2985 ((-1259) (-1148))) (-15 -3932 ($ (-544))) (-15 -3932 ($ (-1166))) (-15 -3932 ($ (-1148))) (-15 -3932 ($ (-224))) (-15 -3972 ($)) (-15 -2984 ((-1148) (-1148))) (-15 -2983 ((-544) $)) (-15 -2982 ((-544) $)) (-15 -2983 ((-544))) (-15 -2982 ((-544))) (-15 -2981 ((-544) $)) (-15 -2980 ((-544) $)) (-15 -2979 ($ (-544))) (-15 -2978 ($ (-544))) (-15 -2977 ($ (-544) (-544))) (-15 -3523 ($ $ (-544))) (-15 -3522 ($ $ (-544))) (-15 -4179 ($ $ (-544))) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4179 ($ $)) (-15 -2976 ($ $ $)) (-15 -2975 ($ $ $)) (-15 -2976 ($ (-635 $))) (-15 -2975 ($ (-635 $))) (-15 -2974 ($ $ (-635 $))) (-15 -2973 ($ $ (-635 $))) (-15 -2973 ($ $ $ $)) (-15 -2972 ($ $ $)) (-15 -2971 ((-112) $)) (-15 -4206 ($ $ (-635 $))) (-15 -3942 ($ $)) (-15 -2970 ($ $ $)) (-15 -2969 ($ $)) (-15 -3509 ($ (-635 (-635 $)))) (-15 -2968 ($ $ $)) (-15 -2989 ($ $)) (-15 -2989 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -4217 ($ $ (-765))) (-15 -3487 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -3947 ($ $ (-635 $))) (-15 -2959 ($ $ (-635 $))) (-15 -2958 ($ $)) (-15 -4243 ($ $)) (-15 -4243 ($ $ (-765))) (-15 -2957 ($ $)) (-15 -2957 ($ $ (-765))) (-15 -2956 ($ $)) (-15 -2955 ($ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -2954 ($ $)) (-15 -2954 ($ $ $)) (-15 -2954 ($ $ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -3641 ($ $)) (-15 -3641 ($ (-635 $))) (-15 -2953 ($ $)) (-15 -2953 ($ (-635 $))) (-15 -2952 ($ $)) (-15 -2952 ($ (-635 $))) (-15 -2951 ($ (-635 $))) (-15 -2950 ($ (-635 $))) (-15 -2949 ($ (-635 $))) (-15 -2948 ($ (-635 $))) (-15 -3437 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -3865 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3726 ($ $)) (-15 -4144 ($ $ $)) (-15 -4144 ($ $))))
+((-2947 (((-112) $ $) NIL)) (-4238 (((-3 $ "failed") (-1166)) 33)) (-3521 (((-765)) 31)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) 29)) (-3643 (((-1148) $) 39)) (-2535 (($ (-912)) 28)) (-3644 (((-1110) $) NIL)) (-4377 (((-1166) $) 13) (((-533) $) 19) (((-883 (-377)) $) 26) (((-883 (-544)) $) 22)) (-4353 (((-857) $) 16)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 36)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 35)))
+(((-858 |#1|) (-13 (-838) (-609 (-1166)) (-609 (-533)) (-609 (-883 (-377))) (-609 (-883 (-544))) (-10 -8 (-15 -4238 ((-3 $ "failed") (-1166))))) (-635 (-1166))) (T -858))
+((-4238 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-635 *2)))))
+(-13 (-838) (-609 (-1166)) (-609 (-533)) (-609 (-883 (-377))) (-609 (-883 (-544))) (-10 -8 (-15 -4238 ((-3 $ "failed") (-1166)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-939 |#1|)) NIL) (((-939 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-3511 (((-765)) NIL)) (-4330 (((-1259) (-765)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-859 |#1| |#2| |#3| |#4|) (-13 (-1042) (-488 (-939 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765))))) (-1042) (-635 (-1166)) (-635 (-765)) (-765)) (T -859))
+((-4356 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-765))) (-14 *5 (-765)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *4 (-1042)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 *3)) (-14 *7 *3))))
+(-13 (-1042) (-488 (-939 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765)))))
+((-2987 (((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|) 31)) (-2988 (((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|) 24)))
+(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -2988 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -2987 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|))) (-362) (-1246 |#1|) (-1229 |#1|)) (T -860))
+((-2987 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5)))) (-2988 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5)))))
+(-10 -7 (-15 -2988 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -2987 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|)))
+((-2988 (((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) 26)))
+(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|)))) (-362) (-1166) |#1|) (T -861))
+((-2988 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5))) (-5 *1 (-861 *5 *6 *7)))) (-2988 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5))) (-5 *1 (-861 *5 *6 *7)))))
+(-10 -7 (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ (-544)) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2989 (($ (-1160 (-544)) (-544)) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2990 (($ $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4178 (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 (((-544)) NIL)) (-2991 (((-544) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4175 (($ $ (-544)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-1143 (-544)) $) NIL)) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-4176 (((-544) $ (-544)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL)))
+(((-862 |#1|) (-863 |#1|) (-544)) (T -862))
+NIL
+(-863 |#1|)
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $ (-544)) 63)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2989 (($ (-1160 (-544)) (-544)) 62)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2990 (($ $) 65)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4178 (((-765) $) 70)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2992 (((-544)) 67)) (-2991 (((-544) $) 66)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-4175 (($ $ (-544)) 69)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-2993 (((-1143 (-544)) $) 71)) (-3274 (($ $) 68)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-4176 (((-544) $ (-544)) 64)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
+(((-863 |#1|) (-139) (-544)) (T -863))
+((-2993 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-1143 (-544))))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-765)))) (-4175 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-3274 (*1 *1 *1) (-4 *1 (-863 *2))) (-2992 (*1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-2990 (*1 *1 *1) (-4 *1 (-863 *2))) (-4176 (*1 *2 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-2989 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *3 (-544)) (-4 *1 (-863 *4)))))
+(-13 (-306) (-146) (-10 -8 (-15 -2993 ((-1143 (-544)) $)) (-15 -4178 ((-765) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $)) (-15 -2992 ((-544))) (-15 -2991 ((-544) $)) (-15 -2990 ($ $)) (-15 -4176 ((-544) $ (-544))) (-15 -3420 ($ $ (-544))) (-15 -2989 ($ (-1160 (-544)) (-544)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-862 |#1|) $) NIL (|has| (-862 |#1|) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-862 |#1|) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-862 |#1|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-862 |#1|) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-862 |#1|) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-862 |#1|) (-1031 (-544))))) (-3557 (((-862 |#1|) $) NIL) (((-1166) $) NIL (|has| (-862 |#1|) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-862 |#1|) (-1031 (-544)))) (((-544) $) NIL (|has| (-862 |#1|) (-1031 (-544))))) (-4137 (($ $) NIL) (($ (-544) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-862 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-862 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-862 |#1|))) (|:| |vec| (-1253 (-862 |#1|)))) (-682 $) (-1253 $)) NIL) (((-682 (-862 |#1|)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-862 |#1|) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-862 |#1|) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-862 |#1|) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-862 |#1|) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-862 |#1|) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-862 |#1|) (-1141)))) (-3588 (((-112) $) NIL (|has| (-862 |#1|) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-862 |#1|) (-844)))) (-3242 (($ $ $) NIL (|has| (-862 |#1|) (-844)))) (-4365 (($ (-1 (-862 |#1|) (-862 |#1|)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-862 |#1|) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-862 |#1|) (-306)))) (-3515 (((-862 |#1|) $) NIL (|has| (-862 |#1|) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-862 |#1|)) (-635 (-862 |#1|))) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-862 |#1|) (-862 |#1|)) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-292 (-862 |#1|))) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-635 (-292 (-862 |#1|)))) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-635 (-1166)) (-635 (-862 |#1|))) NIL (|has| (-862 |#1|) (-512 (-1166) (-862 |#1|)))) (($ $ (-1166) (-862 |#1|)) NIL (|has| (-862 |#1|) (-512 (-1166) (-862 |#1|))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-862 |#1|)) NIL (|has| (-862 |#1|) (-285 (-862 |#1|) (-862 |#1|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-862 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-862 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1 (-862 |#1|) (-862 |#1|)) (-765)) NIL) (($ $ (-1 (-862 |#1|) (-862 |#1|))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-862 |#1|) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-862 |#1|) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-862 |#1|) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-862 |#1|) (-609 (-533)))) (((-377) $) NIL (|has| (-862 |#1|) (-1013))) (((-224) $) NIL (|has| (-862 |#1|) (-1013)))) (-2994 (((-173 (-406 (-544))) $) NIL)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-862 |#1|) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-862 |#1|)) NIL) (($ (-1166)) NIL (|has| (-862 |#1|) (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-862 |#1|) (-903))) (|has| (-862 |#1|) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-862 |#1|) $) NIL (|has| (-862 |#1|) (-543)))) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ (-544)) NIL)) (-3787 (($ $) NIL (|has| (-862 |#1|) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-862 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-862 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1 (-862 |#1|) (-862 |#1|)) (-765)) NIL) (($ $ (-1 (-862 |#1|) (-862 |#1|))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-4356 (($ $ $) NIL) (($ (-862 |#1|) (-862 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-862 |#1|) $) NIL) (($ $ (-862 |#1|)) NIL)))
+(((-864 |#1|) (-13 (-984 (-862 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) (-544)) (T -864))
+((-4176 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-864 *4)) (-14 *4 *3) (-5 *3 (-544)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-864 *3)) (-14 *3 (-544)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-544)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-864 *3)) (-14 *3 *2))))
+(-13 (-984 (-862 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 ((|#2| $) NIL (|has| |#2| (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| |#2| (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| |#2| (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544))))) (-3557 ((|#2| $) NIL) (((-1166) $) NIL (|has| |#2| (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-544)))) (((-544) $) NIL (|has| |#2| (-1031 (-544))))) (-4137 (($ $) 31) (($ (-544) $) 32)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 53)) (-3377 (($) NIL (|has| |#2| (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| |#2| (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| |#2| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| |#2| (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 ((|#2| $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-3588 (((-112) $) NIL (|has| |#2| (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 49)) (-3849 (($) NIL (|has| |#2| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| |#2| (-306)))) (-3515 ((|#2| $) NIL (|has| |#2| (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 |#2|) (-635 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-292 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-292 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-1166)) (-635 |#2|)) NIL (|has| |#2| (-512 (-1166) |#2|))) (($ $ (-1166) |#2|) NIL (|has| |#2| (-512 (-1166) |#2|)))) (-1732 (((-765) $) NIL)) (-4206 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3378 (($ $) NIL)) (-3380 ((|#2| $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| |#2| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#2| (-609 (-883 (-377))))) (((-533) $) NIL (|has| |#2| (-609 (-533)))) (((-377) $) NIL (|has| |#2| (-1013))) (((-224) $) NIL (|has| |#2| (-1013)))) (-2994 (((-173 (-406 (-544))) $) 68)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) 86) (($ (-544)) 19) (($ $) NIL) (($ (-406 (-544))) 24) (($ |#2|) 18) (($ (-1166)) NIL (|has| |#2| (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-3516 ((|#2| $) NIL (|has| |#2| (-543)))) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ (-544)) 60)) (-3787 (($ $) NIL (|has| |#2| (-814)))) (-3040 (($) 14 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) 35)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4244 (($ $) 39) (($ $ $) 41)) (-4246 (($ $ $) 37)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 50)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 42) (($ $ $) 44) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-865 |#1| |#2|) (-13 (-984 |#2|) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) (-544) (-863 |#1|)) (T -865))
+((-4176 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-544))) (-5 *1 (-865 *4 *5)) (-5 *3 (-544)) (-4 *5 (-863 *4)))) (-2994 (*1 *2 *1) (-12 (-14 *3 (-544)) (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-865 *3 *4)) (-4 *4 (-863 *3)))) (-4137 (*1 *1 *1) (-12 (-14 *2 (-544)) (-5 *1 (-865 *2 *3)) (-4 *3 (-863 *2)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-14 *3 *2) (-5 *1 (-865 *3 *4)) (-4 *4 (-863 *3)))))
+(-13 (-984 |#2|) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $))))
+((-2947 (((-112) $ $) NIL (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))) (-4202 ((|#2| $) 12)) (-2995 (($ |#1| |#2|) 9)) (-3643 (((-1148) $) NIL (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))) (-3644 (((-1110) $) NIL (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#1| $) 11)) (-3929 (($ |#1| |#2|) 10)) (-4353 (((-857) $) 18 (-3936 (-12 (|has| |#1| (-608 (-857))) (|has| |#2| (-608 (-857)))) (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091)))))) (-3437 (((-112) $ $) 22 (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))))
+(((-866 |#1| |#2|) (-13 (-1204) (-10 -8 (IF (|has| |#1| (-608 (-857))) (IF (|has| |#2| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1091)) (IF (|has| |#2| (-1091)) (-6 (-1091)) |%noBranch|) |%noBranch|) (-15 -2995 ($ |#1| |#2|)) (-15 -3929 ($ |#1| |#2|)) (-15 -4207 (|#1| $)) (-15 -4202 (|#2| $)))) (-1204) (-1204)) (T -866))
+((-2995 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204)))) (-4207 (*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1204)))) (-4202 (*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1204)))))
+(-13 (-1204) (-10 -8 (IF (|has| |#1| (-608 (-857))) (IF (|has| |#2| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1091)) (IF (|has| |#2| (-1091)) (-6 (-1091)) |%noBranch|) |%noBranch|) (-15 -2995 ($ |#1| |#2|)) (-15 -3929 ($ |#1| |#2|)) (-15 -4207 (|#1| $)) (-15 -4202 (|#2| $))))
+((-2947 (((-112) $ $) NIL)) (-3340 (((-544) $) 15)) (-2997 (($ (-156)) 11)) (-2996 (($ (-156)) 12)) (-3643 (((-1148) $) NIL)) (-3339 (((-156) $) 13)) (-3644 (((-1110) $) NIL)) (-2999 (($ (-156)) 9)) (-3000 (($ (-156)) 8)) (-4353 (((-857) $) 23) (($ (-156)) 16)) (-2998 (($ (-156)) 10)) (-3437 (((-112) $ $) NIL)))
+(((-867) (-13 (-1091) (-10 -8 (-15 -3000 ($ (-156))) (-15 -2999 ($ (-156))) (-15 -2998 ($ (-156))) (-15 -2997 ($ (-156))) (-15 -2996 ($ (-156))) (-15 -3339 ((-156) $)) (-15 -3340 ((-544) $)) (-15 -4353 ($ (-156)))))) (T -867))
+((-3000 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-867)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(-13 (-1091) (-10 -8 (-15 -3000 ($ (-156))) (-15 -2999 ($ (-156))) (-15 -2998 ($ (-156))) (-15 -2997 ($ (-156))) (-15 -2996 ($ (-156))) (-15 -3339 ((-156) $)) (-15 -3340 ((-544) $)) (-15 -4353 ($ (-156)))))
+((-4353 (((-313 (-544)) (-406 (-939 (-48)))) 23) (((-313 (-544)) (-939 (-48))) 18)))
+(((-868) (-10 -7 (-15 -4353 ((-313 (-544)) (-939 (-48)))) (-15 -4353 ((-313 (-544)) (-406 (-939 (-48))))))) (T -868))
+((-4353 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 (-48)))) (-5 *2 (-313 (-544))) (-5 *1 (-868)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-939 (-48))) (-5 *2 (-313 (-544))) (-5 *1 (-868)))))
+(-10 -7 (-15 -4353 ((-313 (-544)) (-939 (-48)))) (-15 -4353 ((-313 (-544)) (-406 (-939 (-48))))))
+((-4365 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 14)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -4365 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1204) (-1204)) (T -869))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6)))))
+(-10 -7 (-15 -4365 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|))))
+((-3775 (($ |#1| |#1|) 8)) (-3003 ((|#1| $ (-765)) 10)))
+(((-870 |#1|) (-10 -8 (-15 -3775 ($ |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) (-1204)) (T -870))
+((-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1204)))) (-3775 (*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1204)))))
+(-10 -8 (-15 -3775 ($ |#1| |#1|)) (-15 -3003 (|#1| $ (-765))))
+((-4365 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14)))
+(((-871 |#1| |#2|) (-10 -7 (-15 -4365 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1204) (-1204)) (T -871))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))))
+(-10 -7 (-15 -4365 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))
+((-3775 (($ |#1| |#1| |#1|) 8)) (-3003 ((|#1| $ (-765)) 10)))
+(((-872 |#1|) (-10 -8 (-15 -3775 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) (-1204)) (T -872))
+((-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1204)))) (-3775 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1204)))))
+(-10 -8 (-15 -3775 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765))))
+((-3001 (((-635 (-1171)) (-1148)) 9)))
+(((-873) (-10 -7 (-15 -3001 ((-635 (-1171)) (-1148))))) (T -873))
+((-3001 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-873)))))
+(-10 -7 (-15 -3001 ((-635 (-1171)) (-1148))))
+((-4365 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14)))
+(((-874 |#1| |#2|) (-10 -7 (-15 -4365 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1204) (-1204)) (T -874))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))))
+(-10 -7 (-15 -4365 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
+((-3002 (($ |#1| |#1| |#1|) 8)) (-3003 ((|#1| $ (-765)) 10)))
+(((-875 |#1|) (-10 -8 (-15 -3002 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) (-1204)) (T -875))
+((-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1204)))) (-3002 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1204)))))
+(-10 -8 (-15 -3002 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765))))
+((-3007 (((-1143 (-635 (-544))) (-635 (-544)) (-1143 (-635 (-544)))) 30)) (-3006 (((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544))) 26)) (-3008 (((-1143 (-635 (-544))) (-635 (-544))) 39) (((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544))) 38)) (-3009 (((-1143 (-635 (-544))) (-544)) 40)) (-3004 (((-1143 (-635 (-544))) (-544) (-544)) 22) (((-1143 (-635 (-544))) (-544)) 16) (((-1143 (-635 (-544))) (-544) (-544) (-544)) 12)) (-3005 (((-1143 (-635 (-544))) (-1143 (-635 (-544)))) 24)) (-3392 (((-635 (-544)) (-635 (-544))) 23)))
+(((-876) (-10 -7 (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544))) (-15 -3392 ((-635 (-544)) (-635 (-544)))) (-15 -3005 ((-1143 (-635 (-544))) (-1143 (-635 (-544))))) (-15 -3006 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3007 ((-1143 (-635 (-544))) (-635 (-544)) (-1143 (-635 (-544))))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)))) (-15 -3009 ((-1143 (-635 (-544))) (-544))))) (T -876))
+((-3009 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) (-3008 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))) (-3008 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *3 (-635 (-544))) (-5 *1 (-876)))) (-3006 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-876)))) (-3004 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) (-3004 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) (-3004 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))))
+(-10 -7 (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544))) (-15 -3392 ((-635 (-544)) (-635 (-544)))) (-15 -3005 ((-1143 (-635 (-544))) (-1143 (-635 (-544))))) (-15 -3006 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3007 ((-1143 (-635 (-544))) (-635 (-544)) (-1143 (-635 (-544))))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)))) (-15 -3009 ((-1143 (-635 (-544))) (-544))))
+((-4377 (((-883 (-377)) $) 9 (|has| |#1| (-609 (-883 (-377))))) (((-883 (-544)) $) 8 (|has| |#1| (-609 (-883 (-544)))))))
+(((-877 |#1|) (-139) (-1204)) (T -877))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-609 (-883 (-544)))) (-6 (-609 (-883 (-544)))) |%noBranch|) (IF (|has| |t#1| (-609 (-883 (-377)))) (-6 (-609 (-883 (-377)))) |%noBranch|)))
+(((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))))
+((-2947 (((-112) $ $) NIL)) (-4021 (($) 14)) (-3012 (($ (-881 |#1| |#2|) (-881 |#1| |#3|)) 27)) (-3010 (((-881 |#1| |#3|) $) 16)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3020 (((-112) $) 22)) (-3019 (($) 19)) (-4353 (((-857) $) 30)) (-3011 (((-881 |#1| |#2|) $) 15)) (-3437 (((-112) $ $) 25)))
+(((-878 |#1| |#2| |#3|) (-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3012 ($ (-881 |#1| |#2|) (-881 |#1| |#3|))) (-15 -3011 ((-881 |#1| |#2|) $)) (-15 -3010 ((-881 |#1| |#3|) $)))) (-1091) (-1091) (-659 |#2|)) (T -878))
+((-3020 (*1 *2 *1) (-12 (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091)) (-4 *5 (-659 *4)))) (-3019 (*1 *1) (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091)) (-4 *4 (-659 *3)))) (-4021 (*1 *1) (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091)) (-4 *4 (-659 *3)))) (-3012 (*1 *1 *2 *3) (-12 (-5 *2 (-881 *4 *5)) (-5 *3 (-881 *4 *6)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6)))) (-3011 (*1 *2 *1) (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *4)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091)) (-4 *5 (-659 *4)))) (-3010 (*1 *2 *1) (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *5)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091)) (-4 *5 (-659 *4)))))
+(-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3012 ($ (-881 |#1| |#2|) (-881 |#1| |#3|))) (-15 -3011 ((-881 |#1| |#2|) $)) (-15 -3010 ((-881 |#1| |#3|) $))))
+((-2947 (((-112) $ $) 7)) (-3178 (((-881 |#1| $) $ (-883 |#1|) (-881 |#1| $)) 13)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)))
+(((-879 |#1|) (-139) (-1091)) (T -879))
+((-3178 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-881 *4 *1)) (-5 *3 (-883 *4)) (-4 *1 (-879 *4)) (-4 *4 (-1091)))))
+(-13 (-1091) (-10 -8 (-15 -3178 ((-881 |t#1| $) $ (-883 |t#1|) (-881 |t#1| $)))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-3013 (((-112) (-635 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-3014 (((-881 |#1| |#2|) |#2| |#3|) 42 (-12 (-3726 (|has| |#2| (-1031 (-1166)))) (-3726 (|has| |#2| (-1042))))) (((-635 (-292 (-939 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1042)) (-3726 (|has| |#2| (-1031 (-1166)))))) (((-635 (-292 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1031 (-1166)))) (((-878 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|) 20)))
+(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -3013 ((-112) |#2| |#3|)) (-15 -3013 ((-112) (-635 |#2|) |#3|)) (-15 -3014 ((-878 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -3014 ((-635 (-292 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -3014 ((-635 (-292 (-939 |#2|))) |#2| |#3|)) (-15 -3014 ((-881 |#1| |#2|) |#2| |#3|))))) (-1091) (-879 |#1|) (-609 (-883 |#1|))) (T -880))
+((-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-881 *5 *3)) (-5 *1 (-880 *5 *3 *4)) (-3726 (-4 *3 (-1031 (-1166)))) (-3726 (-4 *3 (-1042))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))) (-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 (-939 *3)))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1042)) (-3726 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))) (-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 *3))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))) (-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-635 *6))) (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-609 (-883 *5))))) (-3013 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-883 *5))))) (-3013 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))))
+(-10 -7 (-15 -3013 ((-112) |#2| |#3|)) (-15 -3013 ((-112) (-635 |#2|) |#3|)) (-15 -3014 ((-878 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -3014 ((-635 (-292 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -3014 ((-635 (-292 (-939 |#2|))) |#2| |#3|)) (-15 -3014 ((-881 |#1| |#2|) |#2| |#3|)))))
+((-2947 (((-112) $ $) NIL)) (-3635 (($ $ $) 39)) (-3041 (((-3 (-112) "failed") $ (-883 |#1|)) 36)) (-4021 (($) 12)) (-3643 (((-1148) $) NIL)) (-3016 (($ (-883 |#1|) |#2| $) 20)) (-3644 (((-1110) $) NIL)) (-3018 (((-3 |#2| "failed") (-883 |#1|) $) 50)) (-3020 (((-112) $) 15)) (-3019 (($) 13)) (-3658 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))) $) 25)) (-3929 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|)))) 23)) (-4353 (((-857) $) 44)) (-3015 (($ (-883 |#1|) |#2| $ |#2|) 48)) (-3017 (($ (-883 |#1|) |#2| $) 47)) (-3437 (((-112) $ $) 41)))
+(((-881 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3635 ($ $ $)) (-15 -3018 ((-3 |#2| "failed") (-883 |#1|) $)) (-15 -3017 ($ (-883 |#1|) |#2| $)) (-15 -3016 ($ (-883 |#1|) |#2| $)) (-15 -3015 ($ (-883 |#1|) |#2| $ |#2|)) (-15 -3658 ((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))))) (-15 -3041 ((-3 (-112) "failed") $ (-883 |#1|))))) (-1091) (-1091)) (T -881))
+((-3020 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-3019 (*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-4021 (*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3635 (*1 *1 *1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3018 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-4 *2 (-1091)) (-5 *1 (-881 *4 *2)))) (-3017 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))) (-3016 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))) (-3015 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4)))) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4)))) (-4 *4 (-1091)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)))) (-3041 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-881 *4 *5)) (-4 *5 (-1091)))))
+(-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3635 ($ $ $)) (-15 -3018 ((-3 |#2| "failed") (-883 |#1|) $)) (-15 -3017 ($ (-883 |#1|) |#2| $)) (-15 -3016 ($ (-883 |#1|) |#2| $)) (-15 -3015 ($ (-883 |#1|) |#2| $ |#2|)) (-15 -3658 ((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))))) (-15 -3041 ((-3 (-112) "failed") $ (-883 |#1|)))))
+((-4365 (((-881 |#1| |#3|) (-1 |#3| |#2|) (-881 |#1| |#2|)) 22)))
+(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-881 |#1| |#3|) (-1 |#3| |#2|) (-881 |#1| |#2|)))) (-1091) (-1091) (-1091)) (T -882))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-881 *5 *6)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-881 *5 *7)) (-5 *1 (-882 *5 *6 *7)))))
+(-10 -7 (-15 -4365 ((-881 |#1| |#3|) (-1 |#3| |#2|) (-881 |#1| |#2|))))
+((-2947 (((-112) $ $) NIL)) (-3028 (($ $ (-635 (-51))) 62)) (-3467 (((-635 $) $) 116)) (-3025 (((-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51))) $) 23)) (-3661 (((-112) $) 29)) (-3026 (($ $ (-635 (-1166)) (-51)) 24)) (-3029 (($ $ (-635 (-51))) 61)) (-3558 (((-3 |#1| #1="failed") $) 59) (((-3 (-1166) #1#) $) 138)) (-3557 ((|#1| $) 56) (((-1166) $) NIL)) (-3023 (($ $) 106)) (-3035 (((-112) $) 44)) (-3030 (((-635 (-51)) $) 42)) (-3027 (($ (-1166) (-112) (-112) (-112)) 63)) (-3021 (((-3 (-635 $) "failed") (-635 $)) 70)) (-3032 (((-112) $) 47)) (-3033 (((-112) $) 46)) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) "failed") $) 33)) (-3038 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 $)) "failed") $) 81)) (-3204 (((-3 (-635 $) "failed") $) 32)) (-3039 (((-3 (-635 $) "failed") $ (-113)) 105) (((-3 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 $))) "failed") $) 93)) (-3037 (((-3 (-635 $) "failed") $) 34)) (-3206 (((-3 (-2 (|:| |val| $) (|:| -2536 (-765))) "failed") $) 37)) (-3036 (((-112) $) 28)) (-3644 (((-1110) $) NIL)) (-3024 (((-112) $) 20)) (-3031 (((-112) $) 43)) (-3022 (((-635 (-51)) $) 109)) (-3034 (((-112) $) 45)) (-4206 (($ (-113) (-635 $)) 90)) (-3727 (((-765) $) 27)) (-3804 (($ $) 60)) (-4377 (($ (-635 $)) 57)) (-4360 (((-112) $) 25)) (-4353 (((-857) $) 51) (($ |#1|) 18) (($ (-1166)) 64)) (-3042 (($ $ (-51)) 108)) (-3040 (($) 89 T CONST)) (-3046 (($) 71 T CONST)) (-3437 (((-112) $ $) 77)) (-4356 (($ $ $) 98)) (-4246 (($ $ $) 102)) (** (($ $ (-765)) 97) (($ $ $) 52)) (* (($ $ $) 103)))
+(((-883 |#1|) (-13 (-1091) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 0 ($) -4359) (-15 1 ($) -4359) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3039 ((-3 (-635 $) "failed") $ (-113))) (-15 -3039 ((-3 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 $))) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |val| $) (|:| -2536 (-765))) "failed") $)) (-15 -3038 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3037 ((-3 (-635 $) "failed") $)) (-15 -3207 ((-3 (-2 (|:| |val| $) (|:| -2536 $)) "failed") $)) (-15 -4206 ($ (-113) (-635 $))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -4356 ($ $ $)) (-15 -3727 ((-765) $)) (-15 -4377 ($ (-635 $))) (-15 -3804 ($ $)) (-15 -3036 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3661 ((-112) $)) (-15 -4360 ((-112) $)) (-15 -3034 ((-112) $)) (-15 -3033 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3031 ((-112) $)) (-15 -3030 ((-635 (-51)) $)) (-15 -3029 ($ $ (-635 (-51)))) (-15 -3028 ($ $ (-635 (-51)))) (-15 -3027 ($ (-1166) (-112) (-112) (-112))) (-15 -3026 ($ $ (-635 (-1166)) (-51))) (-15 -3025 ((-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51))) $)) (-15 -3024 ((-112) $)) (-15 -3023 ($ $)) (-15 -3042 ($ $ (-51))) (-15 -3022 ((-635 (-51)) $)) (-15 -3467 ((-635 $) $)) (-15 -3021 ((-3 (-635 $) "failed") (-635 $))))) (-1091)) (T -883))
+((-3040 (*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3046 (*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3204 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3205 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3039 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-883 *4))) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-3039 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 (-883 *3))))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3206 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-765)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3038 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-883 *3)) (|:| |den| (-883 *3)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3207 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-883 *3)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 (-883 *4))) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-4246 (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-4356 (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3027 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-3026 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-51)) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3021 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(-13 (-1091) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 (-3040) ($) -4359) (-15 (-3046) ($) -4359) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3039 ((-3 (-635 $) "failed") $ (-113))) (-15 -3039 ((-3 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 $))) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |val| $) (|:| -2536 (-765))) "failed") $)) (-15 -3038 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3037 ((-3 (-635 $) "failed") $)) (-15 -3207 ((-3 (-2 (|:| |val| $) (|:| -2536 $)) "failed") $)) (-15 -4206 ($ (-113) (-635 $))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -4356 ($ $ $)) (-15 -3727 ((-765) $)) (-15 -4377 ($ (-635 $))) (-15 -3804 ($ $)) (-15 -3036 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3661 ((-112) $)) (-15 -4360 ((-112) $)) (-15 -3034 ((-112) $)) (-15 -3033 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3031 ((-112) $)) (-15 -3030 ((-635 (-51)) $)) (-15 -3029 ($ $ (-635 (-51)))) (-15 -3028 ($ $ (-635 (-51)))) (-15 -3027 ($ (-1166) (-112) (-112) (-112))) (-15 -3026 ($ $ (-635 (-1166)) (-51))) (-15 -3025 ((-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51))) $)) (-15 -3024 ((-112) $)) (-15 -3023 ($ $)) (-15 -3042 ($ $ (-51))) (-15 -3022 ((-635 (-51)) $)) (-15 -3467 ((-635 $) $)) (-15 -3021 ((-3 (-635 $) "failed") (-635 $)))))
+((-3610 (((-883 |#1|) (-883 |#1|) (-635 (-1166)) (-1 (-112) (-635 |#2|))) 32) (((-883 |#1|) (-883 |#1|) (-635 (-1 (-112) |#2|))) 43) (((-883 |#1|) (-883 |#1|) (-1 (-112) |#2|)) 35)) (-3041 (((-112) (-635 |#2|) (-883 |#1|)) 40) (((-112) |#2| (-883 |#1|)) 36)) (-3930 (((-1 (-112) |#2|) (-883 |#1|)) 16)) (-3043 (((-635 |#2|) (-883 |#1|)) 24)) (-3042 (((-883 |#1|) (-883 |#1|) |#2|) 20)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -3610 ((-883 |#1|) (-883 |#1|) (-1 (-112) |#2|))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1166)) (-1 (-112) (-635 |#2|)))) (-15 -3930 ((-1 (-112) |#2|) (-883 |#1|))) (-15 -3041 ((-112) |#2| (-883 |#1|))) (-15 -3041 ((-112) (-635 |#2|) (-883 |#1|))) (-15 -3042 ((-883 |#1|) (-883 |#1|) |#2|)) (-15 -3043 ((-635 |#2|) (-883 |#1|)))) (-1091) (-1204)) (T -884))
+((-3043 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-635 *5)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1204)))) (-3042 (*1 *2 *2 *3) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1204)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *2 (-112)) (-5 *1 (-884 *5 *6)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3)) (-4 *3 (-1204)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1204)))) (-3610 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-883 *5)) (-5 *3 (-635 (-1166))) (-5 *4 (-1 (-112) (-635 *6))) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *1 (-884 *5 *6)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-883 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1091)) (-4 *5 (-1204)) (-5 *1 (-884 *4 *5)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-883 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1091)) (-4 *5 (-1204)) (-5 *1 (-884 *4 *5)))))
+(-10 -7 (-15 -3610 ((-883 |#1|) (-883 |#1|) (-1 (-112) |#2|))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1166)) (-1 (-112) (-635 |#2|)))) (-15 -3930 ((-1 (-112) |#2|) (-883 |#1|))) (-15 -3041 ((-112) |#2| (-883 |#1|))) (-15 -3041 ((-112) (-635 |#2|) (-883 |#1|))) (-15 -3042 ((-883 |#1|) (-883 |#1|) |#2|)) (-15 -3043 ((-635 |#2|) (-883 |#1|))))
+((-4365 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 19)))
+(((-885 |#1| |#2|) (-10 -7 (-15 -4365 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1091) (-1091)) (T -885))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-883 *6)) (-5 *1 (-885 *5 *6)))))
+(-10 -7 (-15 -4365 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|))))
+((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) 16)) (-3044 (((-112) $) 38)) (-3558 (((-3 (-665 |#1|) "failed") $) 43)) (-3557 (((-665 |#1|) $) 41)) (-4205 (($ $) 18)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4240 (((-765) $) 46)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-665 |#1|) $) 17)) (-4353 (((-857) $) 37) (($ (-665 |#1|)) 21) (((-813 |#1|) $) 27) (($ |#1|) 20)) (-3046 (($) 8 T CONST)) (-3045 (((-635 (-665 |#1|)) $) 23)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 11)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 49)))
+(((-886 |#1|) (-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 1 ($) -4359) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ($ |#1|)) (-15 -4207 ((-665 |#1|) $)) (-15 -4240 ((-765) $)) (-15 -3045 ((-635 (-665 |#1|)) $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -4341 ((-635 |#1|) $)))) (-844)) (T -886))
+((-3046 (*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4353 (*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-635 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4205 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
+(-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 (-3046) ($) -4359) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ($ |#1|)) (-15 -4207 ((-665 |#1|) $)) (-15 -4240 ((-765) $)) (-15 -3045 ((-635 (-665 |#1|)) $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -4341 ((-635 |#1|) $))))
+((-3873 ((|#1| |#1| |#1|) 19)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -3873 (|#1| |#1| |#1|))) (-1229 |#2|) (-1042)) (T -887))
+((-3873 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -3873 (|#1| |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3047 (((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 13)) (-3437 (((-112) $ $) 6)))
(((-888) (-139)) (T -888))
-((-2008 (*1 *2 *3 *4) (-12 (-4 *1 (-888)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148)))))) (-2653 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *3 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-1028)))))
-(-13 (-1090) (-10 -7 (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -2653 ((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-3765 ((|#1| |#1| (-765)) 24)) (-1336 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4261 (((-3 (-2 (|:| -1586 |#1|) (|:| -1599 |#1|)) "failed") |#1| (-765) (-765)) 27) (((-638 |#1|) |#1|) 29)))
-(((-889 |#1| |#2|) (-10 -7 (-15 -4261 ((-638 |#1|) |#1|)) (-15 -4261 ((-3 (-2 (|:| -1586 |#1|) (|:| -1599 |#1|)) "failed") |#1| (-765) (-765))) (-15 -1336 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3765 (|#1| |#1| (-765)))) (-1230 |#2|) (-362)) (T -889))
-((-3765 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4)) (-4 *2 (-1230 *4)))) (-1336 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1230 *3)))) (-4261 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1586 *3) (|:| -1599 *3))) (-5 *1 (-889 *3 *5)) (-4 *3 (-1230 *5)))) (-4261 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -4261 ((-638 |#1|) |#1|)) (-15 -4261 ((-3 (-2 (|:| -1586 |#1|) (|:| -1599 |#1|)) "failed") |#1| (-765) (-765))) (-15 -1336 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3765 (|#1| |#1| (-765))))
-((-4164 (((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148)) 96) (((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148) (-224)) 91) (((-1028) (-891) (-1054)) 83) (((-1028) (-891)) 84)) (-2008 (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891) (-1054)) 59) (((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891)) 61)))
-(((-890) (-10 -7 (-15 -4164 ((-1028) (-891))) (-15 -4164 ((-1028) (-891) (-1054))) (-15 -4164 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148) (-224))) (-15 -4164 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891) (-1054))))) (T -890))
-((-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-890)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-890)))) (-4164 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148)) (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-4164 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148)) (-5 *8 (-224)) (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890)))))
-(-10 -7 (-15 -4164 ((-1028) (-891))) (-15 -4164 ((-1028) (-891) (-1054))) (-15 -4164 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148) (-224))) (-15 -4164 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891))) (-15 -2008 ((-2 (|:| -2008 (-378)) (|:| -3305 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891) (-1054))))
-((-4053 (((-112) $ $) NIL)) (-3979 (((-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $) 19)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 21) (($ (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 18)) (-1723 (((-112) $ $) NIL)))
-(((-891) (-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3979 ((-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $))))) (T -891))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891)))))
-(-13 (-1090) (-10 -8 (-15 -4064 ($ (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3979 ((-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $))))
-((-3922 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) 10) (($ $ |#2| (-765)) 12) (($ $ (-638 |#2|) (-638 (-765))) 15)) (-3154 (($ $ |#2|) 16) (($ $ (-638 |#2|)) 18) (($ $ |#2| (-765)) 19) (($ $ (-638 |#2|) (-638 (-765))) 21)))
-(((-892 |#1| |#2|) (-10 -8 (-15 -3154 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3154 (|#1| |#1| |#2| (-765))) (-15 -3154 (|#1| |#1| (-638 |#2|))) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3922 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3922 (|#1| |#1| |#2| (-765))) (-15 -3922 (|#1| |#1| (-638 |#2|))) (-15 -3922 (|#1| |#1| |#2|))) (-893 |#2|) (-1090)) (T -892))
-NIL
-(-10 -8 (-15 -3154 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3154 (|#1| |#1| |#2| (-765))) (-15 -3154 (|#1| |#1| (-638 |#2|))) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3922 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3922 (|#1| |#1| |#2| (-765))) (-15 -3922 (|#1| |#1| (-638 |#2|))) (-15 -3922 (|#1| |#1| |#2|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3922 (($ $ |#1|) 42) (($ $ (-638 |#1|)) 41) (($ $ |#1| (-765)) 40) (($ $ (-638 |#1|) (-638 (-765))) 39)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ |#1|) 38) (($ $ (-638 |#1|)) 37) (($ $ |#1| (-765)) 36) (($ $ (-638 |#1|) (-638 (-765))) 35)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
-(((-893 |#1|) (-139) (-1090)) (T -893))
-((-3922 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090)))) (-3922 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3922 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1090)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1090)))))
-(-13 (-1042) (-10 -8 (-15 -3922 ($ $ |t#1|)) (-15 -3922 ($ $ (-638 |t#1|))) (-15 -3922 ($ $ |t#1| (-765))) (-15 -3922 ($ $ (-638 |t#1|) (-638 (-765)))) (-15 -3154 ($ $ |t#1|)) (-15 -3154 ($ $ (-638 |t#1|))) (-15 -3154 ($ $ |t#1| (-765))) (-15 -3154 ($ $ (-638 |t#1|) (-638 (-765))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) 26)) (-2684 (((-112) $ (-765)) NIL)) (-2809 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2741 (($ $ $) NIL (|has| $ (-6 -4400)))) (-1555 (($ $ $) NIL (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) (($ $ "left" $) NIL (|has| $ (-6 -4400))) (($ $ "right" $) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-1599 (($ $) 25)) (-1669 (($ |#1|) 12) (($ $ $) 17)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1586 (($ $) 23)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) 20)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4293 (((-561) $ $) NIL)) (-1650 (((-112) $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-1191 |#1|) $) 9) (((-856) $) 29 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 21 (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-894 |#1|) (-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -1669 ($ |#1|)) (-15 -1669 ($ $ $)))) (-1090)) (T -894))
-((-1669 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090)))) (-1669 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090)))))
-(-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -1669 ($ |#1|)) (-15 -1669 ($ $ $))))
-((-2611 ((|#2| (-1132 |#1| |#2|)) 41)))
-(((-895 |#1| |#2|) (-10 -7 (-15 -2611 (|#2| (-1132 |#1| |#2|)))) (-914) (-13 (-1042) (-10 -7 (-6 (-4401 "*"))))) (T -895))
-((-2611 (*1 *2 *3) (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-914)) (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4401 "*"))))) (-5 *1 (-895 *4 *2)))))
-(-10 -7 (-15 -2611 (|#2| (-1132 |#1| |#2|))))
-((-4053 (((-112) $ $) 7)) (-2674 (($) 18 T CONST)) (-3735 (((-3 $ "failed") $) 15)) (-3503 (((-1092 |#1|) $ |#1|) 32)) (-2252 (((-112) $) 17)) (-1597 (($ $ $) 30 (-4050 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3017 (($ $ $) 29 (-4050 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1883 (((-1148) $) 9)) (-1519 (($ $) 24)) (-1701 (((-1110) $) 10)) (-1436 ((|#1| $ |#1|) 34)) (-2315 ((|#1| $ |#1|) 33)) (-2048 (($ (-638 (-638 |#1|))) 35)) (-1674 (($ (-638 |#1|)) 36)) (-2076 (($ $ $) 21)) (-3047 (($ $ $) 20)) (-4064 (((-856) $) 11)) (-2257 (($) 19 T CONST)) (-1781 (((-112) $ $) 27 (-4050 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1758 (((-112) $ $) 26 (-4050 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 28 (-4050 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1746 (((-112) $ $) 31)) (-1828 (($ $ $) 23)) (** (($ $ (-914)) 13) (($ $ (-765)) 16) (($ $ (-561)) 22)) (* (($ $ $) 14)))
-(((-896 |#1|) (-139) (-1090)) (T -896))
-((-1674 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-896 *3)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-4 *1 (-896 *3)))) (-1436 (*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090)))) (-2315 (*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090)))) (-3503 (*1 *2 *1 *3) (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-1092 *3)))) (-1746 (*1 *2 *1 *1) (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
-(-13 (-471) (-10 -8 (-15 -1674 ($ (-638 |t#1|))) (-15 -2048 ($ (-638 (-638 |t#1|)))) (-15 -1436 (|t#1| $ |t#1|)) (-15 -2315 (|t#1| $ |t#1|)) (-15 -3503 ((-1092 |t#1|) $ |t#1|)) (-15 -1746 ((-112) $ $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-844)) |%noBranch|)))
-(((-102) . T) ((-608 (-856)) . T) ((-471) . T) ((-720) . T) ((-844) -4050 (|has| |#1| (-844)) (|has| |#1| (-367))) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-2588 (((-638 (-638 (-765))) $) 107)) (-1983 (((-638 (-765)) (-898 |#1|) $) 129)) (-3184 (((-638 (-765)) (-898 |#1|) $) 130)) (-1532 (((-638 (-898 |#1|)) $) 97)) (-1362 (((-898 |#1|) $ (-561)) 102) (((-898 |#1|) $) 103)) (-3492 (($ (-638 (-898 |#1|))) 109)) (-4027 (((-765) $) 104)) (-2426 (((-1092 (-1092 |#1|)) $) 127)) (-3503 (((-1092 |#1|) $ |#1|) 120) (((-1092 (-1092 |#1|)) $ (-1092 |#1|)) 138) (((-1092 (-638 |#1|)) $ (-638 |#1|)) 141)) (-2596 (((-1092 |#1|) $) 100)) (-4288 (((-112) (-898 |#1|) $) 91)) (-1883 (((-1148) $) NIL)) (-2758 (((-1259) $) 94) (((-1259) $ (-561) (-561)) 142)) (-1701 (((-1110) $) NIL)) (-1373 (((-638 (-898 |#1|)) $) 95)) (-2315 (((-898 |#1|) $ (-765)) 98)) (-3768 (((-765) $) 105)) (-4064 (((-856) $) 118) (((-638 (-898 |#1|)) $) 23) (($ (-638 (-898 |#1|))) 108)) (-1423 (((-638 |#1|) $) 106)) (-1723 (((-112) $ $) 135)) (-1770 (((-112) $ $) 133)) (-1746 (((-112) $ $) 132)))
-(((-897 |#1|) (-13 (-1090) (-10 -8 (-15 -4064 ((-638 (-898 |#1|)) $)) (-15 -1373 ((-638 (-898 |#1|)) $)) (-15 -2315 ((-898 |#1|) $ (-765))) (-15 -1362 ((-898 |#1|) $ (-561))) (-15 -1362 ((-898 |#1|) $)) (-15 -4027 ((-765) $)) (-15 -3768 ((-765) $)) (-15 -1423 ((-638 |#1|) $)) (-15 -1532 ((-638 (-898 |#1|)) $)) (-15 -2588 ((-638 (-638 (-765))) $)) (-15 -4064 ($ (-638 (-898 |#1|)))) (-15 -3492 ($ (-638 (-898 |#1|)))) (-15 -3503 ((-1092 |#1|) $ |#1|)) (-15 -2426 ((-1092 (-1092 |#1|)) $)) (-15 -3503 ((-1092 (-1092 |#1|)) $ (-1092 |#1|))) (-15 -3503 ((-1092 (-638 |#1|)) $ (-638 |#1|))) (-15 -4288 ((-112) (-898 |#1|) $)) (-15 -1983 ((-638 (-765)) (-898 |#1|) $)) (-15 -3184 ((-638 (-765)) (-898 |#1|) $)) (-15 -2596 ((-1092 |#1|) $)) (-15 -1746 ((-112) $ $)) (-15 -1770 ((-112) $ $)) (-15 -2758 ((-1259) $)) (-15 -2758 ((-1259) $ (-561) (-561))))) (-1090)) (T -897))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4)) (-4 *4 (-1090)))) (-1362 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4)) (-4 *4 (-1090)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-898 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-765)))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3)))) (-3492 (*1 *1 *2) (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3)))) (-3503 (*1 *2 *1 *3) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-1092 (-1092 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-3503 (*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-897 *4)) (-5 *3 (-1092 *4)))) (-3503 (*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-638 *4))) (-5 *1 (-897 *4)) (-5 *3 (-638 *4)))) (-4288 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-897 *4)))) (-1983 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765))) (-5 *1 (-897 *4)))) (-3184 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765))) (-5 *1 (-897 *4)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1746 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1770 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2758 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-897 *4)) (-4 *4 (-1090)))))
-(-13 (-1090) (-10 -8 (-15 -4064 ((-638 (-898 |#1|)) $)) (-15 -1373 ((-638 (-898 |#1|)) $)) (-15 -2315 ((-898 |#1|) $ (-765))) (-15 -1362 ((-898 |#1|) $ (-561))) (-15 -1362 ((-898 |#1|) $)) (-15 -4027 ((-765) $)) (-15 -3768 ((-765) $)) (-15 -1423 ((-638 |#1|) $)) (-15 -1532 ((-638 (-898 |#1|)) $)) (-15 -2588 ((-638 (-638 (-765))) $)) (-15 -4064 ($ (-638 (-898 |#1|)))) (-15 -3492 ($ (-638 (-898 |#1|)))) (-15 -3503 ((-1092 |#1|) $ |#1|)) (-15 -2426 ((-1092 (-1092 |#1|)) $)) (-15 -3503 ((-1092 (-1092 |#1|)) $ (-1092 |#1|))) (-15 -3503 ((-1092 (-638 |#1|)) $ (-638 |#1|))) (-15 -4288 ((-112) (-898 |#1|) $)) (-15 -1983 ((-638 (-765)) (-898 |#1|) $)) (-15 -3184 ((-638 (-765)) (-898 |#1|) $)) (-15 -2596 ((-1092 |#1|) $)) (-15 -1746 ((-112) $ $)) (-15 -1770 ((-112) $ $)) (-15 -2758 ((-1259) $)) (-15 -2758 ((-1259) $ (-561) (-561)))))
-((-4053 (((-112) $ $) NIL)) (-1318 (((-638 $) (-638 $)) 77)) (-1659 (((-561) $) 60)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-4027 (((-765) $) 58)) (-3503 (((-1092 |#1|) $ |#1|) 49)) (-2252 (((-112) $) NIL)) (-2110 (((-112) $) 63)) (-2668 (((-765) $) 61)) (-2596 (((-1092 |#1|) $) 42)) (-1597 (($ $ $) NIL (-4050 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3017 (($ $ $) NIL (-4050 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3956 (((-2 (|:| |preimage| (-638 |#1|)) (|:| |image| (-638 |#1|))) $) 37)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 93)) (-1701 (((-1110) $) NIL)) (-4117 (((-1092 |#1|) $) 100 (|has| |#1| (-367)))) (-2058 (((-112) $) 59)) (-1436 ((|#1| $ |#1|) 47)) (-2315 ((|#1| $ |#1|) 94)) (-3768 (((-765) $) 44)) (-2048 (($ (-638 (-638 |#1|))) 85)) (-2899 (((-964) $) 53)) (-1674 (($ (-638 |#1|)) 22)) (-2076 (($ $ $) NIL)) (-3047 (($ $ $) NIL)) (-2455 (($ (-638 (-638 |#1|))) 39)) (-1369 (($ (-638 (-638 |#1|))) 88)) (-3688 (($ (-638 |#1|)) 96)) (-4064 (((-856) $) 84) (($ (-638 (-638 |#1|))) 66) (($ (-638 |#1|)) 67)) (-2257 (($) 17 T CONST)) (-1781 (((-112) $ $) NIL (-4050 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-1758 (((-112) $ $) NIL (-4050 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-1723 (((-112) $ $) 45)) (-1770 (((-112) $ $) NIL (-4050 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-1746 (((-112) $ $) 65)) (-1828 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ $ $) 23)))
-(((-898 |#1|) (-13 (-896 |#1|) (-10 -8 (-15 -3956 ((-2 (|:| |preimage| (-638 |#1|)) (|:| |image| (-638 |#1|))) $)) (-15 -2455 ($ (-638 (-638 |#1|)))) (-15 -4064 ($ (-638 (-638 |#1|)))) (-15 -4064 ($ (-638 |#1|))) (-15 -1369 ($ (-638 (-638 |#1|)))) (-15 -3768 ((-765) $)) (-15 -2596 ((-1092 |#1|) $)) (-15 -2899 ((-964) $)) (-15 -4027 ((-765) $)) (-15 -2668 ((-765) $)) (-15 -1659 ((-561) $)) (-15 -2058 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -1318 ((-638 $) (-638 $))) (IF (|has| |#1| (-367)) (-15 -4117 ((-1092 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3688 ($ (-638 |#1|))) (IF (|has| |#1| (-367)) (-15 -3688 ($ (-638 |#1|))) |%noBranch|)))) (-1090)) (T -898))
-((-3956 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-638 *3)) (|:| |image| (-638 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-1369 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-1318 (*1 *2 *2) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-367)) (-4 *3 (-1090)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
-(-13 (-896 |#1|) (-10 -8 (-15 -3956 ((-2 (|:| |preimage| (-638 |#1|)) (|:| |image| (-638 |#1|))) $)) (-15 -2455 ($ (-638 (-638 |#1|)))) (-15 -4064 ($ (-638 (-638 |#1|)))) (-15 -4064 ($ (-638 |#1|))) (-15 -1369 ($ (-638 (-638 |#1|)))) (-15 -3768 ((-765) $)) (-15 -2596 ((-1092 |#1|) $)) (-15 -2899 ((-964) $)) (-15 -4027 ((-765) $)) (-15 -2668 ((-765) $)) (-15 -1659 ((-561) $)) (-15 -2058 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -1318 ((-638 $) (-638 $))) (IF (|has| |#1| (-367)) (-15 -4117 ((-1092 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3688 ($ (-638 |#1|))) (IF (|has| |#1| (-367)) (-15 -3688 ($ (-638 |#1|))) |%noBranch|))))
-((-3080 (((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|)) 127)) (-1367 ((|#1|) 76)) (-3569 (((-417 (-1162 |#4|)) (-1162 |#4|)) 136)) (-4176 (((-417 (-1162 |#4|)) (-638 |#3|) (-1162 |#4|)) 68)) (-1796 (((-417 (-1162 |#4|)) (-1162 |#4|)) 146)) (-2032 (((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|) |#3|) 91)))
-(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|))) (-15 -1796 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -3569 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -1367 (|#1|)) (-15 -2032 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|) |#3|)) (-15 -4176 ((-417 (-1162 |#4|)) (-638 |#3|) (-1162 |#4|)))) (-902) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -899))
-((-4176 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *7)) (-4 *7 (-844)) (-4 *5 (-902)) (-4 *6 (-787)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-417 (-1162 *8))) (-5 *1 (-899 *5 *6 *7 *8)) (-5 *4 (-1162 *8)))) (-2032 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7)) (-4 *7 (-942 *5 *6 *4)) (-4 *5 (-902)) (-4 *6 (-787)) (-4 *4 (-844)) (-5 *1 (-899 *5 *6 *4 *7)))) (-1367 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1796 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-3080 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-899 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3080 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|))) (-15 -1796 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -3569 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -1367 (|#1|)) (-15 -2032 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|) |#3|)) (-15 -4176 ((-417 (-1162 |#4|)) (-638 |#3|) (-1162 |#4|))))
-((-3080 (((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|)) 36)) (-1367 ((|#1|) 53)) (-3569 (((-417 (-1162 |#2|)) (-1162 |#2|)) 101)) (-4176 (((-417 (-1162 |#2|)) (-1162 |#2|)) 89)) (-1796 (((-417 (-1162 |#2|)) (-1162 |#2|)) 112)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -3080 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|))) (-15 -1796 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -3569 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -1367 (|#1|)) (-15 -4176 ((-417 (-1162 |#2|)) (-1162 |#2|)))) (-902) (-1230 |#1|)) (T -900))
-((-4176 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-1230 *4)) (-5 *2 (-417 (-1162 *5))) (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))) (-1367 (*1 *2) (-12 (-4 *2 (-902)) (-5 *1 (-900 *2 *3)) (-4 *3 (-1230 *2)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-1230 *4)) (-5 *2 (-417 (-1162 *5))) (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))) (-1796 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-1230 *4)) (-5 *2 (-417 (-1162 *5))) (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))) (-3080 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-902)) (-5 *1 (-900 *4 *5)))))
-(-10 -7 (-15 -3080 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|))) (-15 -1796 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -3569 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -1367 (|#1|)) (-15 -4176 ((-417 (-1162 |#2|)) (-1162 |#2|))))
-((-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 41)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 18)) (-3666 (((-3 $ "failed") $) 35)))
-(((-901 |#1|) (-10 -8 (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|)))) (-902)) (T -901))
-NIL
-(-10 -8 (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2128 (((-417 (-1162 $)) (-1162 $)) 61)) (-2557 (($ $) 52)) (-3552 (((-417 $) $) 53)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 58)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2725 (((-112) $) 54)) (-2252 (((-112) $) 31)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-4328 (((-417 (-1162 $)) (-1162 $)) 59)) (-3035 (((-417 (-1162 $)) (-1162 $)) 60)) (-1633 (((-417 $) $) 51)) (-1748 (((-3 $ "failed") $ $) 43)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 57 (|has| $ (-144)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3666 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
-(((-902) (-139)) (T -902))
-((-2002 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-902)))) (-2128 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))) (-3035 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))) (-4328 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))) (-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *1))) (-5 *3 (-1162 *1)) (-4 *1 (-902)))) (-2881 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-902)) (-5 *2 (-1254 *1)))) (-3666 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-902)))))
-(-13 (-1209) (-10 -8 (-15 -2128 ((-417 (-1162 $)) (-1162 $))) (-15 -3035 ((-417 (-1162 $)) (-1162 $))) (-15 -4328 ((-417 (-1162 $)) (-1162 $))) (-15 -2002 ((-1162 $) (-1162 $) (-1162 $))) (-15 -1963 ((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $))) (IF (|has| $ (-144)) (PROGN (-15 -2881 ((-3 (-1254 $) "failed") (-682 $))) (-15 -3666 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2472 (((-112) $) NIL)) (-2176 (((-765)) NIL)) (-1736 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-1499 (((-1178 (-914) (-765)) (-561)) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 $ "failed") $) NIL)) (-3979 (($ $) NIL)) (-3376 (($ (-1254 $)) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-3985 (($) NIL)) (-3943 (((-112) $) NIL)) (-3598 (($ $) NIL) (($ $ (-765)) NIL)) (-2725 (((-112) $) NIL)) (-4027 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-2252 (((-112) $) NIL)) (-1946 (($) NIL (|has| $ (-367)))) (-1892 (((-112) $) NIL (|has| $ (-367)))) (-2072 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-2436 (((-3 $ "failed") $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1588 (((-1162 $) $ (-914)) NIL (|has| $ (-367))) (((-1162 $) $) NIL)) (-1335 (((-914) $) NIL)) (-2313 (((-1162 $) $) NIL (|has| $ (-367)))) (-1382 (((-3 (-1162 $) "failed") $ $) NIL (|has| $ (-367))) (((-1162 $) $) NIL (|has| $ (-367)))) (-2953 (($ $ (-1162 $)) NIL (|has| $ (-367)))) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL T CONST)) (-2442 (($ (-914)) NIL)) (-3168 (((-112) $) NIL)) (-1701 (((-1110) $) NIL)) (-3194 (($) NIL (|has| $ (-367)))) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL)) (-1633 (((-417 $) $) NIL)) (-2794 (((-914)) NIL) (((-827 (-914))) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-2768 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-2390 (((-133)) NIL)) (-3922 (($ $ (-765)) NIL) (($ $) NIL)) (-3768 (((-914) $) NIL) (((-827 (-914)) $) NIL)) (-3158 (((-1162 $)) NIL)) (-2102 (($) NIL)) (-3341 (($) NIL (|has| $ (-367)))) (-3752 (((-682 $) (-1254 $)) NIL) (((-1254 $) $) NIL)) (-4216 (((-561) $) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL)) (-3666 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3746 (((-765)) NIL)) (-2615 (((-1254 $) (-914)) NIL) (((-1254 $)) NIL)) (-3996 (((-112) $ $) NIL)) (-4024 (((-112) $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-1471 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-903 |#1|) (-13 (-348) (-328 $) (-609 (-561))) (-914)) (T -903))
-NIL
-(-13 (-348) (-328 $) (-609 (-561)))
-((-2624 (((-3 (-2 (|:| -4027 (-765)) (|:| -1411 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 79)) (-1985 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-4027 (((-3 (-765) "failed") (-335 |#2| |#3| |#4| |#5|)) 15)))
-(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4027 ((-3 (-765) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -1985 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -2624 ((-3 (-2 (|:| -4027 (-765)) (|:| -1411 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-844) (-553) (-1031 (-561))) (-429 |#1|) (-1230 |#2|) (-1230 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -904))
-((-2624 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-2 (|:| -4027 (-765)) (|:| -1411 *8))) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-112)) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-4027 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-765)) (-5 *1 (-904 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4027 ((-3 (-765) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -1985 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -2624 ((-3 (-2 (|:| -4027 (-765)) (|:| -1411 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|))))
-((-2624 (((-3 (-2 (|:| -4027 (-765)) (|:| -1411 |#3|)) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|)) 56)) (-1985 (((-112) (-335 (-406 (-561)) |#1| |#2| |#3|)) 16)) (-4027 (((-3 (-765) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|)) 14)))
-(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -4027 ((-3 (-765) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -1985 ((-112) (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -2624 ((-3 (-2 (|:| -4027 (-765)) (|:| -1411 |#3|)) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|)))) (-1230 (-406 (-561))) (-1230 (-406 |#1|)) (-341 (-406 (-561)) |#1| |#2|)) (T -905))
-((-2624 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6)) (-4 *4 (-1230 (-406 (-561)))) (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-2 (|:| -4027 (-765)) (|:| -1411 *6))) (-5 *1 (-905 *4 *5 *6)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6)) (-4 *4 (-1230 (-406 (-561)))) (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-905 *4 *5 *6)))) (-4027 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6)) (-4 *4 (-1230 (-406 (-561)))) (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-765)) (-5 *1 (-905 *4 *5 *6)))))
-(-10 -7 (-15 -4027 ((-3 (-765) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -1985 ((-112) (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -2624 ((-3 (-2 (|:| -4027 (-765)) (|:| -1411 |#3|)) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|))))
-((-2117 ((|#2| |#2|) 26)) (-1924 (((-561) (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))))) 15)) (-3843 (((-914) (-561)) 35)) (-3891 (((-561) |#2|) 42)) (-4056 (((-561) |#2|) 21) (((-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))) |#1|) 20)))
-(((-906 |#1| |#2|) (-10 -7 (-15 -3843 ((-914) (-561))) (-15 -4056 ((-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))) |#1|)) (-15 -4056 ((-561) |#2|)) (-15 -1924 ((-561) (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))))) (-15 -3891 ((-561) |#2|)) (-15 -2117 (|#2| |#2|))) (-1230 (-406 (-561))) (-1230 (-406 |#1|))) (T -906))
-((-2117 (*1 *2 *2) (-12 (-4 *3 (-1230 (-406 (-561)))) (-5 *1 (-906 *3 *2)) (-4 *2 (-1230 (-406 *3))))) (-3891 (*1 *2 *3) (-12 (-4 *4 (-1230 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1230 (-406 *4))))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))))) (-4 *4 (-1230 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1230 (-406 *4))))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-1230 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1230 (-406 *4))))) (-4056 (*1 *2 *3) (-12 (-4 *3 (-1230 (-406 (-561)))) (-5 *2 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))) (-5 *1 (-906 *3 *4)) (-4 *4 (-1230 (-406 *3))))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-1230 (-406 *3))) (-5 *2 (-914)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1230 (-406 *4))))))
-(-10 -7 (-15 -3843 ((-914) (-561))) (-15 -4056 ((-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))) |#1|)) (-15 -4056 ((-561) |#2|)) (-15 -1924 ((-561) (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))))) (-15 -3891 ((-561) |#2|)) (-15 -2117 (|#2| |#2|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 ((|#1| $) 81)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-1792 (($ $ $) NIL)) (-3735 (((-3 $ "failed") $) 75)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-3289 (($ |#1| (-417 |#1|)) 73)) (-1888 (((-1162 |#1|) |#1| |#1|) 41)) (-3450 (($ $) 49)) (-2252 (((-112) $) NIL)) (-1953 (((-561) $) 78)) (-2162 (($ $ (-561)) 80)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2782 ((|#1| $) 77)) (-2361 (((-417 |#1|) $) 76)) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) 74)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-1510 (($ $) 39)) (-4064 (((-856) $) 99) (($ (-561)) 54) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-417 |#1|))) 67)) (-3746 (((-765)) 52)) (-3996 (((-112) $ $) NIL)) (-2246 (($) 23 T CONST)) (-2257 (($) 12 T CONST)) (-1723 (((-112) $ $) 68)) (-1828 (($ $ $) NIL)) (-1819 (($ $) 88) (($ $ $) NIL)) (-1810 (($ $ $) 38)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 90) (($ $ $) 37) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-907 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -4064 ((-406 |#1|) $)) (-15 -4064 ($ (-406 (-417 |#1|)))) (-15 -1510 ($ $)) (-15 -2361 ((-417 |#1|) $)) (-15 -2782 (|#1| $)) (-15 -2162 ($ $ (-561))) (-15 -1953 ((-561) $)) (-15 -1888 ((-1162 |#1|) |#1| |#1|)) (-15 -3450 ($ $)) (-15 -3289 ($ |#1| (-417 |#1|))) (-15 -3892 (|#1| $)))) (-306)) (T -907))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3)))) (-1510 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-2782 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-2162 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-1888 (*1 *2 *3 *3) (-12 (-5 *2 (-1162 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3289 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2)))) (-3892 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
-(-13 (-362) (-38 |#1|) (-10 -8 (-15 -4064 ((-406 |#1|) $)) (-15 -4064 ($ (-406 (-417 |#1|)))) (-15 -1510 ($ $)) (-15 -2361 ((-417 |#1|) $)) (-15 -2782 (|#1| $)) (-15 -2162 ($ $ (-561))) (-15 -1953 ((-561) $)) (-15 -1888 ((-1162 |#1|) |#1| |#1|)) (-15 -3450 ($ $)) (-15 -3289 ($ |#1| (-417 |#1|))) (-15 -3892 (|#1| $))))
-((-3289 (((-52) (-945 |#1|) (-417 (-945 |#1|)) (-1166)) 17) (((-52) (-406 (-945 |#1|)) (-1166)) 18)))
-(((-908 |#1|) (-10 -7 (-15 -3289 ((-52) (-406 (-945 |#1|)) (-1166))) (-15 -3289 ((-52) (-945 |#1|) (-417 (-945 |#1|)) (-1166)))) (-13 (-306) (-146))) (T -908))
-((-3289 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-945 *6))) (-5 *5 (-1166)) (-5 *3 (-945 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *6)))) (-3289 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *5)))))
-(-10 -7 (-15 -3289 ((-52) (-406 (-945 |#1|)) (-1166))) (-15 -3289 ((-52) (-945 |#1|) (-417 (-945 |#1|)) (-1166))))
-((-2583 ((|#4| (-638 |#4|)) 121) (((-1162 |#4|) (-1162 |#4|) (-1162 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-1603 (((-1162 |#4|) (-638 (-1162 |#4|))) 114) (((-1162 |#4|) (-1162 |#4|) (-1162 |#4|)) 49) ((|#4| (-638 |#4|)) 54) ((|#4| |#4| |#4|) 84)))
-(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1603 (|#4| |#4| |#4|)) (-15 -1603 (|#4| (-638 |#4|))) (-15 -1603 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1603 ((-1162 |#4|) (-638 (-1162 |#4|)))) (-15 -2583 (|#4| |#4| |#4|)) (-15 -2583 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -2583 (|#4| (-638 |#4|)))) (-787) (-844) (-306) (-942 |#3| |#1| |#2|)) (T -909))
-((-2583 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-2583 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2583 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-638 (-1162 *7))) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-1162 *7)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-1603 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-1603 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4)))))
-(-10 -7 (-15 -1603 (|#4| |#4| |#4|)) (-15 -1603 (|#4| (-638 |#4|))) (-15 -1603 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1603 ((-1162 |#4|) (-638 (-1162 |#4|)))) (-15 -2583 (|#4| |#4| |#4|)) (-15 -2583 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -2583 (|#4| (-638 |#4|))))
-((-4146 (((-897 (-561)) (-964)) 23) (((-897 (-561)) (-638 (-561))) 20)) (-3282 (((-897 (-561)) (-638 (-561))) 48) (((-897 (-561)) (-914)) 49)) (-1520 (((-897 (-561))) 24)) (-2504 (((-897 (-561))) 38) (((-897 (-561)) (-638 (-561))) 37)) (-3959 (((-897 (-561))) 36) (((-897 (-561)) (-638 (-561))) 35)) (-2389 (((-897 (-561))) 34) (((-897 (-561)) (-638 (-561))) 33)) (-1845 (((-897 (-561))) 32) (((-897 (-561)) (-638 (-561))) 31)) (-3270 (((-897 (-561))) 30) (((-897 (-561)) (-638 (-561))) 29)) (-1896 (((-897 (-561))) 40) (((-897 (-561)) (-638 (-561))) 39)) (-3794 (((-897 (-561)) (-638 (-561))) 52) (((-897 (-561)) (-914)) 53)) (-2334 (((-897 (-561)) (-638 (-561))) 50) (((-897 (-561)) (-914)) 51)) (-3054 (((-897 (-561)) (-638 (-561))) 46) (((-897 (-561)) (-914)) 47)) (-3644 (((-897 (-561)) (-638 (-914))) 43)))
-(((-910) (-10 -7 (-15 -3282 ((-897 (-561)) (-914))) (-15 -3282 ((-897 (-561)) (-638 (-561)))) (-15 -3054 ((-897 (-561)) (-914))) (-15 -3054 ((-897 (-561)) (-638 (-561)))) (-15 -3644 ((-897 (-561)) (-638 (-914)))) (-15 -2334 ((-897 (-561)) (-914))) (-15 -2334 ((-897 (-561)) (-638 (-561)))) (-15 -3794 ((-897 (-561)) (-914))) (-15 -3794 ((-897 (-561)) (-638 (-561)))) (-15 -3270 ((-897 (-561)) (-638 (-561)))) (-15 -3270 ((-897 (-561)))) (-15 -1845 ((-897 (-561)) (-638 (-561)))) (-15 -1845 ((-897 (-561)))) (-15 -2389 ((-897 (-561)) (-638 (-561)))) (-15 -2389 ((-897 (-561)))) (-15 -3959 ((-897 (-561)) (-638 (-561)))) (-15 -3959 ((-897 (-561)))) (-15 -2504 ((-897 (-561)) (-638 (-561)))) (-15 -2504 ((-897 (-561)))) (-15 -1896 ((-897 (-561)) (-638 (-561)))) (-15 -1896 ((-897 (-561)))) (-15 -1520 ((-897 (-561)))) (-15 -4146 ((-897 (-561)) (-638 (-561)))) (-15 -4146 ((-897 (-561)) (-964))))) (T -910))
-((-4146 (*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1520 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1896 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2504 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3959 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2389 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1845 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3270 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-638 (-914))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(-10 -7 (-15 -3282 ((-897 (-561)) (-914))) (-15 -3282 ((-897 (-561)) (-638 (-561)))) (-15 -3054 ((-897 (-561)) (-914))) (-15 -3054 ((-897 (-561)) (-638 (-561)))) (-15 -3644 ((-897 (-561)) (-638 (-914)))) (-15 -2334 ((-897 (-561)) (-914))) (-15 -2334 ((-897 (-561)) (-638 (-561)))) (-15 -3794 ((-897 (-561)) (-914))) (-15 -3794 ((-897 (-561)) (-638 (-561)))) (-15 -3270 ((-897 (-561)) (-638 (-561)))) (-15 -3270 ((-897 (-561)))) (-15 -1845 ((-897 (-561)) (-638 (-561)))) (-15 -1845 ((-897 (-561)))) (-15 -2389 ((-897 (-561)) (-638 (-561)))) (-15 -2389 ((-897 (-561)))) (-15 -3959 ((-897 (-561)) (-638 (-561)))) (-15 -3959 ((-897 (-561)))) (-15 -2504 ((-897 (-561)) (-638 (-561)))) (-15 -2504 ((-897 (-561)))) (-15 -1896 ((-897 (-561)) (-638 (-561)))) (-15 -1896 ((-897 (-561)))) (-15 -1520 ((-897 (-561)))) (-15 -4146 ((-897 (-561)) (-638 (-561)))) (-15 -4146 ((-897 (-561)) (-964))))
-((-3851 (((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166))) 12)) (-2849 (((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166))) 11)))
-(((-911 |#1|) (-10 -7 (-15 -2849 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3851 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166))))) (-450)) (T -911))
-((-3851 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4)))) (-2849 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4)))))
-(-10 -7 (-15 -2849 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3851 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)))))
-((-4064 (((-315 |#1|) (-475)) 16)))
-(((-912 |#1|) (-10 -7 (-15 -4064 ((-315 |#1|) (-475)))) (-13 (-844) (-553))) (T -912))
-((-4064 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-912 *4)) (-4 *4 (-13 (-844) (-553))))))
-(-10 -7 (-15 -4064 ((-315 |#1|) (-475))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2252 (((-112) $) 31)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
-(((-913) (-139)) (T -913))
-((-3924 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-2 (|:| -4226 (-638 *1)) (|:| -3194 *1))) (-5 *3 (-638 *1)))) (-3474 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-913)))))
-(-13 (-450) (-10 -8 (-15 -3924 ((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $))) (-15 -3474 ((-3 (-638 $) "failed") (-638 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1603 (($ $ $) NIL)) (-4064 (((-856) $) NIL)) (-2257 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ $ $) NIL)))
-(((-914) (-13 (-788) (-720) (-10 -8 (-15 -1603 ($ $ $)) (-6 (-4401 "*"))))) (T -914))
-((-1603 (*1 *1 *1 *1) (-5 *1 (-914))))
-(-13 (-788) (-720) (-10 -8 (-15 -1603 ($ $ $)) (-6 (-4401 "*"))))
+((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-888)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-3047 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *3 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-1028)))))
+(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3047 ((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-3049 ((|#1| |#1| (-765)) 24)) (-3048 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3839 (((-3 (-2 (|:| -3523 |#1|) (|:| -3522 |#1|)) "failed") |#1| (-765) (-765)) 27) (((-635 |#1|) |#1|) 29)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -3839 ((-635 |#1|) |#1|)) (-15 -3839 ((-3 (-2 (|:| -3523 |#1|) (|:| -3522 |#1|)) "failed") |#1| (-765) (-765))) (-15 -3048 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3049 (|#1| |#1| (-765)))) (-1229 |#2|) (-362)) (T -889))
+((-3049 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4)) (-4 *2 (-1229 *4)))) (-3048 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1229 *3)))) (-3839 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-889 *3 *5)) (-4 *3 (-1229 *5)))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3839 ((-635 |#1|) |#1|)) (-15 -3839 ((-3 (-2 (|:| -3523 |#1|) (|:| -3522 |#1|)) "failed") |#1| (-765) (-765))) (-15 -3048 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3049 (|#1| |#1| (-765))))
+((-3980 (((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148)) 96) (((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148) (-224)) 91) (((-1028) (-891) (-1054)) 83) (((-1028) (-891)) 84)) (-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891) (-1054)) 59) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891)) 61)))
+(((-890) (-10 -7 (-15 -3980 ((-1028) (-891))) (-15 -3980 ((-1028) (-891) (-1054))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148) (-224))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891) (-1054))))) (T -890))
+((-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-890)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-890)))) (-3980 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148)) (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3980 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148)) (-5 *8 (-224)) (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890)))))
+(-10 -7 (-15 -3980 ((-1028) (-891))) (-15 -3980 ((-1028) (-891) (-1054))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148) (-224))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891) (-1054))))
+((-2947 (((-112) $ $) NIL)) (-3557 (((-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $) 19)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 18)) (-3437 (((-112) $ $) NIL)))
+(((-891) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3557 ((-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $))))) (T -891))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891)))))
+(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3557 ((-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $))))
+((-4217 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) 10) (($ $ |#2| (-765)) 12) (($ $ (-635 |#2|) (-635 (-765))) 15)) (-3051 (($ $ |#2|) 16) (($ $ (-635 |#2|)) 18) (($ $ |#2| (-765)) 19) (($ $ (-635 |#2|) (-635 (-765))) 21)))
+(((-892 |#1| |#2|) (-10 -8 (-15 -3051 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -3051 (|#1| |#1| |#2| (-765))) (-15 -3051 (|#1| |#1| (-635 |#2|))) (-15 -3051 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#2| (-765))) (-15 -4217 (|#1| |#1| (-635 |#2|))) (-15 -4217 (|#1| |#1| |#2|))) (-893 |#2|) (-1091)) (T -892))
+NIL
+(-10 -8 (-15 -3051 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -3051 (|#1| |#1| |#2| (-765))) (-15 -3051 (|#1| |#1| (-635 |#2|))) (-15 -3051 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#2| (-765))) (-15 -4217 (|#1| |#1| (-635 |#2|))) (-15 -4217 (|#1| |#1| |#2|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $ |#1|) 42) (($ $ (-635 |#1|)) 41) (($ $ |#1| (-765)) 40) (($ $ (-635 |#1|) (-635 (-765))) 39)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#1|) 38) (($ $ (-635 |#1|)) 37) (($ $ |#1| (-765)) 36) (($ $ (-635 |#1|) (-635 (-765))) 35)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
+(((-893 |#1|) (-139) (-1091)) (T -893))
+((-4217 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1091)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091)))) (-3051 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-3051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1091)))))
+(-13 (-1042) (-10 -8 (-15 -4217 ($ $ |t#1|)) (-15 -4217 ($ $ (-635 |t#1|))) (-15 -4217 ($ $ |t#1| (-765))) (-15 -4217 ($ $ (-635 |t#1|) (-635 (-765)))) (-15 -3051 ($ $ |t#1|)) (-15 -3051 ($ $ (-635 |t#1|))) (-15 -3051 ($ $ |t#1| (-765))) (-15 -3051 ($ $ (-635 |t#1|) (-635 (-765))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 26)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-1375 (($ $ $) NIL (|has| $ (-6 -4401)))) (-1376 (($ $ $) NIL (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 25)) (-3052 (($ |#1|) 12) (($ $ $) 17)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 23)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) 20)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1191 |#1|) $) 9) (((-857) $) 29 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 21 (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-894 |#1|) (-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -3052 ($ |#1|)) (-15 -3052 ($ $ $)))) (-1091)) (T -894))
+((-3052 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091)))) (-3052 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091)))))
+(-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -3052 ($ |#1|)) (-15 -3052 ($ $ $))))
+((-2947 (((-112) $ $) NIL)) (-3292 (((-635 $) (-635 $)) 77)) (-4030 (((-544) $) 60)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-4178 (((-765) $) 58)) (-3072 (((-1087 |#1|) $ |#1|) 49)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) 63)) (-3057 (((-765) $) 61)) (-3068 (((-1087 |#1|) $) 42)) (-2913 (($ $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3242 (($ $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3061 (((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $) 37)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 93)) (-3644 (((-1110) $) NIL)) (-3054 (((-1087 |#1|) $) 100 (|has| |#1| (-367)))) (-3056 (((-112) $) 59)) (-4174 ((|#1| $ |#1|) 47)) (-4206 ((|#1| $ |#1|) 94)) (-4355 (((-765) $) 44)) (-3063 (($ (-635 (-635 |#1|))) 85)) (-3058 (((-964) $) 53)) (-3064 (($ (-635 |#1|)) 22)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-3060 (($ (-635 (-635 |#1|))) 39)) (-3059 (($ (-635 (-635 |#1|))) 88)) (-3053 (($ (-635 |#1|)) 96)) (-4353 (((-857) $) 84) (($ (-635 (-635 |#1|))) 66) (($ (-635 |#1|)) 67)) (-3046 (($) 17 T CONST)) (-2945 (((-112) $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3437 (((-112) $ $) 45)) (-3066 (((-112) $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3067 (((-112) $ $) 65)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ $ $) 23)))
+(((-895 |#1|) (-13 (-897 |#1|) (-10 -8 (-15 -3061 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -3060 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 |#1|))) (-15 -3059 ($ (-635 (-635 |#1|)))) (-15 -4355 ((-765) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3058 ((-964) $)) (-15 -4178 ((-765) $)) (-15 -3057 ((-765) $)) (-15 -4030 ((-544) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3292 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3054 ((-1087 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3053 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -3053 ($ (-635 |#1|))) |%noBranch|)))) (-1091)) (T -895))
+((-3061 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3)))) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-3059 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367)) (-4 *3 (-1091)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3)))))
+(-13 (-897 |#1|) (-10 -8 (-15 -3061 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -3060 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 |#1|))) (-15 -3059 ($ (-635 (-635 |#1|)))) (-15 -4355 ((-765) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3058 ((-964) $)) (-15 -4178 ((-765) $)) (-15 -3057 ((-765) $)) (-15 -4030 ((-544) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3292 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3054 ((-1087 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3053 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -3053 ($ (-635 |#1|))) |%noBranch|))))
+((-3062 ((|#2| (-1132 |#1| |#2|)) 41)))
+(((-896 |#1| |#2|) (-10 -7 (-15 -3062 (|#2| (-1132 |#1| |#2|)))) (-912) (-13 (-1042) (-10 -7 (-6 (-4402 "*"))))) (T -896))
+((-3062 (*1 *2 *3) (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-912)) (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4402 "*"))))) (-5 *1 (-896 *4 *2)))))
+(-10 -7 (-15 -3062 (|#2| (-1132 |#1| |#2|))))
+((-2947 (((-112) $ $) 7)) (-4131 (($) 18 T CONST)) (-3866 (((-3 $ "failed") $) 15)) (-3072 (((-1087 |#1|) $ |#1|) 32)) (-2545 (((-112) $) 17)) (-2913 (($ $ $) 30 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3242 (($ $ $) 29 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 24)) (-3644 (((-1110) $) 10)) (-4174 ((|#1| $ |#1|) 34)) (-4206 ((|#1| $ |#1|) 33)) (-3063 (($ (-635 (-635 |#1|))) 35)) (-3064 (($ (-635 |#1|)) 36)) (-3392 (($ $ $) 21)) (-2729 (($ $ $) 20)) (-4353 (((-857) $) 11)) (-3046 (($) 19 T CONST)) (-2945 (((-112) $ $) 27 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-2946 (((-112) $ $) 26 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 28 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3067 (((-112) $ $) 31)) (-4356 (($ $ $) 23)) (** (($ $ (-912)) 13) (($ $ (-765)) 16) (($ $ (-544)) 22)) (* (($ $ $) 14)))
+(((-897 |#1|) (-139) (-1091)) (T -897))
+((-3064 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-897 *3)))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-4 *1 (-897 *3)))) (-4174 (*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091)))) (-4206 (*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-1087 *3)))) (-3067 (*1 *2 *1 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(-13 (-471) (-10 -8 (-15 -3064 ($ (-635 |t#1|))) (-15 -3063 ($ (-635 (-635 |t#1|)))) (-15 -4174 (|t#1| $ |t#1|)) (-15 -4206 (|t#1| $ |t#1|)) (-15 -3072 ((-1087 |t#1|) $ |t#1|)) (-15 -3067 ((-112) $ $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-844)) |%noBranch|)))
+(((-102) . T) ((-608 (-857)) . T) ((-471) . T) ((-720) . T) ((-844) -3936 (|has| |#1| (-844)) (|has| |#1| (-367))) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3074 (((-635 (-635 (-765))) $) 107)) (-3070 (((-635 (-765)) (-895 |#1|) $) 129)) (-3069 (((-635 (-765)) (-895 |#1|) $) 130)) (-3075 (((-635 (-895 |#1|)) $) 97)) (-3377 (((-895 |#1|) $ (-544)) 102) (((-895 |#1|) $) 103)) (-3073 (($ (-635 (-895 |#1|))) 109)) (-4178 (((-765) $) 104)) (-3071 (((-1087 (-1087 |#1|)) $) 127)) (-3072 (((-1087 |#1|) $ |#1|) 120) (((-1087 (-1087 |#1|)) $ (-1087 |#1|)) 138) (((-1087 (-635 |#1|)) $ (-635 |#1|)) 141)) (-3068 (((-1087 |#1|) $) 100)) (-3646 (((-112) (-895 |#1|) $) 91)) (-3643 (((-1148) $) NIL)) (-3065 (((-1259) $) 94) (((-1259) $ (-544) (-544)) 142)) (-3644 (((-1110) $) NIL)) (-3077 (((-635 (-895 |#1|)) $) 95)) (-4206 (((-895 |#1|) $ (-765)) 98)) (-4355 (((-765) $) 105)) (-4353 (((-857) $) 118) (((-635 (-895 |#1|)) $) 23) (($ (-635 (-895 |#1|))) 108)) (-3076 (((-635 |#1|) $) 106)) (-3437 (((-112) $ $) 135)) (-3066 (((-112) $ $) 133)) (-3067 (((-112) $ $) 132)))
+(((-898 |#1|) (-13 (-1091) (-10 -8 (-15 -4353 ((-635 (-895 |#1|)) $)) (-15 -3077 ((-635 (-895 |#1|)) $)) (-15 -4206 ((-895 |#1|) $ (-765))) (-15 -3377 ((-895 |#1|) $ (-544))) (-15 -3377 ((-895 |#1|) $)) (-15 -4178 ((-765) $)) (-15 -4355 ((-765) $)) (-15 -3076 ((-635 |#1|) $)) (-15 -3075 ((-635 (-895 |#1|)) $)) (-15 -3074 ((-635 (-635 (-765))) $)) (-15 -4353 ($ (-635 (-895 |#1|)))) (-15 -3073 ($ (-635 (-895 |#1|)))) (-15 -3072 ((-1087 |#1|) $ |#1|)) (-15 -3071 ((-1087 (-1087 |#1|)) $)) (-15 -3072 ((-1087 (-1087 |#1|)) $ (-1087 |#1|))) (-15 -3072 ((-1087 (-635 |#1|)) $ (-635 |#1|))) (-15 -3646 ((-112) (-895 |#1|) $)) (-15 -3070 ((-635 (-765)) (-895 |#1|) $)) (-15 -3069 ((-635 (-765)) (-895 |#1|) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3067 ((-112) $ $)) (-15 -3066 ((-112) $ $)) (-15 -3065 ((-1259) $)) (-15 -3065 ((-1259) $ (-544) (-544))))) (-1091)) (T -898))
+((-4353 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))) (-3377 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-765)))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1087 (-1087 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-898 *4)) (-5 *3 (-1087 *4)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-635 *4))) (-5 *1 (-898 *4)) (-5 *3 (-635 *4)))) (-3646 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-898 *4)))) (-3070 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765))) (-5 *1 (-898 *4)))) (-3069 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765))) (-5 *1 (-898 *4)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3067 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3066 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3065 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))))
+(-13 (-1091) (-10 -8 (-15 -4353 ((-635 (-895 |#1|)) $)) (-15 -3077 ((-635 (-895 |#1|)) $)) (-15 -4206 ((-895 |#1|) $ (-765))) (-15 -3377 ((-895 |#1|) $ (-544))) (-15 -3377 ((-895 |#1|) $)) (-15 -4178 ((-765) $)) (-15 -4355 ((-765) $)) (-15 -3076 ((-635 |#1|) $)) (-15 -3075 ((-635 (-895 |#1|)) $)) (-15 -3074 ((-635 (-635 (-765))) $)) (-15 -4353 ($ (-635 (-895 |#1|)))) (-15 -3073 ($ (-635 (-895 |#1|)))) (-15 -3072 ((-1087 |#1|) $ |#1|)) (-15 -3071 ((-1087 (-1087 |#1|)) $)) (-15 -3072 ((-1087 (-1087 |#1|)) $ (-1087 |#1|))) (-15 -3072 ((-1087 (-635 |#1|)) $ (-635 |#1|))) (-15 -3646 ((-112) (-895 |#1|) $)) (-15 -3070 ((-635 (-765)) (-895 |#1|) $)) (-15 -3069 ((-635 (-765)) (-895 |#1|) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3067 ((-112) $ $)) (-15 -3066 ((-112) $ $)) (-15 -3065 ((-1259) $)) (-15 -3065 ((-1259) $ (-544) (-544)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL)) (-1939 (($ (-1253 $)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL)) (-1824 (((-112) $) NIL)) (-1914 (($ $) NIL) (($ $ (-765)) NIL)) (-4130 (((-112) $) NIL)) (-4178 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| $ (-367)))) (-2161 (((-112) $) NIL (|has| $ (-367)))) (-3517 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 $) $ (-912)) NIL (|has| $ (-367))) (((-1160 $) $) NIL)) (-2160 (((-912) $) NIL)) (-1752 (((-1160 $) $) NIL (|has| $ (-367)))) (-1751 (((-3 (-1160 $) "failed") $ $) NIL (|has| $ (-367))) (((-1160 $) $) NIL (|has| $ (-367)))) (-1753 (($ $ (-1160 $)) NIL (|has| $ (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL T CONST)) (-2535 (($ (-912)) NIL)) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| $ (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL)) (-4139 (((-404 $) $) NIL)) (-4337 (((-912)) NIL) (((-826 (-912))) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-4318 (((-133)) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-4355 (((-912) $) NIL) (((-826 (-912)) $) NIL)) (-3586 (((-1160 $)) NIL)) (-1818 (($) NIL)) (-1754 (($) NIL (|has| $ (-367)))) (-3625 (((-682 $) (-1253 $)) NIL) (((-1253 $) $) NIL)) (-4377 (((-544) $) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $) (-912)) NIL) (((-1253 $)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-899 |#1|) (-13 (-349) (-328 $) (-609 (-544))) (-912)) (T -899))
+NIL
+(-13 (-349) (-328 $) (-609 (-544)))
+((-3079 (((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|)) 127)) (-3082 ((|#1|) 76)) (-3081 (((-404 (-1160 |#4|)) (-1160 |#4|)) 136)) (-3083 (((-404 (-1160 |#4|)) (-635 |#3|) (-1160 |#4|)) 68)) (-3080 (((-404 (-1160 |#4|)) (-1160 |#4|)) 146)) (-3078 (((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|) |#3|) 91)))
+(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|))) (-15 -3080 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3081 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3082 (|#1|)) (-15 -3078 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|) |#3|)) (-15 -3083 ((-404 (-1160 |#4|)) (-635 |#3|) (-1160 |#4|)))) (-903) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -900))
+((-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *7)) (-4 *7 (-844)) (-4 *5 (-903)) (-4 *6 (-787)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-404 (-1160 *8))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-1160 *8)))) (-3078 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7)) (-4 *7 (-943 *5 *6 *4)) (-4 *5 (-903)) (-4 *6 (-787)) (-4 *4 (-844)) (-5 *1 (-900 *5 *6 *4 *7)))) (-3082 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-3079 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-900 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|))) (-15 -3080 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3081 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3082 (|#1|)) (-15 -3078 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|) |#3|)) (-15 -3083 ((-404 (-1160 |#4|)) (-635 |#3|) (-1160 |#4|))))
+((-3079 (((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|)) 36)) (-3082 ((|#1|) 53)) (-3081 (((-404 (-1160 |#2|)) (-1160 |#2|)) 101)) (-3083 (((-404 (-1160 |#2|)) (-1160 |#2|)) 89)) (-3080 (((-404 (-1160 |#2|)) (-1160 |#2|)) 112)))
+(((-901 |#1| |#2|) (-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|))) (-15 -3080 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3081 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3082 (|#1|)) (-15 -3083 ((-404 (-1160 |#2|)) (-1160 |#2|)))) (-903) (-1229 |#1|)) (T -901))
+((-3083 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))) (-3082 (*1 *2) (-12 (-4 *2 (-903)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1229 *2)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))) (-3079 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-903)) (-5 *1 (-901 *4 *5)))))
+(-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|))) (-15 -3080 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3081 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3082 (|#1|)) (-15 -3083 ((-404 (-1160 |#2|)) (-1160 |#2|))))
+((-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 41)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 18)) (-3084 (((-3 $ "failed") $) 35)))
+(((-902 |#1|) (-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)))) (-903)) (T -902))
+NIL
+(-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 61)) (-4181 (($ $) 52)) (-4376 (((-404 $) $) 53)) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 58)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-4130 (((-112) $) 54)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3087 (((-404 (-1160 $)) (-1160 $)) 59)) (-3088 (((-404 (-1160 $)) (-1160 $)) 60)) (-4139 (((-404 $) $) 51)) (-3865 (((-3 $ "failed") $ $) 43)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 57 (|has| $ (-144)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3084 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
+(((-903) (-139)) (T -903))
+((-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-903)))) (-3089 (*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))) (-3088 (*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))) (-3087 (*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))) (-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *1))) (-5 *3 (-1160 *1)) (-4 *1 (-903)))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-903)) (-5 *2 (-1253 *1)))) (-3084 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-903)))))
+(-13 (-1209) (-10 -8 (-15 -3089 ((-404 (-1160 $)) (-1160 $))) (-15 -3088 ((-404 (-1160 $)) (-1160 $))) (-15 -3087 ((-404 (-1160 $)) (-1160 $))) (-15 -3090 ((-1160 $) (-1160 $) (-1160 $))) (-15 -3086 ((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $))) (IF (|has| $ (-144)) (PROGN (-15 -3085 ((-3 (-1253 $) "failed") (-682 $))) (-15 -3084 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T))
+((-3092 (((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#5|)) "failed") (-332 |#2| |#3| |#4| |#5|)) 79)) (-3091 (((-112) (-332 |#2| |#3| |#4| |#5|)) 17)) (-4178 (((-3 (-765) "failed") (-332 |#2| |#3| |#4| |#5|)) 15)))
+(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 |#2| |#3| |#4| |#5|))) (-15 -3091 ((-112) (-332 |#2| |#3| |#4| |#5|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#5|)) "failed") (-332 |#2| |#3| |#4| |#5|)))) (-13 (-844) (-554) (-1031 (-544))) (-420 |#1|) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -904))
+((-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *8))) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-112)) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-4178 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-765)) (-5 *1 (-904 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 |#2| |#3| |#4| |#5|))) (-15 -3091 ((-112) (-332 |#2| |#3| |#4| |#5|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#5|)) "failed") (-332 |#2| |#3| |#4| |#5|))))
+((-3092 (((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#3|)) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|)) 56)) (-3091 (((-112) (-332 (-406 (-544)) |#1| |#2| |#3|)) 16)) (-4178 (((-3 (-765) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|)) 14)))
+(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3091 ((-112) (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#3|)) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|)))) (-1229 (-406 (-544))) (-1229 (-406 |#1|)) (-341 (-406 (-544)) |#1| |#2|)) (T -905))
+((-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *6))) (-5 *1 (-905 *4 *5 *6)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-905 *4 *5 *6)))) (-4178 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-765)) (-5 *1 (-905 *4 *5 *6)))))
+(-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3091 ((-112) (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#3|)) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|))))
+((-3097 ((|#2| |#2|) 26)) (-3095 (((-544) (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))))) 15)) (-3093 (((-912) (-544)) 35)) (-3096 (((-544) |#2|) 42)) (-3094 (((-544) |#2|) 21) (((-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))) |#1|) 20)))
+(((-906 |#1| |#2|) (-10 -7 (-15 -3093 ((-912) (-544))) (-15 -3094 ((-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))) |#1|)) (-15 -3094 ((-544) |#2|)) (-15 -3095 ((-544) (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))))) (-15 -3096 ((-544) |#2|)) (-15 -3097 (|#2| |#2|))) (-1229 (-406 (-544))) (-1229 (-406 |#1|))) (T -906))
+((-3097 (*1 *2 *2) (-12 (-4 *3 (-1229 (-406 (-544)))) (-5 *1 (-906 *3 *2)) (-4 *2 (-1229 (-406 *3))))) (-3096 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))))) (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4))))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-3094 (*1 *2 *3) (-12 (-4 *3 (-1229 (-406 (-544)))) (-5 *2 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))) (-5 *1 (-906 *3 *4)) (-4 *4 (-1229 (-406 *3))))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-1229 (-406 *3))) (-5 *2 (-912)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4))))))
+(-10 -7 (-15 -3093 ((-912) (-544))) (-15 -3094 ((-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))) |#1|)) (-15 -3094 ((-544) |#2|)) (-15 -3095 ((-544) (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))))) (-15 -3096 ((-544) |#2|)) (-15 -3097 (|#2| |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 ((|#1| $) 81)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 75)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3105 (($ |#1| (-404 |#1|)) 73)) (-3099 (((-1160 |#1|) |#1| |#1|) 41)) (-3098 (($ $) 49)) (-2545 (((-112) $) NIL)) (-3100 (((-544) $) 78)) (-3101 (($ $ (-544)) 80)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3102 ((|#1| $) 77)) (-3103 (((-404 |#1|) $) 76)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) 74)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-3104 (($ $) 39)) (-4353 (((-857) $) 99) (($ (-544)) 54) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-404 |#1|))) 67)) (-3511 (((-765)) 52)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 23 T CONST)) (-3046 (($) 12 T CONST)) (-3437 (((-112) $ $) 68)) (-4356 (($ $ $) NIL)) (-4244 (($ $) 88) (($ $ $) NIL)) (-4246 (($ $ $) 38)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 90) (($ $ $) 37) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-907 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -4353 ((-406 |#1|) $)) (-15 -4353 ($ (-406 (-404 |#1|)))) (-15 -3104 ($ $)) (-15 -3103 ((-404 |#1|) $)) (-15 -3102 (|#1| $)) (-15 -3101 ($ $ (-544))) (-15 -3100 ((-544) $)) (-15 -3099 ((-1160 |#1|) |#1| |#1|)) (-15 -3098 ($ $)) (-15 -3105 ($ |#1| (-404 |#1|))) (-15 -3514 (|#1| $)))) (-306)) (T -907))
+((-4353 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-406 (-404 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3)))) (-3104 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-404 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3102 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3101 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3099 (*1 *2 *3 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3098 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3105 (*1 *1 *2 *3) (-12 (-5 *3 (-404 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2)))) (-3514 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
+(-13 (-362) (-38 |#1|) (-10 -8 (-15 -4353 ((-406 |#1|) $)) (-15 -4353 ($ (-406 (-404 |#1|)))) (-15 -3104 ($ $)) (-15 -3103 ((-404 |#1|) $)) (-15 -3102 (|#1| $)) (-15 -3101 ($ $ (-544))) (-15 -3100 ((-544) $)) (-15 -3099 ((-1160 |#1|) |#1| |#1|)) (-15 -3098 ($ $)) (-15 -3105 ($ |#1| (-404 |#1|))) (-15 -3514 (|#1| $))))
+((-3105 (((-51) (-939 |#1|) (-404 (-939 |#1|)) (-1166)) 17) (((-51) (-406 (-939 |#1|)) (-1166)) 18)))
+(((-908 |#1|) (-10 -7 (-15 -3105 ((-51) (-406 (-939 |#1|)) (-1166))) (-15 -3105 ((-51) (-939 |#1|) (-404 (-939 |#1|)) (-1166)))) (-13 (-306) (-146))) (T -908))
+((-3105 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-404 (-939 *6))) (-5 *5 (-1166)) (-5 *3 (-939 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-51)) (-5 *1 (-908 *6)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-51)) (-5 *1 (-908 *5)))))
+(-10 -7 (-15 -3105 ((-51) (-406 (-939 |#1|)) (-1166))) (-15 -3105 ((-51) (-939 |#1|) (-404 (-939 |#1|)) (-1166))))
+((-3106 ((|#4| (-635 |#4|)) 121) (((-1160 |#4|) (-1160 |#4|) (-1160 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-3545 (((-1160 |#4|) (-635 (-1160 |#4|))) 114) (((-1160 |#4|) (-1160 |#4|) (-1160 |#4|)) 49) ((|#4| (-635 |#4|)) 54) ((|#4| |#4| |#4|) 84)))
+(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3545 (|#4| |#4| |#4|)) (-15 -3545 (|#4| (-635 |#4|))) (-15 -3545 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3545 ((-1160 |#4|) (-635 (-1160 |#4|)))) (-15 -3106 (|#4| |#4| |#4|)) (-15 -3106 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3106 (|#4| (-635 |#4|)))) (-787) (-844) (-306) (-943 |#3| |#1| |#2|)) (T -909))
+((-3106 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-3106 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3106 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-943 *5 *3 *4)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-635 (-1160 *7))) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-1160 *7)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-3545 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-3545 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-943 *5 *3 *4)))))
+(-10 -7 (-15 -3545 (|#4| |#4| |#4|)) (-15 -3545 (|#4| (-635 |#4|))) (-15 -3545 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3545 ((-1160 |#4|) (-635 (-1160 |#4|)))) (-15 -3106 (|#4| |#4| |#4|)) (-15 -3106 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3106 (|#4| (-635 |#4|))))
+((-3119 (((-898 (-544)) (-964)) 23) (((-898 (-544)) (-635 (-544))) 20)) (-3107 (((-898 (-544)) (-635 (-544))) 48) (((-898 (-544)) (-912)) 49)) (-3118 (((-898 (-544))) 24)) (-3116 (((-898 (-544))) 38) (((-898 (-544)) (-635 (-544))) 37)) (-3115 (((-898 (-544))) 36) (((-898 (-544)) (-635 (-544))) 35)) (-3114 (((-898 (-544))) 34) (((-898 (-544)) (-635 (-544))) 33)) (-3113 (((-898 (-544))) 32) (((-898 (-544)) (-635 (-544))) 31)) (-3112 (((-898 (-544))) 30) (((-898 (-544)) (-635 (-544))) 29)) (-3117 (((-898 (-544))) 40) (((-898 (-544)) (-635 (-544))) 39)) (-3111 (((-898 (-544)) (-635 (-544))) 52) (((-898 (-544)) (-912)) 53)) (-3110 (((-898 (-544)) (-635 (-544))) 50) (((-898 (-544)) (-912)) 51)) (-3108 (((-898 (-544)) (-635 (-544))) 46) (((-898 (-544)) (-912)) 47)) (-3109 (((-898 (-544)) (-635 (-912))) 43)))
+(((-910) (-10 -7 (-15 -3107 ((-898 (-544)) (-912))) (-15 -3107 ((-898 (-544)) (-635 (-544)))) (-15 -3108 ((-898 (-544)) (-912))) (-15 -3108 ((-898 (-544)) (-635 (-544)))) (-15 -3109 ((-898 (-544)) (-635 (-912)))) (-15 -3110 ((-898 (-544)) (-912))) (-15 -3110 ((-898 (-544)) (-635 (-544)))) (-15 -3111 ((-898 (-544)) (-912))) (-15 -3111 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)))) (-15 -3113 ((-898 (-544)) (-635 (-544)))) (-15 -3113 ((-898 (-544)))) (-15 -3114 ((-898 (-544)) (-635 (-544)))) (-15 -3114 ((-898 (-544)))) (-15 -3115 ((-898 (-544)) (-635 (-544)))) (-15 -3115 ((-898 (-544)))) (-15 -3116 ((-898 (-544)) (-635 (-544)))) (-15 -3116 ((-898 (-544)))) (-15 -3117 ((-898 (-544)) (-635 (-544)))) (-15 -3117 ((-898 (-544)))) (-15 -3118 ((-898 (-544)))) (-15 -3119 ((-898 (-544)) (-635 (-544)))) (-15 -3119 ((-898 (-544)) (-964))))) (T -910))
+((-3119 (*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3118 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3117 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3116 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3115 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3114 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3113 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3112 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-635 (-912))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(-10 -7 (-15 -3107 ((-898 (-544)) (-912))) (-15 -3107 ((-898 (-544)) (-635 (-544)))) (-15 -3108 ((-898 (-544)) (-912))) (-15 -3108 ((-898 (-544)) (-635 (-544)))) (-15 -3109 ((-898 (-544)) (-635 (-912)))) (-15 -3110 ((-898 (-544)) (-912))) (-15 -3110 ((-898 (-544)) (-635 (-544)))) (-15 -3111 ((-898 (-544)) (-912))) (-15 -3111 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)))) (-15 -3113 ((-898 (-544)) (-635 (-544)))) (-15 -3113 ((-898 (-544)))) (-15 -3114 ((-898 (-544)) (-635 (-544)))) (-15 -3114 ((-898 (-544)))) (-15 -3115 ((-898 (-544)) (-635 (-544)))) (-15 -3115 ((-898 (-544)))) (-15 -3116 ((-898 (-544)) (-635 (-544)))) (-15 -3116 ((-898 (-544)))) (-15 -3117 ((-898 (-544)) (-635 (-544)))) (-15 -3117 ((-898 (-544)))) (-15 -3118 ((-898 (-544)))) (-15 -3119 ((-898 (-544)) (-635 (-544)))) (-15 -3119 ((-898 (-544)) (-964))))
+((-3121 (((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166))) 12)) (-3120 (((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166))) 11)))
+(((-911 |#1|) (-10 -7 (-15 -3120 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3121 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166))))) (-450)) (T -911))
+((-3121 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4)))) (-3120 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4)))))
+(-10 -7 (-15 -3120 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3121 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)))))
+((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3545 (($ $ $) NIL)) (-4353 (((-857) $) NIL)) (-3046 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ $ $) NIL)))
+(((-912) (-13 (-788) (-720) (-10 -8 (-15 -3545 ($ $ $)) (-6 (-4402 "*"))))) (T -912))
+((-3545 (*1 *1 *1 *1) (-5 *1 (-912))))
+(-13 (-788) (-720) (-10 -8 (-15 -3545 ($ $ $)) (-6 (-4402 "*"))))
((|NonNegativeInteger|) (< 0 |#1|))
-((-1481 ((|#2| (-638 |#1|) (-638 |#1|)) 24)))
-(((-915 |#1| |#2|) (-10 -7 (-15 -1481 (|#2| (-638 |#1|) (-638 |#1|)))) (-362) (-1230 |#1|)) (T -915))
-((-1481 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-4 *2 (-1230 *4)) (-5 *1 (-915 *4 *2)))))
-(-10 -7 (-15 -1481 (|#2| (-638 |#1|) (-638 |#1|))))
-((-2764 (((-1162 |#2|) (-638 |#2|) (-638 |#2|)) 17) (((-1227 |#1| |#2|) (-1227 |#1| |#2|) (-638 |#2|) (-638 |#2|)) 13)))
-(((-916 |#1| |#2|) (-10 -7 (-15 -2764 ((-1227 |#1| |#2|) (-1227 |#1| |#2|) (-638 |#2|) (-638 |#2|))) (-15 -2764 ((-1162 |#2|) (-638 |#2|) (-638 |#2|)))) (-1166) (-362)) (T -916))
-((-2764 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *5)) (-4 *5 (-362)) (-5 *2 (-1162 *5)) (-5 *1 (-916 *4 *5)) (-14 *4 (-1166)))) (-2764 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1227 *4 *5)) (-5 *3 (-638 *5)) (-14 *4 (-1166)) (-4 *5 (-362)) (-5 *1 (-916 *4 *5)))))
-(-10 -7 (-15 -2764 ((-1227 |#1| |#2|) (-1227 |#1| |#2|) (-638 |#2|) (-638 |#2|))) (-15 -2764 ((-1162 |#2|) (-638 |#2|) (-638 |#2|))))
-((-4143 (((-561) (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-1148)) 139)) (-3516 ((|#4| |#4|) 155)) (-4236 (((-638 (-406 (-945 |#1|))) (-638 (-1166))) 119)) (-4244 (((-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-638 (-638 |#4|)) (-765) (-765) (-561)) 75)) (-3732 (((-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-638 |#4|)) 59)) (-3290 (((-682 |#4|) (-682 |#4|) (-638 |#4|)) 55)) (-2479 (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-1148)) 151)) (-2071 (((-561) (-682 |#4|) (-914) (-1148)) 133) (((-561) (-682 |#4|) (-638 (-1166)) (-914) (-1148)) 132) (((-561) (-682 |#4|) (-638 |#4|) (-914) (-1148)) 131) (((-561) (-682 |#4|) (-1148)) 128) (((-561) (-682 |#4|) (-638 (-1166)) (-1148)) 127) (((-561) (-682 |#4|) (-638 |#4|) (-1148)) 126) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-914)) 125) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)) (-914)) 124) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|) (-914)) 123) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|)) 121) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166))) 120) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|)) 116)) (-2966 ((|#4| (-945 |#1|)) 68)) (-3451 (((-112) (-638 |#4|) (-638 (-638 |#4|))) 152)) (-3828 (((-638 (-638 (-561))) (-561) (-561)) 130)) (-3127 (((-638 (-638 |#4|)) (-638 (-638 |#4|))) 88)) (-3501 (((-765) (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|))))) 86)) (-1657 (((-765) (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|))))) 85)) (-2498 (((-112) (-638 (-945 |#1|))) 17) (((-112) (-638 |#4|)) 13)) (-3279 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-638 |#4|)) (|:| |n0| (-638 |#4|))) (-638 |#4|) (-638 |#4|)) 71)) (-3756 (((-638 |#4|) |#4|) 49)) (-1488 (((-638 (-406 (-945 |#1|))) (-638 |#4|)) 115) (((-682 (-406 (-945 |#1|))) (-682 |#4|)) 56) (((-406 (-945 |#1|)) |#4|) 112)) (-3614 (((-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))))))) (|:| |rgsz| (-561))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-765) (-1148) (-561)) 93)) (-2866 (((-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))) (-682 |#4|) (-765)) 84)) (-3493 (((-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-682 |#4|) (-765)) 102)) (-2686 (((-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-2 (|:| -2942 (-682 (-406 (-945 |#1|)))) (|:| |vec| (-638 (-406 (-945 |#1|)))) (|:| -3400 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) 48)))
-(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|) (-914))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)) (-914))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-914))) (-15 -2071 ((-561) (-682 |#4|) (-638 |#4|) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-638 (-1166)) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-638 |#4|) (-914) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-638 (-1166)) (-914) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-914) (-1148))) (-15 -4143 ((-561) (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-1148))) (-15 -2479 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-1148))) (-15 -3614 ((-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))))))) (|:| |rgsz| (-561))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-765) (-1148) (-561))) (-15 -1488 ((-406 (-945 |#1|)) |#4|)) (-15 -1488 ((-682 (-406 (-945 |#1|))) (-682 |#4|))) (-15 -1488 ((-638 (-406 (-945 |#1|))) (-638 |#4|))) (-15 -4236 ((-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -2966 (|#4| (-945 |#1|))) (-15 -3279 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-638 |#4|)) (|:| |n0| (-638 |#4|))) (-638 |#4|) (-638 |#4|))) (-15 -2866 ((-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))) (-682 |#4|) (-765))) (-15 -3732 ((-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-638 |#4|))) (-15 -2686 ((-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-2 (|:| -2942 (-682 (-406 (-945 |#1|)))) (|:| |vec| (-638 (-406 (-945 |#1|)))) (|:| -3400 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (-15 -3756 ((-638 |#4|) |#4|)) (-15 -1657 ((-765) (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3501 ((-765) (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3127 ((-638 (-638 |#4|)) (-638 (-638 |#4|)))) (-15 -3828 ((-638 (-638 (-561))) (-561) (-561))) (-15 -3451 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -3493 ((-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-682 |#4|) (-765))) (-15 -3290 ((-682 |#4|) (-682 |#4|) (-638 |#4|))) (-15 -4244 ((-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-638 (-638 |#4|)) (-765) (-765) (-561))) (-15 -3516 (|#4| |#4|)) (-15 -2498 ((-112) (-638 |#4|))) (-15 -2498 ((-112) (-638 (-945 |#1|))))) (-13 (-306) (-146)) (-13 (-844) (-609 (-1166))) (-787) (-942 |#1| |#3| |#2|)) (T -917))
-((-2498 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3516 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-942 *3 *5 *4)))) (-4244 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-5 *4 (-682 *12)) (-5 *5 (-638 (-406 (-945 *9)))) (-5 *6 (-638 (-638 *12))) (-5 *7 (-765)) (-5 *8 (-561)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-942 *9 *11 *10)) (-4 *10 (-13 (-844) (-609 (-1166)))) (-4 *11 (-787)) (-5 *2 (-2 (|:| |eqzro| (-638 *12)) (|:| |neqzro| (-638 *12)) (|:| |wcond| (-638 (-945 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *9)))) (|:| -2615 (-638 (-1254 (-406 (-945 *9))))))))) (-5 *1 (-917 *9 *10 *11 *12)))) (-3290 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *7)) (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |det| *8) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3828 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-638 (-561)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *6 *5)))) (-3127 (*1 *2 *2) (-12 (-5 *2 (-638 (-638 *6))) (-4 *6 (-942 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| *7) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| *7) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3756 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2942 (-682 (-406 (-945 *4)))) (|:| |vec| (-638 (-406 (-945 *4)))) (|:| -3400 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-2 (|:| |partsol| (-1254 (-406 (-945 *4)))) (|:| -2615 (-638 (-1254 (-406 (-945 *4))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-3732 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1254 (-406 (-945 *4)))) (|:| -2615 (-638 (-1254 (-406 (-945 *4))))))) (-5 *3 (-638 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-942 *4 *6 *5)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| *8) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 *8))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-4 *7 (-942 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-638 *7)) (|:| |n0| (-638 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-942 *4 *6 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)))) (-4236 (*1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-682 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-406 (-945 *4))) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5)))) (-3614 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-682 *11)) (-5 *4 (-638 (-406 (-945 *8)))) (-5 *5 (-765)) (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-942 *8 *10 *9)) (-4 *9 (-13 (-844) (-609 (-1166)))) (-4 *10 (-787)) (-5 *2 (-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 *11)) (|:| |neqzro| (-638 *11)) (|:| |wcond| (-638 (-945 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *8)))) (|:| -2615 (-638 (-1254 (-406 (-945 *8)))))))))) (|:| |rgsz| (-561)))) (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-561)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7)) (|:| |wcond| (-638 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *4)))) (|:| -2615 (-638 (-1254 (-406 (-945 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *5)))) (|:| -2615 (-638 (-1254 (-406 (-945 *5)))))))))) (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-942 *5 *7 *6)) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *5 *6 *7 *8)))) (-2071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-914)) (-5 *5 (-1148)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *6 *7 *8 *9)))) (-2071 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 (-1166))) (-5 *5 (-914)) (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *7 *8 *9 *10)))) (-2071 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 *10)) (-5 *5 (-914)) (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *7 *8 *9 *10)))) (-2071 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *5 *6 *7 *8)))) (-2071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-1148)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *6 *7 *8 *9)))) (-2071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 *9)) (-5 *5 (-1148)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *6 *7 *8 *9)))) (-2071 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-914)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *5)))) (|:| -2615 (-638 (-1254 (-406 (-945 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-2071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-914)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9)) (|:| |wcond| (-638 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *6)))) (|:| -2615 (-638 (-1254 (-406 (-945 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)))) (-2071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *5 (-914)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9)) (|:| |wcond| (-638 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *6)))) (|:| -2615 (-638 (-1254 (-406 (-945 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-638 *9)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7)) (|:| |wcond| (-638 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *4)))) (|:| -2615 (-638 (-1254 (-406 (-945 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)))) (-2071 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-638 (-1166))) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *5)))) (|:| -2615 (-638 (-1254 (-406 (-945 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-2071 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 *5)))) (|:| -2615 (-638 (-1254 (-406 (-945 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
-(-10 -7 (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|) (-914))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)) (-914))) (-15 -2071 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-682 |#4|) (-914))) (-15 -2071 ((-561) (-682 |#4|) (-638 |#4|) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-638 (-1166)) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-638 |#4|) (-914) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-638 (-1166)) (-914) (-1148))) (-15 -2071 ((-561) (-682 |#4|) (-914) (-1148))) (-15 -4143 ((-561) (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-1148))) (-15 -2479 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|))))))))) (-1148))) (-15 -3614 ((-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))))))) (|:| |rgsz| (-561))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-765) (-1148) (-561))) (-15 -1488 ((-406 (-945 |#1|)) |#4|)) (-15 -1488 ((-682 (-406 (-945 |#1|))) (-682 |#4|))) (-15 -1488 ((-638 (-406 (-945 |#1|))) (-638 |#4|))) (-15 -4236 ((-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -2966 (|#4| (-945 |#1|))) (-15 -3279 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-638 |#4|)) (|:| |n0| (-638 |#4|))) (-638 |#4|) (-638 |#4|))) (-15 -2866 ((-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))) (-682 |#4|) (-765))) (-15 -3732 ((-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-638 |#4|))) (-15 -2686 ((-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))) (-2 (|:| -2942 (-682 (-406 (-945 |#1|)))) (|:| |vec| (-638 (-406 (-945 |#1|)))) (|:| -3400 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (-15 -3756 ((-638 |#4|) |#4|)) (-15 -1657 ((-765) (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3501 ((-765) (-638 (-2 (|:| -3400 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3127 ((-638 (-638 |#4|)) (-638 (-638 |#4|)))) (-15 -3828 ((-638 (-638 (-561))) (-561) (-561))) (-15 -3451 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -3493 ((-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-682 |#4|) (-765))) (-15 -3290 ((-682 |#4|) (-682 |#4|) (-638 |#4|))) (-15 -4244 ((-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1254 (-406 (-945 |#1|)))) (|:| -2615 (-638 (-1254 (-406 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-638 (-638 |#4|)) (-765) (-765) (-561))) (-15 -3516 (|#4| |#4|)) (-15 -2498 ((-112) (-638 |#4|))) (-15 -2498 ((-112) (-638 (-945 |#1|)))))
-((-1764 (((-920) |#1| (-1166)) 17) (((-920) |#1| (-1166) (-1084 (-224))) 21)) (-3404 (((-920) |#1| |#1| (-1166) (-1084 (-224))) 19) (((-920) |#1| (-1166) (-1084 (-224))) 15)))
-(((-918 |#1|) (-10 -7 (-15 -3404 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -3404 ((-920) |#1| |#1| (-1166) (-1084 (-224)))) (-15 -1764 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -1764 ((-920) |#1| (-1166)))) (-609 (-534))) (T -918))
-((-1764 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))) (-1764 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))) (-3404 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))) (-3404 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))))
-(-10 -7 (-15 -3404 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -3404 ((-920) |#1| |#1| (-1166) (-1084 (-224)))) (-15 -1764 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -1764 ((-920) |#1| (-1166))))
-((-1689 (($ $ (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 69)) (-2021 (((-1084 (-224)) $) 40)) (-2010 (((-1084 (-224)) $) 39)) (-1998 (((-1084 (-224)) $) 38)) (-3330 (((-638 (-638 (-224))) $) 43)) (-3490 (((-1084 (-224)) $) 41)) (-3466 (((-561) (-561)) 32)) (-2680 (((-561) (-561)) 28)) (-2447 (((-561) (-561)) 30)) (-2715 (((-112) (-112)) 35)) (-1889 (((-561)) 31)) (-2335 (($ $ (-1084 (-224))) 72) (($ $) 73)) (-2859 (($ (-1 (-936 (-224)) (-224)) (-1084 (-224))) 77) (($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 78)) (-3404 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 81) (($ $ (-1084 (-224))) 75)) (-2146 (((-561)) 36)) (-2757 (((-561)) 27)) (-2039 (((-561)) 29)) (-4114 (((-638 (-638 (-936 (-224)))) $) 93)) (-1637 (((-112) (-112)) 37)) (-4064 (((-856) $) 92)) (-2582 (((-112)) 34)))
-(((-919) (-13 (-967) (-10 -8 (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ $ (-1084 (-224)))) (-15 -1689 ($ $ (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -2335 ($ $ (-1084 (-224)))) (-15 -2335 ($ $)) (-15 -3490 ((-1084 (-224)) $)) (-15 -3330 ((-638 (-638 (-224))) $)) (-15 -2757 ((-561))) (-15 -2680 ((-561) (-561))) (-15 -2039 ((-561))) (-15 -2447 ((-561) (-561))) (-15 -1889 ((-561))) (-15 -3466 ((-561) (-561))) (-15 -2582 ((-112))) (-15 -2715 ((-112) (-112))) (-15 -2146 ((-561))) (-15 -1637 ((-112) (-112)))))) (T -919))
-((-2859 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-2859 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-3404 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-3404 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-1689 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-2335 (*1 *1 *1) (-5 *1 (-919))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-919)))) (-2757 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-2039 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-1889 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-2582 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))) (-2146 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
-(-13 (-967) (-10 -8 (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ $ (-1084 (-224)))) (-15 -1689 ($ $ (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -2335 ($ $ (-1084 (-224)))) (-15 -2335 ($ $)) (-15 -3490 ((-1084 (-224)) $)) (-15 -3330 ((-638 (-638 (-224))) $)) (-15 -2757 ((-561))) (-15 -2680 ((-561) (-561))) (-15 -2039 ((-561))) (-15 -2447 ((-561) (-561))) (-15 -1889 ((-561))) (-15 -3466 ((-561) (-561))) (-15 -2582 ((-112))) (-15 -2715 ((-112) (-112))) (-15 -2146 ((-561))) (-15 -1637 ((-112) (-112)))))
-((-1689 (($ $ (-1084 (-224))) 69) (($ $ (-1084 (-224)) (-1084 (-224))) 70)) (-2010 (((-1084 (-224)) $) 44)) (-1998 (((-1084 (-224)) $) 43)) (-3490 (((-1084 (-224)) $) 45)) (-3994 (((-561) (-561)) 37)) (-2869 (((-561) (-561)) 33)) (-2507 (((-561) (-561)) 35)) (-3925 (((-112) (-112)) 39)) (-2908 (((-561)) 36)) (-2335 (($ $ (-1084 (-224))) 73) (($ $) 74)) (-2859 (($ (-1 (-936 (-224)) (-224)) (-1084 (-224))) 83) (($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 84)) (-1764 (($ (-1 (-224) (-224)) (-1084 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-3404 (($ (-1 (-224) (-224)) (-1084 (-224))) 78) (($ (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224))) 79) (($ (-638 (-1 (-224) (-224))) (-1084 (-224))) 86) (($ (-638 (-1 (-224) (-224))) (-1084 (-224)) (-1084 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 81) (($ $ (-1084 (-224))) 75)) (-3000 (((-112) $) 40)) (-3526 (((-561)) 41)) (-3325 (((-561)) 32)) (-2281 (((-561)) 34)) (-4114 (((-638 (-638 (-936 (-224)))) $) 23)) (-3143 (((-112) (-112)) 42)) (-4064 (((-856) $) 105)) (-3119 (((-112)) 38)))
-(((-920) (-13 (-948) (-10 -8 (-15 -3404 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)))) (-15 -3404 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -1764 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -1764 ($ (-1 (-224) (-224)))) (-15 -3404 ($ $ (-1084 (-224)))) (-15 -3000 ((-112) $)) (-15 -1689 ($ $ (-1084 (-224)))) (-15 -1689 ($ $ (-1084 (-224)) (-1084 (-224)))) (-15 -2335 ($ $ (-1084 (-224)))) (-15 -2335 ($ $)) (-15 -3490 ((-1084 (-224)) $)) (-15 -3325 ((-561))) (-15 -2869 ((-561) (-561))) (-15 -2281 ((-561))) (-15 -2507 ((-561) (-561))) (-15 -2908 ((-561))) (-15 -3994 ((-561) (-561))) (-15 -3119 ((-112))) (-15 -3925 ((-112) (-112))) (-15 -3526 ((-561))) (-15 -3143 ((-112) (-112)))))) (T -920))
-((-3404 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-3404 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-3404 (*1 *1 *2 *3) (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-3404 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-3404 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-3404 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-2859 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-2859 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-1764 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-920)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-1689 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-2335 (*1 *1 *1) (-5 *1 (-920))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-3325 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-2281 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-2908 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-3119 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-3526 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-3143 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
-(-13 (-948) (-10 -8 (-15 -3404 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)))) (-15 -3404 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -3404 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -2859 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -1764 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -1764 ($ (-1 (-224) (-224)))) (-15 -3404 ($ $ (-1084 (-224)))) (-15 -3000 ((-112) $)) (-15 -1689 ($ $ (-1084 (-224)))) (-15 -1689 ($ $ (-1084 (-224)) (-1084 (-224)))) (-15 -2335 ($ $ (-1084 (-224)))) (-15 -2335 ($ $)) (-15 -3490 ((-1084 (-224)) $)) (-15 -3325 ((-561))) (-15 -2869 ((-561) (-561))) (-15 -2281 ((-561))) (-15 -2507 ((-561) (-561))) (-15 -2908 ((-561))) (-15 -3994 ((-561) (-561))) (-15 -3119 ((-112))) (-15 -3925 ((-112) (-112))) (-15 -3526 ((-561))) (-15 -3143 ((-112) (-112)))))
-((-3859 (((-638 (-1084 (-224))) (-638 (-638 (-936 (-224))))) 24)))
-(((-921) (-10 -7 (-15 -3859 ((-638 (-1084 (-224))) (-638 (-638 (-936 (-224)))))))) (T -921))
-((-3859 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-638 (-1084 (-224)))) (-5 *1 (-921)))))
-(-10 -7 (-15 -3859 ((-638 (-1084 (-224))) (-638 (-638 (-936 (-224)))))))
-((-3813 ((|#2| |#2|) 26)) (-3137 ((|#2| |#2|) 27)) (-1494 ((|#2| |#2|) 25)) (-3995 ((|#2| |#2| (-1148)) 24)))
-(((-922 |#1| |#2|) (-10 -7 (-15 -3995 (|#2| |#2| (-1148))) (-15 -1494 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3137 (|#2| |#2|))) (-844) (-429 |#1|)) (T -922))
-((-3137 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3)))) (-1494 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3)))) (-3995 (*1 *2 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-922 *4 *2)) (-4 *2 (-429 *4)))))
-(-10 -7 (-15 -3995 (|#2| |#2| (-1148))) (-15 -1494 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)))
-((-3813 (((-315 (-561)) (-1166)) 16)) (-3137 (((-315 (-561)) (-1166)) 14)) (-1494 (((-315 (-561)) (-1166)) 12)) (-3995 (((-315 (-561)) (-1166) (-1148)) 19)))
-(((-923) (-10 -7 (-15 -3995 ((-315 (-561)) (-1166) (-1148))) (-15 -1494 ((-315 (-561)) (-1166))) (-15 -3813 ((-315 (-561)) (-1166))) (-15 -3137 ((-315 (-561)) (-1166))))) (T -923))
-((-3137 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))) (-3995 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))))
-(-10 -7 (-15 -3995 ((-315 (-561)) (-1166) (-1148))) (-15 -1494 ((-315 (-561)) (-1166))) (-15 -3813 ((-315 (-561)) (-1166))) (-15 -3137 ((-315 (-561)) (-1166))))
-((-2199 (((-882 |#1| |#3|) |#2| (-885 |#1|) (-882 |#1| |#3|)) 25)) (-2259 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-924 |#1| |#2| |#3|) (-10 -7 (-15 -2259 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2199 ((-882 |#1| |#3|) |#2| (-885 |#1|) (-882 |#1| |#3|)))) (-1090) (-879 |#1|) (-13 (-1090) (-1031 |#2|))) (T -924))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-13 (-1090) (-1031 *3))) (-4 *3 (-879 *5)) (-5 *1 (-924 *5 *3 *6)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1090) (-1031 *5))) (-4 *5 (-879 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-924 *4 *5 *6)))))
-(-10 -7 (-15 -2259 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2199 ((-882 |#1| |#3|) |#2| (-885 |#1|) (-882 |#1| |#3|))))
-((-2199 (((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)) 30)))
-(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-1090) (-13 (-553) (-844) (-879 |#1|)) (-13 (-429 |#2|) (-609 (-885 |#1|)) (-879 |#1|) (-1031 (-607 $)))) (T -925))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-429 *6) (-609 *4) (-879 *5) (-1031 (-607 $)))) (-5 *4 (-885 *5)) (-4 *6 (-13 (-553) (-844) (-879 *5))) (-5 *1 (-925 *5 *6 *3)))))
-(-10 -7 (-15 -2199 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))))
-((-2199 (((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|)) 13)))
-(((-926 |#1|) (-10 -7 (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|)))) (-543)) (T -926))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 (-561) *3)) (-5 *4 (-885 (-561))) (-4 *3 (-543)) (-5 *1 (-926 *3)))))
-(-10 -7 (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))))
-((-2199 (((-882 |#1| |#2|) (-607 |#2|) (-885 |#1|) (-882 |#1| |#2|)) 54)))
-(((-927 |#1| |#2|) (-10 -7 (-15 -2199 ((-882 |#1| |#2|) (-607 |#2|) (-885 |#1|) (-882 |#1| |#2|)))) (-1090) (-13 (-844) (-1031 (-607 $)) (-609 (-885 |#1|)) (-879 |#1|))) (T -927))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6)) (-5 *3 (-607 *6)) (-4 *5 (-1090)) (-4 *6 (-13 (-844) (-1031 (-607 $)) (-609 *4) (-879 *5))) (-5 *4 (-885 *5)) (-5 *1 (-927 *5 *6)))))
-(-10 -7 (-15 -2199 ((-882 |#1| |#2|) (-607 |#2|) (-885 |#1|) (-882 |#1| |#2|))))
-((-2199 (((-878 |#1| |#2| |#3|) |#3| (-885 |#1|) (-878 |#1| |#2| |#3|)) 15)))
-(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-878 |#1| |#2| |#3|) |#3| (-885 |#1|) (-878 |#1| |#2| |#3|)))) (-1090) (-879 |#1|) (-659 |#2|)) (T -928))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-879 *5)) (-4 *3 (-659 *6)) (-5 *1 (-928 *5 *6 *3)))))
-(-10 -7 (-15 -2199 ((-878 |#1| |#2| |#3|) |#3| (-885 |#1|) (-878 |#1| |#2| |#3|))))
-((-2199 (((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|)) 17 (|has| |#3| (-879 |#1|))) (((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|) (-1 (-882 |#1| |#5|) |#3| (-885 |#1|) (-882 |#1| |#5|))) 16)))
-(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2199 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|) (-1 (-882 |#1| |#5|) |#3| (-885 |#1|) (-882 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -2199 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|))) |%noBranch|)) (-1090) (-787) (-844) (-13 (-1042) (-844) (-879 |#1|)) (-13 (-942 |#4| |#2| |#3|) (-609 (-885 |#1|)))) (T -929))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-942 *8 *6 *7) (-609 *4))) (-5 *4 (-885 *5)) (-4 *7 (-879 *5)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-13 (-1042) (-844) (-879 *5))) (-5 *1 (-929 *5 *6 *7 *8 *3)))) (-2199 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-882 *6 *3) *8 (-885 *6) (-882 *6 *3))) (-4 *8 (-844)) (-5 *2 (-882 *6 *3)) (-5 *4 (-885 *6)) (-4 *6 (-1090)) (-4 *3 (-13 (-942 *9 *7 *8) (-609 *4))) (-4 *7 (-787)) (-4 *9 (-13 (-1042) (-844) (-879 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2199 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|) (-1 (-882 |#1| |#5|) |#3| (-885 |#1|) (-882 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -2199 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|))) |%noBranch|))
-((-3220 ((|#2| |#2| (-638 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -3220 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3220 (|#2| |#2| (-638 (-1 (-112) |#3|))))) (-844) (-429 |#1|) (-1205)) (T -930))
-((-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-1 (-112) *5))) (-4 *5 (-1205)) (-4 *4 (-844)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1205)) (-4 *4 (-844)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4)))))
-(-10 -7 (-15 -3220 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3220 (|#2| |#2| (-638 (-1 (-112) |#3|)))))
-((-3220 (((-315 (-561)) (-1166) (-638 (-1 (-112) |#1|))) 18) (((-315 (-561)) (-1166) (-1 (-112) |#1|)) 15)))
-(((-931 |#1|) (-10 -7 (-15 -3220 ((-315 (-561)) (-1166) (-1 (-112) |#1|))) (-15 -3220 ((-315 (-561)) (-1166) (-638 (-1 (-112) |#1|))))) (-1205)) (T -931))
-((-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-638 (-1 (-112) *5))) (-4 *5 (-1205)) (-5 *2 (-315 (-561))) (-5 *1 (-931 *5)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1205)) (-5 *2 (-315 (-561))) (-5 *1 (-931 *5)))))
-(-10 -7 (-15 -3220 ((-315 (-561)) (-1166) (-1 (-112) |#1|))) (-15 -3220 ((-315 (-561)) (-1166) (-638 (-1 (-112) |#1|)))))
-((-2199 (((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)) 25)))
-(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-1090) (-13 (-553) (-879 |#1|) (-609 (-885 |#1|))) (-985 |#2|)) (T -932))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-985 *6)) (-4 *6 (-13 (-553) (-879 *5) (-609 *4))) (-5 *4 (-885 *5)) (-5 *1 (-932 *5 *6 *3)))))
-(-10 -7 (-15 -2199 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))))
-((-2199 (((-882 |#1| (-1166)) (-1166) (-885 |#1|) (-882 |#1| (-1166))) 17)))
-(((-933 |#1|) (-10 -7 (-15 -2199 ((-882 |#1| (-1166)) (-1166) (-885 |#1|) (-882 |#1| (-1166))))) (-1090)) (T -933))
-((-2199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-5 *1 (-933 *5)))))
-(-10 -7 (-15 -2199 ((-882 |#1| (-1166)) (-1166) (-885 |#1|) (-882 |#1| (-1166)))))
-((-3379 (((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) 33)) (-2199 (((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-1 |#3| (-638 |#3|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) 32)))
-(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-1 |#3| (-638 |#3|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-15 -3379 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))))) (-1090) (-13 (-1042) (-844)) (-13 (-1042) (-609 (-885 |#1|)) (-1031 |#2|))) (T -934))
-((-3379 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-885 *6))) (-5 *5 (-1 (-882 *6 *8) *8 (-885 *6) (-882 *6 *8))) (-4 *6 (-1090)) (-4 *8 (-13 (-1042) (-609 (-885 *6)) (-1031 *7))) (-5 *2 (-882 *6 *8)) (-4 *7 (-13 (-1042) (-844))) (-5 *1 (-934 *6 *7 *8)))) (-2199 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-638 (-885 *7))) (-5 *5 (-1 *9 (-638 *9))) (-5 *6 (-1 (-882 *7 *9) *9 (-885 *7) (-882 *7 *9))) (-4 *7 (-1090)) (-4 *9 (-13 (-1042) (-609 (-885 *7)) (-1031 *8))) (-5 *2 (-882 *7 *9)) (-5 *3 (-638 *9)) (-4 *8 (-13 (-1042) (-844))) (-5 *1 (-934 *7 *8 *9)))))
-(-10 -7 (-15 -2199 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-1 |#3| (-638 |#3|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-15 -3379 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))))
-((-3373 (((-1162 (-406 (-561))) (-561)) 62)) (-2590 (((-1162 (-561)) (-561)) 65)) (-3506 (((-1162 (-561)) (-561)) 59)) (-3954 (((-561) (-1162 (-561))) 54)) (-1925 (((-1162 (-406 (-561))) (-561)) 48)) (-2732 (((-1162 (-561)) (-561)) 37)) (-3816 (((-1162 (-561)) (-561)) 67)) (-2181 (((-1162 (-561)) (-561)) 66)) (-3729 (((-1162 (-406 (-561))) (-561)) 50)))
-(((-935) (-10 -7 (-15 -3729 ((-1162 (-406 (-561))) (-561))) (-15 -2181 ((-1162 (-561)) (-561))) (-15 -3816 ((-1162 (-561)) (-561))) (-15 -2732 ((-1162 (-561)) (-561))) (-15 -1925 ((-1162 (-406 (-561))) (-561))) (-15 -3954 ((-561) (-1162 (-561)))) (-15 -3506 ((-1162 (-561)) (-561))) (-15 -2590 ((-1162 (-561)) (-561))) (-15 -3373 ((-1162 (-406 (-561))) (-561))))) (T -935))
-((-3373 (*1 *2 *3) (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-3506 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-561)) (-5 *1 (-935)))) (-1925 (*1 *2 *3) (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2732 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-3816 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2181 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(-10 -7 (-15 -3729 ((-1162 (-406 (-561))) (-561))) (-15 -2181 ((-1162 (-561)) (-561))) (-15 -3816 ((-1162 (-561)) (-561))) (-15 -2732 ((-1162 (-561)) (-561))) (-15 -1925 ((-1162 (-406 (-561))) (-561))) (-15 -3954 ((-561) (-1162 (-561)))) (-15 -3506 ((-1162 (-561)) (-561))) (-15 -2590 ((-1162 (-561)) (-561))) (-15 -3373 ((-1162 (-406 (-561))) (-561))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2920 (($ (-765)) NIL (|has| |#1| (-23)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) |#1|) 11 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-1507 (($ (-638 |#1|)) 13)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-2832 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-1458 (($ (-765) |#1|) 8)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 10 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1463 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3683 (((-112) $ (-765)) NIL)) (-4310 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-3702 (($ $ (-638 |#1|)) 26)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 20) (($ $ (-1221 (-561))) NIL)) (-3634 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2390 (((-914) $) 16)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-3738 (($ $ $) 24)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534)))) (($ (-638 |#1|)) 17)) (-4078 (($ (-638 |#1|)) NIL)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1819 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1810 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-561) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-3548 (((-765) $) 14 (|has| $ (-6 -4399)))))
+((-4353 (((-313 |#1|) (-475)) 16)))
+(((-913 |#1|) (-10 -7 (-15 -4353 ((-313 |#1|) (-475)))) (-13 (-844) (-554))) (T -913))
+((-4353 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *2 (-313 *4)) (-5 *1 (-913 *4)) (-4 *4 (-13 (-844) (-554))))))
+(-10 -7 (-15 -4353 ((-313 |#1|) (-475))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
+(((-914) (-139)) (T -914))
+((-3123 (*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-2 (|:| -4361 (-635 *1)) (|:| -2544 *1))) (-5 *3 (-635 *1)))) (-3122 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-914)))))
+(-13 (-450) (-10 -8 (-15 -3123 ((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $))) (-15 -3122 ((-3 (-635 $) "failed") (-635 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-3491 (((-1160 |#2|) (-635 |#2|) (-635 |#2|)) 17) (((-1222 |#1| |#2|) (-1222 |#1| |#2|) (-635 |#2|) (-635 |#2|)) 13)))
+(((-915 |#1| |#2|) (-10 -7 (-15 -3491 ((-1222 |#1| |#2|) (-1222 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -3491 ((-1160 |#2|) (-635 |#2|) (-635 |#2|)))) (-1166) (-362)) (T -915))
+((-3491 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1160 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-1166)))) (-3491 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1222 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1166)) (-4 *5 (-362)) (-5 *1 (-915 *4 *5)))))
+(-10 -7 (-15 -3491 ((-1222 |#1| |#2|) (-1222 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -3491 ((-1160 |#2|) (-635 |#2|) (-635 |#2|))))
+((-3124 ((|#2| (-635 |#1|) (-635 |#1|)) 24)))
+(((-916 |#1| |#2|) (-10 -7 (-15 -3124 (|#2| (-635 |#1|) (-635 |#1|)))) (-362) (-1229 |#1|)) (T -916))
+((-3124 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1229 *4)) (-5 *1 (-916 *4 *2)))))
+(-10 -7 (-15 -3124 (|#2| (-635 |#1|) (-635 |#1|))))
+((-3126 (((-544) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148)) 139)) (-3145 ((|#4| |#4|) 155)) (-3130 (((-635 (-406 (-939 |#1|))) (-635 (-1166))) 119)) (-3144 (((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-635 (-635 |#4|)) (-765) (-765) (-544)) 75)) (-3134 (((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-635 |#4|)) 59)) (-3143 (((-682 |#4|) (-682 |#4|) (-635 |#4|)) 55)) (-3127 (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148)) 151)) (-3125 (((-544) (-682 |#4|) (-912) (-1148)) 133) (((-544) (-682 |#4|) (-635 (-1166)) (-912) (-1148)) 132) (((-544) (-682 |#4|) (-635 |#4|) (-912) (-1148)) 131) (((-544) (-682 |#4|) (-1148)) 128) (((-544) (-682 |#4|) (-635 (-1166)) (-1148)) 127) (((-544) (-682 |#4|) (-635 |#4|) (-1148)) 126) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-912)) 125) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)) (-912)) 124) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|) (-912)) 123) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|)) 121) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166))) 120) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|)) 116)) (-3131 ((|#4| (-939 |#1|)) 68)) (-3141 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 152)) (-3140 (((-635 (-635 (-544))) (-544) (-544)) 130)) (-3139 (((-635 (-635 |#4|)) (-635 (-635 |#4|))) 88)) (-3138 (((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|))))) 86)) (-3137 (((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|))))) 85)) (-3146 (((-112) (-635 (-939 |#1|))) 17) (((-112) (-635 |#4|)) 13)) (-3132 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|)) 71)) (-3136 (((-635 |#4|) |#4|) 49)) (-3129 (((-635 (-406 (-939 |#1|))) (-635 |#4|)) 115) (((-682 (-406 (-939 |#1|))) (-682 |#4|)) 56) (((-406 (-939 |#1|)) |#4|) 112)) (-3128 (((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))))) (|:| |rgsz| (-544))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-765) (-1148) (-544)) 93)) (-3133 (((-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))) (-682 |#4|) (-765)) 84)) (-3142 (((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-682 |#4|) (-765)) 102)) (-3135 (((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| -1728 (-682 (-406 (-939 |#1|)))) (|:| |vec| (-635 (-406 (-939 |#1|)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) 48)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-912))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-912) (-1148))) (-15 -3126 ((-544) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3127 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3128 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))))) (|:| |rgsz| (-544))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-765) (-1148) (-544))) (-15 -3129 ((-406 (-939 |#1|)) |#4|)) (-15 -3129 ((-682 (-406 (-939 |#1|))) (-682 |#4|))) (-15 -3129 ((-635 (-406 (-939 |#1|))) (-635 |#4|))) (-15 -3130 ((-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3131 (|#4| (-939 |#1|))) (-15 -3132 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3133 ((-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))) (-682 |#4|) (-765))) (-15 -3134 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-635 |#4|))) (-15 -3135 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| -1728 (-682 (-406 (-939 |#1|)))) (|:| |vec| (-635 (-406 (-939 |#1|)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (-15 -3136 ((-635 |#4|) |#4|)) (-15 -3137 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3138 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3139 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3140 ((-635 (-635 (-544))) (-544) (-544))) (-15 -3141 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3142 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-682 |#4|) (-765))) (-15 -3143 ((-682 |#4|) (-682 |#4|) (-635 |#4|))) (-15 -3144 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-635 (-635 |#4|)) (-765) (-765) (-544))) (-15 -3145 (|#4| |#4|)) (-15 -3146 ((-112) (-635 |#4|))) (-15 -3146 ((-112) (-635 (-939 |#1|))))) (-13 (-306) (-146)) (-13 (-844) (-609 (-1166))) (-787) (-943 |#1| |#3| |#2|)) (T -917))
+((-3146 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-943 *3 *5 *4)))) (-3144 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-5 *4 (-682 *12)) (-5 *5 (-635 (-406 (-939 *9)))) (-5 *6 (-635 (-635 *12))) (-5 *7 (-765)) (-5 *8 (-544)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-943 *9 *11 *10)) (-4 *10 (-13 (-844) (-609 (-1166)))) (-4 *11 (-787)) (-5 *2 (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12)) (|:| |wcond| (-635 (-939 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *9)))) (|:| -2162 (-635 (-1253 (-406 (-939 *9))))))))) (-5 *1 (-917 *9 *10 *11 *12)))) (-3143 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *7)) (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-544)) (-4 *7 (-943 *4 *6 *5)))) (-3139 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-943 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3136 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-943 *4 *6 *5)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1728 (-682 (-406 (-939 *4)))) (|:| |vec| (-635 (-406 (-939 *4)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))) (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-943 *4 *6 *5)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 *8))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765)))) (-3132 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-4 *7 (-943 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-943 *4 *6 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-682 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3129 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-406 (-939 *4))) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-943 *4 *6 *5)))) (-3128 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-682 *11)) (-5 *4 (-635 (-406 (-939 *8)))) (-5 *5 (-765)) (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-943 *8 *10 *9)) (-4 *9 (-13 (-844) (-609 (-1166)))) (-4 *10 (-787)) (-5 *2 (-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11)) (|:| |wcond| (-635 (-939 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *8)))) (|:| -2162 (-635 (-1253 (-406 (-939 *8)))))))))) (|:| |rgsz| (-544)))) (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-544)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-939 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-943 *5 *7 *6)) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-912)) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 (-1166))) (-5 *5 (-912)) (-5 *6 (-1148)) (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *7 *8 *9 *10)))) (-3125 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 *10)) (-5 *5 (-912)) (-5 *6 (-1148)) (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *7 *8 *9 *10)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-912)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-912)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-939 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *6)))) (|:| -2162 (-635 (-1253 (-406 (-939 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *5 (-912)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-939 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *6)))) (|:| -2162 (-635 (-1253 (-406 (-939 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-635 *9)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-939 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-635 (-1166))) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+(-10 -7 (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-912))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-912) (-1148))) (-15 -3126 ((-544) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3127 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3128 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))))) (|:| |rgsz| (-544))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-765) (-1148) (-544))) (-15 -3129 ((-406 (-939 |#1|)) |#4|)) (-15 -3129 ((-682 (-406 (-939 |#1|))) (-682 |#4|))) (-15 -3129 ((-635 (-406 (-939 |#1|))) (-635 |#4|))) (-15 -3130 ((-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3131 (|#4| (-939 |#1|))) (-15 -3132 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3133 ((-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))) (-682 |#4|) (-765))) (-15 -3134 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-635 |#4|))) (-15 -3135 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| -1728 (-682 (-406 (-939 |#1|)))) (|:| |vec| (-635 (-406 (-939 |#1|)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (-15 -3136 ((-635 |#4|) |#4|)) (-15 -3137 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3138 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3139 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3140 ((-635 (-635 (-544))) (-544) (-544))) (-15 -3141 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3142 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-682 |#4|) (-765))) (-15 -3143 ((-682 |#4|) (-682 |#4|) (-635 |#4|))) (-15 -3144 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-635 (-635 |#4|)) (-765) (-765) (-544))) (-15 -3145 (|#4| |#4|)) (-15 -3146 ((-112) (-635 |#4|))) (-15 -3146 ((-112) (-635 (-939 |#1|)))))
+((-4281 (($ $ (-1079 (-224))) 69) (($ $ (-1079 (-224)) (-1079 (-224))) 70)) (-3279 (((-1079 (-224)) $) 44)) (-3280 (((-1079 (-224)) $) 43)) (-3170 (((-1079 (-224)) $) 45)) (-3151 (((-544) (-544)) 37)) (-3155 (((-544) (-544)) 33)) (-3153 (((-544) (-544)) 35)) (-3149 (((-112) (-112)) 39)) (-3152 (((-544)) 36)) (-3519 (($ $ (-1079 (-224))) 73) (($ $) 74)) (-3172 (($ (-1 (-936 (-224)) (-224)) (-1079 (-224))) 83) (($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 84)) (-3158 (($ (-1 (-224) (-224)) (-1079 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-3171 (($ (-1 (-224) (-224)) (-1079 (-224))) 78) (($ (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224))) 79) (($ (-635 (-1 (-224) (-224))) (-1079 (-224))) 86) (($ (-635 (-1 (-224) (-224))) (-1079 (-224)) (-1079 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 81) (($ $ (-1079 (-224))) 75)) (-3157 (((-112) $) 40)) (-3148 (((-544)) 41)) (-3156 (((-544)) 32)) (-3154 (((-544)) 34)) (-3281 (((-635 (-635 (-936 (-224)))) $) 23)) (-3147 (((-112) (-112)) 42)) (-4353 (((-857) $) 105)) (-3150 (((-112)) 38)))
+(((-918) (-13 (-948) (-10 -8 (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -3157 ((-112) $)) (-15 -4281 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3156 ((-544))) (-15 -3155 ((-544) (-544))) (-15 -3154 ((-544))) (-15 -3153 ((-544) (-544))) (-15 -3152 ((-544))) (-15 -3151 ((-544) (-544))) (-15 -3150 ((-112))) (-15 -3149 ((-112) (-112))) (-15 -3148 ((-544))) (-15 -3147 ((-112) (-112)))))) (T -918))
+((-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3172 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3158 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-4281 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3519 (*1 *1 *1) (-5 *1 (-918))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3156 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3154 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3152 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3150 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))) (-3148 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3147 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))))
+(-13 (-948) (-10 -8 (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -3157 ((-112) $)) (-15 -4281 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3156 ((-544))) (-15 -3155 ((-544) (-544))) (-15 -3154 ((-544))) (-15 -3153 ((-544) (-544))) (-15 -3152 ((-544))) (-15 -3151 ((-544) (-544))) (-15 -3150 ((-112))) (-15 -3149 ((-112) (-112))) (-15 -3148 ((-544))) (-15 -3147 ((-112) (-112)))))
+((-3158 (((-918) |#1| (-1166)) 17) (((-918) |#1| (-1166) (-1079 (-224))) 21)) (-3171 (((-918) |#1| |#1| (-1166) (-1079 (-224))) 19) (((-918) |#1| (-1166) (-1079 (-224))) 15)))
+(((-919 |#1|) (-10 -7 (-15 -3171 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3171 ((-918) |#1| |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166)))) (-609 (-533))) (T -919))
+((-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))) (-3158 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))) (-3171 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))) (-3171 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))))
+(-10 -7 (-15 -3171 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3171 ((-918) |#1| |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166))))
+((-4281 (($ $ (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 69)) (-3278 (((-1079 (-224)) $) 40)) (-3279 (((-1079 (-224)) $) 39)) (-3280 (((-1079 (-224)) $) 38)) (-3169 (((-635 (-635 (-224))) $) 43)) (-3170 (((-1079 (-224)) $) 41)) (-3163 (((-544) (-544)) 32)) (-3167 (((-544) (-544)) 28)) (-3165 (((-544) (-544)) 30)) (-3161 (((-112) (-112)) 35)) (-3164 (((-544)) 31)) (-3519 (($ $ (-1079 (-224))) 72) (($ $) 73)) (-3172 (($ (-1 (-936 (-224)) (-224)) (-1079 (-224))) 77) (($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 78)) (-3171 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 81) (($ $ (-1079 (-224))) 75)) (-3160 (((-544)) 36)) (-3168 (((-544)) 27)) (-3166 (((-544)) 29)) (-3281 (((-635 (-635 (-936 (-224)))) $) 93)) (-3159 (((-112) (-112)) 37)) (-4353 (((-857) $) 92)) (-3162 (((-112)) 34)))
+(((-920) (-13 (-967) (-10 -8 (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3169 ((-635 (-635 (-224))) $)) (-15 -3168 ((-544))) (-15 -3167 ((-544) (-544))) (-15 -3166 ((-544))) (-15 -3165 ((-544) (-544))) (-15 -3164 ((-544))) (-15 -3163 ((-544) (-544))) (-15 -3162 ((-112))) (-15 -3161 ((-112) (-112))) (-15 -3160 ((-544))) (-15 -3159 ((-112) (-112)))))) (T -920))
+((-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3172 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3171 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3171 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-4281 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-3519 (*1 *1 *1) (-5 *1 (-920))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-920)))) (-3168 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3167 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3166 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3164 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3162 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-3160 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3159 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(-13 (-967) (-10 -8 (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3169 ((-635 (-635 (-224))) $)) (-15 -3168 ((-544))) (-15 -3167 ((-544) (-544))) (-15 -3166 ((-544))) (-15 -3165 ((-544) (-544))) (-15 -3164 ((-544))) (-15 -3163 ((-544) (-544))) (-15 -3162 ((-112))) (-15 -3161 ((-112) (-112))) (-15 -3160 ((-544))) (-15 -3159 ((-112) (-112)))))
+((-3173 (((-635 (-1079 (-224))) (-635 (-635 (-936 (-224))))) 24)))
+(((-921) (-10 -7 (-15 -3173 ((-635 (-1079 (-224))) (-635 (-635 (-936 (-224)))))))) (T -921))
+((-3173 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-1079 (-224)))) (-5 *1 (-921)))))
+(-10 -7 (-15 -3173 ((-635 (-1079 (-224))) (-635 (-635 (-936 (-224)))))))
+((-3175 (((-313 (-544)) (-1166)) 16)) (-3176 (((-313 (-544)) (-1166)) 14)) (-4359 (((-313 (-544)) (-1166)) 12)) (-3174 (((-313 (-544)) (-1166) (-1148)) 19)))
+(((-922) (-10 -7 (-15 -3174 ((-313 (-544)) (-1166) (-1148))) (-15 -4359 ((-313 (-544)) (-1166))) (-15 -3175 ((-313 (-544)) (-1166))) (-15 -3176 ((-313 (-544)) (-1166))))) (T -922))
+((-3176 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) (-3174 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))))
+(-10 -7 (-15 -3174 ((-313 (-544)) (-1166) (-1148))) (-15 -4359 ((-313 (-544)) (-1166))) (-15 -3175 ((-313 (-544)) (-1166))) (-15 -3176 ((-313 (-544)) (-1166))))
+((-3175 ((|#2| |#2|) 26)) (-3176 ((|#2| |#2|) 27)) (-4359 ((|#2| |#2|) 25)) (-3174 ((|#2| |#2| (-1148)) 24)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -3174 (|#2| |#2| (-1148))) (-15 -4359 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3176 (|#2| |#2|))) (-844) (-420 |#1|)) (T -923))
+((-3176 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))) (-4359 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))) (-3174 (*1 *2 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-923 *4 *2)) (-4 *2 (-420 *4)))))
+(-10 -7 (-15 -3174 (|#2| |#2| (-1148))) (-15 -4359 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)))
+((-3178 (((-881 |#1| |#3|) |#2| (-883 |#1|) (-881 |#1| |#3|)) 25)) (-3177 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-924 |#1| |#2| |#3|) (-10 -7 (-15 -3177 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3178 ((-881 |#1| |#3|) |#2| (-883 |#1|) (-881 |#1| |#3|)))) (-1091) (-879 |#1|) (-13 (-1091) (-1031 |#2|))) (T -924))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-13 (-1091) (-1031 *3))) (-4 *3 (-879 *5)) (-5 *1 (-924 *5 *3 *6)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1091) (-1031 *5))) (-4 *5 (-879 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-924 *4 *5 *6)))))
+(-10 -7 (-15 -3177 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3178 ((-881 |#1| |#3|) |#2| (-883 |#1|) (-881 |#1| |#3|))))
+((-3178 (((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)) 30)))
+(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-1091) (-13 (-554) (-844) (-879 |#1|)) (-13 (-420 |#2|) (-609 (-883 |#1|)) (-879 |#1|) (-1031 (-606 $)))) (T -925))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-13 (-420 *6) (-609 *4) (-879 *5) (-1031 (-606 $)))) (-5 *4 (-883 *5)) (-4 *6 (-13 (-554) (-844) (-879 *5))) (-5 *1 (-925 *5 *6 *3)))))
+(-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))))
+((-3178 (((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|)) 13)))
+(((-926 |#1|) (-10 -7 (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|)))) (-543)) (T -926))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 (-544) *3)) (-5 *4 (-883 (-544))) (-4 *3 (-543)) (-5 *1 (-926 *3)))))
+(-10 -7 (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))))
+((-3178 (((-881 |#1| |#2|) (-606 |#2|) (-883 |#1|) (-881 |#1| |#2|)) 54)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -3178 ((-881 |#1| |#2|) (-606 |#2|) (-883 |#1|) (-881 |#1| |#2|)))) (-1091) (-13 (-844) (-1031 (-606 $)) (-609 (-883 |#1|)) (-879 |#1|))) (T -927))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6)) (-5 *3 (-606 *6)) (-4 *5 (-1091)) (-4 *6 (-13 (-844) (-1031 (-606 $)) (-609 *4) (-879 *5))) (-5 *4 (-883 *5)) (-5 *1 (-927 *5 *6)))))
+(-10 -7 (-15 -3178 ((-881 |#1| |#2|) (-606 |#2|) (-883 |#1|) (-881 |#1| |#2|))))
+((-3178 (((-878 |#1| |#2| |#3|) |#3| (-883 |#1|) (-878 |#1| |#2| |#3|)) 15)))
+(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-878 |#1| |#2| |#3|) |#3| (-883 |#1|) (-878 |#1| |#2| |#3|)))) (-1091) (-879 |#1|) (-659 |#2|)) (T -928))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-879 *5)) (-4 *3 (-659 *6)) (-5 *1 (-928 *5 *6 *3)))))
+(-10 -7 (-15 -3178 ((-878 |#1| |#2| |#3|) |#3| (-883 |#1|) (-878 |#1| |#2| |#3|))))
+((-3178 (((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|)) 17 (|has| |#3| (-879 |#1|))) (((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|) (-1 (-881 |#1| |#5|) |#3| (-883 |#1|) (-881 |#1| |#5|))) 16)))
+(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|) (-1 (-881 |#1| |#5|) |#3| (-883 |#1|) (-881 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|))) |%noBranch|)) (-1091) (-787) (-844) (-13 (-1042) (-844) (-879 |#1|)) (-13 (-943 |#4| |#2| |#3|) (-609 (-883 |#1|)))) (T -929))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-13 (-943 *8 *6 *7) (-609 *4))) (-5 *4 (-883 *5)) (-4 *7 (-879 *5)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-13 (-1042) (-844) (-879 *5))) (-5 *1 (-929 *5 *6 *7 *8 *3)))) (-3178 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-881 *6 *3) *8 (-883 *6) (-881 *6 *3))) (-4 *8 (-844)) (-5 *2 (-881 *6 *3)) (-5 *4 (-883 *6)) (-4 *6 (-1091)) (-4 *3 (-13 (-943 *9 *7 *8) (-609 *4))) (-4 *7 (-787)) (-4 *9 (-13 (-1042) (-844) (-879 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|) (-1 (-881 |#1| |#5|) |#3| (-883 |#1|) (-881 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|))) |%noBranch|))
+((-3610 (((-313 (-544)) (-1166) (-635 (-1 (-112) |#1|))) 18) (((-313 (-544)) (-1166) (-1 (-112) |#1|)) 15)))
+(((-930 |#1|) (-10 -7 (-15 -3610 ((-313 (-544)) (-1166) (-1 (-112) |#1|))) (-15 -3610 ((-313 (-544)) (-1166) (-635 (-1 (-112) |#1|))))) (-1204)) (T -930))
+((-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1204)) (-5 *2 (-313 (-544))) (-5 *1 (-930 *5)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1204)) (-5 *2 (-313 (-544))) (-5 *1 (-930 *5)))))
+(-10 -7 (-15 -3610 ((-313 (-544)) (-1166) (-1 (-112) |#1|))) (-15 -3610 ((-313 (-544)) (-1166) (-635 (-1 (-112) |#1|)))))
+((-3610 ((|#2| |#2| (-635 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3610 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3610 (|#2| |#2| (-635 (-1 (-112) |#3|))))) (-844) (-420 |#1|) (-1204)) (T -931))
+((-3610 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1204)) (-4 *4 (-844)) (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1204)) (-4 *4 (-844)) (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4)))))
+(-10 -7 (-15 -3610 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3610 (|#2| |#2| (-635 (-1 (-112) |#3|)))))
+((-3178 (((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)) 25)))
+(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-1091) (-13 (-554) (-879 |#1|) (-609 (-883 |#1|))) (-984 |#2|)) (T -932))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-984 *6)) (-4 *6 (-13 (-554) (-879 *5) (-609 *4))) (-5 *4 (-883 *5)) (-5 *1 (-932 *5 *6 *3)))))
+(-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))))
+((-3178 (((-881 |#1| (-1166)) (-1166) (-883 |#1|) (-881 |#1| (-1166))) 17)))
+(((-933 |#1|) (-10 -7 (-15 -3178 ((-881 |#1| (-1166)) (-1166) (-883 |#1|) (-881 |#1| (-1166))))) (-1091)) (T -933))
+((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-5 *1 (-933 *5)))))
+(-10 -7 (-15 -3178 ((-881 |#1| (-1166)) (-1166) (-883 |#1|) (-881 |#1| (-1166)))))
+((-3179 (((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) 33)) (-3178 (((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-1 |#3| (-635 |#3|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) 32)))
+(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-1 |#3| (-635 |#3|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-15 -3179 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))))) (-1091) (-13 (-1042) (-844)) (-13 (-1042) (-609 (-883 |#1|)) (-1031 |#2|))) (T -934))
+((-3179 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-883 *6))) (-5 *5 (-1 (-881 *6 *8) *8 (-883 *6) (-881 *6 *8))) (-4 *6 (-1091)) (-4 *8 (-13 (-1042) (-609 (-883 *6)) (-1031 *7))) (-5 *2 (-881 *6 *8)) (-4 *7 (-13 (-1042) (-844))) (-5 *1 (-934 *6 *7 *8)))) (-3178 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-635 (-883 *7))) (-5 *5 (-1 *9 (-635 *9))) (-5 *6 (-1 (-881 *7 *9) *9 (-883 *7) (-881 *7 *9))) (-4 *7 (-1091)) (-4 *9 (-13 (-1042) (-609 (-883 *7)) (-1031 *8))) (-5 *2 (-881 *7 *9)) (-5 *3 (-635 *9)) (-4 *8 (-13 (-1042) (-844))) (-5 *1 (-934 *7 *8 *9)))))
+(-10 -7 (-15 -3178 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-1 |#3| (-635 |#3|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-15 -3179 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))))
+((-3187 (((-1160 (-406 (-544))) (-544)) 62)) (-3186 (((-1160 (-544)) (-544)) 65)) (-3738 (((-1160 (-544)) (-544)) 59)) (-3185 (((-544) (-1160 (-544))) 54)) (-3184 (((-1160 (-406 (-544))) (-544)) 48)) (-3183 (((-1160 (-544)) (-544)) 37)) (-3182 (((-1160 (-544)) (-544)) 67)) (-3181 (((-1160 (-544)) (-544)) 66)) (-3180 (((-1160 (-406 (-544))) (-544)) 50)))
+(((-935) (-10 -7 (-15 -3180 ((-1160 (-406 (-544))) (-544))) (-15 -3181 ((-1160 (-544)) (-544))) (-15 -3182 ((-1160 (-544)) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -3184 ((-1160 (-406 (-544))) (-544))) (-15 -3185 ((-544) (-1160 (-544)))) (-15 -3738 ((-1160 (-544)) (-544))) (-15 -3186 ((-1160 (-544)) (-544))) (-15 -3187 ((-1160 (-406 (-544))) (-544))))) (T -935))
+((-3187 (*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3186 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-544)) (-5 *1 (-935)))) (-3184 (*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3183 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3182 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3181 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3180 (*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(-10 -7 (-15 -3180 ((-1160 (-406 (-544))) (-544))) (-15 -3181 ((-1160 (-544)) (-544))) (-15 -3182 ((-1160 (-544)) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -3184 ((-1160 (-406 (-544))) (-544))) (-15 -3185 ((-544) (-1160 (-544)))) (-15 -3738 ((-1160 (-544)) (-544))) (-15 -3186 ((-1160 (-544)) (-544))) (-15 -3187 ((-1160 (-406 (-544))) (-544))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765)) NIL (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 11 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-4113 (($ (-635 |#1|)) 13)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) 8)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 10 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4239 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-4123 (((-112) $ (-765)) NIL)) (-4240 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-4175 (($ $ (-635 |#1|)) 26)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 20) (($ $ (-1220 (-544))) NIL)) (-4243 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-4318 (((-912) $) 16)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4241 (($ $ $) 24)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533)))) (($ (-635 |#1|)) 17)) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4246 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-544) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-4364 (((-765) $) 14 (|has| $ (-6 -4400)))))
(((-936 |#1|) (-973 |#1|) (-1042)) (T -936))
NIL
(-973 |#1|)
-((-3231 (((-479 |#1| |#2|) (-945 |#2|)) 20)) (-2955 (((-246 |#1| |#2|) (-945 |#2|)) 33)) (-3980 (((-945 |#2|) (-479 |#1| |#2|)) 25)) (-1704 (((-246 |#1| |#2|) (-479 |#1| |#2|)) 55)) (-2215 (((-945 |#2|) (-246 |#1| |#2|)) 30)) (-3294 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 46)))
-(((-937 |#1| |#2|) (-10 -7 (-15 -3294 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -1704 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3231 ((-479 |#1| |#2|) (-945 |#2|))) (-15 -3980 ((-945 |#2|) (-479 |#1| |#2|))) (-15 -2215 ((-945 |#2|) (-246 |#1| |#2|))) (-15 -2955 ((-246 |#1| |#2|) (-945 |#2|)))) (-638 (-1166)) (-1042)) (T -937))
-((-2955 (*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)))))
-(-10 -7 (-15 -3294 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -1704 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3231 ((-479 |#1| |#2|) (-945 |#2|))) (-15 -3980 ((-945 |#2|) (-479 |#1| |#2|))) (-15 -2215 ((-945 |#2|) (-246 |#1| |#2|))) (-15 -2955 ((-246 |#1| |#2|) (-945 |#2|))))
-((-3098 (((-638 |#2|) |#2| |#2|) 10)) (-3110 (((-765) (-638 |#1|)) 37 (|has| |#1| (-842)))) (-2419 (((-638 |#2|) |#2|) 11)) (-1500 (((-765) (-638 |#1|) (-561) (-561)) 39 (|has| |#1| (-842)))) (-1917 ((|#1| |#2|) 32 (|has| |#1| (-842)))))
-(((-938 |#1| |#2|) (-10 -7 (-15 -3098 ((-638 |#2|) |#2| |#2|)) (-15 -2419 ((-638 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -1917 (|#1| |#2|)) (-15 -3110 ((-765) (-638 |#1|))) (-15 -1500 ((-765) (-638 |#1|) (-561) (-561)))) |%noBranch|)) (-362) (-1230 |#1|)) (T -938))
-((-1500 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-561)) (-4 *5 (-842)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1230 *5)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *4 *5)) (-4 *5 (-1230 *4)))) (-1917 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1230 *2)))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1230 *4)))) (-3098 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -3098 ((-638 |#2|) |#2| |#2|)) (-15 -2419 ((-638 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -1917 (|#1| |#2|)) (-15 -3110 ((-765) (-638 |#1|))) (-15 -1500 ((-765) (-638 |#1|) (-561) (-561)))) |%noBranch|))
-((-4165 (((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)) 19)))
-(((-939 |#1| |#2|) (-10 -7 (-15 -4165 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) (-1042) (-1042)) (T -939))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-945 *6)) (-5 *1 (-939 *5 *6)))))
-(-10 -7 (-15 -4165 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|))))
-((-1596 (((-1227 |#1| (-945 |#2|)) (-945 |#2|) (-1250 |#1|)) 18)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -1596 ((-1227 |#1| (-945 |#2|)) (-945 |#2|) (-1250 |#1|)))) (-1166) (-1042)) (T -940))
-((-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-1250 *5)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-5 *2 (-1227 *5 (-945 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-945 *6)))))
-(-10 -7 (-15 -1596 ((-1227 |#1| (-945 |#2|)) (-945 |#2|) (-1250 |#1|))))
-((-3827 (((-765) $) 71) (((-765) $ (-638 |#4|)) 74)) (-2557 (($ $) 172)) (-3552 (((-417 $) $) 164)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 115)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3979 ((|#2| $) NIL) (((-406 (-561)) $) NIL) (((-561) $) NIL) ((|#4| $) 59)) (-2395 (($ $ $ |#4|) 76)) (-3720 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) 105) (((-682 |#2|) (-682 $)) 98)) (-4229 (($ $) 179) (($ $ |#4|) 182)) (-1584 (((-638 $) $) 63)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 198) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 191)) (-1859 (((-638 $) $) 28)) (-1381 (($ |#2| |#3|) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-638 |#4|) (-638 (-765))) 57)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |#4|) 161)) (-4174 (((-3 (-638 $) "failed") $) 42)) (-2540 (((-3 (-638 $) "failed") $) 31)) (-3276 (((-3 (-2 (|:| |var| |#4|) (|:| -4181 (-765))) "failed") $) 47)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 108)) (-4328 (((-417 (-1162 $)) (-1162 $)) 121)) (-3035 (((-417 (-1162 $)) (-1162 $)) 119)) (-1633 (((-417 $) $) 139)) (-1436 (($ $ (-638 (-293 $))) 21) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-638 |#4|) (-638 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-638 |#4|) (-638 $)) NIL)) (-2753 (($ $ |#4|) 78)) (-4216 (((-885 (-378)) $) 212) (((-885 (-561)) $) 205) (((-534) $) 220)) (-2125 ((|#2| $) NIL) (($ $ |#4|) 174)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 153)) (-3932 ((|#2| $ |#3|) NIL) (($ $ |#4| (-765)) 52) (($ $ (-638 |#4|) (-638 (-765))) 55)) (-3666 (((-3 $ "failed") $) 155)) (-1746 (((-112) $ $) 185)))
-(((-941 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -3035 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -4328 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2881 ((-3 (-1254 |#1|) "failed") (-682 |#1|))) (-15 -4229 (|#1| |#1| |#4|)) (-15 -2125 (|#1| |#1| |#4|)) (-15 -2753 (|#1| |#1| |#4|)) (-15 -2395 (|#1| |#1| |#1| |#4|)) (-15 -1584 ((-638 |#1|) |#1|)) (-15 -3827 ((-765) |#1| (-638 |#4|))) (-15 -3827 ((-765) |#1|)) (-15 -3276 ((-3 (-2 (|:| |var| |#4|) (|:| -4181 (-765))) "failed") |#1|)) (-15 -4174 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -2540 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1381 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -1381 (|#1| |#1| |#4| (-765))) (-15 -4362 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1| |#4|)) (-15 -1859 ((-638 |#1|) |#1|)) (-15 -3932 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -3932 (|#1| |#1| |#4| (-765))) (-15 -3720 ((-682 |#2|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -4061 ((-3 |#4| "failed") |#1|)) (-15 -3979 (|#4| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#4| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#4| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1381 (|#1| |#2| |#3|)) (-15 -3932 (|#2| |#1| |#3|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -4229 (|#1| |#1|))) (-942 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -941))
-NIL
-(-10 -8 (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -3666 ((-3 |#1| "failed") |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -3035 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -4328 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2881 ((-3 (-1254 |#1|) "failed") (-682 |#1|))) (-15 -4229 (|#1| |#1| |#4|)) (-15 -2125 (|#1| |#1| |#4|)) (-15 -2753 (|#1| |#1| |#4|)) (-15 -2395 (|#1| |#1| |#1| |#4|)) (-15 -1584 ((-638 |#1|) |#1|)) (-15 -3827 ((-765) |#1| (-638 |#4|))) (-15 -3827 ((-765) |#1|)) (-15 -3276 ((-3 (-2 (|:| |var| |#4|) (|:| -4181 (-765))) "failed") |#1|)) (-15 -4174 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -2540 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1381 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -1381 (|#1| |#1| |#4| (-765))) (-15 -4362 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1| |#4|)) (-15 -1859 ((-638 |#1|) |#1|)) (-15 -3932 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -3932 (|#1| |#1| |#4| (-765))) (-15 -3720 ((-682 |#2|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -4061 ((-3 |#4| "failed") |#1|)) (-15 -3979 (|#4| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#4| |#1|)) (-15 -1436 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1436 (|#1| |#1| |#4| |#2|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1381 (|#1| |#2| |#3|)) (-15 -3932 (|#2| |#1| |#3|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -4229 (|#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 |#3|) $) 110)) (-1596 (((-1162 $) $ |#3|) 125) (((-1162 |#1|) $) 124)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-3012 (($ $) 88 (|has| |#1| (-553)))) (-3163 (((-112) $) 90 (|has| |#1| (-553)))) (-3827 (((-765) $) 112) (((-765) $ (-638 |#3|)) 111)) (-2979 (((-3 $ "failed") $ $) 19)) (-2128 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-2557 (($ $) 98 (|has| |#1| (-450)))) (-3552 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) 136)) (-3979 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) ((|#3| $) 137)) (-2395 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1598 (($ $) 154)) (-3720 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3735 (((-3 $ "failed") $) 33)) (-4229 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-1584 (((-638 $) $) 109)) (-2725 (((-112) $) 96 (|has| |#1| (-902)))) (-3227 (($ $ |#1| |#2| $) 172)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| |#3| (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| |#3| (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-2252 (((-112) $) 31)) (-2044 (((-765) $) 169)) (-1393 (($ (-1162 |#1|) |#3|) 117) (($ (-1162 $) |#3|) 116)) (-1859 (((-638 $) $) 126)) (-1750 (((-112) $) 152)) (-1381 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-638 |#3|) (-638 (-765))) 118)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |#3|) 120)) (-1522 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-638 (-765)) $ (-638 |#3|)) 121)) (-1597 (($ $ $) 79 (|has| |#1| (-844)))) (-3017 (($ $ $) 78 (|has| |#1| (-844)))) (-1368 (($ (-1 |#2| |#2|) $) 171)) (-4165 (($ (-1 |#1| |#1|) $) 151)) (-2830 (((-3 |#3| "failed") $) 123)) (-1557 (($ $) 149)) (-1572 ((|#1| $) 148)) (-1563 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-1883 (((-1148) $) 9)) (-4174 (((-3 (-638 $) "failed") $) 114)) (-2540 (((-3 (-638 $) "failed") $) 115)) (-3276 (((-3 (-2 (|:| |var| |#3|) (|:| -4181 (-765))) "failed") $) 113)) (-1701 (((-1110) $) 10)) (-1530 (((-112) $) 166)) (-1542 ((|#1| $) 167)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1603 (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1633 (((-417 $) $) 99 (|has| |#1| (-902)))) (-1748 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-638 |#3|) (-638 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-638 |#3|) (-638 $)) 138)) (-2753 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3922 (($ $ |#3|) 42) (($ $ (-638 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-638 |#3|) (-638 (-765))) 39)) (-3768 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-638 (-765)) $ (-638 |#3|)) 129)) (-4216 (((-885 (-378)) $) 82 (-12 (|has| |#3| (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| |#3| (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| |#3| (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 104 (-2198 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-553))) (($ (-406 (-561))) 72 (-4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))))) (-1868 (((-638 |#1|) $) 168)) (-3932 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-638 |#3|) (-638 (-765))) 127)) (-3666 (((-3 $ "failed") $) 73 (-4050 (-2198 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) 28)) (-2803 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3996 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ |#3|) 38) (($ $ (-638 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-638 |#3|) (-638 (-765))) 35)) (-1781 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1828 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-942 |#1| |#2| |#3|) (-139) (-1042) (-787) (-844)) (T -942))
-((-4229 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-3768 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765))))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-1859 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1162 *1)) (-4 *1 (-942 *4 *5 *3)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1162 *3)))) (-2830 (*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1522 (*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-1522 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765))))) (-4362 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-942 *4 *5 *3)))) (-1381 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-1381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-1393 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *4)) (-4 *4 (-1042)) (-4 *1 (-942 *4 *5 *3)) (-4 *5 (-787)) (-4 *3 (-844)))) (-1393 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)))) (-2540 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-4174 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-3276 (*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -4181 (-765)))))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *5)))) (-1584 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-2395 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-2753 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-2125 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-4229 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-2557 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3552 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-417 *1)) (-4 *1 (-942 *3 *4 *5)))))
-(-13 (-893 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-512 |t#3| |t#1|) (-512 |t#3| $) (-1031 |t#3|) (-376 |t#1|) (-10 -8 (-15 -3768 ((-765) $ |t#3|)) (-15 -3768 ((-638 (-765)) $ (-638 |t#3|))) (-15 -3932 ($ $ |t#3| (-765))) (-15 -3932 ($ $ (-638 |t#3|) (-638 (-765)))) (-15 -1859 ((-638 $) $)) (-15 -1596 ((-1162 $) $ |t#3|)) (-15 -1596 ((-1162 |t#1|) $)) (-15 -2830 ((-3 |t#3| "failed") $)) (-15 -1522 ((-765) $ |t#3|)) (-15 -1522 ((-638 (-765)) $ (-638 |t#3|))) (-15 -4362 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |t#3|)) (-15 -1381 ($ $ |t#3| (-765))) (-15 -1381 ($ $ (-638 |t#3|) (-638 (-765)))) (-15 -1393 ($ (-1162 |t#1|) |t#3|)) (-15 -1393 ($ (-1162 $) |t#3|)) (-15 -2540 ((-3 (-638 $) "failed") $)) (-15 -4174 ((-3 (-638 $) "failed") $)) (-15 -3276 ((-3 (-2 (|:| |var| |t#3|) (|:| -4181 (-765))) "failed") $)) (-15 -3827 ((-765) $)) (-15 -3827 ((-765) $ (-638 |t#3|))) (-15 -1405 ((-638 |t#3|) $)) (-15 -1584 ((-638 $) $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (IF (|has| |t#3| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-885 (-561)))) (IF (|has| |t#3| (-609 (-885 (-561)))) (-6 (-609 (-885 (-561)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-885 (-378)))) (IF (|has| |t#3| (-609 (-885 (-378)))) (-6 (-609 (-885 (-378)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-561))) (IF (|has| |t#3| (-879 (-561))) (-6 (-879 (-561))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-378))) (IF (|has| |t#3| (-879 (-378))) (-6 (-879 (-378))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2395 ($ $ $ |t#3|)) (-15 -2753 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-6 (-450)) (-15 -2125 ($ $ |t#3|)) (-15 -4229 ($ $)) (-15 -4229 ($ $ |t#3|)) (-15 -3552 ((-417 $) $)) (-15 -2557 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4397)) (-6 -4397) |%noBranch|) (IF (|has| |t#1| (-902)) (-6 (-902)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) ((-289) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4050 (|has| |#1| (-902)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-553) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) ((-902) |has| |#1| (-902)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) |has| |#1| (-902)))
-((-1405 (((-638 |#2|) |#5|) 36)) (-1596 (((-1162 |#5|) |#5| |#2| (-1162 |#5|)) 23) (((-406 (-1162 |#5|)) |#5| |#2|) 16)) (-1393 ((|#5| (-406 (-1162 |#5|)) |#2|) 30)) (-2830 (((-3 |#2| "failed") |#5|) 65)) (-4174 (((-3 (-638 |#5|) "failed") |#5|) 59)) (-1703 (((-3 (-2 (|:| |val| |#5|) (|:| -4181 (-561))) "failed") |#5|) 47)) (-2540 (((-3 (-638 |#5|) "failed") |#5|) 61)) (-3276 (((-3 (-2 (|:| |var| |#2|) (|:| -4181 (-561))) "failed") |#5|) 51)))
-(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1405 ((-638 |#2|) |#5|)) (-15 -2830 ((-3 |#2| "failed") |#5|)) (-15 -1596 ((-406 (-1162 |#5|)) |#5| |#2|)) (-15 -1393 (|#5| (-406 (-1162 |#5|)) |#2|)) (-15 -1596 ((-1162 |#5|) |#5| |#2| (-1162 |#5|))) (-15 -2540 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -4174 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -3276 ((-3 (-2 (|:| |var| |#2|) (|:| -4181 (-561))) "failed") |#5|)) (-15 -1703 ((-3 (-2 (|:| |val| |#5|) (|:| -4181 (-561))) "failed") |#5|))) (-787) (-844) (-1042) (-942 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4064 ($ |#4|)) (-15 -4077 (|#4| $)) (-15 -4088 (|#4| $))))) (T -943))
-((-1703 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4181 (-561)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))) (-3276 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4181 (-561)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))) (-4174 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))) (-2540 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))) (-1596 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))) (-4 *7 (-942 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-5 *1 (-943 *5 *4 *6 *7 *3)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1162 *2))) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *2 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))) (-5 *1 (-943 *5 *4 *6 *7 *2)) (-4 *7 (-942 *6 *5 *4)))) (-1596 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-406 (-1162 *3))) (-5 *1 (-943 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))) (-2830 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-942 *5 *4 *2)) (-4 *2 (-844)) (-5 *1 (-943 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *6)) (-15 -4077 (*6 $)) (-15 -4088 (*6 $))))))) (-1405 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *5)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))))
-(-10 -7 (-15 -1405 ((-638 |#2|) |#5|)) (-15 -2830 ((-3 |#2| "failed") |#5|)) (-15 -1596 ((-406 (-1162 |#5|)) |#5| |#2|)) (-15 -1393 (|#5| (-406 (-1162 |#5|)) |#2|)) (-15 -1596 ((-1162 |#5|) |#5| |#2| (-1162 |#5|))) (-15 -2540 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -4174 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -3276 ((-3 (-2 (|:| |var| |#2|) (|:| -4181 (-561))) "failed") |#5|)) (-15 -1703 ((-3 (-2 (|:| |val| |#5|) (|:| -4181 (-561))) "failed") |#5|)))
-((-4165 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
-(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4165 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-787) (-844) (-1042) (-942 |#3| |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -1810 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (T -944))
-((-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *6 (-787)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1810 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (-5 *1 (-944 *6 *7 *8 *5 *2)) (-4 *5 (-942 *8 *6 *7)))))
-(-10 -7 (-15 -4165 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1166)) $) 16)) (-1596 (((-1162 $) $ (-1166)) 21) (((-1162 |#1|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-1166))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 8) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1166) "failed") $) NIL)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1166) $) NIL)) (-2395 (($ $ $ (-1166)) NIL (|has| |#1| (-171)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-529 (-1166)) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1166) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1166) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1393 (($ (-1162 |#1|) (-1166)) NIL) (($ (-1162 $) (-1166)) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-1166)) NIL)) (-1522 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-638 (-765)) $ (-638 (-1166))) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-529 (-1166)) (-529 (-1166))) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-2830 (((-3 (-1166) "failed") $) 19)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-1166)) (|:| -4181 (-765))) "failed") $) NIL)) (-2563 (($ $ (-1166)) 29 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1166) |#1|) NIL) (($ $ (-638 (-1166)) (-638 |#1|)) NIL) (($ $ (-1166) $) NIL) (($ $ (-638 (-1166)) (-638 $)) NIL)) (-2753 (($ $ (-1166)) NIL (|has| |#1| (-171)))) (-3922 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-3768 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-638 (-765)) $ (-638 (-1166))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-1166) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1166) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1166) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) 25) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-1166)) 27) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-945 |#1|) (-13 (-942 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1166))) |%noBranch|))) (-1042)) (T -945))
-((-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-945 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))))
-(-13 (-942 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1166))) |%noBranch|)))
-((-3879 (((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) |#3| (-765)) 38)) (-3491 (((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) (-406 (-561)) (-765)) 34)) (-2877 (((-2 (|:| -4181 (-765)) (|:| -4226 |#4|) (|:| |radicand| (-638 |#4|))) |#4| (-765)) 54)) (-2722 (((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) |#5| (-765)) 64 (|has| |#3| (-450)))))
-(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3879 ((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -3491 ((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) (-406 (-561)) (-765))) (IF (|has| |#3| (-450)) (-15 -2722 ((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -2877 ((-2 (|:| -4181 (-765)) (|:| -4226 |#4|) (|:| |radicand| (-638 |#4|))) |#4| (-765)))) (-787) (-844) (-553) (-942 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4064 ($ |#4|)) (-15 -4077 (|#4| $)) (-15 -4088 (|#4| $))))) (T -946))
-((-2877 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553)) (-4 *3 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *3) (|:| |radicand| (-638 *3)))) (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4064 ($ *3)) (-15 -4077 (*3 $)) (-15 -4088 (*3 $))))))) (-2722 (*1 *2 *3 *4) (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *3) (|:| |radicand| *3))) (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4064 ($ *8)) (-15 -4077 (*8 $)) (-15 -4088 (*8 $))))))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-561))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *9) (|:| |radicand| *9))) (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765)) (-4 *9 (-13 (-362) (-10 -8 (-15 -4064 ($ *8)) (-15 -4077 (*8 $)) (-15 -4088 (*8 $))))))) (-3879 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-553)) (-4 *7 (-942 *3 *5 *6)) (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *8) (|:| |radicand| *8))) (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))))
-(-10 -7 (-15 -3879 ((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -3491 ((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) (-406 (-561)) (-765))) (IF (|has| |#3| (-450)) (-15 -2722 ((-2 (|:| -4181 (-765)) (|:| -4226 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -2877 ((-2 (|:| -4181 (-765)) (|:| -4226 |#4|) (|:| |radicand| (-638 |#4|))) |#4| (-765))))
-((-4053 (((-112) $ $) NIL)) (-3384 (($ (-1110)) 8)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 14) (((-1110) $) 11)) (-1723 (((-112) $ $) 10)))
-(((-947) (-13 (-1090) (-608 (-1110)) (-10 -8 (-15 -3384 ($ (-1110)))))) (T -947))
-((-3384 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947)))))
-(-13 (-1090) (-608 (-1110)) (-10 -8 (-15 -3384 ($ (-1110)))))
-((-2010 (((-1084 (-224)) $) 8)) (-1998 (((-1084 (-224)) $) 9)) (-4114 (((-638 (-638 (-936 (-224)))) $) 10)) (-4064 (((-856) $) 6)))
+((-3190 (((-479 |#1| |#2|) (-939 |#2|)) 20)) (-3193 (((-246 |#1| |#2|) (-939 |#2|)) 33)) (-3191 (((-939 |#2|) (-479 |#1| |#2|)) 25)) (-3189 (((-246 |#1| |#2|) (-479 |#1| |#2|)) 55)) (-3192 (((-939 |#2|) (-246 |#1| |#2|)) 30)) (-3188 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 46)))
+(((-937 |#1| |#2|) (-10 -7 (-15 -3188 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3189 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3190 ((-479 |#1| |#2|) (-939 |#2|))) (-15 -3191 ((-939 |#2|) (-479 |#1| |#2|))) (-15 -3192 ((-939 |#2|) (-246 |#1| |#2|))) (-15 -3193 ((-246 |#1| |#2|) (-939 |#2|)))) (-635 (-1166)) (-1042)) (T -937))
+((-3193 (*1 *2 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166))))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166))))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)))))
+(-10 -7 (-15 -3188 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3189 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3190 ((-479 |#1| |#2|) (-939 |#2|))) (-15 -3191 ((-939 |#2|) (-479 |#1| |#2|))) (-15 -3192 ((-939 |#2|) (-246 |#1| |#2|))) (-15 -3193 ((-246 |#1| |#2|) (-939 |#2|))))
+((-3194 (((-635 |#2|) |#2| |#2|) 10)) (-3197 (((-765) (-635 |#1|)) 37 (|has| |#1| (-842)))) (-3195 (((-635 |#2|) |#2|) 11)) (-3198 (((-765) (-635 |#1|) (-544) (-544)) 39 (|has| |#1| (-842)))) (-3196 ((|#1| |#2|) 32 (|has| |#1| (-842)))))
+(((-938 |#1| |#2|) (-10 -7 (-15 -3194 ((-635 |#2|) |#2| |#2|)) (-15 -3195 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -3196 (|#1| |#2|)) (-15 -3197 ((-765) (-635 |#1|))) (-15 -3198 ((-765) (-635 |#1|) (-544) (-544)))) |%noBranch|)) (-362) (-1229 |#1|)) (T -938))
+((-3198 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-544)) (-4 *5 (-842)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1229 *5)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *4 *5)) (-4 *5 (-1229 *4)))) (-3196 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1229 *2)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1229 *4)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3194 ((-635 |#2|) |#2| |#2|)) (-15 -3195 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -3196 (|#1| |#2|)) (-15 -3197 ((-765) (-635 |#1|))) (-15 -3198 ((-765) (-635 |#1|) (-544) (-544)))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1166)) $) 16)) (-3469 (((-1160 $) $ (-1166)) 21) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1166))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) 8) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1166) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1166) $) NIL)) (-4163 (($ $ $ (-1166)) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 (-1166)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1166) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1166) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) (-1166)) NIL) (($ (-1160 $) (-1166)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1166)) NIL)) (-3202 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-635 (-765)) $ (-635 (-1166))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 (-1166)) (-529 (-1166))) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3468 (((-3 (-1166) #3="failed") $) 19)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1166)) (|:| -2536 (-765))) #3#) $) NIL)) (-4219 (($ $ (-1166)) 29 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1166) |#1|) NIL) (($ $ (-635 (-1166)) (-635 |#1|)) NIL) (($ $ (-1166) $) NIL) (($ $ (-635 (-1166)) (-635 $)) NIL)) (-4164 (($ $ (-1166)) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4355 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-635 (-765)) $ (-635 (-1166))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1166) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1166) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1166) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 25) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-1166)) 27) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-939 |#1|) (-13 (-943 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1166))) |%noBranch|))) (-1042)) (T -939))
+((-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-939 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)))))
+(-13 (-943 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1166))) |%noBranch|)))
+((-4365 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 19)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -4365 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1042) (-1042)) (T -940))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-939 *6)) (-5 *1 (-940 *5 *6)))))
+(-10 -7 (-15 -4365 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|))))
+((-3469 (((-1222 |#1| (-939 |#2|)) (-939 |#2|) (-1250 |#1|)) 18)))
+(((-941 |#1| |#2|) (-10 -7 (-15 -3469 ((-1222 |#1| (-939 |#2|)) (-939 |#2|) (-1250 |#1|)))) (-1166) (-1042)) (T -941))
+((-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-1250 *5)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-5 *2 (-1222 *5 (-939 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-939 *6)))))
+(-10 -7 (-15 -3469 ((-1222 |#1| (-939 |#2|)) (-939 |#2|) (-1250 |#1|))))
+((-3201 (((-765) $) 71) (((-765) $ (-635 |#4|)) 74)) (-4181 (($ $) 172)) (-4376 (((-404 $) $) 164)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 115)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL) (((-3 (-544) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL) (((-544) $) NIL) ((|#4| $) 59)) (-4163 (($ $ $ |#4|) 76)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 105) (((-682 |#2|) (-682 $)) 98)) (-3902 (($ $) 179) (($ $ |#4|) 182)) (-3200 (((-635 $) $) 63)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 198) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 191)) (-3203 (((-635 $) $) 28)) (-3276 (($ |#2| |#3|) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-635 |#4|) (-635 (-765))) 57)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#4|) 161)) (-3205 (((-3 (-635 $) "failed") $) 42)) (-3204 (((-3 (-635 $) "failed") $) 31)) (-3206 (((-3 (-2 (|:| |var| |#4|) (|:| -2536 (-765))) "failed") $) 47)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 108)) (-3087 (((-404 (-1160 $)) (-1160 $)) 121)) (-3088 (((-404 (-1160 $)) (-1160 $)) 119)) (-4139 (((-404 $) $) 139)) (-4174 (($ $ (-635 (-292 $))) 21) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL)) (-4164 (($ $ |#4|) 78)) (-4377 (((-883 (-377)) $) 212) (((-883 (-544)) $) 205) (((-533) $) 220)) (-3199 ((|#2| $) NIL) (($ $ |#4|) 174)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 153)) (-4084 ((|#2| $ |#3|) NIL) (($ $ |#4| (-765)) 52) (($ $ (-635 |#4|) (-635 (-765))) 55)) (-3084 (((-3 $ #1#) $) 155)) (-3067 (((-112) $ $) 185)))
+(((-942 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -3084 ((-3 |#1| #1="failed") |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) #1#) (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3085 ((-3 (-1253 |#1|) #1#) (-682 |#1|))) (-15 -3902 (|#1| |#1| |#4|)) (-15 -3199 (|#1| |#1| |#4|)) (-15 -4164 (|#1| |#1| |#4|)) (-15 -4163 (|#1| |#1| |#1| |#4|)) (-15 -3200 ((-635 |#1|) |#1|)) (-15 -3201 ((-765) |#1| (-635 |#4|))) (-15 -3201 ((-765) |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| |#4|) (|:| -2536 (-765))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3276 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -3276 (|#1| |#1| |#4| (-765))) (-15 -4169 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3203 ((-635 |#1|) |#1|)) (-15 -4084 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4084 (|#1| |#1| |#4| (-765))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#4| #2="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4084 (|#2| |#1| |#3|)) (-15 -3558 ((-3 (-544) #2#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #2#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #2#) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3902 (|#1| |#1|))) (-943 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -942))
+NIL
+(-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -3084 ((-3 |#1| #1="failed") |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) #1#) (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3085 ((-3 (-1253 |#1|) #1#) (-682 |#1|))) (-15 -3902 (|#1| |#1| |#4|)) (-15 -3199 (|#1| |#1| |#4|)) (-15 -4164 (|#1| |#1| |#4|)) (-15 -4163 (|#1| |#1| |#1| |#4|)) (-15 -3200 ((-635 |#1|) |#1|)) (-15 -3201 ((-765) |#1| (-635 |#4|))) (-15 -3201 ((-765) |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| |#4|) (|:| -2536 (-765))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3276 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -3276 (|#1| |#1| |#4| (-765))) (-15 -4169 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3203 ((-635 |#1|) |#1|)) (-15 -4084 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4084 (|#1| |#1| |#4| (-765))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#4| #2="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4084 (|#2| |#1| |#3|)) (-15 -3558 ((-3 (-544) #2#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #2#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #2#) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3902 (|#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#3|) $) 110)) (-3469 (((-1160 $) $ |#3|) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 |#3|)) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) 136)) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) ((|#3| $) 137)) (-4163 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-4366 (($ $) 154)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-1749 (($ $ |#1| |#2| $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| |#3| (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| |#3| (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-3470 (($ (-1160 |#1|) |#3|) 117) (($ (-1160 $) |#3|) 116)) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-635 |#3|) (-635 (-765))) 118)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 120)) (-3202 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-635 (-765)) $ (-635 |#3|)) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 |#2| |#2|) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-3468 (((-3 |#3| "failed") $) 123)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3643 (((-1148) $) 9)) (-3205 (((-3 (-635 $) "failed") $) 114)) (-3204 (((-3 (-635 $) "failed") $) 115)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) "failed") $) 113)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-4164 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4217 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-635 |#3|) (-635 (-765))) 39)) (-4355 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-635 (-765)) $ (-635 |#3|)) 129)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| |#3| (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| |#3| (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| |#3| (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-554))) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-635 |#3|) (-635 (-765))) 127)) (-3084 (((-3 $ "failed") $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-635 |#3|) (-635 (-765))) 35)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-943 |#1| |#2| |#3|) (-139) (-1042) (-787) (-844)) (T -943))
+((-3902 (*1 *1 *1) (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-4355 (*1 *2 *1 *3) (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4355 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 (-765))))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-3469 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1160 *1)) (-4 *1 (-943 *4 *5 *3)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1160 *3)))) (-3468 (*1 *2 *1) (|partial| -12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3202 (*1 *2 *1 *3) (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-3202 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 (-765))))) (-4169 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-943 *4 *5 *3)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *4)) (-4 *4 (-1042)) (-4 *1 (-943 *4 *5 *3)) (-4 *5 (-787)) (-4 *3 (-844)))) (-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)))) (-3204 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-3205 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-3206 (*1 *2 *1) (|partial| -12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-765)))))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *5)))) (-3200 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-4163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4164 (*1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-3199 (*1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-3902 (*1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-4376 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-404 *1)) (-4 *1 (-943 *3 *4 *5)))))
+(-13 (-893 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-512 |t#3| |t#1|) (-512 |t#3| $) (-1031 |t#3|) (-376 |t#1|) (-10 -8 (-15 -4355 ((-765) $ |t#3|)) (-15 -4355 ((-635 (-765)) $ (-635 |t#3|))) (-15 -4084 ($ $ |t#3| (-765))) (-15 -4084 ($ $ (-635 |t#3|) (-635 (-765)))) (-15 -3203 ((-635 $) $)) (-15 -3469 ((-1160 $) $ |t#3|)) (-15 -3469 ((-1160 |t#1|) $)) (-15 -3468 ((-3 |t#3| "failed") $)) (-15 -3202 ((-765) $ |t#3|)) (-15 -3202 ((-635 (-765)) $ (-635 |t#3|))) (-15 -4169 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |t#3|)) (-15 -3276 ($ $ |t#3| (-765))) (-15 -3276 ($ $ (-635 |t#3|) (-635 (-765)))) (-15 -3470 ($ (-1160 |t#1|) |t#3|)) (-15 -3470 ($ (-1160 $) |t#3|)) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |var| |t#3|) (|:| -2536 (-765))) "failed") $)) (-15 -3201 ((-765) $)) (-15 -3201 ((-765) $ (-635 |t#3|))) (-15 -3467 ((-635 |t#3|) $)) (-15 -3200 ((-635 $) $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (IF (|has| |t#3| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-883 (-544)))) (IF (|has| |t#3| (-609 (-883 (-544)))) (-6 (-609 (-883 (-544)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-883 (-377)))) (IF (|has| |t#3| (-609 (-883 (-377)))) (-6 (-609 (-883 (-377)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-544))) (IF (|has| |t#3| (-879 (-544))) (-6 (-879 (-544))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-377))) (IF (|has| |t#3| (-879 (-377))) (-6 (-879 (-377))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -4163 ($ $ $ |t#3|)) (-15 -4164 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-6 (-450)) (-15 -3199 ($ $ |t#3|)) (-15 -3902 ($ $)) (-15 -3902 ($ $ |t#3|)) (-15 -4376 ((-404 $) $)) (-15 -4181 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4398)) (-6 -4398) |%noBranch|) (IF (|has| |t#1| (-903)) (-6 (-903)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) ((-903) |has| |#1| (-903)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) |has| |#1| (-903)))
+((-3467 (((-635 |#2|) |#5|) 36)) (-3469 (((-1160 |#5|) |#5| |#2| (-1160 |#5|)) 23) (((-406 (-1160 |#5|)) |#5| |#2|) 16)) (-3470 ((|#5| (-406 (-1160 |#5|)) |#2|) 30)) (-3468 (((-3 |#2| "failed") |#5|) 65)) (-3205 (((-3 (-635 |#5|) "failed") |#5|) 59)) (-3207 (((-3 (-2 (|:| |val| |#5|) (|:| -2536 (-544))) "failed") |#5|) 47)) (-3204 (((-3 (-635 |#5|) "failed") |#5|) 61)) (-3206 (((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-544))) "failed") |#5|) 51)))
+(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3467 ((-635 |#2|) |#5|)) (-15 -3468 ((-3 |#2| "failed") |#5|)) (-15 -3469 ((-406 (-1160 |#5|)) |#5| |#2|)) (-15 -3470 (|#5| (-406 (-1160 |#5|)) |#2|)) (-15 -3469 ((-1160 |#5|) |#5| |#2| (-1160 |#5|))) (-15 -3204 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3205 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3206 ((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-544))) "failed") |#5|)) (-15 -3207 ((-3 (-2 (|:| |val| |#5|) (|:| -2536 (-544))) "failed") |#5|))) (-787) (-844) (-1042) (-943 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4353 ($ |#4|)) (-15 -3381 (|#4| $)) (-15 -3380 (|#4| $))))) (T -944))
+((-3207 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2536 (-544)))) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3206 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-544)))) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3205 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3204 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3469 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))) (-4 *7 (-943 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-5 *1 (-944 *5 *4 *6 *7 *3)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1160 *2))) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *2 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))) (-5 *1 (-944 *5 *4 *6 *7 *2)) (-4 *7 (-943 *6 *5 *4)))) (-3469 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-406 (-1160 *3))) (-5 *1 (-944 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3468 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-943 *5 *4 *2)) (-4 *2 (-844)) (-5 *1 (-944 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *6)) (-15 -3381 (*6 $)) (-15 -3380 (*6 $))))))) (-3467 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *5)) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(-10 -7 (-15 -3467 ((-635 |#2|) |#5|)) (-15 -3468 ((-3 |#2| "failed") |#5|)) (-15 -3469 ((-406 (-1160 |#5|)) |#5| |#2|)) (-15 -3470 (|#5| (-406 (-1160 |#5|)) |#2|)) (-15 -3469 ((-1160 |#5|) |#5| |#2| (-1160 |#5|))) (-15 -3204 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3205 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3206 ((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-544))) "failed") |#5|)) (-15 -3207 ((-3 (-2 (|:| |val| |#5|) (|:| -2536 (-544))) "failed") |#5|)))
+((-4365 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
+(((-945 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4365 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-787) (-844) (-1042) (-943 |#3| |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (T -945))
+((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *6 (-787)) (-4 *2 (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (-5 *1 (-945 *6 *7 *8 *5 *2)) (-4 *5 (-943 *8 *6 *7)))))
+(-10 -7 (-15 -4365 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3208 (((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#3| (-765)) 38)) (-3209 (((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) (-406 (-544)) (-765)) 34)) (-3211 (((-2 (|:| -2536 (-765)) (|:| -4361 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-765)) 54)) (-3210 (((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#5| (-765)) 64 (|has| |#3| (-450)))))
+(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3208 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -3209 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) (-406 (-544)) (-765))) (IF (|has| |#3| (-450)) (-15 -3210 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -3211 ((-2 (|:| -2536 (-765)) (|:| -4361 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-765)))) (-787) (-844) (-554) (-943 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4353 ($ |#4|)) (-15 -3381 (|#4| $)) (-15 -3380 (|#4| $))))) (T -946))
+((-3211 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *3 (-943 *7 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| (-635 *3)))) (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4353 ($ *3)) (-15 -3381 (*3 $)) (-15 -3380 (*3 $))))))) (-3210 (*1 *2 *3 *4) (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *8 (-943 *7 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *3))) (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $))))))) (-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-544))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *8 (-943 *7 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *9) (|:| |radicand| *9))) (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765)) (-4 *9 (-13 (-362) (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $))))))) (-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-554)) (-4 *7 (-943 *3 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *8) (|:| |radicand| *8))) (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(-10 -7 (-15 -3208 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -3209 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) (-406 (-544)) (-765))) (IF (|has| |#3| (-450)) (-15 -3210 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -3211 ((-2 (|:| -2536 (-765)) (|:| -4361 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-765))))
+((-2947 (((-112) $ $) NIL)) (-3212 (($ (-1110)) 8)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 14) (((-1110) $) 11)) (-3437 (((-112) $ $) 10)))
+(((-947) (-13 (-1091) (-608 (-1110)) (-10 -8 (-15 -3212 ($ (-1110)))))) (T -947))
+((-3212 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947)))))
+(-13 (-1091) (-608 (-1110)) (-10 -8 (-15 -3212 ($ (-1110)))))
+((-3279 (((-1079 (-224)) $) 8)) (-3280 (((-1079 (-224)) $) 9)) (-3281 (((-635 (-635 (-936 (-224)))) $) 10)) (-4353 (((-857) $) 6)))
(((-948) (-139)) (T -948))
-((-4114 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-638 (-638 (-936 (-224))))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224))))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224))))))
-(-13 (-608 (-856)) (-10 -8 (-15 -4114 ((-638 (-638 (-936 (-224)))) $)) (-15 -1998 ((-1084 (-224)) $)) (-15 -2010 ((-1084 (-224)) $))))
-(((-608 (-856)) . T))
-((-1313 (((-3 (-682 |#1|) "failed") |#2| (-914)) 15)))
-(((-949 |#1| |#2|) (-10 -7 (-15 -1313 ((-3 (-682 |#1|) "failed") |#2| (-914)))) (-553) (-649 |#1|)) (T -949))
-((-1313 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-914)) (-4 *5 (-553)) (-5 *2 (-682 *5)) (-5 *1 (-949 *5 *3)) (-4 *3 (-649 *5)))))
-(-10 -7 (-15 -1313 ((-3 (-682 |#1|) "failed") |#2| (-914))))
-((-3522 (((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 16)) (-3176 ((|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 18)) (-4165 (((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)) 13)))
-(((-950 |#1| |#2|) (-10 -7 (-15 -3522 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4165 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)))) (-1205) (-1205)) (T -950))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-951 *6)) (-5 *1 (-950 *5 *6)))) (-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-950 *5 *2)))) (-3522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-951 *5)) (-5 *1 (-950 *6 *5)))))
-(-10 -7 (-15 -3522 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4165 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) |#1|) 16 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 15 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 13)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-1458 (($ (-765) |#1|) 12)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) 10 (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) 17 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) 11)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 14) (($ $ (-1221 (-561))) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) NIL)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3548 (((-765) $) 8 (|has| $ (-6 -4399)))))
-(((-951 |#1|) (-19 |#1|) (-1205)) (T -951))
+((-3281 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-635 (-635 (-936 (-224))))))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224))))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224))))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3281 ((-635 (-635 (-936 (-224)))) $)) (-15 -3280 ((-1079 (-224)) $)) (-15 -3279 ((-1079 (-224)) $))))
+(((-608 (-857)) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 60 (|has| |#1| (-554)))) (-2213 (($ $) 61 (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 28)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) 24)) (-3866 (((-3 $ "failed") $) 35)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-1749 (($ $ |#1| |#2| $) 47)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 16)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-3202 ((|#2| $) 19)) (-1750 (($ (-1 |#2| |#2|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (($ $) 23)) (-3575 ((|#1| $) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 40)) (-1943 ((|#1| $) NIL)) (-4145 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-554))))) (-3865 (((-3 $ "failed") $ $) 73 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-554)))) (-4355 ((|#2| $) 17)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) 39) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 34) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ |#2|) 31)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 15)) (-1748 (($ $ $ (-765)) 56 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 66 (|has| |#1| (-554)))) (-3040 (($) 22 T CONST)) (-3046 (($) 12 T CONST)) (-3437 (((-112) $ $) 65)) (-4356 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 53) (($ $ (-765)) 51)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-949 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -4145 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) (-1042) (-786)) (T -949))
+((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-949 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -4145 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|)))
+((-3213 (((-3 (-682 |#1|) "failed") |#2| (-912)) 15)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -3213 ((-3 (-682 |#1|) "failed") |#2| (-912)))) (-554) (-651 |#1|)) (T -950))
+((-3213 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-912)) (-4 *5 (-554)) (-5 *2 (-682 *5)) (-5 *1 (-950 *5 *3)) (-4 *3 (-651 *5)))))
+(-10 -7 (-15 -3213 ((-3 (-682 |#1|) "failed") |#2| (-912))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 16 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 15 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 13)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 12)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 10 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) 17 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 11)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 14) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 8 (|has| $ (-6 -4400)))))
+(((-951 |#1|) (-19 |#1|) (-1204)) (T -951))
NIL
(-19 |#1|)
-((-1684 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6)))
-(((-952) (-139)) (T -952))
-((-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-952)))) (-1684 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-1166)))))
-(-13 (-10 -8 (-15 -1684 ($ $ (-1166))) (-15 -1684 ($ $ (-1082 $)))))
-((-3985 (((-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)) (-1166)) 25) (((-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166))) 26) (((-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 |#1|))) (-945 |#1|) (-1166) (-945 |#1|) (-1166)) 43)))
-(((-953 |#1|) (-10 -7 (-15 -3985 ((-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 |#1|))) (-945 |#1|) (-1166) (-945 |#1|) (-1166))) (-15 -3985 ((-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3985 ((-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)) (-1166)))) (-13 (-362) (-146))) (T -953))
-((-3985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-5 *5 (-1166)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 *6))) (|:| |prim| (-1162 *6)))) (-5 *1 (-953 *6)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 *5))) (|:| |prim| (-1162 *5)))) (-5 *1 (-953 *5)))) (-3985 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 *5)))) (-5 *1 (-953 *5)))))
-(-10 -7 (-15 -3985 ((-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 |#1|))) (-945 |#1|) (-1166) (-945 |#1|) (-1166))) (-15 -3985 ((-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3985 ((-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)) (-1166))))
-((-3648 (((-638 |#1|) |#1| |#1|) 42)) (-2725 (((-112) |#1|) 39)) (-1306 ((|#1| |#1|) 64)) (-2744 ((|#1| |#1|) 63)))
-(((-954 |#1|) (-10 -7 (-15 -2725 ((-112) |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -1306 (|#1| |#1|)) (-15 -3648 ((-638 |#1|) |#1| |#1|))) (-543)) (T -954))
-((-3648 (*1 *2 *3 *3) (-12 (-5 *2 (-638 *3)) (-5 *1 (-954 *3)) (-4 *3 (-543)))) (-1306 (*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))) (-2744 (*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-954 *3)) (-4 *3 (-543)))))
-(-10 -7 (-15 -2725 ((-112) |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -1306 (|#1| |#1|)) (-15 -3648 ((-638 |#1|) |#1| |#1|)))
-((-3255 (((-1259) (-856)) 9)))
-(((-955) (-10 -7 (-15 -3255 ((-1259) (-856))))) (T -955))
-((-3255 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-955)))))
-(-10 -7 (-15 -3255 ((-1259) (-856))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 60 (|has| |#1| (-553)))) (-3012 (($ $) 61 (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 28)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1598 (($ $) 24)) (-3735 (((-3 $ "failed") $) 35)) (-4229 (($ $) NIL (|has| |#1| (-450)))) (-3227 (($ $ |#1| |#2| $) 47)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) 16)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| |#2|) NIL)) (-1522 ((|#2| $) 19)) (-1368 (($ (-1 |#2| |#2|) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1557 (($ $) 23)) (-1572 ((|#1| $) 21)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) 40)) (-1542 ((|#1| $) NIL)) (-3960 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-553))))) (-1748 (((-3 $ "failed") $ $) 73 (|has| |#1| (-553))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-553)))) (-3768 ((|#2| $) 17)) (-2125 ((|#1| $) NIL (|has| |#1| (-450)))) (-4064 (((-856) $) NIL) (($ (-561)) 39) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 34) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ |#2|) 31)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) 15)) (-2803 (($ $ $ (-765)) 56 (|has| |#1| (-171)))) (-3996 (((-112) $ $) 66 (|has| |#1| (-553)))) (-2246 (($) 22 T CONST)) (-2257 (($) 12 T CONST)) (-1723 (((-112) $ $) 65)) (-1828 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) 53) (($ $ (-765)) 51)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-956 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| |#2| (-130)) (-15 -3960 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|))) (-1042) (-786)) (T -956))
-((-3960 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-956 *3 *2)) (-4 *2 (-130)) (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *2 (-786)))))
-(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| |#2| (-130)) (-15 -3960 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL (-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-1403 (($ $ $) 63 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (-2979 (((-3 $ "failed") $ $) 50 (-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-1386 (((-765)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2347 ((|#2| $) 21)) (-2433 ((|#1| $) 20)) (-2674 (($) NIL (-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-3735 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-1362 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2252 (((-112) $) NIL (-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-1597 (($ $ $) NIL (-4050 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3017 (($ $ $) NIL (-4050 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1380 (($ |#1| |#2|) 19)) (-1335 (((-914) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 37 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2442 (($ (-914)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1701 (((-1110) $) NIL)) (-2076 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-3047 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-4064 (((-856) $) 14)) (-2246 (($) 40 (-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-2257 (($) 24 (-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))) CONST)) (-1781 (((-112) $ $) NIL (-4050 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1758 (((-112) $ $) NIL (-4050 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1723 (((-112) $ $) 18)) (-1770 (((-112) $ $) NIL (-4050 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1746 (((-112) $ $) 66 (-4050 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1828 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-1819 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1810 (($ $ $) 43 (-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (** (($ $ (-561)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-765)) 31 (-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))) (($ $ (-914)) NIL (-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (* (($ (-561) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-765) $) 46 (-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ (-914) $) NIL (-4050 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ $ $) 27 (-4050 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))))
-(((-957 |#1| |#2|) (-13 (-1090) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -1380 ($ |#1| |#2|)) (-15 -2433 (|#1| $)) (-15 -2347 (|#2| $)))) (-1090) (-1090)) (T -957))
-((-1380 (*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-2433 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1090)))) (-2347 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1090)))))
-(-13 (-1090) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -1380 ($ |#1| |#2|)) (-15 -2433 (|#1| $)) (-15 -2347 (|#2| $))))
-((-2506 (((-1094) $) 12)) (-3447 (($ (-1166) (-1094)) 13)) (-3305 (((-1166) $) 10)) (-4064 (((-856) $) 22)))
-(((-958) (-13 (-608 (-856)) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -2506 ((-1094) $)) (-15 -3447 ($ (-1166) (-1094)))))) (T -958))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-958)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-958)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-958)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -3305 ((-1166) $)) (-15 -2506 ((-1094) $)) (-15 -3447 ($ (-1166) (-1094)))))
-((-4053 (((-112) $ $) NIL)) (-1405 (((-1092 (-1166)) $) 19)) (-3689 (((-112) $) 26)) (-2421 (((-1166) $) 27)) (-1986 (((-112) $) 24)) (-2074 ((|#1| $) 25)) (-2806 (((-866 $ $) $) 34)) (-1997 (((-112) $) 33)) (-2208 (($ $ $) 12)) (-3025 (($ $) 29)) (-2321 (((-112) $) 28)) (-2186 (($ $) 10)) (-1883 (((-1148) $) NIL)) (-3515 (((-866 $ $) $) 36)) (-2945 (((-112) $) 35)) (-2415 (($ $ $) 13)) (-1701 (((-1110) $) NIL)) (-2343 (((-866 $ $) $) 38)) (-2839 (((-112) $) 37)) (-2656 (($ $ $) 14)) (-4064 (((-856) $) 40) (($ |#1|) 7) (($ (-1166)) 9)) (-1406 (((-866 $ $) $) 32)) (-4232 (((-112) $) 30)) (-2198 (($ $ $) 11)) (-1723 (((-112) $ $) NIL)))
-(((-959 |#1|) (-13 (-960) (-10 -8 (-15 -4064 ($ |#1|)) (-15 -4064 ($ (-1166))) (-15 -1405 ((-1092 (-1166)) $)) (-15 -1986 ((-112) $)) (-15 -2074 (|#1| $)) (-15 -3689 ((-112) $)) (-15 -2421 ((-1166) $)) (-15 -2321 ((-112) $)) (-15 -3025 ($ $)) (-15 -4232 ((-112) $)) (-15 -1406 ((-866 $ $) $)) (-15 -1997 ((-112) $)) (-15 -2806 ((-866 $ $) $)) (-15 -2945 ((-112) $)) (-15 -3515 ((-866 $ $) $)) (-15 -2839 ((-112) $)) (-15 -2343 ((-866 $ $) $)))) (-960)) (T -959))
-((-4064 (*1 *1 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-1092 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2074 (*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3025 (*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(-13 (-960) (-10 -8 (-15 -4064 ($ |#1|)) (-15 -4064 ($ (-1166))) (-15 -1405 ((-1092 (-1166)) $)) (-15 -1986 ((-112) $)) (-15 -2074 (|#1| $)) (-15 -3689 ((-112) $)) (-15 -2421 ((-1166) $)) (-15 -2321 ((-112) $)) (-15 -3025 ($ $)) (-15 -4232 ((-112) $)) (-15 -1406 ((-866 $ $) $)) (-15 -1997 ((-112) $)) (-15 -2806 ((-866 $ $) $)) (-15 -2945 ((-112) $)) (-15 -3515 ((-866 $ $) $)) (-15 -2839 ((-112) $)) (-15 -2343 ((-866 $ $) $))))
-((-4053 (((-112) $ $) 7)) (-2208 (($ $ $) 15)) (-2186 (($ $) 17)) (-1883 (((-1148) $) 9)) (-2415 (($ $ $) 14)) (-1701 (((-1110) $) 10)) (-2656 (($ $ $) 13)) (-4064 (((-856) $) 11)) (-2198 (($ $ $) 16)) (-1723 (((-112) $ $) 6)))
+((-4248 (((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 16)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 18)) (-4365 (((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)) 13)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -4248 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4365 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)))) (-1204) (-1204)) (T -952))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-951 *6)) (-5 *1 (-952 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-952 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-951 *5)) (-5 *1 (-952 *6 *5)))))
+(-10 -7 (-15 -4248 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4365 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|))))
+((-3214 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6)))
+(((-953) (-139)) (T -953))
+((-3214 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-953)))) (-3214 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-1166)))))
+(-13 (-10 -8 (-15 -3214 ($ $ (-1166))) (-15 -3214 ($ $ (-1082 $)))))
+((-3215 (((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)) (-1166)) 25) (((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166))) 26) (((-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 |#1|))) (-939 |#1|) (-1166) (-939 |#1|) (-1166)) 43)))
+(((-954 |#1|) (-10 -7 (-15 -3215 ((-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 |#1|))) (-939 |#1|) (-1166) (-939 |#1|) (-1166))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)) (-1166)))) (-13 (-362) (-146))) (T -954))
+((-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-5 *5 (-1166)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *6))) (|:| |prim| (-1160 *6)))) (-5 *1 (-954 *6)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *5))) (|:| |prim| (-1160 *5)))) (-5 *1 (-954 *5)))) (-3215 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-939 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 *5)))) (-5 *1 (-954 *5)))))
+(-10 -7 (-15 -3215 ((-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 |#1|))) (-939 |#1|) (-1166) (-939 |#1|) (-1166))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)) (-1166))))
+((-3218 (((-635 |#1|) |#1| |#1|) 42)) (-4130 (((-112) |#1|) 39)) (-3217 ((|#1| |#1|) 64)) (-3216 ((|#1| |#1|) 63)))
+(((-955 |#1|) (-10 -7 (-15 -4130 ((-112) |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3218 ((-635 |#1|) |#1| |#1|))) (-543)) (T -955))
+((-3218 (*1 *2 *3 *3) (-12 (-5 *2 (-635 *3)) (-5 *1 (-955 *3)) (-4 *3 (-543)))) (-3217 (*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543)))) (-3216 (*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543)))) (-4130 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-955 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -4130 ((-112) |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3218 ((-635 |#1|) |#1| |#1|)))
+((-3219 (((-1259) (-857)) 9)))
+(((-956) (-10 -7 (-15 -3219 ((-1259) (-857))))) (T -956))
+((-3219 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-956)))))
+(-10 -7 (-15 -3219 ((-1259) (-857))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-2778 (($ $ $) 63 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (-1391 (((-3 $ "failed") $ $) 50 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-3521 (((-765)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3220 ((|#2| $) 21)) (-3221 ((|#1| $) 20)) (-4131 (($) NIL (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-3377 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2545 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-2913 (($ $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3242 (($ $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3222 (($ |#1| |#2|) 19)) (-2160 (((-912) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 37 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2535 (($ (-912)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3644 (((-1110) $) NIL)) (-3392 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2729 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-4353 (((-857) $) 14)) (-3040 (($) 40 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-3046 (($) 24 (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))) CONST)) (-2945 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-2946 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3437 (((-112) $ $) 18)) (-3066 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3067 (((-112) $ $) 66 (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-4356 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-4244 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4246 (($ $ $) 43 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (** (($ $ (-544)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-765)) 31 (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))) (($ $ (-912)) NIL (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (* (($ (-544) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-765) $) 46 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ (-912) $) NIL (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ $ $) 27 (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))))
+(((-957 |#1| |#2|) (-13 (-1091) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -3222 ($ |#1| |#2|)) (-15 -3221 (|#1| $)) (-15 -3220 (|#2| $)))) (-1091) (-1091)) (T -957))
+((-3222 (*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3221 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1091)))) (-3220 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1091)))))
+(-13 (-1091) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -3222 ($ |#1| |#2|)) (-15 -3221 (|#1| $)) (-15 -3220 (|#2| $))))
+((-3806 (((-1093) $) 12)) (-3223 (($ (-1166) (-1093)) 13)) (-3949 (((-1166) $) 10)) (-4353 (((-857) $) 22)))
+(((-958) (-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3806 ((-1093) $)) (-15 -3223 ($ (-1166) (-1093)))))) (T -958))
+((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-958)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-958)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-958)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3806 ((-1093) $)) (-15 -3223 ($ (-1166) (-1093)))))
+((-2947 (((-112) $ $) NIL)) (-3467 (((-1087 (-1166)) $) 19)) (-3234 (((-112) $) 26)) (-4238 (((-1166) $) 27)) (-3236 (((-112) $) 24)) (-3235 ((|#1| $) 25)) (-3228 (((-866 $ $) $) 34)) (-3229 (((-112) $) 33)) (-3239 (($ $ $) 12)) (-3232 (($ $) 29)) (-3233 (((-112) $) 28)) (-3726 (($ $) 10)) (-3643 (((-1148) $) NIL)) (-3226 (((-866 $ $) $) 36)) (-3227 (((-112) $) 35)) (-3238 (($ $ $) 13)) (-3644 (((-1110) $) NIL)) (-3224 (((-866 $ $) $) 38)) (-3225 (((-112) $) 37)) (-3237 (($ $ $) 14)) (-4353 (((-857) $) 40) (($ |#1|) 7) (($ (-1166)) 9)) (-3230 (((-866 $ $) $) 32)) (-3231 (((-112) $) 30)) (-3240 (($ $ $) 11)) (-3437 (((-112) $ $) NIL)))
+(((-959 |#1|) (-13 (-960) (-10 -8 (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-1166))) (-15 -3467 ((-1087 (-1166)) $)) (-15 -3236 ((-112) $)) (-15 -3235 (|#1| $)) (-15 -3234 ((-112) $)) (-15 -4238 ((-1166) $)) (-15 -3233 ((-112) $)) (-15 -3232 ($ $)) (-15 -3231 ((-112) $)) (-15 -3230 ((-866 $ $) $)) (-15 -3229 ((-112) $)) (-15 -3228 ((-866 $ $) $)) (-15 -3227 ((-112) $)) (-15 -3226 ((-866 $ $) $)) (-15 -3225 ((-112) $)) (-15 -3224 ((-866 $ $) $)))) (-960)) (T -959))
+((-4353 (*1 *1 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-1087 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3235 (*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3232 (*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(-13 (-960) (-10 -8 (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-1166))) (-15 -3467 ((-1087 (-1166)) $)) (-15 -3236 ((-112) $)) (-15 -3235 (|#1| $)) (-15 -3234 ((-112) $)) (-15 -4238 ((-1166) $)) (-15 -3233 ((-112) $)) (-15 -3232 ($ $)) (-15 -3231 ((-112) $)) (-15 -3230 ((-866 $ $) $)) (-15 -3229 ((-112) $)) (-15 -3228 ((-866 $ $) $)) (-15 -3227 ((-112) $)) (-15 -3226 ((-866 $ $) $)) (-15 -3225 ((-112) $)) (-15 -3224 ((-866 $ $) $))))
+((-2947 (((-112) $ $) 7)) (-3239 (($ $ $) 15)) (-3726 (($ $) 17)) (-3643 (((-1148) $) 9)) (-3238 (($ $ $) 14)) (-3644 (((-1110) $) 10)) (-3237 (($ $ $) 13)) (-4353 (((-857) $) 11)) (-3240 (($ $ $) 16)) (-3437 (((-112) $ $) 6)))
(((-960) (-139)) (T -960))
-((-2186 (*1 *1 *1) (-4 *1 (-960))) (-2198 (*1 *1 *1 *1) (-4 *1 (-960))) (-2208 (*1 *1 *1 *1) (-4 *1 (-960))) (-2415 (*1 *1 *1 *1) (-4 *1 (-960))) (-2656 (*1 *1 *1 *1) (-4 *1 (-960))))
-(-13 (-1090) (-10 -8 (-15 -2186 ($ $)) (-15 -2198 ($ $ $)) (-15 -2208 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2656 ($ $ $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-2674 (($) 7 T CONST)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-2289 (($ $ $) 43)) (-3405 (($ $ $) 44)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3017 ((|#1| $) 45)) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
+((-3726 (*1 *1 *1) (-4 *1 (-960))) (-3240 (*1 *1 *1 *1) (-4 *1 (-960))) (-3239 (*1 *1 *1 *1) (-4 *1 (-960))) (-3238 (*1 *1 *1 *1) (-4 *1 (-960))) (-3237 (*1 *1 *1 *1) (-4 *1 (-960))))
+(-13 (-1091) (-10 -8 (-15 -3726 ($ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3237 ($ $ $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-3241 (($ $ $) 43)) (-3917 (($ $ $) 44)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3242 ((|#1| $) 45)) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
(((-961 |#1|) (-139) (-844)) (T -961))
-((-3017 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-2289 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4399) (-15 -3017 (|t#1| $)) (-15 -3405 ($ $ $)) (-15 -2289 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-3452 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1603 |#2|)) |#2| |#2|) 84)) (-3431 ((|#2| |#2| |#2|) 82)) (-1668 (((-2 (|:| |coef2| |#2|) (|:| -1603 |#2|)) |#2| |#2|) 86)) (-1304 (((-2 (|:| |coef1| |#2|) (|:| -1603 |#2|)) |#2| |#2|) 88)) (-3038 (((-2 (|:| |coef2| |#2|) (|:| -1850 |#1|)) |#2| |#2|) 106 (|has| |#1| (-450)))) (-2131 (((-2 (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|) 45)) (-1941 (((-2 (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|) 63)) (-3434 (((-2 (|:| |coef1| |#2|) (|:| -2395 |#1|)) |#2| |#2|) 65)) (-3670 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-2891 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 70)) (-2213 (((-2 (|:| |coef2| |#2|) (|:| -2753 |#1|)) |#2|) 96)) (-2872 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 73)) (-2428 (((-638 (-765)) |#2| |#2|) 81)) (-3414 ((|#1| |#2| |#2|) 41)) (-3574 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1850 |#1|)) |#2| |#2|) 104 (|has| |#1| (-450)))) (-1850 ((|#1| |#2| |#2|) 102 (|has| |#1| (-450)))) (-1625 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|) 43)) (-2324 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|) 62)) (-2395 ((|#1| |#2| |#2|) 60)) (-2566 (((-2 (|:| -4226 |#1|) (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2|) 34)) (-3660 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-2402 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-2940 ((|#2| |#2| |#2|) 74)) (-3708 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 68)) (-2889 ((|#2| |#2| |#2| (-765)) 66)) (-1603 ((|#2| |#2| |#2|) 110 (|has| |#1| (-450)))) (-1748 (((-1254 |#2|) (-1254 |#2|) |#1|) 21)) (-1421 (((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2|) 38)) (-2961 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2753 |#1|)) |#2|) 94)) (-2753 ((|#1| |#2|) 91)) (-4155 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 72)) (-2258 ((|#2| |#2| |#2| (-765)) 71)) (-3918 (((-638 |#2|) |#2| |#2|) 79)) (-1962 ((|#2| |#2| |#1| |#1| (-765)) 49)) (-1523 ((|#1| |#1| |#1| (-765)) 48)) (* (((-1254 |#2|) |#1| (-1254 |#2|)) 16)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -2395 (|#1| |#2| |#2|)) (-15 -2324 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -1941 ((-2 (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -3434 ((-2 (|:| |coef1| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -2889 (|#2| |#2| |#2| (-765))) (-15 -3708 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2891 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2258 (|#2| |#2| |#2| (-765))) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2940 (|#2| |#2| |#2|)) (-15 -2402 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3670 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3431 (|#2| |#2| |#2|)) (-15 -3452 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1603 |#2|)) |#2| |#2|)) (-15 -1668 ((-2 (|:| |coef2| |#2|) (|:| -1603 |#2|)) |#2| |#2|)) (-15 -1304 ((-2 (|:| |coef1| |#2|) (|:| -1603 |#2|)) |#2| |#2|)) (-15 -2753 (|#1| |#2|)) (-15 -2961 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2753 |#1|)) |#2|)) (-15 -2213 ((-2 (|:| |coef2| |#2|) (|:| -2753 |#1|)) |#2|)) (-15 -3918 ((-638 |#2|) |#2| |#2|)) (-15 -2428 ((-638 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -1850 (|#1| |#2| |#2|)) (-15 -3574 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1850 |#1|)) |#2| |#2|)) (-15 -3038 ((-2 (|:| |coef2| |#2|) (|:| -1850 |#1|)) |#2| |#2|)) (-15 -1603 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1254 |#2|) |#1| (-1254 |#2|))) (-15 -1748 ((-1254 |#2|) (-1254 |#2|) |#1|)) (-15 -2566 ((-2 (|:| -4226 |#1|) (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2|)) (-15 -1421 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2|)) (-15 -1523 (|#1| |#1| |#1| (-765))) (-15 -1962 (|#2| |#2| |#1| |#1| (-765))) (-15 -3660 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3414 (|#1| |#2| |#2|)) (-15 -1625 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -2131 ((-2 (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|))) (-553) (-1230 |#1|)) (T -962))
-((-2131 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2395 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-1625 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2395 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-3414 (*1 *2 *3 *3) (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1230 *2)))) (-3660 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3)))) (-1962 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3)))) (-1523 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *2 (-553)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1230 *2)))) (-1421 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2566 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -4226 *4) (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-1748 (*1 *2 *2 *3) (-12 (-5 *2 (-1254 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-553)) (-5 *1 (-962 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1254 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-553)) (-5 *1 (-962 *3 *4)))) (-1603 (*1 *2 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3)))) (-3038 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1850 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-3574 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1850 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-1850 (*1 *2 *3 *3) (-12 (-4 *2 (-553)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1230 *2)))) (-2428 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-765))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-3918 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2213 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2753 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2753 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2753 (*1 *2 *3) (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1230 *2)))) (-1304 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1603 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-1668 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1603 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-3452 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1603 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-3431 (*1 *2 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3)))) (-3670 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2402 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2940 (*1 *2 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3)))) (-2872 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))) (-4155 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))) (-2258 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1230 *4)))) (-2891 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))) (-3708 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))) (-2889 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1230 *4)))) (-3434 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2395 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-1941 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2395 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2324 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2395 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))) (-2395 (*1 *2 *3 *3) (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1230 *2)))))
-(-10 -7 (-15 -2395 (|#1| |#2| |#2|)) (-15 -2324 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -1941 ((-2 (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -3434 ((-2 (|:| |coef1| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -2889 (|#2| |#2| |#2| (-765))) (-15 -3708 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2891 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2258 (|#2| |#2| |#2| (-765))) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -2940 (|#2| |#2| |#2|)) (-15 -2402 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3670 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3431 (|#2| |#2| |#2|)) (-15 -3452 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1603 |#2|)) |#2| |#2|)) (-15 -1668 ((-2 (|:| |coef2| |#2|) (|:| -1603 |#2|)) |#2| |#2|)) (-15 -1304 ((-2 (|:| |coef1| |#2|) (|:| -1603 |#2|)) |#2| |#2|)) (-15 -2753 (|#1| |#2|)) (-15 -2961 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2753 |#1|)) |#2|)) (-15 -2213 ((-2 (|:| |coef2| |#2|) (|:| -2753 |#1|)) |#2|)) (-15 -3918 ((-638 |#2|) |#2| |#2|)) (-15 -2428 ((-638 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -1850 (|#1| |#2| |#2|)) (-15 -3574 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1850 |#1|)) |#2| |#2|)) (-15 -3038 ((-2 (|:| |coef2| |#2|) (|:| -1850 |#1|)) |#2| |#2|)) (-15 -1603 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1254 |#2|) |#1| (-1254 |#2|))) (-15 -1748 ((-1254 |#2|) (-1254 |#2|) |#1|)) (-15 -2566 ((-2 (|:| -4226 |#1|) (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2|)) (-15 -1421 ((-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) |#2| |#2|)) (-15 -1523 (|#1| |#1| |#1| (-765))) (-15 -1962 (|#2| |#2| |#1| |#1| (-765))) (-15 -3660 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3414 (|#1| |#2| |#2|)) (-15 -1625 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|)) (-15 -2131 ((-2 (|:| |coef2| |#2|) (|:| -2395 |#1|)) |#2| |#2|)))
-((-4053 (((-112) $ $) NIL)) (-4095 (((-1204) $) 13)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1731 (((-1125) $) 10)) (-4064 (((-856) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-963) (-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -4095 ((-1204) $))))) (T -963))
-((-1731 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-963)))))
-(-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -4095 ((-1204) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) 26)) (-2674 (($) NIL T CONST)) (-1357 (((-638 (-638 (-561))) (-638 (-561))) 28)) (-2808 (((-561) $) 44)) (-3561 (($ (-638 (-561))) 17)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4216 (((-638 (-561)) $) 12)) (-2076 (($ $) 31)) (-4064 (((-856) $) 42) (((-638 (-561)) $) 10)) (-2246 (($) 7 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 19)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 18)) (-1810 (($ $ $) 20)) (* (($ (-914) $) NIL) (($ (-765) $) 24)))
-(((-964) (-13 (-789) (-609 (-638 (-561))) (-608 (-638 (-561))) (-10 -8 (-15 -3561 ($ (-638 (-561)))) (-15 -1357 ((-638 (-638 (-561))) (-638 (-561)))) (-15 -2808 ((-561) $)) (-15 -2076 ($ $))))) (T -964))
-((-3561 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-964)))) (-1357 (*1 *2 *3) (-12 (-5 *2 (-638 (-638 (-561)))) (-5 *1 (-964)) (-5 *3 (-638 (-561))))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-964)))) (-2076 (*1 *1 *1) (-5 *1 (-964))))
-(-13 (-789) (-609 (-638 (-561))) (-608 (-638 (-561))) (-10 -8 (-15 -3561 ($ (-638 (-561)))) (-15 -1357 ((-638 (-638 (-561))) (-638 (-561)))) (-15 -2808 ((-561) $)) (-15 -2076 ($ $))))
-((-1828 (($ $ |#2|) 30)) (-1819 (($ $) 22) (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-561)) $) 26) (($ $ (-406 (-561))) 28)))
-(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -1828 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-966 |#2| |#3| |#4|) (-1042) (-786) (-844)) (T -965))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -1828 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 |#3|) $) 77)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-4372 (((-112) $) 76)) (-2252 (((-112) $) 31)) (-1750 (((-112) $) 65)) (-1381 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-638 |#3|) (-638 |#2|)) 78)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3768 ((|#2| $) 67)) (-3426 (($ $) 75)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3932 ((|#1| $ |#2|) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+((-3242 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4400) (-15 -3242 (|t#1| $)) (-15 -3917 ($ $ $)) (-15 -3241 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-3254 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|) 84)) (-4162 ((|#2| |#2| |#2|) 82)) (-3255 (((-2 (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|) 86)) (-3256 (((-2 (|:| |coef1| |#2|) (|:| -3545 |#2|)) |#2| |#2|) 88)) (-3263 (((-2 (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|) 106 (|has| |#1| (-450)))) (-3270 (((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 45)) (-3244 (((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 63)) (-3245 (((-2 (|:| |coef1| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 65)) (-3253 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3248 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 70)) (-3258 (((-2 (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|) 96)) (-3251 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 73)) (-3260 (((-635 (-765)) |#2| |#2|) 81)) (-3268 ((|#1| |#2| |#2|) 41)) (-3262 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|) 104 (|has| |#1| (-450)))) (-3261 ((|#1| |#2| |#2|) 102 (|has| |#1| (-450)))) (-3269 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 43)) (-3243 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 62)) (-4163 ((|#1| |#2| |#2|) 60)) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|) 34)) (-3267 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3252 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-3591 ((|#2| |#2| |#2|) 74)) (-3247 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 68)) (-3246 ((|#2| |#2| |#2| (-765)) 66)) (-3545 ((|#2| |#2| |#2|) 110 (|has| |#1| (-450)))) (-3865 (((-1253 |#2|) (-1253 |#2|) |#1|) 21)) (-3264 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|) 38)) (-3257 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|) 94)) (-4164 ((|#1| |#2|) 91)) (-3250 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 72)) (-3249 ((|#2| |#2| |#2| (-765)) 71)) (-3259 (((-635 |#2|) |#2| |#2|) 79)) (-3266 ((|#2| |#2| |#1| |#1| (-765)) 49)) (-3265 ((|#1| |#1| |#1| (-765)) 48)) (* (((-1253 |#2|) |#1| (-1253 |#2|)) 16)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -4163 (|#1| |#2| |#2|)) (-15 -3243 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3244 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3246 (|#2| |#2| |#2| (-765))) (-15 -3247 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3248 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3249 (|#2| |#2| |#2| (-765))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3251 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3591 (|#2| |#2| |#2|)) (-15 -3252 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4162 (|#2| |#2| |#2|)) (-15 -3254 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -4164 (|#1| |#2|)) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3258 ((-2 (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3259 ((-635 |#2|) |#2| |#2|)) (-15 -3260 ((-635 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -3261 (|#1| |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1253 |#2|) |#1| (-1253 |#2|))) (-15 -3865 ((-1253 |#2|) (-1253 |#2|) |#1|)) (-15 -4159 ((-2 (|:| -4361 |#1|) (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3264 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3265 (|#1| |#1| |#1| (-765))) (-15 -3266 (|#2| |#2| |#1| |#1| (-765))) (-15 -3267 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3268 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|))) (-554) (-1229 |#1|)) (T -962))
+((-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-3267 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3266 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3265 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *2 (-554)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1229 *2)))) (-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4159 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -4361 *4) (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3865 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554)) (-5 *1 (-962 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554)) (-5 *1 (-962 *3 *4)))) (-3545 (*1 *2 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3263 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3261 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3261 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-765))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4164 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4164 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4164 (*1 *2 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3545 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3255 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3545 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3545 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4162 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3253 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3591 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3251 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3250 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3249 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))) (-3248 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3247 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3246 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3244 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3243 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4163 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))))
+(-10 -7 (-15 -4163 (|#1| |#2| |#2|)) (-15 -3243 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3244 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3246 (|#2| |#2| |#2| (-765))) (-15 -3247 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3248 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3249 (|#2| |#2| |#2| (-765))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3251 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3591 (|#2| |#2| |#2|)) (-15 -3252 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4162 (|#2| |#2| |#2|)) (-15 -3254 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -4164 (|#1| |#2|)) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3258 ((-2 (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3259 ((-635 |#2|) |#2| |#2|)) (-15 -3260 ((-635 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -3261 (|#1| |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1253 |#2|) |#1| (-1253 |#2|))) (-15 -3865 ((-1253 |#2|) (-1253 |#2|) |#1|)) (-15 -4159 ((-2 (|:| -4361 |#1|) (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3264 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3265 (|#1| |#1| |#1| (-765))) (-15 -3266 (|#2| |#2| |#1| |#1| (-765))) (-15 -3267 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3268 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)))
+((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 10)) (-4353 (((-857) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-963) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))) (T -963))
+((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-963)))))
+(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) NIL T CONST)) (-3272 (((-635 (-635 (-544))) (-635 (-544))) 28)) (-3271 (((-544) $) 44)) (-3273 (($ (-635 (-544))) 17)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4377 (((-635 (-544)) $) 12)) (-3392 (($ $) 31)) (-4353 (((-857) $) 42) (((-635 (-544)) $) 10)) (-3040 (($) 7 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 19)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) NIL) (($ (-765) $) 24)))
+(((-964) (-13 (-791) (-609 (-635 (-544))) (-608 (-635 (-544))) (-10 -8 (-15 -3273 ($ (-635 (-544)))) (-15 -3272 ((-635 (-635 (-544))) (-635 (-544)))) (-15 -3271 ((-544) $)) (-15 -3392 ($ $))))) (T -964))
+((-3273 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-964)))) (-3272 (*1 *2 *3) (-12 (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-964)) (-5 *3 (-635 (-544))))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-964)))) (-3392 (*1 *1 *1) (-5 *1 (-964))))
+(-13 (-791) (-609 (-635 (-544))) (-608 (-635 (-544))) (-10 -8 (-15 -3273 ($ (-635 (-544)))) (-15 -3272 ((-635 (-635 (-544))) (-635 (-544)))) (-15 -3271 ((-544) $)) (-15 -3392 ($ $))))
+((-4356 (($ $ |#2|) 30)) (-4244 (($ $) 22) (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-544)) $) 26) (($ $ (-406 (-544))) 28)))
+(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-966 |#2| |#3| |#4|) (-1042) (-786) (-844)) (T -965))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#3|) $) 77)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3275 (((-112) $) 76)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-635 |#3|) (-635 |#2|)) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4355 ((|#2| $) 67)) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
(((-966 |#1| |#2| |#3|) (-139) (-1042) (-786) (-844)) (T -966))
-((-1572 (*1 *2 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-1557 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *2 (-786)))) (-1381 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786)) (-4 *2 (-844)))) (-1381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 *5)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-638 *5)))) (-4372 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3426 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1381 ($ $ |t#3| |t#2|)) (-15 -1381 ($ $ (-638 |t#3|) (-638 |t#2|))) (-15 -1557 ($ $)) (-15 -1572 (|t#1| $)) (-15 -3768 (|t#2| $)) (-15 -1405 ((-638 |t#3|) $)) (-15 -4372 ((-112) $)) (-15 -3426 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-289) |has| |#1| (-553)) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-2021 (((-1084 (-224)) $) 8)) (-2010 (((-1084 (-224)) $) 9)) (-1998 (((-1084 (-224)) $) 10)) (-4114 (((-638 (-638 (-936 (-224)))) $) 11)) (-4064 (((-856) $) 6)))
+((-3575 (*1 *2 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *2 (-786)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786)) (-4 *2 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-635 *5)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3274 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3276 ($ $ |t#3| |t#2|)) (-15 -3276 ($ $ (-635 |t#3|) (-635 |t#2|))) (-15 -3277 ($ $)) (-15 -3575 (|t#1| $)) (-15 -4355 (|t#2| $)) (-15 -3467 ((-635 |t#3|) $)) (-15 -3275 ((-112) $)) (-15 -3274 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-3278 (((-1079 (-224)) $) 8)) (-3279 (((-1079 (-224)) $) 9)) (-3280 (((-1079 (-224)) $) 10)) (-3281 (((-635 (-635 (-936 (-224)))) $) 11)) (-4353 (((-857) $) 6)))
(((-967) (-139)) (T -967))
-((-4114 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-638 (-638 (-936 (-224))))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
-(-13 (-608 (-856)) (-10 -8 (-15 -4114 ((-638 (-638 (-936 (-224)))) $)) (-15 -1998 ((-1084 (-224)) $)) (-15 -2010 ((-1084 (-224)) $)) (-15 -2021 ((-1084 (-224)) $))))
-(((-608 (-856)) . T))
-((-1405 (((-638 |#4|) $) 23)) (-4214 (((-112) $) 47)) (-2444 (((-112) $) 46)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#4|) 35)) (-3853 (((-112) $) 48)) (-3733 (((-112) $ $) 54)) (-4338 (((-112) $ $) 57)) (-1577 (((-112) $) 52)) (-3293 (((-638 |#5|) (-638 |#5|) $) 89)) (-2191 (((-638 |#5|) (-638 |#5|) $) 86)) (-1744 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-2597 (((-638 |#4|) $) 27)) (-2247 (((-112) |#4| $) 29)) (-3258 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3883 (($ $ |#4|) 32)) (-2049 (($ $ |#4|) 31)) (-2983 (($ $ |#4|) 33)) (-1723 (((-112) $ $) 39)))
-(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2444 ((-112) |#1|)) (-15 -3293 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -2191 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -1744 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3258 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3853 ((-112) |#1|)) (-15 -4338 ((-112) |#1| |#1|)) (-15 -3733 ((-112) |#1| |#1|)) (-15 -1577 ((-112) |#1|)) (-15 -4214 ((-112) |#1|)) (-15 -1318 ((-2 (|:| |under| |#1|) (|:| -4020 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -2983 (|#1| |#1| |#4|)) (-15 -2049 (|#1| |#1| |#4|)) (-15 -2247 ((-112) |#4| |#1|)) (-15 -2597 ((-638 |#4|) |#1|)) (-15 -1405 ((-638 |#4|) |#1|)) (-15 -1723 ((-112) |#1| |#1|))) (-969 |#2| |#3| |#4| |#5|) (-1042) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -968))
-NIL
-(-10 -8 (-15 -2444 ((-112) |#1|)) (-15 -3293 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -2191 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -1744 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3258 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3853 ((-112) |#1|)) (-15 -4338 ((-112) |#1| |#1|)) (-15 -3733 ((-112) |#1| |#1|)) (-15 -1577 ((-112) |#1|)) (-15 -4214 ((-112) |#1|)) (-15 -1318 ((-2 (|:| |under| |#1|) (|:| -4020 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -2983 (|#1| |#1| |#4|)) (-15 -2049 (|#1| |#1| |#4|)) (-15 -2247 ((-112) |#4| |#1|)) (-15 -2597 ((-638 |#4|) |#1|)) (-15 -1405 ((-638 |#4|) |#1|)) (-15 -1723 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-1405 (((-638 |#3|) $) 33)) (-4214 (((-112) $) 26)) (-2444 (((-112) $) 17 (|has| |#1| (-553)))) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) 27)) (-2684 (((-112) $ (-765)) 44)) (-3612 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4399)))) (-2674 (($) 45 T CONST)) (-3853 (((-112) $) 22 (|has| |#1| (-553)))) (-3733 (((-112) $ $) 24 (|has| |#1| (-553)))) (-4338 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1577 (((-112) $) 25 (|has| |#1| (-553)))) (-3293 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) 36)) (-3979 (($ (-638 |#4|)) 35)) (-1461 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4399)))) (-2368 (((-638 |#4|) $) 52 (|has| $ (-6 -4399)))) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) 43)) (-4125 (((-638 |#4|) $) 53 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 47)) (-2597 (((-638 |#3|) $) 32)) (-2247 (((-112) |#3| $) 31)) (-3683 (((-112) $ (-765)) 42)) (-1883 (((-1148) $) 9)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-1701 (((-1110) $) 10)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3977 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) 38)) (-2508 (((-112) $) 41)) (-2910 (($) 40)) (-1714 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4399)))) (-4225 (($ $) 39)) (-4216 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-2049 (($ $ |#3|) 30)) (-2983 (($ $ |#3|) 29)) (-4064 (((-856) $) 11) (((-638 |#4|) $) 37)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 6)) (-3548 (((-765) $) 46 (|has| $ (-6 -4399)))))
+((-3281 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-635 (-635 (-936 (-224))))))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3281 ((-635 (-635 (-936 (-224)))) $)) (-15 -3280 ((-1079 (-224)) $)) (-15 -3279 ((-1079 (-224)) $)) (-15 -3278 ((-1079 (-224)) $))))
+(((-608 (-857)) . T))
+((-3467 (((-635 |#4|) $) 23)) (-3291 (((-112) $) 47)) (-3282 (((-112) $) 46)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#4|) 35)) (-3287 (((-112) $) 48)) (-3289 (((-112) $ $) 54)) (-3288 (((-112) $ $) 57)) (-3290 (((-112) $) 52)) (-3283 (((-635 |#5|) (-635 |#5|) $) 89)) (-3284 (((-635 |#5|) (-635 |#5|) $) 86)) (-3285 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3297 (((-635 |#4|) $) 27)) (-3296 (((-112) |#4| $) 29)) (-3286 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3293 (($ $ |#4|) 32)) (-3295 (($ $ |#4|) 31)) (-3294 (($ $ |#4|) 33)) (-3437 (((-112) $ $) 39)))
+(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3282 ((-112) |#1|)) (-15 -3283 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3284 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3285 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3286 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3287 ((-112) |#1|)) (-15 -3288 ((-112) |#1| |#1|)) (-15 -3289 ((-112) |#1| |#1|)) (-15 -3290 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -3292 ((-2 (|:| |under| |#1|) (|:| -3515 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3294 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3296 ((-112) |#4| |#1|)) (-15 -3297 ((-635 |#4|) |#1|)) (-15 -3467 ((-635 |#4|) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-969 |#2| |#3| |#4| |#5|) (-1042) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -968))
+NIL
+(-10 -8 (-15 -3282 ((-112) |#1|)) (-15 -3283 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3284 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3285 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3286 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3287 ((-112) |#1|)) (-15 -3288 ((-112) |#1| |#1|)) (-15 -3289 ((-112) |#1| |#1|)) (-15 -3290 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -3292 ((-2 (|:| |under| |#1|) (|:| -3515 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3294 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3296 ((-112) |#4| |#1|)) (-15 -3297 ((-635 |#4|) |#1|)) (-15 -3467 ((-635 |#4|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400)))) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400)))) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-3644 (((-1110) $) 10)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400)))))
(((-969 |#1| |#2| |#3| |#4|) (-139) (-1042) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -969))
-((-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))) (-2247 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-2049 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-2983 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-3883 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-1318 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4020 *1) (|:| |upper| *1))) (-4 *1 (-969 *4 *5 *3 *6)))) (-4214 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-3733 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-4338 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-3258 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1744 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2191 (*1 *2 *2 *1) (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)))) (-3293 (*1 *2 *2 *1) (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))))
-(-13 (-1090) (-150 |t#4|) (-608 (-638 |t#4|)) (-10 -8 (-6 -4399) (-15 -4061 ((-3 $ "failed") (-638 |t#4|))) (-15 -3979 ($ (-638 |t#4|))) (-15 -1994 (|t#3| $)) (-15 -1405 ((-638 |t#3|) $)) (-15 -2597 ((-638 |t#3|) $)) (-15 -2247 ((-112) |t#3| $)) (-15 -2049 ($ $ |t#3|)) (-15 -2983 ($ $ |t#3|)) (-15 -3883 ($ $ |t#3|)) (-15 -1318 ((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |t#3|)) (-15 -4214 ((-112) $)) (IF (|has| |t#1| (-553)) (PROGN (-15 -1577 ((-112) $)) (-15 -3733 ((-112) $ $)) (-15 -4338 ((-112) $ $)) (-15 -3853 ((-112) $)) (-15 -3258 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1744 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2191 ((-638 |t#4|) (-638 |t#4|) $)) (-15 -3293 ((-638 |t#4|) (-638 |t#4|) $)) (-15 -2444 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-1090) . T) ((-1205) . T))
-((-3422 (((-638 |#4|) |#4| |#4|) 117)) (-3386 (((-638 |#4|) (-638 |#4|) (-112)) 106 (|has| |#1| (-450))) (((-638 |#4|) (-638 |#4|)) 107 (|has| |#1| (-450)))) (-2059 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 34)) (-3459 (((-112) |#4|) 33)) (-2735 (((-638 |#4|) |#4|) 102 (|has| |#1| (-450)))) (-2318 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-1 (-112) |#4|) (-638 |#4|)) 19)) (-1399 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|)) 21)) (-1419 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|)) 22)) (-2205 (((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|)) 72)) (-2834 (((-638 |#4|) (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-2085 (((-638 |#4|) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-3315 (((-638 |#4|) (-638 |#4|)) 109)) (-2823 (((-638 |#4|) (-638 |#4|) (-638 |#4|) (-112)) 47) (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 49)) (-3366 ((|#4| |#4| (-638 |#4|)) 48)) (-3554 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 113 (|has| |#1| (-450)))) (-2925 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 116 (|has| |#1| (-450)))) (-3512 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 115 (|has| |#1| (-450)))) (-2661 (((-638 |#4|) (-638 |#4|) (-638 |#4|) (-1 (-638 |#4|) (-638 |#4|))) 86) (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 88) (((-638 |#4|) (-638 |#4|) |#4|) 120) (((-638 |#4|) |#4| |#4|) 118) (((-638 |#4|) (-638 |#4|)) 87)) (-3238 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-2082 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 40)) (-1409 (((-112) (-638 |#4|)) 61)) (-1537 (((-112) (-638 |#4|) (-638 (-638 |#4|))) 52)) (-2885 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 28)) (-2902 (((-112) |#4|) 27)) (-2580 (((-638 |#4|) (-638 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3438 (((-638 |#4|) (-638 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-1664 (((-638 |#4|) (-638 |#4|)) 65)) (-1774 (((-638 |#4|) (-638 |#4|)) 78)) (-3465 (((-112) (-638 |#4|) (-638 |#4|)) 50)) (-1927 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 38)) (-3841 (((-112) |#4|) 35)))
-(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2661 ((-638 |#4|) (-638 |#4|))) (-15 -2661 ((-638 |#4|) |#4| |#4|)) (-15 -3315 ((-638 |#4|) (-638 |#4|))) (-15 -3422 ((-638 |#4|) |#4| |#4|)) (-15 -2661 ((-638 |#4|) (-638 |#4|) |#4|)) (-15 -2661 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2661 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-1 (-638 |#4|) (-638 |#4|)))) (-15 -3465 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1537 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -1409 ((-112) (-638 |#4|))) (-15 -2318 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-1 (-112) |#4|) (-638 |#4|))) (-15 -1399 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -1419 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -2082 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -3459 ((-112) |#4|)) (-15 -2059 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -2902 ((-112) |#4|)) (-15 -2885 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -3841 ((-112) |#4|)) (-15 -1927 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -2823 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2823 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-112))) (-15 -3366 (|#4| |#4| (-638 |#4|))) (-15 -1664 ((-638 |#4|) (-638 |#4|))) (-15 -2205 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|))) (-15 -1774 ((-638 |#4|) (-638 |#4|))) (-15 -2834 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2085 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -2735 ((-638 |#4|) |#4|)) (-15 -3386 ((-638 |#4|) (-638 |#4|))) (-15 -3386 ((-638 |#4|) (-638 |#4|) (-112))) (-15 -3554 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -3512 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2925 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3438 ((-638 |#4|) (-638 |#4|))) (-15 -2580 ((-638 |#4|) (-638 |#4|))) (-15 -3238 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) |%noBranch|)) (-553) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -970))
-((-3238 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2580 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2925 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3512 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3554 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2085 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-970 *5 *6 *7 *8)))) (-2834 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-638 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2205 (*1 *2 *3) (|partial| -12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -2765 (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2)))) (-2823 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-2823 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-3841 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2885 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-2902 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2059 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2082 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *5 *6 *7 *8)))) (-3465 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-2661 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-638 *7) (-638 *7))) (-5 *2 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-2661 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3)))) (-3422 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2661 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2661 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2661 ((-638 |#4|) (-638 |#4|))) (-15 -2661 ((-638 |#4|) |#4| |#4|)) (-15 -3315 ((-638 |#4|) (-638 |#4|))) (-15 -3422 ((-638 |#4|) |#4| |#4|)) (-15 -2661 ((-638 |#4|) (-638 |#4|) |#4|)) (-15 -2661 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2661 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-1 (-638 |#4|) (-638 |#4|)))) (-15 -3465 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1537 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -1409 ((-112) (-638 |#4|))) (-15 -2318 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-1 (-112) |#4|) (-638 |#4|))) (-15 -1399 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -1419 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -2082 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -3459 ((-112) |#4|)) (-15 -2059 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -2902 ((-112) |#4|)) (-15 -2885 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -3841 ((-112) |#4|)) (-15 -1927 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -2823 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2823 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-112))) (-15 -3366 (|#4| |#4| (-638 |#4|))) (-15 -1664 ((-638 |#4|) (-638 |#4|))) (-15 -2205 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|))) (-15 -1774 ((-638 |#4|) (-638 |#4|))) (-15 -2834 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2085 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -2735 ((-638 |#4|) |#4|)) (-15 -3386 ((-638 |#4|) (-638 |#4|))) (-15 -3386 ((-638 |#4|) (-638 |#4|) (-112))) (-15 -3554 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -3512 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2925 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3438 ((-638 |#4|) (-638 |#4|))) (-15 -2580 ((-638 |#4|) (-638 |#4|))) (-15 -3238 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) |%noBranch|))
-((-3750 (((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4013 (((-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1254 |#1|)))) (-682 |#1|) (-1254 |#1|)) 35)) (-2737 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-971 |#1|) (-10 -7 (-15 -3750 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2737 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4013 ((-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1254 |#1|)))) (-682 |#1|) (-1254 |#1|)))) (-362)) (T -971))
-((-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-638 (-2 (|:| C (-682 *5)) (|:| |g| (-1254 *5))))) (-5 *1 (-971 *5)) (-5 *3 (-682 *5)) (-5 *4 (-1254 *5)))) (-2737 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-971 *5)))) (-3750 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6)))) (-5 *1 (-971 *6)) (-5 *3 (-682 *6)))))
-(-10 -7 (-15 -3750 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2737 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4013 ((-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1254 |#1|)))) (-682 |#1|) (-1254 |#1|))))
-((-3552 (((-417 |#4|) |#4|) 48)))
-(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3552 ((-417 |#4|) |#4|))) (-844) (-787) (-450) (-942 |#3| |#2| |#1|)) (T -972))
-((-3552 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-417 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
-(-10 -7 (-15 -3552 ((-417 |#4|) |#4|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2920 (($ (-765)) 112 (|has| |#1| (-23)))) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4400))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4400))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 58 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-4026 (($ $) 90 (|has| $ (-6 -4400)))) (-2659 (($ $) 100)) (-1461 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 51)) (-4266 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-1507 (($ (-638 |#1|)) 118)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-2832 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-1458 (($ (-765) |#1|) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-1597 (($ $ $) 87 (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-3017 (($ $ $) 86 (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1463 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-3683 (((-112) $ (-765)) 10)) (-4310 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 42 (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3193 (($ $ |#1|) 41 (|has| $ (-6 -4400)))) (-3702 (($ $ (-638 |#1|)) 116)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1221 (-561))) 63)) (-3634 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-2390 (((-914) $) 117)) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-3738 (($ $ $) 104)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2879 (($ $ $ (-561)) 91 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| |#1| (-609 (-534)))) (($ (-638 |#1|)) 119)) (-4078 (($ (-638 |#1|)) 70)) (-2754 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1770 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-844)))) (-1819 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1810 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-561) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
+((-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))) (-3296 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-3295 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-3294 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-3293 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-3292 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3515 *1) (|:| |upper| *1))) (-4 *1 (-969 *4 *5 *3 *6)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3289 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3288 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3286 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3285 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3284 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)))) (-3283 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))))
+(-13 (-1091) (-150 |t#4|) (-608 (-635 |t#4|)) (-10 -8 (-6 -4400) (-15 -3558 ((-3 $ "failed") (-635 |t#4|))) (-15 -3557 ($ (-635 |t#4|))) (-15 -3581 (|t#3| $)) (-15 -3467 ((-635 |t#3|) $)) (-15 -3297 ((-635 |t#3|) $)) (-15 -3296 ((-112) |t#3| $)) (-15 -3295 ($ $ |t#3|)) (-15 -3294 ($ $ |t#3|)) (-15 -3293 ($ $ |t#3|)) (-15 -3292 ((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |t#3|)) (-15 -3291 ((-112) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -3290 ((-112) $)) (-15 -3289 ((-112) $ $)) (-15 -3288 ((-112) $ $)) (-15 -3287 ((-112) $)) (-15 -3286 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3285 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3284 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -3283 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -3282 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-1091) . T) ((-1204) . T))
+((-3299 (((-635 |#4|) |#4| |#4|) 117)) (-3322 (((-635 |#4|) (-635 |#4|) (-112)) 106 (|has| |#1| (-450))) (((-635 |#4|) (-635 |#4|)) 107 (|has| |#1| (-450)))) (-3309 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 34)) (-3308 (((-112) |#4|) 33)) (-3321 (((-635 |#4|) |#4|) 102 (|has| |#1| (-450)))) (-3304 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|)) 19)) (-3305 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 21)) (-3306 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 22)) (-3317 (((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|)) 72)) (-3319 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-3320 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-3298 (((-635 |#4|) (-635 |#4|)) 109)) (-3314 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112)) 47) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 49)) (-3315 ((|#4| |#4| (-635 |#4|)) 48)) (-3323 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 113 (|has| |#1| (-450)))) (-3325 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 116 (|has| |#1| (-450)))) (-3324 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 115 (|has| |#1| (-450)))) (-3300 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|))) 86) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 88) (((-635 |#4|) (-635 |#4|) |#4|) 120) (((-635 |#4|) |#4| |#4|) 118) (((-635 |#4|) (-635 |#4|)) 87)) (-3328 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3307 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 40)) (-3303 (((-112) (-635 |#4|)) 61)) (-3302 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 52)) (-3311 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 28)) (-3310 (((-112) |#4|) 27)) (-3327 (((-635 |#4|) (-635 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3326 (((-635 |#4|) (-635 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3316 (((-635 |#4|) (-635 |#4|)) 65)) (-3318 (((-635 |#4|) (-635 |#4|)) 78)) (-3301 (((-112) (-635 |#4|) (-635 |#4|)) 50)) (-3313 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 38)) (-3312 (((-112) |#4|) 35)))
+(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3300 ((-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) |#4| |#4|)) (-15 -3298 ((-635 |#4|) (-635 |#4|))) (-15 -3299 ((-635 |#4|) |#4| |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -3301 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3302 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3303 ((-112) (-635 |#4|))) (-15 -3304 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -3305 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3306 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3307 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3308 ((-112) |#4|)) (-15 -3309 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3310 ((-112) |#4|)) (-15 -3311 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3312 ((-112) |#4|)) (-15 -3313 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -3315 (|#4| |#4| (-635 |#4|))) (-15 -3316 ((-635 |#4|) (-635 |#4|))) (-15 -3317 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -3318 ((-635 |#4|) (-635 |#4|))) (-15 -3319 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3320 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3321 ((-635 |#4|) |#4|)) (-15 -3322 ((-635 |#4|) (-635 |#4|))) (-15 -3322 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -3323 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3324 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3325 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3326 ((-635 |#4|) (-635 |#4|))) (-15 -3327 ((-635 |#4|) (-635 |#4|))) (-15 -3328 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|)) (-554) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -970))
+((-3328 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3327 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3324 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3323 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3322 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3320 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-970 *5 *6 *7 *8)))) (-3319 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3317 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -3728 (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3315 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2)))) (-3314 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3314 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3313 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3309 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3308 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3307 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3305 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *5 *6 *7 *8)))) (-3301 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3300 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3300 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3300 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3298 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3300 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3300 ((-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) |#4| |#4|)) (-15 -3298 ((-635 |#4|) (-635 |#4|))) (-15 -3299 ((-635 |#4|) |#4| |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -3301 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3302 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3303 ((-112) (-635 |#4|))) (-15 -3304 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -3305 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3306 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3307 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3308 ((-112) |#4|)) (-15 -3309 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3310 ((-112) |#4|)) (-15 -3311 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3312 ((-112) |#4|)) (-15 -3313 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -3315 (|#4| |#4| (-635 |#4|))) (-15 -3316 ((-635 |#4|) (-635 |#4|))) (-15 -3317 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -3318 ((-635 |#4|) (-635 |#4|))) (-15 -3319 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3320 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3321 ((-635 |#4|) |#4|)) (-15 -3322 ((-635 |#4|) (-635 |#4|))) (-15 -3322 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -3323 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3324 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3325 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3326 ((-635 |#4|) (-635 |#4|))) (-15 -3327 ((-635 |#4|) (-635 |#4|))) (-15 -3328 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|))
+((-3329 (((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3331 (((-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)) 35)) (-3330 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-971 |#1|) (-10 -7 (-15 -3329 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3330 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3331 ((-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)))) (-362)) (T -971))
+((-3331 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5))))) (-5 *1 (-971 *5)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)))) (-3330 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-971 *5)))) (-3329 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6)))) (-5 *1 (-971 *6)) (-5 *3 (-682 *6)))))
+(-10 -7 (-15 -3329 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3330 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3331 ((-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))))
+((-4376 (((-404 |#4|) |#4|) 48)))
+(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-404 |#4|) |#4|))) (-844) (-787) (-450) (-943 |#3| |#2| |#1|)) (T -972))
+((-4376 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-404 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4)))))
+(-10 -7 (-15 -4376 ((-404 |#4|) |#4|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-4245 (($ (-765)) 112 (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-4113 (($ (-635 |#1|)) 118)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4239 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-4123 (((-112) $ (-765)) 10)) (-4240 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-4175 (($ $ (-635 |#1|)) 116)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-4243 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-4318 (((-912) $) 117)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-4241 (($ $ $) 104)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533)))) (($ (-635 |#1|)) 119)) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4244 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4246 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-544) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
(((-973 |#1|) (-139) (-1042)) (T -973))
-((-1507 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-914)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042)))))
-(-13 (-1252 |t#1|) (-613 (-638 |t#1|)) (-10 -8 (-15 -1507 ($ (-638 |t#1|))) (-15 -2390 ((-914) $)) (-15 -3738 ($ $ $)) (-15 -3702 ($ $ (-638 |t#1|)))))
-(((-34) . T) ((-102) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-613 (-638 |#1|)) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T) ((-1252 |#1|) . T))
-((-4165 (((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)) 17)))
-(((-974 |#1| |#2|) (-10 -7 (-15 -4165 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)))) (-1042) (-1042)) (T -974))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6)))))
-(-10 -7 (-15 -4165 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|))))
-((-4231 ((|#1| (-936 |#1|)) 13)) (-2777 ((|#1| (-936 |#1|)) 12)) (-1547 ((|#1| (-936 |#1|)) 11)) (-4366 ((|#1| (-936 |#1|)) 15)) (-3248 ((|#1| (-936 |#1|)) 21)) (-3585 ((|#1| (-936 |#1|)) 14)) (-2781 ((|#1| (-936 |#1|)) 16)) (-3640 ((|#1| (-936 |#1|)) 20)) (-2999 ((|#1| (-936 |#1|)) 19)))
-(((-975 |#1|) (-10 -7 (-15 -1547 (|#1| (-936 |#1|))) (-15 -2777 (|#1| (-936 |#1|))) (-15 -4231 (|#1| (-936 |#1|))) (-15 -3585 (|#1| (-936 |#1|))) (-15 -4366 (|#1| (-936 |#1|))) (-15 -2781 (|#1| (-936 |#1|))) (-15 -2999 (|#1| (-936 |#1|))) (-15 -3640 (|#1| (-936 |#1|))) (-15 -3248 (|#1| (-936 |#1|)))) (-1042)) (T -975))
-((-3248 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(-10 -7 (-15 -1547 (|#1| (-936 |#1|))) (-15 -2777 (|#1| (-936 |#1|))) (-15 -4231 (|#1| (-936 |#1|))) (-15 -3585 (|#1| (-936 |#1|))) (-15 -4366 (|#1| (-936 |#1|))) (-15 -2781 (|#1| (-936 |#1|))) (-15 -2999 (|#1| (-936 |#1|))) (-15 -3640 (|#1| (-936 |#1|))) (-15 -3248 (|#1| (-936 |#1|))))
-((-2051 (((-3 |#1| "failed") |#1|) 18)) (-2437 (((-3 |#1| "failed") |#1|) 6)) (-4055 (((-3 |#1| "failed") |#1|) 16)) (-3882 (((-3 |#1| "failed") |#1|) 4)) (-4233 (((-3 |#1| "failed") |#1|) 20)) (-3967 (((-3 |#1| "failed") |#1|) 8)) (-1432 (((-3 |#1| "failed") |#1| (-765)) 1)) (-1445 (((-3 |#1| "failed") |#1|) 3)) (-3153 (((-3 |#1| "failed") |#1|) 2)) (-2905 (((-3 |#1| "failed") |#1|) 21)) (-2453 (((-3 |#1| "failed") |#1|) 9)) (-1375 (((-3 |#1| "failed") |#1|) 19)) (-3463 (((-3 |#1| "failed") |#1|) 7)) (-2523 (((-3 |#1| "failed") |#1|) 17)) (-3295 (((-3 |#1| "failed") |#1|) 5)) (-1407 (((-3 |#1| "failed") |#1|) 24)) (-1595 (((-3 |#1| "failed") |#1|) 12)) (-3801 (((-3 |#1| "failed") |#1|) 22)) (-4209 (((-3 |#1| "failed") |#1|) 10)) (-1918 (((-3 |#1| "failed") |#1|) 26)) (-2791 (((-3 |#1| "failed") |#1|) 14)) (-2924 (((-3 |#1| "failed") |#1|) 27)) (-2105 (((-3 |#1| "failed") |#1|) 15)) (-1715 (((-3 |#1| "failed") |#1|) 25)) (-2698 (((-3 |#1| "failed") |#1|) 13)) (-2798 (((-3 |#1| "failed") |#1|) 23)) (-1959 (((-3 |#1| "failed") |#1|) 11)))
+((-4113 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-912)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042)))))
+(-13 (-1252 |t#1|) (-613 (-635 |t#1|)) (-10 -8 (-15 -4113 ($ (-635 |t#1|))) (-15 -4318 ((-912) $)) (-15 -4241 ($ $ $)) (-15 -4175 ($ $ (-635 |t#1|)))))
+(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-613 (-635 |#1|)) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T) ((-1252 |#1|) . T))
+((-4365 (((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)) 17)))
+(((-974 |#1| |#2|) (-10 -7 (-15 -4365 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)))) (-1042) (-1042)) (T -974))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6)))))
+(-10 -7 (-15 -4365 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|))))
+((-3334 ((|#1| (-936 |#1|)) 13)) (-3333 ((|#1| (-936 |#1|)) 12)) (-3332 ((|#1| (-936 |#1|)) 11)) (-3336 ((|#1| (-936 |#1|)) 15)) (-3340 ((|#1| (-936 |#1|)) 21)) (-3335 ((|#1| (-936 |#1|)) 14)) (-3337 ((|#1| (-936 |#1|)) 16)) (-3339 ((|#1| (-936 |#1|)) 20)) (-3338 ((|#1| (-936 |#1|)) 19)))
+(((-975 |#1|) (-10 -7 (-15 -3332 (|#1| (-936 |#1|))) (-15 -3333 (|#1| (-936 |#1|))) (-15 -3334 (|#1| (-936 |#1|))) (-15 -3335 (|#1| (-936 |#1|))) (-15 -3336 (|#1| (-936 |#1|))) (-15 -3337 (|#1| (-936 |#1|))) (-15 -3338 (|#1| (-936 |#1|))) (-15 -3339 (|#1| (-936 |#1|))) (-15 -3340 (|#1| (-936 |#1|)))) (-1042)) (T -975))
+((-3340 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(-10 -7 (-15 -3332 (|#1| (-936 |#1|))) (-15 -3333 (|#1| (-936 |#1|))) (-15 -3334 (|#1| (-936 |#1|))) (-15 -3335 (|#1| (-936 |#1|))) (-15 -3336 (|#1| (-936 |#1|))) (-15 -3337 (|#1| (-936 |#1|))) (-15 -3338 (|#1| (-936 |#1|))) (-15 -3339 (|#1| (-936 |#1|))) (-15 -3340 (|#1| (-936 |#1|))))
+((-3358 (((-3 |#1| "failed") |#1|) 18)) (-3346 (((-3 |#1| "failed") |#1|) 6)) (-3356 (((-3 |#1| "failed") |#1|) 16)) (-3344 (((-3 |#1| "failed") |#1|) 4)) (-3360 (((-3 |#1| "failed") |#1|) 20)) (-3348 (((-3 |#1| "failed") |#1|) 8)) (-3341 (((-3 |#1| "failed") |#1| (-765)) 1)) (-3343 (((-3 |#1| "failed") |#1|) 3)) (-3342 (((-3 |#1| "failed") |#1|) 2)) (-3361 (((-3 |#1| "failed") |#1|) 21)) (-3349 (((-3 |#1| "failed") |#1|) 9)) (-3359 (((-3 |#1| "failed") |#1|) 19)) (-3347 (((-3 |#1| "failed") |#1|) 7)) (-3357 (((-3 |#1| "failed") |#1|) 17)) (-3345 (((-3 |#1| "failed") |#1|) 5)) (-3364 (((-3 |#1| "failed") |#1|) 24)) (-3352 (((-3 |#1| "failed") |#1|) 12)) (-3362 (((-3 |#1| "failed") |#1|) 22)) (-3350 (((-3 |#1| "failed") |#1|) 10)) (-3366 (((-3 |#1| "failed") |#1|) 26)) (-3354 (((-3 |#1| "failed") |#1|) 14)) (-3367 (((-3 |#1| "failed") |#1|) 27)) (-3355 (((-3 |#1| "failed") |#1|) 15)) (-3365 (((-3 |#1| "failed") |#1|) 25)) (-3353 (((-3 |#1| "failed") |#1|) 13)) (-3363 (((-3 |#1| "failed") |#1|) 23)) (-3351 (((-3 |#1| "failed") |#1|) 11)))
(((-976 |#1|) (-139) (-1190)) (T -976))
-((-2924 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1918 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1715 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1407 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2798 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3801 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2905 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-4233 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1375 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2051 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2523 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-4055 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2105 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2791 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2698 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1595 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1959 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-4209 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2453 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3967 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3463 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2437 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3295 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3882 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1445 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3153 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1432 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(-13 (-10 -7 (-15 -1432 ((-3 |t#1| "failed") |t#1| (-765))) (-15 -3153 ((-3 |t#1| "failed") |t#1|)) (-15 -1445 ((-3 |t#1| "failed") |t#1|)) (-15 -3882 ((-3 |t#1| "failed") |t#1|)) (-15 -3295 ((-3 |t#1| "failed") |t#1|)) (-15 -2437 ((-3 |t#1| "failed") |t#1|)) (-15 -3463 ((-3 |t#1| "failed") |t#1|)) (-15 -3967 ((-3 |t#1| "failed") |t#1|)) (-15 -2453 ((-3 |t#1| "failed") |t#1|)) (-15 -4209 ((-3 |t#1| "failed") |t#1|)) (-15 -1959 ((-3 |t#1| "failed") |t#1|)) (-15 -1595 ((-3 |t#1| "failed") |t#1|)) (-15 -2698 ((-3 |t#1| "failed") |t#1|)) (-15 -2791 ((-3 |t#1| "failed") |t#1|)) (-15 -2105 ((-3 |t#1| "failed") |t#1|)) (-15 -4055 ((-3 |t#1| "failed") |t#1|)) (-15 -2523 ((-3 |t#1| "failed") |t#1|)) (-15 -2051 ((-3 |t#1| "failed") |t#1|)) (-15 -1375 ((-3 |t#1| "failed") |t#1|)) (-15 -4233 ((-3 |t#1| "failed") |t#1|)) (-15 -2905 ((-3 |t#1| "failed") |t#1|)) (-15 -3801 ((-3 |t#1| "failed") |t#1|)) (-15 -2798 ((-3 |t#1| "failed") |t#1|)) (-15 -1407 ((-3 |t#1| "failed") |t#1|)) (-15 -1715 ((-3 |t#1| "failed") |t#1|)) (-15 -1918 ((-3 |t#1| "failed") |t#1|)) (-15 -2924 ((-3 |t#1| "failed") |t#1|))))
-((-3423 ((|#4| |#4| (-638 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-4145 ((|#4| |#4| (-638 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4165 ((|#4| (-1 |#4| (-945 |#1|)) |#4|) 30)))
-(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4145 (|#4| |#4| |#3|)) (-15 -4145 (|#4| |#4| (-638 |#3|))) (-15 -3423 (|#4| |#4| |#3|)) (-15 -3423 (|#4| |#4| (-638 |#3|))) (-15 -4165 (|#4| (-1 |#4| (-945 |#1|)) |#4|))) (-1042) (-787) (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166))))) (-942 (-945 |#1|) |#2| |#3|)) (T -977))
-((-4165 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-945 *4))) (-4 *4 (-1042)) (-4 *2 (-942 (-945 *4) *5 *6)) (-4 *5 (-787)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166)))))) (-5 *1 (-977 *4 *5 *6 *2)))) (-3423 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6)))) (-3423 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3)))) (-4145 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6)))) (-4145 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)) (-15 -2421 ((-3 $ "failed") (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3)))))
-(-10 -7 (-15 -4145 (|#4| |#4| |#3|)) (-15 -4145 (|#4| |#4| (-638 |#3|))) (-15 -3423 (|#4| |#4| |#3|)) (-15 -3423 (|#4| |#4| (-638 |#3|))) (-15 -4165 (|#4| (-1 |#4| (-945 |#1|)) |#4|)))
-((-4373 ((|#2| |#3|) 35)) (-4258 (((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 73)) (-3637 (((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 89)))
-(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3637 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4258 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -4373 (|#2| |#3|))) (-348) (-1230 |#1|) (-1230 |#2|) (-718 |#2| |#3|)) (T -978))
-((-4373 (*1 *2 *3) (-12 (-4 *3 (-1230 *2)) (-4 *2 (-1230 *4)) (-5 *1 (-978 *4 *2 *3 *5)) (-4 *4 (-348)) (-4 *5 (-718 *2 *3)))) (-4258 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 *3)) (-5 *2 (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5)))) (-3637 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| -2615 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5)))))
-(-10 -7 (-15 -3637 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4258 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -4373 (|#2| |#3|)))
-((-3013 (((-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))) (-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561))))) 68)))
-(((-979 |#1| |#2|) (-10 -7 (-15 -3013 ((-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))) (-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561))))))) (-638 (-1166)) (-765)) (T -979))
-((-3013 (*1 *2 *2) (-12 (-5 *2 (-980 (-406 (-561)) (-858 *3) (-239 *4 (-765)) (-246 *3 (-406 (-561))))) (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-979 *3 *4)))))
-(-10 -7 (-15 -3013 ((-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))) (-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))))))
-((-4053 (((-112) $ $) NIL)) (-3999 (((-3 (-112) "failed") $) 69)) (-3382 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-1802 (($ $ (-3 (-112) "failed")) 70)) (-2057 (($ (-638 |#4|) |#4|) 25)) (-1883 (((-1148) $) NIL)) (-4123 (($ $) 67)) (-1701 (((-1110) $) NIL)) (-2508 (((-112) $) 68)) (-2910 (($) 30)) (-1812 ((|#4| $) 72)) (-2804 (((-638 |#4|) $) 71)) (-4064 (((-856) $) 66)) (-1723 (((-112) $ $) NIL)))
-(((-980 |#1| |#2| |#3| |#4|) (-13 (-1090) (-608 (-856)) (-10 -8 (-15 -2910 ($)) (-15 -2057 ($ (-638 |#4|) |#4|)) (-15 -3999 ((-3 (-112) "failed") $)) (-15 -1802 ($ $ (-3 (-112) "failed"))) (-15 -2508 ((-112) $)) (-15 -2804 ((-638 |#4|) $)) (-15 -1812 (|#4| $)) (-15 -4123 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3382 ($ $)) |%noBranch|) |%noBranch|))) (-450) (-844) (-787) (-942 |#1| |#3| |#2|)) (T -980))
-((-2910 (*1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) (-2057 (*1 *1 *2 *3) (-12 (-5 *2 (-638 *3)) (-4 *3 (-942 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *1 (-980 *4 *5 *6 *3)))) (-3999 (*1 *2 *1) (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-1802 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-2508 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-2804 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-638 *6)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-1812 (*1 *2 *1) (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)))) (-4123 (*1 *1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) (-3382 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))))
-(-13 (-1090) (-608 (-856)) (-10 -8 (-15 -2910 ($)) (-15 -2057 ($ (-638 |#4|) |#4|)) (-15 -3999 ((-3 (-112) "failed") $)) (-15 -1802 ($ $ (-3 (-112) "failed"))) (-15 -2508 ((-112) $)) (-15 -2804 ((-638 |#4|) $)) (-15 -1812 (|#4| $)) (-15 -4123 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3382 ($ $)) |%noBranch|) |%noBranch|)))
-((-4316 (((-112) |#5| |#5|) 37)) (-2253 (((-112) |#5| |#5|) 51)) (-3051 (((-112) |#5| (-638 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-2644 (((-112) (-638 |#4|) (-638 |#4|)) 57)) (-1395 (((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) 62)) (-3044 (((-1259)) 33)) (-2263 (((-1259) (-1148) (-1148) (-1148)) 29)) (-4361 (((-638 |#5|) (-638 |#5|)) 80)) (-2965 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) 78)) (-1981 (((-638 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112)) 100)) (-3106 (((-112) |#5| |#5|) 46)) (-2451 (((-3 (-112) "failed") |#5| |#5|) 70)) (-1630 (((-112) (-638 |#4|) (-638 |#4|)) 56)) (-3791 (((-112) (-638 |#4|) (-638 |#4|)) 58)) (-4345 (((-112) (-638 |#4|) (-638 |#4|)) 59)) (-2219 (((-3 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-2434 (((-638 |#5|) (-638 |#5|)) 42)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2263 ((-1259) (-1148) (-1148) (-1148))) (-15 -3044 ((-1259))) (-15 -4316 ((-112) |#5| |#5|)) (-15 -2434 ((-638 |#5|) (-638 |#5|))) (-15 -3106 ((-112) |#5| |#5|)) (-15 -2253 ((-112) |#5| |#5|)) (-15 -2644 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1630 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3791 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -4345 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2451 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3051 ((-112) |#5| |#5|)) (-15 -3051 ((-112) |#5| (-638 |#5|))) (-15 -4361 ((-638 |#5|) (-638 |#5|))) (-15 -1395 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2965 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-15 -1981 ((-638 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2219 ((-3 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -981))
-((-2219 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3394 (-638 *9)) (|:| -1495 *4) (|:| |ineq| (-638 *9)))) (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-1981 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| -3394 (-638 *9)) (|:| -1495 *10) (|:| |ineq| (-638 *9))))) (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1495 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-1395 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-4361 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-981 *5 *6 *7 *8 *3)))) (-3051 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2451 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-4345 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3791 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-1630 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2253 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3106 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-4316 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3044 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2263 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2263 ((-1259) (-1148) (-1148) (-1148))) (-15 -3044 ((-1259))) (-15 -4316 ((-112) |#5| |#5|)) (-15 -2434 ((-638 |#5|) (-638 |#5|))) (-15 -3106 ((-112) |#5| |#5|)) (-15 -2253 ((-112) |#5| |#5|)) (-15 -2644 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1630 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3791 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -4345 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2451 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3051 ((-112) |#5| |#5|)) (-15 -3051 ((-112) |#5| (-638 |#5|))) (-15 -4361 ((-638 |#5|) (-638 |#5|))) (-15 -1395 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2965 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-15 -1981 ((-638 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2219 ((-3 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2421 (((-1166) $) 15)) (-2506 (((-1148) $) 16)) (-3723 (($ (-1166) (-1148)) 14)) (-4064 (((-856) $) 13)))
-(((-982) (-13 (-608 (-856)) (-10 -8 (-15 -3723 ($ (-1166) (-1148))) (-15 -2421 ((-1166) $)) (-15 -2506 ((-1148) $))))) (T -982))
-((-3723 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -3723 ($ (-1166) (-1148))) (-15 -2421 ((-1166) $)) (-15 -2506 ((-1148) $))))
-((-4165 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#4| (-1 |#2| |#1|) |#3|))) (-553) (-553) (-985 |#1|) (-985 |#2|)) (T -983))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-553)) (-4 *6 (-553)) (-4 *2 (-985 *6)) (-5 *1 (-983 *5 *6 *4 *2)) (-4 *4 (-985 *5)))))
-(-10 -7 (-15 -4165 (|#4| (-1 |#2| |#1|) |#3|)))
-((-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-1166) "failed") $) 65) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) 95)) (-3979 ((|#2| $) NIL) (((-1166) $) 60) (((-406 (-561)) $) NIL) (((-561) $) 92)) (-3720 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) 112) (((-682 |#2|) (-682 $)) 28)) (-1362 (($) 98)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 75) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84)) (-3307 (($ $) 10)) (-2436 (((-3 $ "failed") $) 20)) (-4165 (($ (-1 |#2| |#2|) $) 22)) (-3767 (($) 16)) (-2569 (($ $) 54)) (-3922 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1969 (($ $) 12)) (-4216 (((-885 (-561)) $) 70) (((-885 (-378)) $) 79) (((-534) $) 40) (((-378) $) 44) (((-224) $) 47)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 90) (($ |#2|) NIL) (($ (-1166)) 57)) (-3746 (((-765)) 31)) (-1746 (((-112) $ $) 50)))
-(((-984 |#1| |#2|) (-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4216 ((-224) |#1|)) (-15 -4216 ((-378) |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4064 (|#1| (-1166))) (-15 -4061 ((-3 (-1166) "failed") |#1|)) (-15 -3979 ((-1166) |#1|)) (-15 -1362 (|#1|)) (-15 -2569 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -3720 ((-682 |#2|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| |#1|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-985 |#2|) (-553)) (T -984))
-((-3746 (*1 *2) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-984 *3 *4)) (-4 *3 (-985 *4)))))
-(-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4216 ((-224) |#1|)) (-15 -4216 ((-378) |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4064 (|#1| (-1166))) (-15 -4061 ((-3 (-1166) "failed") |#1|)) (-15 -3979 ((-1166) |#1|)) (-15 -1362 (|#1|)) (-15 -2569 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -2199 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -3720 ((-682 |#2|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| |#1|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3892 ((|#1| $) 138 (|has| |#1| (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2128 (((-417 (-1162 $)) (-1162 $)) 129 (|has| |#1| (-902)))) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 132 (|has| |#1| (-902)))) (-3698 (((-112) $ $) 60)) (-1659 (((-561) $) 119 (|has| |#1| (-814)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 176) (((-3 (-1166) "failed") $) 127 (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) 110 (|has| |#1| (-1031 (-561)))) (((-3 (-561) "failed") $) 108 (|has| |#1| (-1031 (-561))))) (-3979 ((|#1| $) 177) (((-1166) $) 128 (|has| |#1| (-1031 (-1166)))) (((-406 (-561)) $) 111 (|has| |#1| (-1031 (-561)))) (((-561) $) 109 (|has| |#1| (-1031 (-561))))) (-1792 (($ $ $) 56)) (-3720 (((-682 (-561)) (-682 $)) 151 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 150 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 149) (((-682 |#1|) (-682 $)) 148)) (-3735 (((-3 $ "failed") $) 33)) (-1362 (($) 136 (|has| |#1| (-543)))) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2725 (((-112) $) 72)) (-1784 (((-112) $) 121 (|has| |#1| (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 145 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 144 (|has| |#1| (-879 (-378))))) (-2252 (((-112) $) 31)) (-3307 (($ $) 140)) (-4077 ((|#1| $) 142)) (-2436 (((-3 $ "failed") $) 107 (|has| |#1| (-1141)))) (-3271 (((-112) $) 120 (|has| |#1| (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1597 (($ $ $) 117 (|has| |#1| (-844)))) (-3017 (($ $ $) 116 (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) 168)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-3767 (($) 106 (|has| |#1| (-1141)) CONST)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-2569 (($ $) 137 (|has| |#1| (-306)))) (-4020 ((|#1| $) 134 (|has| |#1| (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) 131 (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 130 (|has| |#1| (-902)))) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 170 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 169 (|has| |#1| (-512 (-1166) |#1|)))) (-1905 (((-765) $) 59)) (-2315 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-3922 (($ $) 167 (|has| |#1| (-232))) (($ $ (-765)) 165 (|has| |#1| (-232))) (($ $ (-1166)) 163 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 162 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 161 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 160 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-1969 (($ $) 139)) (-4088 ((|#1| $) 141)) (-4216 (((-885 (-561)) $) 147 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 146 (|has| |#1| (-609 (-885 (-378))))) (((-534) $) 124 (|has| |#1| (-609 (-534)))) (((-378) $) 123 (|has| |#1| (-1015))) (((-224) $) 122 (|has| |#1| (-1015)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 133 (-2198 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ |#1|) 180) (($ (-1166)) 126 (|has| |#1| (-1031 (-1166))))) (-3666 (((-3 $ "failed") $) 125 (-4050 (|has| |#1| (-144)) (-2198 (|has| $ (-144)) (|has| |#1| (-902)))))) (-3746 (((-765)) 28)) (-2449 ((|#1| $) 135 (|has| |#1| (-543)))) (-3996 (((-112) $ $) 40)) (-2165 (($ $) 118 (|has| |#1| (-814)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $) 166 (|has| |#1| (-232))) (($ $ (-765)) 164 (|has| |#1| (-232))) (($ $ (-1166)) 159 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 158 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 157 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 156 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1781 (((-112) $ $) 114 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 113 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 115 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 112 (|has| |#1| (-844)))) (-1828 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
-(((-985 |#1|) (-139) (-553)) (T -985))
-((-1828 (*1 *1 *2 *2) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306)))) (-2569 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306)))) (-1362 (*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-543)) (-4 *2 (-553)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543)))))
-(-13 (-362) (-38 |t#1|) (-1031 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-877 |t#1|) (-399 |t#1|) (-10 -8 (-15 -1828 ($ |t#1| |t#1|)) (-15 -4077 (|t#1| $)) (-15 -4088 (|t#1| $)) (-15 -3307 ($ $)) (-15 -1969 ($ $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-1031 (-561))) (PROGN (-6 (-1031 (-561))) (-6 (-1031 (-406 (-561))))) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|) (IF (|has| |t#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1031 (-1166))) (-6 (-1031 (-1166))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -3892 (|t#1| $)) (-15 -2569 ($ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -1362 ($)) (-15 -2449 (|t#1| $)) (-15 -4020 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-902)) (-6 (-902)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 #1=(-1166)) |has| |#1| (-1031 (-1166))) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-224)) |has| |#1| (-1015)) ((-609 (-378)) |has| |#1| (-1015)) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-450) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-785) |has| |#1| (-814)) ((-786) |has| |#1| (-814)) ((-788) |has| |#1| (-814)) ((-789) |has| |#1| (-814)) ((-814) |has| |#1| (-814)) ((-842) |has| |#1| (-814)) ((-844) -4050 (|has| |#1| (-844)) (|has| |#1| (-814))) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-902) |has| |#1| (-902)) ((-913) . T) ((-1015) |has| |#1| (-1015)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-561))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #1#) |has| |#1| (-1031 (-1166))) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-1141)) ((-1205) . T) ((-1209) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-2200 (($ (-1132 |#1| |#2|)) 11)) (-2887 (((-1132 |#1| |#2|) $) 12)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2315 ((|#2| $ (-239 |#1| |#2|)) 16)) (-4064 (((-856) $) NIL)) (-2246 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL)))
-(((-986 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2200 ($ (-1132 |#1| |#2|))) (-15 -2887 ((-1132 |#1| |#2|) $)) (-15 -2315 (|#2| $ (-239 |#1| |#2|))))) (-914) (-362)) (T -986))
-((-2200 (*1 *1 *2) (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-914)) (-4 *4 (-362)) (-5 *1 (-986 *3 *4)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-914)) (-4 *4 (-362)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-914)) (-4 *2 (-362)) (-5 *1 (-986 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2200 ($ (-1132 |#1| |#2|))) (-15 -2887 ((-1132 |#1| |#2|) $)) (-15 -2315 (|#2| $ (-239 |#1| |#2|)))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1731 (((-1125) $) 9)) (-4064 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-987) (-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $))))) (T -987))
-((-1731 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987)))))
-(-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $))))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) 8)) (-2674 (($) 7 T CONST)) (-1385 (($ $) 46)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-4310 (((-765) $) 45)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-4237 ((|#1| $) 44)) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2936 ((|#1| |#1| $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-4126 ((|#1| $) 47)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 42)) (-2763 ((|#1| $) 43)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-988 |#1|) (-139) (-1205)) (T -988))
-((-2936 (*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-1385 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4399) (-15 -2936 (|t#1| |t#1| $)) (-15 -4126 (|t#1| $)) (-15 -1385 ($ $)) (-15 -4310 ((-765) $)) (-15 -4237 (|t#1| $)) (-15 -2763 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4306 (((-112) $) 42)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3979 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 43)) (-3063 (((-3 (-406 (-561)) "failed") $) 78)) (-4079 (((-112) $) 72)) (-2573 (((-406 (-561)) $) 76)) (-2252 (((-112) $) 41)) (-2072 ((|#2| $) 22)) (-4165 (($ (-1 |#2| |#2|) $) 19)) (-1519 (($ $) 61)) (-3922 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4216 (((-534) $) 67)) (-2076 (($ $) 17)) (-4064 (((-856) $) 56) (($ (-561)) 38) (($ |#2|) 36) (($ (-406 (-561))) NIL)) (-3746 (((-765)) 10)) (-2165 ((|#2| $) 71)) (-1723 (((-112) $ $) 25)) (-1746 (((-112) $ $) 69)) (-1819 (($ $) 29) (($ $ $) 28)) (-1810 (($ $ $) 26)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
-(((-989 |#1| |#2|) (-10 -8 (-15 -4064 (|#1| (-406 (-561)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 -1519 (|#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -2165 (|#2| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 -2252 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -4306 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|))) (-990 |#2|) (-171)) (T -989))
-((-3746 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-989 *3 *4)) (-4 *3 (-990 *4)))))
-(-10 -8 (-15 -4064 (|#1| (-406 (-561)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 -1519 (|#1| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -2165 (|#2| |#1|)) (-15 -2072 (|#2| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -4165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 -2252 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -4306 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-4061 (((-3 (-561) "failed") $) 118 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 116 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 113)) (-3979 (((-561) $) 117 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 115 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 114)) (-3720 (((-682 (-561)) (-682 $)) 88 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 87 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 86) (((-682 |#1|) (-682 $)) 85)) (-3735 (((-3 $ "failed") $) 33)) (-1655 ((|#1| $) 78)) (-3063 (((-3 (-406 (-561)) "failed") $) 74 (|has| |#1| (-543)))) (-4079 (((-112) $) 76 (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) 75 (|has| |#1| (-543)))) (-2331 (($ |#1| |#1| |#1| |#1|) 79)) (-2252 (((-112) $) 31)) (-2072 ((|#1| $) 80)) (-1597 (($ $ $) 67 (|has| |#1| (-844)))) (-3017 (($ $ $) 66 (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) 89)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71 (|has| |#1| (-362)))) (-4017 ((|#1| $) 81)) (-3616 ((|#1| $) 82)) (-1636 ((|#1| $) 83)) (-1701 (((-1110) $) 10)) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 91 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 90 (|has| |#1| (-512 (-1166) |#1|)))) (-2315 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-3922 (($ $) 112 (|has| |#1| (-232))) (($ $ (-765)) 110 (|has| |#1| (-232))) (($ $ (-1166)) 108 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 107 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 106 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 105 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4216 (((-534) $) 72 (|has| |#1| (-609 (-534))))) (-2076 (($ $) 84)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ (-406 (-561))) 61 (-4050 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-3666 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2165 ((|#1| $) 77 (|has| |#1| (-1051)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $) 111 (|has| |#1| (-232))) (($ $ (-765)) 109 (|has| |#1| (-232))) (($ $ (-1166)) 104 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 103 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 102 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 101 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1781 (((-112) $ $) 64 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 63 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 65 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 62 (|has| |#1| (-844)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70 (|has| |#1| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-561))) 69 (|has| |#1| (-362))) (($ (-406 (-561)) $) 68 (|has| |#1| (-362)))))
-(((-990 |#1|) (-139) (-171)) (T -990))
-((-2076 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-2331 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-2165 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-3063 (*1 *2 *1) (|partial| -12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))))
-(-13 (-38 |t#1|) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -2076 ($ $)) (-15 -1636 (|t#1| $)) (-15 -3616 (|t#1| $)) (-15 -4017 (|t#1| $)) (-15 -2072 (|t#1| $)) (-15 -2331 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1655 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -2165 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -4079 ((-112) $)) (-15 -2573 ((-406 (-561)) $)) (-15 -3063 ((-3 (-406 (-561)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-362))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4050 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 #0#) |has| |#1| (-362)) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-362)) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) |has| |#1| (-362)) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4165 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#3| (-1 |#4| |#2|) |#1|))) (-990 |#2|) (-171) (-990 |#4|) (-171)) (T -991))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-990 *6)) (-5 *1 (-991 *4 *5 *2 *6)) (-4 *4 (-990 *5)))))
-(-10 -7 (-15 -4165 (|#3| (-1 |#4| |#2|) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1655 ((|#1| $) 12)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-543)))) (-4079 (((-112) $) NIL (|has| |#1| (-543)))) (-2573 (((-406 (-561)) $) NIL (|has| |#1| (-543)))) (-2331 (($ |#1| |#1| |#1| |#1|) 16)) (-2252 (((-112) $) NIL)) (-2072 ((|#1| $) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-4017 ((|#1| $) 15)) (-3616 ((|#1| $) 14)) (-1636 ((|#1| $) 13)) (-1701 (((-1110) $) NIL)) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-2315 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3922 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-2076 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2165 ((|#1| $) NIL (|has| |#1| (-1051)))) (-2246 (($) 8 T CONST)) (-2257 (($) 10 T CONST)) (-3154 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-362)))))
-(((-992 |#1|) (-990 |#1|) (-171)) (T -992))
-NIL
-(-990 |#1|)
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2684 (((-112) $ (-765)) NIL)) (-2674 (($) NIL T CONST)) (-1385 (($ $) 20)) (-3432 (($ (-638 |#1|)) 29)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-4310 (((-765) $) 22)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3721 ((|#1| $) 24)) (-1617 (($ |#1| $) 15)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-4237 ((|#1| $) 23)) (-1387 ((|#1| $) 19)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2936 ((|#1| |#1| $) 14)) (-2508 (((-112) $) 17)) (-2910 (($) NIL)) (-4126 ((|#1| $) 18)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) NIL)) (-2763 ((|#1| $) 26)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-993 |#1|) (-13 (-988 |#1|) (-10 -8 (-15 -3432 ($ (-638 |#1|))))) (-1090)) (T -993))
-((-3432 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-993 *3)))))
-(-13 (-988 |#1|) (-10 -8 (-15 -3432 ($ (-638 |#1|)))))
-((-1643 (($ $) 12)) (-4343 (($ $ (-561)) 13)))
-(((-994 |#1|) (-10 -8 (-15 -1643 (|#1| |#1|)) (-15 -4343 (|#1| |#1| (-561)))) (-995)) (T -994))
-NIL
-(-10 -8 (-15 -1643 (|#1| |#1|)) (-15 -4343 (|#1| |#1| (-561))))
-((-1643 (($ $) 6)) (-4343 (($ $ (-561)) 7)) (** (($ $ (-406 (-561))) 8)))
+((-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3359 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3358 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3357 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3356 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3355 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3354 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3353 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3352 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3351 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3350 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3349 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3348 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3347 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3346 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3345 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3344 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3343 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3342 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3341 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(-13 (-10 -7 (-15 -3341 ((-3 |t#1| "failed") |t#1| (-765))) (-15 -3342 ((-3 |t#1| "failed") |t#1|)) (-15 -3343 ((-3 |t#1| "failed") |t#1|)) (-15 -3344 ((-3 |t#1| "failed") |t#1|)) (-15 -3345 ((-3 |t#1| "failed") |t#1|)) (-15 -3346 ((-3 |t#1| "failed") |t#1|)) (-15 -3347 ((-3 |t#1| "failed") |t#1|)) (-15 -3348 ((-3 |t#1| "failed") |t#1|)) (-15 -3349 ((-3 |t#1| "failed") |t#1|)) (-15 -3350 ((-3 |t#1| "failed") |t#1|)) (-15 -3351 ((-3 |t#1| "failed") |t#1|)) (-15 -3352 ((-3 |t#1| "failed") |t#1|)) (-15 -3353 ((-3 |t#1| "failed") |t#1|)) (-15 -3354 ((-3 |t#1| "failed") |t#1|)) (-15 -3355 ((-3 |t#1| "failed") |t#1|)) (-15 -3356 ((-3 |t#1| "failed") |t#1|)) (-15 -3357 ((-3 |t#1| "failed") |t#1|)) (-15 -3358 ((-3 |t#1| "failed") |t#1|)) (-15 -3359 ((-3 |t#1| "failed") |t#1|)) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|))))
+((-3369 ((|#4| |#4| (-635 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3368 ((|#4| |#4| (-635 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4365 ((|#4| (-1 |#4| (-939 |#1|)) |#4|) 30)))
+(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3368 (|#4| |#4| |#3|)) (-15 -3368 (|#4| |#4| (-635 |#3|))) (-15 -3369 (|#4| |#4| |#3|)) (-15 -3369 (|#4| |#4| (-635 |#3|))) (-15 -4365 (|#4| (-1 |#4| (-939 |#1|)) |#4|))) (-1042) (-787) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))) (-943 (-939 |#1|) |#2| |#3|)) (T -977))
+((-4365 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-939 *4))) (-4 *4 (-1042)) (-4 *2 (-943 (-939 *4) *5 *6)) (-4 *5 (-787)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1="failed") (-1166)))))) (-5 *1 (-977 *4 *5 *6 *2)))) (-3369 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-943 (-939 *4) *5 *6)))) (-3369 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3)))) (-3368 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-943 (-939 *4) *5 *6)))) (-3368 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3)))))
+(-10 -7 (-15 -3368 (|#4| |#4| |#3|)) (-15 -3368 (|#4| |#4| (-635 |#3|))) (-15 -3369 (|#4| |#4| |#3|)) (-15 -3369 (|#4| |#4| (-635 |#3|))) (-15 -4365 (|#4| (-1 |#4| (-939 |#1|)) |#4|)))
+((-3370 ((|#2| |#3|) 35)) (-4326 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 73)) (-4325 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 89)))
+(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -3370 (|#2| |#3|))) (-349) (-1229 |#1|) (-1229 |#2|) (-718 |#2| |#3|)) (T -978))
+((-3370 (*1 *2 *3) (-12 (-4 *3 (-1229 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-978 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-718 *2 *3)))) (-4326 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5)))) (-4325 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5)))))
+(-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -3370 (|#2| |#3|)))
+((-2947 (((-112) $ $) NIL)) (-3805 (((-3 (-112) #1="failed") $) 69)) (-4056 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3374 (($ $ (-3 (-112) #1#)) 70)) (-3375 (($ (-635 |#4|) |#4|) 25)) (-3643 (((-1148) $) NIL)) (-3371 (($ $) 67)) (-3644 (((-1110) $) NIL)) (-3807 (((-112) $) 68)) (-3972 (($) 30)) (-3372 ((|#4| $) 72)) (-3373 (((-635 |#4|) $) 71)) (-4353 (((-857) $) 66)) (-3437 (((-112) $ $) NIL)))
+(((-979 |#1| |#2| |#3| |#4|) (-13 (-1091) (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3375 ($ (-635 |#4|) |#4|)) (-15 -3805 ((-3 (-112) #1="failed") $)) (-15 -3374 ($ $ (-3 (-112) #1#))) (-15 -3807 ((-112) $)) (-15 -3373 ((-635 |#4|) $)) (-15 -3372 (|#4| $)) (-15 -3371 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -4056 ($ $)) |%noBranch|) |%noBranch|))) (-450) (-844) (-787) (-943 |#1| |#3| |#2|)) (T -979))
+((-3972 (*1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3)))) (-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-943 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *1 (-979 *4 *5 *6 *3)))) (-3805 (*1 *2 *1) (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3807 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3373 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-635 *6)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3372 (*1 *2 *1) (-12 (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-979 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)))) (-3371 (*1 *1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3)))) (-4056 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3)))))
+(-13 (-1091) (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3375 ($ (-635 |#4|) |#4|)) (-15 -3805 ((-3 (-112) #1="failed") $)) (-15 -3374 ($ $ (-3 (-112) #1#))) (-15 -3807 ((-112) $)) (-15 -3373 ((-635 |#4|) $)) (-15 -3372 (|#4| $)) (-15 -3371 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -4056 ($ $)) |%noBranch|) |%noBranch|)))
+((-3376 (((-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544)))) (-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544))))) 68)))
+(((-980 |#1| |#2|) (-10 -7 (-15 -3376 ((-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544)))) (-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544))))))) (-635 (-1166)) (-765)) (T -980))
+((-3376 (*1 *2 *2) (-12 (-5 *2 (-979 (-406 (-544)) (-858 *3) (-238 *4 (-765)) (-246 *3 (-406 (-544))))) (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-980 *3 *4)))))
+(-10 -7 (-15 -3376 ((-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544)))) (-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544)))))))
+((-3671 (((-112) |#5| |#5|) 37)) (-3674 (((-112) |#5| |#5|) 51)) (-3679 (((-112) |#5| (-635 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-3675 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-3681 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 62)) (-3670 (((-1259)) 33)) (-3669 (((-1259) (-1148) (-1148) (-1148)) 29)) (-3680 (((-635 |#5|) (-635 |#5|)) 80)) (-3682 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) 78)) (-3683 (((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 100)) (-3673 (((-112) |#5| |#5|) 46)) (-3678 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3676 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-3677 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-4106 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-3684 (((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-3672 (((-635 |#5|) (-635 |#5|)) 42)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -981))
+((-3684 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-3683 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-3682 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-981 *5 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-4106 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3677 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3674 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3673 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3671 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3670 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3669 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-4238 (((-1166) $) 15)) (-3806 (((-1148) $) 16)) (-3627 (($ (-1166) (-1148)) 14)) (-4353 (((-857) $) 13)))
+(((-982) (-13 (-608 (-857)) (-10 -8 (-15 -3627 ($ (-1166) (-1148))) (-15 -4238 ((-1166) $)) (-15 -3806 ((-1148) $))))) (T -982))
+((-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3627 ($ (-1166) (-1148))) (-15 -4238 ((-1166) $)) (-15 -3806 ((-1148) $))))
+((-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1166) #1#) $) 65) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) 95)) (-3557 ((|#2| $) NIL) (((-1166) $) 60) (((-406 (-544)) $) NIL) (((-544) $) 92)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 112) (((-682 |#2|) (-682 $)) 28)) (-3377 (($) 98)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 75) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84)) (-3379 (($ $) 10)) (-3848 (((-3 $ "failed") $) 20)) (-4365 (($ (-1 |#2| |#2|) $) 22)) (-3849 (($) 16)) (-3513 (($ $) 54)) (-4217 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3378 (($ $) 12)) (-4377 (((-883 (-544)) $) 70) (((-883 (-377)) $) 79) (((-533) $) 40) (((-377) $) 44) (((-224) $) 47)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 90) (($ |#2|) NIL) (($ (-1166)) 57)) (-3511 (((-765)) 31)) (-3067 (((-112) $ $) 50)))
+(((-983 |#1| |#2|) (-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3377 (|#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -3379 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-984 |#2|) (-554)) (T -983))
+((-3511 (*1 *2) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-983 *3 *4)) (-4 *3 (-984 *4)))))
+(-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3377 (|#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -3379 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 ((|#1| $) 138 (|has| |#1| (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 129 (|has| |#1| (-903)))) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 132 (|has| |#1| (-903)))) (-1733 (((-112) $ $) 60)) (-4030 (((-544) $) 119 (|has| |#1| (-814)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 176) (((-3 (-1166) #2#) $) 127 (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) 110 (|has| |#1| (-1031 (-544)))) (((-3 (-544) #2#) $) 108 (|has| |#1| (-1031 (-544))))) (-3557 ((|#1| $) 177) (((-1166) $) 128 (|has| |#1| (-1031 (-1166)))) (((-406 (-544)) $) 111 (|has| |#1| (-1031 (-544)))) (((-544) $) 109 (|has| |#1| (-1031 (-544))))) (-2943 (($ $ $) 56)) (-2401 (((-682 (-544)) (-682 $)) 151 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 150 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 149) (((-682 |#1|) (-682 $)) 148)) (-3866 (((-3 $ "failed") $) 33)) (-3377 (($) 136 (|has| |#1| (-543)))) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-3587 (((-112) $) 121 (|has| |#1| (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 145 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 144 (|has| |#1| (-879 (-377))))) (-2545 (((-112) $) 31)) (-3379 (($ $) 140)) (-3381 ((|#1| $) 142)) (-3848 (((-3 $ "failed") $) 107 (|has| |#1| (-1141)))) (-3588 (((-112) $) 120 (|has| |#1| (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) 53)) (-2913 (($ $ $) 117 (|has| |#1| (-844)))) (-3242 (($ $ $) 116 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 168)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3849 (($) 106 (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3513 (($ $) 137 (|has| |#1| (-306)))) (-3515 ((|#1| $) 134 (|has| |#1| (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 131 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 130 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 170 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 169 (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) 59)) (-4206 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4217 (($ $) 167 (|has| |#1| (-232))) (($ $ (-765)) 165 (|has| |#1| (-232))) (($ $ (-1166)) 163 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 162 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 161 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 160 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3378 (($ $) 139)) (-3380 ((|#1| $) 141)) (-4377 (((-883 (-544)) $) 147 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 146 (|has| |#1| (-609 (-883 (-377))))) (((-533) $) 124 (|has| |#1| (-609 (-533)))) (((-377) $) 123 (|has| |#1| (-1013))) (((-224) $) 122 (|has| |#1| (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 133 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ |#1|) 180) (($ (-1166)) 126 (|has| |#1| (-1031 (-1166))))) (-3084 (((-3 $ "failed") $) 125 (-3936 (|has| |#1| (-144)) (-3240 (|has| $ (-144)) (|has| |#1| (-903)))))) (-3511 (((-765)) 28)) (-3516 ((|#1| $) 135 (|has| |#1| (-543)))) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 118 (|has| |#1| (-814)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 166 (|has| |#1| (-232))) (($ $ (-765)) 164 (|has| |#1| (-232))) (($ $ (-1166)) 159 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 158 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 157 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 156 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-2945 (((-112) $ $) 114 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 113 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 115 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 112 (|has| |#1| (-844)))) (-4356 (($ $ $) 66) (($ |#1| |#1|) 143)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
+(((-984 |#1|) (-139) (-554)) (T -984))
+((-4356 (*1 *1 *2 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3379 (*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3378 (*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-3513 (*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-3377 (*1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-543)) (-4 *2 (-554)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543)))))
+(-13 (-362) (-38 |t#1|) (-1031 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-877 |t#1|) (-399 |t#1|) (-10 -8 (-15 -4356 ($ |t#1| |t#1|)) (-15 -3381 (|t#1| $)) (-15 -3380 (|t#1| $)) (-15 -3379 ($ $)) (-15 -3378 ($ $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-1031 (-544))) (PROGN (-6 (-1031 (-544))) (-6 (-1031 (-406 (-544))))) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1031 (-1166))) (-6 (-1031 (-1166))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -3514 (|t#1| $)) (-15 -3513 ($ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3377 ($)) (-15 -3516 (|t#1| $)) (-15 -3515 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-903)) (-6 (-903)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 #2=(-1166)) |has| |#1| (-1031 (-1166))) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-224)) |has| |#1| (-1013)) ((-609 (-377)) |has| |#1| (-1013)) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-450) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-785) |has| |#1| (-814)) ((-786) |has| |#1| (-814)) ((-788) |has| |#1| (-814)) ((-791) |has| |#1| (-814)) ((-814) |has| |#1| (-814)) ((-842) |has| |#1| (-814)) ((-844) -3936 (|has| |#1| (-844)) (|has| |#1| (-814))) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-903) |has| |#1| (-903)) ((-914) . T) ((-1013) |has| |#1| (-1013)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-544))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #2#) |has| |#1| (-1031 (-1166))) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-1141)) ((-1204) . T) ((-1209) . T))
+((-4365 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|))) (-554) (-554) (-984 |#1|) (-984 |#2|)) (T -985))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-4 *2 (-984 *6)) (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-984 *5)))))
+(-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3382 (($ (-1132 |#1| |#2|)) 11)) (-3509 (((-1132 |#1| |#2|) $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4206 ((|#2| $ (-238 |#1| |#2|)) 16)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL)))
+(((-986 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3382 ($ (-1132 |#1| |#2|))) (-15 -3509 ((-1132 |#1| |#2|) $)) (-15 -4206 (|#2| $ (-238 |#1| |#2|))))) (-912) (-362)) (T -986))
+((-3382 (*1 *1 *2) (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-912)) (-4 *4 (-362)) (-5 *1 (-986 *3 *4)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-912)) (-4 *4 (-362)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-238 *4 *2)) (-14 *4 (-912)) (-4 *2 (-362)) (-5 *1 (-986 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -3382 ($ (-1132 |#1| |#2|))) (-15 -3509 ((-1132 |#1| |#2|) $)) (-15 -4206 (|#2| $ (-238 |#1| |#2|)))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 9)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-987) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $))))) (T -987))
+((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987)))))
+(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $))))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-3385 (($ $) 46)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-4240 (((-765) $) 45)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-3384 ((|#1| $) 44)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3387 ((|#1| |#1| $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3386 ((|#1| $) 47)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-3383 ((|#1| $) 43)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-988 |#1|) (-139) (-1204)) (T -988))
+((-3387 (*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4400) (-15 -3387 (|t#1| |t#1| $)) (-15 -3386 (|t#1| $)) (-15 -3385 ($ $)) (-15 -4240 ((-765) $)) (-15 -3384 (|t#1| $)) (-15 -3383 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4050 ((|#1| $) 12)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL (|has| |#1| (-543)))) (-3406 (((-112) $) NIL (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| |#1| (-543)))) (-3388 (($ |#1| |#1| |#1| |#1|) 16)) (-2545 (((-112) $) NIL)) (-3517 ((|#1| $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-3389 ((|#1| $) 15)) (-3390 ((|#1| $) 14)) (-3391 ((|#1| $) 13)) (-3644 (((-1110) $) NIL)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4217 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3392 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3787 ((|#1| $) NIL (|has| |#1| (-1051)))) (-3040 (($) 8 T CONST)) (-3046 (($) 10 T CONST)) (-3051 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-362)))))
+(((-989 |#1|) (-991 |#1|) (-171)) (T -989))
+NIL
+(-991 |#1|)
+((-3589 (((-112) $) 42)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 43)) (-3407 (((-3 (-406 (-544)) "failed") $) 78)) (-3406 (((-112) $) 72)) (-3405 (((-406 (-544)) $) 76)) (-2545 (((-112) $) 41)) (-3517 ((|#2| $) 22)) (-4365 (($ (-1 |#2| |#2|) $) 19)) (-2779 (($ $) 61)) (-4217 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4377 (((-533) $) 67)) (-3392 (($ $) 17)) (-4353 (((-857) $) 56) (($ (-544)) 38) (($ |#2|) 36) (($ (-406 (-544))) NIL)) (-3511 (((-765)) 10)) (-3787 ((|#2| $) 71)) (-3437 (((-112) $ $) 25)) (-3067 (((-112) $ $) 69)) (-4244 (($ $) 29) (($ $ $) 28)) (-4246 (($ $ $) 26)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL)))
+(((-990 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 -2779 (|#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -2545 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-991 |#2|) (-171)) (T -990))
+((-3511 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-990 *3 *4)) (-4 *3 (-991 *4)))))
+(-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 -2779 (|#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -2545 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 118 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 116 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 113)) (-3557 (((-544) $) 117 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 115 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 114)) (-2401 (((-682 (-544)) (-682 $)) 88 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 87 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 86) (((-682 |#1|) (-682 $)) 85)) (-3866 (((-3 $ "failed") $) 33)) (-4050 ((|#1| $) 78)) (-3407 (((-3 (-406 (-544)) "failed") $) 74 (|has| |#1| (-543)))) (-3406 (((-112) $) 76 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 75 (|has| |#1| (-543)))) (-3388 (($ |#1| |#1| |#1| |#1|) 79)) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 80)) (-2913 (($ $ $) 67 (|has| |#1| (-844)))) (-3242 (($ $ $) 66 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 89)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71 (|has| |#1| (-362)))) (-3389 ((|#1| $) 81)) (-3390 ((|#1| $) 82)) (-3391 ((|#1| $) 83)) (-3644 (((-1110) $) 10)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 91 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 90 (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-4217 (($ $) 112 (|has| |#1| (-232))) (($ $ (-765)) 110 (|has| |#1| (-232))) (($ $ (-1166)) 108 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 107 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 106 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 105 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4377 (((-533) $) 72 (|has| |#1| (-609 (-533))))) (-3392 (($ $) 84)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ (-406 (-544))) 61 (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-3787 ((|#1| $) 77 (|has| |#1| (-1051)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 111 (|has| |#1| (-232))) (($ $ (-765)) 109 (|has| |#1| (-232))) (($ $ (-1166)) 104 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 103 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 102 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 101 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2945 (((-112) $ $) 64 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 63 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 65 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 62 (|has| |#1| (-844)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70 (|has| |#1| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-544))) 69 (|has| |#1| (-362))) (($ (-406 (-544)) $) 68 (|has| |#1| (-362)))))
+(((-991 |#1|) (-139) (-171)) (T -991))
+((-3392 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3388 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))))
+(-13 (-38 |t#1|) (-411 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3392 ($ $)) (-15 -3391 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -3389 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -3388 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4050 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3787 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-362))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3936 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 #1#) |has| |#1| (-362)) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-362)) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-362)) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-4365 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) (-991 |#2|) (-171) (-991 |#4|) (-171)) (T -992))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-991 *6)) (-5 *1 (-992 *4 *5 *2 *6)) (-4 *4 (-991 *5)))))
+(-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3385 (($ $) 20)) (-3393 (($ (-635 |#1|)) 29)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-4240 (((-765) $) 22)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 24)) (-4014 (($ |#1| $) 15)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3384 ((|#1| $) 23)) (-1357 ((|#1| $) 19)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3387 ((|#1| |#1| $) 14)) (-3807 (((-112) $) 17)) (-3972 (($) NIL)) (-3386 ((|#1| $) 18)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) NIL)) (-3383 ((|#1| $) 26)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-993 |#1|) (-13 (-988 |#1|) (-10 -8 (-15 -3393 ($ (-635 |#1|))))) (-1091)) (T -993))
+((-3393 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-993 *3)))))
+(-13 (-988 |#1|) (-10 -8 (-15 -3393 ($ (-635 |#1|)))))
+((-3420 (($ $) 12)) (-3394 (($ $ (-544)) 13)))
+(((-994 |#1|) (-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -3394 (|#1| |#1| (-544)))) (-995)) (T -994))
+NIL
+(-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -3394 (|#1| |#1| (-544))))
+((-3420 (($ $) 6)) (-3394 (($ $ (-544)) 7)) (** (($ $ (-406 (-544))) 8)))
(((-995) (-139)) (T -995))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-561))))) (-4343 (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-561)))) (-1643 (*1 *1 *1) (-4 *1 (-995))))
-(-13 (-10 -8 (-15 -1643 ($ $)) (-15 -4343 ($ $ (-561))) (-15 ** ($ $ (-406 (-561))))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1791 (((-2 (|:| |num| (-1254 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-3012 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3163 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-3287 (((-682 (-406 |#2|)) (-1254 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-1736 (((-406 |#2|) $) NIL)) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-406 |#2|) (-348)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3552 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3698 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1386 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-1943 (((-112)) NIL)) (-1676 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-406 |#2|) $) NIL)) (-3376 (($ (-1254 (-406 |#2|)) (-1254 $)) NIL) (($ (-1254 (-406 |#2|))) 70) (($ (-1254 |#2|) |#2|) NIL)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1792 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2405 (((-682 (-406 |#2|)) $ (-1254 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-406 |#2|))) (|:| |vec| (-1254 (-406 |#2|)))) (-682 $) (-1254 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-3314 (((-1254 $) (-1254 $)) NIL)) (-3176 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3735 (((-3 $ "failed") $) NIL)) (-3357 (((-638 (-638 |#1|))) NIL (|has| |#1| (-367)))) (-3053 (((-112) |#1| |#1|) NIL)) (-3400 (((-914)) NIL)) (-1362 (($) NIL (|has| (-406 |#2|) (-367)))) (-1968 (((-112)) NIL)) (-3104 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-1771 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| (-406 |#2|) (-362)))) (-4229 (($ $) NIL)) (-3985 (($) NIL (|has| (-406 |#2|) (-348)))) (-3943 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-3598 (($ $ (-765)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2725 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4027 (((-914) $) NIL (|has| (-406 |#2|) (-348))) (((-827 (-914)) $) NIL (|has| (-406 |#2|) (-348)))) (-2252 (((-112) $) NIL)) (-3848 (((-765)) NIL)) (-1447 (((-1254 $) (-1254 $)) NIL)) (-2072 (((-406 |#2|) $) NIL)) (-2976 (((-638 (-945 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-2436 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1588 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-1335 (((-914) $) NIL (|has| (-406 |#2|) (-367)))) (-3354 ((|#3| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1883 (((-1148) $) NIL)) (-2142 (((-682 (-406 |#2|))) 52)) (-3583 (((-682 (-406 |#2|))) 51)) (-1519 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4002 (($ (-1254 |#2|) |#2|) 71)) (-3268 (((-682 (-406 |#2|))) 50)) (-2812 (((-682 (-406 |#2|))) 49)) (-3471 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1825 (((-2 (|:| |num| (-1254 |#2|)) (|:| |den| |#2|)) $) 77)) (-1640 (((-1254 $)) 46)) (-3637 (((-1254 $)) 45)) (-3830 (((-112) $) NIL)) (-4137 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3767 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2442 (($ (-914)) NIL (|has| (-406 |#2|) (-367)))) (-2245 (((-3 |#2| "failed")) 63)) (-1701 (((-1110) $) NIL)) (-4197 (((-765)) NIL)) (-3194 (($) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| (-406 |#2|) (-362)))) (-1603 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| (-406 |#2|) (-348)))) (-1633 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1748 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1905 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-2315 ((|#1| $ |#1| |#1|) NIL)) (-1935 (((-3 |#2| "failed")) 62)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2753 (((-406 |#2|) (-1254 $)) NIL) (((-406 |#2|)) 42)) (-2768 (((-765) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-3922 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-3885 (((-682 (-406 |#2|)) (-1254 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3158 ((|#3|) 53)) (-2102 (($) NIL (|has| (-406 |#2|) (-348)))) (-3752 (((-1254 (-406 |#2|)) $ (-1254 $)) NIL) (((-682 (-406 |#2|)) (-1254 $) (-1254 $)) NIL) (((-1254 (-406 |#2|)) $) 72) (((-682 (-406 |#2|)) (-1254 $)) NIL)) (-4216 (((-1254 (-406 |#2|)) $) NIL) (($ (-1254 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-348)))) (-2739 (((-1254 $) (-1254 $)) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-561))) NIL (-4050 (|has| (-406 |#2|) (-1031 (-406 (-561)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3666 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-3934 ((|#3| $) NIL)) (-3746 (((-765)) NIL)) (-1688 (((-112)) 60)) (-3703 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-2615 (((-1254 $)) 125)) (-3996 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3188 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2232 (((-112)) NIL)) (-2246 (($) 94 T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4050 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-561)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-561))) NIL (|has| (-406 |#2|) (-362)))))
-(((-996 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1209) (-1230 |#1|) (-1230 (-406 |#2|)) (-406 |#2|) (-765)) (T -996))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-544))))) (-3394 (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-544)))) (-3420 (*1 *1 *1) (-4 *1 (-995))))
+(-13 (-10 -8 (-15 -3420 ($ $)) (-15 -3394 ($ $ (-544))) (-15 ** ($ $ (-406 (-544))))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1791 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2213 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2211 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1929 (((-682 (-406 |#2|)) (-1253 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-3734 (((-406 |#2|) $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-406 |#2|) (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4376 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1733 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3521 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-1805 (((-112)) NIL)) (-1804 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-3 (-406 |#2|) #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-406 |#2|) $) NIL)) (-1939 (($ (-1253 (-406 |#2|)) (-1253 $)) NIL) (($ (-1253 (-406 |#2|))) 70) (($ (-1253 |#2|) |#2|) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-349)))) (-2943 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1928 (((-682 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-1796 (((-1253 $) (-1253 $)) NIL)) (-4249 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-1783 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-1808 (((-112) |#1| |#1|) NIL)) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| (-406 |#2|) (-367)))) (-1803 (((-112)) NIL)) (-1802 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-2942 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-3902 (($ $) NIL)) (-3215 (($) NIL (|has| (-406 |#2|) (-349)))) (-1824 (((-112) $) NIL (|has| (-406 |#2|) (-349)))) (-1914 (($ $ (-765)) NIL (|has| (-406 |#2|) (-349))) (($ $) NIL (|has| (-406 |#2|) (-349)))) (-4130 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4178 (((-912) $) NIL (|has| (-406 |#2|) (-349))) (((-826 (-912)) $) NIL (|has| (-406 |#2|) (-349)))) (-2545 (((-112) $) NIL)) (-3781 (((-765)) NIL)) (-1797 (((-1253 $) (-1253 $)) NIL)) (-3517 (((-406 |#2|) $) NIL)) (-1784 (((-635 (-939 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2164 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-2160 (((-912) $) NIL (|has| (-406 |#2|) (-367)))) (-3463 ((|#3| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3643 (((-1148) $) NIL)) (-1792 (((-682 (-406 |#2|))) 52)) (-1794 (((-682 (-406 |#2|))) 51)) (-2779 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1789 (($ (-1253 |#2|) |#2|) 71)) (-1793 (((-682 (-406 |#2|))) 50)) (-1795 (((-682 (-406 |#2|))) 49)) (-1788 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1790 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 77)) (-1801 (((-1253 $)) 46)) (-4325 (((-1253 $)) 45)) (-1800 (((-112) $) NIL)) (-1799 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3849 (($) NIL (|has| (-406 |#2|) (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| (-406 |#2|) (-367)))) (-1786 (((-3 |#2| #3="failed")) 63)) (-3644 (((-1110) $) NIL)) (-1810 (((-765)) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| (-406 |#2|) (-362)))) (-3545 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-406 |#2|) (-349)))) (-4139 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1732 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-4206 ((|#1| $ |#1| |#1|) NIL)) (-1787 (((-3 |#2| #3#)) 62)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-4164 (((-406 |#2|) (-1253 $)) NIL) (((-406 |#2|)) 42)) (-1915 (((-765) $) NIL (|has| (-406 |#2|) (-349))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-349)))) (-4217 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-2543 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3586 ((|#3|) 53)) (-1818 (($) NIL (|has| (-406 |#2|) (-349)))) (-3625 (((-1253 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 |#2|)) $) 72) (((-682 (-406 |#2|)) (-1253 $)) NIL)) (-4377 (((-1253 (-406 |#2|)) $) NIL) (($ (-1253 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-349)))) (-1798 (((-1253 $) (-1253 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-544)))))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3084 (($ $) NIL (|has| (-406 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2743 ((|#3| $) NIL)) (-3511 (((-765)) NIL)) (-1807 (((-112)) 60)) (-1806 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-2162 (((-1253 $)) 125)) (-2212 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1785 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1809 (((-112)) NIL)) (-3040 (($) 94 T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-544)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-544))) NIL (|has| (-406 |#2|) (-362)))))
+(((-996 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1209) (-1229 |#1|) (-1229 (-406 |#2|)) (-406 |#2|) (-765)) (T -996))
NIL
(-341 |#1| |#2| |#3|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1832 (((-638 (-561)) $) 54)) (-3126 (($ (-638 (-561))) 62)) (-3892 (((-561) $) 40 (|has| (-561) (-306)))) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL (|has| (-561) (-814)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) 49) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) 47 (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) 49 (|has| (-561) (-1031 (-561))))) (-3979 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1792 (($ $ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1362 (($) NIL (|has| (-561) (-543)))) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-4217 (((-638 (-561)) $) 60)) (-1784 (((-112) $) NIL (|has| (-561) (-814)))) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL)) (-4077 (((-561) $) 37)) (-2436 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-3271 (((-112) $) NIL (|has| (-561) (-814)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-561) (-844)))) (-4165 (($ (-1 (-561) (-561)) $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL)) (-3767 (($) NIL (|has| (-561) (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2569 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) 42)) (-2551 (((-1146 (-561)) $) 59)) (-3547 (($ (-638 (-561)) (-638 (-561))) 63)) (-4020 (((-561) $) 53 (|has| (-561) (-543)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1633 (((-417 $) $) NIL)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1436 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-1905 (((-765) $) NIL)) (-2315 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $) 11 (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1969 (($ $) NIL)) (-4088 (((-561) $) 39)) (-3971 (((-638 (-561)) $) 61)) (-4216 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4064 (((-856) $) 77) (($ (-561)) 43) (($ $) NIL) (($ (-406 (-561))) 20) (($ (-561)) 43) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) 18)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-3746 (((-765)) 9)) (-2449 (((-561) $) 51 (|has| (-561) (-543)))) (-3996 (((-112) $ $) NIL)) (-2165 (($ $) NIL (|has| (-561) (-814)))) (-2246 (($) 10 T CONST)) (-2257 (($) 12 T CONST)) (-3154 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1723 (((-112) $ $) 14)) (-1770 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1746 (((-112) $ $) 33 (|has| (-561) (-844)))) (-1828 (($ $ $) 29) (($ (-561) (-561)) 31)) (-1819 (($ $) 15) (($ $ $) 23)) (-1810 (($ $ $) 21)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 25) (($ $ $) 27) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) 25) (($ $ (-561)) NIL)))
-(((-997 |#1|) (-13 (-985 (-561)) (-608 (-406 (-561))) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -1832 ((-638 (-561)) $)) (-15 -2551 ((-1146 (-561)) $)) (-15 -4217 ((-638 (-561)) $)) (-15 -3971 ((-638 (-561)) $)) (-15 -3126 ($ (-638 (-561)))) (-15 -3547 ($ (-638 (-561)) (-638 (-561)))))) (-561)) (T -997))
-((-2569 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-3547 (*1 *1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
-(-13 (-985 (-561)) (-608 (-406 (-561))) (-10 -8 (-15 -2569 ((-406 (-561)) $)) (-15 -1832 ((-638 (-561)) $)) (-15 -2551 ((-1146 (-561)) $)) (-15 -4217 ((-638 (-561)) $)) (-15 -3971 ((-638 (-561)) $)) (-15 -3126 ($ (-638 (-561)))) (-15 -3547 ($ (-638 (-561)) (-638 (-561))))))
-((-2480 (((-52) (-406 (-561)) (-561)) 9)))
-(((-998) (-10 -7 (-15 -2480 ((-52) (-406 (-561)) (-561))))) (T -998))
-((-2480 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-561))) (-5 *4 (-561)) (-5 *2 (-52)) (-5 *1 (-998)))))
-(-10 -7 (-15 -2480 ((-52) (-406 (-561)) (-561))))
-((-1386 (((-561)) 13)) (-1521 (((-561)) 16)) (-3155 (((-1259) (-561)) 15)) (-4272 (((-561) (-561)) 17) (((-561)) 12)))
-(((-999) (-10 -7 (-15 -4272 ((-561))) (-15 -1386 ((-561))) (-15 -4272 ((-561) (-561))) (-15 -3155 ((-1259) (-561))) (-15 -1521 ((-561))))) (T -999))
-((-1521 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-999)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))) (-1386 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))) (-4272 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))))
-(-10 -7 (-15 -4272 ((-561))) (-15 -1386 ((-561))) (-15 -4272 ((-561) (-561))) (-15 -3155 ((-1259) (-561))) (-15 -1521 ((-561))))
-((-2989 (((-417 |#1|) |#1|) 41)) (-1633 (((-417 |#1|) |#1|) 40)))
-(((-1000 |#1|) (-10 -7 (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2989 ((-417 |#1|) |#1|))) (-1230 (-406 (-561)))) (T -1000))
-((-2989 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1230 (-406 (-561)))))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1230 (-406 (-561)))))))
-(-10 -7 (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2989 ((-417 |#1|) |#1|)))
-((-3063 (((-3 (-406 (-561)) "failed") |#1|) 15)) (-4079 (((-112) |#1|) 14)) (-2573 (((-406 (-561)) |#1|) 10)))
-(((-1001 |#1|) (-10 -7 (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|))) (-1031 (-406 (-561)))) (T -1001))
-((-3063 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))) (-4079 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-561)))))) (-2573 (*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))))
-(-10 -7 (-15 -2573 ((-406 (-561)) |#1|)) (-15 -4079 ((-112) |#1|)) (-15 -3063 ((-3 (-406 (-561)) "failed") |#1|)))
-((-4207 ((|#2| $ "value" |#2|) 12)) (-2315 ((|#2| $ "value") 10)) (-2552 (((-112) $ $) 18)))
-(((-1002 |#1| |#2|) (-10 -8 (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -2552 ((-112) |#1| |#1|)) (-15 -2315 (|#2| |#1| "value"))) (-1003 |#2|) (-1205)) (T -1002))
-NIL
-(-10 -8 (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -2552 ((-112) |#1| |#1|)) (-15 -2315 (|#2| |#1| "value")))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-2674 (($) 7 T CONST)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47)) (-4293 (((-561) $ $) 44)) (-1650 (((-112) $) 46)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-1003 |#1|) (-139) (-1205)) (T -1003))
-((-3770 (*1 *2 *1) (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3)))) (-4092 (*1 *2 *1) (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1205)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1205)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))) (-4293 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))) (-2552 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-2129 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *1)) (|has| *1 (-6 -4400)) (-4 *1 (-1003 *3)) (-4 *3 (-1205)))) (-4207 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4400)) (-4 *1 (-1003 *2)) (-4 *2 (-1205)))) (-2809 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1003 *2)) (-4 *2 (-1205)))))
-(-13 (-487 |t#1|) (-10 -8 (-15 -3770 ((-638 $) $)) (-15 -4092 ((-638 $) $)) (-15 -3441 ((-112) $)) (-15 -2506 (|t#1| $)) (-15 -2315 (|t#1| $ "value")) (-15 -1650 ((-112) $)) (-15 -3948 ((-638 |t#1|) $)) (-15 -4293 ((-561) $ $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -2552 ((-112) $ $)) (-15 -2129 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4400)) (PROGN (-15 -3347 ($ $ (-638 $))) (-15 -4207 (|t#1| $ "value" |t#1|)) (-15 -2809 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-1643 (($ $) 9) (($ $ (-914)) 43) (($ (-406 (-561))) 13) (($ (-561)) 15)) (-2496 (((-3 $ "failed") (-1162 $) (-914) (-856)) 23) (((-3 $ "failed") (-1162 $) (-914)) 28)) (-4343 (($ $ (-561)) 49)) (-3746 (((-765)) 17)) (-2363 (((-638 $) (-1162 $)) NIL) (((-638 $) (-1162 (-406 (-561)))) 54) (((-638 $) (-1162 (-561))) 59) (((-638 $) (-945 $)) 63) (((-638 $) (-945 (-406 (-561)))) 67) (((-638 $) (-945 (-561))) 71)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ $ (-406 (-561))) 47)))
-(((-1004 |#1|) (-10 -8 (-15 -1643 (|#1| (-561))) (-15 -1643 (|#1| (-406 (-561)))) (-15 -1643 (|#1| |#1| (-914))) (-15 -2363 ((-638 |#1|) (-945 (-561)))) (-15 -2363 ((-638 |#1|) (-945 (-406 (-561))))) (-15 -2363 ((-638 |#1|) (-945 |#1|))) (-15 -2363 ((-638 |#1|) (-1162 (-561)))) (-15 -2363 ((-638 |#1|) (-1162 (-406 (-561))))) (-15 -2363 ((-638 |#1|) (-1162 |#1|))) (-15 -2496 ((-3 |#1| "failed") (-1162 |#1|) (-914))) (-15 -2496 ((-3 |#1| "failed") (-1162 |#1|) (-914) (-856))) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -4343 (|#1| |#1| (-561))) (-15 -1643 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -3746 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914)))) (-1005)) (T -1004))
-((-3746 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005)))))
-(-10 -8 (-15 -1643 (|#1| (-561))) (-15 -1643 (|#1| (-406 (-561)))) (-15 -1643 (|#1| |#1| (-914))) (-15 -2363 ((-638 |#1|) (-945 (-561)))) (-15 -2363 ((-638 |#1|) (-945 (-406 (-561))))) (-15 -2363 ((-638 |#1|) (-945 |#1|))) (-15 -2363 ((-638 |#1|) (-1162 (-561)))) (-15 -2363 ((-638 |#1|) (-1162 (-406 (-561))))) (-15 -2363 ((-638 |#1|) (-1162 |#1|))) (-15 -2496 ((-3 |#1| "failed") (-1162 |#1|) (-914))) (-15 -2496 ((-3 |#1| "failed") (-1162 |#1|) (-914) (-856))) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -4343 (|#1| |#1| (-561))) (-15 -1643 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -3746 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 91)) (-3012 (($ $) 92)) (-3163 (((-112) $) 94)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 111)) (-3552 (((-417 $) $) 112)) (-1643 (($ $) 75) (($ $ (-914)) 61) (($ (-406 (-561))) 60) (($ (-561)) 59)) (-3698 (((-112) $ $) 102)) (-1659 (((-561) $) 128)) (-2674 (($) 17 T CONST)) (-2496 (((-3 $ "failed") (-1162 $) (-914) (-856)) 69) (((-3 $ "failed") (-1162 $) (-914)) 68)) (-4061 (((-3 (-561) "failed") $) 88 (|has| (-406 (-561)) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 86 (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-3 (-406 (-561)) "failed") $) 83)) (-3979 (((-561) $) 87 (|has| (-406 (-561)) (-1031 (-561)))) (((-406 (-561)) $) 85 (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-406 (-561)) $) 84)) (-3668 (($ $ (-856)) 58)) (-3105 (($ $ (-856)) 57)) (-1792 (($ $ $) 106)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 105)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 100)) (-2725 (((-112) $) 113)) (-1784 (((-112) $) 126)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 74)) (-3271 (((-112) $) 127)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 109)) (-1597 (($ $ $) 125)) (-3017 (($ $ $) 124)) (-2559 (((-3 (-1162 $) "failed") $) 70)) (-3677 (((-3 (-856) "failed") $) 72)) (-2212 (((-3 (-1162 $) "failed") $) 71)) (-1563 (($ (-638 $)) 98) (($ $ $) 97)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 114)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 99)) (-1603 (($ (-638 $)) 96) (($ $ $) 95)) (-1633 (((-417 $) $) 110)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 107)) (-1748 (((-3 $ "failed") $ $) 90)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 101)) (-1905 (((-765) $) 103)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 104)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 118) (($ $) 89) (($ (-406 (-561))) 82) (($ (-561)) 81) (($ (-406 (-561))) 78)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 93)) (-1408 (((-406 (-561)) $ $) 56)) (-2363 (((-638 $) (-1162 $)) 67) (((-638 $) (-1162 (-406 (-561)))) 66) (((-638 $) (-1162 (-561))) 65) (((-638 $) (-945 $)) 64) (((-638 $) (-945 (-406 (-561)))) 63) (((-638 $) (-945 (-561))) 62)) (-2165 (($ $) 129)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1781 (((-112) $ $) 122)) (-1758 (((-112) $ $) 121)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 123)) (-1746 (((-112) $ $) 120)) (-1828 (($ $ $) 119)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 115) (($ $ (-406 (-561))) 73)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ (-406 (-561)) $) 117) (($ $ (-406 (-561))) 116) (($ (-561) $) 80) (($ $ (-561)) 79) (($ (-406 (-561)) $) 77) (($ $ (-406 (-561))) 76)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3400 (((-635 (-544)) $) 54)) (-3396 (($ (-635 (-544))) 62)) (-3514 (((-544) $) 40 (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) 49) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) 47 (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) 49 (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3398 (((-635 (-544)) $) 60)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) 37)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) 42)) (-3399 (((-1143 (-544)) $) 59)) (-3395 (($ (-635 (-544)) (-635 (-544))) 63)) (-3515 (((-544) $) 53 (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) 11 (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) 39)) (-3397 (((-635 (-544)) $) 61)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) 77) (($ (-544)) 43) (($ $) NIL) (($ (-406 (-544))) 20) (($ (-544)) 43) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) 18)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) 9)) (-3516 (((-544) $) 51 (|has| (-544) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) 10 T CONST)) (-3046 (($) 12 T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) 14)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) 33 (|has| (-544) (-844)))) (-4356 (($ $ $) 29) (($ (-544) (-544)) 31)) (-4244 (($ $) 15) (($ $ $) 23)) (-4246 (($ $ $) 21)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 25) (($ $ $) 27) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) 25) (($ $ (-544)) NIL)))
+(((-997 |#1|) (-13 (-984 (-544)) (-608 (-406 (-544))) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -3400 ((-635 (-544)) $)) (-15 -3399 ((-1143 (-544)) $)) (-15 -3398 ((-635 (-544)) $)) (-15 -3397 ((-635 (-544)) $)) (-15 -3396 ($ (-635 (-544)))) (-15 -3395 ($ (-635 (-544)) (-635 (-544)))))) (-544)) (T -997))
+((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3395 (*1 *1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))))
+(-13 (-984 (-544)) (-608 (-406 (-544))) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -3400 ((-635 (-544)) $)) (-15 -3399 ((-1143 (-544)) $)) (-15 -3398 ((-635 (-544)) $)) (-15 -3397 ((-635 (-544)) $)) (-15 -3396 ($ (-635 (-544)))) (-15 -3395 ($ (-635 (-544)) (-635 (-544))))))
+((-3401 (((-51) (-406 (-544)) (-544)) 9)))
+(((-998) (-10 -7 (-15 -3401 ((-51) (-406 (-544)) (-544))))) (T -998))
+((-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-544))) (-5 *4 (-544)) (-5 *2 (-51)) (-5 *1 (-998)))))
+(-10 -7 (-15 -3401 ((-51) (-406 (-544)) (-544))))
+((-3521 (((-544)) 13)) (-3404 (((-544)) 16)) (-3403 (((-1259) (-544)) 15)) (-3402 (((-544) (-544)) 17) (((-544)) 12)))
+(((-999) (-10 -7 (-15 -3402 ((-544))) (-15 -3521 ((-544))) (-15 -3402 ((-544) (-544))) (-15 -3403 ((-1259) (-544))) (-15 -3404 ((-544))))) (T -999))
+((-3404 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-999)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) (-3521 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) (-3402 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))))
+(-10 -7 (-15 -3402 ((-544))) (-15 -3521 ((-544))) (-15 -3402 ((-544) (-544))) (-15 -3403 ((-1259) (-544))) (-15 -3404 ((-544))))
+((-4140 (((-404 |#1|) |#1|) 41)) (-4139 (((-404 |#1|) |#1|) 40)))
+(((-1000 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|))) (-1229 (-406 (-544)))) (T -1000))
+((-4140 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544)))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544)))))))
+(-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|)))
+((-3407 (((-3 (-406 (-544)) "failed") |#1|) 15)) (-3406 (((-112) |#1|) 14)) (-3405 (((-406 (-544)) |#1|) 10)))
+(((-1001 |#1|) (-10 -7 (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|))) (-1031 (-406 (-544)))) (T -1001))
+((-3407 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))) (-3406 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-544)))))) (-3405 (*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))))
+(-10 -7 (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)))
+((-4194 ((|#2| $ "value" |#2|) 12)) (-4206 ((|#2| $ "value") 10)) (-3411 (((-112) $ $) 18)))
+(((-1002 |#1| |#2|) (-10 -8 (-15 -4194 (|#2| |#1| "value" |#2|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -4206 (|#2| |#1| "value"))) (-1003 |#2|) (-1204)) (T -1002))
+NIL
+(-10 -8 (-15 -4194 (|#2| |#1| "value" |#2|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -4206 (|#2| |#1| "value")))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ "value") 47)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-1003 |#1|) (-139) (-1204)) (T -1003))
+((-3921 (*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3)))) (-3414 (*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3)))) (-3412 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-544)))) (-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3410 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4401)) (-4 *1 (-1003 *3)) (-4 *3 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) (-3408 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2)) (-4 *2 (-1204)))))
+(-13 (-487 |t#1|) (-10 -8 (-15 -3921 ((-635 $) $)) (-15 -3414 ((-635 $) $)) (-15 -3926 ((-112) $)) (-15 -3806 (|t#1| $)) (-15 -4206 (|t#1| $ "value")) (-15 -4040 ((-112) $)) (-15 -3413 ((-635 |t#1|) $)) (-15 -3412 ((-544) $ $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -3411 ((-112) $ $)) (-15 -3410 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4401)) (PROGN (-15 -3409 ($ $ (-635 $))) (-15 -4194 (|t#1| $ "value" |t#1|)) (-15 -3408 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-3420 (($ $) 9) (($ $ (-912)) 43) (($ (-406 (-544))) 13) (($ (-544)) 15)) (-3584 (((-3 $ "failed") (-1160 $) (-912) (-857)) 23) (((-3 $ "failed") (-1160 $) (-912)) 28)) (-3394 (($ $ (-544)) 49)) (-3511 (((-765)) 17)) (-3585 (((-635 $) (-1160 $)) NIL) (((-635 $) (-1160 (-406 (-544)))) 54) (((-635 $) (-1160 (-544))) 59) (((-635 $) (-939 $)) 63) (((-635 $) (-939 (-406 (-544)))) 67) (((-635 $) (-939 (-544))) 71)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ $ (-406 (-544))) 47)))
+(((-1004 |#1|) (-10 -8 (-15 -3420 (|#1| (-544))) (-15 -3420 (|#1| (-406 (-544)))) (-15 -3420 (|#1| |#1| (-912))) (-15 -3585 ((-635 |#1|) (-939 (-544)))) (-15 -3585 ((-635 |#1|) (-939 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-939 |#1|))) (-15 -3585 ((-635 |#1|) (-1160 (-544)))) (-15 -3585 ((-635 |#1|) (-1160 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-1160 |#1|))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912) (-857))) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3394 (|#1| |#1| (-544))) (-15 -3420 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -3511 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912)))) (-1005)) (T -1004))
+((-3511 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005)))))
+(-10 -8 (-15 -3420 (|#1| (-544))) (-15 -3420 (|#1| (-406 (-544)))) (-15 -3420 (|#1| |#1| (-912))) (-15 -3585 ((-635 |#1|) (-939 (-544)))) (-15 -3585 ((-635 |#1|) (-939 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-939 |#1|))) (-15 -3585 ((-635 |#1|) (-1160 (-544)))) (-15 -3585 ((-635 |#1|) (-1160 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-1160 |#1|))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912) (-857))) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3394 (|#1| |#1| (-544))) (-15 -3420 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -3511 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 91)) (-2213 (($ $) 92)) (-2211 (((-112) $) 94)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 111)) (-4376 (((-404 $) $) 112)) (-3420 (($ $) 75) (($ $ (-912)) 61) (($ (-406 (-544))) 60) (($ (-544)) 59)) (-1733 (((-112) $ $) 102)) (-4030 (((-544) $) 128)) (-4131 (($) 17 T CONST)) (-3584 (((-3 $ "failed") (-1160 $) (-912) (-857)) 69) (((-3 $ "failed") (-1160 $) (-912)) 68)) (-3558 (((-3 (-544) #1="failed") $) 88 (|has| (-406 (-544)) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 86 (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-3 (-406 (-544)) #1#) $) 83)) (-3557 (((-544) $) 87 (|has| (-406 (-544)) (-1031 (-544)))) (((-406 (-544)) $) 85 (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-406 (-544)) $) 84)) (-3416 (($ $ (-857)) 58)) (-3415 (($ $ (-857)) 57)) (-2943 (($ $ $) 106)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 105)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 100)) (-4130 (((-112) $) 113)) (-3587 (((-112) $) 126)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 74)) (-3588 (((-112) $) 127)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 109)) (-2913 (($ $ $) 125)) (-3242 (($ $ $) 124)) (-3417 (((-3 (-1160 $) "failed") $) 70)) (-3419 (((-3 (-857) "failed") $) 72)) (-3418 (((-3 (-1160 $) "failed") $) 71)) (-2041 (($ (-635 $)) 98) (($ $ $) 97)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 114)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 99)) (-3545 (($ (-635 $)) 96) (($ $ $) 95)) (-4139 (((-404 $) $) 110)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 107)) (-3865 (((-3 $ "failed") $ $) 90)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 101)) (-1732 (((-765) $) 103)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 104)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 118) (($ $) 89) (($ (-406 (-544))) 82) (($ (-544)) 81) (($ (-406 (-544))) 78)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 93)) (-4176 (((-406 (-544)) $ $) 56)) (-3585 (((-635 $) (-1160 $)) 67) (((-635 $) (-1160 (-406 (-544)))) 66) (((-635 $) (-1160 (-544))) 65) (((-635 $) (-939 $)) 64) (((-635 $) (-939 (-406 (-544)))) 63) (((-635 $) (-939 (-544))) 62)) (-3787 (($ $) 129)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 122)) (-2946 (((-112) $ $) 121)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 123)) (-3067 (((-112) $ $) 120)) (-4356 (($ $ $) 119)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 115) (($ $ (-406 (-544))) 73)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ (-406 (-544)) $) 117) (($ $ (-406 (-544))) 116) (($ (-544) $) 80) (($ $ (-544)) 79) (($ (-406 (-544)) $) 77) (($ $ (-406 (-544))) 76)))
(((-1005) (-139)) (T -1005))
-((-1643 (*1 *1 *1) (-4 *1 (-1005))) (-3677 (*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-856)))) (-2212 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))) (-2559 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))) (-2496 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-5 *4 (-856)) (-4 *1 (-1005)))) (-2496 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-4 *1 (-1005)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1162 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-1643 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-914)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1005)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1005)))) (-3668 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))) (-3105 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))) (-1408 (*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-561))))))
-(-13 (-146) (-842) (-171) (-362) (-410 (-406 (-561))) (-38 (-561)) (-38 (-406 (-561))) (-995) (-10 -8 (-15 -3677 ((-3 (-856) "failed") $)) (-15 -2212 ((-3 (-1162 $) "failed") $)) (-15 -2559 ((-3 (-1162 $) "failed") $)) (-15 -2496 ((-3 $ "failed") (-1162 $) (-914) (-856))) (-15 -2496 ((-3 $ "failed") (-1162 $) (-914))) (-15 -2363 ((-638 $) (-1162 $))) (-15 -2363 ((-638 $) (-1162 (-406 (-561))))) (-15 -2363 ((-638 $) (-1162 (-561)))) (-15 -2363 ((-638 $) (-945 $))) (-15 -2363 ((-638 $) (-945 (-406 (-561))))) (-15 -2363 ((-638 $) (-945 (-561)))) (-15 -1643 ($ $ (-914))) (-15 -1643 ($ $)) (-15 -1643 ($ (-406 (-561)))) (-15 -1643 ($ (-561))) (-15 -3668 ($ $ (-856))) (-15 -3105 ($ $ (-856))) (-15 -1408 ((-406 (-561)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 #1=(-561)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-410 (-406 (-561))) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-913) . T) ((-995) . T) ((-1031 (-406 (-561))) . T) ((-1031 (-561)) |has| (-406 (-561)) (-1031 (-561))) ((-1048 #0#) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
-((-2091 (((-2 (|:| |ans| |#2|) (|:| -1599 |#2|) (|:| |sol?| (-112))) (-561) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65)))
-(((-1006 |#1| |#2|) (-10 -7 (-15 -2091 ((-2 (|:| |ans| |#2|) (|:| -1599 |#2|) (|:| |sol?| (-112))) (-561) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-27) (-429 |#1|))) (T -1006))
-((-2091 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-638 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3413 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-561)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1599 *4) (|:| |sol?| (-112)))) (-5 *1 (-1006 *8 *4)))))
-(-10 -7 (-15 -2091 ((-2 (|:| |ans| |#2|) (|:| -1599 |#2|) (|:| |sol?| (-112))) (-561) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2206 (((-3 (-638 |#2|) "failed") (-561) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-1007 |#1| |#2|) (-10 -7 (-15 -2206 ((-3 (-638 |#2|) "failed") (-561) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-27) (-429 |#1|))) (T -1007))
-((-2206 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-638 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3413 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-561)) (-5 *2 (-638 *4)) (-5 *1 (-1007 *8 *4)))))
-(-10 -7 (-15 -2206 ((-3 (-638 |#2|) "failed") (-561) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -3413 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3596 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3394 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-561)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-561) (-1 |#2| |#2|)) 31)) (-2124 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3407 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 59)) (-2532 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 64)))
-(((-1008 |#1| |#2|) (-10 -7 (-15 -2124 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3407 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2532 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3596 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3394 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-561)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-561) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1031 (-561))) (-1230 |#1|)) (T -1008))
-((-3596 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1230 *6)) (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-561)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3394 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1008 *6 *3)))) (-2532 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5)))) (-2124 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3407 *6))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6)))))
-(-10 -7 (-15 -2124 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3407 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2532 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3596 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3394 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-561)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-561) (-1 |#2| |#2|))))
-((-4014 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3407 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-1682 (((-3 (-638 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33)))
-(((-1009 |#1| |#2|) (-10 -7 (-15 -4014 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3407 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1682 ((-3 (-638 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-561))) (-1230 |#1|)) (T -1009))
-((-1682 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1230 *4)) (-5 *2 (-638 (-406 *5))) (-5 *1 (-1009 *4 *5)) (-5 *3 (-406 *5)))) (-4014 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3407 *6))) (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6)))))
-(-10 -7 (-15 -4014 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3407 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1682 ((-3 (-638 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))))
-((-4219 (((-1 |#1|) (-638 (-2 (|:| -2506 |#1|) (|:| -2211 (-561))))) 37)) (-2537 (((-1 |#1|) (-1092 |#1|)) 45)) (-3579 (((-1 |#1|) (-1254 |#1|) (-1254 (-561)) (-561)) 34)))
-(((-1010 |#1|) (-10 -7 (-15 -2537 ((-1 |#1|) (-1092 |#1|))) (-15 -4219 ((-1 |#1|) (-638 (-2 (|:| -2506 |#1|) (|:| -2211 (-561)))))) (-15 -3579 ((-1 |#1|) (-1254 |#1|) (-1254 (-561)) (-561)))) (-1090)) (T -1010))
-((-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1254 *6)) (-5 *4 (-1254 (-561))) (-5 *5 (-561)) (-4 *6 (-1090)) (-5 *2 (-1 *6)) (-5 *1 (-1010 *6)))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -2506 *4) (|:| -2211 (-561))))) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))))
-(-10 -7 (-15 -2537 ((-1 |#1|) (-1092 |#1|))) (-15 -4219 ((-1 |#1|) (-638 (-2 (|:| -2506 |#1|) (|:| -2211 (-561)))))) (-15 -3579 ((-1 |#1|) (-1254 |#1|) (-1254 (-561)) (-561))))
-((-4027 (((-765) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4027 ((-765) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1230 |#1|) (-1230 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1011))
-((-4027 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1230 *6)) (-4 *4 (-1230 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765)) (-5 *1 (-1011 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -4027 ((-765) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-4053 (((-112) $ $) NIL)) (-1773 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-1125) $) 11)) (-1723 (((-112) $ $) NIL)))
-(((-1012) (-13 (-1073) (-10 -8 (-15 -1773 ((-1125) $)) (-15 -3316 ((-1125) $))))) (T -1012))
-((-1773 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))))
-(-13 (-1073) (-10 -8 (-15 -1773 ((-1125) $)) (-15 -3316 ((-1125) $))))
-((-2335 (((-3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) "failed") |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) 31) (((-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561))) 28)) (-1738 (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561))) 33) (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-406 (-561))) 29) (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) 32) (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1|) 27)) (-2605 (((-638 (-406 (-561))) (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) 19)) (-3178 (((-406 (-561)) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) 16)))
-(((-1013 |#1|) (-10 -7 (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1|)) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) "failed") |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -3178 ((-406 (-561)) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -2605 ((-638 (-406 (-561))) (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))))) (-1230 (-561))) (T -1013))
-((-2605 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-5 *2 (-638 (-406 (-561)))) (-5 *1 (-1013 *4)) (-4 *4 (-1230 (-561))))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) (-5 *2 (-406 (-561))) (-5 *1 (-1013 *4)) (-4 *4 (-1230 (-561))))) (-2335 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561))))) (-2335 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) (-5 *4 (-406 (-561))) (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561))))) (-1738 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-561))) (-5 *2 (-638 (-2 (|:| -1586 *5) (|:| -1599 *5)))) (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561))) (-5 *4 (-2 (|:| -1586 *5) (|:| -1599 *5))))) (-1738 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561))) (-5 *4 (-406 (-561))))) (-1738 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561))) (-5 *4 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))) (-1738 (*1 *2 *3) (-12 (-5 *2 (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561))))))
-(-10 -7 (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1|)) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) "failed") |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -3178 ((-406 (-561)) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -2605 ((-638 (-406 (-561))) (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))))
-((-2335 (((-3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) "failed") |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) 35) (((-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561))) 32)) (-1738 (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561))) 30) (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-406 (-561))) 26) (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) 28) (((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1|) 24)))
-(((-1014 |#1|) (-10 -7 (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1|)) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) "failed") |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))) (-1230 (-406 (-561)))) (T -1014))
-((-2335 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) (-5 *1 (-1014 *3)) (-4 *3 (-1230 (-406 (-561)))))) (-2335 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) (-5 *4 (-406 (-561))) (-5 *1 (-1014 *3)) (-4 *3 (-1230 *4)))) (-1738 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-561))) (-5 *2 (-638 (-2 (|:| -1586 *5) (|:| -1599 *5)))) (-5 *1 (-1014 *3)) (-4 *3 (-1230 *5)) (-5 *4 (-2 (|:| -1586 *5) (|:| -1599 *5))))) (-1738 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-561))) (-5 *2 (-638 (-2 (|:| -1586 *4) (|:| -1599 *4)))) (-5 *1 (-1014 *3)) (-4 *3 (-1230 *4)))) (-1738 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1230 (-406 (-561)))) (-5 *4 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))) (-1738 (*1 *2 *3) (-12 (-5 *2 (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1230 (-406 (-561)))))))
-(-10 -7 (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1|)) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -1738 ((-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-406 (-561)))) (-15 -2335 ((-3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) "failed") |#1| (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))) (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))))
-((-4216 (((-224) $) 6) (((-378) $) 9)))
-(((-1015) (-139)) (T -1015))
-NIL
-(-13 (-609 (-224)) (-609 (-378)))
-(((-609 (-224)) . T) ((-609 (-378)) . T))
-((-4164 (((-638 (-378)) (-945 (-561)) (-378)) 28) (((-638 (-378)) (-945 (-406 (-561))) (-378)) 27)) (-2034 (((-638 (-638 (-378))) (-638 (-945 (-561))) (-638 (-1166)) (-378)) 37)))
-(((-1016) (-10 -7 (-15 -4164 ((-638 (-378)) (-945 (-406 (-561))) (-378))) (-15 -4164 ((-638 (-378)) (-945 (-561)) (-378))) (-15 -2034 ((-638 (-638 (-378))) (-638 (-945 (-561))) (-638 (-1166)) (-378))))) (T -1016))
-((-2034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 (-378)))) (-5 *1 (-1016)) (-5 *5 (-378)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 (-378))) (-5 *1 (-1016)) (-5 *4 (-378)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 (-378))) (-5 *1 (-1016)) (-5 *4 (-378)))))
-(-10 -7 (-15 -4164 ((-638 (-378)) (-945 (-406 (-561))) (-378))) (-15 -4164 ((-638 (-378)) (-945 (-561)) (-378))) (-15 -2034 ((-638 (-638 (-378))) (-638 (-945 (-561))) (-638 (-1166)) (-378))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 70)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-1643 (($ $) NIL) (($ $ (-914)) NIL) (($ (-406 (-561))) NIL) (($ (-561)) NIL)) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) 65)) (-2674 (($) NIL T CONST)) (-2496 (((-3 $ "failed") (-1162 $) (-914) (-856)) NIL) (((-3 $ "failed") (-1162 $) (-914)) 50)) (-4061 (((-3 (-406 (-561)) "failed") $) NIL (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-561) "failed") $) NIL (-4050 (|has| (-406 (-561)) (-1031 (-561))) (|has| |#1| (-1031 (-561)))))) (-3979 (((-406 (-561)) $) 15 (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-406 (-561)) $) 15) ((|#1| $) 108) (((-561) $) NIL (-4050 (|has| (-406 (-561)) (-1031 (-561))) (|has| |#1| (-1031 (-561)))))) (-3668 (($ $ (-856)) 42)) (-3105 (($ $ (-856)) 43)) (-1792 (($ $ $) NIL)) (-2255 (((-406 (-561)) $ $) 19)) (-3735 (((-3 $ "failed") $) 83)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-1784 (((-112) $) 61)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL)) (-3271 (((-112) $) 64)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-2559 (((-3 (-1162 $) "failed") $) 78)) (-3677 (((-3 (-856) "failed") $) 77)) (-2212 (((-3 (-1162 $) "failed") $) 75)) (-4070 (((-3 (-1052 $ (-1162 $)) "failed") $) 73)) (-1563 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 84)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-4064 (((-856) $) 82) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ $) 58) (($ (-406 (-561))) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 110)) (-3746 (((-765)) NIL)) (-3996 (((-112) $ $) NIL)) (-1408 (((-406 (-561)) $ $) 25)) (-2363 (((-638 $) (-1162 $)) 56) (((-638 $) (-1162 (-406 (-561)))) NIL) (((-638 $) (-1162 (-561))) NIL) (((-638 $) (-945 $)) NIL) (((-638 $) (-945 (-406 (-561)))) NIL) (((-638 $) (-945 (-561))) NIL)) (-2264 (($ (-1052 $ (-1162 $)) (-856)) 41)) (-2165 (($ $) 20)) (-2246 (($) 29 T CONST)) (-2257 (($) 35 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 71)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 22)) (-1828 (($ $ $) 33)) (-1819 (($ $) 34) (($ $ $) 69)) (-1810 (($ $ $) 103)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ $ (-406 (-561))) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 91) (($ $ $) 96) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ (-561) $) 91) (($ $ (-561)) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-1017 |#1|) (-13 (-1005) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -2264 ($ (-1052 $ (-1162 $)) (-856))) (-15 -4070 ((-3 (-1052 $ (-1162 $)) "failed") $)) (-15 -2255 ((-406 (-561)) $ $)))) (-13 (-842) (-362) (-1015))) (T -1017))
-((-2264 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-1017 *4) (-1162 (-1017 *4)))) (-5 *3 (-856)) (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1015))))) (-4070 (*1 *2 *1) (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1162 (-1017 *3)))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1015))))) (-2255 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1015))))))
-(-13 (-1005) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -2264 ($ (-1052 $ (-1162 $)) (-856))) (-15 -4070 ((-3 (-1052 $ (-1162 $)) "failed") $)) (-15 -2255 ((-406 (-561)) $ $))))
-((-3839 (((-2 (|:| -3394 |#2|) (|:| -2409 (-638 |#1|))) |#2| (-638 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-1018 |#1| |#2|) (-10 -7 (-15 -3839 (|#2| |#2| |#1|)) (-15 -3839 ((-2 (|:| -3394 |#2|) (|:| -2409 (-638 |#1|))) |#2| (-638 |#1|)))) (-362) (-649 |#1|)) (T -1018))
-((-3839 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3394 *3) (|:| -2409 (-638 *5)))) (-5 *1 (-1018 *5 *3)) (-5 *4 (-638 *5)) (-4 *3 (-649 *5)))) (-3839 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-649 *3)))))
-(-10 -7 (-15 -3839 (|#2| |#2| |#1|)) (-15 -3839 ((-2 (|:| -3394 |#2|) (|:| -2409 (-638 |#1|))) |#2| (-638 |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-4246 ((|#1| $ |#1|) 14)) (-4207 ((|#1| $ |#1|) 12)) (-1629 (($ |#1|) 10)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2315 ((|#1| $) 11)) (-4168 ((|#1| $) 13)) (-4064 (((-856) $) 21 (|has| |#1| (-1090)))) (-1723 (((-112) $ $) 9)))
-(((-1019 |#1|) (-13 (-1205) (-10 -8 (-15 -1629 ($ |#1|)) (-15 -2315 (|#1| $)) (-15 -4207 (|#1| $ |#1|)) (-15 -4168 (|#1| $)) (-15 -4246 (|#1| $ |#1|)) (-15 -1723 ((-112) $ $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|))) (-1205)) (T -1019))
-((-1629 (*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-2315 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-4207 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-4168 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-4246 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-1723 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1205)))))
-(-13 (-1205) (-10 -8 (-15 -1629 ($ |#1|)) (-15 -2315 (|#1| $)) (-15 -4207 (|#1| $ |#1|)) (-15 -4168 (|#1| $)) (-15 -4246 (|#1| $ |#1|)) (-15 -1723 ((-112) $ $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3742 (((-638 $) (-638 |#4|)) 105) (((-638 $) (-638 |#4|) (-112)) 106) (((-638 $) (-638 |#4|) (-112) (-112)) 104) (((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112)) 107)) (-1405 (((-638 |#3|) $) NIL)) (-4214 (((-112) $) NIL)) (-2444 (((-112) $) NIL (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4089 ((|#4| |#4| $) NIL)) (-2557 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 99)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-3612 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) 54)) (-2674 (($) NIL T CONST)) (-3853 (((-112) $) 27 (|has| |#1| (-553)))) (-3733 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4338 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1577 (((-112) $) NIL (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3293 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3979 (($ (-638 |#4|)) NIL)) (-1437 (((-3 $ "failed") $) 40)) (-2471 ((|#4| |#4| $) 57)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2310 ((|#4| |#4| $) NIL)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) NIL)) (-2207 (((-112) |#4| $) NIL)) (-1775 (((-112) |#4| $) NIL)) (-2101 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1830 (((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)) 119)) (-2368 (((-638 |#4|) $) 17 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#4|) $) 18 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-2029 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 22)) (-2597 (((-638 |#3|) $) NIL)) (-2247 (((-112) |#3| $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1413 (((-3 |#4| (-638 $)) |#4| |#4| $) NIL)) (-2940 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 97)) (-1501 (((-3 |#4| "failed") $) 38)) (-1465 (((-638 $) |#4| $) 80)) (-4220 (((-3 (-112) (-638 $)) |#4| $) NIL)) (-4151 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-1338 (((-638 $) |#4| $) 102) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 103) (((-638 $) |#4| (-638 $)) NIL)) (-1967 (((-638 $) (-638 |#4|) (-112) (-112) (-112)) 114)) (-1747 (($ |#4| $) 70) (($ (-638 |#4|) $) 71) (((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-3589 (((-638 |#4|) $) NIL)) (-3067 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3641 ((|#4| |#4| $) NIL)) (-4345 (((-112) $ $) NIL)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2903 ((|#4| |#4| $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-3 |#4| "failed") $) 36)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2336 (((-3 $ "failed") $ |#4|) 48)) (-3702 (($ $ |#4|) NIL) (((-638 $) |#4| $) 82) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 77)) (-3977 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 16)) (-2910 (($) 14)) (-3768 (((-765) $) NIL)) (-1714 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) 13)) (-4216 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 21)) (-3883 (($ $ |#3|) 43)) (-2049 (($ $ |#3|) 44)) (-1768 (($ $) NIL)) (-2983 (($ $ |#3|) NIL)) (-4064 (((-856) $) 32) (((-638 |#4|) $) 41)) (-3513 (((-765) $) NIL (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-2909 (((-638 $) |#4| $) 79) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) NIL)) (-2283 (((-112) |#4| $) NIL)) (-4024 (((-112) |#3| $) 53)) (-1723 (((-112) $ $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1020 |#1| |#2| |#3| |#4|) (-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1747 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -1967 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1830 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1020))
-((-1747 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-3742 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-3742 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-1967 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-1830 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-638 *8)) (|:| |towers| (-638 (-1020 *5 *6 *7 *8))))) (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
-(-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1747 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -1967 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1830 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)))))
-((-3437 (((-638 (-682 |#1|)) (-638 (-682 |#1|))) 58) (((-682 |#1|) (-682 |#1|)) 57) (((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-638 (-682 |#1|))) 56) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 53)) (-1628 (((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914)) 52) (((-682 |#1|) (-682 |#1|) (-914)) 51)) (-3860 (((-638 (-682 (-561))) (-638 (-638 (-561)))) 68) (((-638 (-682 (-561))) (-638 (-898 (-561))) (-561)) 67) (((-682 (-561)) (-638 (-561))) 64) (((-682 (-561)) (-898 (-561)) (-561)) 63)) (-2634 (((-682 (-945 |#1|)) (-765)) 81)) (-4234 (((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914)) 37 (|has| |#1| (-6 (-4401 "*")))) (((-682 |#1|) (-682 |#1|) (-914)) 35 (|has| |#1| (-6 (-4401 "*"))))))
-(((-1021 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4401 "*"))) (-15 -4234 ((-682 |#1|) (-682 |#1|) (-914))) |%noBranch|) (IF (|has| |#1| (-6 (-4401 "*"))) (-15 -4234 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) |%noBranch|) (-15 -2634 ((-682 (-945 |#1|)) (-765))) (-15 -1628 ((-682 |#1|) (-682 |#1|) (-914))) (-15 -1628 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) (-15 -3437 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3437 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3437 ((-682 |#1|) (-682 |#1|))) (-15 -3437 ((-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3860 ((-682 (-561)) (-898 (-561)) (-561))) (-15 -3860 ((-682 (-561)) (-638 (-561)))) (-15 -3860 ((-638 (-682 (-561))) (-638 (-898 (-561))) (-561))) (-15 -3860 ((-638 (-682 (-561))) (-638 (-638 (-561)))))) (-1042)) (T -1021))
-((-3860 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-561)))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-1021 *4)) (-4 *4 (-1042)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-898 (-561)))) (-5 *4 (-561)) (-5 *2 (-638 (-682 *4))) (-5 *1 (-1021 *5)) (-4 *5 (-1042)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1021 *4)) (-4 *4 (-1042)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-898 (-561))) (-5 *4 (-561)) (-5 *2 (-682 *4)) (-5 *1 (-1021 *5)) (-4 *5 (-1042)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-3437 (*1 *2 *2 *2) (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-3437 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-1628 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914)) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))) (-1628 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-682 (-945 *4))) (-5 *1 (-1021 *4)) (-4 *4 (-1042)))) (-4234 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914)) (|has| *4 (-6 (-4401 "*"))) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))) (-4234 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (|has| *4 (-6 (-4401 "*"))) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4401 "*"))) (-15 -4234 ((-682 |#1|) (-682 |#1|) (-914))) |%noBranch|) (IF (|has| |#1| (-6 (-4401 "*"))) (-15 -4234 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) |%noBranch|) (-15 -2634 ((-682 (-945 |#1|)) (-765))) (-15 -1628 ((-682 |#1|) (-682 |#1|) (-914))) (-15 -1628 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) (-15 -3437 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3437 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3437 ((-682 |#1|) (-682 |#1|))) (-15 -3437 ((-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3860 ((-682 (-561)) (-898 (-561)) (-561))) (-15 -3860 ((-682 (-561)) (-638 (-561)))) (-15 -3860 ((-638 (-682 (-561))) (-638 (-898 (-561))) (-561))) (-15 -3860 ((-638 (-682 (-561))) (-638 (-638 (-561))))))
-((-3247 (((-682 |#1|) (-638 (-682 |#1|)) (-1254 |#1|)) 49 (|has| |#1| (-306)))) (-2230 (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1254 (-1254 |#1|))) 75 (|has| |#1| (-362))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1254 |#1|)) 78 (|has| |#1| (-362)))) (-2055 (((-1254 |#1|) (-638 (-1254 |#1|)) (-561)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3743 (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-914)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112) (-561) (-561)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-1853 (((-112) (-638 (-682 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-638 (-682 |#1|)) (-561)) 72 (|has| |#1| (-362)))) (-2986 (((-1254 (-1254 |#1|)) (-638 (-682 |#1|)) (-1254 |#1|)) 47 (|has| |#1| (-306)))) (-2023 (((-682 |#1|) (-638 (-682 |#1|)) (-682 |#1|)) 33)) (-2943 (((-682 |#1|) (-1254 (-1254 |#1|))) 30)) (-1980 (((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-561)) 64 (|has| |#1| (-362))) (((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|))) 63 (|has| |#1| (-362))) (((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-112) (-561)) 68 (|has| |#1| (-362)))))
-(((-1022 |#1|) (-10 -7 (-15 -2943 ((-682 |#1|) (-1254 (-1254 |#1|)))) (-15 -2023 ((-682 |#1|) (-638 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -2986 ((-1254 (-1254 |#1|)) (-638 (-682 |#1|)) (-1254 |#1|))) (-15 -3247 ((-682 |#1|) (-638 (-682 |#1|)) (-1254 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1980 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-112) (-561))) (-15 -1980 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -1980 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-561))) (-15 -1853 ((-112) (-638 (-682 |#1|)) (-561))) (-15 -1853 ((-112) (-638 (-682 |#1|)))) (-15 -2230 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1254 |#1|))) (-15 -2230 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1254 (-1254 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112) (-561) (-561))) (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)))) (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112))) (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-914))) (-15 -2055 ((-1254 |#1|) (-638 (-1254 |#1|)) (-561)))) |%noBranch|) |%noBranch|)) (-1042)) (T -1022))
-((-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1254 *5))) (-5 *4 (-561)) (-5 *2 (-1254 *5)) (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)))) (-3743 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-3743 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042)) (-5 *2 (-638 (-638 (-682 *4)))) (-5 *1 (-1022 *4)) (-5 *3 (-638 (-682 *4))))) (-3743 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-561)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1042)) (-5 *2 (-638 (-638 (-682 *6)))) (-5 *1 (-1022 *6)) (-5 *3 (-638 (-682 *6))))) (-2230 (*1 *2 *3 *4) (-12 (-5 *4 (-1254 (-1254 *5))) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-2230 (*1 *2 *3 *4) (-12 (-5 *4 (-1254 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-1022 *4)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-112)) (-5 *1 (-1022 *5)))) (-1980 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-5 *2 (-682 *5)) (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-1042)))) (-1980 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1022 *4)) (-4 *4 (-362)) (-4 *4 (-1042)))) (-1980 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-638 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-561)) (-5 *2 (-682 *6)) (-5 *1 (-1022 *6)) (-4 *6 (-362)) (-4 *6 (-1042)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-1254 *5)) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1022 *5)))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-1254 (-1254 *5))) (-5 *1 (-1022 *5)) (-5 *4 (-1254 *5)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-1254 (-1254 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4)) (-5 *1 (-1022 *4)))))
-(-10 -7 (-15 -2943 ((-682 |#1|) (-1254 (-1254 |#1|)))) (-15 -2023 ((-682 |#1|) (-638 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -2986 ((-1254 (-1254 |#1|)) (-638 (-682 |#1|)) (-1254 |#1|))) (-15 -3247 ((-682 |#1|) (-638 (-682 |#1|)) (-1254 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1980 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-112) (-561))) (-15 -1980 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -1980 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-561))) (-15 -1853 ((-112) (-638 (-682 |#1|)) (-561))) (-15 -1853 ((-112) (-638 (-682 |#1|)))) (-15 -2230 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1254 |#1|))) (-15 -2230 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1254 (-1254 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112) (-561) (-561))) (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)))) (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112))) (-15 -3743 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-914))) (-15 -2055 ((-1254 |#1|) (-638 (-1254 |#1|)) (-561)))) |%noBranch|) |%noBranch|))
-((-2502 ((|#1| (-914) |#1|) 9)))
-(((-1023 |#1|) (-10 -7 (-15 -2502 (|#1| (-914) |#1|))) (-13 (-1090) (-10 -8 (-15 -1810 ($ $ $))))) (T -1023))
-((-2502 (*1 *2 *3 *2) (-12 (-5 *3 (-914)) (-5 *1 (-1023 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1810 ($ $ $))))))))
-(-10 -7 (-15 -2502 (|#1| (-914) |#1|)))
-((-3048 (((-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561))))))) (-682 (-406 (-945 (-561))))) 59)) (-3494 (((-638 (-682 (-315 (-561)))) (-315 (-561)) (-682 (-406 (-945 (-561))))) 48)) (-1777 (((-638 (-315 (-561))) (-682 (-406 (-945 (-561))))) 41)) (-1422 (((-638 (-682 (-315 (-561)))) (-682 (-406 (-945 (-561))))) 68)) (-1620 (((-682 (-315 (-561))) (-682 (-315 (-561)))) 34)) (-2410 (((-638 (-682 (-315 (-561)))) (-638 (-682 (-315 (-561))))) 62)) (-1790 (((-3 (-682 (-315 (-561))) "failed") (-682 (-406 (-945 (-561))))) 66)))
-(((-1024) (-10 -7 (-15 -3048 ((-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561))))))) (-682 (-406 (-945 (-561)))))) (-15 -3494 ((-638 (-682 (-315 (-561)))) (-315 (-561)) (-682 (-406 (-945 (-561)))))) (-15 -1777 ((-638 (-315 (-561))) (-682 (-406 (-945 (-561)))))) (-15 -1790 ((-3 (-682 (-315 (-561))) "failed") (-682 (-406 (-945 (-561)))))) (-15 -1620 ((-682 (-315 (-561))) (-682 (-315 (-561))))) (-15 -2410 ((-638 (-682 (-315 (-561)))) (-638 (-682 (-315 (-561)))))) (-15 -1422 ((-638 (-682 (-315 (-561)))) (-682 (-406 (-945 (-561)))))))) (T -1024))
-((-1422 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))) (-1790 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-315 (-561)))) (-5 *1 (-1024)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *4 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)) (-5 *3 (-315 (-561))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561)))))))) (-5 *1 (-1024)))))
-(-10 -7 (-15 -3048 ((-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561))))))) (-682 (-406 (-945 (-561)))))) (-15 -3494 ((-638 (-682 (-315 (-561)))) (-315 (-561)) (-682 (-406 (-945 (-561)))))) (-15 -1777 ((-638 (-315 (-561))) (-682 (-406 (-945 (-561)))))) (-15 -1790 ((-3 (-682 (-315 (-561))) "failed") (-682 (-406 (-945 (-561)))))) (-15 -1620 ((-682 (-315 (-561))) (-682 (-315 (-561))))) (-15 -2410 ((-638 (-682 (-315 (-561)))) (-638 (-682 (-315 (-561)))))) (-15 -1422 ((-638 (-682 (-315 (-561)))) (-682 (-406 (-945 (-561)))))))
-((-4298 ((|#1| |#1| (-914)) 9)))
-(((-1025 |#1|) (-10 -7 (-15 -4298 (|#1| |#1| (-914)))) (-13 (-1090) (-10 -8 (-15 * ($ $ $))))) (T -1025))
-((-4298 (*1 *2 *2 *3) (-12 (-5 *3 (-914)) (-5 *1 (-1025 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -4298 (|#1| |#1| (-914))))
-((-4064 ((|#1| (-311)) 11) (((-1259) |#1|) 9)))
-(((-1026 |#1|) (-10 -7 (-15 -4064 ((-1259) |#1|)) (-15 -4064 (|#1| (-311)))) (-1205)) (T -1026))
-((-4064 (*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1026 *2)) (-4 *2 (-1205)))) (-4064 (*1 *2 *3) (-12 (-5 *2 (-1259)) (-5 *1 (-1026 *3)) (-4 *3 (-1205)))))
-(-10 -7 (-15 -4064 ((-1259) |#1|)) (-15 -4064 (|#1| (-311))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3176 (($ |#4|) 25)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-3354 ((|#4| $) 27)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 46) (($ (-561)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3746 (((-765)) 43)) (-2246 (($) 21 T CONST)) (-2257 (($) 23 T CONST)) (-1723 (((-112) $ $) 40)) (-1819 (($ $) 31) (($ $ $) NIL)) (-1810 (($ $ $) 29)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1027 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -3176 ($ |#4|)) (-15 -4064 ($ |#4|)) (-15 -3354 (|#4| $)))) (-362) (-787) (-844) (-942 |#1| |#2| |#3|) (-638 |#4|)) (T -1027))
-((-3176 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-638 *2)))) (-4064 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-638 *2)))) (-3354 (*1 *2 *1) (-12 (-4 *2 (-942 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-638 *2)))))
-(-13 (-171) (-38 |#1|) (-10 -8 (-15 -3176 ($ |#4|)) (-15 -4064 ($ |#4|)) (-15 -3354 (|#4| $))))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL)) (-1846 (((-1259) $ (-1166) (-1166)) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-3824 (((-112) (-112)) 39)) (-2691 (((-112) (-112)) 38)) (-4207 (((-52) $ (-1166) (-52)) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 (-52) "failed") (-1166) $) NIL)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-3222 (($ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-3 (-52) "failed") (-1166) $) NIL)) (-1475 (($ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-2041 (((-52) $ (-1166) (-52)) NIL (|has| $ (-6 -4400)))) (-1975 (((-52) $ (-1166)) NIL)) (-2368 (((-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-638 (-52)) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-1166) $) NIL (|has| (-1166) (-844)))) (-4125 (((-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-638 (-52)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090))))) (-1556 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-2066 (((-638 (-1166)) $) 34)) (-2492 (((-112) (-1166) $) NIL)) (-3721 (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL)) (-1617 (($ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL)) (-2355 (((-638 (-1166)) $) NIL)) (-1558 (((-112) (-1166) $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-1424 (((-52) $) NIL (|has| (-1166) (-844)))) (-3202 (((-3 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) "failed") (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL)) (-3193 (($ $ (-52)) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-293 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-638 (-52)) (-638 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-638 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090))))) (-2411 (((-638 (-52)) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 (((-52) $ (-1166)) 35) (((-52) $ (-1166) (-52)) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (((-765) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090)))) (((-765) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL)) (-4064 (((-856) $) 37 (-4050 (|has| (-52) (-608 (-856))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1028) (-13 (-1181 (-1166) (-52)) (-10 -7 (-15 -3824 ((-112) (-112))) (-15 -2691 ((-112) (-112))) (-6 -4399)))) (T -1028))
-((-3824 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))) (-2691 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
-(-13 (-1181 (-1166) (-52)) (-10 -7 (-15 -3824 ((-112) (-112))) (-15 -2691 ((-112) (-112))) (-6 -4399)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1731 (((-1125) $) 9)) (-4064 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1029) (-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $))))) (T -1029))
-((-1731 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029)))))
-(-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $))))
-((-3979 ((|#2| $) 10)))
-(((-1030 |#1| |#2|) (-10 -8 (-15 -3979 (|#2| |#1|))) (-1031 |#2|) (-1205)) (T -1030))
-NIL
-(-10 -8 (-15 -3979 (|#2| |#1|)))
-((-4061 (((-3 |#1| "failed") $) 9)) (-3979 ((|#1| $) 8)) (-4064 (($ |#1|) 6)))
-(((-1031 |#1|) (-139) (-1205)) (T -1031))
-((-4061 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1205)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1205)))))
-(-13 (-611 |t#1|) (-10 -8 (-15 -4061 ((-3 |t#1| "failed") $)) (-15 -3979 (|t#1| $))))
+((-3420 (*1 *1 *1) (-4 *1 (-1005))) (-3419 (*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-857)))) (-3418 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005)))) (-3417 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005)))) (-3584 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-5 *4 (-857)) (-4 *1 (-1005)))) (-3584 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1160 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-912)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1005)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1005)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857)))) (-4176 (*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-544))))))
+(-13 (-146) (-842) (-171) (-362) (-411 (-406 (-544))) (-38 (-544)) (-38 (-406 (-544))) (-995) (-10 -8 (-15 -3419 ((-3 (-857) "failed") $)) (-15 -3418 ((-3 (-1160 $) "failed") $)) (-15 -3417 ((-3 (-1160 $) "failed") $)) (-15 -3584 ((-3 $ "failed") (-1160 $) (-912) (-857))) (-15 -3584 ((-3 $ "failed") (-1160 $) (-912))) (-15 -3585 ((-635 $) (-1160 $))) (-15 -3585 ((-635 $) (-1160 (-406 (-544))))) (-15 -3585 ((-635 $) (-1160 (-544)))) (-15 -3585 ((-635 $) (-939 $))) (-15 -3585 ((-635 $) (-939 (-406 (-544))))) (-15 -3585 ((-635 $) (-939 (-544)))) (-15 -3420 ($ $ (-912))) (-15 -3420 ($ $)) (-15 -3420 ($ (-406 (-544)))) (-15 -3420 ($ (-544))) (-15 -3416 ($ $ (-857))) (-15 -3415 ($ $ (-857))) (-15 -4176 ((-406 (-544)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 #2=(-544)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-411 (-406 (-544))) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 #2#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 #2#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-914) . T) ((-995) . T) ((-1031 (-406 (-544))) . T) ((-1031 (-544)) |has| (-406 (-544)) (-1031 (-544))) ((-1048 #1#) . T) ((-1048 #2#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T))
+((-3421 (((-2 (|:| |ans| |#2|) (|:| -3522 |#2|) (|:| |sol?| (-112))) (-544) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65)))
+(((-1006 |#1| |#2|) (-10 -7 (-15 -3421 ((-2 (|:| |ans| |#2|) (|:| -3522 |#2|) (|:| |sol?| (-112))) (-544) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-27) (-420 |#1|))) (T -1006))
+((-3421 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-420 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112)))) (-5 *1 (-1006 *8 *4)))))
+(-10 -7 (-15 -3421 ((-2 (|:| |ans| |#2|) (|:| -3522 |#2|) (|:| |sol?| (-112))) (-544) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3422 (((-3 (-635 |#2|) "failed") (-544) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-1007 |#1| |#2|) (-10 -7 (-15 -3422 ((-3 (-635 |#2|) "failed") (-544) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-27) (-420 |#1|))) (T -1007))
+((-3422 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-420 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544)) (-5 *2 (-635 *4)) (-5 *1 (-1007 *8 *4)))))
+(-10 -7 (-15 -3422 ((-3 (-635 |#2|) "failed") (-544) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3425 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-544)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-544) (-1 |#2| |#2|)) 31)) (-3423 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 59)) (-3424 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 64)))
+(((-1008 |#1| |#2|) (-10 -7 (-15 -3423 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3424 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3425 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-544)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-544) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1031 (-544))) (-1229 |#1|)) (T -1008))
+((-3425 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-544)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1008 *6 *3)))) (-3424 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5)))) (-3423 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3479 *6))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -3423 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3424 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3425 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-544)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-544) (-1 |#2| |#2|))))
+((-3426 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-3427 (((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33)))
+(((-1009 |#1| |#2|) (-10 -7 (-15 -3426 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3427 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-544))) (-1229 |#1|)) (T -1009))
+((-3427 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-406 *5))) (-5 *1 (-1009 *4 *5)) (-5 *3 (-406 *5)))) (-3426 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3479 *6))) (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -3426 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3427 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))))
+((-3428 (((-1 |#1|) (-635 (-2 (|:| -3806 |#1|) (|:| -1605 (-544))))) 37)) (-3486 (((-1 |#1|) (-1087 |#1|)) 45)) (-3429 (((-1 |#1|) (-1253 |#1|) (-1253 (-544)) (-544)) 34)))
+(((-1010 |#1|) (-10 -7 (-15 -3486 ((-1 |#1|) (-1087 |#1|))) (-15 -3428 ((-1 |#1|) (-635 (-2 (|:| -3806 |#1|) (|:| -1605 (-544)))))) (-15 -3429 ((-1 |#1|) (-1253 |#1|) (-1253 (-544)) (-544)))) (-1091)) (T -1010))
+((-3429 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1253 *6)) (-5 *4 (-1253 (-544))) (-5 *5 (-544)) (-4 *6 (-1091)) (-5 *2 (-1 *6)) (-5 *1 (-1010 *6)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3806 *4) (|:| -1605 (-544))))) (-4 *4 (-1091)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-1091)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))))
+(-10 -7 (-15 -3486 ((-1 |#1|) (-1087 |#1|))) (-15 -3428 ((-1 |#1|) (-635 (-2 (|:| -3806 |#1|) (|:| -1605 (-544)))))) (-15 -3429 ((-1 |#1|) (-1253 |#1|) (-1253 (-544)) (-544))))
+((-4178 (((-765) (-332 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1011))
+((-4178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-332 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-4 *4 (-1229 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765)) (-5 *1 (-1011 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2947 (((-112) $ $) NIL)) (-3430 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 11)) (-3437 (((-112) $ $) NIL)))
+(((-1012) (-13 (-1073) (-10 -8 (-15 -3430 ((-1125) $)) (-15 -3634 ((-1125) $))))) (T -1012))
+((-3430 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))))
+(-13 (-1073) (-10 -8 (-15 -3430 ((-1125) $)) (-15 -3634 ((-1125) $))))
+((-4377 (((-224) $) 6) (((-377) $) 9)))
+(((-1013) (-139)) (T -1013))
+NIL
+(-13 (-609 (-224)) (-609 (-377)))
+(((-609 (-224)) . T) ((-609 (-377)) . T))
+((-3519 (((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 31) (((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 28)) (-3433 (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 33) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544))) 29) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 32) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|) 27)) (-3432 (((-635 (-406 (-544))) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) 19)) (-3431 (((-406 (-544)) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 16)))
+(((-1014 |#1|) (-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3431 ((-406 (-544)) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3432 ((-635 (-406 (-544))) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))))) (-1229 (-544))) (T -1014))
+((-3432 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *2 (-635 (-406 (-544)))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544))))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *2 (-406 (-544))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544))))) (-3519 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))) (-3519 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *4 (-406 (-544))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5)))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5))))) (-3433 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-406 (-544))))) (-3433 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-3433 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))))
+(-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3431 ((-406 (-544)) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3432 ((-635 (-406 (-544))) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))))
+((-3519 (((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 35) (((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 32)) (-3433 (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 30) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544))) 26) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 28) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|) 24)))
+(((-1015 |#1|) (-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-1229 (-406 (-544)))) (T -1015))
+((-3519 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))))) (-3519 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *4 (-406 (-544))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5)))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *5)) (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5))))) (-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *4) (|:| -3522 *4)))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))) (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-3433 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))))))
+(-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))))
+((-3980 (((-635 (-377)) (-939 (-544)) (-377)) 28) (((-635 (-377)) (-939 (-406 (-544))) (-377)) 27)) (-4374 (((-635 (-635 (-377))) (-635 (-939 (-544))) (-635 (-1166)) (-377)) 37)))
+(((-1016) (-10 -7 (-15 -3980 ((-635 (-377)) (-939 (-406 (-544))) (-377))) (-15 -3980 ((-635 (-377)) (-939 (-544)) (-377))) (-15 -4374 ((-635 (-635 (-377))) (-635 (-939 (-544))) (-635 (-1166)) (-377))))) (T -1016))
+((-4374 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-635 (-1166))) (-5 *2 (-635 (-635 (-377)))) (-5 *1 (-1016)) (-5 *5 (-377)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 (-377))) (-5 *1 (-1016)) (-5 *4 (-377)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 (-377))) (-5 *1 (-1016)) (-5 *4 (-377)))))
+(-10 -7 (-15 -3980 ((-635 (-377)) (-939 (-406 (-544))) (-377))) (-15 -3980 ((-635 (-377)) (-939 (-544)) (-377))) (-15 -4374 ((-635 (-635 (-377))) (-635 (-939 (-544))) (-635 (-1166)) (-377))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 70)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL) (($ $ (-912)) NIL) (($ (-406 (-544))) NIL) (($ (-544)) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) 65)) (-4131 (($) NIL T CONST)) (-3584 (((-3 $ #1="failed") (-1160 $) (-912) (-857)) NIL) (((-3 $ #1#) (-1160 $) (-912)) 50)) (-3558 (((-3 (-406 (-544)) #2="failed") $) NIL (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-3 (-406 (-544)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-544) #2#) $) NIL (-3936 (|has| (-406 (-544)) (-1031 (-544))) (|has| |#1| (-1031 (-544)))))) (-3557 (((-406 (-544)) $) 15 (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-406 (-544)) $) 15) ((|#1| $) 108) (((-544) $) NIL (-3936 (|has| (-406 (-544)) (-1031 (-544))) (|has| |#1| (-1031 (-544)))))) (-3416 (($ $ (-857)) 42)) (-3415 (($ $ (-857)) 43)) (-2943 (($ $ $) NIL)) (-3583 (((-406 (-544)) $ $) 19)) (-3866 (((-3 $ "failed") $) 83)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) 61)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3588 (((-112) $) 64)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3417 (((-3 (-1160 $) #1#) $) 78)) (-3419 (((-3 (-857) #1#) $) 77)) (-3418 (((-3 (-1160 $) #1#) $) 75)) (-3434 (((-3 (-1052 $ (-1160 $)) "failed") $) 73)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 84)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4353 (((-857) $) 82) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ $) 58) (($ (-406 (-544))) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 110)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ $) 25)) (-3585 (((-635 $) (-1160 $)) 56) (((-635 $) (-1160 (-406 (-544)))) NIL) (((-635 $) (-1160 (-544))) NIL) (((-635 $) (-939 $)) NIL) (((-635 $) (-939 (-406 (-544)))) NIL) (((-635 $) (-939 (-544))) NIL)) (-3435 (($ (-1052 $ (-1160 $)) (-857)) 41)) (-3787 (($ $) 20)) (-3040 (($) 29 T CONST)) (-3046 (($) 35 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 71)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 22)) (-4356 (($ $ $) 33)) (-4244 (($ $) 34) (($ $ $) 69)) (-4246 (($ $ $) 103)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ $ (-406 (-544))) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 91) (($ $ $) 96) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ (-544) $) 91) (($ $ (-544)) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-1017 |#1|) (-13 (-1005) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3435 ($ (-1052 $ (-1160 $)) (-857))) (-15 -3434 ((-3 (-1052 $ (-1160 $)) "failed") $)) (-15 -3583 ((-406 (-544)) $ $)))) (-13 (-842) (-362) (-1013))) (T -1017))
+((-3435 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-1017 *4) (-1160 (-1017 *4)))) (-5 *3 (-857)) (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1013))))) (-3434 (*1 *2 *1) (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1160 (-1017 *3)))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1013))))) (-3583 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1013))))))
+(-13 (-1005) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3435 ($ (-1052 $ (-1160 $)) (-857))) (-15 -3434 ((-3 (-1052 $ (-1160 $)) "failed") $)) (-15 -3583 ((-406 (-544)) $ $))))
+((-3436 (((-2 (|:| -3667 |#2|) (|:| -2881 (-635 |#1|))) |#2| (-635 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -3436 (|#2| |#2| |#1|)) (-15 -3436 ((-2 (|:| -3667 |#2|) (|:| -2881 (-635 |#1|))) |#2| (-635 |#1|)))) (-362) (-651 |#1|)) (T -1018))
+((-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3667 *3) (|:| -2881 (-635 *5)))) (-5 *1 (-1018 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-651 *5)))) (-3436 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-651 *3)))))
+(-10 -7 (-15 -3436 (|#2| |#2| |#1|)) (-15 -3436 ((-2 (|:| -3667 |#2|) (|:| -2881 (-635 |#1|))) |#2| (-635 |#1|))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3438 ((|#1| $ |#1|) 14)) (-4194 ((|#1| $ |#1|) 12)) (-3440 (($ |#1|) 10)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4206 ((|#1| $) 11)) (-3439 ((|#1| $) 13)) (-4353 (((-857) $) 21 (|has| |#1| (-1091)))) (-3437 (((-112) $ $) 9)))
+(((-1019 |#1|) (-13 (-1204) (-10 -8 (-15 -3440 ($ |#1|)) (-15 -4206 (|#1| $)) (-15 -4194 (|#1| $ |#1|)) (-15 -3439 (|#1| $)) (-15 -3438 (|#1| $ |#1|)) (-15 -3437 ((-112) $ $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) (-1204)) (T -1019))
+((-3440 (*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-3439 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-3438 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-3437 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1204)))))
+(-13 (-1204) (-10 -8 (-15 -3440 ($ |#1|)) (-15 -4206 (|#1| $)) (-15 -4194 (|#1| $ |#1|)) (-15 -3439 (|#1| $)) (-15 -3438 (|#1| $ |#1|)) (-15 -3437 ((-112) $ $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) 105) (((-635 $) (-635 |#4|) (-112)) 106) (((-635 $) (-635 |#4|) (-112) (-112)) 104) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 99)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) 27 (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 40)) (-4092 ((|#4| |#4| $) 57)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-3598 (((-112) |#4| $) NIL)) (-3596 (((-112) |#4| $) NIL)) (-3599 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 119)) (-2096 (((-635 |#4|) $) 17 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 22)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 97)) (-4204 (((-3 |#4| #1#) $) 38)) (-3593 (((-635 $) |#4| $) 80)) (-3595 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3639 (((-635 $) |#4| $) 102) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 103) (((-635 $) |#4| (-635 $)) NIL)) (-3843 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 114)) (-3844 (($ |#4| $) 70) (($ (-635 |#4|) $) 71) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4104 (((-635 |#4|) $) NIL)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 36)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) 48)) (-4175 (($ $ |#4|) NIL) (((-635 $) |#4| $) 82) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 77)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 14)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 21)) (-3293 (($ $ |#3|) 43)) (-3295 (($ $ |#3|) 44)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 32) (((-635 |#4|) $) 41)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3590 (((-635 $) |#4| $) 79) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-3597 (((-112) |#4| $) NIL)) (-4340 (((-112) |#3| $) 53)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1020 |#1| |#2| |#3| |#4|) (-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1020))
+((-3844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-4089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-4089 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-3843 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-3842 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1020 *5 *6 *7 *8))))) (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)))))
+((-3441 (((-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544))))))) (-682 (-406 (-939 (-544))))) 59)) (-3442 (((-635 (-682 (-313 (-544)))) (-313 (-544)) (-682 (-406 (-939 (-544))))) 48)) (-3443 (((-635 (-313 (-544))) (-682 (-406 (-939 (-544))))) 41)) (-3447 (((-635 (-682 (-313 (-544)))) (-682 (-406 (-939 (-544))))) 68)) (-3445 (((-682 (-313 (-544))) (-682 (-313 (-544)))) 34)) (-3446 (((-635 (-682 (-313 (-544)))) (-635 (-682 (-313 (-544))))) 62)) (-3444 (((-3 (-682 (-313 (-544))) "failed") (-682 (-406 (-939 (-544))))) 66)))
+(((-1021) (-10 -7 (-15 -3441 ((-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544))))))) (-682 (-406 (-939 (-544)))))) (-15 -3442 ((-635 (-682 (-313 (-544)))) (-313 (-544)) (-682 (-406 (-939 (-544)))))) (-15 -3443 ((-635 (-313 (-544))) (-682 (-406 (-939 (-544)))))) (-15 -3444 ((-3 (-682 (-313 (-544))) "failed") (-682 (-406 (-939 (-544)))))) (-15 -3445 ((-682 (-313 (-544))) (-682 (-313 (-544))))) (-15 -3446 ((-635 (-682 (-313 (-544)))) (-635 (-682 (-313 (-544)))))) (-15 -3447 ((-635 (-682 (-313 (-544)))) (-682 (-406 (-939 (-544)))))))) (T -1021))
+((-3447 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021)))) (-3444 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-313 (-544)))) (-5 *1 (-1021)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021)) (-5 *3 (-313 (-544))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544)))))))) (-5 *1 (-1021)))))
+(-10 -7 (-15 -3441 ((-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544))))))) (-682 (-406 (-939 (-544)))))) (-15 -3442 ((-635 (-682 (-313 (-544)))) (-313 (-544)) (-682 (-406 (-939 (-544)))))) (-15 -3443 ((-635 (-313 (-544))) (-682 (-406 (-939 (-544)))))) (-15 -3444 ((-3 (-682 (-313 (-544))) "failed") (-682 (-406 (-939 (-544)))))) (-15 -3445 ((-682 (-313 (-544))) (-682 (-313 (-544))))) (-15 -3446 ((-635 (-682 (-313 (-544)))) (-635 (-682 (-313 (-544)))))) (-15 -3447 ((-635 (-682 (-313 (-544)))) (-682 (-406 (-939 (-544)))))))
+((-3451 (((-635 (-682 |#1|)) (-635 (-682 |#1|))) 58) (((-682 |#1|) (-682 |#1|)) 57) (((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-635 (-682 |#1|))) 56) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 53)) (-3450 (((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912)) 52) (((-682 |#1|) (-682 |#1|) (-912)) 51)) (-3452 (((-635 (-682 (-544))) (-635 (-635 (-544)))) 68) (((-635 (-682 (-544))) (-635 (-895 (-544))) (-544)) 67) (((-682 (-544)) (-635 (-544))) 64) (((-682 (-544)) (-895 (-544)) (-544)) 63)) (-3449 (((-682 (-939 |#1|)) (-765)) 81)) (-3448 (((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912)) 37 (|has| |#1| (-6 (-4402 "*")))) (((-682 |#1|) (-682 |#1|) (-912)) 35 (|has| |#1| (-6 (-4402 "*"))))))
+(((-1022 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-682 |#1|) (-682 |#1|) (-912))) |%noBranch|) (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) |%noBranch|) (-15 -3449 ((-682 (-939 |#1|)) (-765))) (-15 -3450 ((-682 |#1|) (-682 |#1|) (-912))) (-15 -3450 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) (-15 -3451 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3451 ((-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3452 ((-682 (-544)) (-895 (-544)) (-544))) (-15 -3452 ((-682 (-544)) (-635 (-544)))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-895 (-544))) (-544))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-635 (-544)))))) (-1042)) (T -1022))
+((-3452 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-544)))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-1022 *4)) (-4 *4 (-1042)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-895 (-544)))) (-5 *4 (-544)) (-5 *2 (-635 (-682 *4))) (-5 *1 (-1022 *5)) (-4 *5 (-1042)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1022 *4)) (-4 *4 (-1042)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-544))) (-5 *4 (-544)) (-5 *2 (-682 *4)) (-5 *1 (-1022 *5)) (-4 *5 (-1042)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3451 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3451 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-682 (-939 *4))) (-5 *1 (-1022 *4)) (-4 *4 (-1042)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*"))) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*"))) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-682 |#1|) (-682 |#1|) (-912))) |%noBranch|) (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) |%noBranch|) (-15 -3449 ((-682 (-939 |#1|)) (-765))) (-15 -3450 ((-682 |#1|) (-682 |#1|) (-912))) (-15 -3450 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) (-15 -3451 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3451 ((-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3452 ((-682 (-544)) (-895 (-544)) (-544))) (-15 -3452 ((-682 (-544)) (-635 (-544)))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-895 (-544))) (-544))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-635 (-544))))))
+((-3456 (((-682 |#1|) (-635 (-682 |#1|)) (-1253 |#1|)) 49 (|has| |#1| (-306)))) (-3822 (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 (-1253 |#1|))) 75 (|has| |#1| (-362))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 |#1|)) 78 (|has| |#1| (-362)))) (-3460 (((-1253 |#1|) (-635 (-1253 |#1|)) (-544)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3459 (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-912)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112) (-544) (-544)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3458 (((-112) (-635 (-682 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-635 (-682 |#1|)) (-544)) 72 (|has| |#1| (-362)))) (-3455 (((-1253 (-1253 |#1|)) (-635 (-682 |#1|)) (-1253 |#1|)) 47 (|has| |#1| (-306)))) (-3454 (((-682 |#1|) (-635 (-682 |#1|)) (-682 |#1|)) 33)) (-3453 (((-682 |#1|) (-1253 (-1253 |#1|))) 30)) (-3457 (((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-544)) 64 (|has| |#1| (-362))) (((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|))) 63 (|has| |#1| (-362))) (((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-112) (-544)) 68 (|has| |#1| (-362)))))
+(((-1023 |#1|) (-10 -7 (-15 -3453 ((-682 |#1|) (-1253 (-1253 |#1|)))) (-15 -3454 ((-682 |#1|) (-635 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3455 ((-1253 (-1253 |#1|)) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3456 ((-682 |#1|) (-635 (-682 |#1|)) (-1253 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-112) (-544))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 (-1253 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112) (-544) (-544))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-912))) (-15 -3460 ((-1253 |#1|) (-635 (-1253 |#1|)) (-544)))) |%noBranch|) |%noBranch|)) (-1042)) (T -1023))
+((-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1253 *5))) (-5 *4 (-544)) (-5 *2 (-1253 *5)) (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042)) (-5 *2 (-635 (-635 (-682 *4)))) (-5 *1 (-1023 *4)) (-5 *3 (-635 (-682 *4))))) (-3459 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-544)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1042)) (-5 *2 (-635 (-635 (-682 *6)))) (-5 *1 (-1023 *6)) (-5 *3 (-635 (-682 *6))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 (-1253 *5))) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-1023 *4)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-112)) (-5 *1 (-1023 *5)))) (-3457 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-5 *2 (-682 *5)) (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-1042)))) (-3457 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1023 *4)) (-4 *4 (-362)) (-4 *4 (-1042)))) (-3457 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-544)) (-5 *2 (-682 *6)) (-5 *1 (-1023 *6)) (-4 *6 (-362)) (-4 *6 (-1042)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-1253 *5)) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1023 *5)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-1253 (-1253 *5))) (-5 *1 (-1023 *5)) (-5 *4 (-1253 *5)))) (-3454 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1023 *4)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1253 (-1253 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4)) (-5 *1 (-1023 *4)))))
+(-10 -7 (-15 -3453 ((-682 |#1|) (-1253 (-1253 |#1|)))) (-15 -3454 ((-682 |#1|) (-635 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3455 ((-1253 (-1253 |#1|)) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3456 ((-682 |#1|) (-635 (-682 |#1|)) (-1253 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-112) (-544))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 (-1253 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112) (-544) (-544))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-912))) (-15 -3460 ((-1253 |#1|) (-635 (-1253 |#1|)) (-544)))) |%noBranch|) |%noBranch|))
+((-3461 ((|#1| (-912) |#1|) 9)))
+(((-1024 |#1|) (-10 -7 (-15 -3461 (|#1| (-912) |#1|))) (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $))))) (T -1024))
+((-3461 (*1 *2 *3 *2) (-12 (-5 *3 (-912)) (-5 *1 (-1024 *2)) (-4 *2 (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $))))))))
+(-10 -7 (-15 -3461 (|#1| (-912) |#1|)))
+((-3462 ((|#1| |#1| (-912)) 9)))
+(((-1025 |#1|) (-10 -7 (-15 -3462 (|#1| |#1| (-912)))) (-13 (-1091) (-10 -8 (-15 * ($ $ $))))) (T -1025))
+((-3462 (*1 *2 *2 *3) (-12 (-5 *3 (-912)) (-5 *1 (-1025 *2)) (-4 *2 (-13 (-1091) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3462 (|#1| |#1| (-912))))
+((-4353 ((|#1| (-310)) 11) (((-1259) |#1|) 9)))
+(((-1026 |#1|) (-10 -7 (-15 -4353 ((-1259) |#1|)) (-15 -4353 (|#1| (-310)))) (-1204)) (T -1026))
+((-4353 (*1 *2 *3) (-12 (-5 *3 (-310)) (-5 *1 (-1026 *2)) (-4 *2 (-1204)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-1259)) (-5 *1 (-1026 *3)) (-4 *3 (-1204)))))
+(-10 -7 (-15 -4353 ((-1259) |#1|)) (-15 -4353 (|#1| (-310))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ |#4|) 25)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3463 ((|#4| $) 27)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 46) (($ (-544)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3511 (((-765)) 43)) (-3040 (($) 21 T CONST)) (-3046 (($) 23 T CONST)) (-3437 (((-112) $ $) 40)) (-4244 (($ $) 31) (($ $ $) NIL)) (-4246 (($ $ $) 29)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1027 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -4249 ($ |#4|)) (-15 -4353 ($ |#4|)) (-15 -3463 (|#4| $)))) (-362) (-787) (-844) (-943 |#1| |#2| |#3|) (-635 |#4|)) (T -1027))
+((-4249 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2)))) (-3463 (*1 *2 *1) (-12 (-4 *2 (-943 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-635 *2)))))
+(-13 (-171) (-38 |#1|) (-10 -8 (-15 -4249 ($ |#4|)) (-15 -4353 ($ |#4|)) (-15 -3463 (|#4| $))))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2344 (((-1259) $ (-1166) (-1166)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-3465 (((-112) (-112)) 39)) (-3464 (((-112) (-112)) 38)) (-4194 (((-51) $ (-1166) (-51)) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 (-51) #1="failed") (-1166) $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-3 (-51) #1#) (-1166) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-51) $ (-1166) (-51)) NIL (|has| $ (-6 -4401)))) (-3498 (((-51) $ (-1166)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2347 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-2789 (((-635 (-1166)) $) 34)) (-2354 (((-112) (-1166) $) NIL)) (-1356 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-2349 (((-635 (-1166)) $) NIL)) (-2350 (((-112) (-1166) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4207 (((-51) $) NIL (|has| (-1166) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) "failed") (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL)) (-2345 (($ $ (-51)) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-51)) (-635 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-292 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-635 (-292 (-51)))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2351 (((-635 (-51)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-51) $ (-1166)) 35) (((-51) $ (-1166) (-51)) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-765) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091)))) (((-765) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-4353 (((-857) $) 37 (-3936 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-608 (-857))) (|has| (-51) (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1028) (-13 (-1181 (-1166) (-51)) (-10 -7 (-15 -3465 ((-112) (-112))) (-15 -3464 ((-112) (-112))) (-6 -4400)))) (T -1028))
+((-3465 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
+(-13 (-1181 (-1166) (-51)) (-10 -7 (-15 -3465 ((-112) (-112))) (-15 -3464 ((-112) (-112))) (-6 -4400)))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 9)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1029) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $))))) (T -1029))
+((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029)))))
+(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $))))
+((-3557 ((|#2| $) 10)))
+(((-1030 |#1| |#2|) (-10 -8 (-15 -3557 (|#2| |#1|))) (-1031 |#2|) (-1204)) (T -1030))
+NIL
+(-10 -8 (-15 -3557 (|#2| |#1|)))
+((-3558 (((-3 |#1| "failed") $) 9)) (-3557 ((|#1| $) 8)) (-4353 (($ |#1|) 6)))
+(((-1031 |#1|) (-139) (-1204)) (T -1031))
+((-3558 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1204)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1204)))))
+(-13 (-611 |t#1|) (-10 -8 (-15 -3558 ((-3 |t#1| "failed") $)) (-15 -3557 (|t#1| $))))
(((-611 |#1|) . T))
-((-2825 (((-638 (-638 (-293 (-406 (-945 |#2|))))) (-638 (-945 |#2|)) (-638 (-1166))) 38)))
-(((-1032 |#1| |#2|) (-10 -7 (-15 -2825 ((-638 (-638 (-293 (-406 (-945 |#2|))))) (-638 (-945 |#2|)) (-638 (-1166))))) (-553) (-13 (-553) (-1031 |#1|))) (T -1032))
-((-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-4 *6 (-13 (-553) (-1031 *5))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *6)))))) (-5 *1 (-1032 *5 *6)))))
-(-10 -7 (-15 -2825 ((-638 (-638 (-293 (-406 (-945 |#2|))))) (-638 (-945 |#2|)) (-638 (-1166)))))
-((-1585 (((-378)) 15)) (-2537 (((-1 (-378)) (-378) (-378)) 20)) (-3407 (((-1 (-378)) (-765)) 42)) (-1752 (((-378)) 33)) (-2430 (((-1 (-378)) (-378) (-378)) 34)) (-1615 (((-378)) 26)) (-2370 (((-1 (-378)) (-378)) 27)) (-3179 (((-378) (-765)) 37)) (-1511 (((-1 (-378)) (-765)) 38)) (-3249 (((-1 (-378)) (-765) (-765)) 41)) (-1550 (((-1 (-378)) (-765) (-765)) 39)))
-(((-1033) (-10 -7 (-15 -1585 ((-378))) (-15 -1752 ((-378))) (-15 -1615 ((-378))) (-15 -3179 ((-378) (-765))) (-15 -2537 ((-1 (-378)) (-378) (-378))) (-15 -2430 ((-1 (-378)) (-378) (-378))) (-15 -2370 ((-1 (-378)) (-378))) (-15 -1511 ((-1 (-378)) (-765))) (-15 -1550 ((-1 (-378)) (-765) (-765))) (-15 -3249 ((-1 (-378)) (-765) (-765))) (-15 -3407 ((-1 (-378)) (-765))))) (T -1033))
-((-3407 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-3249 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-1550 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-2370 (*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))) (-2430 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))) (-2537 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-378)) (-5 *1 (-1033)))) (-1615 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))) (-1752 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))) (-1585 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
-(-10 -7 (-15 -1585 ((-378))) (-15 -1752 ((-378))) (-15 -1615 ((-378))) (-15 -3179 ((-378) (-765))) (-15 -2537 ((-1 (-378)) (-378) (-378))) (-15 -2430 ((-1 (-378)) (-378) (-378))) (-15 -2370 ((-1 (-378)) (-378))) (-15 -1511 ((-1 (-378)) (-765))) (-15 -1550 ((-1 (-378)) (-765) (-765))) (-15 -3249 ((-1 (-378)) (-765) (-765))) (-15 -3407 ((-1 (-378)) (-765))))
-((-1633 (((-417 |#1|) |#1|) 33)))
-(((-1034 |#1|) (-10 -7 (-15 -1633 ((-417 |#1|) |#1|))) (-1230 (-406 (-945 (-561))))) (T -1034))
-((-1633 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1034 *3)) (-4 *3 (-1230 (-406 (-945 (-561))))))))
-(-10 -7 (-15 -1633 ((-417 |#1|) |#1|)))
-((-1576 (((-406 (-417 (-945 |#1|))) (-406 (-945 |#1|))) 14)))
-(((-1035 |#1|) (-10 -7 (-15 -1576 ((-406 (-417 (-945 |#1|))) (-406 (-945 |#1|))))) (-306)) (T -1035))
-((-1576 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-417 (-945 *4)))) (-5 *1 (-1035 *4)))))
-(-10 -7 (-15 -1576 ((-406 (-417 (-945 |#1|))) (-406 (-945 |#1|)))))
-((-1405 (((-638 (-1166)) (-406 (-945 |#1|))) 17)) (-1596 (((-406 (-1162 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166)) 24)) (-1393 (((-406 (-945 |#1|)) (-406 (-1162 (-406 (-945 |#1|)))) (-1166)) 26)) (-2830 (((-3 (-1166) "failed") (-406 (-945 |#1|))) 20)) (-1436 (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-293 (-406 (-945 |#1|))))) 32) (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|)))) 33) (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-1166)) (-638 (-406 (-945 |#1|)))) 28) (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|))) 29)) (-4064 (((-406 (-945 |#1|)) |#1|) 11)))
-(((-1036 |#1|) (-10 -7 (-15 -1405 ((-638 (-1166)) (-406 (-945 |#1|)))) (-15 -2830 ((-3 (-1166) "failed") (-406 (-945 |#1|)))) (-15 -1596 ((-406 (-1162 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -1393 ((-406 (-945 |#1|)) (-406 (-1162 (-406 (-945 |#1|)))) (-1166))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-1166)) (-638 (-406 (-945 |#1|))))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4064 ((-406 (-945 |#1|)) |#1|))) (-553)) (T -1036))
-((-4064 (*1 *2 *3) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-1036 *3)) (-4 *3 (-553)))) (-1436 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-293 (-406 (-945 *4))))) (-5 *2 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *1 (-1036 *4)))) (-1436 (*1 *2 *2 *3) (-12 (-5 *3 (-293 (-406 (-945 *4)))) (-5 *2 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *1 (-1036 *4)))) (-1436 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-638 (-1166))) (-5 *4 (-638 (-406 (-945 *5)))) (-5 *2 (-406 (-945 *5))) (-4 *5 (-553)) (-5 *1 (-1036 *5)))) (-1436 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166)) (-4 *4 (-553)) (-5 *1 (-1036 *4)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1162 (-406 (-945 *5))))) (-5 *4 (-1166)) (-5 *2 (-406 (-945 *5))) (-5 *1 (-1036 *5)) (-4 *5 (-553)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-553)) (-5 *2 (-406 (-1162 (-406 (-945 *5))))) (-5 *1 (-1036 *5)) (-5 *3 (-406 (-945 *5))))) (-2830 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-1166)) (-5 *1 (-1036 *4)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-1166))) (-5 *1 (-1036 *4)))))
-(-10 -7 (-15 -1405 ((-638 (-1166)) (-406 (-945 |#1|)))) (-15 -2830 ((-3 (-1166) "failed") (-406 (-945 |#1|)))) (-15 -1596 ((-406 (-1162 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -1393 ((-406 (-945 |#1|)) (-406 (-1162 (-406 (-945 |#1|)))) (-1166))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-1166)) (-638 (-406 (-945 |#1|))))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1436 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4064 ((-406 (-945 |#1|)) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2674 (($) 17 T CONST)) (-4090 ((|#1| $) 22)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3998 ((|#1| $) 21)) (-2637 ((|#1|) 19 T CONST)) (-4064 (((-856) $) 11)) (-2593 ((|#1| $) 20)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
+((-3466 (((-635 (-635 (-292 (-406 (-939 |#2|))))) (-635 (-939 |#2|)) (-635 (-1166))) 38)))
+(((-1032 |#1| |#2|) (-10 -7 (-15 -3466 ((-635 (-635 (-292 (-406 (-939 |#2|))))) (-635 (-939 |#2|)) (-635 (-1166))))) (-554) (-13 (-554) (-1031 |#1|))) (T -1032))
+((-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-4 *6 (-13 (-554) (-1031 *5))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *6)))))) (-5 *1 (-1032 *5 *6)))))
+(-10 -7 (-15 -3466 ((-635 (-635 (-292 (-406 (-939 |#2|))))) (-635 (-939 |#2|)) (-635 (-1166)))))
+((-3467 (((-635 (-1166)) (-406 (-939 |#1|))) 17)) (-3469 (((-406 (-1160 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166)) 24)) (-3470 (((-406 (-939 |#1|)) (-406 (-1160 (-406 (-939 |#1|)))) (-1166)) 26)) (-3468 (((-3 (-1166) "failed") (-406 (-939 |#1|))) 20)) (-4174 (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-292 (-406 (-939 |#1|))))) 32) (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|)))) 33) (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-1166)) (-635 (-406 (-939 |#1|)))) 28) (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|))) 29)) (-4353 (((-406 (-939 |#1|)) |#1|) 11)))
+(((-1033 |#1|) (-10 -7 (-15 -3467 ((-635 (-1166)) (-406 (-939 |#1|)))) (-15 -3468 ((-3 (-1166) "failed") (-406 (-939 |#1|)))) (-15 -3469 ((-406 (-1160 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3470 ((-406 (-939 |#1|)) (-406 (-1160 (-406 (-939 |#1|)))) (-1166))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-1166)) (-635 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -4353 ((-406 (-939 |#1|)) |#1|))) (-554)) (T -1033))
+((-4353 (*1 *2 *3) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-554)))) (-4174 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-292 (-406 (-939 *4))))) (-5 *2 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *1 (-1033 *4)))) (-4174 (*1 *2 *2 *3) (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-5 *2 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *1 (-1033 *4)))) (-4174 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-1166))) (-5 *4 (-635 (-406 (-939 *5)))) (-5 *2 (-406 (-939 *5))) (-4 *5 (-554)) (-5 *1 (-1033 *5)))) (-4174 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166)) (-4 *4 (-554)) (-5 *1 (-1033 *4)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1160 (-406 (-939 *5))))) (-5 *4 (-1166)) (-5 *2 (-406 (-939 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-554)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-406 (-1160 (-406 (-939 *5))))) (-5 *1 (-1033 *5)) (-5 *3 (-406 (-939 *5))))) (-3468 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-1166)) (-5 *1 (-1033 *4)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-1166))) (-5 *1 (-1033 *4)))))
+(-10 -7 (-15 -3467 ((-635 (-1166)) (-406 (-939 |#1|)))) (-15 -3468 ((-3 (-1166) "failed") (-406 (-939 |#1|)))) (-15 -3469 ((-406 (-1160 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3470 ((-406 (-939 |#1|)) (-406 (-1160 (-406 (-939 |#1|)))) (-1166))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-1166)) (-635 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -4353 ((-406 (-939 |#1|)) |#1|)))
+((-3471 (((-377)) 15)) (-3486 (((-1 (-377)) (-377) (-377)) 20)) (-3479 (((-1 (-377)) (-765)) 42)) (-3472 (((-377)) 33)) (-3475 (((-1 (-377)) (-377) (-377)) 34)) (-3473 (((-377)) 26)) (-3476 (((-1 (-377)) (-377)) 27)) (-3474 (((-377) (-765)) 37)) (-3477 (((-1 (-377)) (-765)) 38)) (-3478 (((-1 (-377)) (-765) (-765)) 41)) (-3788 (((-1 (-377)) (-765) (-765)) 39)))
+(((-1034) (-10 -7 (-15 -3471 ((-377))) (-15 -3472 ((-377))) (-15 -3473 ((-377))) (-15 -3474 ((-377) (-765))) (-15 -3486 ((-1 (-377)) (-377) (-377))) (-15 -3475 ((-1 (-377)) (-377) (-377))) (-15 -3476 ((-1 (-377)) (-377))) (-15 -3477 ((-1 (-377)) (-765))) (-15 -3788 ((-1 (-377)) (-765) (-765))) (-15 -3478 ((-1 (-377)) (-765) (-765))) (-15 -3479 ((-1 (-377)) (-765))))) (T -1034))
+((-3479 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3478 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3788 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))) (-3475 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))) (-3486 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-377)) (-5 *1 (-1034)))) (-3473 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))) (-3472 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))) (-3471 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))))
+(-10 -7 (-15 -3471 ((-377))) (-15 -3472 ((-377))) (-15 -3473 ((-377))) (-15 -3474 ((-377) (-765))) (-15 -3486 ((-1 (-377)) (-377) (-377))) (-15 -3475 ((-1 (-377)) (-377) (-377))) (-15 -3476 ((-1 (-377)) (-377))) (-15 -3477 ((-1 (-377)) (-765))) (-15 -3788 ((-1 (-377)) (-765) (-765))) (-15 -3478 ((-1 (-377)) (-765) (-765))) (-15 -3479 ((-1 (-377)) (-765))))
+((-4139 (((-404 |#1|) |#1|) 33)))
+(((-1035 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|))) (-1229 (-406 (-939 (-544))))) (T -1035))
+((-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1035 *3)) (-4 *3 (-1229 (-406 (-939 (-544))))))))
+(-10 -7 (-15 -4139 ((-404 |#1|) |#1|)))
+((-3480 (((-406 (-404 (-939 |#1|))) (-406 (-939 |#1|))) 14)))
+(((-1036 |#1|) (-10 -7 (-15 -3480 ((-406 (-404 (-939 |#1|))) (-406 (-939 |#1|))))) (-306)) (T -1036))
+((-3480 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-404 (-939 *4)))) (-5 *1 (-1036 *4)))))
+(-10 -7 (-15 -3480 ((-406 (-404 (-939 |#1|))) (-406 (-939 |#1|)))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4131 (($) 17 T CONST)) (-3484 ((|#1| $) 22)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3483 ((|#1| $) 21)) (-3481 ((|#1|) 19 T CONST)) (-4353 (((-857) $) 11)) (-3482 ((|#1| $) 20)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15)))
(((-1037 |#1|) (-139) (-23)) (T -1037))
-((-4090 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-2637 (*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -4090 (|t#1| $)) (-15 -3998 (|t#1| $)) (-15 -2593 (|t#1| $)) (-15 -2637 (|t#1|) -1494)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2236 (($) 24 T CONST)) (-2674 (($) 17 T CONST)) (-4090 ((|#1| $) 22)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3998 ((|#1| $) 21)) (-2637 ((|#1|) 19 T CONST)) (-4064 (((-856) $) 11)) (-2593 ((|#1| $) 20)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
+((-3484 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3481 (*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3484 (|t#1| $)) (-15 -3483 (|t#1| $)) (-15 -3482 (|t#1| $)) (-15 -3481 (|t#1|) -4359)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3485 (($) 24 T CONST)) (-4131 (($) 17 T CONST)) (-3484 ((|#1| $) 22)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3483 ((|#1| $) 21)) (-3481 ((|#1|) 19 T CONST)) (-4353 (((-857) $) 11)) (-3482 ((|#1| $) 20)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15)))
(((-1038 |#1|) (-139) (-23)) (T -1038))
-((-2236 (*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23)))))
-(-13 (-1037 |t#1|) (-10 -8 (-15 -2236 ($) -1494)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1037 |#1|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 (-774 |#1| (-858 |#2|)))))) (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-3742 (((-638 $) (-638 (-774 |#1| (-858 |#2|)))) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112)) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112) (-112)) NIL)) (-1405 (((-638 (-858 |#2|)) $) NIL)) (-4214 (((-112) $) NIL)) (-2444 (((-112) $) NIL (|has| |#1| (-553)))) (-1818 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4089 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-2557 (((-638 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1495 $))) (-774 |#1| (-858 |#2|)) $) NIL)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ (-858 |#2|)) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-3612 (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 (-774 |#1| (-858 |#2|)) "failed") $ (-858 |#2|)) NIL)) (-2674 (($) NIL T CONST)) (-3853 (((-112) $) NIL (|has| |#1| (-553)))) (-3733 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4338 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1577 (((-112) $) NIL (|has| |#1| (-553)))) (-4163 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-3293 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-553)))) (-2191 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-3979 (($ (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-1437 (((-3 $ "failed") $) NIL)) (-2471 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-774 |#1| (-858 |#2|)) (-1090))))) (-1475 (($ (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-553)))) (-2282 (((-112) (-774 |#1| (-858 |#2|)) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-2310 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3176 (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|))) NIL (|has| $ (-6 -4399))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-1973 (((-2 (|:| -1450 (-638 (-774 |#1| (-858 |#2|)))) (|:| -3368 (-638 (-774 |#1| (-858 |#2|))))) $) NIL)) (-2207 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-1775 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-2101 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-2368 (((-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2369 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-1994 (((-858 |#2|) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-774 |#1| (-858 |#2|)) (-1090))))) (-2029 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL)) (-2597 (((-638 (-858 |#2|)) $) NIL)) (-2247 (((-112) (-858 |#2|) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1413 (((-3 (-774 |#1| (-858 |#2|)) (-638 $)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-2940 (((-638 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1495 $))) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1501 (((-3 (-774 |#1| (-858 |#2|)) "failed") $) NIL)) (-1465 (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL)) (-4220 (((-3 (-112) (-638 $)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4151 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-1338 (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-638 $)) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) (-638 $)) NIL)) (-1747 (($ (-774 |#1| (-858 |#2|)) $) NIL) (($ (-638 (-774 |#1| (-858 |#2|))) $) NIL)) (-3589 (((-638 (-774 |#1| (-858 |#2|))) $) NIL)) (-3067 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-3641 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4345 (((-112) $ $) NIL)) (-3258 (((-2 (|:| |num| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-553)))) (-2871 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-2903 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-3 (-774 |#1| (-858 |#2|)) "failed") $) NIL)) (-3202 (((-3 (-774 |#1| (-858 |#2|)) "failed") (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL)) (-2336 (((-3 $ "failed") $ (-774 |#1| (-858 |#2|))) NIL)) (-3702 (($ $ (-774 |#1| (-858 |#2|))) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) (-638 $)) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-638 $)) NIL)) (-3977 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ $ (-293 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ $ (-638 (-293 (-774 |#1| (-858 |#2|))))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-3768 (((-765) $) NIL)) (-1714 (((-765) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (((-765) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-774 |#1| (-858 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-3883 (($ $ (-858 |#2|)) NIL)) (-2049 (($ $ (-858 |#2|)) NIL)) (-1768 (($ $) NIL)) (-2983 (($ $ (-858 |#2|)) NIL)) (-4064 (((-856) $) NIL) (((-638 (-774 |#1| (-858 |#2|))) $) NIL)) (-3513 (((-765) $) NIL (|has| (-858 |#2|) (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 (-774 |#1| (-858 |#2|))))) "failed") (-638 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 (-774 |#1| (-858 |#2|))))) "failed") (-638 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-2481 (((-112) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-638 (-774 |#1| (-858 |#2|))))) NIL)) (-2909 (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) (-638 $)) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-638 $)) NIL)) (-3715 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1290 (((-638 (-858 |#2|)) $) NIL)) (-2283 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-4024 (((-112) (-858 |#2|) $) NIL)) (-1723 (((-112) $ $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1039 |#1| |#2|) (-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -3742 ((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112) (-112))))) (-450) (-638 (-1166))) (T -1039))
-((-3742 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1039 *5 *6)))))
-(-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -3742 ((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112) (-112)))))
-((-2537 (((-1 (-561)) (-1084 (-561))) 33)) (-2631 (((-561) (-561) (-561) (-561) (-561)) 30)) (-3961 (((-1 (-561)) |RationalNumber|) NIL)) (-2279 (((-1 (-561)) |RationalNumber|) NIL)) (-3210 (((-1 (-561)) (-561) |RationalNumber|) NIL)))
-(((-1040) (-10 -7 (-15 -2537 ((-1 (-561)) (-1084 (-561)))) (-15 -3210 ((-1 (-561)) (-561) |RationalNumber|)) (-15 -3961 ((-1 (-561)) |RationalNumber|)) (-15 -2279 ((-1 (-561)) |RationalNumber|)) (-15 -2631 ((-561) (-561) (-561) (-561) (-561))))) (T -1040))
-((-2631 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1040)))) (-2279 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))) (-3961 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)) (-5 *3 (-561)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-1084 (-561))) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
-(-10 -7 (-15 -2537 ((-1 (-561)) (-1084 (-561)))) (-15 -3210 ((-1 (-561)) (-561) |RationalNumber|)) (-15 -3961 ((-1 (-561)) |RationalNumber|)) (-15 -2279 ((-1 (-561)) |RationalNumber|)) (-15 -2631 ((-561) (-561) (-561) (-561) (-561))))
-((-4064 (((-856) $) NIL) (($ (-561)) 10)))
-(((-1041 |#1|) (-10 -8 (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-1042)) (T -1041))
-NIL
-(-10 -8 (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-3485 (*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23)))))
+(-13 (-1037 |t#1|) (-10 -8 (-15 -3485 ($) -4359)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1037 |#1|) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 (-774 |#1| (-858 |#2|)))))) (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-4089 (((-635 $) (-635 (-774 |#1| (-858 |#2|)))) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112)) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112) (-112)) NIL)) (-3467 (((-635 (-858 |#2|)) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4095 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4181 (((-635 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1688 $))) (-774 |#1| (-858 |#2|)) $) NIL)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ (-858 |#2|)) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 (-774 |#1| (-858 |#2|)) #1="failed") $ (-858 |#2|)) NIL)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) NIL (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-3283 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-3557 (($ (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-4205 (((-3 $ #1#) $) NIL)) (-4092 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091))))) (-3810 (($ (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-554)))) (-4101 (((-112) (-774 |#1| (-858 |#2|)) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-4090 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4249 (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|))) NIL (|has| $ (-6 -4400))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-4103 (((-2 (|:| -4268 (-635 (-774 |#1| (-858 |#2|)))) (|:| -1846 (-635 (-774 |#1| (-858 |#2|))))) $) NIL)) (-3598 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-3596 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-3599 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-2096 (((-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4102 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-3581 (((-858 |#2|) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091))))) (-2100 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL)) (-3297 (((-635 (-858 |#2|)) $) NIL)) (-3296 (((-112) (-858 |#2|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3592 (((-3 (-774 |#1| (-858 |#2|)) (-635 $)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3591 (((-635 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1688 $))) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4204 (((-3 (-774 |#1| (-858 |#2|)) #1#) $) NIL)) (-3593 (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL)) (-3595 (((-3 (-112) (-635 $)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-3639 (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-635 $)) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) (-635 $)) NIL)) (-3844 (($ (-774 |#1| (-858 |#2|)) $) NIL) (($ (-635 (-774 |#1| (-858 |#2|))) $) NIL)) (-4104 (((-635 (-774 |#1| (-858 |#2|))) $) NIL)) (-4098 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4093 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-554)))) (-4099 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4094 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 (-774 |#1| (-858 |#2|)) #1#) $) NIL)) (-1425 (((-3 (-774 |#1| (-858 |#2|)) "failed") (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL)) (-4086 (((-3 $ #1#) $ (-774 |#1| (-858 |#2|))) NIL)) (-4175 (($ $ (-774 |#1| (-858 |#2|))) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-635 $)) NIL)) (-2098 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ $ (-292 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ $ (-635 (-292 (-774 |#1| (-858 |#2|))))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4355 (((-765) $) NIL)) (-2097 (((-765) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (((-765) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-774 |#1| (-858 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-3293 (($ $ (-858 |#2|)) NIL)) (-3295 (($ $ (-858 |#2|)) NIL)) (-4091 (($ $) NIL)) (-3294 (($ $ (-858 |#2|)) NIL)) (-4353 (((-857) $) NIL) (((-635 (-774 |#1| (-858 |#2|))) $) NIL)) (-4085 (((-765) $) NIL (|has| (-858 |#2|) (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 (-774 |#1| (-858 |#2|))))) #1#) (-635 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 (-774 |#1| (-858 |#2|))))) #1#) (-635 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-4097 (((-112) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-635 (-774 |#1| (-858 |#2|))))) NIL)) (-3590 (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-635 $)) NIL)) (-2099 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 (-858 |#2|)) $) NIL)) (-3597 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-4340 (((-112) (-858 |#2|) $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1039 |#1| |#2|) (-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -4089 ((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112) (-112))))) (-450) (-635 (-1166))) (T -1039))
+((-4089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1039 *5 *6)))))
+(-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -4089 ((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112) (-112)))))
+((-3486 (((-1 (-544)) (-1079 (-544))) 33)) (-3490 (((-544) (-544) (-544) (-544) (-544)) 30)) (-3488 (((-1 (-544)) |RationalNumber|) NIL)) (-3489 (((-1 (-544)) |RationalNumber|) NIL)) (-3487 (((-1 (-544)) (-544) |RationalNumber|) NIL)))
+(((-1040) (-10 -7 (-15 -3486 ((-1 (-544)) (-1079 (-544)))) (-15 -3487 ((-1 (-544)) (-544) |RationalNumber|)) (-15 -3488 ((-1 (-544)) |RationalNumber|)) (-15 -3489 ((-1 (-544)) |RationalNumber|)) (-15 -3490 ((-544) (-544) (-544) (-544) (-544))))) (T -1040))
+((-3490 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1040)))) (-3489 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))) (-3488 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)) (-5 *3 (-544)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-1079 (-544))) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))))
+(-10 -7 (-15 -3486 ((-1 (-544)) (-1079 (-544)))) (-15 -3487 ((-1 (-544)) (-544) |RationalNumber|)) (-15 -3488 ((-1 (-544)) |RationalNumber|)) (-15 -3489 ((-1 (-544)) |RationalNumber|)) (-15 -3490 ((-544) (-544) (-544) (-544) (-544))))
+((-4353 (((-857) $) NIL) (($ (-544)) 10)))
+(((-1041 |#1|) (-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1042)) (T -1041))
+NIL
+(-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-1042) (-139)) (T -1042))
-((-3746 (*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765)))))
-(-13 (-1049) (-720) (-641 $) (-611 (-561)) (-10 -7 (-15 -3746 ((-765))) (-6 -4396)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-2764 (((-406 (-945 |#2|)) (-638 |#2|) (-638 |#2|) (-765) (-765)) 46)))
-(((-1043 |#1| |#2|) (-10 -7 (-15 -2764 ((-406 (-945 |#2|)) (-638 |#2|) (-638 |#2|) (-765) (-765)))) (-1166) (-362)) (T -1043))
-((-2764 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-765)) (-4 *6 (-362)) (-5 *2 (-406 (-945 *6))) (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166)))))
-(-10 -7 (-15 -2764 ((-406 (-945 |#2|)) (-638 |#2|) (-638 |#2|) (-765) (-765))))
-((-3711 (((-112) $) 29)) (-1711 (((-112) $) 16)) (-3349 (((-765) $) 13)) (-3361 (((-765) $) 14)) (-2100 (((-112) $) 26)) (-2841 (((-112) $) 31)))
-(((-1044 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3361 ((-765) |#1|)) (-15 -3349 ((-765) |#1|)) (-15 -2841 ((-112) |#1|)) (-15 -3711 ((-112) |#1|)) (-15 -2100 ((-112) |#1|)) (-15 -1711 ((-112) |#1|))) (-1045 |#2| |#3| |#4| |#5| |#6|) (-765) (-765) (-1042) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1044))
-NIL
-(-10 -8 (-15 -3361 ((-765) |#1|)) (-15 -3349 ((-765) |#1|)) (-15 -2841 ((-112) |#1|)) (-15 -3711 ((-112) |#1|)) (-15 -2100 ((-112) |#1|)) (-15 -1711 ((-112) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3711 (((-112) $) 51)) (-2979 (((-3 $ "failed") $ $) 19)) (-1711 (((-112) $) 53)) (-2684 (((-112) $ (-765)) 61)) (-2674 (($) 17 T CONST)) (-2617 (($ $) 34 (|has| |#3| (-306)))) (-3324 ((|#4| $ (-561)) 39)) (-3400 (((-765) $) 33 (|has| |#3| (-553)))) (-1975 ((|#3| $ (-561) (-561)) 41)) (-2368 (((-638 |#3|) $) 68 (|has| $ (-6 -4399)))) (-1486 (((-765) $) 32 (|has| |#3| (-553)))) (-2351 (((-638 |#5|) $) 31 (|has| |#3| (-553)))) (-3349 (((-765) $) 45)) (-3361 (((-765) $) 44)) (-3116 (((-112) $ (-765)) 60)) (-3655 (((-561) $) 49)) (-1355 (((-561) $) 47)) (-4125 (((-638 |#3|) $) 69 (|has| $ (-6 -4399)))) (-4288 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1090)) (|has| $ (-6 -4399))))) (-2475 (((-561) $) 48)) (-3838 (((-561) $) 46)) (-2887 (($ (-638 (-638 |#3|))) 54)) (-2029 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3485 (((-638 (-638 |#3|)) $) 43)) (-3683 (((-112) $ (-765)) 59)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-553)))) (-3977 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#3|) (-638 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 (-293 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-1582 (((-112) $ $) 55)) (-2508 (((-112) $) 58)) (-2910 (($) 57)) (-2315 ((|#3| $ (-561) (-561)) 42) ((|#3| $ (-561) (-561) |#3|) 40)) (-2100 (((-112) $) 52)) (-1714 (((-765) |#3| $) 70 (-12 (|has| |#3| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4399)))) (-4225 (($ $) 56)) (-2062 ((|#5| $ (-561)) 38)) (-4064 (((-856) $) 11)) (-3715 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4399)))) (-2841 (((-112) $) 50)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3548 (((-765) $) 62 (|has| $ (-6 -4399)))))
+((-3511 (*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765)))))
+(-13 (-1049) (-720) (-641 $) (-611 (-544)) (-10 -7 (-15 -3511 ((-765))) (-6 -4397)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-3491 (((-406 (-939 |#2|)) (-635 |#2|) (-635 |#2|) (-765) (-765)) 46)))
+(((-1043 |#1| |#2|) (-10 -7 (-15 -3491 ((-406 (-939 |#2|)) (-635 |#2|) (-635 |#2|) (-765) (-765)))) (-1166) (-362)) (T -1043))
+((-3491 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-765)) (-4 *6 (-362)) (-5 *2 (-406 (-939 *6))) (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166)))))
+(-10 -7 (-15 -3491 ((-406 (-939 |#2|)) (-635 |#2|) (-635 |#2|) (-765) (-765))))
+((-3506 (((-112) $) 29)) (-3508 (((-112) $) 16)) (-3500 (((-765) $) 13)) (-3499 (((-765) $) 14)) (-3507 (((-112) $) 26)) (-3505 (((-112) $) 31)))
+(((-1044 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3499 ((-765) |#1|)) (-15 -3500 ((-765) |#1|)) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|))) (-1045 |#2| |#3| |#4| |#5| |#6|) (-765) (-765) (-1042) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1044))
+NIL
+(-10 -8 (-15 -3499 ((-765) |#1|)) (-15 -3500 ((-765) |#1|)) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3506 (((-112) $) 51)) (-1391 (((-3 $ "failed") $ $) 19)) (-3508 (((-112) $) 53)) (-1293 (((-112) $ (-765)) 61)) (-4131 (($) 17 T CONST)) (-3495 (($ $) 34 (|has| |#3| (-306)))) (-3497 ((|#4| $ (-544)) 39)) (-3494 (((-765) $) 33 (|has| |#3| (-554)))) (-3498 ((|#3| $ (-544) (-544)) 41)) (-2096 (((-635 |#3|) $) 68 (|has| $ (-6 -4400)))) (-3493 (((-765) $) 32 (|has| |#3| (-554)))) (-3492 (((-635 |#5|) $) 31 (|has| |#3| (-554)))) (-3500 (((-765) $) 45)) (-3499 (((-765) $) 44)) (-4126 (((-112) $ (-765)) 60)) (-3504 (((-544) $) 49)) (-3502 (((-544) $) 47)) (-2554 (((-635 |#3|) $) 69 (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 48)) (-3501 (((-544) $) 46)) (-3509 (($ (-635 (-635 |#3|))) 54)) (-2100 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4000 (((-635 (-635 |#3|)) $) 43)) (-4123 (((-112) $ (-765)) 59)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-554)))) (-2098 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#3|) (-635 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 (-292 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) 55)) (-3807 (((-112) $) 58)) (-3972 (($) 57)) (-4206 ((|#3| $ (-544) (-544)) 42) ((|#3| $ (-544) (-544) |#3|) 40)) (-3507 (((-112) $) 52)) (-2097 (((-765) |#3| $) 70 (-12 (|has| |#3| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4400)))) (-3804 (($ $) 56)) (-3496 ((|#5| $ (-544)) 38)) (-4353 (((-857) $) 11)) (-2099 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4400)))) (-3505 (((-112) $) 50)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4364 (((-765) $) 62 (|has| $ (-6 -4400)))))
(((-1045 |#1| |#2| |#3| |#4| |#5|) (-139) (-765) (-765) (-1042) (-237 |t#2| |t#3|) (-237 |t#1| |t#3|)) (T -1045))
-((-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *5))) (-4 *5 (-1042)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2841 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-638 (-638 *5))))) (-2315 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-1975 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-2315 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-3324 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-2062 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-4165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-1748 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-553)))) (-1828 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-2617 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553)) (-5 *2 (-765)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553)) (-5 *2 (-765)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553)) (-5 *2 (-638 *7)))))
-(-13 (-111 |t#3| |t#3|) (-487 |t#3|) (-10 -8 (-6 -4399) (IF (|has| |t#3| (-171)) (-6 (-711 |t#3|)) |%noBranch|) (-15 -2887 ($ (-638 (-638 |t#3|)))) (-15 -1711 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -3711 ((-112) $)) (-15 -2841 ((-112) $)) (-15 -3655 ((-561) $)) (-15 -2475 ((-561) $)) (-15 -1355 ((-561) $)) (-15 -3838 ((-561) $)) (-15 -3349 ((-765) $)) (-15 -3361 ((-765) $)) (-15 -3485 ((-638 (-638 |t#3|)) $)) (-15 -2315 (|t#3| $ (-561) (-561))) (-15 -1975 (|t#3| $ (-561) (-561))) (-15 -2315 (|t#3| $ (-561) (-561) |t#3|)) (-15 -3324 (|t#4| $ (-561))) (-15 -2062 (|t#5| $ (-561))) (-15 -4165 ($ (-1 |t#3| |t#3|) $)) (-15 -4165 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-553)) (-15 -1748 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -1828 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -2617 ($ $)) |%noBranch|) (IF (|has| |t#3| (-553)) (PROGN (-15 -3400 ((-765) $)) (-15 -1486 ((-765) $)) (-15 -2351 ((-638 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-608 (-856)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))) ((-487 |#3|) . T) ((-512 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))) ((-641 |#3|) . T) ((-711 |#3|) |has| |#3| (-171)) ((-1048 |#3|) . T) ((-1090) . T) ((-1205) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3711 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1711 (((-112) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-2674 (($) NIL T CONST)) (-2617 (($ $) 43 (|has| |#3| (-306)))) (-3324 (((-239 |#2| |#3|) $ (-561)) 32)) (-2853 (($ (-682 |#3|)) 41)) (-3400 (((-765) $) 45 (|has| |#3| (-553)))) (-1975 ((|#3| $ (-561) (-561)) NIL)) (-2368 (((-638 |#3|) $) NIL (|has| $ (-6 -4399)))) (-1486 (((-765) $) 47 (|has| |#3| (-553)))) (-2351 (((-638 (-239 |#1| |#3|)) $) 51 (|has| |#3| (-553)))) (-3349 (((-765) $) NIL)) (-3361 (((-765) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3655 (((-561) $) NIL)) (-1355 (((-561) $) NIL)) (-4125 (((-638 |#3|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090))))) (-2475 (((-561) $) NIL)) (-3838 (((-561) $) NIL)) (-2887 (($ (-638 (-638 |#3|))) 27)) (-2029 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3485 (((-638 (-638 |#3|)) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-553)))) (-3977 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#3|) (-638 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#3| $ (-561) (-561)) NIL) ((|#3| $ (-561) (-561) |#3|) NIL)) (-2390 (((-133)) 54 (|has| |#3| (-362)))) (-2100 (((-112) $) NIL)) (-1714 (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090)))) (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) 63 (|has| |#3| (-609 (-534))))) (-2062 (((-239 |#1| |#3|) $ (-561)) 36)) (-4064 (((-856) $) 16) (((-682 |#3|) $) 38)) (-3715 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399)))) (-2841 (((-112) $) NIL)) (-2246 (($) 13 T CONST)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1046 |#1| |#2| |#3|) (-13 (-1045 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1261 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (-15 -2853 ($ (-682 |#3|))))) (-765) (-765) (-1042)) (T -1046))
-((-2853 (*1 *1 *2) (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)))))
-(-13 (-1045 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1261 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (-15 -2853 ($ (-682 |#3|)))))
-((-3176 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4165 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-1047 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4165 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3176 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-765) (-765) (-1042) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1045 |#1| |#2| |#3| |#4| |#5|) (-1042) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1045 |#1| |#2| |#7| |#8| |#9|)) (T -1047))
-((-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1045 *5 *6 *10 *11 *12)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10)))))
-(-10 -7 (-15 -4165 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3176 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ |#1|) 23)))
+((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1042)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5))))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-3498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-4206 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-3496 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-3495 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-635 *7)))))
+(-13 (-111 |t#3| |t#3|) (-487 |t#3|) (-10 -8 (-6 -4400) (IF (|has| |t#3| (-171)) (-6 (-711 |t#3|)) |%noBranch|) (-15 -3509 ($ (-635 (-635 |t#3|)))) (-15 -3508 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -3506 ((-112) $)) (-15 -3505 ((-112) $)) (-15 -3504 ((-544) $)) (-15 -3503 ((-544) $)) (-15 -3502 ((-544) $)) (-15 -3501 ((-544) $)) (-15 -3500 ((-765) $)) (-15 -3499 ((-765) $)) (-15 -4000 ((-635 (-635 |t#3|)) $)) (-15 -4206 (|t#3| $ (-544) (-544))) (-15 -3498 (|t#3| $ (-544) (-544))) (-15 -4206 (|t#3| $ (-544) (-544) |t#3|)) (-15 -3497 (|t#4| $ (-544))) (-15 -3496 (|t#5| $ (-544))) (-15 -4365 ($ (-1 |t#3| |t#3|) $)) (-15 -4365 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-554)) (-15 -3865 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -4356 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -3495 ($ $)) |%noBranch|) (IF (|has| |t#3| (-554)) (PROGN (-15 -3494 ((-765) $)) (-15 -3493 ((-765) $)) (-15 -3492 ((-635 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-608 (-857)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))) ((-487 |#3|) . T) ((-512 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))) ((-641 |#3|) . T) ((-711 |#3|) |has| |#3| (-171)) ((-1048 |#3|) . T) ((-1091) . T) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3506 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 43 (|has| |#3| (-306)))) (-3497 (((-238 |#2| |#3|) $ (-544)) 32)) (-3510 (($ (-682 |#3|)) 41)) (-3494 (((-765) $) 45 (|has| |#3| (-554)))) (-3498 ((|#3| $ (-544) (-544)) NIL)) (-2096 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3493 (((-765) $) 47 (|has| |#3| (-554)))) (-3492 (((-635 (-238 |#1| |#3|)) $) 51 (|has| |#3| (-554)))) (-3500 (((-765) $) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#3|))) 27)) (-2100 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4000 (((-635 (-635 |#3|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-554)))) (-2098 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 (-292 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#3| $ (-544) (-544)) NIL) ((|#3| $ (-544) (-544) |#3|) NIL)) (-4318 (((-133)) 54 (|has| |#3| (-362)))) (-3507 (((-112) $) NIL)) (-2097 (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091)))) (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 63 (|has| |#3| (-609 (-533))))) (-3496 (((-238 |#1| |#3|) $ (-544)) 36)) (-4353 (((-857) $) 16) (((-682 |#3|) $) 38)) (-2099 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3040 (($) 13 T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1046 |#1| |#2| |#3|) (-13 (-1045 |#1| |#2| |#3| (-238 |#2| |#3|) (-238 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1261 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (-15 -3510 ($ (-682 |#3|))))) (-765) (-765) (-1042)) (T -1046))
+((-3510 (*1 *1 *2) (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)))))
+(-13 (-1045 |#1| |#2| |#3| (-238 |#2| |#3|) (-238 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1261 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (-15 -3510 ($ (-682 |#3|)))))
+((-4249 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4365 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-1047 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4365 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4249 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-765) (-765) (-1042) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1045 |#1| |#2| |#3| |#4| |#5|) (-1042) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1045 |#1| |#2| |#7| |#8| |#9|)) (T -1047))
+((-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1045 *5 *6 *10 *11 *12)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10)))))
+(-10 -7 (-15 -4365 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4249 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ |#1|) 23)))
(((-1048 |#1|) (-139) (-1049)) (T -1048))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-1049)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-1049) (-139)) (T -1049))
NIL
(-13 (-21) (-1102))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1102) . T) ((-1090) . T))
-((-1991 (($ $) 16)) (-3588 (($ $) 22)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 49)) (-2072 (($ $) 24)) (-2569 (($ $) 11)) (-4020 (($ $) 38)) (-4216 (((-378) $) NIL) (((-224) $) NIL) (((-885 (-378)) $) 33)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 28) (($ (-561)) NIL) (($ (-406 (-561))) 28)) (-3746 (((-765)) 8)) (-2449 (($ $) 39)))
-(((-1050 |#1|) (-10 -8 (-15 -3588 (|#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2569 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| (-561))) (-15 -4216 ((-224) |#1|)) (-15 -4216 ((-378) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| |#1|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-1051)) (T -1050))
-((-3746 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051)))))
-(-10 -8 (-15 -3588 (|#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2569 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2199 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| (-561))) (-15 -4216 ((-224) |#1|)) (-15 -4216 ((-378) |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| |#1|)) (-15 -3746 ((-765))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3892 (((-561) $) 90)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-1991 (($ $) 88)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-1643 (($ $) 98)) (-3698 (((-112) $ $) 60)) (-1659 (((-561) $) 115)) (-2674 (($) 17 T CONST)) (-3588 (($ $) 87)) (-4061 (((-3 (-561) "failed") $) 103) (((-3 (-406 (-561)) "failed") $) 100)) (-3979 (((-561) $) 104) (((-406 (-561)) $) 101)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-2725 (((-112) $) 72)) (-1784 (((-112) $) 113)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 94)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 97)) (-2072 (($ $) 93)) (-3271 (((-112) $) 114)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1597 (($ $ $) 112)) (-3017 (($ $ $) 111)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-2569 (($ $) 89)) (-4020 (($ $) 91)) (-1633 (((-417 $) $) 75)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-4216 (((-378) $) 106) (((-224) $) 105) (((-885 (-378)) $) 95)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ (-561)) 102) (($ (-406 (-561))) 99)) (-3746 (((-765)) 28)) (-2449 (($ $) 92)) (-3996 (((-112) $ $) 40)) (-2165 (($ $) 116)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1781 (((-112) $ $) 109)) (-1758 (((-112) $ $) 108)) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 110)) (-1746 (((-112) $ $) 107)) (-1828 (($ $ $) 66)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 96)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1102) . T) ((-1091) . T))
+((-4177 (($ $) 16)) (-3512 (($ $) 22)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 49)) (-3517 (($ $) 24)) (-3513 (($ $) 11)) (-3515 (($ $) 38)) (-4377 (((-377) $) NIL) (((-224) $) NIL) (((-883 (-377)) $) 33)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 28) (($ (-544)) NIL) (($ (-406 (-544))) 28)) (-3511 (((-765)) 8)) (-3516 (($ $) 39)))
+(((-1050 |#1|) (-10 -8 (-15 -3512 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1051)) (T -1050))
+((-3511 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051)))))
+(-10 -8 (-15 -3512 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 (((-544) $) 90)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4177 (($ $) 88)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 98)) (-1733 (((-112) $ $) 60)) (-4030 (((-544) $) 115)) (-4131 (($) 17 T CONST)) (-3512 (($ $) 87)) (-3558 (((-3 (-544) #1="failed") $) 103) (((-3 (-406 (-544)) #1#) $) 100)) (-3557 (((-544) $) 104) (((-406 (-544)) $) 101)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-3587 (((-112) $) 113)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 94)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 97)) (-3517 (($ $) 93)) (-3588 (((-112) $) 114)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 53)) (-2913 (($ $ $) 112)) (-3242 (($ $ $) 111)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3513 (($ $) 89)) (-3515 (($ $) 91)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4377 (((-377) $) 106) (((-224) $) 105) (((-883 (-377)) $) 95)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ (-544)) 102) (($ (-406 (-544))) 99)) (-3511 (((-765)) 28)) (-3516 (($ $) 92)) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 116)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 109)) (-2946 (((-112) $ $) 108)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 110)) (-3067 (((-112) $ $) 107)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 96)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68)))
(((-1051) (-139)) (T -1051))
-((-2165 (*1 *1 *1) (-4 *1 (-1051))) (-2072 (*1 *1 *1) (-4 *1 (-1051))) (-2449 (*1 *1 *1) (-4 *1 (-1051))) (-4020 (*1 *1 *1) (-4 *1 (-1051))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-561)))) (-2569 (*1 *1 *1) (-4 *1 (-1051))) (-1991 (*1 *1 *1) (-4 *1 (-1051))) (-3588 (*1 *1 *1) (-4 *1 (-1051))))
-(-13 (-362) (-842) (-1015) (-1031 (-561)) (-1031 (-406 (-561))) (-995) (-609 (-885 (-378))) (-879 (-378)) (-146) (-10 -8 (-15 -2072 ($ $)) (-15 -2449 ($ $)) (-15 -4020 ($ $)) (-15 -3892 ((-561) $)) (-15 -2569 ($ $)) (-15 -1991 ($ $)) (-15 -3588 ($ $)) (-15 -2165 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-378)) . T) ((-609 (-885 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-879 (-378)) . T) ((-913) . T) ((-995) . T) ((-1015) . T) ((-1031 (-406 (-561))) . T) ((-1031 (-561)) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) |#2| $) 23)) (-1386 ((|#1| $) 10)) (-1659 (((-561) |#2| $) 87)) (-2496 (((-3 $ "failed") |#2| (-914)) 57)) (-1599 ((|#1| $) 28)) (-2255 ((|#1| |#2| $ |#1|) 37)) (-2335 (($ $) 25)) (-3735 (((-3 |#2| "failed") |#2| $) 86)) (-1784 (((-112) |#2| $) NIL)) (-3271 (((-112) |#2| $) NIL)) (-3100 (((-112) |#2| $) 24)) (-2435 ((|#1| $) 88)) (-1586 ((|#1| $) 27)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3158 ((|#2| $) 78)) (-4064 (((-856) $) 70)) (-1408 ((|#1| |#2| $ |#1|) 38)) (-2363 (((-638 $) |#2|) 59)) (-1723 (((-112) $ $) 73)))
-(((-1052 |#1| |#2|) (-13 (-1059 |#1| |#2|) (-10 -8 (-15 -1586 (|#1| $)) (-15 -1599 (|#1| $)) (-15 -1386 (|#1| $)) (-15 -2435 (|#1| $)) (-15 -2335 ($ $)) (-15 -3100 ((-112) |#2| $)) (-15 -2255 (|#1| |#2| $ |#1|)))) (-13 (-842) (-362)) (-1230 |#1|)) (T -1052))
-((-2255 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1230 *2)))) (-1586 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1230 *2)))) (-1599 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1230 *2)))) (-1386 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1230 *2)))) (-2435 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1230 *2)))) (-2335 (*1 *1 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1230 *2)))) (-3100 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3)) (-4 *3 (-1230 *4)))))
-(-13 (-1059 |#1| |#2|) (-10 -8 (-15 -1586 (|#1| $)) (-15 -1599 (|#1| $)) (-15 -1386 (|#1| $)) (-15 -2435 (|#1| $)) (-15 -2335 ($ $)) (-15 -3100 ((-112) |#2| $)) (-15 -2255 (|#1| |#2| $ |#1|))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-3680 (($ $ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1988 (($ $ $ $) NIL)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1659 (((-561) $) NIL)) (-3410 (($ $ $) NIL)) (-2674 (($) NIL T CONST)) (-1644 (($ (-1166)) 10) (($ (-561)) 7)) (-4061 (((-3 (-561) "failed") $) NIL)) (-3979 (((-561) $) NIL)) (-1792 (($ $ $) NIL)) (-3720 (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL)) (-4079 (((-112) $) NIL)) (-2573 (((-406 (-561)) $) NIL)) (-1362 (($) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-3473 (($ $ $ $) NIL)) (-1571 (($ $ $) NIL)) (-1784 (((-112) $) NIL)) (-3784 (($ $ $) NIL)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-2252 (((-112) $) NIL)) (-2110 (((-112) $) NIL)) (-2436 (((-3 $ "failed") $) NIL)) (-3271 (((-112) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2595 (($ $ $ $) NIL)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-3953 (($ $) NIL)) (-4310 (($ $) NIL)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-3986 (($ $ $) NIL)) (-3767 (($) NIL T CONST)) (-4147 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2084 (($ $) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2058 (((-112) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-3922 (($ $ (-765)) NIL) (($ $) NIL)) (-4076 (($ $) NIL)) (-4225 (($ $) NIL)) (-4216 (((-561) $) 16) (((-534) $) NIL) (((-885 (-561)) $) NIL) (((-378) $) NIL) (((-224) $) NIL) (($ (-1166)) 9)) (-4064 (((-856) $) 20) (($ (-561)) 6) (($ $) NIL) (($ (-561)) 6)) (-3746 (((-765)) NIL)) (-3514 (((-112) $ $) NIL)) (-3210 (($ $ $) NIL)) (-1423 (($) NIL)) (-3996 (((-112) $ $) NIL)) (-4049 (($ $ $ $) NIL)) (-2165 (($ $) NIL)) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1819 (($ $) 19) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
-(((-1053) (-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4386) (-6 -4391) (-6 -4387) (-15 -1644 ($ (-1166))) (-15 -1644 ($ (-561)))))) (T -1053))
-((-1644 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1053)))))
-(-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4386) (-6 -4391) (-6 -4387) (-15 -1644 ($ (-1166))) (-15 -1644 ($ (-561)))))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL)) (-1846 (((-1259) $ (-1166) (-1166)) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-2901 (($) 9)) (-4207 (((-52) $ (-1166) (-52)) NIL)) (-2152 (($ $) 30)) (-3704 (($ $) 28)) (-1573 (($ $) 27)) (-1509 (($ $) 29)) (-3455 (($ $) 32)) (-3863 (($ $) 33)) (-1415 (($ $) 26)) (-3833 (($ $) 31)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) 25 (|has| $ (-6 -4399)))) (-1468 (((-3 (-52) "failed") (-1166) $) 40)) (-2674 (($) NIL T CONST)) (-3499 (($) 7)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-3222 (($ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) 50 (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-3 (-52) "failed") (-1166) $) NIL)) (-1475 (($ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399)))) (-3181 (((-3 (-1148) "failed") $ (-1148) (-561)) 59)) (-2041 (((-52) $ (-1166) (-52)) NIL (|has| $ (-6 -4400)))) (-1975 (((-52) $ (-1166)) NIL)) (-2368 (((-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-638 (-52)) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-1166) $) NIL (|has| (-1166) (-844)))) (-4125 (((-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) 35 (|has| $ (-6 -4399))) (((-638 (-52)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090))))) (-1556 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-2066 (((-638 (-1166)) $) NIL)) (-2492 (((-112) (-1166) $) NIL)) (-3721 (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL)) (-1617 (($ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) 43)) (-2355 (((-638 (-1166)) $) NIL)) (-1558 (((-112) (-1166) $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-1913 (((-378) $ (-1166)) 49)) (-3345 (((-638 (-1148)) $ (-1148)) 60)) (-1424 (((-52) $) NIL (|has| (-1166) (-844)))) (-3202 (((-3 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) "failed") (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL)) (-3193 (($ $ (-52)) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-293 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL (-12 (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-308 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (($ $ (-638 (-52)) (-638 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-638 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090))))) (-2411 (((-638 (-52)) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 (((-52) $ (-1166)) NIL) (((-52) $ (-1166) (-52)) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL)) (-1412 (($ $ (-1166)) 51)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090)))) (((-765) (-52) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-52) (-1090)))) (((-765) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) 37)) (-2754 (($ $ $) 38)) (-4064 (((-856) $) NIL (-4050 (|has| (-52) (-608 (-856))) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-608 (-856)))))) (-1634 (($ $ (-1166) (-378)) 47)) (-3881 (($ $ (-1166) (-378)) 48)) (-1903 (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 (-1166)) (|:| -2677 (-52)))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-52) (-1090)) (|has| (-2 (|:| -2285 (-1166)) (|:| -2677 (-52))) (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1054) (-13 (-1181 (-1166) (-52)) (-10 -8 (-15 -2754 ($ $ $)) (-15 -3499 ($)) (-15 -1415 ($ $)) (-15 -1573 ($ $)) (-15 -3704 ($ $)) (-15 -1509 ($ $)) (-15 -3833 ($ $)) (-15 -2152 ($ $)) (-15 -3455 ($ $)) (-15 -3863 ($ $)) (-15 -1634 ($ $ (-1166) (-378))) (-15 -3881 ($ $ (-1166) (-378))) (-15 -1913 ((-378) $ (-1166))) (-15 -3345 ((-638 (-1148)) $ (-1148))) (-15 -1412 ($ $ (-1166))) (-15 -2901 ($)) (-15 -3181 ((-3 (-1148) "failed") $ (-1148) (-561))) (-6 -4399)))) (T -1054))
-((-2754 (*1 *1 *1 *1) (-5 *1 (-1054))) (-3499 (*1 *1) (-5 *1 (-1054))) (-1415 (*1 *1 *1) (-5 *1 (-1054))) (-1573 (*1 *1 *1) (-5 *1 (-1054))) (-3704 (*1 *1 *1) (-5 *1 (-1054))) (-1509 (*1 *1 *1) (-5 *1 (-1054))) (-3833 (*1 *1 *1) (-5 *1 (-1054))) (-2152 (*1 *1 *1) (-5 *1 (-1054))) (-3455 (*1 *1 *1) (-5 *1 (-1054))) (-3863 (*1 *1 *1) (-5 *1 (-1054))) (-1634 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))) (-3881 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))) (-1913 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-378)) (-5 *1 (-1054)))) (-3345 (*1 *2 *1 *3) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148)))) (-1412 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054)))) (-2901 (*1 *1) (-5 *1 (-1054))) (-3181 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-1054)))))
-(-13 (-1181 (-1166) (-52)) (-10 -8 (-15 -2754 ($ $ $)) (-15 -3499 ($)) (-15 -1415 ($ $)) (-15 -1573 ($ $)) (-15 -3704 ($ $)) (-15 -1509 ($ $)) (-15 -3833 ($ $)) (-15 -2152 ($ $)) (-15 -3455 ($ $)) (-15 -3863 ($ $)) (-15 -1634 ($ $ (-1166) (-378))) (-15 -3881 ($ $ (-1166) (-378))) (-15 -1913 ((-378) $ (-1166))) (-15 -3345 ((-638 (-1148)) $ (-1148))) (-15 -1412 ($ $ (-1166))) (-15 -2901 ($)) (-15 -3181 ((-3 (-1148) "failed") $ (-1148) (-561))) (-6 -4399)))
-((-3164 (($ $) 45)) (-3725 (((-112) $ $) 74)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-945 (-406 (-561)))) 226) (((-3 $ "failed") (-945 (-561))) 225) (((-3 $ "failed") (-945 |#2|)) 228)) (-3979 ((|#2| $) NIL) (((-406 (-561)) $) NIL) (((-561) $) NIL) ((|#4| $) NIL) (($ (-945 (-406 (-561)))) 214) (($ (-945 (-561))) 210) (($ (-945 |#2|)) 230)) (-1598 (($ $) NIL) (($ $ |#4|) 43)) (-2282 (((-112) $ $) 111) (((-112) $ (-638 $)) 112)) (-1400 (((-112) $) 56)) (-2566 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 106)) (-2538 (($ $) 137)) (-4331 (($ $) 133)) (-4177 (($ $) 132)) (-1610 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2352 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2369 (((-112) $ $) 120) (((-112) $ (-638 $)) 121)) (-1994 ((|#4| $) 33)) (-2404 (($ $ $) 109)) (-3147 (((-112) $) 55)) (-4245 (((-765) $) 35)) (-1613 (($ $) 151)) (-3811 (($ $) 148)) (-1609 (((-638 $) $) 68)) (-4100 (($ $) 57)) (-4006 (($ $) 144)) (-2278 (((-638 $) $) 65)) (-3269 (($ $) 59)) (-1572 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3018 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3523 (-765))) $ $) 110)) (-2209 (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $) 107) (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $ |#4|) 108)) (-2305 (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $) 103) (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $ |#4|) 104)) (-1397 (($ $ $) 89) (($ $ $ |#4|) 94)) (-2011 (($ $ $) 90) (($ $ $ |#4|) 95)) (-2408 (((-638 $) $) 51)) (-3067 (((-112) $ $) 117) (((-112) $ (-638 $)) 118)) (-3641 (($ $ $) 102)) (-3767 (($ $) 37)) (-4345 (((-112) $ $) 72)) (-2871 (((-112) $ $) 113) (((-112) $ (-638 $)) 115)) (-2903 (($ $ $) 100)) (-3149 (($ $) 40)) (-1603 ((|#2| |#2| $) 141) (($ (-638 $)) NIL) (($ $ $) NIL)) (-1645 (($ $ |#2|) NIL) (($ $ $) 130)) (-3007 (($ $ |#2|) 125) (($ $ $) 128)) (-2086 (($ $) 48)) (-3280 (($ $) 52)) (-4216 (((-885 (-378)) $) NIL) (((-885 (-561)) $) NIL) (((-534) $) NIL) (($ (-945 (-406 (-561)))) 216) (($ (-945 (-561))) 212) (($ (-945 |#2|)) 227) (((-1148) $) 249) (((-945 |#2|) $) 161)) (-4064 (((-856) $) 30) (($ (-561)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-945 |#2|) $) 162) (($ (-406 (-561))) NIL) (($ $) NIL)) (-3161 (((-3 (-112) "failed") $ $) 71)))
-(((-1055 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4064 (|#1| |#1|)) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1603 (|#1| (-638 |#1|))) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 ((-945 |#2|) |#1|)) (-15 -4216 ((-945 |#2|) |#1|)) (-15 -4216 ((-1148) |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -1603 (|#2| |#2| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -3007 (|#1| |#1| |#1|)) (-15 -1645 (|#1| |#1| |#2|)) (-15 -3007 (|#1| |#1| |#2|)) (-15 -4331 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4216 (|#1| (-945 |#2|))) (-15 -3979 (|#1| (-945 |#2|))) (-15 -4061 ((-3 |#1| "failed") (-945 |#2|))) (-15 -4216 (|#1| (-945 (-561)))) (-15 -3979 (|#1| (-945 (-561)))) (-15 -4061 ((-3 |#1| "failed") (-945 (-561)))) (-15 -4216 (|#1| (-945 (-406 (-561))))) (-15 -3979 (|#1| (-945 (-406 (-561))))) (-15 -4061 ((-3 |#1| "failed") (-945 (-406 (-561))))) (-15 -3641 (|#1| |#1| |#1|)) (-15 -2903 (|#1| |#1| |#1|)) (-15 -3018 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3523 (-765))) |#1| |#1|)) (-15 -2404 (|#1| |#1| |#1|)) (-15 -2566 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2209 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1| |#4|)) (-15 -2209 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2305 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -1744 |#1|)) |#1| |#1| |#4|)) (-15 -2305 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2011 (|#1| |#1| |#1| |#4|)) (-15 -1397 (|#1| |#1| |#1| |#4|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1| |#4|)) (-15 -1610 (|#1| |#1| |#1| |#4|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -2369 ((-112) |#1| (-638 |#1|))) (-15 -2369 ((-112) |#1| |#1|)) (-15 -3067 ((-112) |#1| (-638 |#1|))) (-15 -3067 ((-112) |#1| |#1|)) (-15 -2871 ((-112) |#1| (-638 |#1|))) (-15 -2871 ((-112) |#1| |#1|)) (-15 -2282 ((-112) |#1| (-638 |#1|))) (-15 -2282 ((-112) |#1| |#1|)) (-15 -3725 ((-112) |#1| |#1|)) (-15 -4345 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1609 ((-638 |#1|) |#1|)) (-15 -2278 ((-638 |#1|) |#1|)) (-15 -3269 (|#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -1400 ((-112) |#1|)) (-15 -3147 ((-112) |#1|)) (-15 -1598 (|#1| |#1| |#4|)) (-15 -1572 (|#1| |#1| |#4|)) (-15 -3280 (|#1| |#1|)) (-15 -2408 ((-638 |#1|) |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3149 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -4245 ((-765) |#1|)) (-15 -1994 (|#4| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4064 (|#1| |#4|)) (-15 -4061 ((-3 |#4| "failed") |#1|)) (-15 -3979 (|#4| |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -1598 (|#1| |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-1056 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -1055))
-NIL
-(-10 -8 (-15 -4064 (|#1| |#1|)) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1603 (|#1| (-638 |#1|))) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 ((-945 |#2|) |#1|)) (-15 -4216 ((-945 |#2|) |#1|)) (-15 -4216 ((-1148) |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -1603 (|#2| |#2| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -3007 (|#1| |#1| |#1|)) (-15 -1645 (|#1| |#1| |#2|)) (-15 -3007 (|#1| |#1| |#2|)) (-15 -4331 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4216 (|#1| (-945 |#2|))) (-15 -3979 (|#1| (-945 |#2|))) (-15 -4061 ((-3 |#1| "failed") (-945 |#2|))) (-15 -4216 (|#1| (-945 (-561)))) (-15 -3979 (|#1| (-945 (-561)))) (-15 -4061 ((-3 |#1| "failed") (-945 (-561)))) (-15 -4216 (|#1| (-945 (-406 (-561))))) (-15 -3979 (|#1| (-945 (-406 (-561))))) (-15 -4061 ((-3 |#1| "failed") (-945 (-406 (-561))))) (-15 -3641 (|#1| |#1| |#1|)) (-15 -2903 (|#1| |#1| |#1|)) (-15 -3018 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3523 (-765))) |#1| |#1|)) (-15 -2404 (|#1| |#1| |#1|)) (-15 -2566 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2209 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1| |#4|)) (-15 -2209 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2305 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -1744 |#1|)) |#1| |#1| |#4|)) (-15 -2305 ((-2 (|:| -4226 |#1|) (|:| |gap| (-765)) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2011 (|#1| |#1| |#1| |#4|)) (-15 -1397 (|#1| |#1| |#1| |#4|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1| |#4|)) (-15 -1610 (|#1| |#1| |#1| |#4|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -2369 ((-112) |#1| (-638 |#1|))) (-15 -2369 ((-112) |#1| |#1|)) (-15 -3067 ((-112) |#1| (-638 |#1|))) (-15 -3067 ((-112) |#1| |#1|)) (-15 -2871 ((-112) |#1| (-638 |#1|))) (-15 -2871 ((-112) |#1| |#1|)) (-15 -2282 ((-112) |#1| (-638 |#1|))) (-15 -2282 ((-112) |#1| |#1|)) (-15 -3725 ((-112) |#1| |#1|)) (-15 -4345 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1609 ((-638 |#1|) |#1|)) (-15 -2278 ((-638 |#1|) |#1|)) (-15 -3269 (|#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -1400 ((-112) |#1|)) (-15 -3147 ((-112) |#1|)) (-15 -1598 (|#1| |#1| |#4|)) (-15 -1572 (|#1| |#1| |#4|)) (-15 -3280 (|#1| |#1|)) (-15 -2408 ((-638 |#1|) |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3149 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -4245 ((-765) |#1|)) (-15 -1994 (|#4| |#1|)) (-15 -4216 ((-534) |#1|)) (-15 -4216 ((-885 (-561)) |#1|)) (-15 -4216 ((-885 (-378)) |#1|)) (-15 -4064 (|#1| |#4|)) (-15 -4061 ((-3 |#4| "failed") |#1|)) (-15 -3979 (|#4| |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -1598 (|#1| |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 |#3|) $) 110)) (-1596 (((-1162 $) $ |#3|) 125) (((-1162 |#1|) $) 124)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-3012 (($ $) 88 (|has| |#1| (-553)))) (-3163 (((-112) $) 90 (|has| |#1| (-553)))) (-3827 (((-765) $) 112) (((-765) $ (-638 |#3|)) 111)) (-3164 (($ $) 271)) (-3725 (((-112) $ $) 257)) (-2979 (((-3 $ "failed") $ $) 19)) (-3431 (($ $ $) 216 (|has| |#1| (-553)))) (-3082 (((-638 $) $ $) 211 (|has| |#1| (-553)))) (-2128 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-2557 (($ $) 98 (|has| |#1| (-450)))) (-3552 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-945 (-406 (-561)))) 231 (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))) (((-3 $ "failed") (-945 (-561))) 228 (-4050 (-12 (-2186 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166)))))) (((-3 $ "failed") (-945 |#1|)) 225 (-4050 (-12 (-2186 (|has| |#1| (-38 (-406 (-561))))) (-2186 (|has| |#1| (-38 (-561)))) (|has| |#3| (-609 (-1166)))) (-12 (-2186 (|has| |#1| (-543))) (-2186 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (-2186 (|has| |#1| (-985 (-561)))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))))) (-3979 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) ((|#3| $) 137) (($ (-945 (-406 (-561)))) 230 (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))) (($ (-945 (-561))) 227 (-4050 (-12 (-2186 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166)))))) (($ (-945 |#1|)) 224 (-4050 (-12 (-2186 (|has| |#1| (-38 (-406 (-561))))) (-2186 (|has| |#1| (-38 (-561)))) (|has| |#3| (-609 (-1166)))) (-12 (-2186 (|has| |#1| (-543))) (-2186 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (-2186 (|has| |#1| (-985 (-561)))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))))) (-2395 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-553)))) (-1598 (($ $) 154) (($ $ |#3|) 266)) (-3720 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-2282 (((-112) $ $) 256) (((-112) $ (-638 $)) 255)) (-3735 (((-3 $ "failed") $) 33)) (-1400 (((-112) $) 264)) (-2566 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 236)) (-2538 (($ $) 205 (|has| |#1| (-450)))) (-4229 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-1584 (((-638 $) $) 109)) (-2725 (((-112) $) 96 (|has| |#1| (-902)))) (-4331 (($ $) 221 (|has| |#1| (-553)))) (-4177 (($ $) 222 (|has| |#1| (-553)))) (-1610 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2352 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3227 (($ $ |#1| |#2| $) 172)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| |#3| (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| |#3| (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-2252 (((-112) $) 31)) (-2044 (((-765) $) 169)) (-2369 (((-112) $ $) 250) (((-112) $ (-638 $)) 249)) (-2249 (($ $ $ $ $) 207 (|has| |#1| (-553)))) (-1994 ((|#3| $) 275)) (-1393 (($ (-1162 |#1|) |#3|) 117) (($ (-1162 $) |#3|) 116)) (-1859 (((-638 $) $) 126)) (-1750 (((-112) $) 152)) (-1381 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-638 |#3|) (-638 (-765))) 118)) (-2404 (($ $ $) 235)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |#3|) 120)) (-3147 (((-112) $) 265)) (-1522 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-638 (-765)) $ (-638 |#3|)) 121)) (-1597 (($ $ $) 79 (|has| |#1| (-844)))) (-4245 (((-765) $) 274)) (-3017 (($ $ $) 78 (|has| |#1| (-844)))) (-1368 (($ (-1 |#2| |#2|) $) 171)) (-4165 (($ (-1 |#1| |#1|) $) 151)) (-2830 (((-3 |#3| "failed") $) 123)) (-1613 (($ $) 202 (|has| |#1| (-450)))) (-3811 (($ $) 203 (|has| |#1| (-450)))) (-1609 (((-638 $) $) 260)) (-4100 (($ $) 263)) (-4006 (($ $) 204 (|has| |#1| (-450)))) (-2278 (((-638 $) $) 261)) (-3269 (($ $) 262)) (-1557 (($ $) 149)) (-1572 ((|#1| $) 148) (($ $ |#3|) 267)) (-1563 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3018 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3523 (-765))) $ $) 234)) (-2209 (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $) 238) (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $ |#3|) 237)) (-2305 (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $) 240) (((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $ |#3|) 239)) (-1397 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2011 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1883 (((-1148) $) 9)) (-2940 (($ $ $) 210 (|has| |#1| (-553)))) (-2408 (((-638 $) $) 269)) (-4174 (((-3 (-638 $) "failed") $) 114)) (-2540 (((-3 (-638 $) "failed") $) 115)) (-3276 (((-3 (-2 (|:| |var| |#3|) (|:| -4181 (-765))) "failed") $) 113)) (-3067 (((-112) $ $) 252) (((-112) $ (-638 $)) 251)) (-3641 (($ $ $) 232)) (-3767 (($ $) 273)) (-4345 (((-112) $ $) 258)) (-2871 (((-112) $ $) 254) (((-112) $ (-638 $)) 253)) (-2903 (($ $ $) 233)) (-3149 (($ $) 272)) (-1701 (((-1110) $) 10)) (-2171 (((-2 (|:| -1603 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-553)))) (-1453 (((-2 (|:| -1603 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-553)))) (-1530 (((-112) $) 166)) (-1542 ((|#1| $) 167)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1603 ((|#1| |#1| $) 206 (|has| |#1| (-450))) (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1633 (((-417 $) $) 99 (|has| |#1| (-902)))) (-2911 (((-2 (|:| -1603 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-553)))) (-1748 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-1645 (($ $ |#1|) 219 (|has| |#1| (-553))) (($ $ $) 217 (|has| |#1| (-553)))) (-3007 (($ $ |#1|) 220 (|has| |#1| (-553))) (($ $ $) 218 (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-638 |#3|) (-638 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-638 |#3|) (-638 $)) 138)) (-2753 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3922 (($ $ |#3|) 42) (($ $ (-638 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-638 |#3|) (-638 (-765))) 39)) (-3768 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-638 (-765)) $ (-638 |#3|)) 129)) (-2086 (($ $) 270)) (-3280 (($ $) 268)) (-4216 (((-885 (-378)) $) 82 (-12 (|has| |#3| (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| |#3| (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| |#3| (-609 (-534))) (|has| |#1| (-609 (-534))))) (($ (-945 (-406 (-561)))) 229 (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))) (($ (-945 (-561))) 226 (-4050 (-12 (-2186 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166)))))) (($ (-945 |#1|)) 223 (|has| |#3| (-609 (-1166)))) (((-1148) $) 201 (-12 (|has| |#1| (-1031 (-561))) (|has| |#3| (-609 (-1166))))) (((-945 |#1|) $) 200 (|has| |#3| (-609 (-1166))))) (-2125 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 104 (-2198 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-945 |#1|) $) 199 (|has| |#3| (-609 (-1166)))) (($ (-406 (-561))) 72 (-4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561)))))) (($ $) 85 (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) 168)) (-3932 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-638 |#3|) (-638 (-765))) 127)) (-3666 (((-3 $ "failed") $) 73 (-4050 (-2198 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) 28)) (-2803 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3996 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2246 (($) 18 T CONST)) (-3161 (((-3 (-112) "failed") $ $) 259)) (-2257 (($) 30 T CONST)) (-2926 (($ $ $ $ (-765)) 208 (|has| |#1| (-553)))) (-1649 (($ $ $ (-765)) 209 (|has| |#1| (-553)))) (-3154 (($ $ |#3|) 38) (($ $ (-638 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-638 |#3|) (-638 (-765))) 35)) (-1781 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1828 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-3787 (*1 *1 *1) (-4 *1 (-1051))) (-3517 (*1 *1 *1) (-4 *1 (-1051))) (-3516 (*1 *1 *1) (-4 *1 (-1051))) (-3515 (*1 *1 *1) (-4 *1 (-1051))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-544)))) (-3513 (*1 *1 *1) (-4 *1 (-1051))) (-4177 (*1 *1 *1) (-4 *1 (-1051))) (-3512 (*1 *1 *1) (-4 *1 (-1051))))
+(-13 (-362) (-842) (-1013) (-1031 (-544)) (-1031 (-406 (-544))) (-995) (-609 (-883 (-377))) (-879 (-377)) (-146) (-10 -8 (-15 -3517 ($ $)) (-15 -3516 ($ $)) (-15 -3515 ($ $)) (-15 -3514 ((-544) $)) (-15 -3513 ($ $)) (-15 -4177 ($ $)) (-15 -3512 ($ $)) (-15 -3787 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-377)) . T) ((-609 (-883 (-377))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-879 (-377)) . T) ((-914) . T) ((-995) . T) ((-1013) . T) ((-1031 (-406 (-544))) . T) ((-1031 (-544)) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) |#2| $) 23)) (-3521 ((|#1| $) 10)) (-4030 (((-544) |#2| $) 87)) (-3584 (((-3 $ #1="failed") |#2| (-912)) 57)) (-3522 ((|#1| $) 28)) (-3583 ((|#1| |#2| $ |#1|) 37)) (-3519 (($ $) 25)) (-3866 (((-3 |#2| #1#) |#2| $) 86)) (-3587 (((-112) |#2| $) NIL)) (-3588 (((-112) |#2| $) NIL)) (-3518 (((-112) |#2| $) 24)) (-3520 ((|#1| $) 88)) (-3523 ((|#1| $) 27)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3586 ((|#2| $) 78)) (-4353 (((-857) $) 70)) (-4176 ((|#1| |#2| $ |#1|) 38)) (-3585 (((-635 $) |#2|) 59)) (-3437 (((-112) $ $) 73)))
+(((-1052 |#1| |#2|) (-13 (-1059 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| $)) (-15 -3522 (|#1| $)) (-15 -3521 (|#1| $)) (-15 -3520 (|#1| $)) (-15 -3519 ($ $)) (-15 -3518 ((-112) |#2| $)) (-15 -3583 (|#1| |#2| $ |#1|)))) (-13 (-842) (-362)) (-1229 |#1|)) (T -1052))
+((-3583 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3523 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3522 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3521 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3520 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3519 (*1 *1 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3518 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3)) (-4 *3 (-1229 *4)))))
+(-13 (-1059 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| $)) (-15 -3522 (|#1| $)) (-15 -3521 (|#1| $)) (-15 -3520 (|#1| $)) (-15 -3519 ($ $)) (-15 -3518 ((-112) |#2| $)) (-15 -3583 (|#1| |#2| $ |#1|))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) NIL)) (-4131 (($) NIL T CONST)) (-3524 (($ (-1166)) 10) (($ (-544)) 7)) (-3558 (((-3 (-544) "failed") $) NIL)) (-3557 (((-544) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($) NIL) (($ $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) NIL)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-2194 (($ $) NIL)) (-4240 (($ $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2196 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-2195 (($ $) NIL)) (-3804 (($ $) NIL)) (-4377 (((-544) $) 16) (((-533) $) NIL) (((-883 (-544)) $) NIL) (((-377) $) NIL) (((-224) $) NIL) (($ (-1166)) 9)) (-4353 (((-857) $) 20) (($ (-544)) 6) (($ $) NIL) (($ (-544)) 6)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) NIL)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4244 (($ $) 19) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL)))
+(((-1053) (-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3524 ($ (-1166))) (-15 -3524 ($ (-544)))))) (T -1053))
+((-3524 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1053)))))
+(-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3524 ($ (-1166))) (-15 -3524 ($ (-544)))))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2344 (((-1259) $ (-1166) (-1166)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-3526 (($) 9)) (-4194 (((-51) $ (-1166) (-51)) NIL)) (-3534 (($ $) 30)) (-3537 (($ $) 28)) (-3538 (($ $) 27)) (-3536 (($ $) 29)) (-3533 (($ $) 32)) (-3532 (($ $) 33)) (-3539 (($ $) 26)) (-3535 (($ $) 31)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) 25 (|has| $ (-6 -4400)))) (-2353 (((-3 (-51) #1="failed") (-1166) $) 40)) (-4131 (($) NIL T CONST)) (-3540 (($) 7)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) 50 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-3 (-51) #1#) (-1166) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-3525 (((-3 (-1148) "failed") $ (-1148) (-544)) 59)) (-1665 (((-51) $ (-1166) (-51)) NIL (|has| $ (-6 -4401)))) (-3498 (((-51) $ (-1166)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) 35 (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2347 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-2789 (((-635 (-1166)) $) NIL)) (-2354 (((-112) (-1166) $) NIL)) (-1356 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) 43)) (-2349 (((-635 (-1166)) $) NIL)) (-2350 (((-112) (-1166) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-3529 (((-377) $ (-1166)) 49)) (-3528 (((-635 (-1148)) $ (-1148)) 60)) (-4207 (((-51) $) NIL (|has| (-1166) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) "failed") (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL)) (-2345 (($ $ (-51)) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-51)) (-635 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-292 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-635 (-292 (-51)))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2351 (((-635 (-51)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-51) $ (-1166)) NIL) (((-51) $ (-1166) (-51)) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-3527 (($ $ (-1166)) 51)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-765) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091)))) (((-765) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) 37)) (-4208 (($ $ $) 38)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-608 (-857))) (|has| (-51) (-608 (-857)))))) (-3531 (($ $ (-1166) (-377)) 47)) (-3530 (($ $ (-1166) (-377)) 48)) (-1358 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1054) (-13 (-1181 (-1166) (-51)) (-10 -8 (-15 -4208 ($ $ $)) (-15 -3540 ($)) (-15 -3539 ($ $)) (-15 -3538 ($ $)) (-15 -3537 ($ $)) (-15 -3536 ($ $)) (-15 -3535 ($ $)) (-15 -3534 ($ $)) (-15 -3533 ($ $)) (-15 -3532 ($ $)) (-15 -3531 ($ $ (-1166) (-377))) (-15 -3530 ($ $ (-1166) (-377))) (-15 -3529 ((-377) $ (-1166))) (-15 -3528 ((-635 (-1148)) $ (-1148))) (-15 -3527 ($ $ (-1166))) (-15 -3526 ($)) (-15 -3525 ((-3 (-1148) "failed") $ (-1148) (-544))) (-6 -4400)))) (T -1054))
+((-4208 (*1 *1 *1 *1) (-5 *1 (-1054))) (-3540 (*1 *1) (-5 *1 (-1054))) (-3539 (*1 *1 *1) (-5 *1 (-1054))) (-3538 (*1 *1 *1) (-5 *1 (-1054))) (-3537 (*1 *1 *1) (-5 *1 (-1054))) (-3536 (*1 *1 *1) (-5 *1 (-1054))) (-3535 (*1 *1 *1) (-5 *1 (-1054))) (-3534 (*1 *1 *1) (-5 *1 (-1054))) (-3533 (*1 *1 *1) (-5 *1 (-1054))) (-3532 (*1 *1 *1) (-5 *1 (-1054))) (-3531 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054)))) (-3530 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-377)) (-5 *1 (-1054)))) (-3528 (*1 *2 *1 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148)))) (-3527 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054)))) (-3526 (*1 *1) (-5 *1 (-1054))) (-3525 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-1054)))))
+(-13 (-1181 (-1166) (-51)) (-10 -8 (-15 -4208 ($ $ $)) (-15 -3540 ($)) (-15 -3539 ($ $)) (-15 -3538 ($ $)) (-15 -3537 ($ $)) (-15 -3536 ($ $)) (-15 -3535 ($ $)) (-15 -3534 ($ $)) (-15 -3533 ($ $)) (-15 -3532 ($ $)) (-15 -3531 ($ $ (-1166) (-377))) (-15 -3530 ($ $ (-1166) (-377))) (-15 -3529 ((-377) $ (-1166))) (-15 -3528 ((-635 (-1148)) $ (-1148))) (-15 -3527 ($ $ (-1166))) (-15 -3526 ($)) (-15 -3525 ((-3 (-1148) "failed") $ (-1148) (-544))) (-6 -4400)))
+((-4203 (($ $) 45)) (-3567 (((-112) $ $) 74)) (-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-939 (-406 (-544)))) 226) (((-3 $ "failed") (-939 (-544))) 225) (((-3 $ "failed") (-939 |#2|)) 228)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL) (((-544) $) NIL) ((|#4| $) NIL) (($ (-939 (-406 (-544)))) 214) (($ (-939 (-544))) 210) (($ (-939 |#2|)) 230)) (-4366 (($ $) NIL) (($ $ |#4|) 43)) (-4101 (((-112) $ $) 111) (((-112) $ (-635 $)) 112)) (-3573 (((-112) $) 56)) (-4159 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106)) (-3544 (($ $) 137)) (-3555 (($ $) 133)) (-3556 (($ $) 132)) (-3566 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3565 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4102 (((-112) $ $) 120) (((-112) $ (-635 $)) 121)) (-3581 ((|#4| $) 33)) (-3560 (($ $ $) 109)) (-3574 (((-112) $) 55)) (-3580 (((-765) $) 35)) (-3541 (($ $) 151)) (-3542 (($ $) 148)) (-3569 (((-635 $) $) 68)) (-3572 (($ $) 57)) (-3543 (($ $) 144)) (-3570 (((-635 $) $) 65)) (-3571 (($ $) 59)) (-3575 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $) 110)) (-3561 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 107) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |#4|) 108)) (-3562 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $) 103) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |#4|) 104)) (-3564 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3563 (($ $ $) 90) (($ $ $ |#4|) 95)) (-3577 (((-635 $) $) 51)) (-4098 (((-112) $ $) 117) (((-112) $ (-635 $)) 118)) (-4093 (($ $ $) 102)) (-3849 (($ $) 37)) (-4106 (((-112) $ $) 72)) (-4099 (((-112) $ $) 113) (((-112) $ (-635 $)) 115)) (-4094 (($ $ $) 100)) (-3579 (($ $) 40)) (-3545 ((|#2| |#2| $) 141) (($ (-635 $)) NIL) (($ $ $) NIL)) (-3553 (($ $ |#2|) NIL) (($ $ $) 130)) (-3554 (($ $ |#2|) 125) (($ $ $) 128)) (-3578 (($ $) 48)) (-3576 (($ $) 52)) (-4377 (((-883 (-377)) $) NIL) (((-883 (-544)) $) NIL) (((-533) $) NIL) (($ (-939 (-406 (-544)))) 216) (($ (-939 (-544))) 212) (($ (-939 |#2|)) 227) (((-1148) $) 249) (((-939 |#2|) $) 161)) (-4353 (((-857) $) 30) (($ (-544)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-939 |#2|) $) 162) (($ (-406 (-544))) NIL) (($ $) NIL)) (-3568 (((-3 (-112) "failed") $ $) 71)))
+(((-1055 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 ((-939 |#2|) |#1|)) (-15 -4377 ((-939 |#2|) |#1|)) (-15 -4377 ((-1148) |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3542 (|#1| |#1|)) (-15 -3543 (|#1| |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3545 (|#2| |#2| |#1|)) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3554 (|#1| |#1| |#1|)) (-15 -3553 (|#1| |#1| |#2|)) (-15 -3554 (|#1| |#1| |#2|)) (-15 -3555 (|#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -4377 (|#1| (-939 |#2|))) (-15 -3557 (|#1| (-939 |#2|))) (-15 -3558 ((-3 |#1| "failed") (-939 |#2|))) (-15 -4377 (|#1| (-939 (-544)))) (-15 -3557 (|#1| (-939 (-544)))) (-15 -3558 ((-3 |#1| "failed") (-939 (-544)))) (-15 -4377 (|#1| (-939 (-406 (-544))))) (-15 -3557 (|#1| (-939 (-406 (-544))))) (-15 -3558 ((-3 |#1| "failed") (-939 (-406 (-544))))) (-15 -4093 (|#1| |#1| |#1|)) (-15 -4094 (|#1| |#1| |#1|)) (-15 -3559 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3880 (-765))) |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -4159 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1| |#4|)) (-15 -3564 (|#1| |#1| |#1| |#4|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| |#1| |#4|)) (-15 -3566 (|#1| |#1| |#1| |#4|)) (-15 -3565 (|#1| |#1| |#1|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -4102 ((-112) |#1| (-635 |#1|))) (-15 -4102 ((-112) |#1| |#1|)) (-15 -4098 ((-112) |#1| (-635 |#1|))) (-15 -4098 ((-112) |#1| |#1|)) (-15 -4099 ((-112) |#1| (-635 |#1|))) (-15 -4099 ((-112) |#1| |#1|)) (-15 -4101 ((-112) |#1| (-635 |#1|))) (-15 -4101 ((-112) |#1| |#1|)) (-15 -3567 ((-112) |#1| |#1|)) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3568 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3569 ((-635 |#1|) |#1|)) (-15 -3570 ((-635 |#1|) |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -3573 ((-112) |#1|)) (-15 -3574 ((-112) |#1|)) (-15 -4366 (|#1| |#1| |#4|)) (-15 -3575 (|#1| |#1| |#4|)) (-15 -3576 (|#1| |#1|)) (-15 -3577 ((-635 |#1|) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3580 ((-765) |#1|)) (-15 -3581 (|#4| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -3575 (|#2| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1056 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -1055))
+NIL
+(-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 ((-939 |#2|) |#1|)) (-15 -4377 ((-939 |#2|) |#1|)) (-15 -4377 ((-1148) |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3542 (|#1| |#1|)) (-15 -3543 (|#1| |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3545 (|#2| |#2| |#1|)) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3554 (|#1| |#1| |#1|)) (-15 -3553 (|#1| |#1| |#2|)) (-15 -3554 (|#1| |#1| |#2|)) (-15 -3555 (|#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -4377 (|#1| (-939 |#2|))) (-15 -3557 (|#1| (-939 |#2|))) (-15 -3558 ((-3 |#1| "failed") (-939 |#2|))) (-15 -4377 (|#1| (-939 (-544)))) (-15 -3557 (|#1| (-939 (-544)))) (-15 -3558 ((-3 |#1| "failed") (-939 (-544)))) (-15 -4377 (|#1| (-939 (-406 (-544))))) (-15 -3557 (|#1| (-939 (-406 (-544))))) (-15 -3558 ((-3 |#1| "failed") (-939 (-406 (-544))))) (-15 -4093 (|#1| |#1| |#1|)) (-15 -4094 (|#1| |#1| |#1|)) (-15 -3559 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3880 (-765))) |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -4159 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1| |#4|)) (-15 -3564 (|#1| |#1| |#1| |#4|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| |#1| |#4|)) (-15 -3566 (|#1| |#1| |#1| |#4|)) (-15 -3565 (|#1| |#1| |#1|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -4102 ((-112) |#1| (-635 |#1|))) (-15 -4102 ((-112) |#1| |#1|)) (-15 -4098 ((-112) |#1| (-635 |#1|))) (-15 -4098 ((-112) |#1| |#1|)) (-15 -4099 ((-112) |#1| (-635 |#1|))) (-15 -4099 ((-112) |#1| |#1|)) (-15 -4101 ((-112) |#1| (-635 |#1|))) (-15 -4101 ((-112) |#1| |#1|)) (-15 -3567 ((-112) |#1| |#1|)) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3568 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3569 ((-635 |#1|) |#1|)) (-15 -3570 ((-635 |#1|) |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -3573 ((-112) |#1|)) (-15 -3574 ((-112) |#1|)) (-15 -4366 (|#1| |#1| |#4|)) (-15 -3575 (|#1| |#1| |#4|)) (-15 -3576 (|#1| |#1|)) (-15 -3577 ((-635 |#1|) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3580 ((-765) |#1|)) (-15 -3581 (|#4| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -3575 (|#2| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#3|) $) 110)) (-3469 (((-1160 $) $ |#3|) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 |#3|)) 111)) (-4203 (($ $) 271)) (-3567 (((-112) $ $) 257)) (-1391 (((-3 $ "failed") $ $) 19)) (-4162 (($ $ $) 216 (|has| |#1| (-554)))) (-3549 (((-635 $) $ $) 211 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) 136) (((-3 $ "failed") (-939 (-406 (-544)))) 231 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))) (((-3 $ "failed") (-939 (-544))) 228 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166)))))) (((-3 $ "failed") (-939 |#1|)) 225 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544)))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-543))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-984 (-544)))) (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))))) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) ((|#3| $) 137) (($ (-939 (-406 (-544)))) 230 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))) (($ (-939 (-544))) 227 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166)))))) (($ (-939 |#1|)) 224 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544)))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-543))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-984 (-544)))) (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))))) (-4163 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-554)))) (-4366 (($ $) 154) (($ $ |#3|) 266)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-4101 (((-112) $ $) 256) (((-112) $ (-635 $)) 255)) (-3866 (((-3 $ "failed") $) 33)) (-3573 (((-112) $) 264)) (-4159 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 236)) (-3544 (($ $) 205 (|has| |#1| (-450)))) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-3555 (($ $) 221 (|has| |#1| (-554)))) (-3556 (($ $) 222 (|has| |#1| (-554)))) (-3566 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3565 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1749 (($ $ |#1| |#2| $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| |#3| (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| |#3| (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-4102 (((-112) $ $) 250) (((-112) $ (-635 $)) 249)) (-3546 (($ $ $ $ $) 207 (|has| |#1| (-554)))) (-3581 ((|#3| $) 275)) (-3470 (($ (-1160 |#1|) |#3|) 117) (($ (-1160 $) |#3|) 116)) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-635 |#3|) (-635 (-765))) 118)) (-3560 (($ $ $) 235)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 120)) (-3574 (((-112) $) 265)) (-3202 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-635 (-765)) $ (-635 |#3|)) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3580 (((-765) $) 274)) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 |#2| |#2|) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-3468 (((-3 |#3| #3="failed") $) 123)) (-3541 (($ $) 202 (|has| |#1| (-450)))) (-3542 (($ $) 203 (|has| |#1| (-450)))) (-3569 (((-635 $) $) 260)) (-3572 (($ $) 263)) (-3543 (($ $) 204 (|has| |#1| (-450)))) (-3570 (((-635 $) $) 261)) (-3571 (($ $) 262)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148) (($ $ |#3|) 267)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $) 234)) (-3561 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 238) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 237)) (-3562 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $) 240) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |#3|) 239)) (-3564 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3563 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3643 (((-1148) $) 9)) (-3591 (($ $ $) 210 (|has| |#1| (-554)))) (-3577 (((-635 $) $) 269)) (-3205 (((-3 (-635 $) #3#) $) 114)) (-3204 (((-3 (-635 $) #3#) $) 115)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) #3#) $) 113)) (-4098 (((-112) $ $) 252) (((-112) $ (-635 $)) 251)) (-4093 (($ $ $) 232)) (-3849 (($ $) 273)) (-4106 (((-112) $ $) 258)) (-4099 (((-112) $ $) 254) (((-112) $ (-635 $)) 253)) (-4094 (($ $ $) 233)) (-3579 (($ $) 272)) (-3644 (((-1110) $) 10)) (-3550 (((-2 (|:| -3545 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-554)))) (-3551 (((-2 (|:| -3545 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-554)))) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 ((|#1| |#1| $) 206 (|has| |#1| (-450))) (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-3552 (((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-3553 (($ $ |#1|) 219 (|has| |#1| (-554))) (($ $ $) 217 (|has| |#1| (-554)))) (-3554 (($ $ |#1|) 220 (|has| |#1| (-554))) (($ $ $) 218 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-4164 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4217 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-635 |#3|) (-635 (-765))) 39)) (-4355 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-635 (-765)) $ (-635 |#3|)) 129)) (-3578 (($ $) 270)) (-3576 (($ $) 268)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| |#3| (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| |#3| (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| |#3| (-609 (-533))) (|has| |#1| (-609 (-533))))) (($ (-939 (-406 (-544)))) 229 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))) (($ (-939 (-544))) 226 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166)))))) (($ (-939 |#1|)) 223 (|has| |#3| (-609 (-1166)))) (((-1148) $) 201 (-12 (|has| |#1| (-1031 (-544))) (|has| |#3| (-609 (-1166))))) (((-939 |#1|) $) 200 (|has| |#3| (-609 (-1166))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-939 |#1|) $) 199 (|has| |#3| (-609 (-1166)))) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544)))))) (($ $) 85 (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-635 |#3|) (-635 (-765))) 127)) (-3084 (((-3 $ #1#) $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3568 (((-3 (-112) "failed") $ $) 259)) (-3046 (($) 30 T CONST)) (-3547 (($ $ $ $ (-765)) 208 (|has| |#1| (-554)))) (-3548 (($ $ $ (-765)) 209 (|has| |#1| (-554)))) (-3051 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-635 |#3|) (-635 (-765))) 35)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-1056 |#1| |#2| |#3|) (-139) (-1042) (-787) (-844)) (T -1056))
-((-1994 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-3767 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3149 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2086 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2408 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1572 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1598 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3147 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4100 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3269 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2278 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-1609 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3161 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4345 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3725 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2282 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2282 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-2871 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-3067 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3067 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-2369 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2369 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-1610 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1610 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-2352 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1397 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2011 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1397 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-2011 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-2305 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -1744 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-2305 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -1744 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-2209 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-2209 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-2404 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3018 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3523 (-765)))) (-4 *1 (-1056 *3 *4 *5)))) (-2903 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3641 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-4061 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-4061 (*1 *1 *2) (|partial| -4050 (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3979 (*1 *1 *2) (-4050 (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4216 (*1 *1 *2) (-4050 (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4061 (*1 *1 *2) (|partial| -4050 (-12 (-5 *2 (-945 *3)) (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-2186 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2186 (-4 *3 (-543))) (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2186 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3979 (*1 *1 *2) (-4050 (-12 (-5 *2 (-945 *3)) (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-2186 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2186 (-4 *3 (-543))) (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2186 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *5 (-609 (-1166))) (-4 *4 (-787)) (-4 *5 (-844)))) (-4177 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-4331 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-3007 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-1645 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-3007 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-3431 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-2911 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -1603 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-1453 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -1603 *1) (|:| |coef1| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-2171 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -1603 *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-2395 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-3082 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-2940 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-1649 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))) (-2926 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))) (-2249 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-1603 (*1 *2 *2 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-2538 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-4006 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-1613 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))))
-(-13 (-942 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1994 (|t#3| $)) (-15 -4245 ((-765) $)) (-15 -3767 ($ $)) (-15 -3149 ($ $)) (-15 -3164 ($ $)) (-15 -2086 ($ $)) (-15 -2408 ((-638 $) $)) (-15 -3280 ($ $)) (-15 -1572 ($ $ |t#3|)) (-15 -1598 ($ $ |t#3|)) (-15 -3147 ((-112) $)) (-15 -1400 ((-112) $)) (-15 -4100 ($ $)) (-15 -3269 ($ $)) (-15 -2278 ((-638 $) $)) (-15 -1609 ((-638 $) $)) (-15 -3161 ((-3 (-112) "failed") $ $)) (-15 -4345 ((-112) $ $)) (-15 -3725 ((-112) $ $)) (-15 -2282 ((-112) $ $)) (-15 -2282 ((-112) $ (-638 $))) (-15 -2871 ((-112) $ $)) (-15 -2871 ((-112) $ (-638 $))) (-15 -3067 ((-112) $ $)) (-15 -3067 ((-112) $ (-638 $))) (-15 -2369 ((-112) $ $)) (-15 -2369 ((-112) $ (-638 $))) (-15 -1610 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -1610 ($ $ $ |t#3|)) (-15 -2352 ($ $ $ |t#3|)) (-15 -1397 ($ $ $)) (-15 -2011 ($ $ $)) (-15 -1397 ($ $ $ |t#3|)) (-15 -2011 ($ $ $ |t#3|)) (-15 -2305 ((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $)) (-15 -2305 ((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -1744 $)) $ $ |t#3|)) (-15 -2209 ((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -2209 ((-2 (|:| -4226 $) (|:| |gap| (-765)) (|:| -2970 $) (|:| -1744 $)) $ $ |t#3|)) (-15 -2566 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -2404 ($ $ $)) (-15 -3018 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3523 (-765))) $ $)) (-15 -2903 ($ $ $)) (-15 -3641 ($ $ $)) (IF (|has| |t#3| (-609 (-1166))) (PROGN (-6 (-608 (-945 |t#1|))) (-6 (-609 (-945 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -4061 ((-3 $ "failed") (-945 (-406 (-561))))) (-15 -3979 ($ (-945 (-406 (-561))))) (-15 -4216 ($ (-945 (-406 (-561))))) (-15 -4061 ((-3 $ "failed") (-945 (-561)))) (-15 -3979 ($ (-945 (-561)))) (-15 -4216 ($ (-945 (-561)))) (IF (|has| |t#1| (-985 (-561))) |%noBranch| (PROGN (-15 -4061 ((-3 $ "failed") (-945 |t#1|))) (-15 -3979 ($ (-945 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-561))) (IF (|has| |t#1| (-38 (-406 (-561)))) |%noBranch| (PROGN (-15 -4061 ((-3 $ "failed") (-945 (-561)))) (-15 -3979 ($ (-945 (-561)))) (-15 -4216 ($ (-945 (-561)))) (IF (|has| |t#1| (-543)) |%noBranch| (PROGN (-15 -4061 ((-3 $ "failed") (-945 |t#1|))) (-15 -3979 ($ (-945 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-561))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-561)))) |%noBranch| (PROGN (-15 -4061 ((-3 $ "failed") (-945 |t#1|))) (-15 -3979 ($ (-945 |t#1|)))))) (-15 -4216 ($ (-945 |t#1|))) (IF (|has| |t#1| (-1031 (-561))) (-6 (-609 (-1148))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -4177 ($ $)) (-15 -4331 ($ $)) (-15 -3007 ($ $ |t#1|)) (-15 -1645 ($ $ |t#1|)) (-15 -3007 ($ $ $)) (-15 -1645 ($ $ $)) (-15 -3431 ($ $ $)) (-15 -2911 ((-2 (|:| -1603 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1453 ((-2 (|:| -1603 $) (|:| |coef1| $)) $ $)) (-15 -2171 ((-2 (|:| -1603 $) (|:| |coef2| $)) $ $)) (-15 -2395 ($ $ $)) (-15 -3082 ((-638 $) $ $)) (-15 -2940 ($ $ $)) (-15 -1649 ($ $ $ (-765))) (-15 -2926 ($ $ $ $ (-765))) (-15 -2249 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -1603 (|t#1| |t#1| $)) (-15 -2538 ($ $)) (-15 -4006 ($ $)) (-15 -3811 ($ $)) (-15 -1613 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-608 (-856)) . T) ((-608 (-945 |#1|)) |has| |#3| (-609 (-1166))) ((-171) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) ((-609 (-945 |#1|)) |has| |#3| (-609 (-1166))) ((-609 (-1148)) -12 (|has| |#1| (-1031 (-561))) (|has| |#3| (-609 (-1166)))) ((-289) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4050 (|has| |#1| (-902)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-553) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) ((-942 |#1| |#2| |#3|) . T) ((-902) |has| |#1| (-902)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) |has| |#1| (-902)))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-2432 (((-638 (-1125)) $) 13)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-1125) $) 15)) (-1723 (((-112) $ $) NIL)))
-(((-1057) (-13 (-1073) (-10 -8 (-15 -2432 ((-638 (-1125)) $)) (-15 -3316 ((-1125) $))))) (T -1057))
-((-2432 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1057)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057)))))
-(-13 (-1073) (-10 -8 (-15 -2432 ((-638 (-1125)) $)) (-15 -3316 ((-1125) $))))
-((-4306 (((-112) |#3| $) 13)) (-2496 (((-3 $ "failed") |#3| (-914)) 23)) (-3735 (((-3 |#3| "failed") |#3| $) 38)) (-1784 (((-112) |#3| $) 16)) (-3271 (((-112) |#3| $) 14)))
-(((-1058 |#1| |#2| |#3|) (-10 -8 (-15 -2496 ((-3 |#1| "failed") |#3| (-914))) (-15 -3735 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1784 ((-112) |#3| |#1|)) (-15 -3271 ((-112) |#3| |#1|)) (-15 -4306 ((-112) |#3| |#1|))) (-1059 |#2| |#3|) (-13 (-842) (-362)) (-1230 |#2|)) (T -1058))
-NIL
-(-10 -8 (-15 -2496 ((-3 |#1| "failed") |#3| (-914))) (-15 -3735 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1784 ((-112) |#3| |#1|)) (-15 -3271 ((-112) |#3| |#1|)) (-15 -4306 ((-112) |#3| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) |#2| $) 21)) (-1659 (((-561) |#2| $) 22)) (-2496 (((-3 $ "failed") |#2| (-914)) 15)) (-2255 ((|#1| |#2| $ |#1|) 13)) (-3735 (((-3 |#2| "failed") |#2| $) 18)) (-1784 (((-112) |#2| $) 19)) (-3271 (((-112) |#2| $) 20)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3158 ((|#2| $) 17)) (-4064 (((-856) $) 11)) (-1408 ((|#1| |#2| $ |#1|) 14)) (-2363 (((-638 $) |#2|) 16)) (-1723 (((-112) $ $) 6)))
-(((-1059 |#1| |#2|) (-139) (-13 (-842) (-362)) (-1230 |t#1|)) (T -1059))
-((-1659 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1230 *4)) (-5 *2 (-561)))) (-4306 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1230 *4)) (-5 *2 (-112)))) (-3271 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1230 *4)) (-5 *2 (-112)))) (-1784 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1230 *4)) (-5 *2 (-112)))) (-3735 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1230 *3)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1230 *3)))) (-2363 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1230 *4)) (-5 *2 (-638 *1)) (-4 *1 (-1059 *4 *3)))) (-2496 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-914)) (-4 *4 (-13 (-842) (-362))) (-4 *1 (-1059 *4 *2)) (-4 *2 (-1230 *4)))) (-1408 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1230 *2)))) (-2255 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1230 *2)))))
-(-13 (-1090) (-10 -8 (-15 -1659 ((-561) |t#2| $)) (-15 -4306 ((-112) |t#2| $)) (-15 -3271 ((-112) |t#2| $)) (-15 -1784 ((-112) |t#2| $)) (-15 -3735 ((-3 |t#2| "failed") |t#2| $)) (-15 -3158 (|t#2| $)) (-15 -2363 ((-638 $) |t#2|)) (-15 -2496 ((-3 $ "failed") |t#2| (-914))) (-15 -1408 (|t#1| |t#2| $ |t#1|)) (-15 -2255 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-3157 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-765)) 95)) (-1964 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765)) 56)) (-2850 (((-1259) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-765)) 87)) (-3717 (((-765) (-638 |#4|) (-638 |#5|)) 27)) (-2994 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765)) 58) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765) (-112)) 60)) (-4261 (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112)) 79)) (-4216 (((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) 82)) (-4317 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-112)) 55)) (-2673 (((-765) (-638 |#4|) (-638 |#5|)) 19)))
-(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2673 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -3717 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -4317 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-112))) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3157 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-765))) (-15 -4216 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2850 ((-1259) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1060))
-((-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-638 *11)) (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1495 *11)))))) (-5 *6 (-765)) (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1495 *11)))) (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-4261 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-4261 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-2994 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2994 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-2994 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1062 *7 *8 *9 *3)))) (-1964 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1964 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-4317 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2673 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -3717 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -4317 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-112))) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3157 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-765))) (-15 -4216 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2850 ((-1259) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-765))))
-((-2207 (((-112) |#5| $) 20)) (-1775 (((-112) |#5| $) 23)) (-2101 (((-112) |#5| $) 16) (((-112) $) 44)) (-1338 (((-638 $) |#5| $) NIL) (((-638 $) (-638 |#5|) $) 76) (((-638 $) (-638 |#5|) (-638 $)) 74) (((-638 $) |#5| (-638 $)) 77)) (-3702 (($ $ |#5|) NIL) (((-638 $) |#5| $) NIL) (((-638 $) |#5| (-638 $)) 59) (((-638 $) (-638 |#5|) $) 61) (((-638 $) (-638 |#5|) (-638 $)) 63)) (-2909 (((-638 $) |#5| $) NIL) (((-638 $) |#5| (-638 $)) 53) (((-638 $) (-638 |#5|) $) 55) (((-638 $) (-638 |#5|) (-638 $)) 57)) (-2283 (((-112) |#5| $) 26)))
-(((-1061 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3702 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -3702 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -3702 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -3702 ((-638 |#1|) |#5| |#1|)) (-15 -2909 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -2909 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -2909 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -2909 ((-638 |#1|) |#5| |#1|)) (-15 -1338 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -1338 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -1338 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -1338 ((-638 |#1|) |#5| |#1|)) (-15 -1775 ((-112) |#5| |#1|)) (-15 -2101 ((-112) |#1|)) (-15 -2283 ((-112) |#5| |#1|)) (-15 -2207 ((-112) |#5| |#1|)) (-15 -2101 ((-112) |#5| |#1|)) (-15 -3702 (|#1| |#1| |#5|))) (-1062 |#2| |#3| |#4| |#5|) (-450) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1061))
-NIL
-(-10 -8 (-15 -3702 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -3702 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -3702 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -3702 ((-638 |#1|) |#5| |#1|)) (-15 -2909 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -2909 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -2909 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -2909 ((-638 |#1|) |#5| |#1|)) (-15 -1338 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -1338 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -1338 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -1338 ((-638 |#1|) |#5| |#1|)) (-15 -1775 ((-112) |#5| |#1|)) (-15 -2101 ((-112) |#1|)) (-15 -2283 ((-112) |#5| |#1|)) (-15 -2207 ((-112) |#5| |#1|)) (-15 -2101 ((-112) |#5| |#1|)) (-15 -3702 (|#1| |#1| |#5|)))
-((-4053 (((-112) $ $) 7)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) 85)) (-3742 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1405 (((-638 |#3|) $) 33)) (-4214 (((-112) $) 26)) (-2444 (((-112) $) 17 (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) 101) (((-112) $) 97)) (-4089 ((|#4| |#4| $) 92)) (-2557 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) 27)) (-2684 (((-112) $ (-765)) 44)) (-3612 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) 79)) (-2674 (($) 45 T CONST)) (-3853 (((-112) $) 22 (|has| |#1| (-553)))) (-3733 (((-112) $ $) 24 (|has| |#1| (-553)))) (-4338 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1577 (((-112) $) 25 (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3293 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) 36)) (-3979 (($ (-638 |#4|)) 35)) (-1437 (((-3 $ "failed") $) 82)) (-2471 ((|#4| |#4| $) 89)) (-1461 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2310 ((|#4| |#4| $) 87)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) 105)) (-2207 (((-112) |#4| $) 136)) (-1775 (((-112) |#4| $) 133)) (-2101 (((-112) |#4| $) 137) (((-112) $) 134)) (-2368 (((-638 |#4|) $) 52 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) 104) (((-112) $) 103)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) 43)) (-4125 (((-638 |#4|) $) 53 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 47)) (-2597 (((-638 |#3|) $) 32)) (-2247 (((-112) |#3| $) 31)) (-3683 (((-112) $ (-765)) 42)) (-1883 (((-1148) $) 9)) (-1413 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-2940 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1501 (((-3 |#4| "failed") $) 83)) (-1465 (((-638 $) |#4| $) 129)) (-4220 (((-3 (-112) (-638 $)) |#4| $) 132)) (-4151 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1338 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-1747 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-3589 (((-638 |#4|) $) 107)) (-3067 (((-112) |#4| $) 99) (((-112) $) 95)) (-3641 ((|#4| |#4| $) 90)) (-4345 (((-112) $ $) 110)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) 100) (((-112) $) 96)) (-2903 ((|#4| |#4| $) 91)) (-1701 (((-1110) $) 10)) (-1424 (((-3 |#4| "failed") $) 84)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2336 (((-3 $ "failed") $ |#4|) 78)) (-3702 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-3977 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) 38)) (-2508 (((-112) $) 41)) (-2910 (($) 40)) (-3768 (((-765) $) 106)) (-1714 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4399)))) (-4225 (($ $) 39)) (-4216 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-2049 (($ $ |#3|) 30)) (-1768 (($ $) 88)) (-2983 (($ $ |#3|) 29)) (-4064 (((-856) $) 11) (((-638 |#4|) $) 37)) (-3513 (((-765) $) 76 (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2909 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) 81)) (-2283 (((-112) |#4| $) 135)) (-4024 (((-112) |#3| $) 80)) (-1723 (((-112) $ $) 6)) (-3548 (((-765) $) 46 (|has| $ (-6 -4399)))))
+((-3581 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-3849 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3578 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3577 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3576 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3575 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-4366 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3572 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3571 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3570 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3569 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3568 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4106 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3567 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4101 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4101 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4099 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-4098 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-4102 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4102 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-3566 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3565 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3566 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3565 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3564 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3563 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3564 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3563 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3562 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3562 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-3561 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3561 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-4159 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3560 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3559 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3880 (-765)))) (-4 *1 (-1056 *3 *4 *5)))) (-4094 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-4093 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-3558 (*1 *1 *2) (|partial| -3936 (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3557 (*1 *1 *2) (-3936 (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4377 (*1 *1 *2) (-3936 (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3558 (*1 *1 *2) (|partial| -3936 (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3557 (*1 *1 *2) (-3936 (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *5 (-609 (-1166))) (-4 *4 (-787)) (-4 *5 (-844)))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3555 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3554 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3553 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3554 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3553 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-4162 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3552 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3551 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3550 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -3545 *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-4163 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3549 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3591 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3548 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-554)))) (-3547 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-554)))) (-3546 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3545 (*1 *2 *2 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3544 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3542 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3541 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))))
+(-13 (-943 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3581 (|t#3| $)) (-15 -3580 ((-765) $)) (-15 -3849 ($ $)) (-15 -3579 ($ $)) (-15 -4203 ($ $)) (-15 -3578 ($ $)) (-15 -3577 ((-635 $) $)) (-15 -3576 ($ $)) (-15 -3575 ($ $ |t#3|)) (-15 -4366 ($ $ |t#3|)) (-15 -3574 ((-112) $)) (-15 -3573 ((-112) $)) (-15 -3572 ($ $)) (-15 -3571 ($ $)) (-15 -3570 ((-635 $) $)) (-15 -3569 ((-635 $) $)) (-15 -3568 ((-3 (-112) "failed") $ $)) (-15 -4106 ((-112) $ $)) (-15 -3567 ((-112) $ $)) (-15 -4101 ((-112) $ $)) (-15 -4101 ((-112) $ (-635 $))) (-15 -4099 ((-112) $ $)) (-15 -4099 ((-112) $ (-635 $))) (-15 -4098 ((-112) $ $)) (-15 -4098 ((-112) $ (-635 $))) (-15 -4102 ((-112) $ $)) (-15 -4102 ((-112) $ (-635 $))) (-15 -3566 ($ $ $)) (-15 -3565 ($ $ $)) (-15 -3566 ($ $ $ |t#3|)) (-15 -3565 ($ $ $ |t#3|)) (-15 -3564 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3564 ($ $ $ |t#3|)) (-15 -3563 ($ $ $ |t#3|)) (-15 -3562 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $)) (-15 -3562 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |t#3|)) (-15 -3561 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3561 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |t#3|)) (-15 -4159 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3560 ($ $ $)) (-15 -3559 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $)) (-15 -4094 ($ $ $)) (-15 -4093 ($ $ $)) (IF (|has| |t#3| (-609 (-1166))) (PROGN (-6 (-608 (-939 |t#1|))) (-6 (-609 (-939 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -3558 ((-3 $ "failed") (-939 (-406 (-544))))) (-15 -3557 ($ (-939 (-406 (-544))))) (-15 -4377 ($ (-939 (-406 (-544))))) (-15 -3558 ((-3 $ "failed") (-939 (-544)))) (-15 -3557 ($ (-939 (-544)))) (-15 -4377 ($ (-939 (-544)))) (IF (|has| |t#1| (-984 (-544))) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 |t#1|))) (-15 -3557 ($ (-939 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-544))) (IF (|has| |t#1| (-38 (-406 (-544)))) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 (-544)))) (-15 -3557 ($ (-939 (-544)))) (-15 -4377 ($ (-939 (-544)))) (IF (|has| |t#1| (-543)) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 |t#1|))) (-15 -3557 ($ (-939 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-544))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-544)))) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 |t#1|))) (-15 -3557 ($ (-939 |t#1|)))))) (-15 -4377 ($ (-939 |t#1|))) (IF (|has| |t#1| (-1031 (-544))) (-6 (-609 (-1148))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $ |t#1|)) (-15 -3553 ($ $ |t#1|)) (-15 -3554 ($ $ $)) (-15 -3553 ($ $ $)) (-15 -4162 ($ $ $)) (-15 -3552 ((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3551 ((-2 (|:| -3545 $) (|:| |coef1| $)) $ $)) (-15 -3550 ((-2 (|:| -3545 $) (|:| |coef2| $)) $ $)) (-15 -4163 ($ $ $)) (-15 -3549 ((-635 $) $ $)) (-15 -3591 ($ $ $)) (-15 -3548 ($ $ $ (-765))) (-15 -3547 ($ $ $ $ (-765))) (-15 -3546 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3545 (|t#1| |t#1| $)) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -3542 ($ $)) (-15 -3541 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-608 (-857)) . T) ((-608 (-939 |#1|)) |has| |#3| (-609 (-1166))) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) ((-609 (-939 |#1|)) |has| |#3| (-609 (-1166))) ((-609 (-1148)) -12 (|has| |#1| (-1031 (-544))) (|has| |#3| (-609 (-1166)))) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) ((-943 |#1| |#2| |#3|) . T) ((-903) |has| |#1| (-903)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) |has| |#1| (-903)))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3582 (((-635 (-1125)) $) 13)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 15)) (-3437 (((-112) $ $) NIL)))
+(((-1057) (-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $))))) (T -1057))
+((-3582 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1057)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057)))))
+(-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $))))
+((-3589 (((-112) |#3| $) 13)) (-3584 (((-3 $ "failed") |#3| (-912)) 23)) (-3866 (((-3 |#3| "failed") |#3| $) 38)) (-3587 (((-112) |#3| $) 16)) (-3588 (((-112) |#3| $) 14)))
+(((-1058 |#1| |#2| |#3|) (-10 -8 (-15 -3584 ((-3 |#1| "failed") |#3| (-912))) (-15 -3866 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3587 ((-112) |#3| |#1|)) (-15 -3588 ((-112) |#3| |#1|)) (-15 -3589 ((-112) |#3| |#1|))) (-1059 |#2| |#3|) (-13 (-842) (-362)) (-1229 |#2|)) (T -1058))
+NIL
+(-10 -8 (-15 -3584 ((-3 |#1| "failed") |#3| (-912))) (-15 -3866 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3587 ((-112) |#3| |#1|)) (-15 -3588 ((-112) |#3| |#1|)) (-15 -3589 ((-112) |#3| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) |#2| $) 21)) (-4030 (((-544) |#2| $) 22)) (-3584 (((-3 $ "failed") |#2| (-912)) 15)) (-3583 ((|#1| |#2| $ |#1|) 13)) (-3866 (((-3 |#2| "failed") |#2| $) 18)) (-3587 (((-112) |#2| $) 19)) (-3588 (((-112) |#2| $) 20)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3586 ((|#2| $) 17)) (-4353 (((-857) $) 11)) (-4176 ((|#1| |#2| $ |#1|) 14)) (-3585 (((-635 $) |#2|) 16)) (-3437 (((-112) $ $) 6)))
+(((-1059 |#1| |#2|) (-139) (-13 (-842) (-362)) (-1229 |t#1|)) (T -1059))
+((-4030 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-544)))) (-3589 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3588 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3587 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3866 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *3)))) (-3584 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-912)) (-4 *4 (-13 (-842) (-362))) (-4 *1 (-1059 *4 *2)) (-4 *2 (-1229 *4)))) (-4176 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2)))) (-3583 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2)))))
+(-13 (-1091) (-10 -8 (-15 -4030 ((-544) |t#2| $)) (-15 -3589 ((-112) |t#2| $)) (-15 -3588 ((-112) |t#2| $)) (-15 -3587 ((-112) |t#2| $)) (-15 -3866 ((-3 |t#2| "failed") |t#2| $)) (-15 -3586 (|t#2| $)) (-15 -3585 ((-635 $) |t#2|)) (-15 -3584 ((-3 $ "failed") |t#2| (-912))) (-15 -4176 (|t#1| |t#2| $ |t#1|)) (-15 -3583 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-3840 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765)) 95)) (-3837 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 56)) (-3841 (((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)) 87)) (-3835 (((-765) (-635 |#4|) (-635 |#5|)) 27)) (-3838 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 58) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112)) 60)) (-3839 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 79)) (-4377 (((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 82)) (-3836 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-112)) 55)) (-3834 (((-765) (-635 |#4|) (-635 |#5|)) 19)))
+(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-112))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1060))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3840 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11)))))) (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3839 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3839 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3838 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3838 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1062 *7 *8 *9 *3)))) (-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3836 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-112))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765))))
+((-3598 (((-112) |#5| $) 20)) (-3596 (((-112) |#5| $) 23)) (-3599 (((-112) |#5| $) 16) (((-112) $) 44)) (-3639 (((-635 $) |#5| $) NIL) (((-635 $) (-635 |#5|) $) 76) (((-635 $) (-635 |#5|) (-635 $)) 74) (((-635 $) |#5| (-635 $)) 77)) (-4175 (($ $ |#5|) NIL) (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 59) (((-635 $) (-635 |#5|) $) 61) (((-635 $) (-635 |#5|) (-635 $)) 63)) (-3590 (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 53) (((-635 $) (-635 |#5|) $) 55) (((-635 $) (-635 |#5|) (-635 $)) 57)) (-3597 (((-112) |#5| $) 26)))
+(((-1061 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4175 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -4175 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -4175 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -4175 ((-635 |#1|) |#5| |#1|)) (-15 -3590 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3590 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3590 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3590 ((-635 |#1|) |#5| |#1|)) (-15 -3639 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3639 ((-635 |#1|) |#5| |#1|)) (-15 -3596 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#1|)) (-15 -3597 ((-112) |#5| |#1|)) (-15 -3598 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#5| |#1|)) (-15 -4175 (|#1| |#1| |#5|))) (-1062 |#2| |#3| |#4| |#5|) (-450) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1061))
+NIL
+(-10 -8 (-15 -4175 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -4175 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -4175 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -4175 ((-635 |#1|) |#5| |#1|)) (-15 -3590 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3590 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3590 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3590 ((-635 |#1|) |#5| |#1|)) (-15 -3639 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3639 ((-635 |#1|) |#5| |#1|)) (-15 -3596 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#1|)) (-15 -3597 ((-112) |#5| |#1|)) (-15 -3598 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#5| |#1|)) (-15 -4175 (|#1| |#1| |#5|)))
+((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400)))))
(((-1062 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1062))
-((-2101 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2207 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2283 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-1775 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4220 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 (-112) (-638 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-4151 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-4151 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-1465 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1413 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 *3 (-638 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-2940 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-2557 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1338 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-2909 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-2909 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-2909 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-2909 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-1747 (*1 *1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1747 (*1 *1 *2 *1) (-12 (-5 *2 (-638 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)))) (-3702 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3702 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-3702 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-3702 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *5 *6 *7 *8)))))
-(-13 (-1198 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2101 ((-112) |t#4| $)) (-15 -2207 ((-112) |t#4| $)) (-15 -2283 ((-112) |t#4| $)) (-15 -2101 ((-112) $)) (-15 -1775 ((-112) |t#4| $)) (-15 -4220 ((-3 (-112) (-638 $)) |t#4| $)) (-15 -4151 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) |t#4| $)) (-15 -4151 ((-112) |t#4| $)) (-15 -1465 ((-638 $) |t#4| $)) (-15 -1413 ((-3 |t#4| (-638 $)) |t#4| |t#4| $)) (-15 -2940 ((-638 (-2 (|:| |val| |t#4|) (|:| -1495 $))) |t#4| |t#4| $)) (-15 -2557 ((-638 (-2 (|:| |val| |t#4|) (|:| -1495 $))) |t#4| $)) (-15 -1338 ((-638 $) |t#4| $)) (-15 -1338 ((-638 $) (-638 |t#4|) $)) (-15 -1338 ((-638 $) (-638 |t#4|) (-638 $))) (-15 -1338 ((-638 $) |t#4| (-638 $))) (-15 -2909 ((-638 $) |t#4| $)) (-15 -2909 ((-638 $) |t#4| (-638 $))) (-15 -2909 ((-638 $) (-638 |t#4|) $)) (-15 -2909 ((-638 $) (-638 |t#4|) (-638 $))) (-15 -1747 ($ |t#4| $)) (-15 -1747 ($ (-638 |t#4|) $)) (-15 -3702 ((-638 $) |t#4| $)) (-15 -3702 ((-638 $) |t#4| (-638 $))) (-15 -3702 ((-638 $) (-638 |t#4|) $)) (-15 -3702 ((-638 $) (-638 |t#4|) (-638 $))) (-15 -3742 ((-638 $) (-638 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
-((-2187 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|) 81)) (-3536 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 112)) (-2248 (((-638 |#5|) |#4| |#5|) 70)) (-2522 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3805 (((-1259)) 37)) (-2456 (((-1259)) 26)) (-2610 (((-1259) (-1148) (-1148) (-1148)) 33)) (-1401 (((-1259) (-1148) (-1148) (-1148)) 22)) (-2184 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|) 95)) (-1866 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#3| (-112)) 106) (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2094 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 101)))
-(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1401 ((-1259) (-1148) (-1148) (-1148))) (-15 -2456 ((-1259))) (-15 -2610 ((-1259) (-1148) (-1148) (-1148))) (-15 -3805 ((-1259))) (-15 -2184 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -1866 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1866 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -2094 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3536 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2522 ((-112) |#4| |#5|)) (-15 -2522 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2248 ((-638 |#5|) |#4| |#5|)) (-15 -2187 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1063))
-((-2187 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2248 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2522 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2522 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3536 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2094 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1866 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1495 *9)))) (-5 *1 (-1063 *6 *7 *4 *8 *9)))) (-1866 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-2184 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3805 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2610 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2456 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-1401 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1401 ((-1259) (-1148) (-1148) (-1148))) (-15 -2456 ((-1259))) (-15 -2610 ((-1259) (-1148) (-1148) (-1148))) (-15 -3805 ((-1259))) (-15 -2184 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -1866 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1866 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -2094 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3536 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2522 ((-112) |#4| |#5|)) (-15 -2522 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2248 ((-638 |#5|) |#4| |#5|)) (-15 -2187 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|)))
-((-4053 (((-112) $ $) NIL)) (-4095 (((-1204) $) 13)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1731 (((-1125) $) 10)) (-4064 (((-856) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1064) (-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -4095 ((-1204) $))))) (T -1064))
-((-1731 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-1064)))))
-(-13 (-1073) (-10 -8 (-15 -1731 ((-1125) $)) (-15 -4095 ((-1204) $))))
-((-4053 (((-112) $ $) NIL)) (-3305 (((-1166) $) 8)) (-1883 (((-1148) $) 16)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 13)))
-(((-1065 |#1|) (-13 (-1090) (-10 -8 (-15 -3305 ((-1166) $)))) (-1166)) (T -1065))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1065 *3)) (-14 *3 *2))))
-(-13 (-1090) (-10 -8 (-15 -3305 ((-1166) $))))
-((-4053 (((-112) $ $) NIL)) (-3220 (($ $ (-638 (-1166)) (-1 (-112) (-638 |#3|))) 33)) (-2560 (($ |#3| |#3|) 22) (($ |#3| |#3| (-638 (-1166))) 20)) (-4322 ((|#3| $) 13)) (-4061 (((-3 (-293 |#3|) "failed") $) 58)) (-3979 (((-293 |#3|) $) NIL)) (-1288 (((-638 (-1166)) $) 16)) (-3868 (((-885 |#1|) $) 11)) (-4308 ((|#3| $) 12)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2315 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-914)) 39)) (-4064 (((-856) $) 86) (($ (-293 |#3|)) 21)) (-1723 (((-112) $ $) 36)))
-(((-1066 |#1| |#2| |#3|) (-13 (-1090) (-285 |#3| |#3|) (-1031 (-293 |#3|)) (-10 -8 (-15 -2560 ($ |#3| |#3|)) (-15 -2560 ($ |#3| |#3| (-638 (-1166)))) (-15 -3220 ($ $ (-638 (-1166)) (-1 (-112) (-638 |#3|)))) (-15 -3868 ((-885 |#1|) $)) (-15 -4308 (|#3| $)) (-15 -4322 (|#3| $)) (-15 -2315 (|#3| $ |#3| (-914))) (-15 -1288 ((-638 (-1166)) $)))) (-1090) (-13 (-1042) (-879 |#1|) (-844) (-609 (-885 |#1|))) (-13 (-429 |#2|) (-879 |#1|) (-609 (-885 |#1|)))) (T -1066))
-((-2560 (*1 *1 *2 *2) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-5 *1 (-1066 *3 *4 *2)) (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))) (-2560 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1066 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))) (-3220 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1 (-112) (-638 *6))) (-4 *6 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1066 *4 *5 *6)))) (-3868 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2))) (-5 *2 (-885 *3)) (-5 *1 (-1066 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 *2))))) (-4308 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))) (-5 *1 (-1066 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))))) (-4322 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))) (-5 *1 (-1066 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))))) (-2315 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-914)) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1066 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))) (-1288 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-5 *2 (-638 (-1166))) (-5 *1 (-1066 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
-(-13 (-1090) (-285 |#3| |#3|) (-1031 (-293 |#3|)) (-10 -8 (-15 -2560 ($ |#3| |#3|)) (-15 -2560 ($ |#3| |#3| (-638 (-1166)))) (-15 -3220 ($ $ (-638 (-1166)) (-1 (-112) (-638 |#3|)))) (-15 -3868 ((-885 |#1|) $)) (-15 -4308 (|#3| $)) (-15 -4322 (|#3| $)) (-15 -2315 (|#3| $ |#3| (-914))) (-15 -1288 ((-638 (-1166)) $))))
-((-4053 (((-112) $ $) NIL)) (-3185 (($ (-638 (-1066 |#1| |#2| |#3|))) 13)) (-1574 (((-638 (-1066 |#1| |#2| |#3|)) $) 20)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-2315 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-914)) 26)) (-4064 (((-856) $) 16)) (-1723 (((-112) $ $) 19)))
-(((-1067 |#1| |#2| |#3|) (-13 (-1090) (-285 |#3| |#3|) (-10 -8 (-15 -3185 ($ (-638 (-1066 |#1| |#2| |#3|)))) (-15 -1574 ((-638 (-1066 |#1| |#2| |#3|)) $)) (-15 -2315 (|#3| $ |#3| (-914))))) (-1090) (-13 (-1042) (-879 |#1|) (-844) (-609 (-885 |#1|))) (-13 (-429 |#2|) (-879 |#1|) (-609 (-885 |#1|)))) (T -1067))
-((-3185 (*1 *1 *2) (-12 (-5 *2 (-638 (-1066 *3 *4 *5))) (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))) (-5 *1 (-1067 *3 *4 *5)))) (-1574 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-5 *2 (-638 (-1066 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))) (-2315 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-914)) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1067 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))))
-(-13 (-1090) (-285 |#3| |#3|) (-10 -8 (-15 -3185 ($ (-638 (-1066 |#1| |#2| |#3|)))) (-15 -1574 ((-638 (-1066 |#1| |#2| |#3|)) $)) (-15 -2315 (|#3| $ |#3| (-914)))))
-((-3913 (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112)) 74) (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|))) 76) (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112)) 75)))
-(((-1068 |#1| |#2|) (-10 -7 (-15 -3913 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -3913 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -3913 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-638 (-1166))) (T -1068))
-((-3913 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))))) (-3913 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *4)) (|:| -3752 (-638 (-945 *4)))))) (-5 *1 (-1068 *4 *5)) (-5 *3 (-638 (-945 *4))) (-14 *5 (-638 (-1166))))) (-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))))))
-(-10 -7 (-15 -3913 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -3913 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -3913 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112))))
-((-1633 (((-417 |#3|) |#3|) 18)))
-(((-1069 |#1| |#2| |#3|) (-10 -7 (-15 -1633 ((-417 |#3|) |#3|))) (-1230 (-406 (-561))) (-13 (-362) (-146) (-718 (-406 (-561)) |#1|)) (-1230 |#2|)) (T -1069))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-1230 (-406 (-561)))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-561)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1069 *4 *5 *3)) (-4 *3 (-1230 *5)))))
-(-10 -7 (-15 -1633 ((-417 |#3|) |#3|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 126)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-3012 (($ $) NIL (|has| |#1| (-362)))) (-3163 (((-112) $) NIL (|has| |#1| (-362)))) (-3287 (((-682 |#1|) (-1254 $)) NIL) (((-682 |#1|)) 115)) (-1736 ((|#1| $) 119)) (-1499 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-348)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1386 (((-765)) 40 (|has| |#1| (-367)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-3376 (($ (-1254 |#1|) (-1254 $)) NIL) (($ (-1254 |#1|)) 43)) (-3358 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-2405 (((-682 |#1|) $ (-1254 $)) NIL) (((-682 |#1|) $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 106) (((-682 |#1|) (-682 $)) 101)) (-3176 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-3735 (((-3 $ "failed") $) NIL)) (-3400 (((-914)) 77)) (-1362 (($) 44 (|has| |#1| (-367)))) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-3985 (($) NIL (|has| |#1| (-348)))) (-3943 (((-112) $) NIL (|has| |#1| (-348)))) (-3598 (($ $ (-765)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-4027 (((-914) $) NIL (|has| |#1| (-348))) (((-827 (-914)) $) NIL (|has| |#1| (-348)))) (-2252 (((-112) $) NIL)) (-2072 ((|#1| $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1588 ((|#2| $) 84 (|has| |#1| (-362)))) (-1335 (((-914) $) 130 (|has| |#1| (-367)))) (-3354 ((|#2| $) 58)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-3767 (($) NIL (|has| |#1| (-348)) CONST)) (-2442 (($ (-914)) 125 (|has| |#1| (-367)))) (-1701 (((-1110) $) NIL)) (-3194 (($) 121)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4190 (((-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))) NIL (|has| |#1| (-348)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-2753 ((|#1| (-1254 $)) NIL) ((|#1|) 109)) (-2768 (((-765) $) NIL (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-348)))) (-3922 (($ $) NIL (-4050 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) NIL (-4050 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3885 (((-682 |#1|) (-1254 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3158 ((|#2|) 73)) (-2102 (($) NIL (|has| |#1| (-348)))) (-3752 (((-1254 |#1|) $ (-1254 $)) 89) (((-682 |#1|) (-1254 $) (-1254 $)) NIL) (((-1254 |#1|) $) 71) (((-682 |#1|) (-1254 $)) 85)) (-4216 (((-1254 |#1|) $) NIL) (($ (-1254 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (|has| |#1| (-348)))) (-4064 (((-856) $) 57) (($ (-561)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-3666 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3934 ((|#2| $) 82)) (-3746 (((-765)) 75)) (-2615 (((-1254 $)) 81)) (-3996 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2246 (($) 30 T CONST)) (-2257 (($) 19 T CONST)) (-3154 (($ $) NIL (-4050 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) NIL (-4050 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-1723 (((-112) $ $) 63)) (-1828 (($ $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) 67) (($ $ $) NIL)) (-1810 (($ $ $) 65)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-561)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-561))) NIL (|has| |#1| (-362)))))
-(((-1070 |#1| |#2| |#3|) (-718 |#1| |#2|) (-171) (-1230 |#1|) |#2|) (T -1070))
+((-3599 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3598 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3597 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3595 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 (-112) (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3593 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3592 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 *3 (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3591 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-4181 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3639 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3639 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-3639 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-3639 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-3590 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3590 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-3590 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-3844 (*1 *1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)))) (-4175 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-4175 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-4175 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-4175 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *5 *6 *7 *8)))))
+(-13 (-1199 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3599 ((-112) |t#4| $)) (-15 -3598 ((-112) |t#4| $)) (-15 -3597 ((-112) |t#4| $)) (-15 -3599 ((-112) $)) (-15 -3596 ((-112) |t#4| $)) (-15 -3595 ((-3 (-112) (-635 $)) |t#4| $)) (-15 -3594 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |t#4| $)) (-15 -3594 ((-112) |t#4| $)) (-15 -3593 ((-635 $) |t#4| $)) (-15 -3592 ((-3 |t#4| (-635 $)) |t#4| |t#4| $)) (-15 -3591 ((-635 (-2 (|:| |val| |t#4|) (|:| -1688 $))) |t#4| |t#4| $)) (-15 -4181 ((-635 (-2 (|:| |val| |t#4|) (|:| -1688 $))) |t#4| $)) (-15 -3639 ((-635 $) |t#4| $)) (-15 -3639 ((-635 $) (-635 |t#4|) $)) (-15 -3639 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3639 ((-635 $) |t#4| (-635 $))) (-15 -3590 ((-635 $) |t#4| $)) (-15 -3590 ((-635 $) |t#4| (-635 $))) (-15 -3590 ((-635 $) (-635 |t#4|) $)) (-15 -3590 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3844 ($ |t#4| $)) (-15 -3844 ($ (-635 |t#4|) $)) (-15 -4175 ((-635 $) |t#4| $)) (-15 -4175 ((-635 $) |t#4| (-635 $))) (-15 -4175 ((-635 $) (-635 |t#4|) $)) (-15 -4175 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -4089 ((-635 $) (-635 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T))
+((-3606 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|) 81)) (-3603 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 112)) (-3605 (((-635 |#5|) |#4| |#5|) 70)) (-3604 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3688 (((-1259)) 37)) (-3686 (((-1259)) 26)) (-3687 (((-1259) (-1148) (-1148) (-1148)) 33)) (-3685 (((-1259) (-1148) (-1148) (-1148)) 22)) (-3600 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|) 95)) (-3601 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112)) 106) (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3602 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 101)))
+(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3600 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3602 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3604 ((-112) |#4| |#5|)) (-15 -3604 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3605 ((-635 |#5|) |#4| |#5|)) (-15 -3606 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1063))
+((-3606 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3605 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3604 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3604 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3603 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3602 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9)))) (-5 *1 (-1063 *6 *7 *4 *8 *9)))) (-3601 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3600 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3688 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3687 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3686 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3600 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3602 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3604 ((-112) |#4| |#5|)) (-15 -3604 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3605 ((-635 |#5|) |#4| |#5|)) (-15 -3606 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|)))
+((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 10)) (-4353 (((-857) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1064) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))) (T -1064))
+((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1064)))))
+(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))
+((-2947 (((-112) $ $) NIL)) (-3610 (($ $ (-635 (-1166)) (-1 (-112) (-635 |#3|))) 33)) (-3611 (($ |#3| |#3|) 22) (($ |#3| |#3| (-635 (-1166))) 20)) (-3927 ((|#3| $) 13)) (-3558 (((-3 (-292 |#3|) "failed") $) 58)) (-3557 (((-292 |#3|) $) NIL)) (-3608 (((-635 (-1166)) $) 16)) (-3609 (((-883 |#1|) $) 11)) (-3928 ((|#3| $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4206 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-912)) 39)) (-4353 (((-857) $) 86) (($ (-292 |#3|)) 21)) (-3437 (((-112) $ $) 36)))
+(((-1065 |#1| |#2| |#3|) (-13 (-1091) (-285 |#3| |#3|) (-1031 (-292 |#3|)) (-10 -8 (-15 -3611 ($ |#3| |#3|)) (-15 -3611 ($ |#3| |#3| (-635 (-1166)))) (-15 -3610 ($ $ (-635 (-1166)) (-1 (-112) (-635 |#3|)))) (-15 -3609 ((-883 |#1|) $)) (-15 -3928 (|#3| $)) (-15 -3927 (|#3| $)) (-15 -4206 (|#3| $ |#3| (-912))) (-15 -3608 ((-635 (-1166)) $)))) (-1091) (-13 (-1042) (-879 |#1|) (-844) (-609 (-883 |#1|))) (-13 (-420 |#2|) (-879 |#1|) (-609 (-883 |#1|)))) (T -1065))
+((-3611 (*1 *1 *2 *2) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-5 *1 (-1065 *3 *4 *2)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))) (-3611 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1065 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) (-3610 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1 (-112) (-635 *6))) (-4 *6 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1065 *4 *5 *6)))) (-3609 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2))) (-5 *2 (-883 *3)) (-5 *1 (-1065 *3 *4 *5)) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 *2))))) (-3928 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) (-5 *1 (-1065 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))))) (-3927 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) (-5 *1 (-1065 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))))) (-4206 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-912)) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1065 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-5 *2 (-635 (-1166))) (-5 *1 (-1065 *3 *4 *5)) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))))
+(-13 (-1091) (-285 |#3| |#3|) (-1031 (-292 |#3|)) (-10 -8 (-15 -3611 ($ |#3| |#3|)) (-15 -3611 ($ |#3| |#3| (-635 (-1166)))) (-15 -3610 ($ $ (-635 (-1166)) (-1 (-112) (-635 |#3|)))) (-15 -3609 ((-883 |#1|) $)) (-15 -3928 (|#3| $)) (-15 -3927 (|#3| $)) (-15 -4206 (|#3| $ |#3| (-912))) (-15 -3608 ((-635 (-1166)) $))))
+((-2947 (((-112) $ $) NIL)) (-3949 (((-1166) $) 8)) (-3643 (((-1148) $) 16)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 13)))
+(((-1066 |#1|) (-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $)))) (-1166)) (T -1066))
+((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1066 *3)) (-14 *3 *2))))
+(-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $))))
+((-2947 (((-112) $ $) NIL)) (-3613 (($ (-635 (-1065 |#1| |#2| |#3|))) 13)) (-3612 (((-635 (-1065 |#1| |#2| |#3|)) $) 20)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4206 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-912)) 26)) (-4353 (((-857) $) 16)) (-3437 (((-112) $ $) 19)))
+(((-1067 |#1| |#2| |#3|) (-13 (-1091) (-285 |#3| |#3|) (-10 -8 (-15 -3613 ($ (-635 (-1065 |#1| |#2| |#3|)))) (-15 -3612 ((-635 (-1065 |#1| |#2| |#3|)) $)) (-15 -4206 (|#3| $ |#3| (-912))))) (-1091) (-13 (-1042) (-879 |#1|) (-844) (-609 (-883 |#1|))) (-13 (-420 |#2|) (-879 |#1|) (-609 (-883 |#1|)))) (T -1067))
+((-3613 (*1 *1 *2) (-12 (-5 *2 (-635 (-1065 *3 *4 *5))) (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) (-5 *1 (-1067 *3 *4 *5)))) (-3612 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-5 *2 (-635 (-1065 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5)) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))) (-4206 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-912)) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1067 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))))
+(-13 (-1091) (-285 |#3| |#3|) (-10 -8 (-15 -3613 ($ (-635 (-1065 |#1| |#2| |#3|)))) (-15 -3612 ((-635 (-1065 |#1| |#2| |#3|)) $)) (-15 -4206 (|#3| $ |#3| (-912)))))
+((-3614 (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112)) 74) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|))) 76) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112)) 75)))
+(((-1068 |#1| |#2|) (-10 -7 (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-635 (-1166))) (T -1068))
+((-3614 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) (-5 *1 (-1068 *4 *5)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166))))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))))))
+(-10 -7 (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 126)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-2213 (($ $) NIL (|has| |#1| (-362)))) (-2211 (((-112) $) NIL (|has| |#1| (-362)))) (-1929 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) 115)) (-3734 ((|#1| $) 119)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3521 (((-765)) 40 (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) 43)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-1928 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 106) (((-682 |#1|) (-682 $)) 101)) (-4249 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-3494 (((-912)) 77)) (-3377 (($) 44 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3215 (($) NIL (|has| |#1| (-349)))) (-1824 (((-112) $) NIL (|has| |#1| (-349)))) (-1914 (($ $ (-765)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-4178 (((-912) $) NIL (|has| |#1| (-349))) (((-826 (-912)) $) NIL (|has| |#1| (-349)))) (-2545 (((-112) $) NIL)) (-3517 ((|#1| $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2164 ((|#2| $) 84 (|has| |#1| (-362)))) (-2160 (((-912) $) 130 (|has| |#1| (-367)))) (-3463 ((|#2| $) 58)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-3849 (($) NIL (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) 125 (|has| |#1| (-367)))) (-3644 (((-1110) $) NIL)) (-2544 (($) 121)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-349)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4164 ((|#1| (-1253 $)) NIL) ((|#1|) 109)) (-1915 (((-765) $) NIL (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-349)))) (-4217 (($ $) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3586 ((|#2|) 73)) (-1818 (($) NIL (|has| |#1| (-349)))) (-3625 (((-1253 |#1|) $ (-1253 $)) 89) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) 71) (((-682 |#1|) (-1253 $)) 85)) (-4377 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-349)))) (-4353 (((-857) $) 57) (($ (-544)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2743 ((|#2| $) 82)) (-3511 (((-765)) 75)) (-2162 (((-1253 $)) 81)) (-2212 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3040 (($) 30 T CONST)) (-3046 (($) 19 T CONST)) (-3051 (($ $) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3437 (((-112) $ $) 63)) (-4356 (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) 67) (($ $ $) NIL)) (-4246 (($ $ $) 65)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-544)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-544))) NIL (|has| |#1| (-362)))))
+(((-1069 |#1| |#2| |#3|) (-718 |#1| |#2|) (-171) (-1229 |#1|) |#2|) (T -1069))
NIL
(-718 |#1| |#2|)
-((-1633 (((-417 |#3|) |#3|) 19)))
-(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -1633 ((-417 |#3|) |#3|))) (-1230 (-406 (-945 (-561)))) (-13 (-362) (-146) (-718 (-406 (-945 (-561))) |#1|)) (-1230 |#2|)) (T -1071))
-((-1633 (*1 *2 *3) (-12 (-4 *4 (-1230 (-406 (-945 (-561))))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-945 (-561))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1230 *5)))))
-(-10 -7 (-15 -1633 ((-417 |#3|) |#3|)))
-((-4053 (((-112) $ $) NIL)) (-1597 (($ $ $) 14)) (-3017 (($ $ $) 15)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1291 (($) 6)) (-4216 (((-1166) $) 18)) (-4064 (((-856) $) 12)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 13)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 8)))
-(((-1072) (-13 (-844) (-609 (-1166)) (-10 -8 (-15 -1291 ($))))) (T -1072))
-((-1291 (*1 *1) (-5 *1 (-1072))))
-(-13 (-844) (-609 (-1166)) (-10 -8 (-15 -1291 ($))))
-((-4053 (((-112) $ $) 7)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-1723 (((-112) $ $) 6)))
+((-4139 (((-404 |#3|) |#3|) 18)))
+(((-1070 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-404 |#3|) |#3|))) (-1229 (-406 (-544))) (-13 (-362) (-146) (-718 (-406 (-544)) |#1|)) (-1229 |#2|)) (T -1070))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-544)) *4))) (-5 *2 (-404 *3)) (-5 *1 (-1070 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -4139 ((-404 |#3|) |#3|)))
+((-4139 (((-404 |#3|) |#3|) 19)))
+(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-404 |#3|) |#3|))) (-1229 (-406 (-939 (-544)))) (-13 (-362) (-146) (-718 (-406 (-939 (-544))) |#1|)) (-1229 |#2|)) (T -1071))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 (-939 (-544))))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-939 (-544))) *4))) (-5 *2 (-404 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -4139 ((-404 |#3|) |#3|)))
+((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) 14)) (-3242 (($ $ $) 15)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3615 (($) 6)) (-4377 (((-1166) $) 18)) (-4353 (((-857) $) 12)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 13)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 8)))
+(((-1072) (-13 (-844) (-609 (-1166)) (-10 -8 (-15 -3615 ($))))) (T -1072))
+((-3615 (*1 *1) (-5 *1 (-1072))))
+(-13 (-844) (-609 (-1166)) (-10 -8 (-15 -3615 ($))))
+((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-3437 (((-112) $ $) 6)))
(((-1073) (-139)) (T -1073))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-611 #0=(-1171)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T))
-((-3296 ((|#1| |#1| (-1 (-561) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3468 (((-1259)) 15)) (-1477 (((-638 |#1|)) 9)))
-(((-1074 |#1|) (-10 -7 (-15 -3468 ((-1259))) (-15 -1477 ((-638 |#1|))) (-15 -3296 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3296 (|#1| |#1| (-1 (-561) |#1| |#1|)))) (-131)) (T -1074))
-((-3296 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-561) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-3296 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-1477 (*1 *2) (-12 (-5 *2 (-638 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))) (-3468 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
-(-10 -7 (-15 -3468 ((-1259))) (-15 -1477 ((-638 |#1|))) (-15 -3296 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3296 (|#1| |#1| (-1 (-561) |#1| |#1|))))
-((-3237 (($ (-109) $) 16)) (-2607 (((-3 (-109) "failed") (-1166) $) 15)) (-2910 (($) 7)) (-2797 (($) 17)) (-2224 (($) 18)) (-3951 (((-638 (-174)) $) 10)) (-4064 (((-856) $) 21)))
-(((-1075) (-13 (-608 (-856)) (-10 -8 (-15 -2910 ($)) (-15 -3951 ((-638 (-174)) $)) (-15 -2607 ((-3 (-109) "failed") (-1166) $)) (-15 -3237 ($ (-109) $)) (-15 -2797 ($)) (-15 -2224 ($))))) (T -1075))
-((-2910 (*1 *1) (-5 *1 (-1075))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-638 (-174))) (-5 *1 (-1075)))) (-2607 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075)))) (-3237 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075)))) (-2797 (*1 *1) (-5 *1 (-1075))) (-2224 (*1 *1) (-5 *1 (-1075))))
-(-13 (-608 (-856)) (-10 -8 (-15 -2910 ($)) (-15 -3951 ((-638 (-174)) $)) (-15 -2607 ((-3 (-109) "failed") (-1166) $)) (-15 -3237 ($ (-109) $)) (-15 -2797 ($)) (-15 -2224 ($))))
-((-3625 (((-1254 (-682 |#1|)) (-638 (-682 |#1|))) 42) (((-1254 (-682 (-945 |#1|))) (-638 (-1166)) (-682 (-945 |#1|))) 62) (((-1254 (-682 (-406 (-945 |#1|)))) (-638 (-1166)) (-682 (-406 (-945 |#1|)))) 78)) (-3752 (((-1254 |#1|) (-682 |#1|) (-638 (-682 |#1|))) 36)))
-(((-1076 |#1|) (-10 -7 (-15 -3625 ((-1254 (-682 (-406 (-945 |#1|)))) (-638 (-1166)) (-682 (-406 (-945 |#1|))))) (-15 -3625 ((-1254 (-682 (-945 |#1|))) (-638 (-1166)) (-682 (-945 |#1|)))) (-15 -3625 ((-1254 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3752 ((-1254 |#1|) (-682 |#1|) (-638 (-682 |#1|))))) (-362)) (T -1076))
-((-3752 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-1254 *5)) (-5 *1 (-1076 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362)) (-5 *2 (-1254 (-682 *4))) (-5 *1 (-1076 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362)) (-5 *2 (-1254 (-682 (-945 *5)))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-945 *5))))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362)) (-5 *2 (-1254 (-682 (-406 (-945 *5))))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-406 (-945 *5)))))))
-(-10 -7 (-15 -3625 ((-1254 (-682 (-406 (-945 |#1|)))) (-638 (-1166)) (-682 (-406 (-945 |#1|))))) (-15 -3625 ((-1254 (-682 (-945 |#1|))) (-638 (-1166)) (-682 (-945 |#1|)))) (-15 -3625 ((-1254 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3752 ((-1254 |#1|) (-682 |#1|) (-638 (-682 |#1|)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2714 (((-638 (-765)) $) NIL) (((-638 (-765)) $ (-1166)) NIL)) (-2211 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-1405 (((-638 (-1078 (-1166))) $) NIL)) (-1596 (((-1162 $) $ (-1078 (-1166))) NIL) (((-1162 |#1|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-1078 (-1166)))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-4334 (($ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1078 (-1166)) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL) (((-3 (-1115 |#1| (-1166)) "failed") $) NIL)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1078 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-2395 (($ $ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-529 (-1078 (-1166))) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4027 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1393 (($ (-1162 |#1|) (-1078 (-1166))) NIL) (($ (-1162 $) (-1078 (-1166))) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-1078 (-1166))) NIL)) (-1522 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-638 (-765)) $ (-638 (-1078 (-1166)))) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-529 (-1078 (-1166))) (-529 (-1078 (-1166)))) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1607 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-2830 (((-3 (-1078 (-1166)) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-3776 (((-1078 (-1166)) $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-2378 (((-112) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-1078 (-1166))) (|:| -4181 (-765))) "failed") $) NIL)) (-3646 (($ $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1078 (-1166)) |#1|) NIL) (($ $ (-638 (-1078 (-1166))) (-638 |#1|)) NIL) (($ $ (-1078 (-1166)) $) NIL) (($ $ (-638 (-1078 (-1166))) (-638 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-232)))) (-2753 (($ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-3922 (($ $ (-1078 (-1166))) NIL) (($ $ (-638 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2995 (((-638 (-1166)) $) NIL)) (-3768 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-638 (-765)) $ (-638 (-1078 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-1078 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-1078 (-1166))) NIL) (($ $ (-638 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-93) . T) ((-102) . T) ((-611 #1=(-1171)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T))
+((-3618 ((|#1| |#1| (-1 (-544) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3616 (((-1259)) 15)) (-3617 (((-635 |#1|)) 9)))
+(((-1074 |#1|) (-10 -7 (-15 -3616 ((-1259))) (-15 -3617 ((-635 |#1|))) (-15 -3618 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3618 (|#1| |#1| (-1 (-544) |#1| |#1|)))) (-131)) (T -1074))
+((-3618 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-544) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-3618 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-3617 (*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))) (-3616 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
+(-10 -7 (-15 -3616 ((-1259))) (-15 -3617 ((-635 |#1|))) (-15 -3618 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3618 (|#1| |#1| (-1 (-544) |#1| |#1|))))
+((-3621 (($ (-109) $) 16)) (-3622 (((-3 (-109) "failed") (-1166) $) 15)) (-3972 (($) 7)) (-3620 (($) 17)) (-3619 (($) 18)) (-3623 (((-635 (-174)) $) 10)) (-4353 (((-857) $) 21)))
+(((-1075) (-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3623 ((-635 (-174)) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $)) (-15 -3621 ($ (-109) $)) (-15 -3620 ($)) (-15 -3619 ($))))) (T -1075))
+((-3972 (*1 *1) (-5 *1 (-1075))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1075)))) (-3622 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075)))) (-3621 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075)))) (-3620 (*1 *1) (-5 *1 (-1075))) (-3619 (*1 *1) (-5 *1 (-1075))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3623 ((-635 (-174)) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $)) (-15 -3621 ($ (-109) $)) (-15 -3620 ($)) (-15 -3619 ($))))
+((-3624 (((-1253 (-682 |#1|)) (-635 (-682 |#1|))) 42) (((-1253 (-682 (-939 |#1|))) (-635 (-1166)) (-682 (-939 |#1|))) 62) (((-1253 (-682 (-406 (-939 |#1|)))) (-635 (-1166)) (-682 (-406 (-939 |#1|)))) 78)) (-3625 (((-1253 |#1|) (-682 |#1|) (-635 (-682 |#1|))) 36)))
+(((-1076 |#1|) (-10 -7 (-15 -3624 ((-1253 (-682 (-406 (-939 |#1|)))) (-635 (-1166)) (-682 (-406 (-939 |#1|))))) (-15 -3624 ((-1253 (-682 (-939 |#1|))) (-635 (-1166)) (-682 (-939 |#1|)))) (-15 -3624 ((-1253 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3625 ((-1253 |#1|) (-682 |#1|) (-635 (-682 |#1|))))) (-362)) (T -1076))
+((-3625 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-1253 *5)) (-5 *1 (-1076 *5)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-1076 *4)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-939 *5)))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-939 *5))))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-406 (-939 *5))))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-406 (-939 *5)))))))
+(-10 -7 (-15 -3624 ((-1253 (-682 (-406 (-939 |#1|)))) (-635 (-1166)) (-682 (-406 (-939 |#1|))))) (-15 -3624 ((-1253 (-682 (-939 |#1|))) (-635 (-1166)) (-682 (-939 |#1|)))) (-15 -3624 ((-1253 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3625 ((-1253 |#1|) (-682 |#1|) (-635 (-682 |#1|)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1571 (((-635 (-765)) $) NIL) (((-635 (-765)) $ (-1166)) NIL)) (-1605 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-3467 (((-635 (-1078 (-1166))) $) NIL)) (-3469 (((-1160 $) $ (-1078 (-1166))) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1078 (-1166)))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1567 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1078 (-1166)) #2#) $) NIL) (((-3 (-1166) #2#) $) NIL) (((-3 (-1115 |#1| (-1166)) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1078 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-4163 (($ $ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 (-1078 (-1166))) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) (-1078 (-1166))) NIL) (($ (-1160 $) (-1078 (-1166))) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1078 (-1166))) NIL)) (-3202 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-635 (-765)) $ (-635 (-1078 (-1166)))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 (-1078 (-1166))) (-529 (-1078 (-1166)))) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1606 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-3468 (((-3 (-1078 (-1166)) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-1569 (((-1078 (-1166)) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1570 (((-112) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1078 (-1166))) (|:| -2536 (-765))) #3#) $) NIL)) (-1568 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1078 (-1166)) |#1|) NIL) (($ $ (-635 (-1078 (-1166))) (-635 |#1|)) NIL) (($ $ (-1078 (-1166)) $) NIL) (($ $ (-635 (-1078 (-1166))) (-635 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-4164 (($ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1078 (-1166))) NIL) (($ $ (-635 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-635 (-1166)) $) NIL)) (-4355 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-635 (-765)) $ (-635 (-1078 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-1078 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1078 (-1166))) NIL) (($ $ (-635 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1077 |#1|) (-13 (-252 |#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) (-1031 (-1115 |#1| (-1166)))) (-1042)) (T -1077))
NIL
(-13 (-252 |#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) (-1031 (-1115 |#1| (-1166))))
-((-4053 (((-112) $ $) NIL)) (-2211 (((-765) $) NIL)) (-2421 ((|#1| $) 10)) (-4061 (((-3 |#1| "failed") $) NIL)) (-3979 ((|#1| $) NIL)) (-4027 (((-765) $) 11)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-1607 (($ |#1| (-765)) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3922 (($ $) NIL) (($ $ (-765)) NIL)) (-4064 (((-856) $) NIL) (($ |#1|) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 15)))
+((-2947 (((-112) $ $) NIL)) (-1605 (((-765) $) NIL)) (-4238 ((|#1| $) 10)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-4178 (((-765) $) 11)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-1606 (($ |#1| (-765)) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4217 (($ $) NIL) (($ $ (-765)) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 15)))
(((-1078 |#1|) (-265 |#1|) (-844)) (T -1078))
NIL
(-265 |#1|)
-((-4165 (((-638 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 23 (|has| |#1| (-842))) (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 14)))
-(((-1079 |#1| |#2|) (-10 -7 (-15 -4165 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) (IF (|has| |#1| (-842)) (-15 -4165 ((-638 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) |%noBranch|)) (-1205) (-1205)) (T -1079))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-842)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-638 *6)) (-5 *1 (-1079 *5 *6)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1084 *6)) (-5 *1 (-1079 *5 *6)))))
-(-10 -7 (-15 -4165 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) (IF (|has| |#1| (-842)) (-15 -4165 ((-638 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3809 (((-638 (-1125)) $) 9)) (-1723 (((-112) $ $) NIL)))
-(((-1080) (-13 (-1073) (-10 -8 (-15 -3809 ((-638 (-1125)) $))))) (T -1080))
-((-3809 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1080)))))
-(-13 (-1073) (-10 -8 (-15 -3809 ((-638 (-1125)) $))))
-((-4165 (((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)) 19)))
-(((-1081 |#1| |#2|) (-10 -7 (-15 -4165 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)))) (-1205) (-1205)) (T -1081))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1082 *6)) (-5 *1 (-1081 *5 *6)))))
-(-10 -7 (-15 -4165 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2421 (((-1166) $) 11)) (-2650 (((-1084 |#1|) $) 12)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3723 (($ (-1166) (-1084 |#1|)) 10)) (-4064 (((-856) $) 20 (|has| |#1| (-1090)))) (-1723 (((-112) $ $) 15 (|has| |#1| (-1090)))))
-(((-1082 |#1|) (-13 (-1205) (-10 -8 (-15 -3723 ($ (-1166) (-1084 |#1|))) (-15 -2421 ((-1166) $)) (-15 -2650 ((-1084 |#1|) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|))) (-1205)) (T -1082))
-((-3723 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1084 *4)) (-4 *4 (-1205)) (-5 *1 (-1082 *4)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1205)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1205)))))
-(-13 (-1205) (-10 -8 (-15 -3723 ($ (-1166) (-1084 |#1|))) (-15 -2421 ((-1166) $)) (-15 -2650 ((-1084 |#1|) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|)))
-((-2650 (($ |#1| |#1|) 8)) (-2438 ((|#1| $) 11)) (-1737 ((|#1| $) 13)) (-1751 (((-561) $) 9)) (-3140 ((|#1| $) 10)) (-2035 ((|#1| $) 12)) (-4216 (($ |#1|) 6)) (-3890 (($ |#1| |#1|) 15)) (-1483 (($ $ (-561)) 14)))
-(((-1083 |#1|) (-139) (-1205)) (T -1083))
-((-3890 (*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-1483 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1083 *3)) (-4 *3 (-1205)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))) (-2650 (*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
-(-13 (-613 |t#1|) (-10 -8 (-15 -3890 ($ |t#1| |t#1|)) (-15 -1483 ($ $ (-561))) (-15 -1737 (|t#1| $)) (-15 -2035 (|t#1| $)) (-15 -2438 (|t#1| $)) (-15 -3140 (|t#1| $)) (-15 -1751 ((-561) $)) (-15 -2650 ($ |t#1| |t#1|))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4143 (($ |#1| |#1|) 15)) (-4365 (((-635 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-842)))) (-3630 ((|#1| $) 10)) (-3632 ((|#1| $) 9)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3628 (((-544) $) 14)) (-3629 ((|#1| $) 12)) (-3631 ((|#1| $) 11)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4370 (((-635 |#1|) $) 35 (|has| |#1| (-842))) (((-635 |#1|) (-635 $)) 34 (|has| |#1| (-842)))) (-4377 (($ |#1|) 26)) (-4353 (((-857) $) 25 (|has| |#1| (-1091)))) (-4144 (($ |#1| |#1|) 8)) (-3633 (($ $ (-544)) 16)) (-3437 (((-112) $ $) 19 (|has| |#1| (-1091)))))
+(((-1079 |#1|) (-13 (-1084 |#1|) (-10 -7 (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-635 |#1|))) |%noBranch|))) (-1204)) (T -1079))
+NIL
+(-13 (-1084 |#1|) (-10 -7 (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-635 |#1|))) |%noBranch|)))
+((-4365 (((-635 |#2|) (-1 |#2| |#1|) (-1079 |#1|)) 23 (|has| |#1| (-842))) (((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)) 14)))
+(((-1080 |#1| |#2|) (-10 -7 (-15 -4365 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) |%noBranch|)) (-1204) (-1204)) (T -1080))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-842)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-635 *6)) (-5 *1 (-1080 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1079 *6)) (-5 *1 (-1080 *5 *6)))))
+(-10 -7 (-15 -4365 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3626 (((-635 (-1125)) $) 9)) (-3437 (((-112) $ $) NIL)))
+(((-1081) (-13 (-1073) (-10 -8 (-15 -3626 ((-635 (-1125)) $))))) (T -1081))
+((-3626 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1081)))))
+(-13 (-1073) (-10 -8 (-15 -3626 ((-635 (-1125)) $))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4238 (((-1166) $) 11)) (-4143 (((-1079 |#1|) $) 12)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3627 (($ (-1166) (-1079 |#1|)) 10)) (-4353 (((-857) $) 20 (|has| |#1| (-1091)))) (-3437 (((-112) $ $) 15 (|has| |#1| (-1091)))))
+(((-1082 |#1|) (-13 (-1204) (-10 -8 (-15 -3627 ($ (-1166) (-1079 |#1|))) (-15 -4238 ((-1166) $)) (-15 -4143 ((-1079 |#1|) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) (-1204)) (T -1082))
+((-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1079 *4)) (-4 *4 (-1204)) (-5 *1 (-1082 *4)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1204)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-1079 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1204)))))
+(-13 (-1204) (-10 -8 (-15 -3627 ($ (-1166) (-1079 |#1|))) (-15 -4238 ((-1166) $)) (-15 -4143 ((-1079 |#1|) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|)))
+((-4365 (((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)) 19)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -4365 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)))) (-1204) (-1204)) (T -1083))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1082 *6)) (-5 *1 (-1083 *5 *6)))))
+(-10 -7 (-15 -4365 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|))))
+((-4143 (($ |#1| |#1|) 8)) (-3630 ((|#1| $) 11)) (-3632 ((|#1| $) 13)) (-3628 (((-544) $) 9)) (-3629 ((|#1| $) 10)) (-3631 ((|#1| $) 12)) (-4377 (($ |#1|) 6)) (-4144 (($ |#1| |#1|) 15)) (-3633 (($ $ (-544)) 14)))
+(((-1084 |#1|) (-139) (-1204)) (T -1084))
+((-4144 (*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3633 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1084 *3)) (-4 *3 (-1204)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1204)) (-5 *2 (-544)))) (-4143 (*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))))
+(-13 (-613 |t#1|) (-10 -8 (-15 -4144 ($ |t#1| |t#1|)) (-15 -3633 ($ $ (-544))) (-15 -3632 (|t#1| $)) (-15 -3631 (|t#1| $)) (-15 -3630 (|t#1| $)) (-15 -3629 (|t#1| $)) (-15 -3628 ((-544) $)) (-15 -4143 ($ |t#1| |t#1|))))
(((-613 |#1|) . T))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2650 (($ |#1| |#1|) 15)) (-4165 (((-638 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-842)))) (-2438 ((|#1| $) 10)) (-1737 ((|#1| $) 9)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1751 (((-561) $) 14)) (-3140 ((|#1| $) 12)) (-2035 ((|#1| $) 11)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3582 (((-638 |#1|) $) 35 (|has| |#1| (-842))) (((-638 |#1|) (-638 $)) 34 (|has| |#1| (-842)))) (-4216 (($ |#1|) 26)) (-4064 (((-856) $) 25 (|has| |#1| (-1090)))) (-3890 (($ |#1| |#1|) 8)) (-1483 (($ $ (-561)) 16)) (-1723 (((-112) $ $) 19 (|has| |#1| (-1090)))))
-(((-1084 |#1|) (-13 (-1083 |#1|) (-10 -7 (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-638 |#1|))) |%noBranch|))) (-1205)) (T -1084))
-NIL
-(-13 (-1083 |#1|) (-10 -7 (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-638 |#1|))) |%noBranch|)))
-((-2650 (($ |#1| |#1|) 8)) (-4165 ((|#2| (-1 |#1| |#1|) $) 16)) (-2438 ((|#1| $) 11)) (-1737 ((|#1| $) 13)) (-1751 (((-561) $) 9)) (-3140 ((|#1| $) 10)) (-2035 ((|#1| $) 12)) (-3582 ((|#2| (-638 $)) 18) ((|#2| $) 17)) (-4216 (($ |#1|) 6)) (-3890 (($ |#1| |#1|) 15)) (-1483 (($ $ (-561)) 14)))
+((-4143 (($ |#1| |#1|) 8)) (-4365 ((|#2| (-1 |#1| |#1|) $) 16)) (-3630 ((|#1| $) 11)) (-3632 ((|#1| $) 13)) (-3628 (((-544) $) 9)) (-3629 ((|#1| $) 10)) (-3631 ((|#1| $) 12)) (-4370 ((|#2| (-635 $)) 18) ((|#2| $) 17)) (-4377 (($ |#1|) 6)) (-4144 (($ |#1| |#1|) 15)) (-3633 (($ $ (-544)) 14)))
(((-1085 |#1| |#2|) (-139) (-842) (-1139 |t#1|)) (T -1085))
-((-3582 (*1 *2 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3)))) (-4165 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4)))))
-(-13 (-1083 |t#1|) (-10 -8 (-15 -3582 (|t#2| (-638 $))) (-15 -3582 (|t#2| $)) (-15 -4165 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-613 |#1|) . T) ((-1083 |#1|) . T))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1501 (((-1125) $) 12)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3316 (((-638 (-1125)) $) 10)) (-1723 (((-112) $ $) NIL)))
-(((-1086) (-13 (-1073) (-10 -8 (-15 -3316 ((-638 (-1125)) $)) (-15 -1501 ((-1125) $))))) (T -1086))
-((-3316 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1086)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086)))))
-(-13 (-1073) (-10 -8 (-15 -3316 ((-638 (-1125)) $)) (-15 -1501 ((-1125) $))))
-((-2468 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2327 (($ $ $) 10)) (-1533 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1087 |#1| |#2|) (-10 -8 (-15 -2468 (|#1| |#2| |#1|)) (-15 -2468 (|#1| |#1| |#2|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#2|)) (-15 -1533 (|#1| |#1| |#1|))) (-1088 |#2|) (-1090)) (T -1087))
-NIL
-(-10 -8 (-15 -2468 (|#1| |#2| |#1|)) (-15 -2468 (|#1| |#1| |#2|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#2|)) (-15 -1533 (|#1| |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-2468 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2327 (($ $ $) 20)) (-3856 (((-112) $ $) 19)) (-2684 (((-112) $ (-765)) 35)) (-1605 (($) 25) (($ (-638 |#1|)) 24)) (-3612 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4399)))) (-2674 (($) 36 T CONST)) (-1461 (($ $) 59 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#1| $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4399)))) (-2368 (((-638 |#1|) $) 43 (|has| $ (-6 -4399)))) (-3713 (((-112) $ $) 28)) (-3116 (((-112) $ (-765)) 34)) (-4125 (((-638 |#1|) $) 44 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 38)) (-3683 (((-112) $ (-765)) 33)) (-1883 (((-1148) $) 9)) (-1338 (($ $ $) 23)) (-1701 (((-1110) $) 10)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3977 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#1|) (-638 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 (-293 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 29)) (-2508 (((-112) $) 32)) (-2910 (($) 31)) (-1533 (($ $ $) 22) (($ $ |#1|) 21)) (-1714 (((-765) |#1| $) 45 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4399)))) (-4225 (($ $) 30)) (-4216 (((-534) $) 60 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 51)) (-4064 (((-856) $) 11)) (-1697 (($) 27) (($ (-638 |#1|)) 26)) (-3715 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 6)) (-3548 (((-765) $) 37 (|has| $ (-6 -4399)))))
-(((-1088 |#1|) (-139) (-1090)) (T -1088))
-((-3713 (*1 *2 *1 *1) (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-1697 (*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3)))) (-1605 (*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-1605 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3)))) (-1338 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-1533 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-1533 (*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-2327 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-3856 (*1 *2 *1 *1) (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-2468 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-2468 (*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-2468 (*1 *1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
-(-13 (-1090) (-150 |t#1|) (-10 -8 (-6 -4389) (-15 -3713 ((-112) $ $)) (-15 -1697 ($)) (-15 -1697 ($ (-638 |t#1|))) (-15 -1605 ($)) (-15 -1605 ($ (-638 |t#1|))) (-15 -1338 ($ $ $)) (-15 -1533 ($ $ $)) (-15 -1533 ($ $ |t#1|)) (-15 -2327 ($ $ $)) (-15 -3856 ((-112) $ $)) (-15 -2468 ($ $ $)) (-15 -2468 ($ $ |t#1|)) (-15 -2468 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) . T) ((-1205) . T))
-((-1883 (((-1148) $) 10)) (-1701 (((-1110) $) 8)))
-(((-1089 |#1|) (-10 -8 (-15 -1883 ((-1148) |#1|)) (-15 -1701 ((-1110) |#1|))) (-1090)) (T -1089))
-NIL
-(-10 -8 (-15 -1883 ((-1148) |#1|)) (-15 -1701 ((-1110) |#1|)))
-((-4053 (((-112) $ $) 7)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)))
-(((-1090) (-139)) (T -1090))
-((-1701 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1110)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1148)))))
-(-13 (-102) (-608 (-856)) (-10 -8 (-15 -1701 ((-1110) $)) (-15 -1883 ((-1148) $))))
-(((-102) . T) ((-608 (-856)) . T))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) 30)) (-4157 (($ (-638 (-914))) 52)) (-2302 (((-3 $ "failed") $ (-914) (-914)) 58)) (-1362 (($) 32)) (-4288 (((-112) (-914) $) 35)) (-1335 (((-914) $) 50)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) 31)) (-3976 (((-3 $ "failed") $ (-914)) 55)) (-1701 (((-1110) $) NIL)) (-2328 (((-1254 $)) 40)) (-2109 (((-638 (-914)) $) 24)) (-1965 (((-765) $ (-914) (-914)) 56)) (-4064 (((-856) $) 29)) (-1723 (((-112) $ $) 21)))
-(((-1091 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3976 ((-3 $ "failed") $ (-914))) (-15 -2302 ((-3 $ "failed") $ (-914) (-914))) (-15 -2109 ((-638 (-914)) $)) (-15 -4157 ($ (-638 (-914)))) (-15 -2328 ((-1254 $))) (-15 -4288 ((-112) (-914) $)) (-15 -1965 ((-765) $ (-914) (-914))))) (-914) (-914)) (T -1091))
-((-3976 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2302 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-2328 (*1 *2) (-12 (-5 *2 (-1254 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-4288 (*1 *2 *3 *1) (-12 (-5 *3 (-914)) (-5 *2 (-112)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-765)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-367) (-10 -8 (-15 -3976 ((-3 $ "failed") $ (-914))) (-15 -2302 ((-3 $ "failed") $ (-914) (-914))) (-15 -2109 ((-638 (-914)) $)) (-15 -4157 ($ (-638 (-914)))) (-15 -2328 ((-1254 $))) (-15 -4288 ((-112) (-914) $)) (-15 -1965 ((-765) $ (-914) (-914)))))
-((-4053 (((-112) $ $) NIL)) (-2750 (($) NIL (|has| |#1| (-367)))) (-2468 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-2327 (($ $ $) 71)) (-3856 (((-112) $ $) 72)) (-2684 (((-112) $ (-765)) NIL)) (-1386 (((-765)) NIL (|has| |#1| (-367)))) (-1605 (($ (-638 |#1|)) NIL) (($) 13)) (-1954 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3222 (($ |#1| $) 67 (|has| $ (-6 -4399))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4399)))) (-1362 (($) NIL (|has| |#1| (-367)))) (-2368 (((-638 |#1|) $) 19 (|has| $ (-6 -4399)))) (-3713 (((-112) $ $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-1597 ((|#1| $) 57 (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-3017 ((|#1| $) 55 (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 34)) (-1335 (((-914) $) NIL (|has| |#1| (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1338 (($ $ $) 69)) (-3721 ((|#1| $) 25)) (-1617 (($ |#1| $) 65)) (-2442 (($ (-914)) NIL (|has| |#1| (-367)))) (-1701 (((-1110) $) NIL)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1387 ((|#1| $) 27)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 21)) (-2910 (($) 11)) (-1533 (($ $ |#1|) NIL) (($ $ $) 70)) (-3643 (($) NIL) (($ (-638 |#1|)) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 16)) (-4216 (((-534) $) 52 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 61)) (-4211 (($ $) NIL (|has| |#1| (-367)))) (-4064 (((-856) $) NIL)) (-2065 (((-765) $) NIL)) (-1697 (($ (-638 |#1|)) NIL) (($) 12)) (-1903 (($ (-638 |#1|)) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 54)) (-3548 (((-765) $) 10 (|has| $ (-6 -4399)))))
-(((-1092 |#1|) (-424 |#1|) (-1090)) (T -1092))
-NIL
-(-424 |#1|)
-((-4053 (((-112) $ $) 7)) (-1541 (((-112) $) 32)) (-1720 ((|#2| $) 27)) (-3517 (((-112) $) 33)) (-3651 ((|#1| $) 28)) (-2178 (((-112) $) 35)) (-1945 (((-112) $) 37)) (-2139 (((-112) $) 34)) (-1883 (((-1148) $) 9)) (-1765 (((-112) $) 31)) (-1741 ((|#3| $) 26)) (-1701 (((-1110) $) 10)) (-2061 (((-112) $) 30)) (-4242 ((|#4| $) 25)) (-2382 ((|#5| $) 24)) (-3394 (((-112) $ $) 38)) (-2315 (($ $ (-561)) 20) (($ $ (-638 (-561))) 19)) (-1707 (((-638 $) $) 29)) (-4216 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-638 $)) 39)) (-4064 (((-856) $) 11)) (-3778 (($ $) 22)) (-3766 (($ $) 23)) (-3920 (((-112) $) 36)) (-1723 (((-112) $ $) 6)) (-3548 (((-561) $) 21)))
-(((-1093 |#1| |#2| |#3| |#4| |#5|) (-139) (-1090) (-1090) (-1090) (-1090) (-1090)) (T -1093))
-((-3394 (*1 *2 *1 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1707 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-638 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-4242 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-3778 (*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-561)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))))
-(-13 (-1090) (-613 |t#1|) (-613 |t#2|) (-613 |t#3|) (-613 |t#4|) (-613 |t#4|) (-613 |t#5|) (-613 (-638 $)) (-10 -8 (-15 -3394 ((-112) $ $)) (-15 -1945 ((-112) $)) (-15 -3920 ((-112) $)) (-15 -2178 ((-112) $)) (-15 -2139 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -1541 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -2061 ((-112) $)) (-15 -1707 ((-638 $) $)) (-15 -3651 (|t#1| $)) (-15 -1720 (|t#2| $)) (-15 -1741 (|t#3| $)) (-15 -4242 (|t#4| $)) (-15 -2382 (|t#5| $)) (-15 -3766 ($ $)) (-15 -3778 ($ $)) (-15 -3548 ((-561) $)) (-15 -2315 ($ $ (-561))) (-15 -2315 ($ $ (-638 (-561))))))
-(((-102) . T) ((-608 (-856)) . T) ((-613 (-638 $)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 |#4|) . T) ((-613 |#5|) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-1541 (((-112) $) NIL)) (-1720 (((-1166) $) NIL)) (-3517 (((-112) $) NIL)) (-3651 (((-1148) $) NIL)) (-2178 (((-112) $) NIL)) (-1945 (((-112) $) NIL)) (-2139 (((-112) $) NIL)) (-1883 (((-1148) $) NIL)) (-1765 (((-112) $) NIL)) (-1741 (((-561) $) NIL)) (-1701 (((-1110) $) NIL)) (-2061 (((-112) $) NIL)) (-4242 (((-224) $) NIL)) (-2382 (((-856) $) NIL)) (-3394 (((-112) $ $) NIL)) (-2315 (($ $ (-561)) NIL) (($ $ (-638 (-561))) NIL)) (-1707 (((-638 $) $) NIL)) (-4216 (($ (-1148)) NIL) (($ (-1166)) NIL) (($ (-561)) NIL) (($ (-224)) NIL) (($ (-856)) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL)) (-3778 (($ $) NIL)) (-3766 (($ $) NIL)) (-3920 (((-112) $) NIL)) (-1723 (((-112) $ $) NIL)) (-3548 (((-561) $) NIL)))
-(((-1094) (-1093 (-1148) (-1166) (-561) (-224) (-856))) (T -1094))
-NIL
-(-1093 (-1148) (-1166) (-561) (-224) (-856))
-((-4053 (((-112) $ $) NIL)) (-1541 (((-112) $) 39)) (-1720 ((|#2| $) 42)) (-3517 (((-112) $) 18)) (-3651 ((|#1| $) 19)) (-2178 (((-112) $) 37)) (-1945 (((-112) $) 14)) (-2139 (((-112) $) 38)) (-1883 (((-1148) $) NIL)) (-1765 (((-112) $) 40)) (-1741 ((|#3| $) 44)) (-1701 (((-1110) $) NIL)) (-2061 (((-112) $) 41)) (-4242 ((|#4| $) 43)) (-2382 ((|#5| $) 45)) (-3394 (((-112) $ $) 36)) (-2315 (($ $ (-561)) 56) (($ $ (-638 (-561))) 58)) (-1707 (((-638 $) $) 24)) (-4216 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-638 $)) 46)) (-4064 (((-856) $) 25)) (-3778 (($ $) 23)) (-3766 (($ $) 52)) (-3920 (((-112) $) 21)) (-1723 (((-112) $ $) 35)) (-3548 (((-561) $) 54)))
-(((-1095 |#1| |#2| |#3| |#4| |#5|) (-1093 |#1| |#2| |#3| |#4| |#5|) (-1090) (-1090) (-1090) (-1090) (-1090)) (T -1095))
-NIL
-(-1093 |#1| |#2| |#3| |#4| |#5|)
-((-3107 (((-1259) $) 23)) (-1334 (($ (-1166) (-433) |#2|) 11)) (-4064 (((-856) $) 16)))
-(((-1096 |#1| |#2|) (-13 (-394) (-10 -8 (-15 -1334 ($ (-1166) (-433) |#2|)))) (-844) (-429 |#1|)) (T -1096))
-((-1334 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844)) (-5 *1 (-1096 *5 *4)) (-4 *4 (-429 *5)))))
-(-13 (-394) (-10 -8 (-15 -1334 ($ (-1166) (-433) |#2|))))
-((-4316 (((-112) |#5| |#5|) 37)) (-2253 (((-112) |#5| |#5|) 51)) (-3051 (((-112) |#5| (-638 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-2644 (((-112) (-638 |#4|) (-638 |#4|)) 57)) (-1395 (((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) 62)) (-3044 (((-1259)) 33)) (-2263 (((-1259) (-1148) (-1148) (-1148)) 29)) (-4361 (((-638 |#5|) (-638 |#5|)) 81)) (-2965 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) 79)) (-1981 (((-638 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112)) 101)) (-3106 (((-112) |#5| |#5|) 46)) (-2451 (((-3 (-112) "failed") |#5| |#5|) 70)) (-1630 (((-112) (-638 |#4|) (-638 |#4|)) 56)) (-3791 (((-112) (-638 |#4|) (-638 |#4|)) 58)) (-4345 (((-112) (-638 |#4|) (-638 |#4|)) 59)) (-2219 (((-3 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-2434 (((-638 |#5|) (-638 |#5|)) 42)))
-(((-1097 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2263 ((-1259) (-1148) (-1148) (-1148))) (-15 -3044 ((-1259))) (-15 -4316 ((-112) |#5| |#5|)) (-15 -2434 ((-638 |#5|) (-638 |#5|))) (-15 -3106 ((-112) |#5| |#5|)) (-15 -2253 ((-112) |#5| |#5|)) (-15 -2644 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1630 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3791 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -4345 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2451 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3051 ((-112) |#5| |#5|)) (-15 -3051 ((-112) |#5| (-638 |#5|))) (-15 -4361 ((-638 |#5|) (-638 |#5|))) (-15 -1395 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2965 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-15 -1981 ((-638 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2219 ((-3 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1097))
-((-2219 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3394 (-638 *9)) (|:| -1495 *4) (|:| |ineq| (-638 *9)))) (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-1981 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| -3394 (-638 *9)) (|:| -1495 *10) (|:| |ineq| (-638 *9))))) (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1495 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-1395 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)))) (-4361 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *8 *3)))) (-3051 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2451 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-4345 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3791 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-1630 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2253 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3106 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-4316 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3044 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2263 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2263 ((-1259) (-1148) (-1148) (-1148))) (-15 -3044 ((-1259))) (-15 -4316 ((-112) |#5| |#5|)) (-15 -2434 ((-638 |#5|) (-638 |#5|))) (-15 -3106 ((-112) |#5| |#5|)) (-15 -2253 ((-112) |#5| |#5|)) (-15 -2644 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1630 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3791 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -4345 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2451 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3051 ((-112) |#5| |#5|)) (-15 -3051 ((-112) |#5| (-638 |#5|))) (-15 -4361 ((-638 |#5|) (-638 |#5|))) (-15 -1395 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2965 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-15 -1981 ((-638 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2219 ((-3 (-2 (|:| -3394 (-638 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3264 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|) 95)) (-3963 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|) 71)) (-2367 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 89)) (-3500 (((-638 |#5|) |#4| |#5|) 109)) (-2585 (((-638 |#5|) |#4| |#5|) 116)) (-3692 (((-638 |#5|) |#4| |#5|) 117)) (-3936 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 96)) (-4259 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 115)) (-3873 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3261 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#3| (-112)) 83) (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3008 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 78)) (-3805 (((-1259)) 37)) (-2456 (((-1259)) 26)) (-2610 (((-1259) (-1148) (-1148) (-1148)) 33)) (-1401 (((-1259) (-1148) (-1148) (-1148)) 22)))
-(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1401 ((-1259) (-1148) (-1148) (-1148))) (-15 -2456 ((-1259))) (-15 -2610 ((-1259) (-1148) (-1148) (-1148))) (-15 -3805 ((-1259))) (-15 -3963 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3261 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3261 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -3008 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2367 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3873 ((-112) |#4| |#5|)) (-15 -3936 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3500 ((-638 |#5|) |#4| |#5|)) (-15 -4259 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2585 ((-638 |#5|) |#4| |#5|)) (-15 -3873 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3692 ((-638 |#5|) |#4| |#5|)) (-15 -3264 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1098))
-((-3264 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3692 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3873 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2585 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-4259 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3500 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3873 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2367 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3008 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1495 *9)))) (-5 *1 (-1098 *6 *7 *4 *8 *9)))) (-3261 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3963 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3805 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2610 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2456 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-1401 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1401 ((-1259) (-1148) (-1148) (-1148))) (-15 -2456 ((-1259))) (-15 -2610 ((-1259) (-1148) (-1148) (-1148))) (-15 -3805 ((-1259))) (-15 -3963 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3261 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3261 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -3008 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2367 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3873 ((-112) |#4| |#5|)) (-15 -3936 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3500 ((-638 |#5|) |#4| |#5|)) (-15 -4259 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2585 ((-638 |#5|) |#4| |#5|)) (-15 -3873 ((-638 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3692 ((-638 |#5|) |#4| |#5|)) (-15 -3264 ((-638 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|)))
-((-4053 (((-112) $ $) 7)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) 85)) (-3742 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1405 (((-638 |#3|) $) 33)) (-4214 (((-112) $) 26)) (-2444 (((-112) $) 17 (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) 101) (((-112) $) 97)) (-4089 ((|#4| |#4| $) 92)) (-2557 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) 27)) (-2684 (((-112) $ (-765)) 44)) (-3612 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) 79)) (-2674 (($) 45 T CONST)) (-3853 (((-112) $) 22 (|has| |#1| (-553)))) (-3733 (((-112) $ $) 24 (|has| |#1| (-553)))) (-4338 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1577 (((-112) $) 25 (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3293 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) 36)) (-3979 (($ (-638 |#4|)) 35)) (-1437 (((-3 $ "failed") $) 82)) (-2471 ((|#4| |#4| $) 89)) (-1461 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2310 ((|#4| |#4| $) 87)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) 105)) (-2207 (((-112) |#4| $) 136)) (-1775 (((-112) |#4| $) 133)) (-2101 (((-112) |#4| $) 137) (((-112) $) 134)) (-2368 (((-638 |#4|) $) 52 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) 104) (((-112) $) 103)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) 43)) (-4125 (((-638 |#4|) $) 53 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 47)) (-2597 (((-638 |#3|) $) 32)) (-2247 (((-112) |#3| $) 31)) (-3683 (((-112) $ (-765)) 42)) (-1883 (((-1148) $) 9)) (-1413 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-2940 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1501 (((-3 |#4| "failed") $) 83)) (-1465 (((-638 $) |#4| $) 129)) (-4220 (((-3 (-112) (-638 $)) |#4| $) 132)) (-4151 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1338 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-1747 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-3589 (((-638 |#4|) $) 107)) (-3067 (((-112) |#4| $) 99) (((-112) $) 95)) (-3641 ((|#4| |#4| $) 90)) (-4345 (((-112) $ $) 110)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) 100) (((-112) $) 96)) (-2903 ((|#4| |#4| $) 91)) (-1701 (((-1110) $) 10)) (-1424 (((-3 |#4| "failed") $) 84)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2336 (((-3 $ "failed") $ |#4|) 78)) (-3702 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-3977 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) 38)) (-2508 (((-112) $) 41)) (-2910 (($) 40)) (-3768 (((-765) $) 106)) (-1714 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4399)))) (-4225 (($ $) 39)) (-4216 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-2049 (($ $ |#3|) 30)) (-1768 (($ $) 88)) (-2983 (($ $ |#3|) 29)) (-4064 (((-856) $) 11) (((-638 |#4|) $) 37)) (-3513 (((-765) $) 76 (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2909 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) 81)) (-2283 (((-112) |#4| $) 135)) (-4024 (((-112) |#3| $) 80)) (-1723 (((-112) $ $) 6)) (-3548 (((-765) $) 46 (|has| $ (-6 -4399)))))
+((-4370 (*1 *2 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3)))) (-4365 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4)))))
+(-13 (-1084 |t#1|) (-10 -8 (-15 -4370 (|t#2| (-635 $))) (-15 -4370 (|t#2| $)) (-15 -4365 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-613 |#1|) . T) ((-1084 |#1|) . T))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-4204 (((-1125) $) 12)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 10)) (-3437 (((-112) $ $) NIL)))
+(((-1086) (-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $)) (-15 -4204 ((-1125) $))))) (T -1086))
+((-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1086)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086)))))
+(-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $)) (-15 -4204 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-1949 (($) NIL (|has| |#1| (-367)))) (-3635 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3637 (($ $ $) 71)) (-3636 (((-112) $ $) 72)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-3640 (($ (-635 |#1|)) NIL) (($) 13)) (-1659 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) 67 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4400)))) (-3377 (($) NIL (|has| |#1| (-367)))) (-2096 (((-635 |#1|) $) 19 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2913 ((|#1| $) 57 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3242 ((|#1| $) 55 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 34)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 69)) (-1356 ((|#1| $) 25)) (-4014 (($ |#1| $) 65)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-3644 (((-1110) $) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1357 ((|#1| $) 27)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 21)) (-3972 (($) 11)) (-3638 (($ $ |#1|) NIL) (($ $ $) 70)) (-1550 (($) NIL) (($ (-635 |#1|)) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 16)) (-4377 (((-533) $) 52 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 61)) (-1950 (($ $) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL)) (-1951 (((-765) $) NIL)) (-3641 (($ (-635 |#1|)) NIL) (($) 12)) (-1358 (($ (-635 |#1|)) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 54)) (-4364 (((-765) $) 10 (|has| $ (-6 -4400)))))
+(((-1087 |#1|) (-425 |#1|) (-1091)) (T -1087))
+NIL
+(-425 |#1|)
+((-3635 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3637 (($ $ $) 10)) (-3638 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1088 |#1| |#2|) (-10 -8 (-15 -3635 (|#1| |#2| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3638 (|#1| |#1| |#1|))) (-1089 |#2|) (-1091)) (T -1088))
+NIL
+(-10 -8 (-15 -3635 (|#1| |#2| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3638 (|#1| |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3635 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3637 (($ $ $) 20)) (-3636 (((-112) $ $) 19)) (-1293 (((-112) $ (-765)) 35)) (-3640 (($) 25) (($ (-635 |#1|)) 24)) (-4117 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4400)))) (-4131 (($) 36 T CONST)) (-1424 (($ $) 59 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 43 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 28)) (-4126 (((-112) $ (-765)) 34)) (-2554 (((-635 |#1|) $) 44 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 38)) (-4123 (((-112) $ (-765)) 33)) (-3643 (((-1148) $) 9)) (-3639 (($ $ $) 23)) (-3644 (((-1110) $) 10)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 (-292 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 29)) (-3807 (((-112) $) 32)) (-3972 (($) 31)) (-3638 (($ $ $) 22) (($ $ |#1|) 21)) (-2097 (((-765) |#1| $) 45 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4400)))) (-3804 (($ $) 30)) (-4377 (((-533) $) 60 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 51)) (-4353 (((-857) $) 11)) (-3641 (($) 27) (($ (-635 |#1|)) 26)) (-2099 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 37 (|has| $ (-6 -4400)))))
+(((-1089 |#1|) (-139) (-1091)) (T -1089))
+((-3642 (*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3641 (*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3641 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3)))) (-3640 (*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3640 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3)))) (-3639 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3638 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3638 (*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3637 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3636 (*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3635 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3635 (*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3635 (*1 *1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))))
+(-13 (-1091) (-150 |t#1|) (-10 -8 (-6 -4390) (-15 -3642 ((-112) $ $)) (-15 -3641 ($)) (-15 -3641 ($ (-635 |t#1|))) (-15 -3640 ($)) (-15 -3640 ($ (-635 |t#1|))) (-15 -3639 ($ $ $)) (-15 -3638 ($ $ $)) (-15 -3638 ($ $ |t#1|)) (-15 -3637 ($ $ $)) (-15 -3636 ((-112) $ $)) (-15 -3635 ($ $ $)) (-15 -3635 ($ $ |t#1|)) (-15 -3635 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) . T) ((-1204) . T))
+((-3643 (((-1148) $) 10)) (-3644 (((-1110) $) 8)))
+(((-1090 |#1|) (-10 -8 (-15 -3643 ((-1148) |#1|)) (-15 -3644 ((-1110) |#1|))) (-1091)) (T -1090))
+NIL
+(-10 -8 (-15 -3643 ((-1148) |#1|)) (-15 -3644 ((-1110) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)))
+(((-1091) (-139)) (T -1091))
+((-3644 (*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1110)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1148)))))
+(-13 (-102) (-608 (-857)) (-10 -8 (-15 -3644 ((-1110) $)) (-15 -3643 ((-1148) $))))
+(((-102) . T) ((-608 (-857)) . T))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) 30)) (-3648 (($ (-635 (-912))) 52)) (-3650 (((-3 $ #1="failed") $ (-912) (-912)) 58)) (-3377 (($) 32)) (-3646 (((-112) (-912) $) 35)) (-2160 (((-912) $) 50)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 31)) (-3651 (((-3 $ #1#) $ (-912)) 55)) (-3644 (((-1110) $) NIL)) (-3647 (((-1253 $)) 40)) (-3649 (((-635 (-912)) $) 24)) (-3645 (((-765) $ (-912) (-912)) 56)) (-4353 (((-857) $) 29)) (-3437 (((-112) $ $) 21)))
+(((-1092 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3651 ((-3 $ #1="failed") $ (-912))) (-15 -3650 ((-3 $ #1#) $ (-912) (-912))) (-15 -3649 ((-635 (-912)) $)) (-15 -3648 ($ (-635 (-912)))) (-15 -3647 ((-1253 $))) (-15 -3646 ((-112) (-912) $)) (-15 -3645 ((-765) $ (-912) (-912))))) (-912) (-912)) (T -1092))
+((-3651 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3650 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-3647 (*1 *2) (-12 (-5 *2 (-1253 (-1092 *3 *4))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-3646 (*1 *2 *3 *1) (-12 (-5 *3 (-912)) (-5 *2 (-112)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3645 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-765)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-367) (-10 -8 (-15 -3651 ((-3 $ #1="failed") $ (-912))) (-15 -3650 ((-3 $ #1#) $ (-912) (-912))) (-15 -3649 ((-635 (-912)) $)) (-15 -3648 ($ (-635 (-912)))) (-15 -3647 ((-1253 $))) (-15 -3646 ((-112) (-912) $)) (-15 -3645 ((-765) $ (-912) (-912)))))
+((-2947 (((-112) $ $) NIL)) (-3661 (((-112) $) NIL)) (-3657 (((-1166) $) NIL)) (-3662 (((-112) $) NIL)) (-3942 (((-1148) $) NIL)) (-3664 (((-112) $) NIL)) (-3666 (((-112) $) NIL)) (-3663 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3660 (((-112) $) NIL)) (-3656 (((-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-3659 (((-112) $) NIL)) (-3655 (((-224) $) NIL)) (-3654 (((-857) $) NIL)) (-3667 (((-112) $ $) NIL)) (-4206 (($ $ (-544)) NIL) (($ $ (-635 (-544))) NIL)) (-3658 (((-635 $) $) NIL)) (-4377 (($ (-1148)) NIL) (($ (-1166)) NIL) (($ (-544)) NIL) (($ (-224)) NIL) (($ (-857)) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL)) (-3652 (($ $) NIL)) (-3653 (($ $) NIL)) (-3665 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-544) $) NIL)))
+(((-1093) (-1094 (-1148) (-1166) (-544) (-224) (-857))) (T -1093))
+NIL
+(-1094 (-1148) (-1166) (-544) (-224) (-857))
+((-2947 (((-112) $ $) 7)) (-3661 (((-112) $) 32)) (-3657 ((|#2| $) 27)) (-3662 (((-112) $) 33)) (-3942 ((|#1| $) 28)) (-3664 (((-112) $) 35)) (-3666 (((-112) $) 37)) (-3663 (((-112) $) 34)) (-3643 (((-1148) $) 9)) (-3660 (((-112) $) 31)) (-3656 ((|#3| $) 26)) (-3644 (((-1110) $) 10)) (-3659 (((-112) $) 30)) (-3655 ((|#4| $) 25)) (-3654 ((|#5| $) 24)) (-3667 (((-112) $ $) 38)) (-4206 (($ $ (-544)) 20) (($ $ (-635 (-544))) 19)) (-3658 (((-635 $) $) 29)) (-4377 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-635 $)) 39)) (-4353 (((-857) $) 11)) (-3652 (($ $) 22)) (-3653 (($ $) 23)) (-3665 (((-112) $) 36)) (-3437 (((-112) $ $) 6)) (-4364 (((-544) $) 21)))
+(((-1094 |#1| |#2| |#3| |#4| |#5|) (-139) (-1091) (-1091) (-1091) (-1091) (-1091)) (T -1094))
+((-3667 (*1 *2 *1 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3658 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-1094 *3 *4 *5 *6 *7)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *2 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *2 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *2)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3653 (*1 *1 *1) (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)))) (-3652 (*1 *1 *1) (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-544)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)))))
+(-13 (-1091) (-613 |t#1|) (-613 |t#2|) (-613 |t#3|) (-613 |t#4|) (-613 |t#4|) (-613 |t#5|) (-613 (-635 $)) (-10 -8 (-15 -3667 ((-112) $ $)) (-15 -3666 ((-112) $)) (-15 -3665 ((-112) $)) (-15 -3664 ((-112) $)) (-15 -3663 ((-112) $)) (-15 -3662 ((-112) $)) (-15 -3661 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -3659 ((-112) $)) (-15 -3658 ((-635 $) $)) (-15 -3942 (|t#1| $)) (-15 -3657 (|t#2| $)) (-15 -3656 (|t#3| $)) (-15 -3655 (|t#4| $)) (-15 -3654 (|t#5| $)) (-15 -3653 ($ $)) (-15 -3652 ($ $)) (-15 -4364 ((-544) $)) (-15 -4206 ($ $ (-544))) (-15 -4206 ($ $ (-635 (-544))))))
+(((-102) . T) ((-608 (-857)) . T) ((-613 (-635 $)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 |#4|) . T) ((-613 |#5|) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3661 (((-112) $) 39)) (-3657 ((|#2| $) 42)) (-3662 (((-112) $) 18)) (-3942 ((|#1| $) 19)) (-3664 (((-112) $) 37)) (-3666 (((-112) $) 14)) (-3663 (((-112) $) 38)) (-3643 (((-1148) $) NIL)) (-3660 (((-112) $) 40)) (-3656 ((|#3| $) 44)) (-3644 (((-1110) $) NIL)) (-3659 (((-112) $) 41)) (-3655 ((|#4| $) 43)) (-3654 ((|#5| $) 45)) (-3667 (((-112) $ $) 36)) (-4206 (($ $ (-544)) 56) (($ $ (-635 (-544))) 58)) (-3658 (((-635 $) $) 24)) (-4377 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-635 $)) 46)) (-4353 (((-857) $) 25)) (-3652 (($ $) 23)) (-3653 (($ $) 52)) (-3665 (((-112) $) 21)) (-3437 (((-112) $ $) 35)) (-4364 (((-544) $) 54)))
+(((-1095 |#1| |#2| |#3| |#4| |#5|) (-1094 |#1| |#2| |#3| |#4| |#5|) (-1091) (-1091) (-1091) (-1091) (-1091)) (T -1095))
+NIL
+(-1094 |#1| |#2| |#3| |#4| |#5|)
+((-3784 (((-1259) $) 23)) (-3668 (($ (-1166) (-433) |#2|) 11)) (-4353 (((-857) $) 16)))
+(((-1096 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3668 ($ (-1166) (-433) |#2|)))) (-844) (-420 |#1|)) (T -1096))
+((-3668 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844)) (-5 *1 (-1096 *5 *4)) (-4 *4 (-420 *5)))))
+(-13 (-395) (-10 -8 (-15 -3668 ($ (-1166) (-433) |#2|))))
+((-3671 (((-112) |#5| |#5|) 37)) (-3674 (((-112) |#5| |#5|) 51)) (-3679 (((-112) |#5| (-635 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-3675 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-3681 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 62)) (-3670 (((-1259)) 33)) (-3669 (((-1259) (-1148) (-1148) (-1148)) 29)) (-3680 (((-635 |#5|) (-635 |#5|)) 81)) (-3682 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) 79)) (-3683 (((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 101)) (-3673 (((-112) |#5| |#5|) 46)) (-3678 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3676 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-3677 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-4106 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-3684 (((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3672 (((-635 |#5|) (-635 |#5|)) 42)))
+(((-1097 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1097))
+((-3684 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-3683 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-3682 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-4106 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3677 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3674 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3673 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3671 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3670 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3669 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3699 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|) 95)) (-3689 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|) 71)) (-3692 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 89)) (-3694 (((-635 |#5|) |#4| |#5|) 109)) (-3696 (((-635 |#5|) |#4| |#5|) 116)) (-3698 (((-635 |#5|) |#4| |#5|) 117)) (-3693 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 96)) (-3695 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 115)) (-3697 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3690 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112)) 83) (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3691 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 78)) (-3688 (((-1259)) 37)) (-3686 (((-1259)) 26)) (-3687 (((-1259) (-1148) (-1148) (-1148)) 33)) (-3685 (((-1259) (-1148) (-1148) (-1148)) 22)))
+(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3689 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3691 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3692 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3697 ((-112) |#4| |#5|)) (-15 -3693 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3694 ((-635 |#5|) |#4| |#5|)) (-15 -3695 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3696 ((-635 |#5|) |#4| |#5|)) (-15 -3697 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3698 ((-635 |#5|) |#4| |#5|)) (-15 -3699 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1098))
+((-3699 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3698 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3696 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3695 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3694 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3693 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3692 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3691 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9)))) (-5 *1 (-1098 *6 *7 *4 *8 *9)))) (-3690 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3689 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3688 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3687 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3686 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3689 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3691 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3692 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3697 ((-112) |#4| |#5|)) (-15 -3693 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3694 ((-635 |#5|) |#4| |#5|)) (-15 -3695 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3696 ((-635 |#5|) |#4| |#5|)) (-15 -3697 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3698 ((-635 |#5|) |#4| |#5|)) (-15 -3699 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|)))
+((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400)))))
(((-1099 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1099))
NIL
(-13 (-1062 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
-((-2695 (((-638 (-561)) (-561) (-561) (-561)) 22)) (-1745 (((-638 (-561)) (-561) (-561) (-561)) 12)) (-1742 (((-638 (-561)) (-561) (-561) (-561)) 18)) (-1740 (((-561) (-561) (-561)) 9)) (-1497 (((-1254 (-561)) (-638 (-561)) (-1254 (-561)) (-561)) 45) (((-1254 (-561)) (-1254 (-561)) (-1254 (-561)) (-561)) 40)) (-3858 (((-638 (-561)) (-638 (-561)) (-638 (-561)) (-112)) 27)) (-1766 (((-682 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561))) 44)) (-1987 (((-682 (-561)) (-638 (-561)) (-638 (-561))) 32)) (-2693 (((-638 (-682 (-561))) (-638 (-561))) 34)) (-3709 (((-638 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561))) 48)) (-3563 (((-682 (-561)) (-638 (-561)) (-638 (-561)) (-638 (-561))) 56)))
-(((-1100) (-10 -7 (-15 -3563 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -3709 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -2693 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -1987 ((-682 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -1766 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -3858 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-112))) (-15 -1497 ((-1254 (-561)) (-1254 (-561)) (-1254 (-561)) (-561))) (-15 -1497 ((-1254 (-561)) (-638 (-561)) (-1254 (-561)) (-561))) (-15 -1740 ((-561) (-561) (-561))) (-15 -1742 ((-638 (-561)) (-561) (-561) (-561))) (-15 -1745 ((-638 (-561)) (-561) (-561) (-561))) (-15 -2695 ((-638 (-561)) (-561) (-561) (-561))))) (T -1100))
-((-2695 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))) (-1745 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))) (-1742 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))) (-1740 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1100)))) (-1497 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1254 (-561))) (-5 *3 (-638 (-561))) (-5 *4 (-561)) (-5 *1 (-1100)))) (-1497 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1254 (-561))) (-5 *3 (-561)) (-5 *1 (-1100)))) (-3858 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *3 (-112)) (-5 *1 (-1100)))) (-1766 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-682 (-561))) (-5 *3 (-638 (-561))) (-5 *1 (-1100)))) (-1987 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-1100)))) (-3709 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *3 (-682 (-561))) (-5 *1 (-1100)))) (-3563 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))))
-(-10 -7 (-15 -3563 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -3709 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -2693 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -1987 ((-682 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -1766 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -3858 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-112))) (-15 -1497 ((-1254 (-561)) (-1254 (-561)) (-1254 (-561)) (-561))) (-15 -1497 ((-1254 (-561)) (-638 (-561)) (-1254 (-561)) (-561))) (-15 -1740 ((-561) (-561) (-561))) (-15 -1742 ((-638 (-561)) (-561) (-561) (-561))) (-15 -1745 ((-638 (-561)) (-561) (-561) (-561))) (-15 -2695 ((-638 (-561)) (-561) (-561) (-561))))
-((** (($ $ (-914)) 10)))
-(((-1101 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-914)))) (-1102)) (T -1101))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-914))))
-((-4053 (((-112) $ $) 7)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)) (** (($ $ (-914)) 13)) (* (($ $ $) 14)))
+(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T))
+((-3710 (((-635 (-544)) (-544) (-544) (-544)) 22)) (-3709 (((-635 (-544)) (-544) (-544) (-544)) 12)) (-3708 (((-635 (-544)) (-544) (-544) (-544)) 18)) (-3707 (((-544) (-544) (-544)) 9)) (-3706 (((-1253 (-544)) (-635 (-544)) (-1253 (-544)) (-544)) 45) (((-1253 (-544)) (-1253 (-544)) (-1253 (-544)) (-544)) 40)) (-3705 (((-635 (-544)) (-635 (-544)) (-635 (-544)) (-112)) 27)) (-3704 (((-682 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544))) 44)) (-3703 (((-682 (-544)) (-635 (-544)) (-635 (-544))) 32)) (-3702 (((-635 (-682 (-544))) (-635 (-544))) 34)) (-3701 (((-635 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544))) 48)) (-3700 (((-682 (-544)) (-635 (-544)) (-635 (-544)) (-635 (-544))) 56)))
+(((-1100) (-10 -7 (-15 -3700 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3701 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3702 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -3703 ((-682 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3704 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3705 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-112))) (-15 -3706 ((-1253 (-544)) (-1253 (-544)) (-1253 (-544)) (-544))) (-15 -3706 ((-1253 (-544)) (-635 (-544)) (-1253 (-544)) (-544))) (-15 -3707 ((-544) (-544) (-544))) (-15 -3708 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3709 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3710 ((-635 (-544)) (-544) (-544) (-544))))) (T -1100))
+((-3710 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))) (-3709 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))) (-3708 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))) (-3707 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1100)))) (-3706 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-635 (-544))) (-5 *4 (-544)) (-5 *1 (-1100)))) (-3706 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-544)) (-5 *1 (-1100)))) (-3705 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *3 (-112)) (-5 *1 (-1100)))) (-3704 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-682 (-544))) (-5 *3 (-635 (-544))) (-5 *1 (-1100)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-1100)))) (-3701 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *3 (-682 (-544))) (-5 *1 (-1100)))) (-3700 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100)))))
+(-10 -7 (-15 -3700 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3701 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3702 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -3703 ((-682 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3704 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3705 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-112))) (-15 -3706 ((-1253 (-544)) (-1253 (-544)) (-1253 (-544)) (-544))) (-15 -3706 ((-1253 (-544)) (-635 (-544)) (-1253 (-544)) (-544))) (-15 -3707 ((-544) (-544) (-544))) (-15 -3708 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3709 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3710 ((-635 (-544)) (-544) (-544) (-544))))
+((** (($ $ (-912)) 10)))
+(((-1101 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-912)))) (-1102)) (T -1101))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-912))))
+((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13)) (* (($ $ $) 14)))
(((-1102) (-139)) (T -1102))
-((* (*1 *1 *1 *1) (-4 *1 (-1102))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-914)))))
-(-13 (-1090) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-914)))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL (|has| |#3| (-1090)))) (-4306 (((-112) $) NIL (|has| |#3| (-130)))) (-2274 (($ (-914)) NIL (|has| |#3| (-1042)))) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-1403 (($ $ $) NIL (|has| |#3| (-787)))) (-2979 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-2684 (((-112) $ (-765)) NIL)) (-1386 (((-765)) NIL (|has| |#3| (-367)))) (-1659 (((-561) $) NIL (|has| |#3| (-842)))) (-4207 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1090)))) (-3979 (((-561) $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090)))) ((|#3| $) NIL (|has| |#3| (-1090)))) (-3720 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042)))) (((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 $) (-1254 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042)))) (-3735 (((-3 $ "failed") $) NIL (|has| |#3| (-720)))) (-1362 (($) NIL (|has| |#3| (-367)))) (-2041 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#3| $ (-561)) 12)) (-1784 (((-112) $) NIL (|has| |#3| (-842)))) (-2368 (((-638 |#3|) $) NIL (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL (|has| |#3| (-720)))) (-3271 (((-112) $) NIL (|has| |#3| (-842)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-4125 (((-638 |#3|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2029 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#3| |#3|) $) NIL)) (-1335 (((-914) $) NIL (|has| |#3| (-367)))) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#3| (-1090)))) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-2442 (($ (-914)) NIL (|has| |#3| (-367)))) (-1701 (((-1110) $) NIL (|has| |#3| (-1090)))) (-1424 ((|#3| $) NIL (|has| (-561) (-844)))) (-3193 (($ $ |#3|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 |#3|) (-638 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090))))) (-2411 (((-638 |#3|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#3| $ (-561) |#3|) NIL) ((|#3| $ (-561)) NIL)) (-3634 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1675 (($ (-1254 |#3|)) NIL)) (-2390 (((-133)) NIL (|has| |#3| (-362)))) (-3922 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-1714 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#3| (-1090))))) (-4225 (($ $) NIL)) (-4064 (((-1254 |#3|) $) NIL) (($ (-561)) NIL (-4050 (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090)))) (($ |#3|) NIL (|has| |#3| (-1090))) (((-856) $) NIL (|has| |#3| (-608 (-856))))) (-3746 (((-765)) NIL (|has| |#3| (-1042)))) (-3715 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4399)))) (-2165 (($ $) NIL (|has| |#3| (-842)))) (-2246 (($) NIL (|has| |#3| (-130)) CONST)) (-2257 (($) NIL (|has| |#3| (-720)) CONST)) (-3154 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-1781 (((-112) $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1758 (((-112) $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1723 (((-112) $ $) NIL (|has| |#3| (-1090)))) (-1770 (((-112) $ $) NIL (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1746 (((-112) $ $) 17 (-4050 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1828 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1819 (($ $ $) NIL (|has| |#3| (-1042))) (($ $) NIL (|has| |#3| (-1042)))) (-1810 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-765)) NIL (|has| |#3| (-720))) (($ $ (-914)) NIL (|has| |#3| (-720)))) (* (($ (-561) $) NIL (|has| |#3| (-1042))) (($ $ $) NIL (|has| |#3| (-720))) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ (-765) $) NIL (|has| |#3| (-130))) (($ (-914) $) NIL (|has| |#3| (-25)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
+((* (*1 *1 *1 *1) (-4 *1 (-1102))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-912)))))
+(-13 (-1091) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-912)))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL (|has| |#3| (-1091)))) (-3589 (((-112) $) NIL (|has| |#3| (-130)))) (-4114 (($ (-912)) NIL (|has| |#3| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#3| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#3| (-367)))) (-4030 (((-544) $) NIL (|has| |#3| (-842)))) (-4194 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) ((|#3| $) NIL (|has| |#3| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042)))) (-3866 (((-3 $ "failed") $) NIL (|has| |#3| (-720)))) (-3377 (($) NIL (|has| |#3| (-367)))) (-1665 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#3| $ (-544)) 12)) (-3587 (((-112) $) NIL (|has| |#3| (-842)))) (-2096 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#3| (-720)))) (-3588 (((-112) $) NIL (|has| |#3| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2554 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2100 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#3| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#3| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#3| (-367)))) (-3644 (((-1110) $) NIL (|has| |#3| (-1091)))) (-4207 ((|#3| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#3|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2351 (((-635 |#3|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#3| $ (-544) |#3|) NIL) ((|#3| $ (-544)) NIL)) (-4243 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1552 (($ (-1253 |#3|)) NIL)) (-4318 (((-133)) NIL (|has| |#3| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-2097 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#3|) $) NIL) (($ (-544)) NIL (-3936 (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) (($ |#3|) NIL (|has| |#3| (-1091))) (((-857) $) NIL (|has| |#3| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#3| (-1042)))) (-2099 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#3| (-842)))) (-3040 (($) NIL (|has| |#3| (-130)) CONST)) (-3046 (($) NIL (|has| |#3| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3437 (((-112) $ $) NIL (|has| |#3| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3067 (((-112) $ $) 17 (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-4356 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-4244 (($ $ $) NIL (|has| |#3| (-1042))) (($ $) NIL (|has| |#3| (-1042)))) (-4246 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-765)) NIL (|has| |#3| (-720))) (($ $ (-912)) NIL (|has| |#3| (-720)))) (* (($ (-544) $) NIL (|has| |#3| (-1042))) (($ $ $) NIL (|has| |#3| (-720))) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ (-765) $) NIL (|has| |#3| (-130))) (($ (-912) $) NIL (|has| |#3| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
(((-1103 |#1| |#2| |#3|) (-237 |#1| |#3|) (-765) (-765) (-787)) (T -1103))
NIL
(-237 |#1| |#3|)
-((-2216 (((-638 (-1227 |#2| |#1|)) (-1227 |#2| |#1|) (-1227 |#2| |#1|)) 36)) (-3759 (((-561) (-1227 |#2| |#1|)) 68 (|has| |#1| (-450)))) (-3171 (((-561) (-1227 |#2| |#1|)) 53)) (-4067 (((-638 (-1227 |#2| |#1|)) (-1227 |#2| |#1|) (-1227 |#2| |#1|)) 44)) (-2592 (((-561) (-1227 |#2| |#1|) (-1227 |#2| |#1|)) 67 (|has| |#1| (-450)))) (-2625 (((-638 |#1|) (-1227 |#2| |#1|) (-1227 |#2| |#1|)) 47)) (-2457 (((-561) (-1227 |#2| |#1|) (-1227 |#2| |#1|)) 52)))
-(((-1104 |#1| |#2|) (-10 -7 (-15 -2216 ((-638 (-1227 |#2| |#1|)) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -4067 ((-638 (-1227 |#2| |#1|)) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -2625 ((-638 |#1|) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -2457 ((-561) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -3171 ((-561) (-1227 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -2592 ((-561) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -3759 ((-561) (-1227 |#2| |#1|)))) |%noBranch|)) (-814) (-1166)) (T -1104))
-((-3759 (*1 *2 *3) (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-2592 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-2625 (*1 *2 *3 *3) (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 *4)) (-5 *1 (-1104 *4 *5)))) (-4067 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1227 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1227 *5 *4)))) (-2216 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1227 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1227 *5 *4)))))
-(-10 -7 (-15 -2216 ((-638 (-1227 |#2| |#1|)) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -4067 ((-638 (-1227 |#2| |#1|)) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -2625 ((-638 |#1|) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -2457 ((-561) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -3171 ((-561) (-1227 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -2592 ((-561) (-1227 |#2| |#1|) (-1227 |#2| |#1|))) (-15 -3759 ((-561) (-1227 |#2| |#1|)))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-2231 (($ (-504) (-1108)) 14)) (-2838 (((-1108) $) 20)) (-3305 (((-504) $) 17)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 28) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1105) (-13 (-1073) (-10 -8 (-15 -2231 ($ (-504) (-1108))) (-15 -3305 ((-504) $)) (-15 -2838 ((-1108) $))))) (T -1105))
-((-2231 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-1105)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1105)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1105)))))
-(-13 (-1073) (-10 -8 (-15 -2231 ($ (-504) (-1108))) (-15 -3305 ((-504) $)) (-15 -2838 ((-1108) $))))
-((-1659 (((-3 (-561) "failed") |#2| (-1166) |#2| (-1148)) 17) (((-3 (-561) "failed") |#2| (-1166) (-837 |#2|)) 15) (((-3 (-561) "failed") |#2|) 54)))
-(((-1106 |#1| |#2|) (-10 -7 (-15 -1659 ((-3 (-561) "failed") |#2|)) (-15 -1659 ((-3 (-561) "failed") |#2| (-1166) (-837 |#2|))) (-15 -1659 ((-3 (-561) "failed") |#2| (-1166) |#2| (-1148)))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)) (-450)) (-13 (-27) (-1190) (-429 |#1|))) (T -1106))
-((-1659 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-561)) (-5 *1 (-1106 *6 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))))) (-1659 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-561)) (-5 *1 (-1106 *6 *3)))) (-1659 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-561)) (-5 *1 (-1106 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))))
-(-10 -7 (-15 -1659 ((-3 (-561) "failed") |#2|)) (-15 -1659 ((-3 (-561) "failed") |#2| (-1166) (-837 |#2|))) (-15 -1659 ((-3 (-561) "failed") |#2| (-1166) |#2| (-1148))))
-((-1659 (((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)) (-1148)) 35) (((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-837 (-406 (-945 |#1|)))) 30) (((-3 (-561) "failed") (-406 (-945 |#1|))) 13)))
-(((-1107 |#1|) (-10 -7 (-15 -1659 ((-3 (-561) "failed") (-406 (-945 |#1|)))) (-15 -1659 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-837 (-406 (-945 |#1|))))) (-15 -1659 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)) (-1148)))) (-450)) (T -1107))
-((-1659 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *6)))) (-1659 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 (-406 (-945 *6)))) (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *6)))) (-1659 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *4)))))
-(-10 -7 (-15 -1659 ((-3 (-561) "failed") (-406 (-945 |#1|)))) (-15 -1659 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-837 (-406 (-945 |#1|))))) (-15 -1659 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)) (-1148))))
-((-4053 (((-112) $ $) NIL)) (-4095 (((-1171) $) 10)) (-4034 (((-638 (-1171)) $) 11)) (-2838 (($ (-638 (-1171)) (-1171)) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 22)) (-1723 (((-112) $ $) 14)))
-(((-1108) (-13 (-1090) (-10 -8 (-15 -2838 ($ (-638 (-1171)) (-1171))) (-15 -4095 ((-1171) $)) (-15 -4034 ((-638 (-1171)) $))))) (T -1108))
-((-2838 (*1 *1 *2 *3) (-12 (-5 *2 (-638 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1108)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1108)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1108)))))
-(-13 (-1090) (-10 -8 (-15 -2838 ($ (-638 (-1171)) (-1171))) (-15 -4095 ((-1171) $)) (-15 -4034 ((-638 (-1171)) $))))
-((-3382 (((-315 (-561)) (-48)) 12)))
-(((-1109) (-10 -7 (-15 -3382 ((-315 (-561)) (-48))))) (T -1109))
-((-3382 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-561))) (-5 *1 (-1109)))))
-(-10 -7 (-15 -3382 ((-315 (-561)) (-48))))
-((-4053 (((-112) $ $) NIL)) (-3344 (($ $) 40)) (-4306 (((-112) $) 64)) (-2222 (($ $ $) 47)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 89)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-3680 (($ $ $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1988 (($ $ $ $) 74)) (-2557 (($ $) NIL)) (-3552 (((-417 $) $) NIL)) (-3698 (((-112) $ $) NIL)) (-1386 (((-765)) 76)) (-1659 (((-561) $) NIL)) (-3410 (($ $ $) 71)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL)) (-3979 (((-561) $) NIL)) (-1792 (($ $ $) 58)) (-3720 (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 83) (((-682 (-561)) (-682 $)) 27)) (-3735 (((-3 $ "failed") $) NIL)) (-3063 (((-3 (-406 (-561)) "failed") $) NIL)) (-4079 (((-112) $) NIL)) (-2573 (((-406 (-561)) $) NIL)) (-1362 (($) 86) (($ $) 87)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL)) (-2725 (((-112) $) NIL)) (-3473 (($ $ $ $) NIL)) (-1571 (($ $ $) 84)) (-1784 (((-112) $) NIL)) (-3784 (($ $ $) NIL)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-2252 (((-112) $) 65)) (-2110 (((-112) $) 63)) (-2186 (($ $) 41)) (-2436 (((-3 $ "failed") $) NIL)) (-3271 (((-112) $) 75)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2595 (($ $ $ $) 72)) (-1597 (($ $ $) 67) (($) 38 T CONST)) (-3017 (($ $ $) 66) (($) 37 T CONST)) (-3953 (($ $) NIL)) (-1335 (((-914) $) 79)) (-4310 (($ $) 70)) (-1563 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1883 (((-1148) $) NIL)) (-3986 (($ $ $) NIL)) (-3767 (($) NIL T CONST)) (-2442 (($ (-914)) 78)) (-4147 (($ $) 49)) (-1701 (((-1110) $) 69)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1603 (($ $ $) 61) (($ (-638 $)) NIL)) (-2084 (($ $) NIL)) (-1633 (((-417 $) $) NIL)) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL)) (-1748 (((-3 $ "failed") $ $) NIL)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2058 (((-112) $) NIL)) (-1905 (((-765) $) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 60)) (-3922 (($ $ (-765)) NIL) (($ $) NIL)) (-4076 (($ $) 50)) (-4225 (($ $) NIL)) (-4216 (((-561) $) 31) (((-534) $) NIL) (((-885 (-561)) $) NIL) (((-378) $) NIL) (((-224) $) NIL)) (-4064 (((-856) $) 30) (($ (-561)) 85) (($ $) NIL) (($ (-561)) 85)) (-3746 (((-765)) NIL)) (-3514 (((-112) $ $) NIL)) (-3210 (($ $ $) NIL)) (-1423 (($) 36)) (-3996 (((-112) $ $) NIL)) (-4049 (($ $ $ $) 73)) (-2165 (($ $) 62)) (-2273 (($ $ $) 43)) (-2246 (($) 34 T CONST)) (-2952 (($ $ $) 46)) (-2257 (($) 35 T CONST)) (-3785 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1259) (-816) $) 23) (((-1259) (-816) $ (-112)) 24)) (-2964 (($ $) 44)) (-3154 (($ $ (-765)) NIL) (($ $) NIL)) (-2941 (($ $ $) 45)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 39)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 48)) (-2261 (($ $ $) 42)) (-1819 (($ $) 51) (($ $ $) 53)) (-1810 (($ $ $) 52)) (** (($ $ (-914)) NIL) (($ $ (-765)) 56)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 33) (($ $ $) 54)))
-(((-1110) (-13 (-543) (-838) (-654) (-822) (-10 -8 (-6 -4386) (-6 -4391) (-6 -4387) (-15 -2186 ($ $)) (-15 -2222 ($ $ $)) (-15 -2964 ($ $)) (-15 -2941 ($ $ $)) (-15 -2952 ($ $ $))))) (T -1110))
-((-2186 (*1 *1 *1) (-5 *1 (-1110))) (-2222 (*1 *1 *1 *1) (-5 *1 (-1110))) (-2964 (*1 *1 *1) (-5 *1 (-1110))) (-2941 (*1 *1 *1 *1) (-5 *1 (-1110))) (-2952 (*1 *1 *1 *1) (-5 *1 (-1110))))
-(-13 (-543) (-838) (-654) (-822) (-10 -8 (-6 -4386) (-6 -4391) (-6 -4387) (-15 -2186 ($ $)) (-15 -2222 ($ $ $)) (-15 -2964 ($ $)) (-15 -2941 ($ $ $)) (-15 -2952 ($ $ $))))
+((-3711 (((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 36)) (-3717 (((-544) (-1222 |#2| |#1|)) 68 (|has| |#1| (-450)))) (-3715 (((-544) (-1222 |#2| |#1|)) 53)) (-3712 (((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 44)) (-3716 (((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 67 (|has| |#1| (-450)))) (-3713 (((-635 |#1|) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 47)) (-3714 (((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 52)))
+(((-1104 |#1| |#2|) (-10 -7 (-15 -3711 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3712 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3713 ((-635 |#1|) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3714 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3715 ((-544) (-1222 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3716 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3717 ((-544) (-1222 |#2| |#1|)))) |%noBranch|)) (-814) (-1166)) (T -1104))
+((-3717 (*1 *2 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 *4)) (-5 *1 (-1104 *4 *5)))) (-3712 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4)))) (-3711 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4)))))
+(-10 -7 (-15 -3711 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3712 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3713 ((-635 |#1|) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3714 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3715 ((-544) (-1222 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3716 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3717 ((-544) (-1222 |#2| |#1|)))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3719 (((-1171) $) 10)) (-3718 (((-635 (-1171)) $) 11)) (-3720 (($ (-635 (-1171)) (-1171)) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 22)) (-3437 (((-112) $ $) 14)))
+(((-1105) (-13 (-1091) (-10 -8 (-15 -3720 ($ (-635 (-1171)) (-1171))) (-15 -3719 ((-1171) $)) (-15 -3718 ((-635 (-1171)) $))))) (T -1105))
+((-3720 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1105)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1105)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1105)))))
+(-13 (-1091) (-10 -8 (-15 -3720 ($ (-635 (-1171)) (-1171))) (-15 -3719 ((-1171) $)) (-15 -3718 ((-635 (-1171)) $))))
+((-2947 (((-112) $ $) NIL)) (-3721 (($ (-504) (-1105)) 14)) (-3720 (((-1105) $) 20)) (-3949 (((-504) $) 17)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 28) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1106) (-13 (-1073) (-10 -8 (-15 -3721 ($ (-504) (-1105))) (-15 -3949 ((-504) $)) (-15 -3720 ((-1105) $))))) (T -1106))
+((-3721 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1106)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1106)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1106)))))
+(-13 (-1073) (-10 -8 (-15 -3721 ($ (-504) (-1105))) (-15 -3949 ((-504) $)) (-15 -3720 ((-1105) $))))
+((-4030 (((-3 (-544) #1="failed") |#2| (-1166) |#2| (-1148)) 17) (((-3 (-544) #1#) |#2| (-1166) (-836 |#2|)) 15) (((-3 (-544) #1#) |#2|) 54)))
+(((-1107 |#1| |#2|) (-10 -7 (-15 -4030 ((-3 (-544) #1="failed") |#2|)) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) (-836 |#2|))) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) |#2| (-1148)))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)) (-450)) (-13 (-27) (-1190) (-420 |#1|))) (T -1107))
+((-4030 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) (-5 *1 (-1107 *6 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))))) (-4030 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) (-5 *1 (-1107 *6 *3)))) (-4030 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) (-5 *1 (-1107 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))))
+(-10 -7 (-15 -4030 ((-3 (-544) #1="failed") |#2|)) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) (-836 |#2|))) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) |#2| (-1148))))
+((-4030 (((-3 (-544) #1="failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)) (-1148)) 35) (((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-836 (-406 (-939 |#1|)))) 30) (((-3 (-544) #1#) (-406 (-939 |#1|))) 13)))
+(((-1108 |#1|) (-10 -7 (-15 -4030 ((-3 (-544) #1="failed") (-406 (-939 |#1|)))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-836 (-406 (-939 |#1|))))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)) (-1148)))) (-450)) (T -1108))
+((-4030 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6)))) (-4030 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 (-406 (-939 *6)))) (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6)))) (-4030 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *4)))))
+(-10 -7 (-15 -4030 ((-3 (-544) #1="failed") (-406 (-939 |#1|)))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-836 (-406 (-939 |#1|))))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)) (-1148))))
+((-4056 (((-313 (-544)) (-48)) 12)))
+(((-1109) (-10 -7 (-15 -4056 ((-313 (-544)) (-48))))) (T -1109))
+((-4056 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-313 (-544))) (-5 *1 (-1109)))))
+(-10 -7 (-15 -4056 ((-313 (-544)) (-48))))
+((-2947 (((-112) $ $) NIL)) (-2430 (($ $) 40)) (-3589 (((-112) $) 64)) (-3725 (($ $ $) 47)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 89)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) 74)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) 76)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) 71)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) NIL)) (-3557 (((-544) $) NIL)) (-2943 (($ $ $) 58)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 83) (((-682 (-544)) (-682 $)) 27)) (-3866 (((-3 $ "failed") $) NIL)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($) 86) (($ $) 87)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) 84)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) 65)) (-3055 (((-112) $) 63)) (-3726 (($ $) 41)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) 75)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) 72)) (-2913 (($ $ $) 67) (($) 38 T CONST)) (-3242 (($ $ $) 66) (($) 37 T CONST)) (-2194 (($ $) NIL)) (-2160 (((-912) $) 79)) (-4240 (($ $) 70)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2535 (($ (-912)) 78)) (-2196 (($ $) 49)) (-3644 (((-1110) $) 69)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) 61) (($ (-635 $)) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 60)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-2195 (($ $) 50)) (-3804 (($ $) NIL)) (-4377 (((-544) $) 31) (((-533) $) NIL) (((-883 (-544)) $) NIL) (((-377) $) NIL) (((-224) $) NIL)) (-4353 (((-857) $) 30) (($ (-544)) 85) (($ $) NIL) (($ (-544)) 85)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) 36)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) 73)) (-3787 (($ $) 62)) (-2428 (($ $ $) 43)) (-3040 (($) 34 T CONST)) (-3722 (($ $ $) 46)) (-3046 (($) 35 T CONST)) (-2879 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1259) (-817) $) 23) (((-1259) (-817) $ (-112)) 24)) (-3724 (($ $) 44)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3723 (($ $ $) 45)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 39)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 48)) (-2429 (($ $ $) 42)) (-4244 (($ $) 51) (($ $ $) 53)) (-4246 (($ $ $) 52)) (** (($ $ (-912)) NIL) (($ $ (-765)) 56)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 33) (($ $ $) 54)))
+(((-1110) (-13 (-543) (-838) (-655) (-815) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3726 ($ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $))))) (T -1110))
+((-3726 (*1 *1 *1) (-5 *1 (-1110))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1110))) (-3724 (*1 *1 *1) (-5 *1 (-1110))) (-3723 (*1 *1 *1 *1) (-5 *1 (-1110))) (-3722 (*1 *1 *1 *1) (-5 *1 (-1110))))
+(-13 (-543) (-838) (-655) (-815) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3726 ($ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2765 ((|#1| $) 44)) (-2684 (((-112) $ (-765)) 8)) (-2674 (($) 7 T CONST)) (-3802 ((|#1| |#1| $) 46)) (-2217 ((|#1| $) 45)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3721 ((|#1| $) 39)) (-1617 (($ |#1| $) 40)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1387 ((|#1| $) 41)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-1433 (((-765) $) 43)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-1111 |#1|) (-139) (-1205)) (T -1111))
-((-3802 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))) (-2765 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4399) (-15 -3802 (|t#1| |t#1| $)) (-15 -2217 (|t#1| $)) (-15 -2765 (|t#1| $)) (-15 -1433 ((-765) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-1736 ((|#3| $) 76)) (-4061 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3979 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#3| $) 37)) (-3720 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL) (((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 $) (-1254 $)) 73) (((-682 |#3|) (-682 $)) 65)) (-3922 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3124 ((|#3| $) 78)) (-2210 ((|#4| $) 32)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ |#3|) 16)) (** (($ $ (-914)) NIL) (($ $ (-765)) 15) (($ $ (-561)) 82)))
-(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 -3124 (|#3| |#1|)) (-15 -1736 (|#3| |#1|)) (-15 -2210 (|#4| |#1|)) (-15 -3720 ((-682 |#3|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -4064 (|#1| |#3|)) (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3979 (|#3| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4064 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -4064 ((-856) |#1|))) (-1113 |#2| |#3| |#4| |#5|) (-765) (-1042) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1112))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 -3124 (|#3| |#1|)) (-15 -1736 (|#3| |#1|)) (-15 -2210 (|#4| |#1|)) (-15 -3720 ((-682 |#3|) (-682 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 |#3|)) (|:| |vec| (-1254 |#3|))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 |#1|) (-1254 |#1|))) (-15 -3720 ((-682 (-561)) (-682 |#1|))) (-15 -4064 (|#1| |#3|)) (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3979 (|#3| |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3922 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4064 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1736 ((|#2| $) 71)) (-3711 (((-112) $) 111)) (-2979 (((-3 $ "failed") $ $) 19)) (-1711 (((-112) $) 109)) (-2684 (((-112) $ (-765)) 101)) (-3256 (($ |#2|) 74)) (-2674 (($) 17 T CONST)) (-2617 (($ $) 128 (|has| |#2| (-306)))) (-3324 ((|#3| $ (-561)) 123)) (-4061 (((-3 (-561) "failed") $) 86 (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 83 (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) 80)) (-3979 (((-561) $) 85 (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) 82 (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) 81)) (-3720 (((-682 (-561)) (-682 $)) 78 (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 77 (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) 76) (((-682 |#2|) (-682 $)) 75)) (-3735 (((-3 $ "failed") $) 33)) (-3400 (((-765) $) 129 (|has| |#2| (-553)))) (-1975 ((|#2| $ (-561) (-561)) 121)) (-2368 (((-638 |#2|) $) 94 (|has| $ (-6 -4399)))) (-2252 (((-112) $) 31)) (-1486 (((-765) $) 130 (|has| |#2| (-553)))) (-2351 (((-638 |#4|) $) 131 (|has| |#2| (-553)))) (-3349 (((-765) $) 117)) (-3361 (((-765) $) 118)) (-3116 (((-112) $ (-765)) 102)) (-3440 ((|#2| $) 66 (|has| |#2| (-6 (-4401 "*"))))) (-3655 (((-561) $) 113)) (-1355 (((-561) $) 115)) (-4125 (((-638 |#2|) $) 93 (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399))))) (-2475 (((-561) $) 114)) (-3838 (((-561) $) 116)) (-2887 (($ (-638 (-638 |#2|))) 108)) (-2029 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3485 (((-638 (-638 |#2|)) $) 119)) (-3683 (((-112) $ (-765)) 103)) (-1883 (((-1148) $) 9)) (-1885 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-1701 (((-1110) $) 10)) (-1748 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-553)))) (-3977 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) 107)) (-2508 (((-112) $) 104)) (-2910 (($) 105)) (-2315 ((|#2| $ (-561) (-561) |#2|) 122) ((|#2| $ (-561) (-561)) 120)) (-3922 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-765)) 51) (($ $ (-638 (-1166)) (-638 (-765))) 44 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) 42 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-3124 ((|#2| $) 70)) (-3557 (($ (-638 |#2|)) 73)) (-2100 (((-112) $) 110)) (-2210 ((|#3| $) 72)) (-4105 ((|#2| $) 67 (|has| |#2| (-6 (-4401 "*"))))) (-1714 (((-765) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4399))) (((-765) |#2| $) 92 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 106)) (-2062 ((|#4| $ (-561)) 124)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 84 (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) 79)) (-3746 (((-765)) 28)) (-3715 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4399)))) (-2841 (((-112) $) 112)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-765)) 49) (($ $ (-638 (-1166)) (-638 (-765))) 48 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) 46 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 64 (|has| |#2| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-3548 (((-765) $) 100 (|has| $ (-6 -4399)))))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3728 ((|#1| $) 44)) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-3730 ((|#1| |#1| $) 46)) (-3729 ((|#1| $) 45)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3727 (((-765) $) 43)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-1111 |#1|) (-139) (-1204)) (T -1111))
+((-3730 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4400) (-15 -3730 (|t#1| |t#1| $)) (-15 -3729 (|t#1| $)) (-15 -3728 (|t#1| $)) (-15 -3727 ((-765) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-3734 ((|#3| $) 76)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#3| $) 37)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) 73) (((-682 |#3|) (-682 $)) 65)) (-4217 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3733 ((|#3| $) 78)) (-3735 ((|#4| $) 32)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ |#3|) 16)) (** (($ $ (-912)) NIL) (($ $ (-765)) 15) (($ $ (-544)) 82)))
+(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 -3733 (|#3| |#1|)) (-15 -3734 (|#3| |#1|)) (-15 -3735 (|#4| |#1|)) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -4353 ((-857) |#1|))) (-1113 |#2| |#3| |#4| |#5|) (-765) (-1042) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1112))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 -3733 (|#3| |#1|)) (-15 -3734 (|#3| |#1|)) (-15 -3735 (|#4| |#1|)) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3734 ((|#2| $) 71)) (-3506 (((-112) $) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-3508 (((-112) $) 109)) (-1293 (((-112) $ (-765)) 101)) (-3737 (($ |#2|) 74)) (-4131 (($) 17 T CONST)) (-3495 (($ $) 128 (|has| |#2| (-306)))) (-3497 ((|#3| $ (-544)) 123)) (-3558 (((-3 (-544) #1="failed") $) 86 (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 83 (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #1#) $) 80)) (-3557 (((-544) $) 85 (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) 82 (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) 81)) (-2401 (((-682 (-544)) (-682 $)) 78 (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 77 (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 76) (((-682 |#2|) (-682 $)) 75)) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-765) $) 129 (|has| |#2| (-554)))) (-3498 ((|#2| $ (-544) (-544)) 121)) (-2096 (((-635 |#2|) $) 94 (|has| $ (-6 -4400)))) (-2545 (((-112) $) 31)) (-3493 (((-765) $) 130 (|has| |#2| (-554)))) (-3492 (((-635 |#4|) $) 131 (|has| |#2| (-554)))) (-3500 (((-765) $) 117)) (-3499 (((-765) $) 118)) (-4126 (((-112) $ (-765)) 102)) (-3731 ((|#2| $) 66 (|has| |#2| (-6 (-4402 #2="*"))))) (-3504 (((-544) $) 113)) (-3502 (((-544) $) 115)) (-2554 (((-635 |#2|) $) 93 (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 114)) (-3501 (((-544) $) 116)) (-3509 (($ (-635 (-635 |#2|))) 108)) (-2100 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-4000 (((-635 (-635 |#2|)) $) 119)) (-4123 (((-112) $ (-765)) 103)) (-3643 (((-1148) $) 9)) (-3996 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-554)))) (-2098 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 107)) (-3807 (((-112) $) 104)) (-3972 (($) 105)) (-4206 ((|#2| $ (-544) (-544) |#2|) 122) ((|#2| $ (-544) (-544)) 120)) (-4217 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-765)) 51) (($ $ (-635 (-1166)) (-635 (-765))) 44 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) 42 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-3733 ((|#2| $) 70)) (-3736 (($ (-635 |#2|)) 73)) (-3507 (((-112) $) 110)) (-3735 ((|#3| $) 72)) (-3732 ((|#2| $) 67 (|has| |#2| (-6 (-4402 #2#))))) (-2097 (((-765) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4400))) (((-765) |#2| $) 92 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 106)) (-3496 ((|#4| $ (-544)) 124)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 84 (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) 79)) (-3511 (((-765)) 28)) (-2099 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4400)))) (-3505 (((-112) $) 112)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-765)) 49) (($ $ (-635 (-1166)) (-635 (-765))) 48 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) 46 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 64 (|has| |#2| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-4364 (((-765) $) 100 (|has| $ (-6 -4400)))))
(((-1113 |#1| |#2| |#3| |#4|) (-139) (-765) (-1042) (-237 |t#1| |t#2|) (-237 |t#1| |t#2|)) (T -1113))
-((-3256 (*1 *1 *2) (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-638 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042)))) (-1885 (*1 *1 *1) (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))))
-(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1045 |t#1| |t#1| |t#2| |t#3| |t#4|) (-410 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-711 |t#2|)) |%noBranch|) (-15 -3256 ($ |t#2|)) (-15 -3557 ($ (-638 |t#2|))) (-15 -2210 (|t#3| $)) (-15 -1736 (|t#2| $)) (-15 -3124 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4401 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4105 (|t#2| $)) (-15 -3440 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -1885 ((-3 $ "failed") $)) (-15 ** ($ $ (-561)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4401 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 #0=(-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-376 |#2|) . T) ((-410 |#2|) . T) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-641 |#2|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#2| (-634 (-561))) ((-634 |#2|) . T) ((-711 |#2|) -4050 (|has| |#2| (-171)) (|has| |#2| (-6 (-4401 "*")))) ((-720) . T) ((-893 (-1166)) |has| |#2| (-893 (-1166))) ((-1045 |#1| |#1| |#2| |#3| |#4|) . T) ((-1031 #0#) |has| |#2| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#2| (-1031 (-561))) ((-1031 |#2|) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1205) . T))
-((-2640 ((|#4| |#4|) 70)) (-3506 ((|#4| |#4|) 65)) (-3196 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|))) |#4| |#3|) 78)) (-2603 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1677 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1114 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3506 (|#4| |#4|)) (-15 -1677 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2640 (|#4| |#4|)) (-15 -2603 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3196 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|))) |#4| |#3|))) (-306) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -1114))
-((-3196 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4)))) (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))) (-2603 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-1677 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(-10 -7 (-15 -3506 (|#4| |#4|)) (-15 -1677 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2640 (|#4| |#4|)) (-15 -2603 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3196 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2615 (-638 |#3|))) |#4| |#3|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 17)) (-1405 (((-638 |#2|) $) 158)) (-1596 (((-1162 $) $ |#2|) 53) (((-1162 |#1|) $) 42)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 107 (|has| |#1| (-553)))) (-3012 (($ $) 109 (|has| |#1| (-553)))) (-3163 (((-112) $) 111 (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 |#2|)) 191)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) 155) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 |#2| "failed") $) NIL)) (-3979 ((|#1| $) 153) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) ((|#2| $) NIL)) (-2395 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-1598 (($ $) 195)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) 81)) (-4229 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-529 |#2|) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-2252 (((-112) $) 19)) (-2044 (((-765) $) 26)) (-1393 (($ (-1162 |#1|) |#2|) 47) (($ (-1162 $) |#2|) 63)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) 32)) (-1381 (($ |#1| (-529 |#2|)) 70) (($ $ |#2| (-765)) 51) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ |#2|) NIL)) (-1522 (((-529 |#2|) $) 185) (((-765) $ |#2|) 186) (((-638 (-765)) $ (-638 |#2|)) 187)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) 119)) (-2830 (((-3 |#2| "failed") $) 160)) (-1557 (($ $) 194)) (-1572 ((|#1| $) 36)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| |#2|) (|:| -4181 (-765))) "failed") $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) 33)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 137 (|has| |#1| (-450)))) (-1603 (($ (-638 $)) 142 (|has| |#1| (-450))) (($ $ $) 129 (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1748 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-553)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-638 |#2|) (-638 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-638 |#2|) (-638 $)) 175)) (-2753 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-3922 (($ $ |#2|) 193) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-3768 (((-529 |#2|) $) 181) (((-765) $ |#2|) 177) (((-638 (-765)) $ (-638 |#2|)) 179)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-2125 ((|#1| $) 125 (|has| |#1| (-450))) (($ $ |#2|) 128 (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4064 (((-856) $) 148) (($ (-561)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-553))) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-1868 (((-638 |#1|) $) 151)) (-3932 ((|#1| $ (-529 |#2|)) 72) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) 78)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) 114 (|has| |#1| (-553)))) (-2246 (($) 12 T CONST)) (-2257 (($) 14 T CONST)) (-3154 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) 96)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-1819 (($ $) 84) (($ $ $) 94)) (-1810 (($ $ $) 48)) (** (($ $ (-914)) 101) (($ $ (-765)) 99)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 87) (($ $ $) 64) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-1115 |#1| |#2|) (-942 |#1| (-529 |#2|) |#2|) (-1042) (-844)) (T -1115))
-NIL
-(-942 |#1| (-529 |#2|) |#2|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 |#2|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3014 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 116 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4213 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 112 (|has| |#1| (-38 (-406 (-561)))))) (-3039 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-2001 (((-945 |#1|) $ (-765)) NIL) (((-945 |#1|) $ (-765) (-765)) NIL)) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-765) $ |#2|) NIL) (((-765) $ |#2| (-765)) NIL)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1750 (((-112) $) NIL)) (-1381 (($ $ (-638 |#2|) (-638 (-529 |#2|))) NIL) (($ $ |#2| (-529 |#2|)) NIL) (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 55) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ $) 110 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-2563 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-1982 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-561)))))) (-3702 (($ $ (-765)) 13)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3486 (($ $) 108 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (($ $ |#2| $) 94) (($ $ (-638 |#2|) (-638 $)) 87) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL)) (-3922 (($ $ |#2|) 97) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-3768 (((-529 |#2|) $) NIL)) (-3433 (((-1 (-1146 |#3|) |#3|) (-638 |#2|) (-638 (-1146 |#3|))) 76)) (-3052 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 118 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 114 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 15)) (-4064 (((-856) $) 179) (($ (-561)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-553))) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#2|) 62) (($ |#3|) 60)) (-3932 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL) ((|#3| $ (-765)) 38)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-3086 (($ $) 152 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 156 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-2821 (($ $) 158 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 154 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 150 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 47 T CONST)) (-2257 (($) 54 T CONST)) (-3154 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 58)) (** (($ $ (-914)) NIL) (($ $ (-765)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 100 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 57) (($ $ (-406 (-561))) 105 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 103 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
-(((-1116 |#1| |#2| |#3|) (-13 (-734 |#1| |#2|) (-10 -8 (-15 -3932 (|#3| $ (-765))) (-15 -4064 ($ |#2|)) (-15 -4064 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3433 ((-1 (-1146 |#3|) |#3|) (-638 |#2|) (-638 (-1146 |#3|)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $ |#2| |#1|)) (-15 -1982 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1042) (-844) (-942 |#1| (-529 |#2|) |#2|)) (T -1116))
-((-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-942 *4 (-529 *5) *5)) (-5 *1 (-1116 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4064 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-942 *3 (-529 *2) *2)))) (-4064 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-942 *3 (-529 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-942 *3 (-529 *4) *4)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1146 *7))) (-4 *6 (-844)) (-4 *7 (-942 *5 (-529 *6) *6)) (-4 *5 (-1042)) (-5 *2 (-1 (-1146 *7) *7)) (-5 *1 (-1116 *5 *6 *7)))) (-2563 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-942 *3 (-529 *2) *2)))) (-1982 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5)) (-4 *5 (-942 *4 (-529 *3) *3)))))
-(-13 (-734 |#1| |#2|) (-10 -8 (-15 -3932 (|#3| $ (-765))) (-15 -4064 ($ |#2|)) (-15 -4064 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3433 ((-1 (-1146 |#3|) |#3|) (-638 |#2|) (-638 (-1146 |#3|)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $ |#2| |#1|)) (-15 -1982 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-4053 (((-112) $ $) 7)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) 85)) (-3742 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1405 (((-638 |#3|) $) 33)) (-4214 (((-112) $) 26)) (-2444 (((-112) $) 17 (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) 101) (((-112) $) 97)) (-4089 ((|#4| |#4| $) 92)) (-2557 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) 27)) (-2684 (((-112) $ (-765)) 44)) (-3612 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) 79)) (-2674 (($) 45 T CONST)) (-3853 (((-112) $) 22 (|has| |#1| (-553)))) (-3733 (((-112) $ $) 24 (|has| |#1| (-553)))) (-4338 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1577 (((-112) $) 25 (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3293 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) 36)) (-3979 (($ (-638 |#4|)) 35)) (-1437 (((-3 $ "failed") $) 82)) (-2471 ((|#4| |#4| $) 89)) (-1461 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2310 ((|#4| |#4| $) 87)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) 105)) (-2207 (((-112) |#4| $) 136)) (-1775 (((-112) |#4| $) 133)) (-2101 (((-112) |#4| $) 137) (((-112) $) 134)) (-2368 (((-638 |#4|) $) 52 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) 104) (((-112) $) 103)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) 43)) (-4125 (((-638 |#4|) $) 53 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 47)) (-2597 (((-638 |#3|) $) 32)) (-2247 (((-112) |#3| $) 31)) (-3683 (((-112) $ (-765)) 42)) (-1883 (((-1148) $) 9)) (-1413 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-2940 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1501 (((-3 |#4| "failed") $) 83)) (-1465 (((-638 $) |#4| $) 129)) (-4220 (((-3 (-112) (-638 $)) |#4| $) 132)) (-4151 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1338 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-1747 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-3589 (((-638 |#4|) $) 107)) (-3067 (((-112) |#4| $) 99) (((-112) $) 95)) (-3641 ((|#4| |#4| $) 90)) (-4345 (((-112) $ $) 110)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) 100) (((-112) $) 96)) (-2903 ((|#4| |#4| $) 91)) (-1701 (((-1110) $) 10)) (-1424 (((-3 |#4| "failed") $) 84)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2336 (((-3 $ "failed") $ |#4|) 78)) (-3702 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-3977 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) 38)) (-2508 (((-112) $) 41)) (-2910 (($) 40)) (-3768 (((-765) $) 106)) (-1714 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4399)))) (-4225 (($ $) 39)) (-4216 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-2049 (($ $ |#3|) 30)) (-1768 (($ $) 88)) (-2983 (($ $ |#3|) 29)) (-4064 (((-856) $) 11) (((-638 |#4|) $) 37)) (-3513 (((-765) $) 76 (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2909 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) 81)) (-2283 (((-112) |#4| $) 135)) (-4024 (((-112) |#3| $) 80)) (-1723 (((-112) $ $) 6)) (-3548 (((-765) $) 46 (|has| $ (-6 -4399)))))
+((-3737 (*1 *1 *2) (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-635 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4402 #1="*"))) (-4 *2 (-1042)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4402 #1#))) (-4 *2 (-1042)))) (-3996 (*1 *1 *1) (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))))
+(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1045 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-711 |t#2|)) |%noBranch|) (-15 -3737 ($ |t#2|)) (-15 -3736 ($ (-635 |t#2|))) (-15 -3735 (|t#3| $)) (-15 -3734 (|t#2| $)) (-15 -3733 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4402 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3732 (|t#2| $)) (-15 -3731 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -3996 ((-3 $ "failed") $)) (-15 ** ($ $ (-544)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4402 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 #2=(-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-376 |#2|) . T) ((-411 |#2|) . T) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-641 |#2|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#2| (-634 (-544))) ((-634 |#2|) . T) ((-711 |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-6 (-4402 #1#)))) ((-720) . T) ((-893 (-1166)) |has| |#2| (-893 (-1166))) ((-1045 |#1| |#1| |#2| |#3| |#4|) . T) ((-1031 #2#) |has| |#2| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#2| (-1031 (-544))) ((-1031 |#2|) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1204) . T))
+((-3740 ((|#4| |#4|) 70)) (-3738 ((|#4| |#4|) 65)) (-3742 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|) 78)) (-3741 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3739 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1114 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3739 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3740 (|#4| |#4|)) (-15 -3741 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3742 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|))) (-306) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -1114))
+((-3742 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-371 *5)) (-4 *4 (-371 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3739 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3740 (|#4| |#4|)) (-15 -3741 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3742 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 17)) (-3467 (((-635 |#2|) $) 158)) (-3469 (((-1160 $) $ |#2|) 53) (((-1160 |#1|) $) 42)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 107 (|has| |#1| (-554)))) (-2213 (($ $) 109 (|has| |#1| (-554)))) (-2211 (((-112) $) 111 (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 |#2|)) 191)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) 155) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 |#2| #2#) $) NIL)) (-3557 ((|#1| $) 153) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) ((|#2| $) NIL)) (-4163 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-4366 (($ $) 195)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 81)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 |#2|) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) 19)) (-2553 (((-765) $) 26)) (-3470 (($ (-1160 |#1|) |#2|) 47) (($ (-1160 $) |#2|) 63)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) 32)) (-3276 (($ |#1| (-529 |#2|)) 70) (($ $ |#2| (-765)) 51) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#2|) NIL)) (-3202 (((-529 |#2|) $) 185) (((-765) $ |#2|) 186) (((-635 (-765)) $ (-635 |#2|)) 187)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 119)) (-3468 (((-3 |#2| #3="failed") $) 160)) (-3277 (($ $) 194)) (-3575 ((|#1| $) 36)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 33)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 137 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 142 (|has| |#1| (-450))) (($ $ $) 129 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-635 |#2|) (-635 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-635 |#2|) (-635 $)) 175)) (-4164 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4217 (($ $ |#2|) 193) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4355 (((-529 |#2|) $) 181) (((-765) $ |#2|) 177) (((-635 (-765)) $ (-635 |#2|)) 179)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#1| $) 125 (|has| |#1| (-450))) (($ $ |#2|) 128 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 148) (($ (-544)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-4224 (((-635 |#1|) $) 151)) (-4084 ((|#1| $ (-529 |#2|)) 72) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 78)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) 114 (|has| |#1| (-554)))) (-3040 (($) 12 T CONST)) (-3046 (($) 14 T CONST)) (-3051 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 96)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-4244 (($ $) 84) (($ $ $) 94)) (-4246 (($ $ $) 48)) (** (($ $ (-912)) 101) (($ $ (-765)) 99)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 87) (($ $ $) 64) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-1115 |#1| |#2|) (-943 |#1| (-529 |#2|) |#2|) (-1042) (-844)) (T -1115))
+NIL
+(-943 |#1| (-529 |#2|) |#2|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3891 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 116 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 112 (|has| |#1| (-38 (-406 (-544)))))) (-3893 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4221 (((-939 |#1|) $ (-765)) NIL) (((-939 |#1|) $ (-765) (-765)) NIL)) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $ |#2|) NIL) (((-765) $ |#2| (-765)) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4344 (((-112) $) NIL)) (-3276 (($ $ (-635 |#2|) (-635 (-529 |#2|))) NIL) (($ $ |#2| (-529 |#2|)) NIL) (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 55) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) 110 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4083 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-544)))))) (-4175 (($ $ (-765)) 13)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4350 (($ $) 108 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (($ $ |#2| $) 94) (($ $ (-635 |#2|) (-635 $)) 87) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-4217 (($ $ |#2|) 97) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4355 (((-529 |#2|) $) NIL)) (-3743 (((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|))) 76)) (-3894 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 118 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 114 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 15)) (-4353 (((-857) $) 179) (($ (-544)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#2|) 62) (($ |#3|) 60)) (-4084 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL) ((|#3| $ (-765)) 38)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3897 (($ $) 152 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 156 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-3900 (($ $) 158 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 154 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 150 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 47 T CONST)) (-3046 (($) 54 T CONST)) (-3051 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 58)) (** (($ $ (-912)) NIL) (($ $ (-765)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 100 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 57) (($ $ (-406 (-544))) 105 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 103 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
+(((-1116 |#1| |#2| |#3|) (-13 (-734 |#1| |#2|) (-10 -8 (-15 -4084 (|#3| $ (-765))) (-15 -4353 ($ |#2|)) (-15 -4353 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3743 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ |#2| |#1|)) (-15 -4083 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1042) (-844) (-943 |#1| (-529 |#2|) |#2|)) (T -1116))
+((-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-943 *4 (-529 *5) *5)) (-5 *1 (-1116 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-943 *3 (-529 *2) *2)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-943 *3 (-529 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-943 *3 (-529 *4) *4)))) (-3743 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-844)) (-4 *7 (-943 *5 (-529 *6) *6)) (-4 *5 (-1042)) (-5 *2 (-1 (-1143 *7) *7)) (-5 *1 (-1116 *5 *6 *7)))) (-4219 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-943 *3 (-529 *2) *2)))) (-4083 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5)) (-4 *5 (-943 *4 (-529 *3) *3)))))
+(-13 (-734 |#1| |#2|) (-10 -8 (-15 -4084 (|#3| $ (-765))) (-15 -4353 ($ |#2|)) (-15 -4353 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3743 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ |#2| |#1|)) (-15 -4083 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400)))))
(((-1117 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1117))
NIL
(-13 (-1099 |t#1| |t#2| |t#3| |t#4|) (-778 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-778 |#1| |#2| |#3| |#4|) . T) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
-((-4164 (((-638 |#2|) |#1|) 12)) (-2629 (((-638 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-638 |#2|) |#1|) 49)) (-1904 (((-638 |#2|) |#2| |#2| |#2|) 36) (((-638 |#2|) |#1|) 47)) (-3749 ((|#2| |#1|) 43)) (-1893 (((-2 (|:| |solns| (-638 |#2|)) (|:| |maps| (-638 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1978 (((-638 |#2|) |#2| |#2|) 35) (((-638 |#2|) |#1|) 46)) (-3055 (((-638 |#2|) |#2| |#2| |#2| |#2|) 37) (((-638 |#2|) |#1|) 48)) (-1928 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-1350 ((|#2| |#2| |#2| |#2|) 40)) (-2275 ((|#2| |#2| |#2|) 39)) (-4204 ((|#2| |#2| |#2| |#2| |#2|) 41)))
-(((-1118 |#1| |#2|) (-10 -7 (-15 -4164 ((-638 |#2|) |#1|)) (-15 -3749 (|#2| |#1|)) (-15 -1893 ((-2 (|:| |solns| (-638 |#2|)) (|:| |maps| (-638 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1978 ((-638 |#2|) |#1|)) (-15 -1904 ((-638 |#2|) |#1|)) (-15 -3055 ((-638 |#2|) |#1|)) (-15 -2629 ((-638 |#2|) |#1|)) (-15 -1978 ((-638 |#2|) |#2| |#2|)) (-15 -1904 ((-638 |#2|) |#2| |#2| |#2|)) (-15 -3055 ((-638 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2629 ((-638 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2275 (|#2| |#2| |#2|)) (-15 -1350 (|#2| |#2| |#2| |#2|)) (-15 -4204 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1928 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1230 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (T -1118))
-((-1928 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))) (-4204 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))) (-1350 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))) (-2275 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))) (-2629 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))) (-3055 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))) (-1904 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))) (-1978 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))) (-2629 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4)))) (-1904 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4)))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-2 (|:| |solns| (-638 *5)) (|:| |maps| (-638 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1118 *3 *5)) (-4 *3 (-1230 *5)))) (-3749 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -4164 ((-638 |#2|) |#1|)) (-15 -3749 (|#2| |#1|)) (-15 -1893 ((-2 (|:| |solns| (-638 |#2|)) (|:| |maps| (-638 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1978 ((-638 |#2|) |#1|)) (-15 -1904 ((-638 |#2|) |#1|)) (-15 -3055 ((-638 |#2|) |#1|)) (-15 -2629 ((-638 |#2|) |#1|)) (-15 -1978 ((-638 |#2|) |#2| |#2|)) (-15 -1904 ((-638 |#2|) |#2| |#2| |#2|)) (-15 -3055 ((-638 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2629 ((-638 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2275 (|#2| |#2| |#2|)) (-15 -1350 (|#2| |#2| |#2| |#2|)) (-15 -4204 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1928 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2575 (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|))))) 95) (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166))) 94) (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|)))) 92) (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 90) (((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|)))) 75) (((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))) (-1166)) 76) (((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|))) 70) (((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)) (-1166)) 59)) (-1331 (((-638 (-638 (-315 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 88) (((-638 (-315 |#1|)) (-406 (-945 |#1|)) (-1166)) 43)) (-3381 (((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-406 (-945 |#1|)) (-1166)) 98) (((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166)) 97)))
-(((-1119 |#1|) (-10 -7 (-15 -2575 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -2575 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)))) (-15 -2575 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -2575 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -1331 ((-638 (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -1331 ((-638 (-638 (-315 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -3381 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -3381 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-406 (-945 |#1|)) (-1166)))) (-13 (-306) (-844) (-146))) (T -1119))
-((-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-315 *5)))) (-5 *1 (-1119 *5)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-315 *5))) (-5 *1 (-1119 *5)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-638 (-293 (-406 (-945 *4))))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-293 (-406 (-945 *5))))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-638 (-406 (-945 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-293 (-406 (-945 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1119 *4)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1119 *5)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1119 *4)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1119 *5)))))
-(-10 -7 (-15 -2575 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -2575 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)))) (-15 -2575 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -2575 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -2575 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -1331 ((-638 (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -1331 ((-638 (-638 (-315 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -3381 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -3381 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-406 (-945 |#1|)) (-1166))))
-((-1936 (((-406 (-1162 (-315 |#1|))) (-1254 (-315 |#1|)) (-406 (-1162 (-315 |#1|))) (-561)) 29)) (-2380 (((-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|)))) 40)))
-(((-1120 |#1|) (-10 -7 (-15 -2380 ((-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))))) (-15 -1936 ((-406 (-1162 (-315 |#1|))) (-1254 (-315 |#1|)) (-406 (-1162 (-315 |#1|))) (-561)))) (-13 (-553) (-844))) (T -1120))
-((-1936 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1162 (-315 *5)))) (-5 *3 (-1254 (-315 *5))) (-5 *4 (-561)) (-4 *5 (-13 (-553) (-844))) (-5 *1 (-1120 *5)))) (-2380 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1162 (-315 *3)))) (-4 *3 (-13 (-553) (-844))) (-5 *1 (-1120 *3)))))
-(-10 -7 (-15 -2380 ((-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))))) (-15 -1936 ((-406 (-1162 (-315 |#1|))) (-1254 (-315 |#1|)) (-406 (-1162 (-315 |#1|))) (-561))))
-((-4164 (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-315 |#1|))) (-638 (-1166))) 222) (((-638 (-293 (-315 |#1|))) (-315 |#1|) (-1166)) 20) (((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1166)) 26) (((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|))) 25) (((-638 (-293 (-315 |#1|))) (-315 |#1|)) 21)))
-(((-1121 |#1|) (-10 -7 (-15 -4164 ((-638 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -4164 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -4164 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1166))) (-15 -4164 ((-638 (-293 (-315 |#1|))) (-315 |#1|) (-1166))) (-15 -4164 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-315 |#1|))) (-638 (-1166))))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (T -1121))
-((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1121 *5)) (-5 *3 (-638 (-293 (-315 *5)))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-315 *5)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-293 (-315 *5))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-293 (-315 *4))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-315 *4)))))
-(-10 -7 (-15 -4164 ((-638 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -4164 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -4164 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1166))) (-15 -4164 ((-638 (-293 (-315 |#1|))) (-315 |#1|) (-1166))) (-15 -4164 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-315 |#1|))) (-638 (-1166)))))
-((-2225 ((|#2| |#2|) 20 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3895 ((|#2| |#2|) 19 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
-(((-1122 |#1| |#2|) (-10 -7 (-15 -3895 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2225 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -3895 (|#2| |#2|)) (-15 -2225 (|#2| |#2|))) |%noBranch|)) (-1205) (-13 (-599 (-561) |#1|) (-10 -7 (-6 -4399) (-6 -4400)))) (T -1122))
-((-2225 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4399) (-6 -4400)))))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4399) (-6 -4400)))))) (-2225 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4399) (-6 -4400)))))) (-3895 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4399) (-6 -4400)))))))
-(-10 -7 (-15 -3895 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2225 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -3895 (|#2| |#2|)) (-15 -2225 (|#2| |#2|))) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-1884 (((-1154 3 |#1|) $) 107)) (-2175 (((-112) $) 72)) (-3128 (($ $ (-638 (-936 |#1|))) 20) (($ $ (-638 (-638 |#1|))) 75) (($ (-638 (-936 |#1|))) 74) (((-638 (-936 |#1|)) $) 73)) (-4080 (((-112) $) 41)) (-1507 (($ $ (-936 |#1|)) 46) (($ $ (-638 |#1|)) 51) (($ $ (-765)) 53) (($ (-936 |#1|)) 47) (((-936 |#1|) $) 45)) (-1410 (((-2 (|:| -3233 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 105)) (-2993 (((-765) $) 26)) (-3848 (((-765) $) 25)) (-3929 (($ $ (-765) (-936 |#1|)) 39)) (-3937 (((-112) $) 82)) (-3418 (($ $ (-638 (-638 (-936 |#1|))) (-638 (-170)) (-170)) 89) (($ $ (-638 (-638 (-638 |#1|))) (-638 (-170)) (-170)) 91) (($ $ (-638 (-638 (-936 |#1|))) (-112) (-112)) 85) (($ $ (-638 (-638 (-638 |#1|))) (-112) (-112)) 93) (($ (-638 (-638 (-936 |#1|)))) 86) (($ (-638 (-638 (-936 |#1|))) (-112) (-112)) 87) (((-638 (-638 (-936 |#1|))) $) 84)) (-3405 (($ (-638 $)) 28) (($ $ $) 29)) (-2914 (((-638 (-170)) $) 102)) (-1661 (((-638 (-936 |#1|)) $) 96)) (-3803 (((-638 (-638 (-170))) $) 101)) (-2104 (((-638 (-638 (-638 (-936 |#1|)))) $) NIL)) (-4377 (((-638 (-638 (-638 (-765)))) $) 99)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1300 (((-765) $ (-638 (-936 |#1|))) 37)) (-2012 (((-112) $) 54)) (-2083 (($ $ (-638 (-936 |#1|))) 56) (($ $ (-638 (-638 |#1|))) 62) (($ (-638 (-936 |#1|))) 57) (((-638 (-936 |#1|)) $) 55)) (-3321 (($) 23) (($ (-1154 3 |#1|)) 24)) (-4225 (($ $) 35)) (-3241 (((-638 $) $) 34)) (-2280 (($ (-638 $)) 31)) (-3062 (((-638 $) $) 33)) (-4064 (((-856) $) 111)) (-1863 (((-112) $) 64)) (-3983 (($ $ (-638 (-936 |#1|))) 66) (($ $ (-638 (-638 |#1|))) 69) (($ (-638 (-936 |#1|))) 67) (((-638 (-936 |#1|)) $) 65)) (-1804 (($ $) 106)) (-1723 (((-112) $ $) NIL)))
+(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-778 |#1| |#2| |#3| |#4|) . T) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T))
+((-3980 (((-635 |#2|) |#1|) 12)) (-3749 (((-635 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-635 |#2|) |#1|) 49)) (-3747 (((-635 |#2|) |#2| |#2| |#2|) 36) (((-635 |#2|) |#1|) 47)) (-3744 ((|#2| |#1|) 43)) (-3745 (((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3746 (((-635 |#2|) |#2| |#2|) 35) (((-635 |#2|) |#1|) 46)) (-3748 (((-635 |#2|) |#2| |#2| |#2| |#2|) 37) (((-635 |#2|) |#1|) 48)) (-3753 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3751 ((|#2| |#2| |#2| |#2|) 40)) (-3750 ((|#2| |#2| |#2|) 39)) (-3752 ((|#2| |#2| |#2| |#2| |#2|) 41)))
+(((-1118 |#1| |#2|) (-10 -7 (-15 -3980 ((-635 |#2|) |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3745 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3746 ((-635 |#2|) |#1|)) (-15 -3747 ((-635 |#2|) |#1|)) (-15 -3748 ((-635 |#2|) |#1|)) (-15 -3749 ((-635 |#2|) |#1|)) (-15 -3746 ((-635 |#2|) |#2| |#2|)) (-15 -3747 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -3748 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3749 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1229 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (T -1118))
+((-3753 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3752 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3751 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3749 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3748 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3747 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3746 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-2 (|:| |solns| (-635 *5)) (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1118 *3 *5)) (-4 *3 (-1229 *5)))) (-3744 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3980 ((-635 |#2|) |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3745 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3746 ((-635 |#2|) |#1|)) (-15 -3747 ((-635 |#2|) |#1|)) (-15 -3748 ((-635 |#2|) |#1|)) (-15 -3749 ((-635 |#2|) |#1|)) (-15 -3746 ((-635 |#2|) |#2| |#2|)) (-15 -3747 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -3748 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3749 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3754 (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|))))) 95) (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166))) 94) (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|)))) 92) (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 90) (((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|)))) 75) (((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))) (-1166)) 76) (((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|))) 70) (((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)) (-1166)) 59)) (-3755 (((-635 (-635 (-313 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 88) (((-635 (-313 |#1|)) (-406 (-939 |#1|)) (-1166)) 43)) (-3756 (((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-406 (-939 |#1|)) (-1166)) 98) (((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166)) 97)))
+(((-1119 |#1|) (-10 -7 (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3755 ((-635 (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3755 ((-635 (-635 (-313 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-406 (-939 |#1|)) (-1166)))) (-13 (-306) (-844) (-146))) (T -1119))
+((-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-313 *5)))) (-5 *1 (-1119 *5)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-313 *5))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-635 (-292 (-406 (-939 *4))))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *4))))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-292 (-406 (-939 *5))))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *4))))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1119 *5)))))
+(-10 -7 (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3755 ((-635 (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3755 ((-635 (-635 (-313 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-406 (-939 |#1|)) (-1166))))
+((-3758 (((-406 (-1160 (-313 |#1|))) (-1253 (-313 |#1|)) (-406 (-1160 (-313 |#1|))) (-544)) 29)) (-3757 (((-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|)))) 40)))
+(((-1120 |#1|) (-10 -7 (-15 -3757 ((-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))))) (-15 -3758 ((-406 (-1160 (-313 |#1|))) (-1253 (-313 |#1|)) (-406 (-1160 (-313 |#1|))) (-544)))) (-13 (-554) (-844))) (T -1120))
+((-3758 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1160 (-313 *5)))) (-5 *3 (-1253 (-313 *5))) (-5 *4 (-544)) (-4 *5 (-13 (-554) (-844))) (-5 *1 (-1120 *5)))) (-3757 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1160 (-313 *3)))) (-4 *3 (-13 (-554) (-844))) (-5 *1 (-1120 *3)))))
+(-10 -7 (-15 -3757 ((-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))))) (-15 -3758 ((-406 (-1160 (-313 |#1|))) (-1253 (-313 |#1|)) (-406 (-1160 (-313 |#1|))) (-544))))
+((-3980 (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-313 |#1|))) (-635 (-1166))) 222) (((-635 (-292 (-313 |#1|))) (-313 |#1|) (-1166)) 20) (((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)) (-1166)) 26) (((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|))) 25) (((-635 (-292 (-313 |#1|))) (-313 |#1|)) 21)))
+(((-1121 |#1|) (-10 -7 (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|) (-1166))) (-15 -3980 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-313 |#1|))) (-635 (-1166))))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (T -1121))
+((-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1121 *5)) (-5 *3 (-635 (-292 (-313 *5)))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-313 *5)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-292 (-313 *5))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-292 (-313 *4))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-313 *4)))))
+(-10 -7 (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|) (-1166))) (-15 -3980 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-313 |#1|))) (-635 (-1166)))))
+((-3760 ((|#2| |#2|) 20 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3759 ((|#2| |#2|) 19 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
+(((-1122 |#1| |#2|) (-10 -7 (-15 -3759 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3760 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -3759 (|#2| |#2|)) (-15 -3760 (|#2| |#2|))) |%noBranch|)) (-1204) (-13 (-599 (-544) |#1|) (-10 -7 (-6 -4400) (-6 -4401)))) (T -1122))
+((-3760 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401)))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401)))))) (-3760 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401)))))) (-3759 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401)))))))
+(-10 -7 (-15 -3759 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3760 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -3759 (|#2| |#2|)) (-15 -3760 (|#2| |#2|))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-4295 (((-1154 3 |#1|) $) 107)) (-3770 (((-112) $) 72)) (-3771 (($ $ (-635 (-936 |#1|))) 20) (($ $ (-635 (-635 |#1|))) 75) (($ (-635 (-936 |#1|))) 74) (((-635 (-936 |#1|)) $) 73)) (-3776 (((-112) $) 41)) (-4113 (($ $ (-936 |#1|)) 46) (($ $ (-635 |#1|)) 51) (($ $ (-765)) 53) (($ (-936 |#1|)) 47) (((-936 |#1|) $) 45)) (-3762 (((-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 105)) (-3780 (((-765) $) 26)) (-3781 (((-765) $) 25)) (-4294 (($ $ (-765) (-936 |#1|)) 39)) (-3768 (((-112) $) 82)) (-3769 (($ $ (-635 (-635 (-936 |#1|))) (-635 (-170)) (-170)) 89) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 91) (($ $ (-635 (-635 (-936 |#1|))) (-112) (-112)) 85) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 93) (($ (-635 (-635 (-936 |#1|)))) 86) (($ (-635 (-635 (-936 |#1|))) (-112) (-112)) 87) (((-635 (-635 (-936 |#1|))) $) 84)) (-3917 (($ (-635 $)) 28) (($ $ $) 29)) (-3763 (((-635 (-170)) $) 102)) (-3767 (((-635 (-936 |#1|)) $) 96)) (-3764 (((-635 (-635 (-170))) $) 101)) (-3765 (((-635 (-635 (-635 (-936 |#1|)))) $) NIL)) (-3766 (((-635 (-635 (-635 (-765)))) $) 99)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3777 (((-765) $ (-635 (-936 |#1|))) 37)) (-3774 (((-112) $) 54)) (-3775 (($ $ (-635 (-936 |#1|))) 56) (($ $ (-635 (-635 |#1|))) 62) (($ (-635 (-936 |#1|))) 57) (((-635 (-936 |#1|)) $) 55)) (-3782 (($) 23) (($ (-1154 3 |#1|)) 24)) (-3804 (($ $) 35)) (-3778 (((-635 $) $) 34)) (-4161 (($ (-635 $)) 31)) (-3779 (((-635 $) $) 33)) (-4353 (((-857) $) 111)) (-3772 (((-112) $) 64)) (-3773 (($ $ (-635 (-936 |#1|))) 66) (($ $ (-635 (-635 |#1|))) 69) (($ (-635 (-936 |#1|))) 67) (((-635 (-936 |#1|)) $) 65)) (-3761 (($ $) 106)) (-3437 (((-112) $ $) NIL)))
(((-1123 |#1|) (-1124 |#1|) (-1042)) (T -1123))
NIL
(-1124 |#1|)
-((-4053 (((-112) $ $) 7)) (-1884 (((-1154 3 |#1|) $) 13)) (-2175 (((-112) $) 29)) (-3128 (($ $ (-638 (-936 |#1|))) 33) (($ $ (-638 (-638 |#1|))) 32) (($ (-638 (-936 |#1|))) 31) (((-638 (-936 |#1|)) $) 30)) (-4080 (((-112) $) 44)) (-1507 (($ $ (-936 |#1|)) 49) (($ $ (-638 |#1|)) 48) (($ $ (-765)) 47) (($ (-936 |#1|)) 46) (((-936 |#1|) $) 45)) (-1410 (((-2 (|:| -3233 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 15)) (-2993 (((-765) $) 58)) (-3848 (((-765) $) 59)) (-3929 (($ $ (-765) (-936 |#1|)) 50)) (-3937 (((-112) $) 21)) (-3418 (($ $ (-638 (-638 (-936 |#1|))) (-638 (-170)) (-170)) 28) (($ $ (-638 (-638 (-638 |#1|))) (-638 (-170)) (-170)) 27) (($ $ (-638 (-638 (-936 |#1|))) (-112) (-112)) 26) (($ $ (-638 (-638 (-638 |#1|))) (-112) (-112)) 25) (($ (-638 (-638 (-936 |#1|)))) 24) (($ (-638 (-638 (-936 |#1|))) (-112) (-112)) 23) (((-638 (-638 (-936 |#1|))) $) 22)) (-3405 (($ (-638 $)) 57) (($ $ $) 56)) (-2914 (((-638 (-170)) $) 16)) (-1661 (((-638 (-936 |#1|)) $) 20)) (-3803 (((-638 (-638 (-170))) $) 17)) (-2104 (((-638 (-638 (-638 (-936 |#1|)))) $) 18)) (-4377 (((-638 (-638 (-638 (-765)))) $) 19)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1300 (((-765) $ (-638 (-936 |#1|))) 51)) (-2012 (((-112) $) 39)) (-2083 (($ $ (-638 (-936 |#1|))) 43) (($ $ (-638 (-638 |#1|))) 42) (($ (-638 (-936 |#1|))) 41) (((-638 (-936 |#1|)) $) 40)) (-3321 (($) 61) (($ (-1154 3 |#1|)) 60)) (-4225 (($ $) 52)) (-3241 (((-638 $) $) 53)) (-2280 (($ (-638 $)) 55)) (-3062 (((-638 $) $) 54)) (-4064 (((-856) $) 11)) (-1863 (((-112) $) 34)) (-3983 (($ $ (-638 (-936 |#1|))) 38) (($ $ (-638 (-638 |#1|))) 37) (($ (-638 (-936 |#1|))) 36) (((-638 (-936 |#1|)) $) 35)) (-1804 (($ $) 14)) (-1723 (((-112) $ $) 6)))
+((-2947 (((-112) $ $) 7)) (-4295 (((-1154 3 |#1|) $) 13)) (-3770 (((-112) $) 29)) (-3771 (($ $ (-635 (-936 |#1|))) 33) (($ $ (-635 (-635 |#1|))) 32) (($ (-635 (-936 |#1|))) 31) (((-635 (-936 |#1|)) $) 30)) (-3776 (((-112) $) 44)) (-4113 (($ $ (-936 |#1|)) 49) (($ $ (-635 |#1|)) 48) (($ $ (-765)) 47) (($ (-936 |#1|)) 46) (((-936 |#1|) $) 45)) (-3762 (((-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 15)) (-3780 (((-765) $) 58)) (-3781 (((-765) $) 59)) (-4294 (($ $ (-765) (-936 |#1|)) 50)) (-3768 (((-112) $) 21)) (-3769 (($ $ (-635 (-635 (-936 |#1|))) (-635 (-170)) (-170)) 28) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 27) (($ $ (-635 (-635 (-936 |#1|))) (-112) (-112)) 26) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 25) (($ (-635 (-635 (-936 |#1|)))) 24) (($ (-635 (-635 (-936 |#1|))) (-112) (-112)) 23) (((-635 (-635 (-936 |#1|))) $) 22)) (-3917 (($ (-635 $)) 57) (($ $ $) 56)) (-3763 (((-635 (-170)) $) 16)) (-3767 (((-635 (-936 |#1|)) $) 20)) (-3764 (((-635 (-635 (-170))) $) 17)) (-3765 (((-635 (-635 (-635 (-936 |#1|)))) $) 18)) (-3766 (((-635 (-635 (-635 (-765)))) $) 19)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3777 (((-765) $ (-635 (-936 |#1|))) 51)) (-3774 (((-112) $) 39)) (-3775 (($ $ (-635 (-936 |#1|))) 43) (($ $ (-635 (-635 |#1|))) 42) (($ (-635 (-936 |#1|))) 41) (((-635 (-936 |#1|)) $) 40)) (-3782 (($) 61) (($ (-1154 3 |#1|)) 60)) (-3804 (($ $) 52)) (-3778 (((-635 $) $) 53)) (-4161 (($ (-635 $)) 55)) (-3779 (((-635 $) $) 54)) (-4353 (((-857) $) 11)) (-3772 (((-112) $) 34)) (-3773 (($ $ (-635 (-936 |#1|))) 38) (($ $ (-635 (-635 |#1|))) 37) (($ (-635 (-936 |#1|))) 36) (((-635 (-936 |#1|)) $) 35)) (-3761 (($ $) 14)) (-3437 (((-112) $ $) 6)))
(((-1124 |#1|) (-139) (-1042)) (T -1124))
-((-4064 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-856)))) (-3321 (*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-3321 (*1 *1 *2) (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3405 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3062 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))) (-3241 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-1300 (*1 *2 *1 *3) (-12 (-5 *3 (-638 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-3929 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3983 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3983 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3983 (*1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3418 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-638 (-936 *5)))) (-5 *3 (-638 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-3418 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-638 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-3418 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-3418 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-3418 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 *3)))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3418 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042)) (-4 *1 (-1124 *4)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-936 *3)))))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-638 (-765))))))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-638 (-936 *3))))))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-170)))))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-170))))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -3233 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765)))))) (-1804 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3)))))
-(-13 (-1090) (-10 -8 (-15 -3321 ($)) (-15 -3321 ($ (-1154 3 |t#1|))) (-15 -3848 ((-765) $)) (-15 -2993 ((-765) $)) (-15 -3405 ($ (-638 $))) (-15 -3405 ($ $ $)) (-15 -2280 ($ (-638 $))) (-15 -3062 ((-638 $) $)) (-15 -3241 ((-638 $) $)) (-15 -4225 ($ $)) (-15 -1300 ((-765) $ (-638 (-936 |t#1|)))) (-15 -3929 ($ $ (-765) (-936 |t#1|))) (-15 -1507 ($ $ (-936 |t#1|))) (-15 -1507 ($ $ (-638 |t#1|))) (-15 -1507 ($ $ (-765))) (-15 -1507 ($ (-936 |t#1|))) (-15 -1507 ((-936 |t#1|) $)) (-15 -4080 ((-112) $)) (-15 -2083 ($ $ (-638 (-936 |t#1|)))) (-15 -2083 ($ $ (-638 (-638 |t#1|)))) (-15 -2083 ($ (-638 (-936 |t#1|)))) (-15 -2083 ((-638 (-936 |t#1|)) $)) (-15 -2012 ((-112) $)) (-15 -3983 ($ $ (-638 (-936 |t#1|)))) (-15 -3983 ($ $ (-638 (-638 |t#1|)))) (-15 -3983 ($ (-638 (-936 |t#1|)))) (-15 -3983 ((-638 (-936 |t#1|)) $)) (-15 -1863 ((-112) $)) (-15 -3128 ($ $ (-638 (-936 |t#1|)))) (-15 -3128 ($ $ (-638 (-638 |t#1|)))) (-15 -3128 ($ (-638 (-936 |t#1|)))) (-15 -3128 ((-638 (-936 |t#1|)) $)) (-15 -2175 ((-112) $)) (-15 -3418 ($ $ (-638 (-638 (-936 |t#1|))) (-638 (-170)) (-170))) (-15 -3418 ($ $ (-638 (-638 (-638 |t#1|))) (-638 (-170)) (-170))) (-15 -3418 ($ $ (-638 (-638 (-936 |t#1|))) (-112) (-112))) (-15 -3418 ($ $ (-638 (-638 (-638 |t#1|))) (-112) (-112))) (-15 -3418 ($ (-638 (-638 (-936 |t#1|))))) (-15 -3418 ($ (-638 (-638 (-936 |t#1|))) (-112) (-112))) (-15 -3418 ((-638 (-638 (-936 |t#1|))) $)) (-15 -3937 ((-112) $)) (-15 -1661 ((-638 (-936 |t#1|)) $)) (-15 -4377 ((-638 (-638 (-638 (-765)))) $)) (-15 -2104 ((-638 (-638 (-638 (-936 |t#1|)))) $)) (-15 -3803 ((-638 (-638 (-170))) $)) (-15 -2914 ((-638 (-170)) $)) (-15 -1410 ((-2 (|:| -3233 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $)) (-15 -1804 ($ $)) (-15 -1884 ((-1154 3 |t#1|) $)) (-15 -4064 ((-856) $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 176) (($ (-1171)) NIL) (((-1171) $) 7)) (-2234 (((-112) $ (|[\|\|]| (-522))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-669))) 25) (((-112) $ (|[\|\|]| (-1264))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1105))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-674))) 49) (((-112) $ (|[\|\|]| (-515))) 53) (((-112) $ (|[\|\|]| (-1057))) 57) (((-112) $ (|[\|\|]| (-1265))) 61) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-664))) 73) (((-112) $ (|[\|\|]| (-310))) 77) (((-112) $ (|[\|\|]| (-1029))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-963))) 89) (((-112) $ (|[\|\|]| (-1064))) 93) (((-112) $ (|[\|\|]| (-1080))) 97) (((-112) $ (|[\|\|]| (-1086))) 101) (((-112) $ (|[\|\|]| (-621))) 105) (((-112) $ (|[\|\|]| (-1156))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-476))) 121) (((-112) $ (|[\|\|]| (-588))) 125) (((-112) $ (|[\|\|]| (-504))) 131) (((-112) $ (|[\|\|]| (-1148))) 135) (((-112) $ (|[\|\|]| (-561))) 139)) (-4252 (((-522) $) 18) (((-217) $) 22) (((-669) $) 26) (((-1264) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1105) $) 42) (((-96) $) 46) (((-674) $) 50) (((-515) $) 54) (((-1057) $) 58) (((-1265) $) 62) (((-523) $) 66) (((-153) $) 70) (((-664) $) 74) (((-310) $) 78) (((-1029) $) 82) (((-179) $) 86) (((-963) $) 90) (((-1064) $) 94) (((-1080) $) 98) (((-1086) $) 102) (((-621) $) 106) (((-1156) $) 110) (((-155) $) 114) (((-136) $) 118) (((-476) $) 122) (((-588) $) 126) (((-504) $) 132) (((-1148) $) 136) (((-561) $) 140)) (-1723 (((-112) $ $) NIL)))
+((-4353 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-857)))) (-3782 (*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3917 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3779 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)))) (-3778 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)))) (-3804 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-4294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3773 (*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-936 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-3769 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-3769 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 *3)))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3769 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042)) (-4 *1 (-1124 *4)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-936 *3)))))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-635 (-765))))))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-635 (-936 *3))))))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-170)))))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-170))))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765)))))) (-3761 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3)))))
+(-13 (-1091) (-10 -8 (-15 -3782 ($)) (-15 -3782 ($ (-1154 3 |t#1|))) (-15 -3781 ((-765) $)) (-15 -3780 ((-765) $)) (-15 -3917 ($ (-635 $))) (-15 -3917 ($ $ $)) (-15 -4161 ($ (-635 $))) (-15 -3779 ((-635 $) $)) (-15 -3778 ((-635 $) $)) (-15 -3804 ($ $)) (-15 -3777 ((-765) $ (-635 (-936 |t#1|)))) (-15 -4294 ($ $ (-765) (-936 |t#1|))) (-15 -4113 ($ $ (-936 |t#1|))) (-15 -4113 ($ $ (-635 |t#1|))) (-15 -4113 ($ $ (-765))) (-15 -4113 ($ (-936 |t#1|))) (-15 -4113 ((-936 |t#1|) $)) (-15 -3776 ((-112) $)) (-15 -3775 ($ $ (-635 (-936 |t#1|)))) (-15 -3775 ($ $ (-635 (-635 |t#1|)))) (-15 -3775 ($ (-635 (-936 |t#1|)))) (-15 -3775 ((-635 (-936 |t#1|)) $)) (-15 -3774 ((-112) $)) (-15 -3773 ($ $ (-635 (-936 |t#1|)))) (-15 -3773 ($ $ (-635 (-635 |t#1|)))) (-15 -3773 ($ (-635 (-936 |t#1|)))) (-15 -3773 ((-635 (-936 |t#1|)) $)) (-15 -3772 ((-112) $)) (-15 -3771 ($ $ (-635 (-936 |t#1|)))) (-15 -3771 ($ $ (-635 (-635 |t#1|)))) (-15 -3771 ($ (-635 (-936 |t#1|)))) (-15 -3771 ((-635 (-936 |t#1|)) $)) (-15 -3770 ((-112) $)) (-15 -3769 ($ $ (-635 (-635 (-936 |t#1|))) (-635 (-170)) (-170))) (-15 -3769 ($ $ (-635 (-635 (-635 |t#1|))) (-635 (-170)) (-170))) (-15 -3769 ($ $ (-635 (-635 (-936 |t#1|))) (-112) (-112))) (-15 -3769 ($ $ (-635 (-635 (-635 |t#1|))) (-112) (-112))) (-15 -3769 ($ (-635 (-635 (-936 |t#1|))))) (-15 -3769 ($ (-635 (-635 (-936 |t#1|))) (-112) (-112))) (-15 -3769 ((-635 (-635 (-936 |t#1|))) $)) (-15 -3768 ((-112) $)) (-15 -3767 ((-635 (-936 |t#1|)) $)) (-15 -3766 ((-635 (-635 (-635 (-765)))) $)) (-15 -3765 ((-635 (-635 (-635 (-936 |t#1|)))) $)) (-15 -3764 ((-635 (-635 (-170))) $)) (-15 -3763 ((-635 (-170)) $)) (-15 -3762 ((-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $)) (-15 -3761 ($ $)) (-15 -4295 ((-1154 3 |t#1|) $)) (-15 -4353 ((-857) $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 176) (($ (-1171)) NIL) (((-1171) $) 7)) (-3973 (((-112) $ (|[\|\|]| (-522))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-669))) 25) (((-112) $ (|[\|\|]| (-1264))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1106))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-674))) 49) (((-112) $ (|[\|\|]| (-515))) 53) (((-112) $ (|[\|\|]| (-1057))) 57) (((-112) $ (|[\|\|]| (-1265))) 61) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-664))) 73) (((-112) $ (|[\|\|]| (-311))) 77) (((-112) $ (|[\|\|]| (-1029))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-963))) 89) (((-112) $ (|[\|\|]| (-1064))) 93) (((-112) $ (|[\|\|]| (-1081))) 97) (((-112) $ (|[\|\|]| (-1086))) 101) (((-112) $ (|[\|\|]| (-621))) 105) (((-112) $ (|[\|\|]| (-1156))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-476))) 121) (((-112) $ (|[\|\|]| (-588))) 125) (((-112) $ (|[\|\|]| (-504))) 131) (((-112) $ (|[\|\|]| (-1148))) 135) (((-112) $ (|[\|\|]| (-544))) 139)) (-3979 (((-522) $) 18) (((-217) $) 22) (((-669) $) 26) (((-1264) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1106) $) 42) (((-96) $) 46) (((-674) $) 50) (((-515) $) 54) (((-1057) $) 58) (((-1265) $) 62) (((-523) $) 66) (((-153) $) 70) (((-664) $) 74) (((-311) $) 78) (((-1029) $) 82) (((-179) $) 86) (((-963) $) 90) (((-1064) $) 94) (((-1081) $) 98) (((-1086) $) 102) (((-621) $) 106) (((-1156) $) 110) (((-155) $) 114) (((-136) $) 118) (((-476) $) 122) (((-588) $) 126) (((-504) $) 132) (((-1148) $) 136) (((-544) $) 140)) (-3437 (((-112) $ $) NIL)))
(((-1125) (-1127)) (T -1125))
NIL
(-1127)
-((-2332 (((-638 (-1171)) (-1148)) 9)))
-(((-1126) (-10 -7 (-15 -2332 ((-638 (-1171)) (-1148))))) (T -1126))
-((-2332 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-1126)))))
-(-10 -7 (-15 -2332 ((-638 (-1171)) (-1148))))
-((-4053 (((-112) $ $) 7)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-2234 (((-112) $ (|[\|\|]| (-522))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-669))) 76) (((-112) $ (|[\|\|]| (-1264))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1105))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-674))) 64) (((-112) $ (|[\|\|]| (-515))) 62) (((-112) $ (|[\|\|]| (-1057))) 60) (((-112) $ (|[\|\|]| (-1265))) 58) (((-112) $ (|[\|\|]| (-523))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-664))) 52) (((-112) $ (|[\|\|]| (-310))) 50) (((-112) $ (|[\|\|]| (-1029))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-963))) 44) (((-112) $ (|[\|\|]| (-1064))) 42) (((-112) $ (|[\|\|]| (-1080))) 40) (((-112) $ (|[\|\|]| (-1086))) 38) (((-112) $ (|[\|\|]| (-621))) 36) (((-112) $ (|[\|\|]| (-1156))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-476))) 28) (((-112) $ (|[\|\|]| (-588))) 26) (((-112) $ (|[\|\|]| (-504))) 24) (((-112) $ (|[\|\|]| (-1148))) 22) (((-112) $ (|[\|\|]| (-561))) 20)) (-4252 (((-522) $) 79) (((-217) $) 77) (((-669) $) 75) (((-1264) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1105) $) 67) (((-96) $) 65) (((-674) $) 63) (((-515) $) 61) (((-1057) $) 59) (((-1265) $) 57) (((-523) $) 55) (((-153) $) 53) (((-664) $) 51) (((-310) $) 49) (((-1029) $) 47) (((-179) $) 45) (((-963) $) 43) (((-1064) $) 41) (((-1080) $) 39) (((-1086) $) 37) (((-621) $) 35) (((-1156) $) 33) (((-155) $) 31) (((-136) $) 29) (((-476) $) 27) (((-588) $) 25) (((-504) $) 23) (((-1148) $) 21) (((-561) $) 19)) (-1723 (((-112) $ $) 6)))
+((-3783 (((-635 (-1171)) (-1148)) 9)))
+(((-1126) (-10 -7 (-15 -3783 ((-635 (-1171)) (-1148))))) (T -1126))
+((-3783 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-1126)))))
+(-10 -7 (-15 -3783 ((-635 (-1171)) (-1148))))
+((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-3973 (((-112) $ (|[\|\|]| (-522))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-669))) 76) (((-112) $ (|[\|\|]| (-1264))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1106))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-674))) 64) (((-112) $ (|[\|\|]| (-515))) 62) (((-112) $ (|[\|\|]| (-1057))) 60) (((-112) $ (|[\|\|]| (-1265))) 58) (((-112) $ (|[\|\|]| (-523))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-664))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1029))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-963))) 44) (((-112) $ (|[\|\|]| (-1064))) 42) (((-112) $ (|[\|\|]| (-1081))) 40) (((-112) $ (|[\|\|]| (-1086))) 38) (((-112) $ (|[\|\|]| (-621))) 36) (((-112) $ (|[\|\|]| (-1156))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-476))) 28) (((-112) $ (|[\|\|]| (-588))) 26) (((-112) $ (|[\|\|]| (-504))) 24) (((-112) $ (|[\|\|]| (-1148))) 22) (((-112) $ (|[\|\|]| (-544))) 20)) (-3979 (((-522) $) 79) (((-217) $) 77) (((-669) $) 75) (((-1264) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1106) $) 67) (((-96) $) 65) (((-674) $) 63) (((-515) $) 61) (((-1057) $) 59) (((-1265) $) 57) (((-523) $) 55) (((-153) $) 53) (((-664) $) 51) (((-311) $) 49) (((-1029) $) 47) (((-179) $) 45) (((-963) $) 43) (((-1064) $) 41) (((-1081) $) 39) (((-1086) $) 37) (((-621) $) 35) (((-1156) $) 33) (((-155) $) 31) (((-136) $) 29) (((-476) $) 27) (((-588) $) 25) (((-504) $) 23) (((-1148) $) 21) (((-544) $) 19)) (-3437 (((-112) $ $) 6)))
(((-1127) (-139)) (T -1127))
-((-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1105)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1265))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1265)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-310)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1080)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148)))) (-2234 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-561)))))
-(-13 (-1073) (-1249) (-10 -8 (-15 -2234 ((-112) $ (|[\|\|]| (-522)))) (-15 -4252 ((-522) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-217)))) (-15 -4252 ((-217) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-669)))) (-15 -4252 ((-669) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1264)))) (-15 -4252 ((-1264) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-137)))) (-15 -4252 ((-137) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-132)))) (-15 -4252 ((-132) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1105)))) (-15 -4252 ((-1105) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-96)))) (-15 -4252 ((-96) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-674)))) (-15 -4252 ((-674) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-515)))) (-15 -4252 ((-515) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1057)))) (-15 -4252 ((-1057) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1265)))) (-15 -4252 ((-1265) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-523)))) (-15 -4252 ((-523) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-153)))) (-15 -4252 ((-153) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-664)))) (-15 -4252 ((-664) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-310)))) (-15 -4252 ((-310) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1029)))) (-15 -4252 ((-1029) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-179)))) (-15 -4252 ((-179) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-963)))) (-15 -4252 ((-963) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1064)))) (-15 -4252 ((-1064) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1080)))) (-15 -4252 ((-1080) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1086)))) (-15 -4252 ((-1086) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-621)))) (-15 -4252 ((-621) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1156)))) (-15 -4252 ((-1156) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-155)))) (-15 -4252 ((-155) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-136)))) (-15 -4252 ((-136) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-476)))) (-15 -4252 ((-476) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-588)))) (-15 -4252 ((-588) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-504)))) (-15 -4252 ((-504) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-1148)))) (-15 -4252 ((-1148) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-561)))) (-15 -4252 ((-561) $))))
-(((-93) . T) ((-102) . T) ((-611 #0=(-1171)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T) ((-1073) . T) ((-1249) . T))
-((-2893 (((-1259) (-638 (-856))) 23) (((-1259) (-856)) 22)) (-2998 (((-1259) (-638 (-856))) 21) (((-1259) (-856)) 20)) (-3107 (((-1259) (-638 (-856))) 19) (((-1259) (-856)) 11) (((-1259) (-1148) (-856)) 17)))
-(((-1128) (-10 -7 (-15 -3107 ((-1259) (-1148) (-856))) (-15 -3107 ((-1259) (-856))) (-15 -2998 ((-1259) (-856))) (-15 -2893 ((-1259) (-856))) (-15 -3107 ((-1259) (-638 (-856)))) (-15 -2998 ((-1259) (-638 (-856)))) (-15 -2893 ((-1259) (-638 (-856)))))) (T -1128))
-((-2893 (*1 *2 *3) (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128)))))
-(-10 -7 (-15 -3107 ((-1259) (-1148) (-856))) (-15 -3107 ((-1259) (-856))) (-15 -2998 ((-1259) (-856))) (-15 -2893 ((-1259) (-856))) (-15 -3107 ((-1259) (-638 (-856)))) (-15 -2998 ((-1259) (-638 (-856)))) (-15 -2893 ((-1259) (-638 (-856)))))
-((-3101 (($ $ $) 10)) (-3502 (($ $) 9)) (-1824 (($ $ $) 13)) (-2025 (($ $ $) 15)) (-1822 (($ $ $) 12)) (-1891 (($ $ $) 14)) (-3710 (($ $) 17)) (-2934 (($ $) 16)) (-2165 (($ $) 6)) (-4128 (($ $ $) 11) (($ $) 7)) (-1550 (($ $ $) 8)))
+((-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1106)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1265))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1265)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-311)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1081)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-544)))))
+(-13 (-1073) (-1249) (-10 -8 (-15 -3973 ((-112) $ (|[\|\|]| (-522)))) (-15 -3979 ((-522) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-217)))) (-15 -3979 ((-217) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-669)))) (-15 -3979 ((-669) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1264)))) (-15 -3979 ((-1264) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-137)))) (-15 -3979 ((-137) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-132)))) (-15 -3979 ((-132) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1106)))) (-15 -3979 ((-1106) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-96)))) (-15 -3979 ((-96) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-674)))) (-15 -3979 ((-674) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-515)))) (-15 -3979 ((-515) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1057)))) (-15 -3979 ((-1057) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1265)))) (-15 -3979 ((-1265) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-523)))) (-15 -3979 ((-523) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-153)))) (-15 -3979 ((-153) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-664)))) (-15 -3979 ((-664) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-311)))) (-15 -3979 ((-311) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1029)))) (-15 -3979 ((-1029) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-179)))) (-15 -3979 ((-179) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-963)))) (-15 -3979 ((-963) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1064)))) (-15 -3979 ((-1064) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1081)))) (-15 -3979 ((-1081) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1086)))) (-15 -3979 ((-1086) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-621)))) (-15 -3979 ((-621) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1156)))) (-15 -3979 ((-1156) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-155)))) (-15 -3979 ((-155) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-136)))) (-15 -3979 ((-136) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-476)))) (-15 -3979 ((-476) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-588)))) (-15 -3979 ((-588) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-504)))) (-15 -3979 ((-504) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1148)))) (-15 -3979 ((-1148) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-544)))) (-15 -3979 ((-544) $))))
+(((-93) . T) ((-102) . T) ((-611 #1=(-1171)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T) ((-1073) . T) ((-1249) . T))
+((-3786 (((-1259) (-635 (-857))) 23) (((-1259) (-857)) 22)) (-3785 (((-1259) (-635 (-857))) 21) (((-1259) (-857)) 20)) (-3784 (((-1259) (-635 (-857))) 19) (((-1259) (-857)) 11) (((-1259) (-1148) (-857)) 17)))
+(((-1128) (-10 -7 (-15 -3784 ((-1259) (-1148) (-857))) (-15 -3784 ((-1259) (-857))) (-15 -3785 ((-1259) (-857))) (-15 -3786 ((-1259) (-857))) (-15 -3784 ((-1259) (-635 (-857)))) (-15 -3785 ((-1259) (-635 (-857)))) (-15 -3786 ((-1259) (-635 (-857)))))) (T -1128))
+((-3786 (*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))))
+(-10 -7 (-15 -3784 ((-1259) (-1148) (-857))) (-15 -3784 ((-1259) (-857))) (-15 -3785 ((-1259) (-857))) (-15 -3786 ((-1259) (-857))) (-15 -3784 ((-1259) (-635 (-857)))) (-15 -3785 ((-1259) (-635 (-857)))) (-15 -3786 ((-1259) (-635 (-857)))))
+((-3790 (($ $ $) 10)) (-3789 (($ $) 9)) (-3793 (($ $ $) 13)) (-3795 (($ $ $) 15)) (-3792 (($ $ $) 12)) (-3794 (($ $ $) 14)) (-3797 (($ $) 17)) (-3796 (($ $) 16)) (-3787 (($ $) 6)) (-3791 (($ $ $) 11) (($ $) 7)) (-3788 (($ $ $) 8)))
(((-1129) (-139)) (T -1129))
-((-3710 (*1 *1 *1) (-4 *1 (-1129))) (-2934 (*1 *1 *1) (-4 *1 (-1129))) (-2025 (*1 *1 *1 *1) (-4 *1 (-1129))) (-1891 (*1 *1 *1 *1) (-4 *1 (-1129))) (-1824 (*1 *1 *1 *1) (-4 *1 (-1129))) (-1822 (*1 *1 *1 *1) (-4 *1 (-1129))) (-4128 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3101 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3502 (*1 *1 *1) (-4 *1 (-1129))) (-1550 (*1 *1 *1 *1) (-4 *1 (-1129))) (-4128 (*1 *1 *1) (-4 *1 (-1129))) (-2165 (*1 *1 *1) (-4 *1 (-1129))))
-(-13 (-10 -8 (-15 -2165 ($ $)) (-15 -4128 ($ $)) (-15 -1550 ($ $ $)) (-15 -3502 ($ $)) (-15 -3101 ($ $ $)) (-15 -4128 ($ $ $)) (-15 -1822 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -1891 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -2934 ($ $)) (-15 -3710 ($ $))))
-((-4053 (((-112) $ $) 42)) (-2506 ((|#1| $) 16)) (-1937 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-3999 (((-112) $) 18)) (-2947 (($ $ |#1|) 29)) (-3757 (($ $ (-112)) 31)) (-2667 (($ $) 32)) (-4260 (($ $ |#2|) 30)) (-1883 (((-1148) $) NIL)) (-2845 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-1701 (((-1110) $) NIL)) (-2508 (((-112) $) 15)) (-2910 (($) 11)) (-4225 (($ $) 28)) (-4078 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) 22) (((-638 $) (-638 (-2 (|:| |val| |#1|) (|:| -1495 |#2|)))) 25) (((-638 $) |#1| (-638 |#2|)) 27)) (-3372 ((|#2| $) 17)) (-4064 (((-856) $) 51)) (-1723 (((-112) $ $) 40)))
-(((-1130 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -2910 ($)) (-15 -2508 ((-112) $)) (-15 -2506 (|#1| $)) (-15 -3372 (|#2| $)) (-15 -3999 ((-112) $)) (-15 -4078 ($ |#1| |#2| (-112))) (-15 -4078 ($ |#1| |#2|)) (-15 -4078 ($ (-2 (|:| |val| |#1|) (|:| -1495 |#2|)))) (-15 -4078 ((-638 $) (-638 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))))) (-15 -4078 ((-638 $) |#1| (-638 |#2|))) (-15 -4225 ($ $)) (-15 -2947 ($ $ |#1|)) (-15 -4260 ($ $ |#2|)) (-15 -3757 ($ $ (-112))) (-15 -2667 ($ $)) (-15 -2845 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1937 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1090) (-34)) (-13 (-1090) (-34))) (T -1130))
-((-2910 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-2506 (*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *2 *3)) (-4 *3 (-13 (-1090) (-34))))) (-3372 (*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1090) (-34))))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-4078 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4078 (*1 *1 *2 *3) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4078 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1495 *4))) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1130 *3 *4)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |val| *4) (|:| -1495 *5)))) (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-638 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *5)) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-638 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-13 (-1090) (-34))))) (-4225 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-2947 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4260 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1090) (-34))) (-4 *2 (-13 (-1090) (-34))))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-2667 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-2845 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *5 *6)))) (-1937 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34))))))
-(-13 (-1090) (-10 -8 (-15 -2910 ($)) (-15 -2508 ((-112) $)) (-15 -2506 (|#1| $)) (-15 -3372 (|#2| $)) (-15 -3999 ((-112) $)) (-15 -4078 ($ |#1| |#2| (-112))) (-15 -4078 ($ |#1| |#2|)) (-15 -4078 ($ (-2 (|:| |val| |#1|) (|:| -1495 |#2|)))) (-15 -4078 ((-638 $) (-638 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))))) (-15 -4078 ((-638 $) |#1| (-638 |#2|))) (-15 -4225 ($ $)) (-15 -2947 ($ $ |#1|)) (-15 -4260 ($ $ |#2|)) (-15 -3757 ($ $ (-112))) (-15 -2667 ($ $)) (-15 -2845 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1937 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-4053 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-2506 (((-1130 |#1| |#2|) $) 26)) (-1898 (($ $) 76)) (-1875 (((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1611 (($ $ $ (-638 (-1130 |#1| |#2|))) 90) (($ $ $ (-638 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-2684 (((-112) $ (-765)) NIL)) (-2809 (((-1130 |#1| |#2|) $ (-1130 |#1| |#2|)) 43 (|has| $ (-6 -4400)))) (-4207 (((-1130 |#1| |#2|) $ "value" (-1130 |#1| |#2|)) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-3825 (((-638 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) $) 80)) (-3222 (($ (-1130 |#1| |#2|) $) 39)) (-1475 (($ (-1130 |#1| |#2|) $) 31)) (-2368 (((-638 (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 51)) (-2836 (((-112) (-1130 |#1| |#2|) $) 82)) (-2129 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 (-1130 |#1| |#2|)) $) 55 (|has| $ (-6 -4399)))) (-4288 (((-112) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-1130 |#1| |#2|) (-1090))))) (-2029 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 47 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 46)) (-3683 (((-112) $ (-765)) NIL)) (-3948 (((-638 (-1130 |#1| |#2|)) $) 53)) (-3441 (((-112) $) 42)) (-1883 (((-1148) $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-1701 (((-1110) $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-3226 (((-3 $ "failed") $) 75)) (-3977 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-1130 |#1| |#2|)))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090)))) (($ $ (-293 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090)))) (($ $ (-1130 |#1| |#2|) (-1130 |#1| |#2|)) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090)))) (($ $ (-638 (-1130 |#1| |#2|)) (-638 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090))))) (-1582 (((-112) $ $) 50)) (-2508 (((-112) $) 23)) (-2910 (($) 25)) (-2315 (((-1130 |#1| |#2|) $ "value") NIL)) (-4293 (((-561) $ $) NIL)) (-1650 (((-112) $) 44)) (-1714 (((-765) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4399))) (((-765) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-1130 |#1| |#2|) (-1090))))) (-4225 (($ $) 49)) (-4078 (($ (-1130 |#1| |#2|)) 10) (($ |#1| |#2| (-638 $)) 13) (($ |#1| |#2| (-638 (-1130 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-638 |#2|)) 18)) (-3812 (((-638 |#2|) $) 81)) (-4064 (((-856) $) 73 (|has| (-1130 |#1| |#2|) (-608 (-856))))) (-3770 (((-638 $) $) 29)) (-2552 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-3715 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 64 (|has| (-1130 |#1| |#2|) (-1090)))) (-3548 (((-765) $) 58 (|has| $ (-6 -4399)))))
-(((-1131 |#1| |#2|) (-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4400) (-6 -4399) (-15 -3226 ((-3 $ "failed") $)) (-15 -1898 ($ $)) (-15 -4078 ($ (-1130 |#1| |#2|))) (-15 -4078 ($ |#1| |#2| (-638 $))) (-15 -4078 ($ |#1| |#2| (-638 (-1130 |#1| |#2|)))) (-15 -4078 ($ |#1| |#2| |#1| (-638 |#2|))) (-15 -3812 ((-638 |#2|) $)) (-15 -3825 ((-638 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) $)) (-15 -2836 ((-112) (-1130 |#1| |#2|) $)) (-15 -1875 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1475 ($ (-1130 |#1| |#2|) $)) (-15 -3222 ($ (-1130 |#1| |#2|) $)) (-15 -1611 ($ $ $ (-638 (-1130 |#1| |#2|)))) (-15 -1611 ($ $ $ (-638 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1090) (-34)) (-13 (-1090) (-34))) (T -1131))
-((-3226 (*1 *1 *1) (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-1898 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4078 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-4078 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-638 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4078 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-638 (-1130 *2 *3))) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))) (-5 *1 (-1131 *2 *3)))) (-4078 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-13 (-1090) (-34))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-638 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-2836 (*1 *2 *3 *1) (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)))) (-1875 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *5 *6)))) (-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-3222 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-1611 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-638 (-1130 *3 *4))) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-1611 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34))) (-5 *1 (-1131 *4 *5)))))
-(-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4400) (-6 -4399) (-15 -3226 ((-3 $ "failed") $)) (-15 -1898 ($ $)) (-15 -4078 ($ (-1130 |#1| |#2|))) (-15 -4078 ($ |#1| |#2| (-638 $))) (-15 -4078 ($ |#1| |#2| (-638 (-1130 |#1| |#2|)))) (-15 -4078 ($ |#1| |#2| |#1| (-638 |#2|))) (-15 -3812 ((-638 |#2|) $)) (-15 -3825 ((-638 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) $)) (-15 -2836 ((-112) (-1130 |#1| |#2|) $)) (-15 -1875 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1475 ($ (-1130 |#1| |#2|) $)) (-15 -3222 ($ (-1130 |#1| |#2|) $)) (-15 -1611 ($ $ $ (-638 (-1130 |#1| |#2|)))) (-15 -1611 ($ $ $ (-638 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-4084 (($ $) NIL)) (-1736 ((|#2| $) NIL)) (-3711 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-4241 (($ (-682 |#2|)) 50)) (-1711 (((-112) $) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-3256 (($ |#2|) 10)) (-2674 (($) NIL T CONST)) (-2617 (($ $) 63 (|has| |#2| (-306)))) (-3324 (((-239 |#1| |#2|) $ (-561)) 36)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) 77)) (-3400 (((-765) $) 65 (|has| |#2| (-553)))) (-1975 ((|#2| $ (-561) (-561)) NIL)) (-2368 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-2252 (((-112) $) NIL)) (-1486 (((-765) $) 67 (|has| |#2| (-553)))) (-2351 (((-638 (-239 |#1| |#2|)) $) 71 (|has| |#2| (-553)))) (-3349 (((-765) $) NIL)) (-1458 (($ |#2|) 20)) (-3361 (((-765) $) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3440 ((|#2| $) 61 (|has| |#2| (-6 (-4401 "*"))))) (-3655 (((-561) $) NIL)) (-1355 (((-561) $) NIL)) (-4125 (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2475 (((-561) $) NIL)) (-3838 (((-561) $) NIL)) (-2887 (($ (-638 (-638 |#2|))) 31)) (-2029 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3485 (((-638 (-638 |#2|)) $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1885 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-1701 (((-1110) $) NIL)) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553)))) (-3977 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ (-561) (-561) |#2|) NIL) ((|#2| $ (-561) (-561)) NIL)) (-3922 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3124 ((|#2| $) NIL)) (-3557 (($ (-638 |#2|)) 44)) (-2100 (((-112) $) NIL)) (-2210 (((-239 |#1| |#2|) $) NIL)) (-4105 ((|#2| $) 59 (|has| |#2| (-6 (-4401 "*"))))) (-1714 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-4225 (($ $) NIL)) (-4216 (((-534) $) 86 (|has| |#2| (-609 (-534))))) (-2062 (((-239 |#1| |#2|) $ (-561)) 38)) (-4064 (((-856) $) 41) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) NIL) (((-682 |#2|) $) 46)) (-3746 (((-765)) 18)) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-2841 (((-112) $) NIL)) (-2246 (($) 12 T CONST)) (-2257 (($) 15 T CONST)) (-3154 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) 57) (($ $ (-561)) 76 (|has| |#2| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 53) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 55)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1132 |#1| |#2|) (-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -1458 ($ |#2|)) (-15 -4084 ($ $)) (-15 -4241 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4401 "*"))) (-6 -4388) |%noBranch|) (IF (|has| |#2| (-6 (-4401 "*"))) (IF (|has| |#2| (-6 -4396)) (-6 -4396) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|))) (-765) (-1042)) (T -1132))
-((-1458 (*1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042)))) (-4084 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042)))) (-4241 (*1 *1 *2) (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-765)))))
-(-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -1458 ($ |#2|)) (-15 -4084 ($ $)) (-15 -4241 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4401 "*"))) (-6 -4388) |%noBranch|) (IF (|has| |#2| (-6 (-4401 "*"))) (IF (|has| |#2| (-6 -4396)) (-6 -4396) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|)))
-((-3242 (($ $) 19)) (-1647 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-3878 (((-112) $ $) 24)) (-2501 (($ $) 17)) (-2315 (((-143) $ (-561) (-143)) NIL) (((-143) $ (-561)) NIL) (($ $ (-1221 (-561))) NIL) (($ $ $) 29)) (-4064 (($ (-143)) 27) (((-856) $) NIL)))
-(((-1133 |#1|) (-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -2315 (|#1| |#1| |#1|)) (-15 -1647 (|#1| |#1| (-140))) (-15 -1647 (|#1| |#1| (-143))) (-15 -4064 (|#1| (-143))) (-15 -3878 ((-112) |#1| |#1|)) (-15 -3242 (|#1| |#1|)) (-15 -2501 (|#1| |#1|)) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -2315 ((-143) |#1| (-561))) (-15 -2315 ((-143) |#1| (-561) (-143)))) (-1134)) (T -1133))
-NIL
-(-10 -8 (-15 -4064 ((-856) |#1|)) (-15 -2315 (|#1| |#1| |#1|)) (-15 -1647 (|#1| |#1| (-140))) (-15 -1647 (|#1| |#1| (-143))) (-15 -4064 (|#1| (-143))) (-15 -3878 ((-112) |#1| |#1|)) (-15 -3242 (|#1| |#1|)) (-15 -2501 (|#1| |#1|)) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -2315 ((-143) |#1| (-561))) (-15 -2315 ((-143) |#1| (-561) (-143))))
-((-4053 (((-112) $ $) 19 (|has| (-143) (-1090)))) (-1806 (($ $) 120)) (-3242 (($ $) 121)) (-1647 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-3857 (((-112) $ $) 118)) (-3834 (((-112) $ $ (-561)) 117)) (-2230 (((-638 $) $ (-143)) 110) (((-638 $) $ (-140)) 109)) (-2097 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-1680 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4400))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4400))))) (-1318 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-2684 (((-112) $ (-765)) 8)) (-4207 (((-143) $ (-561) (-143)) 52 (|has| $ (-6 -4400))) (((-143) $ (-1221 (-561)) (-143)) 58 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-1914 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-4026 (($ $) 90 (|has| $ (-6 -4400)))) (-2659 (($ $) 100)) (-1590 (($ $ (-1221 (-561)) $) 114)) (-1461 (($ $) 78 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ (-143) $) 77 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4399)))) (-3176 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4399))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4399)))) (-2041 (((-143) $ (-561) (-143)) 53 (|has| $ (-6 -4400)))) (-1975 (((-143) $ (-561)) 51)) (-3878 (((-112) $ $) 119)) (-4266 (((-561) (-1 (-112) (-143)) $) 97) (((-561) (-143) $) 96 (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) 95 (|has| (-143) (-1090))) (((-561) $ $ (-561)) 113) (((-561) (-140) $ (-561)) 112)) (-2368 (((-638 (-143)) $) 30 (|has| $ (-6 -4399)))) (-1458 (($ (-765) (-143)) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-1597 (($ $ $) 87 (|has| (-143) (-844)))) (-3405 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-4125 (((-638 (-143)) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-3017 (($ $ $) 86 (|has| (-143) (-844)))) (-4265 (((-112) $ $ (-143)) 115)) (-3822 (((-765) $ $ (-143)) 116)) (-2029 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-2857 (($ $) 122)) (-2501 (($ $) 123)) (-3683 (((-112) $ (-765)) 10)) (-1926 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-1883 (((-1148) $) 22 (|has| (-143) (-1090)))) (-3350 (($ (-143) $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21 (|has| (-143) (-1090)))) (-1424 (((-143) $) 42 (|has| (-561) (-844)))) (-3202 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-3193 (($ $ (-143)) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-2411 (((-638 (-143)) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 (((-143) $ (-561) (-143)) 50) (((-143) $ (-561)) 49) (($ $ (-1221 (-561))) 63) (($ $ $) 102)) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-1714 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4399))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399))))) (-2879 (($ $ $ (-561)) 91 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| (-143) (-609 (-534))))) (-4078 (($ (-638 (-143))) 70)) (-2754 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (($ (-143)) 111) (((-856) $) 18 (|has| (-143) (-608 (-856))))) (-3715 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) 84 (|has| (-143) (-844)))) (-1758 (((-112) $ $) 83 (|has| (-143) (-844)))) (-1723 (((-112) $ $) 20 (|has| (-143) (-1090)))) (-1770 (((-112) $ $) 85 (|has| (-143) (-844)))) (-1746 (((-112) $ $) 82 (|has| (-143) (-844)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
+((-3797 (*1 *1 *1) (-4 *1 (-1129))) (-3796 (*1 *1 *1) (-4 *1 (-1129))) (-3795 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3794 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3793 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3792 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3791 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3790 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3789 (*1 *1 *1) (-4 *1 (-1129))) (-3788 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3791 (*1 *1 *1) (-4 *1 (-1129))) (-3787 (*1 *1 *1) (-4 *1 (-1129))))
+(-13 (-10 -8 (-15 -3787 ($ $)) (-15 -3791 ($ $)) (-15 -3788 ($ $ $)) (-15 -3789 ($ $)) (-15 -3790 ($ $ $)) (-15 -3791 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -3793 ($ $ $)) (-15 -3794 ($ $ $)) (-15 -3795 ($ $ $)) (-15 -3796 ($ $)) (-15 -3797 ($ $))))
+((-2947 (((-112) $ $) 42)) (-3806 ((|#1| $) 16)) (-3798 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-3805 (((-112) $) 18)) (-3803 (($ $ |#1|) 29)) (-3801 (($ $ (-112)) 31)) (-3800 (($ $) 32)) (-3802 (($ $ |#2|) 30)) (-3643 (((-1148) $) NIL)) (-3799 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-3644 (((-1110) $) NIL)) (-3807 (((-112) $) 15)) (-3972 (($) 11)) (-3804 (($ $) 28)) (-3929 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) 22) (((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|)))) 25) (((-635 $) |#1| (-635 |#2|)) 27)) (-4329 ((|#2| $) 17)) (-4353 (((-857) $) 51)) (-3437 (((-112) $ $) 40)))
+(((-1130 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3972 ($)) (-15 -3807 ((-112) $)) (-15 -3806 (|#1| $)) (-15 -4329 (|#2| $)) (-15 -3805 ((-112) $)) (-15 -3929 ($ |#1| |#2| (-112))) (-15 -3929 ($ |#1| |#2|)) (-15 -3929 ($ (-2 (|:| |val| |#1|) (|:| -1688 |#2|)))) (-15 -3929 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))))) (-15 -3929 ((-635 $) |#1| (-635 |#2|))) (-15 -3804 ($ $)) (-15 -3803 ($ $ |#1|)) (-15 -3802 ($ $ |#2|)) (-15 -3801 ($ $ (-112))) (-15 -3800 ($ $)) (-15 -3799 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3798 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1091) (-34)) (-13 (-1091) (-34))) (T -1130))
+((-3972 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3806 (*1 *2 *1) (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *2 *3)) (-4 *3 (-13 (-1091) (-34))))) (-4329 (*1 *2 *1) (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1091) (-34))))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1688 *4))) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *4)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -1688 *5)))) (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-635 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-635 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-13 (-1091) (-34))))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3803 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3802 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1091) (-34))) (-4 *2 (-13 (-1091) (-34))))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3799 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *5 *6)))) (-3798 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34))))))
+(-13 (-1091) (-10 -8 (-15 -3972 ($)) (-15 -3807 ((-112) $)) (-15 -3806 (|#1| $)) (-15 -4329 (|#2| $)) (-15 -3805 ((-112) $)) (-15 -3929 ($ |#1| |#2| (-112))) (-15 -3929 ($ |#1| |#2|)) (-15 -3929 ($ (-2 (|:| |val| |#1|) (|:| -1688 |#2|)))) (-15 -3929 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))))) (-15 -3929 ((-635 $) |#1| (-635 |#2|))) (-15 -3804 ($ $)) (-15 -3803 ($ $ |#1|)) (-15 -3802 ($ $ |#2|)) (-15 -3801 ($ $ (-112))) (-15 -3800 ($ $)) (-15 -3799 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3798 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2947 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-3806 (((-1130 |#1| |#2|) $) 26)) (-3815 (($ $) 76)) (-3811 (((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3808 (($ $ $ (-635 (-1130 |#1| |#2|))) 90) (($ $ $ (-635 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1293 (((-112) $ (-765)) NIL)) (-3408 (((-1130 |#1| |#2|) $ (-1130 |#1| |#2|)) 43 (|has| $ (-6 -4401)))) (-4194 (((-1130 |#1| |#2|) $ #1="value" (-1130 |#1| |#2|)) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3813 (((-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) $) 80)) (-3809 (($ (-1130 |#1| |#2|) $) 39)) (-3810 (($ (-1130 |#1| |#2|) $) 31)) (-2096 (((-635 (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 51)) (-3812 (((-112) (-1130 |#1| |#2|) $) 82)) (-3410 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 (-1130 |#1| |#2|)) $) 55 (|has| $ (-6 -4400)))) (-3646 (((-112) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-1130 |#1| |#2|) (-1091))))) (-2100 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 47 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 46)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 (-1130 |#1| |#2|)) $) 53)) (-3926 (((-112) $) 42)) (-3643 (((-1148) $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-3644 (((-1110) $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-3816 (((-3 $ "failed") $) 75)) (-2098 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-1130 |#1| |#2|)))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091)))) (($ $ (-292 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091)))) (($ $ (-1130 |#1| |#2|) (-1130 |#1| |#2|)) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091)))) (($ $ (-635 (-1130 |#1| |#2|)) (-635 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091))))) (-1294 (((-112) $ $) 50)) (-3807 (((-112) $) 23)) (-3972 (($) 25)) (-4206 (((-1130 |#1| |#2|) $ #1#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) 44)) (-2097 (((-765) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400))) (((-765) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-1130 |#1| |#2|) (-1091))))) (-3804 (($ $) 49)) (-3929 (($ (-1130 |#1| |#2|)) 10) (($ |#1| |#2| (-635 $)) 13) (($ |#1| |#2| (-635 (-1130 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-635 |#2|)) 18)) (-3814 (((-635 |#2|) $) 81)) (-4353 (((-857) $) 73 (|has| (-1130 |#1| |#2|) (-608 (-857))))) (-3921 (((-635 $) $) 29)) (-3411 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-2099 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 64 (|has| (-1130 |#1| |#2|) (-1091)))) (-4364 (((-765) $) 58 (|has| $ (-6 -4400)))))
+(((-1131 |#1| |#2|) (-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4401) (-6 -4400) (-15 -3816 ((-3 $ "failed") $)) (-15 -3815 ($ $)) (-15 -3929 ($ (-1130 |#1| |#2|))) (-15 -3929 ($ |#1| |#2| (-635 $))) (-15 -3929 ($ |#1| |#2| (-635 (-1130 |#1| |#2|)))) (-15 -3929 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -3814 ((-635 |#2|) $)) (-15 -3813 ((-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) $)) (-15 -3812 ((-112) (-1130 |#1| |#2|) $)) (-15 -3811 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3810 ($ (-1130 |#1| |#2|) $)) (-15 -3809 ($ (-1130 |#1| |#2|) $)) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)))) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1091) (-34)) (-13 (-1091) (-34))) (T -1131))
+((-3816 (*1 *1 *1) (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3815 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1130 *2 *3))) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3)))) (-3929 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-635 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3812 (*1 *2 *3 *1) (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)))) (-3811 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *5 *6)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3808 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-635 (-1130 *3 *4))) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3808 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) (-5 *1 (-1131 *4 *5)))))
+(-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4401) (-6 -4400) (-15 -3816 ((-3 $ "failed") $)) (-15 -3815 ($ $)) (-15 -3929 ($ (-1130 |#1| |#2|))) (-15 -3929 ($ |#1| |#2| (-635 $))) (-15 -3929 ($ |#1| |#2| (-635 (-1130 |#1| |#2|)))) (-15 -3929 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -3814 ((-635 |#2|) $)) (-15 -3813 ((-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) $)) (-15 -3812 ((-112) (-1130 |#1| |#2|) $)) (-15 -3811 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3810 ($ (-1130 |#1| |#2|) $)) (-15 -3809 ($ (-1130 |#1| |#2|) $)) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)))) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3818 (($ $) NIL)) (-3734 ((|#2| $) NIL)) (-3506 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3817 (($ (-682 |#2|)) 50)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3737 (($ |#2|) 10)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 63 (|has| |#2| (-306)))) (-3497 (((-238 |#1| |#2|) $ (-544)) 36)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 77)) (-3494 (((-765) $) 65 (|has| |#2| (-554)))) (-3498 ((|#2| $ (-544) (-544)) NIL)) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL)) (-3493 (((-765) $) 67 (|has| |#2| (-554)))) (-3492 (((-635 (-238 |#1| |#2|)) $) 71 (|has| |#2| (-554)))) (-3500 (((-765) $) NIL)) (-4021 (($ |#2|) 20)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#2| $) 61 (|has| |#2| (-6 (-4402 #2="*"))))) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#2|))) 31)) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4000 (((-635 (-635 |#2|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3996 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) (-544) |#2|) NIL) ((|#2| $ (-544) (-544)) NIL)) (-4217 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3733 ((|#2| $) NIL)) (-3736 (($ (-635 |#2|)) 44)) (-3507 (((-112) $) NIL)) (-3735 (((-238 |#1| |#2|) $) NIL)) (-3732 ((|#2| $) 59 (|has| |#2| (-6 (-4402 #2#))))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 86 (|has| |#2| (-609 (-533))))) (-3496 (((-238 |#1| |#2|) $ (-544)) 38)) (-4353 (((-857) $) 41) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) NIL) (((-682 |#2|) $) 46)) (-3511 (((-765)) 18)) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3040 (($) 12 T CONST)) (-3046 (($) 15 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) 57) (($ $ (-544)) 76 (|has| |#2| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-238 |#1| |#2|) $ (-238 |#1| |#2|)) 53) (((-238 |#1| |#2|) (-238 |#1| |#2|) $) 55)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1132 |#1| |#2|) (-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -4021 ($ |#2|)) (-15 -3818 ($ $)) (-15 -3817 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4402 "*"))) (-6 -4389) |%noBranch|) (IF (|has| |#2| (-6 (-4402 "*"))) (IF (|has| |#2| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|))) (-765) (-1042)) (T -1132))
+((-4021 (*1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-765)))))
+(-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -4021 ($ |#2|)) (-15 -3818 ($ $)) (-15 -3817 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4402 "*"))) (-6 -4389) |%noBranch|) (IF (|has| |#2| (-6 (-4402 "*"))) (IF (|has| |#2| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|)))
+((-3831 (($ $) 19)) (-3821 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-3829 (((-112) $ $) 24)) (-3833 (($ $) 17)) (-4206 (((-143) $ (-544) (-143)) NIL) (((-143) $ (-544)) NIL) (($ $ (-1220 (-544))) NIL) (($ $ $) 29)) (-4353 (($ (-143)) 27) (((-857) $) NIL)))
+(((-1133 |#1|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| (-140))) (-15 -3821 (|#1| |#1| (-143))) (-15 -4353 (|#1| (-143))) (-15 -3829 ((-112) |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4206 ((-143) |#1| (-544))) (-15 -4206 ((-143) |#1| (-544) (-143)))) (-1134)) (T -1133))
+NIL
+(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| (-140))) (-15 -3821 (|#1| |#1| (-143))) (-15 -4353 (|#1| (-143))) (-15 -3829 ((-112) |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4206 ((-143) |#1| (-544))) (-15 -4206 ((-143) |#1| (-544) (-143))))
+((-2947 (((-112) $ $) 19 (|has| (-143) (-1091)))) (-3830 (($ $) 120)) (-3831 (($ $) 121)) (-3821 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) 118)) (-3827 (((-112) $ $ (-544)) 117)) (-3822 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 (((-143) $ (-544) (-143)) 52 (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-3819 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-3824 (($ $ (-1220 (-544)) $) 114)) (-1424 (($ $) 78 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-143) $) 77 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) 53 (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) 51)) (-3829 (((-112) $ $) 119)) (-3823 (((-544) (-1 (-112) (-143)) $) 97) (((-544) (-143) $) 96 (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) 95 (|has| (-143) (-1091))) (((-544) $ $ (-544)) 113) (((-544) (-140) $ (-544)) 112)) (-2096 (((-635 (-143)) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) 115)) (-3826 (((-765) $ $ (-143)) 116)) (-2100 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-3832 (($ $) 122)) (-3833 (($ $) 123)) (-4123 (((-112) $ (-765)) 10)) (-3820 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-3643 (((-1148) $) 22 (|has| (-143) (-1091)))) (-2421 (($ (-143) $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| (-143) (-1091)))) (-4207 (((-143) $) 42 (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2345 (($ $ (-143)) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 (((-143) $ (-544) (-143)) 50) (((-143) $ (-544)) 49) (($ $ (-1220 (-544))) 63) (($ $ $) 102)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4400))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) 70)) (-4208 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (($ (-143)) 111) (((-857) $) 18 (|has| (-143) (-608 (-857))))) (-2099 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| (-143) (-844)))) (-2946 (((-112) $ $) 83 (|has| (-143) (-844)))) (-3437 (((-112) $ $) 20 (|has| (-143) (-1091)))) (-3066 (((-112) $ $) 85 (|has| (-143) (-844)))) (-3067 (((-112) $ $) 82 (|has| (-143) (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
(((-1134) (-139)) (T -1134))
-((-2501 (*1 *1 *1) (-4 *1 (-1134))) (-2857 (*1 *1 *1) (-4 *1 (-1134))) (-3242 (*1 *1 *1) (-4 *1 (-1134))) (-1806 (*1 *1 *1) (-4 *1 (-1134))) (-3878 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3857 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3834 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-561)) (-5 *2 (-112)))) (-3822 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765)))) (-4265 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112)))) (-1590 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1221 (-561))))) (-4266 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)))) (-4266 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)) (-5 *3 (-140)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1134)))) (-2230 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-638 *1)) (-4 *1 (-1134)))) (-2230 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-638 *1)) (-4 *1 (-1134)))) (-1647 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-1647 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-1926 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-1926 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-1914 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-1914 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-2315 (*1 *1 *1 *1) (-4 *1 (-1134))))
-(-13 (-19 (-143)) (-10 -8 (-15 -2501 ($ $)) (-15 -2857 ($ $)) (-15 -3242 ($ $)) (-15 -1806 ($ $)) (-15 -3878 ((-112) $ $)) (-15 -3857 ((-112) $ $)) (-15 -3834 ((-112) $ $ (-561))) (-15 -3822 ((-765) $ $ (-143))) (-15 -4265 ((-112) $ $ (-143))) (-15 -1590 ($ $ (-1221 (-561)) $)) (-15 -4266 ((-561) $ $ (-561))) (-15 -4266 ((-561) (-140) $ (-561))) (-15 -4064 ($ (-143))) (-15 -2230 ((-638 $) $ (-143))) (-15 -2230 ((-638 $) $ (-140))) (-15 -1647 ($ $ (-143))) (-15 -1647 ($ $ (-140))) (-15 -1926 ($ $ (-143))) (-15 -1926 ($ $ (-140))) (-15 -1914 ($ $ (-143))) (-15 -1914 ($ $ (-140))) (-15 -2315 ($ $ $))))
-(((-34) . T) ((-102) -4050 (|has| (-143) (-1090)) (|has| (-143) (-844))) ((-608 (-856)) -4050 (|has| (-143) (-1090)) (|has| (-143) (-844)) (|has| (-143) (-608 (-856)))) ((-150 #0=(-143)) . T) ((-609 (-534)) |has| (-143) (-609 (-534))) ((-285 #1=(-561) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-372 #0#) . T) ((-487 #0#) . T) ((-599 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-644 #0#) . T) ((-19 #0#) . T) ((-844) |has| (-143) (-844)) ((-1090) -4050 (|has| (-143) (-1090)) (|has| (-143) (-844))) ((-1205) . T))
-((-3157 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-765)) 93)) (-1964 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765)) 54)) (-2850 (((-1259) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-765)) 85)) (-3717 (((-765) (-638 |#4|) (-638 |#5|)) 27)) (-2994 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765)) 56) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765) (-112)) 58)) (-4261 (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112)) 77)) (-4216 (((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) 80)) (-4317 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 53)) (-2673 (((-765) (-638 |#4|) (-638 |#5|)) 19)))
-(((-1135 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2673 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -3717 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -4317 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3157 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-765))) (-15 -4216 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2850 ((-1259) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -1135))
-((-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1135 *4 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-638 *11)) (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1495 *11)))))) (-5 *6 (-765)) (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1495 *11)))) (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1135 *7 *8 *9 *10 *11)))) (-4261 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-4261 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-2994 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-2994 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-2994 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1135 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3)))) (-1964 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-1964 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-4317 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2673 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -3717 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -4317 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -1964 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-765))) (-15 -2994 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -4261 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3157 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))))) (-765))) (-15 -4216 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|)))) (-15 -2850 ((-1259) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1495 |#5|))) (-765))))
-((-4053 (((-112) $ $) NIL)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3742 (((-638 $) (-638 |#4|)) 110) (((-638 $) (-638 |#4|) (-112)) 111) (((-638 $) (-638 |#4|) (-112) (-112)) 109) (((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112)) 112)) (-1405 (((-638 |#3|) $) NIL)) (-4214 (((-112) $) NIL)) (-2444 (((-112) $) NIL (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4089 ((|#4| |#4| $) NIL)) (-2557 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 84)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-3612 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) 62)) (-2674 (($) NIL T CONST)) (-3853 (((-112) $) 27 (|has| |#1| (-553)))) (-3733 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4338 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1577 (((-112) $) NIL (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3293 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3979 (($ (-638 |#4|)) NIL)) (-1437 (((-3 $ "failed") $) 40)) (-2471 ((|#4| |#4| $) 65)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2310 ((|#4| |#4| $) NIL)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) NIL)) (-2207 (((-112) |#4| $) NIL)) (-1775 (((-112) |#4| $) NIL)) (-2101 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1830 (((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)) 124)) (-2368 (((-638 |#4|) $) 17 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#4|) $) 18 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-2029 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 22)) (-2597 (((-638 |#3|) $) NIL)) (-2247 (((-112) |#3| $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1413 (((-3 |#4| (-638 $)) |#4| |#4| $) NIL)) (-2940 (((-638 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 103)) (-1501 (((-3 |#4| "failed") $) 38)) (-1465 (((-638 $) |#4| $) 88)) (-4220 (((-3 (-112) (-638 $)) |#4| $) NIL)) (-4151 (((-638 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-1338 (((-638 $) |#4| $) 107) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 108) (((-638 $) |#4| (-638 $)) NIL)) (-1967 (((-638 $) (-638 |#4|) (-112) (-112) (-112)) 119)) (-1747 (($ |#4| $) 75) (($ (-638 |#4|) $) 76) (((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-3589 (((-638 |#4|) $) NIL)) (-3067 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3641 ((|#4| |#4| $) NIL)) (-4345 (((-112) $ $) NIL)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2903 ((|#4| |#4| $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-3 |#4| "failed") $) 36)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2336 (((-3 $ "failed") $ |#4|) 48)) (-3702 (($ $ |#4|) NIL) (((-638 $) |#4| $) 90) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 86)) (-3977 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 16)) (-2910 (($) 14)) (-3768 (((-765) $) NIL)) (-1714 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) 13)) (-4216 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 21)) (-3883 (($ $ |#3|) 43)) (-2049 (($ $ |#3|) 44)) (-1768 (($ $) NIL)) (-2983 (($ $ |#3|) NIL)) (-4064 (((-856) $) 32) (((-638 |#4|) $) 41)) (-3513 (((-765) $) NIL (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-2909 (((-638 $) |#4| $) 54) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) NIL)) (-2283 (((-112) |#4| $) NIL)) (-4024 (((-112) |#3| $) 61)) (-1723 (((-112) $ $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1136 |#1| |#2| |#3| |#4|) (-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1747 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -1967 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1830 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1136))
-((-1747 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-3742 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-3742 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-1967 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-1830 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-638 *8)) (|:| |towers| (-638 (-1136 *5 *6 *7 *8))))) (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
-(-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1747 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3742 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -1967 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1830 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2765 ((|#1| $) 34)) (-2416 (($ (-638 |#1|)) 39)) (-2684 (((-112) $ (-765)) NIL)) (-2674 (($) NIL T CONST)) (-3802 ((|#1| |#1| $) 36)) (-2217 ((|#1| $) 32)) (-2368 (((-638 |#1|) $) 18 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 22)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3721 ((|#1| $) 35)) (-1617 (($ |#1| $) 37)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1387 ((|#1| $) 33)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 31)) (-2910 (($) 38)) (-1433 (((-765) $) 29)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 27)) (-4064 (((-856) $) 14 (|has| |#1| (-608 (-856))))) (-1903 (($ (-638 |#1|)) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 17 (|has| |#1| (-1090)))) (-3548 (((-765) $) 30 (|has| $ (-6 -4399)))))
-(((-1137 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -2416 ($ (-638 |#1|))))) (-1205)) (T -1137))
-((-2416 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1137 *3)))))
-(-13 (-1111 |#1|) (-10 -8 (-15 -2416 ($ (-638 |#1|)))))
-((-4207 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1221 (-561)) |#2|) 43) ((|#2| $ (-561) |#2|) 40)) (-2728 (((-112) $) 11)) (-2029 (($ (-1 |#2| |#2|) $) 38)) (-1424 ((|#2| $) NIL) (($ $ (-765)) 16)) (-3193 (($ $ |#2|) 39)) (-2391 (((-112) $) 10)) (-2315 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1221 (-561))) 30) ((|#2| $ (-561)) 22) ((|#2| $ (-561) |#2|) NIL)) (-2448 (($ $ $) 46) (($ $ |#2|) NIL)) (-2754 (($ $ $) 32) (($ |#2| $) NIL) (($ (-638 $)) 35) (($ $ |#2|) NIL)))
-(((-1138 |#1| |#2|) (-10 -8 (-15 -2728 ((-112) |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -4207 (|#2| |#1| (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561))) (-15 -3193 (|#1| |#1| |#2|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -4207 (|#2| |#1| (-1221 (-561)) |#2|)) (-15 -4207 (|#2| |#1| "last" |#2|)) (-15 -4207 (|#1| |#1| "rest" |#1|)) (-15 -4207 (|#2| |#1| "first" |#2|)) (-15 -2448 (|#1| |#1| |#2|)) (-15 -2448 (|#1| |#1| |#1|)) (-15 -2315 (|#2| |#1| "last")) (-15 -2315 (|#1| |#1| "rest")) (-15 -1424 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "first")) (-15 -1424 (|#2| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#1|)) (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -2315 (|#2| |#1| "value")) (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|))) (-1139 |#2|) (-1205)) (T -1138))
-NIL
-(-10 -8 (-15 -2728 ((-112) |#1|)) (-15 -2391 ((-112) |#1|)) (-15 -4207 (|#2| |#1| (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561) |#2|)) (-15 -2315 (|#2| |#1| (-561))) (-15 -3193 (|#1| |#1| |#2|)) (-15 -2754 (|#1| |#1| |#2|)) (-15 -2754 (|#1| (-638 |#1|))) (-15 -2315 (|#1| |#1| (-1221 (-561)))) (-15 -4207 (|#2| |#1| (-1221 (-561)) |#2|)) (-15 -4207 (|#2| |#1| "last" |#2|)) (-15 -4207 (|#1| |#1| "rest" |#1|)) (-15 -4207 (|#2| |#1| "first" |#2|)) (-15 -2448 (|#1| |#1| |#2|)) (-15 -2448 (|#1| |#1| |#1|)) (-15 -2315 (|#2| |#1| "last")) (-15 -2315 (|#1| |#1| "rest")) (-15 -1424 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "first")) (-15 -1424 (|#2| |#1|)) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#1|)) (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -2315 (|#2| |#1| "value")) (-15 -2029 (|#1| (-1 |#2| |#2|) |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-2333 ((|#1| $) 65)) (-3164 (($ $) 67)) (-1846 (((-1259) $ (-561) (-561)) 97 (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) 52 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-2956 (($ $ $) 56 (|has| $ (-6 -4400)))) (-3281 ((|#1| $ |#1|) 54 (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) 58 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4400))) (($ $ "rest" $) 55 (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 117 (|has| $ (-6 -4400))) ((|#1| $ (-561) |#1|) 86 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4399)))) (-2322 ((|#1| $) 66)) (-2674 (($) 7 T CONST)) (-1437 (($ $) 73) (($ $ (-765)) 71)) (-1461 (($ $) 99 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4399))) (($ |#1| $) 100 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2041 ((|#1| $ (-561) |#1|) 85 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 87)) (-2728 (((-112) $) 83)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-1458 (($ (-765) |#1|) 108)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 95 (|has| (-561) (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 94 (|has| (-561) (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3683 (((-112) $ (-765)) 10)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1501 ((|#1| $) 70) (($ $ (-765)) 68)) (-3350 (($ $ $ (-561)) 116) (($ |#1| $ (-561)) 115)) (-2355 (((-638 (-561)) $) 92)) (-1558 (((-112) (-561) $) 91)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 76) (($ $ (-765)) 74)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3193 (($ $ |#1|) 96 (|has| $ (-6 -4400)))) (-2391 (((-112) $) 84)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 90)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1221 (-561))) 112) ((|#1| $ (-561)) 89) ((|#1| $ (-561) |#1|) 88)) (-4293 (((-561) $ $) 44)) (-2883 (($ $ (-1221 (-561))) 114) (($ $ (-561)) 113)) (-1650 (((-112) $) 46)) (-3235 (($ $) 62)) (-4193 (($ $) 59 (|has| $ (-6 -4400)))) (-2118 (((-765) $) 63)) (-1491 (($ $) 64)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-4216 (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 107)) (-2448 (($ $ $) 61 (|has| $ (-6 -4400))) (($ $ |#1|) 60 (|has| $ (-6 -4400)))) (-2754 (($ $ $) 78) (($ |#1| $) 77) (($ (-638 $)) 110) (($ $ |#1|) 109)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-1139 |#1|) (-139) (-1205)) (T -1139))
-((-2391 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
-(-13 (-1242 |t#1|) (-644 |t#1|) (-10 -8 (-15 -2391 ((-112) $)) (-15 -2728 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T) ((-1242 |#1|) . T))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1846 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) NIL)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) NIL)) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 ((|#1| $) NIL (|has| |#1| (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 ((|#1| $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2066 (((-638 |#1|) $) NIL)) (-2492 (((-112) |#1| $) NIL)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2355 (((-638 |#1|) $) NIL)) (-1558 (((-112) |#1| $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#2| $) NIL (|has| |#1| (-844)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1140 |#1| |#2| |#3|) (-1181 |#1| |#2|) (-1090) (-1090) |#2|) (T -1140))
+((-3833 (*1 *1 *1) (-4 *1 (-1134))) (-3832 (*1 *1 *1) (-4 *1 (-1134))) (-3831 (*1 *1 *1) (-4 *1 (-1134))) (-3830 (*1 *1 *1) (-4 *1 (-1134))) (-3829 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3828 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3827 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-544)) (-5 *2 (-112)))) (-3826 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765)))) (-3825 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112)))) (-3824 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1220 (-544))))) (-3823 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544)))) (-3823 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544)) (-5 *3 (-140)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1134)))) (-3822 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1134)))) (-3822 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1134)))) (-3821 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-3821 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-3820 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-3820 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-3819 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-3819 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-4206 (*1 *1 *1 *1) (-4 *1 (-1134))))
+(-13 (-19 (-143)) (-10 -8 (-15 -3833 ($ $)) (-15 -3832 ($ $)) (-15 -3831 ($ $)) (-15 -3830 ($ $)) (-15 -3829 ((-112) $ $)) (-15 -3828 ((-112) $ $)) (-15 -3827 ((-112) $ $ (-544))) (-15 -3826 ((-765) $ $ (-143))) (-15 -3825 ((-112) $ $ (-143))) (-15 -3824 ($ $ (-1220 (-544)) $)) (-15 -3823 ((-544) $ $ (-544))) (-15 -3823 ((-544) (-140) $ (-544))) (-15 -4353 ($ (-143))) (-15 -3822 ((-635 $) $ (-143))) (-15 -3822 ((-635 $) $ (-140))) (-15 -3821 ($ $ (-143))) (-15 -3821 ($ $ (-140))) (-15 -3820 ($ $ (-143))) (-15 -3820 ($ $ (-140))) (-15 -3819 ($ $ (-143))) (-15 -3819 ($ $ (-140))) (-15 -4206 ($ $ $))))
+(((-34) . T) ((-102) -3936 (|has| (-143) (-1091)) (|has| (-143) (-844))) ((-608 (-857)) -3936 (|has| (-143) (-1091)) (|has| (-143) (-844)) (|has| (-143) (-608 (-857)))) ((-150 #1=(-143)) . T) ((-609 (-533)) |has| (-143) (-609 (-533))) ((-285 #2=(-544) #1#) . T) ((-287 #2# #1#) . T) ((-308 #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-371 #1#) . T) ((-487 #1#) . T) ((-599 #2# #1#) . T) ((-512 #1# #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-644 #1#) . T) ((-19 #1#) . T) ((-844) |has| (-143) (-844)) ((-1091) -3936 (|has| (-143) (-1091)) (|has| (-143) (-844))) ((-1204) . T))
+((-3840 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765)) 93)) (-3837 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 54)) (-3841 (((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)) 85)) (-3835 (((-765) (-635 |#4|) (-635 |#5|)) 27)) (-3838 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 56) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112)) 58)) (-3839 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 77)) (-4377 (((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 80)) (-3836 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 53)) (-3834 (((-765) (-635 |#4|) (-635 |#5|)) 19)))
+(((-1135 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -1135))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1135 *4 *5 *6 *7 *8)))) (-3840 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11)))))) (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1135 *7 *8 *9 *10 *11)))) (-3839 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-3839 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-3838 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-3838 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3)))) (-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-3836 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765))))
+((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) 110) (((-635 $) (-635 |#4|) (-112)) 111) (((-635 $) (-635 |#4|) (-112) (-112)) 109) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 84)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) 27 (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 40)) (-4092 ((|#4| |#4| $) 65)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-3598 (((-112) |#4| $) NIL)) (-3596 (((-112) |#4| $) NIL)) (-3599 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 124)) (-2096 (((-635 |#4|) $) 17 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 22)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 103)) (-4204 (((-3 |#4| #1#) $) 38)) (-3593 (((-635 $) |#4| $) 88)) (-3595 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3639 (((-635 $) |#4| $) 107) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 108) (((-635 $) |#4| (-635 $)) NIL)) (-3843 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 119)) (-3844 (($ |#4| $) 75) (($ (-635 |#4|) $) 76) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4104 (((-635 |#4|) $) NIL)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 36)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) 48)) (-4175 (($ $ |#4|) NIL) (((-635 $) |#4| $) 90) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 86)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 14)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 21)) (-3293 (($ $ |#3|) 43)) (-3295 (($ $ |#3|) 44)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 32) (((-635 |#4|) $) 41)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3590 (((-635 $) |#4| $) 54) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-3597 (((-112) |#4| $) NIL)) (-4340 (((-112) |#3| $) 61)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1136 |#1| |#2| |#3| |#4|) (-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1136))
+((-3844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-4089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-4089 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-3843 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-3842 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1136 *5 *6 *7 *8))))) (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3728 ((|#1| $) 34)) (-3845 (($ (-635 |#1|)) 39)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3730 ((|#1| |#1| $) 36)) (-3729 ((|#1| $) 32)) (-2096 (((-635 |#1|) $) 18 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 22)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 35)) (-4014 (($ |#1| $) 37)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1357 ((|#1| $) 33)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 31)) (-3972 (($) 38)) (-3727 (((-765) $) 29)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 27)) (-4353 (((-857) $) 14 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 17 (|has| |#1| (-1091)))) (-4364 (((-765) $) 30 (|has| $ (-6 -4400)))))
+(((-1137 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -3845 ($ (-635 |#1|))))) (-1204)) (T -1137))
+((-3845 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1137 *3)))))
+(-13 (-1111 |#1|) (-10 -8 (-15 -3845 ($ (-635 |#1|)))))
+((-4194 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1220 (-544)) |#2|) 43) ((|#2| $ (-544) |#2|) 40)) (-3846 (((-112) $) 11)) (-2100 (($ (-1 |#2| |#2|) $) 38)) (-4207 ((|#2| $) NIL) (($ $ (-765)) 16)) (-2345 (($ $ |#2|) 39)) (-3847 (((-112) $) 10)) (-4206 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1220 (-544))) 30) ((|#2| $ (-544)) 22) ((|#2| $ (-544) |#2|) NIL)) (-4197 (($ $ $) 46) (($ $ |#2|) NIL)) (-4208 (($ $ $) 32) (($ |#2| $) NIL) (($ (-635 $)) 35) (($ $ |#2|) NIL)))
+(((-1138 |#1| |#2|) (-10 -8 (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -4194 (|#2| |#1| #1="last" |#2|)) (-15 -4194 (|#1| |#1| #2="rest" |#1|)) (-15 -4194 (|#2| |#1| #3="first" |#2|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -4206 (|#1| |#1| #2#)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| #3#)) (-15 -4207 (|#2| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4194 (|#2| |#1| #4="value" |#2|)) (-15 -4206 (|#2| |#1| #4#)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|))) (-1139 |#2|) (-1204)) (T -1138))
+NIL
+(-10 -8 (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -4194 (|#2| |#1| #1="last" |#2|)) (-15 -4194 (|#1| |#1| #2="rest" |#1|)) (-15 -4194 (|#2| |#1| #3="first" |#2|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -4206 (|#1| |#1| #2#)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| #3#)) (-15 -4207 (|#2| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4194 (|#2| |#1| #4="value" |#2|)) (-15 -4206 (|#2| |#1| #4#)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-2344 (((-1259) $ (-544) (-544)) 97 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 117 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 86 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4400)))) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-1424 (($ $) 99 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4400))) (($ |#1| $) 100 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1665 ((|#1| $ (-544) |#1|) 85 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 87)) (-3846 (((-112) $) 83)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) 108)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 95 (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 94 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-2421 (($ $ $ (-544)) 116) (($ |#1| $ (-544)) 115)) (-2349 (((-635 (-544)) $) 92)) (-2350 (((-112) (-544) $) 91)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2345 (($ $ |#1|) 96 (|has| $ (-6 -4401)))) (-3847 (((-112) $) 84)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 90)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1220 (-544))) 112) ((|#1| $ (-544)) 89) ((|#1| $ (-544) |#1|) 88)) (-3412 (((-544) $ $) 44)) (-2422 (($ $ (-1220 (-544))) 114) (($ $ (-544)) 113)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 107)) (-4197 (($ $ $) 61 (|has| $ (-6 -4401))) (($ $ |#1|) 60 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-1139 |#1|) (-139) (-1204)) (T -1139))
+((-3847 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))))
+(-13 (-1242 |t#1|) (-644 |t#1|) (-10 -8 (-15 -3847 ((-112) $)) (-15 -3846 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T) ((-1242 |#1|) . T))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1140 |#1| |#2| |#3|) (-1181 |#1| |#2|) (-1091) (-1091) |#2|) (T -1140))
NIL
(-1181 |#1| |#2|)
-((-4053 (((-112) $ $) 7)) (-2436 (((-3 $ "failed") $) 13)) (-1883 (((-1148) $) 9)) (-3767 (($) 14 T CONST)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11)) (-1723 (((-112) $ $) 6)))
+((-2947 (((-112) $ $) 7)) (-3848 (((-3 $ "failed") $) 13)) (-3643 (((-1148) $) 9)) (-3849 (($) 14 T CONST)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)))
(((-1141) (-139)) (T -1141))
-((-3767 (*1 *1) (-4 *1 (-1141))) (-2436 (*1 *1 *1) (|partial| -4 *1 (-1141))))
-(-13 (-1090) (-10 -8 (-15 -3767 ($) -1494) (-15 -2436 ((-3 $ "failed") $))))
-(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
-((-2250 (((-1146 |#1|) (-1146 |#1|)) 17)) (-1743 (((-1146 |#1|) (-1146 |#1|)) 13)) (-2080 (((-1146 |#1|) (-1146 |#1|) (-561) (-561)) 20)) (-2548 (((-1146 |#1|) (-1146 |#1|)) 15)))
-(((-1142 |#1|) (-10 -7 (-15 -1743 ((-1146 |#1|) (-1146 |#1|))) (-15 -2548 ((-1146 |#1|) (-1146 |#1|))) (-15 -2250 ((-1146 |#1|) (-1146 |#1|))) (-15 -2080 ((-1146 |#1|) (-1146 |#1|) (-561) (-561)))) (-13 (-553) (-146))) (T -1142))
-((-2080 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-1142 *4)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1142 *3)))) (-2548 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1142 *3)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1142 *3)))))
-(-10 -7 (-15 -1743 ((-1146 |#1|) (-1146 |#1|))) (-15 -2548 ((-1146 |#1|) (-1146 |#1|))) (-15 -2250 ((-1146 |#1|) (-1146 |#1|))) (-15 -2080 ((-1146 |#1|) (-1146 |#1|) (-561) (-561))))
-((-2754 (((-1146 |#1|) (-1146 (-1146 |#1|))) 15)))
-(((-1143 |#1|) (-10 -7 (-15 -2754 ((-1146 |#1|) (-1146 (-1146 |#1|))))) (-1205)) (T -1143))
-((-2754 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1143 *4)) (-4 *4 (-1205)))))
-(-10 -7 (-15 -2754 ((-1146 |#1|) (-1146 (-1146 |#1|)))))
-((-3522 (((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)) 25)) (-3176 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)) 26)) (-4165 (((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 16)))
-(((-1144 |#1| |#2|) (-10 -7 (-15 -4165 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (-15 -3522 ((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))) (-15 -3176 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)))) (-1205) (-1205)) (T -1144))
-((-3176 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1146 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-1144 *5 *2)))) (-3522 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1146 *6)) (-4 *6 (-1205)) (-4 *3 (-1205)) (-5 *2 (-1146 *3)) (-5 *1 (-1144 *6 *3)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6)))))
-(-10 -7 (-15 -4165 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (-15 -3522 ((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))) (-15 -3176 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))))
-((-4165 (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|)) 21)))
-(((-1145 |#1| |#2| |#3|) (-10 -7 (-15 -4165 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|)))) (-1205) (-1205) (-1205)) (T -1145))
-((-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-1146 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8)) (-5 *1 (-1145 *6 *7 *8)))))
-(-10 -7 (-15 -4165 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) NIL)) (-2333 ((|#1| $) NIL)) (-3164 (($ $) 51)) (-1846 (((-1259) $ (-561) (-561)) 76 (|has| $ (-6 -4400)))) (-2151 (($ $ (-561)) 110 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-1378 (((-856) $) 40 (|has| |#1| (-1090)))) (-1323 (((-112)) 39 (|has| |#1| (-1090)))) (-2809 ((|#1| $ |#1|) NIL (|has| $ (-6 -4400)))) (-2956 (($ $ $) 98 (|has| $ (-6 -4400))) (($ $ (-561) $) 122)) (-3281 ((|#1| $ |#1|) 107 (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) 102 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4400))) (($ $ "rest" $) 106 (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 89 (|has| $ (-6 -4400))) ((|#1| $ (-561) |#1|) 55 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 58)) (-2322 ((|#1| $) NIL)) (-2674 (($) NIL T CONST)) (-3600 (($ $) 14)) (-1437 (($ $) 28) (($ $ (-765)) 88)) (-3915 (((-112) (-638 |#1|) $) 116 (|has| |#1| (-1090)))) (-3001 (($ (-638 |#1|)) 112)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) 57)) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-2728 (((-112) $) NIL)) (-2368 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3519 (((-1259) (-561) $) 121 (|has| |#1| (-1090)))) (-1944 (((-765) $) 118)) (-4092 (((-638 $) $) NIL)) (-2129 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1458 (($ (-765) |#1|) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3683 (((-112) $ (-765)) NIL)) (-3948 (((-638 |#1|) $) NIL)) (-3441 (((-112) $) NIL)) (-3831 (($ $) 90)) (-3798 (((-112) $) 13)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1501 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-3350 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) 74)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2120 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2987 ((|#1| $) 10)) (-1424 ((|#1| $) 27) (($ $ (-765)) 49)) (-3542 (((-2 (|:| |cycle?| (-112)) (|:| -2130 (-765)) (|:| |period| (-765))) (-765) $) 24)) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3592 (($ (-1 (-112) |#1|) $) 126)) (-3602 (($ (-1 (-112) |#1|) $) 127)) (-3193 (($ $ |#1|) 68 (|has| $ (-6 -4400)))) (-3702 (($ $ (-561)) 31)) (-2391 (((-112) $) 72)) (-1305 (((-112) $) 12)) (-3808 (((-112) $) 117)) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 20)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) 15)) (-2910 (($) 44)) (-2315 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1221 (-561))) NIL) ((|#1| $ (-561)) 54) ((|#1| $ (-561) |#1|) NIL)) (-4293 (((-561) $ $) 48)) (-2883 (($ $ (-1221 (-561))) NIL) (($ $ (-561)) NIL)) (-3488 (($ (-1 $)) 47)) (-1650 (((-112) $) 69)) (-3235 (($ $) 70)) (-4193 (($ $) 99 (|has| $ (-6 -4400)))) (-2118 (((-765) $) NIL)) (-1491 (($ $) NIL)) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 43)) (-4216 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 53)) (-3969 (($ |#1| $) 97)) (-2448 (($ $ $) 100 (|has| $ (-6 -4400))) (($ $ |#1|) 101 (|has| $ (-6 -4400)))) (-2754 (($ $ $) 78) (($ |#1| $) 45) (($ (-638 $)) 83) (($ $ |#1|) 77)) (-3426 (($ $) 50)) (-4064 (($ (-638 |#1|)) 111) (((-856) $) 41 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) NIL)) (-2552 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 114 (|has| |#1| (-1090)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1146 |#1|) (-13 (-667 |#1|) (-611 (-638 |#1|)) (-10 -8 (-6 -4400) (-15 -3001 ($ (-638 |#1|))) (IF (|has| |#1| (-1090)) (-15 -3915 ((-112) (-638 |#1|) $)) |%noBranch|) (-15 -3542 ((-2 (|:| |cycle?| (-112)) (|:| -2130 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -3488 ($ (-1 $))) (-15 -3969 ($ |#1| $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3519 ((-1259) (-561) $)) (-15 -1378 ((-856) $)) (-15 -1323 ((-112)))) |%noBranch|) (-15 -2956 ($ $ (-561) $)) (-15 -2120 ($ (-1 |#1|))) (-15 -2120 ($ (-1 |#1| |#1|) |#1|)) (-15 -3592 ($ (-1 (-112) |#1|) $)) (-15 -3602 ($ (-1 (-112) |#1|) $)))) (-1205)) (T -1146))
-((-3001 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-3915 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-4 *4 (-1205)) (-5 *2 (-112)) (-5 *1 (-1146 *4)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2130 (-765)) (|:| |period| (-765)))) (-5 *1 (-1146 *4)) (-4 *4 (-1205)) (-5 *3 (-765)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1205)))) (-3969 (*1 *1 *2 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1205)))) (-3519 (*1 *2 *3 *1) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-1146 *4)) (-4 *4 (-1090)) (-4 *4 (-1205)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1146 *3)) (-4 *3 (-1090)) (-4 *3 (-1205)))) (-1323 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3)) (-4 *3 (-1090)) (-4 *3 (-1205)))) (-2956 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1146 *3)) (-4 *3 (-1205)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-2120 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-3592 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-3602 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
-(-13 (-667 |#1|) (-611 (-638 |#1|)) (-10 -8 (-6 -4400) (-15 -3001 ($ (-638 |#1|))) (IF (|has| |#1| (-1090)) (-15 -3915 ((-112) (-638 |#1|) $)) |%noBranch|) (-15 -3542 ((-2 (|:| |cycle?| (-112)) (|:| -2130 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -3488 ($ (-1 $))) (-15 -3969 ($ |#1| $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3519 ((-1259) (-561) $)) (-15 -1378 ((-856) $)) (-15 -1323 ((-112)))) |%noBranch|) (-15 -2956 ($ $ (-561) $)) (-15 -2120 ($ (-1 |#1|))) (-15 -2120 ($ (-1 |#1| |#1|) |#1|)) (-15 -3592 ($ (-1 (-112) |#1|) $)) (-15 -3602 ($ (-1 (-112) |#1|) $))))
-((-4053 (((-112) $ $) 19)) (-1806 (($ $) 120)) (-3242 (($ $) 121)) (-1647 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-3857 (((-112) $ $) 118)) (-3834 (((-112) $ $ (-561)) 117)) (-3651 (($ (-561)) 127)) (-2230 (((-638 $) $ (-143)) 110) (((-638 $) $ (-140)) 109)) (-2097 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-1680 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4400))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4400))))) (-1318 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-2684 (((-112) $ (-765)) 8)) (-4207 (((-143) $ (-561) (-143)) 52 (|has| $ (-6 -4400))) (((-143) $ (-1221 (-561)) (-143)) 58 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-1914 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-4026 (($ $) 90 (|has| $ (-6 -4400)))) (-2659 (($ $) 100)) (-1590 (($ $ (-1221 (-561)) $) 114)) (-1461 (($ $) 78 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ (-143) $) 77 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4399)))) (-3176 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4399))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4399)))) (-2041 (((-143) $ (-561) (-143)) 53 (|has| $ (-6 -4400)))) (-1975 (((-143) $ (-561)) 51)) (-3878 (((-112) $ $) 119)) (-4266 (((-561) (-1 (-112) (-143)) $) 97) (((-561) (-143) $) 96 (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) 95 (|has| (-143) (-1090))) (((-561) $ $ (-561)) 113) (((-561) (-140) $ (-561)) 112)) (-2368 (((-638 (-143)) $) 30 (|has| $ (-6 -4399)))) (-1458 (($ (-765) (-143)) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-1597 (($ $ $) 87 (|has| (-143) (-844)))) (-3405 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-4125 (((-638 (-143)) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-3017 (($ $ $) 86 (|has| (-143) (-844)))) (-4265 (((-112) $ $ (-143)) 115)) (-3822 (((-765) $ $ (-143)) 116)) (-2029 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-2857 (($ $) 122)) (-2501 (($ $) 123)) (-3683 (((-112) $ (-765)) 10)) (-1926 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-1883 (((-1148) $) 22)) (-3350 (($ (-143) $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21)) (-1424 (((-143) $) 42 (|has| (-561) (-844)))) (-3202 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-3193 (($ $ (-143)) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-2411 (((-638 (-143)) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 (((-143) $ (-561) (-143)) 50) (((-143) $ (-561)) 49) (($ $ (-1221 (-561))) 63) (($ $ $) 102)) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-1714 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4399))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4399))))) (-2879 (($ $ $ (-561)) 91 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| (-143) (-609 (-534))))) (-4078 (($ (-638 (-143))) 70)) (-2754 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (($ (-143)) 111) (((-856) $) 18)) (-3715 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4399)))) (-3785 (((-1148) $) 131) (((-1148) $ (-112)) 130) (((-1259) (-816) $) 129) (((-1259) (-816) $ (-112)) 128)) (-1781 (((-112) $ $) 84 (|has| (-143) (-844)))) (-1758 (((-112) $ $) 83 (|has| (-143) (-844)))) (-1723 (((-112) $ $) 20)) (-1770 (((-112) $ $) 85 (|has| (-143) (-844)))) (-1746 (((-112) $ $) 82 (|has| (-143) (-844)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
+((-3849 (*1 *1) (-4 *1 (-1141))) (-3848 (*1 *1 *1) (|partial| -4 *1 (-1141))))
+(-13 (-1091) (-10 -8 (-15 -3849 ($) -4359) (-15 -3848 ((-3 $ "failed") $))))
+(((-102) . T) ((-608 (-857)) . T) ((-1091) . T))
+((-3852 (((-1143 |#1|) (-1143 |#1|)) 17)) (-3850 (((-1143 |#1|) (-1143 |#1|)) 13)) (-3853 (((-1143 |#1|) (-1143 |#1|) (-544) (-544)) 20)) (-3851 (((-1143 |#1|) (-1143 |#1|)) 15)))
+(((-1142 |#1|) (-10 -7 (-15 -3850 ((-1143 |#1|) (-1143 |#1|))) (-15 -3851 ((-1143 |#1|) (-1143 |#1|))) (-15 -3852 ((-1143 |#1|) (-1143 |#1|))) (-15 -3853 ((-1143 |#1|) (-1143 |#1|) (-544) (-544)))) (-13 (-554) (-146))) (T -1142))
+((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1142 *4)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))))
+(-10 -7 (-15 -3850 ((-1143 |#1|) (-1143 |#1|))) (-15 -3851 ((-1143 |#1|) (-1143 |#1|))) (-15 -3852 ((-1143 |#1|) (-1143 |#1|))) (-15 -3853 ((-1143 |#1|) (-1143 |#1|) (-544) (-544))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) 51)) (-2344 (((-1259) $ (-544) (-544)) 76 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 110 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-3858 (((-857) $) 40 (|has| |#1| (-1091)))) (-3857 (((-112)) 39 (|has| |#1| (-1091)))) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) 98 (|has| $ (-6 -4401))) (($ $ (-544) $) 122)) (-4192 ((|#1| $ |#1|) 107 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 102 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 104 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 106 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 109 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 89 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 55 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 58)) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2440 (($ $) 14)) (-4205 (($ $) 28) (($ $ (-765)) 88)) (-3863 (((-112) (-635 |#1|) $) 116 (|has| |#1| (-1091)))) (-3864 (($ (-635 |#1|)) 112)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) 57)) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3859 (((-1259) (-544) $) 121 (|has| |#1| (-1091)))) (-2439 (((-765) $) 118)) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-2442 (($ $) 90)) (-2443 (((-112) $) 13)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) 74)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3856 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2441 ((|#1| $) 10)) (-4207 ((|#1| $) 27) (($ $ (-765)) 49)) (-3862 (((-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765))) (-765) $) 24)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3855 (($ (-1 (-112) |#1|) $) 126)) (-3854 (($ (-1 (-112) |#1|) $) 127)) (-2345 (($ $ |#1|) 68 (|has| $ (-6 -4401)))) (-4175 (($ $ (-544)) 31)) (-3847 (((-112) $) 72)) (-2444 (((-112) $) 12)) (-2445 (((-112) $) 117)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 20)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) 15)) (-3972 (($) 44)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) 54) ((|#1| $ (-544) |#1|) NIL)) (-3412 (((-544) $ $) 48)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-3861 (($ (-1 $)) 47)) (-4040 (((-112) $) 69)) (-4198 (($ $) 70)) (-4196 (($ $) 99 (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 43)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 53)) (-3860 (($ |#1| $) 97)) (-4197 (($ $ $) 100 (|has| $ (-6 -4401))) (($ $ |#1|) 101 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 45) (($ (-635 $)) 83) (($ $ |#1|) 77)) (-3274 (($ $) 50)) (-4353 (($ (-635 |#1|)) 111) (((-857) $) 41 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 114 (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1143 |#1|) (-13 (-667 |#1|) (-611 (-635 |#1|)) (-10 -8 (-6 -4401) (-15 -3864 ($ (-635 |#1|))) (IF (|has| |#1| (-1091)) (-15 -3863 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -3862 ((-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -3861 ($ (-1 $))) (-15 -3860 ($ |#1| $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -3859 ((-1259) (-544) $)) (-15 -3858 ((-857) $)) (-15 -3857 ((-112)))) |%noBranch|) (-15 -4193 ($ $ (-544) $)) (-15 -3856 ($ (-1 |#1|))) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $)))) (-1204)) (T -1143))
+((-3864 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3863 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112)) (-5 *1 (-1143 *4)))) (-3862 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765)))) (-5 *1 (-1143 *4)) (-4 *4 (-1204)) (-5 *3 (-765)))) (-3861 (*1 *1 *2) (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1204)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1204)))) (-3859 (*1 *2 *3 *1) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1143 *4)) (-4 *4 (-1091)) (-4 *4 (-1204)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)))) (-3857 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)))) (-4193 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1143 *3)) (-4 *3 (-1204)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3855 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))))
+(-13 (-667 |#1|) (-611 (-635 |#1|)) (-10 -8 (-6 -4401) (-15 -3864 ($ (-635 |#1|))) (IF (|has| |#1| (-1091)) (-15 -3863 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -3862 ((-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -3861 ($ (-1 $))) (-15 -3860 ($ |#1| $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -3859 ((-1259) (-544) $)) (-15 -3858 ((-857) $)) (-15 -3857 ((-112)))) |%noBranch|) (-15 -4193 ($ $ (-544) $)) (-15 -3856 ($ (-1 |#1|))) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $))))
+((-4208 (((-1143 |#1|) (-1143 (-1143 |#1|))) 15)))
+(((-1144 |#1|) (-10 -7 (-15 -4208 ((-1143 |#1|) (-1143 (-1143 |#1|))))) (-1204)) (T -1144))
+((-4208 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1144 *4)) (-4 *4 (-1204)))))
+(-10 -7 (-15 -4208 ((-1143 |#1|) (-1143 (-1143 |#1|)))))
+((-4248 (((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 25)) (-4249 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 26)) (-4365 (((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)) 16)))
+(((-1145 |#1| |#2|) (-10 -7 (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -4248 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -4249 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)))) (-1204) (-1204)) (T -1145))
+((-4249 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-1145 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1204)) (-4 *3 (-1204)) (-5 *2 (-1143 *3)) (-5 *1 (-1145 *6 *3)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1143 *6)) (-5 *1 (-1145 *5 *6)))))
+(-10 -7 (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -4248 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -4249 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))))
+((-4365 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)) 21)))
+(((-1146 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)))) (-1204) (-1204) (-1204)) (T -1146))
+((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) (-5 *1 (-1146 *6 *7 *8)))))
+(-10 -7 (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|))))
+((-2947 (((-112) $ $) 19)) (-3830 (($ $) 120)) (-3831 (($ $) 121)) (-3821 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) 118)) (-3827 (((-112) $ $ (-544)) 117)) (-3942 (($ (-544)) 127)) (-3822 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 (((-143) $ (-544) (-143)) 52 (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-3819 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-3824 (($ $ (-1220 (-544)) $) 114)) (-1424 (($ $) 78 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-143) $) 77 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) 53 (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) 51)) (-3829 (((-112) $ $) 119)) (-3823 (((-544) (-1 (-112) (-143)) $) 97) (((-544) (-143) $) 96 (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) 95 (|has| (-143) (-1091))) (((-544) $ $ (-544)) 113) (((-544) (-140) $ (-544)) 112)) (-2096 (((-635 (-143)) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) 115)) (-3826 (((-765) $ $ (-143)) 116)) (-2100 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-3832 (($ $) 122)) (-3833 (($ $) 123)) (-4123 (((-112) $ (-765)) 10)) (-3820 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-3643 (((-1148) $) 22)) (-2421 (($ (-143) $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21)) (-4207 (((-143) $) 42 (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2345 (($ $ (-143)) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 (((-143) $ (-544) (-143)) 50) (((-143) $ (-544)) 49) (($ $ (-1220 (-544))) 63) (($ $ $) 102)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4400))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) 70)) (-4208 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (($ (-143)) 111) (((-857) $) 18)) (-2099 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4400)))) (-2879 (((-1148) $) 131) (((-1148) $ (-112)) 130) (((-1259) (-817) $) 129) (((-1259) (-817) $ (-112)) 128)) (-2945 (((-112) $ $) 84 (|has| (-143) (-844)))) (-2946 (((-112) $ $) 83 (|has| (-143) (-844)))) (-3437 (((-112) $ $) 20)) (-3066 (((-112) $ $) 85 (|has| (-143) (-844)))) (-3067 (((-112) $ $) 82 (|has| (-143) (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
(((-1147) (-139)) (T -1147))
-((-3651 (*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1147)))))
-(-13 (-1134) (-1090) (-822) (-10 -8 (-15 -3651 ($ (-561)))))
-(((-34) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 #0=(-143)) . T) ((-609 (-534)) |has| (-143) (-609 (-534))) ((-285 #1=(-561) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-372 #0#) . T) ((-487 #0#) . T) ((-599 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-644 #0#) . T) ((-19 #0#) . T) ((-822) . T) ((-844) |has| (-143) (-844)) ((-1090) . T) ((-1134) . T) ((-1205) . T))
-((-4053 (((-112) $ $) NIL)) (-1806 (($ $) NIL)) (-3242 (($ $) NIL)) (-1647 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-3857 (((-112) $ $) NIL)) (-3834 (((-112) $ $ (-561)) NIL)) (-3651 (($ (-561)) 7)) (-2230 (((-638 $) $ (-143)) NIL) (((-638 $) $ (-140)) NIL)) (-2097 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-1680 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-844))))) (-1318 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 (((-143) $ (-561) (-143)) NIL (|has| $ (-6 -4400))) (((-143) $ (-1221 (-561)) (-143)) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-1914 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1590 (($ $ (-1221 (-561)) $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-1475 (($ (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4399))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4399)))) (-2041 (((-143) $ (-561) (-143)) NIL (|has| $ (-6 -4400)))) (-1975 (((-143) $ (-561)) NIL)) (-3878 (((-112) $ $) NIL)) (-4266 (((-561) (-1 (-112) (-143)) $) NIL) (((-561) (-143) $) NIL (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) NIL (|has| (-143) (-1090))) (((-561) $ $ (-561)) NIL) (((-561) (-140) $ (-561)) NIL)) (-2368 (((-638 (-143)) $) NIL (|has| $ (-6 -4399)))) (-1458 (($ (-765) (-143)) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| (-143) (-844)))) (-3405 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-4125 (((-638 (-143)) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| (-143) (-844)))) (-4265 (((-112) $ $ (-143)) NIL)) (-3822 (((-765) $ $ (-143)) NIL)) (-2029 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-2857 (($ $) NIL)) (-2501 (($ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1926 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-1883 (((-1148) $) NIL)) (-3350 (($ (-143) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-143) $) NIL (|has| (-561) (-844)))) (-3202 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3193 (($ $ (-143)) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-2411 (((-638 (-143)) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 (((-143) $ (-561) (-143)) NIL) (((-143) $ (-561)) NIL) (($ $ (-1221 (-561))) NIL) (($ $ $) NIL)) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-1714 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-143) (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-143) (-609 (-534))))) (-4078 (($ (-638 (-143))) NIL)) (-2754 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (($ (-143)) NIL) (((-856) $) NIL)) (-3715 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4399)))) (-3785 (((-1148) $) 18) (((-1148) $ (-112)) 20) (((-1259) (-816) $) 21) (((-1259) (-816) $ (-112)) 22)) (-1781 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1758 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1746 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1147)))))
+(-13 (-1134) (-1091) (-815) (-10 -8 (-15 -3942 ($ (-544)))))
+(((-34) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 #1=(-143)) . T) ((-609 (-533)) |has| (-143) (-609 (-533))) ((-285 #2=(-544) #1#) . T) ((-287 #2# #1#) . T) ((-308 #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-371 #1#) . T) ((-487 #1#) . T) ((-599 #2# #1#) . T) ((-512 #1# #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-644 #1#) . T) ((-19 #1#) . T) ((-815) . T) ((-844) |has| (-143) (-844)) ((-1091) . T) ((-1134) . T) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3830 (($ $) NIL)) (-3831 (($ $) NIL)) (-3821 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) NIL)) (-3827 (((-112) $ $ (-544)) NIL)) (-3942 (($ (-544)) 7)) (-3822 (((-635 $) $ (-143)) NIL) (((-635 $) $ (-140)) NIL)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-143) (-844))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-143) $ (-544) (-143)) NIL (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-3819 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-3824 (($ $ (-1220 (-544)) $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3810 (($ (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) NIL (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) NIL)) (-3829 (((-112) $ $) NIL)) (-3823 (((-544) (-1 (-112) (-143)) $) NIL) (((-544) (-143) $) NIL (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) NIL (|has| (-143) (-1091))) (((-544) $ $ (-544)) NIL) (((-544) (-140) $ (-544)) NIL)) (-2096 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) NIL)) (-3826 (((-765) $ $ (-143)) NIL)) (-2100 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-3832 (($ $) NIL)) (-3833 (($ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3820 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3643 (((-1148) $) NIL)) (-2421 (($ (-143) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-143) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2345 (($ $ (-143)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-143) $ (-544) (-143)) NIL) (((-143) $ (-544)) NIL) (($ $ (-1220 (-544))) NIL) (($ $ $) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) NIL)) (-4208 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (($ (-143)) NIL) (((-857) $) NIL)) (-2099 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-2879 (((-1148) $) 18) (((-1148) $ (-112)) 20) (((-1259) (-817) $) 21) (((-1259) (-817) $ (-112)) 22)) (-2945 (((-112) $ $) NIL (|has| (-143) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-143) (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
(((-1148) (-1147)) (T -1148))
NIL
(-1147)
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL)) (-1846 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-1148) |#1|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#1| "failed") (-1148) $) NIL)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#1| "failed") (-1148) $) NIL)) (-1475 (($ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-1148)) NIL)) (-2368 (((-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-1148) $) NIL (|has| (-1148) (-844)))) (-4125 (((-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-2066 (((-638 (-1148)) $) NIL)) (-2492 (((-112) (-1148) $) NIL)) (-3721 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL)) (-2355 (((-638 (-1148)) $) NIL)) (-1558 (((-112) (-1148) $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-1424 ((|#1| $) NIL (|has| (-1148) (-844)))) (-3202 (((-3 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) "failed") (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ $ (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL (-12 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-308 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-1148)) NIL) ((|#1| $ (-1148) |#1|) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-608 (-856))) (|has| |#1| (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 (-1148)) (|:| -2677 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1149 |#1|) (-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4399))) (-1090)) (T -1149))
-NIL
-(-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4399)))
-((-3120 (((-1146 |#1|) (-1146 |#1|)) 77)) (-3735 (((-3 (-1146 |#1|) "failed") (-1146 |#1|)) 37)) (-1756 (((-1146 |#1|) (-406 (-561)) (-1146 |#1|)) 121 (|has| |#1| (-38 (-406 (-561)))))) (-3523 (((-1146 |#1|) |#1| (-1146 |#1|)) 127 (|has| |#1| (-362)))) (-2627 (((-1146 |#1|) (-1146 |#1|)) 90)) (-2201 (((-1146 (-561)) (-561)) 57)) (-3439 (((-1146 |#1|) (-1146 (-1146 |#1|))) 109 (|has| |#1| (-38 (-406 (-561)))))) (-3850 (((-1146 |#1|) (-561) (-561) (-1146 |#1|)) 95)) (-3077 (((-1146 |#1|) |#1| (-561)) 45)) (-1554 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 60)) (-2412 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 124 (|has| |#1| (-362)))) (-3265 (((-1146 |#1|) |#1| (-1 (-1146 |#1|))) 108 (|has| |#1| (-38 (-406 (-561)))))) (-2944 (((-1146 |#1|) (-1 |#1| (-561)) |#1| (-1 (-1146 |#1|))) 125 (|has| |#1| (-362)))) (-4285 (((-1146 |#1|) (-1146 |#1|)) 89)) (-1724 (((-1146 |#1|) (-1146 |#1|)) 76)) (-3343 (((-1146 |#1|) (-561) (-561) (-1146 |#1|)) 96)) (-2563 (((-1146 |#1|) |#1| (-1146 |#1|)) 105 (|has| |#1| (-38 (-406 (-561)))))) (-2528 (((-1146 (-561)) (-561)) 56)) (-3530 (((-1146 |#1|) |#1|) 59)) (-4339 (((-1146 |#1|) (-1146 |#1|) (-561) (-561)) 92)) (-1754 (((-1146 |#1|) (-1 |#1| (-561)) (-1146 |#1|)) 66)) (-1748 (((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|)) 35)) (-2815 (((-1146 |#1|) (-1146 |#1|)) 91)) (-1436 (((-1146 |#1|) (-1146 |#1|) |#1|) 71)) (-3865 (((-1146 |#1|) (-1146 |#1|)) 62)) (-2342 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 72)) (-4064 (((-1146 |#1|) |#1|) 67)) (-1787 (((-1146 |#1|) (-1146 (-1146 |#1|))) 82)) (-1828 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 36)) (-1819 (((-1146 |#1|) (-1146 |#1|)) 21) (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 23)) (-1810 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 17)) (* (((-1146 |#1|) (-1146 |#1|) |#1|) 29) (((-1146 |#1|) |#1| (-1146 |#1|)) 26) (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 27)))
-(((-1150 |#1|) (-10 -7 (-15 -1810 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1819 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1819 ((-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -1748 ((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|))) (-15 -1828 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3735 ((-3 (-1146 |#1|) "failed") (-1146 |#1|))) (-15 -3077 ((-1146 |#1|) |#1| (-561))) (-15 -2528 ((-1146 (-561)) (-561))) (-15 -2201 ((-1146 (-561)) (-561))) (-15 -3530 ((-1146 |#1|) |#1|)) (-15 -1554 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3865 ((-1146 |#1|) (-1146 |#1|))) (-15 -1754 ((-1146 |#1|) (-1 |#1| (-561)) (-1146 |#1|))) (-15 -4064 ((-1146 |#1|) |#1|)) (-15 -1436 ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -2342 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1724 ((-1146 |#1|) (-1146 |#1|))) (-15 -3120 ((-1146 |#1|) (-1146 |#1|))) (-15 -1787 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -4285 ((-1146 |#1|) (-1146 |#1|))) (-15 -2627 ((-1146 |#1|) (-1146 |#1|))) (-15 -2815 ((-1146 |#1|) (-1146 |#1|))) (-15 -4339 ((-1146 |#1|) (-1146 |#1|) (-561) (-561))) (-15 -3850 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (-15 -3343 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 -3265 ((-1146 |#1|) |#1| (-1 (-1146 |#1|)))) (-15 -3439 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -1756 ((-1146 |#1|) (-406 (-561)) (-1146 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2412 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -2944 ((-1146 |#1|) (-1 |#1| (-561)) |#1| (-1 (-1146 |#1|)))) (-15 -3523 ((-1146 |#1|) |#1| (-1146 |#1|)))) |%noBranch|)) (-1042)) (T -1150))
-((-3523 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-561))) (-5 *5 (-1 (-1146 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)))) (-2412 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1756 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042)) (-5 *3 (-406 (-561))) (-5 *1 (-1150 *4)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1146 *3))) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))) (-2563 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3343 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-3850 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4339 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-1042)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-2342 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1436 (*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4064 (*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-1754 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-1 *4 (-561))) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-3865 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1554 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3530 (*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-2201 (*1 *2 *3) (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-561)))) (-2528 (*1 *2 *3) (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-561)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3735 (*1 *2 *2) (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1828 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1748 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1819 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1810 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
-(-10 -7 (-15 -1810 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1819 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1819 ((-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -1748 ((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|))) (-15 -1828 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3735 ((-3 (-1146 |#1|) "failed") (-1146 |#1|))) (-15 -3077 ((-1146 |#1|) |#1| (-561))) (-15 -2528 ((-1146 (-561)) (-561))) (-15 -2201 ((-1146 (-561)) (-561))) (-15 -3530 ((-1146 |#1|) |#1|)) (-15 -1554 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3865 ((-1146 |#1|) (-1146 |#1|))) (-15 -1754 ((-1146 |#1|) (-1 |#1| (-561)) (-1146 |#1|))) (-15 -4064 ((-1146 |#1|) |#1|)) (-15 -1436 ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -2342 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1724 ((-1146 |#1|) (-1146 |#1|))) (-15 -3120 ((-1146 |#1|) (-1146 |#1|))) (-15 -1787 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -4285 ((-1146 |#1|) (-1146 |#1|))) (-15 -2627 ((-1146 |#1|) (-1146 |#1|))) (-15 -2815 ((-1146 |#1|) (-1146 |#1|))) (-15 -4339 ((-1146 |#1|) (-1146 |#1|) (-561) (-561))) (-15 -3850 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (-15 -3343 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 -3265 ((-1146 |#1|) |#1| (-1 (-1146 |#1|)))) (-15 -3439 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -1756 ((-1146 |#1|) (-406 (-561)) (-1146 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2412 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -2944 ((-1146 |#1|) (-1 |#1| (-561)) |#1| (-1 (-1146 |#1|)))) (-15 -3523 ((-1146 |#1|) |#1| (-1146 |#1|)))) |%noBranch|))
-((-3014 (((-1146 |#1|) (-1146 |#1|)) 57)) (-4106 (((-1146 |#1|) (-1146 |#1|)) 39)) (-4213 (((-1146 |#1|) (-1146 |#1|)) 53)) (-4085 (((-1146 |#1|) (-1146 |#1|)) 35)) (-3039 (((-1146 |#1|) (-1146 |#1|)) 60)) (-4130 (((-1146 |#1|) (-1146 |#1|)) 42)) (-4364 (((-1146 |#1|) (-1146 |#1|)) 31)) (-3486 (((-1146 |#1|) (-1146 |#1|)) 27)) (-3052 (((-1146 |#1|) (-1146 |#1|)) 61)) (-4140 (((-1146 |#1|) (-1146 |#1|)) 43)) (-3026 (((-1146 |#1|) (-1146 |#1|)) 58)) (-4118 (((-1146 |#1|) (-1146 |#1|)) 40)) (-3002 (((-1146 |#1|) (-1146 |#1|)) 55)) (-4097 (((-1146 |#1|) (-1146 |#1|)) 37)) (-3086 (((-1146 |#1|) (-1146 |#1|)) 65)) (-4175 (((-1146 |#1|) (-1146 |#1|)) 47)) (-3064 (((-1146 |#1|) (-1146 |#1|)) 63)) (-4150 (((-1146 |#1|) (-1146 |#1|)) 45)) (-3113 (((-1146 |#1|) (-1146 |#1|)) 68)) (-4192 (((-1146 |#1|) (-1146 |#1|)) 50)) (-2821 (((-1146 |#1|) (-1146 |#1|)) 69)) (-4202 (((-1146 |#1|) (-1146 |#1|)) 51)) (-3099 (((-1146 |#1|) (-1146 |#1|)) 67)) (-4184 (((-1146 |#1|) (-1146 |#1|)) 49)) (-3076 (((-1146 |#1|) (-1146 |#1|)) 66)) (-4162 (((-1146 |#1|) (-1146 |#1|)) 48)) (** (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 33)))
-(((-1151 |#1|) (-10 -7 (-15 -3486 ((-1146 |#1|) (-1146 |#1|))) (-15 -4364 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4097 ((-1146 |#1|) (-1146 |#1|))) (-15 -4106 ((-1146 |#1|) (-1146 |#1|))) (-15 -4118 ((-1146 |#1|) (-1146 |#1|))) (-15 -4130 ((-1146 |#1|) (-1146 |#1|))) (-15 -4140 ((-1146 |#1|) (-1146 |#1|))) (-15 -4150 ((-1146 |#1|) (-1146 |#1|))) (-15 -4162 ((-1146 |#1|) (-1146 |#1|))) (-15 -4175 ((-1146 |#1|) (-1146 |#1|))) (-15 -4184 ((-1146 |#1|) (-1146 |#1|))) (-15 -4192 ((-1146 |#1|) (-1146 |#1|))) (-15 -4202 ((-1146 |#1|) (-1146 |#1|))) (-15 -4213 ((-1146 |#1|) (-1146 |#1|))) (-15 -3002 ((-1146 |#1|) (-1146 |#1|))) (-15 -3014 ((-1146 |#1|) (-1146 |#1|))) (-15 -3026 ((-1146 |#1|) (-1146 |#1|))) (-15 -3039 ((-1146 |#1|) (-1146 |#1|))) (-15 -3052 ((-1146 |#1|) (-1146 |#1|))) (-15 -3064 ((-1146 |#1|) (-1146 |#1|))) (-15 -3076 ((-1146 |#1|) (-1146 |#1|))) (-15 -3086 ((-1146 |#1|) (-1146 |#1|))) (-15 -3099 ((-1146 |#1|) (-1146 |#1|))) (-15 -3113 ((-1146 |#1|) (-1146 |#1|))) (-15 -2821 ((-1146 |#1|) (-1146 |#1|)))) (-38 (-406 (-561)))) (T -1151))
-((-2821 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3039 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4202 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4364 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))))
-(-10 -7 (-15 -3486 ((-1146 |#1|) (-1146 |#1|))) (-15 -4364 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4097 ((-1146 |#1|) (-1146 |#1|))) (-15 -4106 ((-1146 |#1|) (-1146 |#1|))) (-15 -4118 ((-1146 |#1|) (-1146 |#1|))) (-15 -4130 ((-1146 |#1|) (-1146 |#1|))) (-15 -4140 ((-1146 |#1|) (-1146 |#1|))) (-15 -4150 ((-1146 |#1|) (-1146 |#1|))) (-15 -4162 ((-1146 |#1|) (-1146 |#1|))) (-15 -4175 ((-1146 |#1|) (-1146 |#1|))) (-15 -4184 ((-1146 |#1|) (-1146 |#1|))) (-15 -4192 ((-1146 |#1|) (-1146 |#1|))) (-15 -4202 ((-1146 |#1|) (-1146 |#1|))) (-15 -4213 ((-1146 |#1|) (-1146 |#1|))) (-15 -3002 ((-1146 |#1|) (-1146 |#1|))) (-15 -3014 ((-1146 |#1|) (-1146 |#1|))) (-15 -3026 ((-1146 |#1|) (-1146 |#1|))) (-15 -3039 ((-1146 |#1|) (-1146 |#1|))) (-15 -3052 ((-1146 |#1|) (-1146 |#1|))) (-15 -3064 ((-1146 |#1|) (-1146 |#1|))) (-15 -3076 ((-1146 |#1|) (-1146 |#1|))) (-15 -3086 ((-1146 |#1|) (-1146 |#1|))) (-15 -3099 ((-1146 |#1|) (-1146 |#1|))) (-15 -3113 ((-1146 |#1|) (-1146 |#1|))) (-15 -2821 ((-1146 |#1|) (-1146 |#1|))))
-((-3014 (((-1146 |#1|) (-1146 |#1|)) 100)) (-4106 (((-1146 |#1|) (-1146 |#1|)) 64)) (-3981 (((-2 (|:| -4213 (-1146 |#1|)) (|:| -3002 (-1146 |#1|))) (-1146 |#1|)) 96)) (-4213 (((-1146 |#1|) (-1146 |#1|)) 97)) (-2169 (((-2 (|:| -4085 (-1146 |#1|)) (|:| -4097 (-1146 |#1|))) (-1146 |#1|)) 53)) (-4085 (((-1146 |#1|) (-1146 |#1|)) 54)) (-3039 (((-1146 |#1|) (-1146 |#1|)) 102)) (-4130 (((-1146 |#1|) (-1146 |#1|)) 71)) (-4364 (((-1146 |#1|) (-1146 |#1|)) 39)) (-3486 (((-1146 |#1|) (-1146 |#1|)) 36)) (-3052 (((-1146 |#1|) (-1146 |#1|)) 103)) (-4140 (((-1146 |#1|) (-1146 |#1|)) 72)) (-3026 (((-1146 |#1|) (-1146 |#1|)) 101)) (-4118 (((-1146 |#1|) (-1146 |#1|)) 67)) (-3002 (((-1146 |#1|) (-1146 |#1|)) 98)) (-4097 (((-1146 |#1|) (-1146 |#1|)) 55)) (-3086 (((-1146 |#1|) (-1146 |#1|)) 111)) (-4175 (((-1146 |#1|) (-1146 |#1|)) 86)) (-3064 (((-1146 |#1|) (-1146 |#1|)) 105)) (-4150 (((-1146 |#1|) (-1146 |#1|)) 82)) (-3113 (((-1146 |#1|) (-1146 |#1|)) 115)) (-4192 (((-1146 |#1|) (-1146 |#1|)) 90)) (-2821 (((-1146 |#1|) (-1146 |#1|)) 117)) (-4202 (((-1146 |#1|) (-1146 |#1|)) 92)) (-3099 (((-1146 |#1|) (-1146 |#1|)) 113)) (-4184 (((-1146 |#1|) (-1146 |#1|)) 88)) (-3076 (((-1146 |#1|) (-1146 |#1|)) 107)) (-4162 (((-1146 |#1|) (-1146 |#1|)) 84)) (** (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 40)))
-(((-1152 |#1|) (-10 -7 (-15 -3486 ((-1146 |#1|) (-1146 |#1|))) (-15 -4364 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -2169 ((-2 (|:| -4085 (-1146 |#1|)) (|:| -4097 (-1146 |#1|))) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4097 ((-1146 |#1|) (-1146 |#1|))) (-15 -4106 ((-1146 |#1|) (-1146 |#1|))) (-15 -4118 ((-1146 |#1|) (-1146 |#1|))) (-15 -4130 ((-1146 |#1|) (-1146 |#1|))) (-15 -4140 ((-1146 |#1|) (-1146 |#1|))) (-15 -4150 ((-1146 |#1|) (-1146 |#1|))) (-15 -4162 ((-1146 |#1|) (-1146 |#1|))) (-15 -4175 ((-1146 |#1|) (-1146 |#1|))) (-15 -4184 ((-1146 |#1|) (-1146 |#1|))) (-15 -4192 ((-1146 |#1|) (-1146 |#1|))) (-15 -4202 ((-1146 |#1|) (-1146 |#1|))) (-15 -3981 ((-2 (|:| -4213 (-1146 |#1|)) (|:| -3002 (-1146 |#1|))) (-1146 |#1|))) (-15 -4213 ((-1146 |#1|) (-1146 |#1|))) (-15 -3002 ((-1146 |#1|) (-1146 |#1|))) (-15 -3014 ((-1146 |#1|) (-1146 |#1|))) (-15 -3026 ((-1146 |#1|) (-1146 |#1|))) (-15 -3039 ((-1146 |#1|) (-1146 |#1|))) (-15 -3052 ((-1146 |#1|) (-1146 |#1|))) (-15 -3064 ((-1146 |#1|) (-1146 |#1|))) (-15 -3076 ((-1146 |#1|) (-1146 |#1|))) (-15 -3086 ((-1146 |#1|) (-1146 |#1|))) (-15 -3099 ((-1146 |#1|) (-1146 |#1|))) (-15 -3113 ((-1146 |#1|) (-1146 |#1|))) (-15 -2821 ((-1146 |#1|) (-1146 |#1|)))) (-38 (-406 (-561)))) (T -1152))
-((-2821 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3039 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-2 (|:| -4213 (-1146 *4)) (|:| -3002 (-1146 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))) (-4202 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-2169 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-2 (|:| -4085 (-1146 *4)) (|:| -4097 (-1146 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4364 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))))
-(-10 -7 (-15 -3486 ((-1146 |#1|) (-1146 |#1|))) (-15 -4364 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -2169 ((-2 (|:| -4085 (-1146 |#1|)) (|:| -4097 (-1146 |#1|))) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4097 ((-1146 |#1|) (-1146 |#1|))) (-15 -4106 ((-1146 |#1|) (-1146 |#1|))) (-15 -4118 ((-1146 |#1|) (-1146 |#1|))) (-15 -4130 ((-1146 |#1|) (-1146 |#1|))) (-15 -4140 ((-1146 |#1|) (-1146 |#1|))) (-15 -4150 ((-1146 |#1|) (-1146 |#1|))) (-15 -4162 ((-1146 |#1|) (-1146 |#1|))) (-15 -4175 ((-1146 |#1|) (-1146 |#1|))) (-15 -4184 ((-1146 |#1|) (-1146 |#1|))) (-15 -4192 ((-1146 |#1|) (-1146 |#1|))) (-15 -4202 ((-1146 |#1|) (-1146 |#1|))) (-15 -3981 ((-2 (|:| -4213 (-1146 |#1|)) (|:| -3002 (-1146 |#1|))) (-1146 |#1|))) (-15 -4213 ((-1146 |#1|) (-1146 |#1|))) (-15 -3002 ((-1146 |#1|) (-1146 |#1|))) (-15 -3014 ((-1146 |#1|) (-1146 |#1|))) (-15 -3026 ((-1146 |#1|) (-1146 |#1|))) (-15 -3039 ((-1146 |#1|) (-1146 |#1|))) (-15 -3052 ((-1146 |#1|) (-1146 |#1|))) (-15 -3064 ((-1146 |#1|) (-1146 |#1|))) (-15 -3076 ((-1146 |#1|) (-1146 |#1|))) (-15 -3086 ((-1146 |#1|) (-1146 |#1|))) (-15 -3099 ((-1146 |#1|) (-1146 |#1|))) (-15 -3113 ((-1146 |#1|) (-1146 |#1|))) (-15 -2821 ((-1146 |#1|) (-1146 |#1|))))
-((-4286 (((-951 |#2|) |#2| |#2|) 35)) (-4229 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306)))))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -4286 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -4229 (|#2| |#2| |#1|)) |%noBranch|)) (-553) (-1230 |#1|)) (T -1153))
-((-4229 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-553)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1230 *3)))) (-4286 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -4286 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -4229 (|#2| |#2| |#1|)) |%noBranch|))
-((-4053 (((-112) $ $) NIL)) (-1814 (($ $ (-638 (-765))) 66)) (-1884 (($) 25)) (-2555 (($ $) 41)) (-2241 (((-638 $) $) 50)) (-1794 (((-112) $) 16)) (-3251 (((-638 (-936 |#2|)) $) 73)) (-1820 (($ $) 67)) (-2669 (((-765) $) 36)) (-1458 (($) 24)) (-2570 (($ $ (-638 (-765)) (-936 |#2|)) 59) (($ $ (-638 (-765)) (-765)) 60) (($ $ (-765) (-936 |#2|)) 62)) (-3405 (($ $ $) 47) (($ (-638 $)) 49)) (-3383 (((-765) $) 74)) (-3441 (((-112) $) 15)) (-1883 (((-1148) $) NIL)) (-1786 (((-112) $) 17)) (-1701 (((-1110) $) NIL)) (-3916 (((-170) $) 72)) (-3016 (((-936 |#2|) $) 68)) (-1414 (((-765) $) 69)) (-2709 (((-112) $) 71)) (-3286 (($ $ (-638 (-765)) (-170)) 65)) (-2623 (($ $) 42)) (-4064 (((-856) $) 85)) (-2786 (($ $ (-638 (-765)) (-112)) 64)) (-3770 (((-638 $) $) 11)) (-2467 (($ $ (-765)) 35)) (-3190 (($ $) 31)) (-3796 (($ $ $ (-936 |#2|) (-765)) 55)) (-2951 (($ $ (-936 |#2|)) 54)) (-3390 (($ $ (-638 (-765)) (-936 |#2|)) 53) (($ $ (-638 (-765)) (-765)) 57) (((-765) $ (-936 |#2|)) 58)) (-1723 (((-112) $ $) 79)))
-(((-1154 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -3441 ((-112) $)) (-15 -1794 ((-112) $)) (-15 -1786 ((-112) $)) (-15 -1458 ($)) (-15 -1884 ($)) (-15 -3190 ($ $)) (-15 -2467 ($ $ (-765))) (-15 -3770 ((-638 $) $)) (-15 -2669 ((-765) $)) (-15 -2555 ($ $)) (-15 -2623 ($ $)) (-15 -3405 ($ $ $)) (-15 -3405 ($ (-638 $))) (-15 -2241 ((-638 $) $)) (-15 -3390 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -2951 ($ $ (-936 |#2|))) (-15 -3796 ($ $ $ (-936 |#2|) (-765))) (-15 -2570 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -3390 ($ $ (-638 (-765)) (-765))) (-15 -2570 ($ $ (-638 (-765)) (-765))) (-15 -3390 ((-765) $ (-936 |#2|))) (-15 -2570 ($ $ (-765) (-936 |#2|))) (-15 -2786 ($ $ (-638 (-765)) (-112))) (-15 -3286 ($ $ (-638 (-765)) (-170))) (-15 -1814 ($ $ (-638 (-765)))) (-15 -3016 ((-936 |#2|) $)) (-15 -1414 ((-765) $)) (-15 -2709 ((-112) $)) (-15 -3916 ((-170) $)) (-15 -3383 ((-765) $)) (-15 -1820 ($ $)) (-15 -3251 ((-638 (-936 |#2|)) $)))) (-914) (-1042)) (T -1154))
-((-3441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1458 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-1884 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-3190 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2555 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-3405 (*1 *1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-3405 (*1 *1 *2) (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2241 (*1 *2 *1) (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-2951 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)))) (-3796 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-2570 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-3390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-2570 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-3390 (*1 *2 *1 *3) (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-2570 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-2786 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-3286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-1814 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1820 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-638 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))))
-(-13 (-1090) (-10 -8 (-15 -3441 ((-112) $)) (-15 -1794 ((-112) $)) (-15 -1786 ((-112) $)) (-15 -1458 ($)) (-15 -1884 ($)) (-15 -3190 ($ $)) (-15 -2467 ($ $ (-765))) (-15 -3770 ((-638 $) $)) (-15 -2669 ((-765) $)) (-15 -2555 ($ $)) (-15 -2623 ($ $)) (-15 -3405 ($ $ $)) (-15 -3405 ($ (-638 $))) (-15 -2241 ((-638 $) $)) (-15 -3390 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -2951 ($ $ (-936 |#2|))) (-15 -3796 ($ $ $ (-936 |#2|) (-765))) (-15 -2570 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -3390 ($ $ (-638 (-765)) (-765))) (-15 -2570 ($ $ (-638 (-765)) (-765))) (-15 -3390 ((-765) $ (-936 |#2|))) (-15 -2570 ($ $ (-765) (-936 |#2|))) (-15 -2786 ($ $ (-638 (-765)) (-112))) (-15 -3286 ($ $ (-638 (-765)) (-170))) (-15 -1814 ($ $ (-638 (-765)))) (-15 -3016 ((-936 |#2|) $)) (-15 -1414 ((-765) $)) (-15 -2709 ((-112) $)) (-15 -3916 ((-170) $)) (-15 -3383 ((-765) $)) (-15 -1820 ($ $)) (-15 -3251 ((-638 (-936 |#2|)) $))))
-((-4053 (((-112) $ $) NIL)) (-4322 ((|#2| $) 11)) (-4308 ((|#1| $) 10)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4078 (($ |#1| |#2|) 9)) (-4064 (((-856) $) 16)) (-1723 (((-112) $ $) NIL)))
-(((-1155 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -4078 ($ |#1| |#2|)) (-15 -4308 (|#1| $)) (-15 -4322 (|#2| $)))) (-1090) (-1090)) (T -1155))
-((-4078 (*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-4308 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1090)))) (-4322 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1090)))))
-(-13 (-1090) (-10 -8 (-15 -4078 ($ |#1| |#2|)) (-15 -4308 (|#1| $)) (-15 -4322 (|#2| $))))
-((-4053 (((-112) $ $) NIL)) (-3040 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1156) (-13 (-1073) (-10 -8 (-15 -3040 ((-1125) $))))) (T -1156))
-((-3040 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156)))))
-(-13 (-1073) (-10 -8 (-15 -3040 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 11)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3012 (($ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3163 (((-112) $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-1991 (($ $ (-561)) NIL) (($ $ (-561) (-561)) 66)) (-4228 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) NIL)) (-3580 (((-1164 |#1| |#2| |#3|) $) 36)) (-2527 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 29)) (-1469 (((-1164 |#1| |#2| |#3|) $) 30)) (-3014 (($ $) 107 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 83 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) 103 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 79 (|has| |#1| (-38 (-406 (-561)))))) (-1659 (((-561) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-1543 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) NIL)) (-3039 (($ $) 111 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 87 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1166) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-561) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-3979 (((-1164 |#1| |#2| |#3|) $) 131) (((-1166) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-561)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-561) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-1857 (($ $) 34) (($ (-561) $) 35)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-1164 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 (-1164 |#1| |#2| |#3|))) (|:| |vec| (-1254 (-1164 |#1| |#2| |#3|)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362))))) (-3735 (((-3 $ "failed") $) 48)) (-4243 (((-406 (-945 |#1|)) $ (-561)) 65 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 67 (|has| |#1| (-553)))) (-1362 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-1784 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4372 (((-112) $) 25)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-561))) (|has| |#1| (-362))))) (-4027 (((-561) $) NIL) (((-561) $ (-561)) 24)) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL (|has| |#1| (-362)))) (-4077 (((-1164 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2436 (((-3 $ "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-3271 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3508 (($ $ (-914)) NIL)) (-3236 (($ (-1 |#1| (-561)) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-561)) 18) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-1597 (($ $ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3017 (($ $ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4364 (($ $) 72 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1484 (($ (-561) (-1164 |#1| |#2| |#3|)) 33)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-2563 (($ $) 70 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1250 |#2|)) 71 (|has| |#1| (-38 (-406 (-561)))))) (-3767 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2569 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4020 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-561)) 145)) (-1748 (((-3 $ "failed") $ $) 49 (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3486 (($ $) 73 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-293 (-1164 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1164 |#1| |#2| |#3|)) (-638 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-561)) NIL) (($ $ $) 54 (|has| (-561) (-1102))) (($ $ (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1250 |#2|)) 51) (($ $ (-765)) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 50 (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1969 (($ $) NIL (|has| |#1| (-362)))) (-4088 (((-1164 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-3768 (((-561) $) 37)) (-3052 (($ $) 113 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 89 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 109 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 85 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 105 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 81 (|has| |#1| (-38 (-406 (-561)))))) (-4216 (((-534) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-885 (-378)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3426 (($ $) NIL)) (-4064 (((-856) $) 149) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1164 |#1| |#2| |#3|)) 27) (($ (-1250 |#2|)) 23) (($ (-1166)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553)))) (($ (-406 (-561))) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-561))))))) (-3932 ((|#1| $ (-561)) 68)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) 12)) (-2449 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3086 (($ $) 119 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 95 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3064 (($ $) 115 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 91 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 99 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-561)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 101 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 97 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 117 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 93 (|has| |#1| (-38 (-406 (-561)))))) (-2165 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-2246 (($) 20 T CONST)) (-2257 (($) 16 T CONST)) (-3154 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1781 (((-112) $ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1758 (((-112) $ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1746 (((-112) $ $) NIL (-4050 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 21)) (** (($ $ (-914)) NIL) (($ $ (-765)) 53) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 128 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1164 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1157 |#1| |#2| |#3|) (-13 (-1216 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1157))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(-13 (-1216 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|)))
-((-1621 ((|#2| |#2| (-1082 |#2|)) 26) ((|#2| |#2| (-1166)) 28)))
-(((-1158 |#1| |#2|) (-10 -7 (-15 -1621 (|#2| |#2| (-1166))) (-15 -1621 (|#2| |#2| (-1082 |#2|)))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-429 |#1|) (-159) (-27) (-1190))) (T -1158))
-((-1621 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1158 *4 *2)))) (-1621 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190))))))
-(-10 -7 (-15 -1621 (|#2| |#2| (-1166))) (-15 -1621 (|#2| |#2| (-1082 |#2|))))
-((-1621 (((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1082 (-406 (-945 |#1|)))) 31) (((-406 (-945 |#1|)) (-945 |#1|) (-1082 (-945 |#1|))) 44) (((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1166)) 33) (((-406 (-945 |#1|)) (-945 |#1|) (-1166)) 36)))
-(((-1159 |#1|) (-10 -7 (-15 -1621 ((-406 (-945 |#1|)) (-945 |#1|) (-1166))) (-15 -1621 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -1621 ((-406 (-945 |#1|)) (-945 |#1|) (-1082 (-945 |#1|)))) (-15 -1621 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1082 (-406 (-945 |#1|)))))) (-13 (-553) (-844) (-1031 (-561)))) (T -1159))
-((-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1159 *5)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-945 *5))) (-5 *3 (-945 *5)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-406 *3)) (-5 *1 (-1159 *5)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-3 (-406 (-945 *5)) (-315 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-406 (-945 *5))))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-406 (-945 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-945 *5)))))
-(-10 -7 (-15 -1621 ((-406 (-945 |#1|)) (-945 |#1|) (-1166))) (-15 -1621 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -1621 ((-406 (-945 |#1|)) (-945 |#1|) (-1082 (-945 |#1|)))) (-15 -1621 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1082 (-406 (-945 |#1|))))))
-((-4165 (((-1162 |#2|) (-1 |#2| |#1|) (-1162 |#1|)) 13)))
-(((-1160 |#1| |#2|) (-10 -7 (-15 -4165 ((-1162 |#2|) (-1 |#2| |#1|) (-1162 |#1|)))) (-1042) (-1042)) (T -1160))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-1162 *6)) (-5 *1 (-1160 *5 *6)))))
-(-10 -7 (-15 -4165 ((-1162 |#2|) (-1 |#2| |#1|) (-1162 |#1|))))
-((-3552 (((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|))) 51)) (-1633 (((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|))) 52)))
-(((-1161 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1633 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|)))) (-15 -3552 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|))))) (-787) (-844) (-450) (-942 |#3| |#1| |#2|)) (T -1161))
-((-3552 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7)))) (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7))))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7)))) (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7))))))
-(-10 -7 (-15 -1633 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|)))) (-15 -3552 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|)))))
-((-4053 (((-112) $ $) 136)) (-4306 (((-112) $) 27)) (-2811 (((-1254 |#1|) $ (-765)) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-1493 (($ (-1162 |#1|)) NIL)) (-1596 (((-1162 $) $ (-1072)) 58) (((-1162 |#1|) $) 47)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) 131 (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3431 (($ $ $) 125 (|has| |#1| (-553)))) (-2128 (((-417 (-1162 $)) (-1162 $)) 71 (|has| |#1| (-902)))) (-2557 (($ $) NIL (|has| |#1| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 91 (|has| |#1| (-902)))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2525 (($ $ (-765)) 39)) (-2613 (($ $ (-765)) 40)) (-2241 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL)) (-3979 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1072) $) NIL)) (-2395 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) 56)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-1666 (($ $ $) 103)) (-3022 (($ $ $) NIL (|has| |#1| (-553)))) (-2566 (((-2 (|:| -4226 |#1|) (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-553)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-4229 (($ $) 132 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-765) $) 45)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-2067 (((-856) $ (-856)) 116)) (-4027 (((-765) $ $) NIL (|has| |#1| (-553)))) (-2252 (((-112) $) 30)) (-2044 (((-765) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-1393 (($ (-1162 |#1|) (-1072)) 49) (($ (-1162 $) (-1072)) 65)) (-3508 (($ $ (-765)) 32)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) 63) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-1072)) NIL) (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 120)) (-1522 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-1368 (($ (-1 (-765) (-765)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1709 (((-1162 |#1|) $) NIL)) (-2830 (((-3 (-1072) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) 52)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1883 (((-1148) $) NIL)) (-4311 (((-2 (|:| -2970 $) (|:| -1744 $)) $ (-765)) 38)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-1072)) (|:| -4181 (-765))) "failed") $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3767 (($) NIL (|has| |#1| (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) 31)) (-1542 ((|#1| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 79 (|has| |#1| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) 134 (|has| |#1| (-450)))) (-3960 (($ $ (-765) |#1| $) 98)) (-4328 (((-417 (-1162 $)) (-1162 $)) 77 (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 76 (|has| |#1| (-902)))) (-1633 (((-417 $) $) 84 (|has| |#1| (-902)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-1748 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-638 (-1072)) (-638 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-553)))) (-3559 (((-3 $ "failed") $ (-765)) 35)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 137 (|has| |#1| (-362)))) (-2753 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-3922 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3768 (((-765) $) 54) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) 129 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-2280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-553)))) (-4064 (((-856) $) 117) (($ (-561)) NIL) (($ |#1|) 53) (($ (-1072)) NIL) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) 25 (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) 15 T CONST)) (-2257 (($) 16 T CONST)) (-3154 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) 96)) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1828 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 66)) (** (($ $ (-914)) 14) (($ $ (-765)) 12)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 24) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
-(((-1162 |#1|) (-13 (-1230 |#1|) (-10 -8 (-15 -2067 ((-856) $ (-856))) (-15 -3960 ($ $ (-765) |#1| $)))) (-1042)) (T -1162))
-((-2067 (*1 *2 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1162 *3)) (-4 *3 (-1042)))) (-3960 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1162 *3)) (-4 *3 (-1042)))))
-(-13 (-1230 |#1|) (-10 -8 (-15 -2067 ((-856) $ (-856))) (-15 -3960 ($ $ (-765) |#1| $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 11)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-4228 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3039 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 36)) (-3979 (((-1157 |#1| |#2| |#3|) $) NIL) (((-1164 |#1| |#2| |#3|) $) NIL)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-2235 (((-406 (-561)) $) 55)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-1496 (($ (-406 (-561)) (-1157 |#1| |#2| |#3|)) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) NIL)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-406 (-561))) 20) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3169 (((-1157 |#1| |#2| |#3|) $) 41)) (-3570 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL)) (-1484 (((-1157 |#1| |#2| |#3|) $) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-2563 (($ $) 39 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1250 |#2|)) 40 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-406 (-561))) NIL)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3486 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $ (-1250 |#2|)) 38)) (-3768 (((-406 (-561)) $) NIL)) (-3052 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) NIL)) (-4064 (((-856) $) 58) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1157 |#1| |#2| |#3|)) 30) (($ (-1164 |#1| |#2| |#3|)) 31) (($ (-1250 |#2|)) 26) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-3932 ((|#1| $ (-406 (-561))) NIL)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) 12)) (-3086 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 22 T CONST)) (-2257 (($) 16 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 24)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1163 |#1| |#2| |#3|) (-13 (-1237 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1163))
-((-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(-13 (-1237 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 124)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 115)) (-2612 (((-1227 |#2| |#1|) $ (-765)) 62)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-765)) 78) (($ $ (-765) (-765)) 75)) (-4228 (((-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 101)) (-3014 (($ $) 168 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4213 (($ $) 164 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 114) (($ (-1146 |#1|)) 109)) (-3039 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) 23)) (-3854 (($ $) 26)) (-2001 (((-945 |#1|) $ (-765)) 74) (((-945 |#1|) $ (-765) (-765)) 76)) (-4372 (((-112) $) 119)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-765) $) 121) (((-765) $ (-765)) 123)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) NIL)) (-3236 (($ (-1 |#1| (-561)) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) 13) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-2563 (($ $) 128 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1250 |#2|)) 129 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-3702 (($ $ (-765)) 15)) (-1748 (((-3 $ "failed") $ $) 24 (|has| |#1| (-553)))) (-3486 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-2315 ((|#1| $ (-765)) 118) (($ $ $) 127 (|has| (-765) (-1102)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1250 |#2|)) 29)) (-3768 (((-765) $) NIL)) (-3052 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 150 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 166 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) NIL)) (-4064 (((-856) $) 200) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1227 |#2| |#1|)) 50) (($ (-1250 |#2|)) 32)) (-1868 (((-1146 |#1|) $) 97)) (-3932 ((|#1| $ (-765)) 117)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) 53)) (-3086 (($ $) 180 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 156 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 152 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 184 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-765)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 182 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 158 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 154 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 17 T CONST)) (-2257 (($) 19 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) 193)) (-1810 (($ $ $) 31)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 136 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1164 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-10 -8 (-15 -4064 ($ (-1227 |#2| |#1|))) (-15 -2612 ((-1227 |#2| |#1|) $ (-765))) (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1164))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1227 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1227 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(-13 (-1245 |#1|) (-10 -8 (-15 -4064 ($ (-1227 |#2| |#1|))) (-15 -2612 ((-1227 |#2| |#1|) $ (-765))) (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|)))
-((-4064 (((-856) $) 27) (($ (-1166)) 29)) (-4050 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 40)) (-4040 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 33) (($ $) 34)) (-4342 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 35)) (-4332 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 37)) (-4320 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 36)) (-4309 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 38)) (-3367 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 39)))
-(((-1165) (-13 (-608 (-856)) (-10 -8 (-15 -4064 ($ (-1166))) (-15 -4342 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4320 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4332 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4309 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4050 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3367 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4040 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4040 ($ $))))) (T -1165))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1165)))) (-4342 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4320 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4332 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4309 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4050 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3367 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4040 (*1 *1 *1) (-5 *1 (-1165))))
-(-13 (-608 (-856)) (-10 -8 (-15 -4064 ($ (-1166))) (-15 -4342 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4320 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4332 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4309 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4050 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3367 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4040 ($ (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4040 ($ $))))
-((-4053 (((-112) $ $) NIL)) (-3340 (($ $ (-638 (-856))) 59)) (-2742 (($ $ (-638 (-856))) 57)) (-3651 (((-1148) $) 84)) (-4323 (((-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856)))) $) 87)) (-4215 (((-112) $) 22)) (-1482 (($ $ (-638 (-638 (-856)))) 56) (($ $ (-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856))))) 82)) (-2674 (($) 123 T CONST)) (-1309 (((-1259)) 105)) (-2199 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 66) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 73)) (-1458 (($) 94) (($ $) 100)) (-3305 (($ $) 83)) (-1597 (($ $ $) NIL)) (-3017 (($ $ $) NIL)) (-3755 (((-638 $) $) 106)) (-1883 (((-1148) $) 89)) (-1701 (((-1110) $) NIL)) (-2315 (($ $ (-638 (-856))) 58)) (-4216 (((-534) $) 46) (((-1166) $) 47) (((-885 (-561)) $) 77) (((-885 (-378)) $) 75)) (-4064 (((-856) $) 53) (($ (-1148)) 48)) (-2262 (($ $ (-638 (-856))) 60)) (-3785 (((-1148) $) 33) (((-1148) $ (-112)) 34) (((-1259) (-816) $) 35) (((-1259) (-816) $ (-112)) 36)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 49)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 50)))
-(((-1166) (-13 (-844) (-609 (-534)) (-822) (-609 (-1166)) (-611 (-1148)) (-609 (-885 (-561))) (-609 (-885 (-378))) (-879 (-561)) (-879 (-378)) (-10 -8 (-15 -1458 ($)) (-15 -1458 ($ $)) (-15 -1309 ((-1259))) (-15 -3305 ($ $)) (-15 -4215 ((-112) $)) (-15 -4323 ((-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856)))) $)) (-15 -1482 ($ $ (-638 (-638 (-856))))) (-15 -1482 ($ $ (-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856)))))) (-15 -2742 ($ $ (-638 (-856)))) (-15 -3340 ($ $ (-638 (-856)))) (-15 -2262 ($ $ (-638 (-856)))) (-15 -2315 ($ $ (-638 (-856)))) (-15 -3651 ((-1148) $)) (-15 -3755 ((-638 $) $)) (-15 -2674 ($) -1494)))) (T -1166))
-((-1458 (*1 *1) (-5 *1 (-1166))) (-1458 (*1 *1 *1) (-5 *1 (-1166))) (-1309 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1166)))) (-3305 (*1 *1 *1) (-5 *1 (-1166))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856))))) (-5 *1 (-1166)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-1166)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856))))) (-5 *1 (-1166)))) (-2742 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-2262 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1166)))) (-2674 (*1 *1) (-5 *1 (-1166))))
-(-13 (-844) (-609 (-534)) (-822) (-609 (-1166)) (-611 (-1148)) (-609 (-885 (-561))) (-609 (-885 (-378))) (-879 (-561)) (-879 (-378)) (-10 -8 (-15 -1458 ($)) (-15 -1458 ($ $)) (-15 -1309 ((-1259))) (-15 -3305 ($ $)) (-15 -4215 ((-112) $)) (-15 -4323 ((-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856)))) $)) (-15 -1482 ($ $ (-638 (-638 (-856))))) (-15 -1482 ($ $ (-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856))) (|:| |args| (-638 (-856)))))) (-15 -2742 ($ $ (-638 (-856)))) (-15 -3340 ($ $ (-638 (-856)))) (-15 -2262 ($ $ (-638 (-856)))) (-15 -2315 ($ $ (-638 (-856)))) (-15 -3651 ((-1148) $)) (-15 -3755 ((-638 $) $)) (-15 -2674 ($) -1494)))
-((-4059 (((-1254 |#1|) |#1| (-914)) 16) (((-1254 |#1|) (-638 |#1|)) 20)))
-(((-1167 |#1|) (-10 -7 (-15 -4059 ((-1254 |#1|) (-638 |#1|))) (-15 -4059 ((-1254 |#1|) |#1| (-914)))) (-1042)) (T -1167))
-((-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-1254 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1042)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1042)) (-5 *2 (-1254 *4)) (-5 *1 (-1167 *4)))))
-(-10 -7 (-15 -4059 ((-1254 |#1|) (-638 |#1|))) (-15 -4059 ((-1254 |#1|) |#1| (-914))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3979 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-450)))) (-3227 (($ $ |#1| (-964) $) NIL)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-964)) NIL)) (-1522 (((-964) $) NIL)) (-1368 (($ (-1 (-964) (-964)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#1| $) NIL)) (-3960 (($ $ (-964) |#1| $) NIL (-12 (|has| (-964) (-130)) (|has| |#1| (-553))))) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-3768 (((-964) $) NIL)) (-2125 ((|#1| $) NIL (|has| |#1| (-450)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) NIL) (($ (-406 (-561))) NIL (-4050 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ (-964)) NIL)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2246 (($) 9 T CONST)) (-2257 (($) 14 T CONST)) (-1723 (((-112) $ $) 16)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 19)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1168 |#1|) (-13 (-325 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| (-964) (-130)) (-15 -3960 ($ $ (-964) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|))) (-1042)) (T -1168))
-((-3960 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
-(-13 (-325 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| (-964) (-130)) (-15 -3960 ($ $ (-964) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|)))
-((-2890 (((-1170) (-1166) $) 25)) (-4379 (($) 29)) (-4009 (((-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-1166) $) 22)) (-3952 (((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -2630 "void")) $) 41) (((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) 42) (((-1259) (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) 43)) (-4329 (((-1259) (-1166)) 58)) (-1402 (((-1259) (-1166) $) 55) (((-1259) (-1166)) 56) (((-1259)) 57)) (-1635 (((-1259) (-1166)) 37)) (-4313 (((-1166)) 36)) (-2910 (($) 34)) (-2576 (((-436) (-1166) (-436) (-1166) $) 45) (((-436) (-638 (-1166)) (-436) (-1166) $) 49) (((-436) (-1166) (-436)) 46) (((-436) (-1166) (-436) (-1166)) 50)) (-2862 (((-1166)) 35)) (-4064 (((-856) $) 28)) (-1690 (((-1259)) 30) (((-1259) (-1166)) 33)) (-2620 (((-638 (-1166)) (-1166) $) 24)) (-4062 (((-1259) (-1166) (-638 (-1166)) $) 38) (((-1259) (-1166) (-638 (-1166))) 39) (((-1259) (-638 (-1166))) 40)))
-(((-1169) (-13 (-608 (-856)) (-10 -8 (-15 -4379 ($)) (-15 -1690 ((-1259))) (-15 -1690 ((-1259) (-1166))) (-15 -2576 ((-436) (-1166) (-436) (-1166) $)) (-15 -2576 ((-436) (-638 (-1166)) (-436) (-1166) $)) (-15 -2576 ((-436) (-1166) (-436))) (-15 -2576 ((-436) (-1166) (-436) (-1166))) (-15 -1635 ((-1259) (-1166))) (-15 -2862 ((-1166))) (-15 -4313 ((-1166))) (-15 -4062 ((-1259) (-1166) (-638 (-1166)) $)) (-15 -4062 ((-1259) (-1166) (-638 (-1166)))) (-15 -4062 ((-1259) (-638 (-1166)))) (-15 -3952 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -2630 "void")) $)) (-15 -3952 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -2630 "void")))) (-15 -3952 ((-1259) (-3 (|:| |fst| (-433)) (|:| -2630 "void")))) (-15 -1402 ((-1259) (-1166) $)) (-15 -1402 ((-1259) (-1166))) (-15 -1402 ((-1259))) (-15 -4329 ((-1259) (-1166))) (-15 -2910 ($)) (-15 -4009 ((-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-1166) $)) (-15 -2620 ((-638 (-1166)) (-1166) $)) (-15 -2890 ((-1170) (-1166) $))))) (T -1169))
-((-4379 (*1 *1) (-5 *1 (-1169))) (-1690 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-2576 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-2576 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *4 (-1166)) (-5 *1 (-1169)))) (-2576 (*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-2576 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-2862 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-4313 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-4062 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-4062 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3952 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-1402 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-1402 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-2910 (*1 *1) (-5 *1 (-1169))) (-4009 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *1 (-1169)))) (-2620 (*1 *2 *3 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166)))) (-2890 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -4379 ($)) (-15 -1690 ((-1259))) (-15 -1690 ((-1259) (-1166))) (-15 -2576 ((-436) (-1166) (-436) (-1166) $)) (-15 -2576 ((-436) (-638 (-1166)) (-436) (-1166) $)) (-15 -2576 ((-436) (-1166) (-436))) (-15 -2576 ((-436) (-1166) (-436) (-1166))) (-15 -1635 ((-1259) (-1166))) (-15 -2862 ((-1166))) (-15 -4313 ((-1166))) (-15 -4062 ((-1259) (-1166) (-638 (-1166)) $)) (-15 -4062 ((-1259) (-1166) (-638 (-1166)))) (-15 -4062 ((-1259) (-638 (-1166)))) (-15 -3952 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -2630 "void")) $)) (-15 -3952 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -2630 "void")))) (-15 -3952 ((-1259) (-3 (|:| |fst| (-433)) (|:| -2630 "void")))) (-15 -1402 ((-1259) (-1166) $)) (-15 -1402 ((-1259) (-1166))) (-15 -1402 ((-1259))) (-15 -4329 ((-1259) (-1166))) (-15 -2910 ($)) (-15 -4009 ((-3 (|:| |fst| (-433)) (|:| -2630 "void")) (-1166) $)) (-15 -2620 ((-638 (-1166)) (-1166) $)) (-15 -2890 ((-1170) (-1166) $))))
-((-1779 (((-638 (-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) $) 59)) (-3308 (((-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))) (-433) $) 43)) (-4318 (($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-436))))) 17)) (-4329 (((-1259) $) 67)) (-2913 (((-638 (-1166)) $) 22)) (-3277 (((-1094) $) 55)) (-3056 (((-436) (-1166) $) 27)) (-2730 (((-638 (-1166)) $) 30)) (-2910 (($) 19)) (-2576 (((-436) (-638 (-1166)) (-436) $) 25) (((-436) (-1166) (-436) $) 24)) (-4064 (((-856) $) 9) (((-1178 (-1166) (-436)) $) 13)))
-(((-1170) (-13 (-608 (-856)) (-10 -8 (-15 -4064 ((-1178 (-1166) (-436)) $)) (-15 -2910 ($)) (-15 -2576 ((-436) (-638 (-1166)) (-436) $)) (-15 -2576 ((-436) (-1166) (-436) $)) (-15 -3056 ((-436) (-1166) $)) (-15 -2913 ((-638 (-1166)) $)) (-15 -3308 ((-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))) (-433) $)) (-15 -2730 ((-638 (-1166)) $)) (-15 -1779 ((-638 (-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) $)) (-15 -3277 ((-1094) $)) (-15 -4329 ((-1259) $)) (-15 -4318 ($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-436))))))))) (T -1170))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-1178 (-1166) (-436))) (-5 *1 (-1170)))) (-2910 (*1 *1) (-5 *1 (-1170))) (-2576 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *1 (-1170)))) (-2576 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1170)))) (-3056 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-436)) (-5 *1 (-1170)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))) (-3308 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) (-5 *1 (-1170)))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))))) (-5 *1 (-1170)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1170)))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1170)))) (-4318 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-436))))) (-5 *1 (-1170)))))
-(-13 (-608 (-856)) (-10 -8 (-15 -4064 ((-1178 (-1166) (-436)) $)) (-15 -2910 ($)) (-15 -2576 ((-436) (-638 (-1166)) (-436) $)) (-15 -2576 ((-436) (-1166) (-436) $)) (-15 -3056 ((-436) (-1166) $)) (-15 -2913 ((-638 (-1166)) $)) (-15 -3308 ((-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))) (-433) $)) (-15 -2730 ((-638 (-1166)) $)) (-15 -1779 ((-638 (-638 (-3 (|:| -3305 (-1166)) (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) $)) (-15 -3277 ((-1094) $)) (-15 -4329 ((-1259) $)) (-15 -4318 ($ (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-436))))))))
-((-4053 (((-112) $ $) NIL)) (-4061 (((-3 (-561) "failed") $) 29) (((-3 (-224) "failed") $) 35) (((-3 (-1166) "failed") $) 41) (((-3 (-1148) "failed") $) 47)) (-3979 (((-561) $) 30) (((-224) $) 36) (((-1166) $) 42) (((-1148) $) 48)) (-4239 (((-112) $) 53)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3586 (((-3 (-561) (-224) (-1166) (-1148) $) $) 55)) (-4304 (((-638 $) $) 57)) (-4216 (((-1094) $) 24) (($ (-1094)) 25)) (-3467 (((-112) $) 56)) (-4064 (((-856) $) 23) (($ (-561)) 26) (($ (-224)) 32) (($ (-1166)) 38) (($ (-1148)) 44) (((-534) $) 59) (((-561) $) 31) (((-224) $) 37) (((-1166) $) 43) (((-1148) $) 49)) (-2234 (((-112) $ (|[\|\|]| (-561))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1166))) 19) (((-112) $ (|[\|\|]| (-1148))) 16)) (-3581 (($ (-1166) (-638 $)) 51) (($ $ (-638 $)) 52)) (-4252 (((-561) $) 27) (((-224) $) 33) (((-1166) $) 39) (((-1148) $) 45)) (-1723 (((-112) $ $) 7)))
-(((-1171) (-13 (-1249) (-1090) (-1031 (-561)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-534)) (-10 -8 (-15 -4216 ((-1094) $)) (-15 -4216 ($ (-1094))) (-15 -4064 ((-561) $)) (-15 -4252 ((-561) $)) (-15 -4064 ((-224) $)) (-15 -4252 ((-224) $)) (-15 -4064 ((-1166) $)) (-15 -4252 ((-1166) $)) (-15 -4064 ((-1148) $)) (-15 -4252 ((-1148) $)) (-15 -3581 ($ (-1166) (-638 $))) (-15 -3581 ($ $ (-638 $))) (-15 -4239 ((-112) $)) (-15 -3586 ((-3 (-561) (-224) (-1166) (-1148) $) $)) (-15 -4304 ((-638 $) $)) (-15 -3467 ((-112) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-561)))) (-15 -2234 ((-112) $ (|[\|\|]| (-224)))) (-15 -2234 ((-112) $ (|[\|\|]| (-1166)))) (-15 -2234 ((-112) $ (|[\|\|]| (-1148))))))) (T -1171))
-((-4216 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1171)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1171)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-3581 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-1171))) (-5 *1 (-1171)))) (-3581 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-3 (-561) (-224) (-1166) (-1148) (-1171))) (-5 *1 (-1171)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171)))))
-(-13 (-1249) (-1090) (-1031 (-561)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-534)) (-10 -8 (-15 -4216 ((-1094) $)) (-15 -4216 ($ (-1094))) (-15 -4064 ((-561) $)) (-15 -4252 ((-561) $)) (-15 -4064 ((-224) $)) (-15 -4252 ((-224) $)) (-15 -4064 ((-1166) $)) (-15 -4252 ((-1166) $)) (-15 -4064 ((-1148) $)) (-15 -4252 ((-1148) $)) (-15 -3581 ($ (-1166) (-638 $))) (-15 -3581 ($ $ (-638 $))) (-15 -4239 ((-112) $)) (-15 -3586 ((-3 (-561) (-224) (-1166) (-1148) $) $)) (-15 -4304 ((-638 $) $)) (-15 -3467 ((-112) $)) (-15 -2234 ((-112) $ (|[\|\|]| (-561)))) (-15 -2234 ((-112) $ (|[\|\|]| (-224)))) (-15 -2234 ((-112) $ (|[\|\|]| (-1166)))) (-15 -2234 ((-112) $ (|[\|\|]| (-1148))))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) 10)) (-1362 (($) 14)) (-1597 (($ $ $) NIL) (($) 7 T CONST)) (-3017 (($ $ $) NIL) (($) 8 T CONST)) (-1335 (((-914) $) 13)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) 12)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
-(((-1172 |#1|) (-838) (-914)) (T -1172))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2344 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-1148) |#1|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#1| #1="failed") (-1148) $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#1| #1#) (-1148) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-1148)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-2789 (((-635 (-1148)) $) NIL)) (-2354 (((-112) (-1148) $) NIL)) (-1356 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2349 (((-635 (-1148)) $) NIL)) (-2350 (((-112) (-1148) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-4207 ((|#1| $) NIL (|has| (-1148) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) "failed") (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-1148)) NIL) ((|#1| $ (-1148) |#1|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-608 (-857))) (|has| |#1| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1149 |#1|) (-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4400))) (-1091)) (T -1149))
+NIL
+(-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4400)))
+((-4211 (((-1143 |#1|) (-1143 |#1|)) 77)) (-3866 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 37)) (-3877 (((-1143 |#1|) (-406 (-544)) (-1143 |#1|)) 121 (|has| |#1| (-38 (-406 (-544)))))) (-3880 (((-1143 |#1|) |#1| (-1143 |#1|)) 127 (|has| |#1| (-362)))) (-4214 (((-1143 |#1|) (-1143 |#1|)) 90)) (-3868 (((-1143 (-544)) (-544)) 57)) (-3876 (((-1143 |#1|) (-1143 (-1143 |#1|))) 109 (|has| |#1| (-38 (-406 (-544)))))) (-4210 (((-1143 |#1|) (-544) (-544) (-1143 |#1|)) 95)) (-4345 (((-1143 |#1|) |#1| (-544)) 45)) (-3870 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 60)) (-3878 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 124 (|has| |#1| (-362)))) (-3875 (((-1143 |#1|) |#1| (-1 (-1143 |#1|))) 108 (|has| |#1| (-38 (-406 (-544)))))) (-3879 (((-1143 |#1|) (-1 |#1| (-544)) |#1| (-1 (-1143 |#1|))) 125 (|has| |#1| (-362)))) (-4215 (((-1143 |#1|) (-1143 |#1|)) 89)) (-4216 (((-1143 |#1|) (-1143 |#1|)) 76)) (-4209 (((-1143 |#1|) (-544) (-544) (-1143 |#1|)) 96)) (-4219 (((-1143 |#1|) |#1| (-1143 |#1|)) 105 (|has| |#1| (-38 (-406 (-544)))))) (-3867 (((-1143 (-544)) (-544)) 56)) (-3869 (((-1143 |#1|) |#1|) 59)) (-4212 (((-1143 |#1|) (-1143 |#1|) (-544) (-544)) 92)) (-3872 (((-1143 |#1|) (-1 |#1| (-544)) (-1143 |#1|)) 66)) (-3865 (((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|)) 35)) (-4213 (((-1143 |#1|) (-1143 |#1|)) 91)) (-4174 (((-1143 |#1|) (-1143 |#1|) |#1|) 71)) (-3871 (((-1143 |#1|) (-1143 |#1|)) 62)) (-3873 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 72)) (-4353 (((-1143 |#1|) |#1|) 67)) (-3874 (((-1143 |#1|) (-1143 (-1143 |#1|))) 82)) (-4356 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 36)) (-4244 (((-1143 |#1|) (-1143 |#1|)) 21) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 23)) (-4246 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 17)) (* (((-1143 |#1|) (-1143 |#1|) |#1|) 29) (((-1143 |#1|) |#1| (-1143 |#1|)) 26) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 27)))
+(((-1150 |#1|) (-10 -7 (-15 -4246 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3865 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -4356 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3866 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -4345 ((-1143 |#1|) |#1| (-544))) (-15 -3867 ((-1143 (-544)) (-544))) (-15 -3868 ((-1143 (-544)) (-544))) (-15 -3869 ((-1143 |#1|) |#1|)) (-15 -3870 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3871 ((-1143 |#1|) (-1143 |#1|))) (-15 -3872 ((-1143 |#1|) (-1 |#1| (-544)) (-1143 |#1|))) (-15 -4353 ((-1143 |#1|) |#1|)) (-15 -4174 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3873 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4216 ((-1143 |#1|) (-1143 |#1|))) (-15 -4211 ((-1143 |#1|) (-1143 |#1|))) (-15 -3874 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -4215 ((-1143 |#1|) (-1143 |#1|))) (-15 -4214 ((-1143 |#1|) (-1143 |#1|))) (-15 -4213 ((-1143 |#1|) (-1143 |#1|))) (-15 -4212 ((-1143 |#1|) (-1143 |#1|) (-544) (-544))) (-15 -4210 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (-15 -4209 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -3875 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -3876 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -3877 ((-1143 |#1|) (-406 (-544)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3878 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3879 ((-1143 |#1|) (-1 |#1| (-544)) |#1| (-1 (-1143 |#1|)))) (-15 -3880 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|)) (-1042)) (T -1150))
+((-3880 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-544))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)))) (-3878 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3877 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042)) (-5 *3 (-406 (-544))) (-5 *1 (-1150 *4)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)))) (-4219 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4209 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4210 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4212 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4214 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4215 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-1042)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3873 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4174 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3872 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-544))) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3870 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3869 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-544)))) (-3867 (*1 *2 *3) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-544)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3866 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4356 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3865 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4244 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4244 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4246 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(-10 -7 (-15 -4246 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3865 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -4356 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3866 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -4345 ((-1143 |#1|) |#1| (-544))) (-15 -3867 ((-1143 (-544)) (-544))) (-15 -3868 ((-1143 (-544)) (-544))) (-15 -3869 ((-1143 |#1|) |#1|)) (-15 -3870 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3871 ((-1143 |#1|) (-1143 |#1|))) (-15 -3872 ((-1143 |#1|) (-1 |#1| (-544)) (-1143 |#1|))) (-15 -4353 ((-1143 |#1|) |#1|)) (-15 -4174 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3873 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4216 ((-1143 |#1|) (-1143 |#1|))) (-15 -4211 ((-1143 |#1|) (-1143 |#1|))) (-15 -3874 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -4215 ((-1143 |#1|) (-1143 |#1|))) (-15 -4214 ((-1143 |#1|) (-1143 |#1|))) (-15 -4213 ((-1143 |#1|) (-1143 |#1|))) (-15 -4212 ((-1143 |#1|) (-1143 |#1|) (-544) (-544))) (-15 -4210 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (-15 -4209 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -3875 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -3876 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -3877 ((-1143 |#1|) (-406 (-544)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3878 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3879 ((-1143 |#1|) (-1 |#1| (-544)) |#1| (-1 (-1143 |#1|)))) (-15 -3880 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|))
+((-3891 (((-1143 |#1|) (-1143 |#1|)) 100)) (-4046 (((-1143 |#1|) (-1143 |#1|)) 64)) (-3882 (((-2 (|:| -3889 (-1143 |#1|)) (|:| -3890 (-1143 |#1|))) (-1143 |#1|)) 96)) (-3889 (((-1143 |#1|) (-1143 |#1|)) 97)) (-3881 (((-2 (|:| -4045 (-1143 |#1|)) (|:| -4041 (-1143 |#1|))) (-1143 |#1|)) 53)) (-4045 (((-1143 |#1|) (-1143 |#1|)) 54)) (-3893 (((-1143 |#1|) (-1143 |#1|)) 102)) (-4044 (((-1143 |#1|) (-1143 |#1|)) 71)) (-4349 (((-1143 |#1|) (-1143 |#1|)) 39)) (-4350 (((-1143 |#1|) (-1143 |#1|)) 36)) (-3894 (((-1143 |#1|) (-1143 |#1|)) 103)) (-4043 (((-1143 |#1|) (-1143 |#1|)) 72)) (-3892 (((-1143 |#1|) (-1143 |#1|)) 101)) (-4042 (((-1143 |#1|) (-1143 |#1|)) 67)) (-3890 (((-1143 |#1|) (-1143 |#1|)) 98)) (-4041 (((-1143 |#1|) (-1143 |#1|)) 55)) (-3897 (((-1143 |#1|) (-1143 |#1|)) 111)) (-3885 (((-1143 |#1|) (-1143 |#1|)) 86)) (-3895 (((-1143 |#1|) (-1143 |#1|)) 105)) (-3883 (((-1143 |#1|) (-1143 |#1|)) 82)) (-3899 (((-1143 |#1|) (-1143 |#1|)) 115)) (-3887 (((-1143 |#1|) (-1143 |#1|)) 90)) (-3900 (((-1143 |#1|) (-1143 |#1|)) 117)) (-3888 (((-1143 |#1|) (-1143 |#1|)) 92)) (-3898 (((-1143 |#1|) (-1143 |#1|)) 113)) (-3886 (((-1143 |#1|) (-1143 |#1|)) 88)) (-3896 (((-1143 |#1|) (-1143 |#1|)) 107)) (-3884 (((-1143 |#1|) (-1143 |#1|)) 84)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 40)))
+(((-1151 |#1|) (-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3881 ((-2 (|:| -4045 (-1143 |#1|)) (|:| -4041 (-1143 |#1|))) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3882 ((-2 (|:| -3889 (-1143 |#1|)) (|:| -3890 (-1143 |#1|))) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-544)))) (T -1151))
+((-3900 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-2 (|:| -3889 (-1143 *4)) (|:| -3890 (-1143 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4043 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3881 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-2 (|:| -4045 (-1143 *4)) (|:| -4041 (-1143 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))))
+(-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3881 ((-2 (|:| -4045 (-1143 |#1|)) (|:| -4041 (-1143 |#1|))) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3882 ((-2 (|:| -3889 (-1143 |#1|)) (|:| -3890 (-1143 |#1|))) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|))))
+((-3891 (((-1143 |#1|) (-1143 |#1|)) 57)) (-4046 (((-1143 |#1|) (-1143 |#1|)) 39)) (-3889 (((-1143 |#1|) (-1143 |#1|)) 53)) (-4045 (((-1143 |#1|) (-1143 |#1|)) 35)) (-3893 (((-1143 |#1|) (-1143 |#1|)) 60)) (-4044 (((-1143 |#1|) (-1143 |#1|)) 42)) (-4349 (((-1143 |#1|) (-1143 |#1|)) 31)) (-4350 (((-1143 |#1|) (-1143 |#1|)) 27)) (-3894 (((-1143 |#1|) (-1143 |#1|)) 61)) (-4043 (((-1143 |#1|) (-1143 |#1|)) 43)) (-3892 (((-1143 |#1|) (-1143 |#1|)) 58)) (-4042 (((-1143 |#1|) (-1143 |#1|)) 40)) (-3890 (((-1143 |#1|) (-1143 |#1|)) 55)) (-4041 (((-1143 |#1|) (-1143 |#1|)) 37)) (-3897 (((-1143 |#1|) (-1143 |#1|)) 65)) (-3885 (((-1143 |#1|) (-1143 |#1|)) 47)) (-3895 (((-1143 |#1|) (-1143 |#1|)) 63)) (-3883 (((-1143 |#1|) (-1143 |#1|)) 45)) (-3899 (((-1143 |#1|) (-1143 |#1|)) 68)) (-3887 (((-1143 |#1|) (-1143 |#1|)) 50)) (-3900 (((-1143 |#1|) (-1143 |#1|)) 69)) (-3888 (((-1143 |#1|) (-1143 |#1|)) 51)) (-3898 (((-1143 |#1|) (-1143 |#1|)) 67)) (-3886 (((-1143 |#1|) (-1143 |#1|)) 49)) (-3896 (((-1143 |#1|) (-1143 |#1|)) 66)) (-3884 (((-1143 |#1|) (-1143 |#1|)) 48)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 33)))
+(((-1152 |#1|) (-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-544)))) (T -1152))
+((-3900 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4043 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|))))
+((-3901 (((-951 |#2|) |#2| |#2|) 35)) (-3902 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306)))))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -3901 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -3902 (|#2| |#2| |#1|)) |%noBranch|)) (-554) (-1229 |#1|)) (T -1153))
+((-3902 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1229 *3)))) (-3901 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3901 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -3902 (|#2| |#2| |#1|)) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3910 (($ $ (-635 (-765))) 66)) (-4295 (($) 25)) (-3919 (($ $) 41)) (-4158 (((-635 $) $) 50)) (-3925 (((-112) $) 16)) (-3903 (((-635 (-936 |#2|)) $) 73)) (-3904 (($ $) 67)) (-3920 (((-765) $) 36)) (-4021 (($) 24)) (-3913 (($ $ (-635 (-765)) (-936 |#2|)) 59) (($ $ (-635 (-765)) (-765)) 60) (($ $ (-765) (-936 |#2|)) 62)) (-3917 (($ $ $) 47) (($ (-635 $)) 49)) (-3905 (((-765) $) 74)) (-3926 (((-112) $) 15)) (-3643 (((-1148) $) NIL)) (-3924 (((-112) $) 17)) (-3644 (((-1110) $) NIL)) (-3906 (((-170) $) 72)) (-3909 (((-936 |#2|) $) 68)) (-3908 (((-765) $) 69)) (-3907 (((-112) $) 71)) (-3911 (($ $ (-635 (-765)) (-170)) 65)) (-3918 (($ $) 42)) (-4353 (((-857) $) 85)) (-3912 (($ $ (-635 (-765)) (-112)) 64)) (-3921 (((-635 $) $) 11)) (-3922 (($ $ (-765)) 35)) (-3923 (($ $) 31)) (-3914 (($ $ $ (-936 |#2|) (-765)) 55)) (-3915 (($ $ (-936 |#2|)) 54)) (-3916 (($ $ (-635 (-765)) (-936 |#2|)) 53) (($ $ (-635 (-765)) (-765)) 57) (((-765) $ (-936 |#2|)) 58)) (-3437 (((-112) $ $) 79)))
+(((-1154 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3926 ((-112) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $)) (-15 -4021 ($)) (-15 -4295 ($)) (-15 -3923 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -3921 ((-635 $) $)) (-15 -3920 ((-765) $)) (-15 -3919 ($ $)) (-15 -3918 ($ $)) (-15 -3917 ($ $ $)) (-15 -3917 ($ (-635 $))) (-15 -4158 ((-635 $) $)) (-15 -3916 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3915 ($ $ (-936 |#2|))) (-15 -3914 ($ $ $ (-936 |#2|) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3916 ($ $ (-635 (-765)) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-765))) (-15 -3916 ((-765) $ (-936 |#2|))) (-15 -3913 ($ $ (-765) (-936 |#2|))) (-15 -3912 ($ $ (-635 (-765)) (-112))) (-15 -3911 ($ $ (-635 (-765)) (-170))) (-15 -3910 ($ $ (-635 (-765)))) (-15 -3909 ((-936 |#2|) $)) (-15 -3908 ((-765) $)) (-15 -3907 ((-112) $)) (-15 -3906 ((-170) $)) (-15 -3905 ((-765) $)) (-15 -3904 ($ $)) (-15 -3903 ((-635 (-936 |#2|)) $)))) (-912) (-1042)) (T -1154))
+((-3926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-4021 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-4295 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3923 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3918 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3917 (*1 *1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3917 (*1 *1 *2) (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3915 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)))) (-3914 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3916 (*1 *2 *1 *3) (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3912 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3911 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-635 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(-13 (-1091) (-10 -8 (-15 -3926 ((-112) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $)) (-15 -4021 ($)) (-15 -4295 ($)) (-15 -3923 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -3921 ((-635 $) $)) (-15 -3920 ((-765) $)) (-15 -3919 ($ $)) (-15 -3918 ($ $)) (-15 -3917 ($ $ $)) (-15 -3917 ($ (-635 $))) (-15 -4158 ((-635 $) $)) (-15 -3916 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3915 ($ $ (-936 |#2|))) (-15 -3914 ($ $ $ (-936 |#2|) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3916 ($ $ (-635 (-765)) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-765))) (-15 -3916 ((-765) $ (-936 |#2|))) (-15 -3913 ($ $ (-765) (-936 |#2|))) (-15 -3912 ($ $ (-635 (-765)) (-112))) (-15 -3911 ($ $ (-635 (-765)) (-170))) (-15 -3910 ($ $ (-635 (-765)))) (-15 -3909 ((-936 |#2|) $)) (-15 -3908 ((-765) $)) (-15 -3907 ((-112) $)) (-15 -3906 ((-170) $)) (-15 -3905 ((-765) $)) (-15 -3904 ($ $)) (-15 -3903 ((-635 (-936 |#2|)) $))))
+((-2947 (((-112) $ $) NIL)) (-3927 ((|#2| $) 11)) (-3928 ((|#1| $) 10)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3929 (($ |#1| |#2|) 9)) (-4353 (((-857) $) 16)) (-3437 (((-112) $ $) NIL)))
+(((-1155 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3929 ($ |#1| |#2|)) (-15 -3928 (|#1| $)) (-15 -3927 (|#2| $)))) (-1091) (-1091)) (T -1155))
+((-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3928 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1091)))) (-3927 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1091)))))
+(-13 (-1091) (-10 -8 (-15 -3929 ($ |#1| |#2|)) (-15 -3928 (|#1| $)) (-15 -3927 (|#2| $))))
+((-2947 (((-112) $ $) NIL)) (-3930 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1156) (-13 (-1073) (-10 -8 (-15 -3930 ((-1125) $))))) (T -1156))
+((-3930 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156)))))
+(-13 (-1073) (-10 -8 (-15 -3930 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2213 (($ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2211 (((-112) $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4177 (($ $ (-544)) NIL) (($ $ (-544) (-544)) 66)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) NIL)) (-4138 (((-1164 |#1| |#2| |#3|) $) 36)) (-4135 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 29)) (-4136 (((-1164 |#1| |#2| |#3|) $) 30)) (-3891 (($ $) 107 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 83 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) 103 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 79 (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) 111 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 87 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1164 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1166) #2#) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-544)) #2#) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-544) #2#) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-3557 (((-1164 |#1| |#2| |#3|) $) 131) (((-1166) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-544)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-544) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-4137 (($ $) 34) (($ (-544) $) 35)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-1164 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-1164 |#1| |#2| |#3|))) (|:| |vec| (-1253 (-1164 |#1| |#2| |#3|)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362))))) (-3866 (((-3 $ "failed") $) 48)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 65 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 67 (|has| |#1| (-554)))) (-3377 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3587 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3275 (((-112) $) 25)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-377))) (|has| |#1| (-362)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-544))) (|has| |#1| (-362))))) (-4178 (((-544) $) NIL) (((-544) $ (-544)) 24)) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL (|has| |#1| (-362)))) (-3381 (((-1164 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-3588 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4183 (($ $ (-912)) NIL)) (-4222 (($ (-1 |#1| (-544)) $) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-544)) 18) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-2913 (($ $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3242 (($ $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4349 (($ $) 72 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4185 (($ (-544) (-1164 |#1| |#2| |#3|)) 33)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 70 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 71 (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3513 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3515 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 145)) (-3865 (((-3 $ "failed") $ $) 49 (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) 73 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-292 (-1164 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-292 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1164 |#1| |#2| |#3|)) (-635 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) NIL) (($ $ $) 54 (|has| (-544) (-1102))) (($ $ (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1250 |#2|)) 51) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 50 (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-3378 (($ $) NIL (|has| |#1| (-362)))) (-3380 (((-1164 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-4355 (((-544) $) 37)) (-3894 (($ $) 113 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 89 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 109 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 85 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 105 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 81 (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-533) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-533))) (|has| |#1| (-362)))) (((-377) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-883 (-377)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-883 (-377)))) (|has| |#1| (-362)))) (((-883 (-544)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-883 (-544)))) (|has| |#1| (-362))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 149) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1164 |#1| |#2| |#3|)) 27) (($ (-1250 |#2|)) 23) (($ (-1166)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-544))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-544))))))) (-4084 ((|#1| $ (-544)) 68)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 12)) (-3516 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3897 (($ $) 119 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 95 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3895 (($ $) 115 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 91 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 99 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 101 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 97 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 117 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 93 (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3040 (($) 20 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-2945 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-2946 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3067 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 21)) (** (($ $ (-912)) NIL) (($ $ (-765)) 53) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 128 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1164 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1157 |#1| |#2| |#3|) (-13 (-1217 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1157))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1217 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|)))
+((-3931 ((|#2| |#2| (-1082 |#2|)) 26) ((|#2| |#2| (-1166)) 28)))
+(((-1158 |#1| |#2|) (-10 -7 (-15 -3931 (|#2| |#2| (-1166))) (-15 -3931 (|#2| |#2| (-1082 |#2|)))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-420 |#1|) (-159) (-27) (-1190))) (T -1158))
+((-3931 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1158 *4 *2)))) (-3931 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190))))))
+(-10 -7 (-15 -3931 (|#2| |#2| (-1166))) (-15 -3931 (|#2| |#2| (-1082 |#2|))))
+((-3931 (((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1082 (-406 (-939 |#1|)))) 31) (((-406 (-939 |#1|)) (-939 |#1|) (-1082 (-939 |#1|))) 44) (((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1166)) 33) (((-406 (-939 |#1|)) (-939 |#1|) (-1166)) 36)))
+(((-1159 |#1|) (-10 -7 (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1166))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1082 (-939 |#1|)))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1082 (-406 (-939 |#1|)))))) (-13 (-554) (-844) (-1031 (-544)))) (T -1159))
+((-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-3 *3 (-313 *5))) (-5 *1 (-1159 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-939 *5))) (-5 *3 (-939 *5)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-406 *3)) (-5 *1 (-1159 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-3 (-406 (-939 *5)) (-313 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-406 (-939 *5))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-406 (-939 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-939 *5)))))
+(-10 -7 (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1166))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1082 (-939 |#1|)))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1082 (-406 (-939 |#1|))))))
+((-2947 (((-112) $ $) 136)) (-3589 (((-112) $) 27)) (-4173 (((-1253 |#1|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#1|)) NIL)) (-3469 (((-1160 $) $ (-1072)) 58) (((-1160 |#1|) $) 47)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) 131 (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) 125 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) 71 (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 91 (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4167 (($ $ (-765)) 39)) (-4166 (($ $ (-765)) 40)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1072) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 56)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4165 (($ $ $) 103)) (-4160 (($ $ $) NIL (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3902 (($ $) 132 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-765) $) 45)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-3932 (((-857) $ (-857)) 116)) (-4178 (((-765) $ $) NIL (|has| |#1| (-554)))) (-2545 (((-112) $) 30)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) 49) (($ (-1160 $) (-1072)) 65)) (-4183 (($ $ (-765)) 32)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 63) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 120)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4172 (((-1160 |#1|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) 52)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) 38)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 31)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 79 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 134 (|has| |#1| (-450)))) (-4145 (($ $ (-765) |#1| $) 98)) (-3087 (((-404 (-1160 $)) (-1160 $)) 77 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 76 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 84 (|has| |#1| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-635 (-1072)) (-635 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) 35)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 137 (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4355 (((-765) $) 54) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 129 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#1| (-554)))) (-4353 (((-857) $) 117) (($ (-544)) NIL) (($ |#1|) 53) (($ (-1072)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) 25 (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 15 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 96)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 66)) (** (($ $ (-912)) 14) (($ $ (-765)) 12)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 24) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
+(((-1160 |#1|) (-13 (-1229 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857))) (-15 -4145 ($ $ (-765) |#1| $)))) (-1042)) (T -1160))
+((-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1160 *3)) (-4 *3 (-1042)))) (-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1160 *3)) (-4 *3 (-1042)))))
+(-13 (-1229 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857))) (-15 -4145 ($ $ (-765) |#1| $))))
+((-4365 (((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|)) 13)))
+(((-1161 |#1| |#2|) (-10 -7 (-15 -4365 ((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|)))) (-1042) (-1042)) (T -1161))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-1160 *6)) (-5 *1 (-1161 *5 *6)))))
+(-10 -7 (-15 -4365 ((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|))))
+((-4376 (((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|))) 51)) (-4139 (((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|))) 52)))
+(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|)))) (-15 -4376 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|))))) (-787) (-844) (-450) (-943 |#3| |#1| |#2|)) (T -1162))
+((-4376 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7)) (-5 *3 (-1160 (-406 *7))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7)) (-5 *3 (-1160 (-406 *7))))))
+(-10 -7 (-15 -4139 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|)))) (-15 -4376 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|)))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1157 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1164 |#1| |#2| |#3|) #1#) $) 36)) (-3557 (((-1157 |#1| |#2| |#3|) $) NIL) (((-1164 |#1| |#2| |#3|) $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4187 (((-406 (-544)) $) 55)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) (-1157 |#1| |#2| |#3|)) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) 20) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4186 (((-1157 |#1| |#2| |#3|) $) 41)) (-4184 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL)) (-4185 (((-1157 |#1| |#2| |#3|) $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 39 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 40 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $ (-1250 |#2|)) 38)) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 58) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1157 |#1| |#2| |#3|)) 30) (($ (-1164 |#1| |#2| |#3|)) 31) (($ (-1250 |#2|)) 26) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 12)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 22 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 24)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1163 |#1| |#2| |#3|) (-13 (-1238 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1163))
+((-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1238 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 124)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 115)) (-4218 (((-1222 |#2| |#1|) $ (-765)) 62)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-765)) 78) (($ $ (-765) (-765)) 75)) (-4180 (((-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 101)) (-3891 (($ $) 168 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 164 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 114) (($ (-1143 |#1|)) 109)) (-3893 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) 23)) (-4223 (($ $) 26)) (-4221 (((-939 |#1|) $ (-765)) 74) (((-939 |#1|) $ (-765) (-765)) 76)) (-3275 (((-112) $) 119)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $) 121) (((-765) $ (-765)) 123)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL)) (-4222 (($ (-1 |#1| (-544)) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 13) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $) 128 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4175 (($ $ (-765)) 15)) (-3865 (((-3 $ "failed") $ $) 24 (|has| |#1| (-554)))) (-4350 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-4206 ((|#1| $ (-765)) 118) (($ $ $) 127 (|has| (-765) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1250 |#2|)) 29)) (-4355 (((-765) $) NIL)) (-3894 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 150 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 166 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 200) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1222 |#2| |#1|)) 50) (($ (-1250 |#2|)) 32)) (-4224 (((-1143 |#1|) $) 97)) (-4084 ((|#1| $ (-765)) 117)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 53)) (-3897 (($ $) 180 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 156 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 152 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 184 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-765)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 182 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 158 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 154 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 17 T CONST)) (-3046 (($) 19 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 193)) (-4246 (($ $ $) 31)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 136 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1164 |#1| |#2| |#3|) (-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1164))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5)))) (-4218 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|)))
+((-4353 (((-857) $) 27) (($ (-1166)) 29)) (-3936 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 40)) (-3933 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 33) (($ $) 34)) (-3940 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 35)) (-3938 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 37)) (-3939 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 36)) (-3937 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 38)) (-3935 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 39)))
+(((-1165) (-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -3940 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3939 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3938 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3937 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3936 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3935 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ $))))) (T -1165))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1165)))) (-3940 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3939 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3938 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3937 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3936 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3935 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3933 (*1 *1 *1) (-5 *1 (-1165))))
+(-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -3940 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3939 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3938 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3937 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3936 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3935 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ $))))
+((-2947 (((-112) $ $) NIL)) (-3944 (($ $ (-635 (-857))) 59)) (-3945 (($ $ (-635 (-857))) 57)) (-3942 (((-1148) $) 84)) (-3947 (((-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))) $) 87)) (-3948 (((-112) $) 22)) (-3946 (($ $ (-635 (-635 (-857)))) 56) (($ $ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857))))) 82)) (-4131 (($) 123 T CONST)) (-3950 (((-1259)) 105)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 66) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 73)) (-4021 (($) 94) (($ $) 100)) (-3949 (($ $) 83)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3941 (((-635 $) $) 106)) (-3643 (((-1148) $) 89)) (-3644 (((-1110) $) NIL)) (-4206 (($ $ (-635 (-857))) 58)) (-4377 (((-533) $) 46) (((-1166) $) 47) (((-883 (-544)) $) 77) (((-883 (-377)) $) 75)) (-4353 (((-857) $) 53) (($ (-1148)) 48)) (-3943 (($ $ (-635 (-857))) 60)) (-2879 (((-1148) $) 33) (((-1148) $ (-112)) 34) (((-1259) (-817) $) 35) (((-1259) (-817) $ (-112)) 36)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 49)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 50)))
+(((-1166) (-13 (-844) (-609 (-533)) (-815) (-609 (-1166)) (-611 (-1148)) (-609 (-883 (-544))) (-609 (-883 (-377))) (-879 (-544)) (-879 (-377)) (-10 -8 (-15 -4021 ($)) (-15 -4021 ($ $)) (-15 -3950 ((-1259))) (-15 -3949 ($ $)) (-15 -3948 ((-112) $)) (-15 -3947 ((-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))) $)) (-15 -3946 ($ $ (-635 (-635 (-857))))) (-15 -3946 ($ $ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))))) (-15 -3945 ($ $ (-635 (-857)))) (-15 -3944 ($ $ (-635 (-857)))) (-15 -3943 ($ $ (-635 (-857)))) (-15 -4206 ($ $ (-635 (-857)))) (-15 -3942 ((-1148) $)) (-15 -3941 ((-635 $) $)) (-15 -4131 ($) -4359)))) (T -1166))
+((-4021 (*1 *1) (-5 *1 (-1166))) (-4021 (*1 *1 *1) (-5 *1 (-1166))) (-3950 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1166)))) (-3949 (*1 *1 *1) (-5 *1 (-1166))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857))))) (-5 *1 (-1166)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-1166)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857))))) (-5 *1 (-1166)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1166)))) (-4131 (*1 *1) (-5 *1 (-1166))))
+(-13 (-844) (-609 (-533)) (-815) (-609 (-1166)) (-611 (-1148)) (-609 (-883 (-544))) (-609 (-883 (-377))) (-879 (-544)) (-879 (-377)) (-10 -8 (-15 -4021 ($)) (-15 -4021 ($ $)) (-15 -3950 ((-1259))) (-15 -3949 ($ $)) (-15 -3948 ((-112) $)) (-15 -3947 ((-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))) $)) (-15 -3946 ($ $ (-635 (-635 (-857))))) (-15 -3946 ($ $ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))))) (-15 -3945 ($ $ (-635 (-857)))) (-15 -3944 ($ $ (-635 (-857)))) (-15 -3943 ($ $ (-635 (-857)))) (-15 -4206 ($ $ (-635 (-857)))) (-15 -3942 ((-1148) $)) (-15 -3941 ((-635 $) $)) (-15 -4131 ($) -4359)))
+((-3951 (((-1253 |#1|) |#1| (-912)) 16) (((-1253 |#1|) (-635 |#1|)) 20)))
+(((-1167 |#1|) (-10 -7 (-15 -3951 ((-1253 |#1|) (-635 |#1|))) (-15 -3951 ((-1253 |#1|) |#1| (-912)))) (-1042)) (T -1167))
+((-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-1253 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1042)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)) (-5 *1 (-1167 *4)))))
+(-10 -7 (-15 -3951 ((-1253 |#1|) (-635 |#1|))) (-15 -3951 ((-1253 |#1|) |#1| (-912))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-1749 (($ $ |#1| (-964) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-964)) NIL)) (-3202 (((-964) $) NIL)) (-1750 (($ (-1 (-964) (-964)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-4145 (($ $ (-964) |#1| $) NIL (-12 (|has| (-964) (-130)) (|has| |#1| (-554))))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-4355 (((-964) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-964)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 9 T CONST)) (-3046 (($) 14 T CONST)) (-3437 (((-112) $ $) 16)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 19)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1168 |#1|) (-13 (-325 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| (-964) (-130)) (-15 -4145 ($ $ (-964) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) (-1042)) (T -1168))
+((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))))
+(-13 (-325 |#1| #1=(-964)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| #1# (-130)) (-15 -4145 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|)))
+((-3952 (((-1170) (-1166) $) 25)) (-3962 (($) 29)) (-3954 (((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) (-1166) $) 22)) (-3956 (((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) $) 41) (((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) 42) (((-1259) (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) 43)) (-3964 (((-1259) (-1166)) 58)) (-3955 (((-1259) (-1166) $) 55) (((-1259) (-1166)) 56) (((-1259)) 57)) (-3960 (((-1259) (-1166)) 37)) (-3958 (((-1166)) 36)) (-3972 (($) 34)) (-3971 (((-435) (-1166) (-435) (-1166) $) 45) (((-435) (-635 (-1166)) (-435) (-1166) $) 49) (((-435) (-1166) (-435)) 46) (((-435) (-1166) (-435) (-1166)) 50)) (-3959 (((-1166)) 35)) (-4353 (((-857) $) 28)) (-3961 (((-1259)) 30) (((-1259) (-1166)) 33)) (-3953 (((-635 (-1166)) (-1166) $) 24)) (-3957 (((-1259) (-1166) (-635 (-1166)) $) 38) (((-1259) (-1166) (-635 (-1166))) 39) (((-1259) (-635 (-1166))) 40)))
+(((-1169) (-13 (-608 (-857)) (-10 -8 (-15 -3962 ($)) (-15 -3961 ((-1259))) (-15 -3961 ((-1259) (-1166))) (-15 -3971 ((-435) (-1166) (-435) (-1166) $)) (-15 -3971 ((-435) (-635 (-1166)) (-435) (-1166) $)) (-15 -3971 ((-435) (-1166) (-435))) (-15 -3971 ((-435) (-1166) (-435) (-1166))) (-15 -3960 ((-1259) (-1166))) (-15 -3959 ((-1166))) (-15 -3958 ((-1166))) (-15 -3957 ((-1259) (-1166) (-635 (-1166)) $)) (-15 -3957 ((-1259) (-1166) (-635 (-1166)))) (-15 -3957 ((-1259) (-635 (-1166)))) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3956 ((-1259) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3955 ((-1259) (-1166) $)) (-15 -3955 ((-1259) (-1166))) (-15 -3955 ((-1259))) (-15 -3964 ((-1259) (-1166))) (-15 -3972 ($)) (-15 -3954 ((-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-1166) $)) (-15 -3953 ((-635 (-1166)) (-1166) $)) (-15 -3952 ((-1170) (-1166) $))))) (T -1169))
+((-3962 (*1 *1) (-5 *1 (-1169))) (-3961 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *4 (-1166)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3959 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-3958 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-3957 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3956 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3955 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3955 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3972 (*1 *1) (-5 *1 (-1169))) (-3954 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *1 (-1169)))) (-3953 (*1 *2 *3 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166)))) (-3952 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -3962 ($)) (-15 -3961 ((-1259))) (-15 -3961 ((-1259) (-1166))) (-15 -3971 ((-435) (-1166) (-435) (-1166) $)) (-15 -3971 ((-435) (-635 (-1166)) (-435) (-1166) $)) (-15 -3971 ((-435) (-1166) (-435))) (-15 -3971 ((-435) (-1166) (-435) (-1166))) (-15 -3960 ((-1259) (-1166))) (-15 -3959 ((-1166))) (-15 -3958 ((-1166))) (-15 -3957 ((-1259) (-1166) (-635 (-1166)) $)) (-15 -3957 ((-1259) (-1166) (-635 (-1166)))) (-15 -3957 ((-1259) (-635 (-1166)))) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3956 ((-1259) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3955 ((-1259) (-1166) $)) (-15 -3955 ((-1259) (-1166))) (-15 -3955 ((-1259))) (-15 -3964 ((-1259) (-1166))) (-15 -3972 ($)) (-15 -3954 ((-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-1166) $)) (-15 -3953 ((-635 (-1166)) (-1166) $)) (-15 -3952 ((-1170) (-1166) $))))
+((-3966 (((-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) $) 59)) (-3968 (((-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))) (-433) $) 43)) (-3963 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))) 17)) (-3964 (((-1259) $) 67)) (-3969 (((-635 (-1166)) $) 22)) (-3965 (((-1093) $) 55)) (-3970 (((-435) (-1166) $) 27)) (-3967 (((-635 (-1166)) $) 30)) (-3972 (($) 19)) (-3971 (((-435) (-635 (-1166)) (-435) $) 25) (((-435) (-1166) (-435) $) 24)) (-4353 (((-857) $) 9) (((-1177 (-1166) (-435)) $) 13)))
+(((-1170) (-13 (-608 (-857)) (-10 -8 (-15 -4353 ((-1177 (-1166) (-435)) $)) (-15 -3972 ($)) (-15 -3971 ((-435) (-635 (-1166)) (-435) $)) (-15 -3971 ((-435) (-1166) (-435) $)) (-15 -3970 ((-435) (-1166) $)) (-15 -3969 ((-635 (-1166)) $)) (-15 -3968 ((-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))) (-433) $)) (-15 -3967 ((-635 (-1166)) $)) (-15 -3966 ((-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) $)) (-15 -3965 ((-1093) $)) (-15 -3964 ((-1259) $)) (-15 -3963 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))))))) (T -1170))
+((-4353 (*1 *2 *1) (-12 (-5 *2 (-1177 (-1166) (-435))) (-5 *1 (-1170)))) (-3972 (*1 *1) (-5 *1 (-1170))) (-3971 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *1 (-1170)))) (-3971 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1170)))) (-3970 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-435)) (-5 *1 (-1170)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170)))) (-3968 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) (-5 *1 (-1170)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))))) (-5 *1 (-1170)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1170)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1170)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))) (-5 *1 (-1170)))))
+(-13 (-608 (-857)) (-10 -8 (-15 -4353 ((-1177 (-1166) (-435)) $)) (-15 -3972 ($)) (-15 -3971 ((-435) (-635 (-1166)) (-435) $)) (-15 -3971 ((-435) (-1166) (-435) $)) (-15 -3970 ((-435) (-1166) $)) (-15 -3969 ((-635 (-1166)) $)) (-15 -3968 ((-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))) (-433) $)) (-15 -3967 ((-635 (-1166)) $)) (-15 -3966 ((-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) $)) (-15 -3965 ((-1093) $)) (-15 -3964 ((-1259) $)) (-15 -3963 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))))))
+((-2947 (((-112) $ $) NIL)) (-3558 (((-3 (-544) #1="failed") $) 29) (((-3 (-224) #1#) $) 35) (((-3 (-1166) #1#) $) 41) (((-3 (-1148) #1#) $) 47)) (-3557 (((-544) $) 30) (((-224) $) 36) (((-1166) $) 42) (((-1148) $) 48)) (-3977 (((-112) $) 53)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3976 (((-3 (-544) (-224) (-1166) (-1148) $) $) 55)) (-3975 (((-635 $) $) 57)) (-4377 (((-1093) $) 24) (($ (-1093)) 25)) (-3974 (((-112) $) 56)) (-4353 (((-857) $) 23) (($ (-544)) 26) (($ (-224)) 32) (($ (-1166)) 38) (($ (-1148)) 44) (((-533) $) 59) (((-544) $) 31) (((-224) $) 37) (((-1166) $) 43) (((-1148) $) 49)) (-3973 (((-112) $ (|[\|\|]| (-544))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1166))) 19) (((-112) $ (|[\|\|]| (-1148))) 16)) (-3978 (($ (-1166) (-635 $)) 51) (($ $ (-635 $)) 52)) (-3979 (((-544) $) 27) (((-224) $) 33) (((-1166) $) 39) (((-1148) $) 45)) (-3437 (((-112) $ $) 7)))
+(((-1171) (-13 (-1249) (-1091) (-1031 (-544)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-533)) (-10 -8 (-15 -4377 ((-1093) $)) (-15 -4377 ($ (-1093))) (-15 -4353 ((-544) $)) (-15 -3979 ((-544) $)) (-15 -4353 ((-224) $)) (-15 -3979 ((-224) $)) (-15 -4353 ((-1166) $)) (-15 -3979 ((-1166) $)) (-15 -4353 ((-1148) $)) (-15 -3979 ((-1148) $)) (-15 -3978 ($ (-1166) (-635 $))) (-15 -3978 ($ $ (-635 $))) (-15 -3977 ((-112) $)) (-15 -3976 ((-3 (-544) (-224) (-1166) (-1148) $) $)) (-15 -3975 ((-635 $) $)) (-15 -3974 ((-112) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-544)))) (-15 -3973 ((-112) $ (|[\|\|]| (-224)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1166)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1148))))))) (T -1171))
+((-4377 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1171)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-3978 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-1171))) (-5 *1 (-1171)))) (-3978 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-3 (-544) (-224) (-1166) (-1148) (-1171))) (-5 *1 (-1171)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171)))))
+(-13 (-1249) (-1091) (-1031 (-544)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-533)) (-10 -8 (-15 -4377 ((-1093) $)) (-15 -4377 ($ (-1093))) (-15 -4353 ((-544) $)) (-15 -3979 ((-544) $)) (-15 -4353 ((-224) $)) (-15 -3979 ((-224) $)) (-15 -4353 ((-1166) $)) (-15 -3979 ((-1166) $)) (-15 -4353 ((-1148) $)) (-15 -3979 ((-1148) $)) (-15 -3978 ($ (-1166) (-635 $))) (-15 -3978 ($ $ (-635 $))) (-15 -3977 ((-112) $)) (-15 -3976 ((-3 (-544) (-224) (-1166) (-1148) $) $)) (-15 -3975 ((-635 $) $)) (-15 -3974 ((-112) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-544)))) (-15 -3973 ((-112) $ (|[\|\|]| (-224)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1166)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1148))))))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) 10)) (-3377 (($) 14)) (-2913 (($ $ $) NIL) (($) 7 T CONST)) (-3242 (($ $ $) NIL) (($) 8 T CONST)) (-2160 (((-912) $) 13)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 12)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
+(((-1172 |#1|) (-838) (-912)) (T -1172))
NIL
(-838)
-((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-2674 (($) 9)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) 7 T CONST)) (-3017 (($ $ $) NIL) (($) 8 T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-3034 (($ $ $) 11)) (-3024 (($ $ $) 10)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
-(((-1173 |#1|) (-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($)))) (-914)) (T -1173))
-((-3024 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914)))) (-3034 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914)))) (-2674 (*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914)))))
-(-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))
-((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4152 (((-638 (-638 (-945 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 57)) (-4164 (((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|)))) 69) (((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|))) 65) (((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166)) 70) (((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166)) 64) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|))))) 93) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|)))) 92) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166))) 94) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 91)))
-(((-1174 |#1|) (-10 -7 (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))))) (-15 -4152 ((-638 (-638 (-945 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166))))) (-553)) (T -1174))
-((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-945 *5)))) (-5 *1 (-1174 *5)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-293 (-406 (-945 *4)))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-406 (-945 *4))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-293 (-406 (-945 *5)))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-406 (-945 *5))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-1174 *4)) (-5 *3 (-638 (-293 (-406 (-945 *4))))))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-638 (-406 (-945 *4)))) (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-1174 *4)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-1174 *5)) (-5 *3 (-638 (-293 (-406 (-945 *5))))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-1174 *5)))))
-(-10 -7 (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))))) (-15 -4164 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)))) (-15 -4164 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))))) (-15 -4152 ((-638 (-638 (-945 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))))
-((-3130 (((-1148)) 7)) (-2562 (((-1148)) 9)) (-2462 (((-1259) (-1148)) 11)) (-2265 (((-1148)) 8)))
-(((-1175) (-10 -7 (-15 -3130 ((-1148))) (-15 -2265 ((-1148))) (-15 -2562 ((-1148))) (-15 -2462 ((-1259) (-1148))))) (T -1175))
-((-2462 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1175)))) (-2562 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-2265 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-3130 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
-(-10 -7 (-15 -3130 ((-1148))) (-15 -2265 ((-1148))) (-15 -2562 ((-1148))) (-15 -2462 ((-1259) (-1148))))
-((-1602 (((-638 (-638 |#1|)) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|)))) 38)) (-3461 (((-638 (-638 (-638 |#1|))) (-638 (-638 |#1|))) 24)) (-1420 (((-1177 (-638 |#1|)) (-638 |#1|)) 34)) (-2237 (((-638 (-638 |#1|)) (-638 |#1|)) 30)) (-4011 (((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 (-638 (-638 |#1|)))) 37)) (-2642 (((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 |#1|) (-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|)))) 36)) (-3317 (((-638 (-638 |#1|)) (-638 (-638 |#1|))) 28)) (-1885 (((-638 |#1|) (-638 |#1|)) 31)) (-3520 (((-638 (-638 (-638 |#1|))) (-638 |#1|) (-638 (-638 (-638 |#1|)))) 18)) (-1455 (((-638 (-638 (-638 |#1|))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 (-638 |#1|)))) 16)) (-1454 (((-2 (|:| |fs| (-112)) (|:| |sd| (-638 |#1|)) (|:| |td| (-638 (-638 |#1|)))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 |#1|))) 14)) (-1958 (((-638 (-638 |#1|)) (-638 (-638 (-638 |#1|)))) 39)) (-2005 (((-638 (-638 |#1|)) (-1177 (-638 |#1|))) 41)))
-(((-1176 |#1|) (-10 -7 (-15 -1454 ((-2 (|:| |fs| (-112)) (|:| |sd| (-638 |#1|)) (|:| |td| (-638 (-638 |#1|)))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 |#1|)))) (-15 -1455 ((-638 (-638 (-638 |#1|))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -3520 ((-638 (-638 (-638 |#1|))) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -1602 ((-638 (-638 |#1|)) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -1958 ((-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -2005 ((-638 (-638 |#1|)) (-1177 (-638 |#1|)))) (-15 -3461 ((-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)))) (-15 -1420 ((-1177 (-638 |#1|)) (-638 |#1|))) (-15 -3317 ((-638 (-638 |#1|)) (-638 (-638 |#1|)))) (-15 -2237 ((-638 (-638 |#1|)) (-638 |#1|))) (-15 -1885 ((-638 |#1|) (-638 |#1|))) (-15 -2642 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 |#1|) (-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))))) (-15 -4011 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 (-638 (-638 |#1|)))))) (-844)) (T -1176))
-((-4011 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-2 (|:| |f1| (-638 *4)) (|:| |f2| (-638 (-638 (-638 *4)))) (|:| |f3| (-638 (-638 *4))) (|:| |f4| (-638 (-638 (-638 *4)))))) (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 (-638 *4)))))) (-2642 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-844)) (-5 *3 (-638 *6)) (-5 *5 (-638 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-638 *5)) (|:| |f3| *5) (|:| |f4| (-638 *5)))) (-5 *1 (-1176 *6)) (-5 *4 (-638 *5)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-2237 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-638 *4)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-1420 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-1177 (-638 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-638 *4)))) (-3461 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 (-638 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 *4))))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1177 (-638 *4))) (-4 *4 (-844)) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)) (-4 *4 (-844)))) (-1602 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4))) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-3520 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-638 *4)) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-1455 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-638 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-638 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-638 *4)))) (-5 *1 (-1176 *6)) (-5 *5 (-638 *4)))))
-(-10 -7 (-15 -1454 ((-2 (|:| |fs| (-112)) (|:| |sd| (-638 |#1|)) (|:| |td| (-638 (-638 |#1|)))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 |#1|)))) (-15 -1455 ((-638 (-638 (-638 |#1|))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -3520 ((-638 (-638 (-638 |#1|))) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -1602 ((-638 (-638 |#1|)) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -1958 ((-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -2005 ((-638 (-638 |#1|)) (-1177 (-638 |#1|)))) (-15 -3461 ((-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)))) (-15 -1420 ((-1177 (-638 |#1|)) (-638 |#1|))) (-15 -3317 ((-638 (-638 |#1|)) (-638 (-638 |#1|)))) (-15 -2237 ((-638 (-638 |#1|)) (-638 |#1|))) (-15 -1885 ((-638 |#1|) (-638 |#1|))) (-15 -2642 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 |#1|) (-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))))) (-15 -4011 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 (-638 (-638 |#1|))))))
-((-1708 (($ (-638 (-638 |#1|))) 10)) (-3485 (((-638 (-638 |#1|)) $) 11)) (-4064 (((-856) $) 26)))
-(((-1177 |#1|) (-10 -8 (-15 -1708 ($ (-638 (-638 |#1|)))) (-15 -3485 ((-638 (-638 |#1|)) $)) (-15 -4064 ((-856) $))) (-1090)) (T -1177))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1177 *3)) (-4 *3 (-1090)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1090)))) (-1708 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-1177 *3)))))
-(-10 -8 (-15 -1708 ($ (-638 (-638 |#1|)))) (-15 -3485 ((-638 (-638 |#1|)) $)) (-15 -4064 ((-856) $)))
-((-4053 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1446 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1846 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) NIL)) (-2674 (($) NIL T CONST)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) NIL)) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) NIL)) (-3950 ((|#1| $) NIL (|has| |#1| (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-638 |#2|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-1556 ((|#1| $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2066 (((-638 |#1|) $) NIL)) (-2492 (((-112) |#1| $) NIL)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-2355 (((-638 |#1|) $) NIL)) (-1558 (((-112) |#1| $) NIL)) (-1701 (((-1110) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1424 ((|#2| $) NIL (|has| |#1| (-844)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL)) (-3193 (($ $ |#2|) NIL (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3643 (($) NIL) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) NIL (-12 (|has| $ (-6 -4399)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-4064 (((-856) $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) NIL (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) NIL (-4050 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1178 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399))) (-1090) (-1090)) (T -1178))
-NIL
-(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4399)))
-((-1807 ((|#1| (-638 |#1|)) 32)) (-1478 ((|#1| |#1| (-561)) 18)) (-3608 (((-1162 |#1|) |#1| (-914)) 15)))
-(((-1179 |#1|) (-10 -7 (-15 -1807 (|#1| (-638 |#1|))) (-15 -3608 ((-1162 |#1|) |#1| (-914))) (-15 -1478 (|#1| |#1| (-561)))) (-362)) (T -1179))
-((-1478 (*1 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-1162 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-362)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
-(-10 -7 (-15 -1807 (|#1| (-638 |#1|))) (-15 -3608 ((-1162 |#1|) |#1| (-914))) (-15 -1478 (|#1| |#1| (-561))))
-((-1446 (($) 10) (($ (-638 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)))) 14)) (-3222 (($ (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2368 (((-638 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) 39) (((-638 |#3|) $) 41)) (-2029 (($ (-1 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4165 (($ (-1 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3721 (((-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) $) 54)) (-1617 (($ (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) $) 16)) (-2355 (((-638 |#2|) $) 19)) (-1558 (((-112) |#2| $) 59)) (-3202 (((-3 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) "failed") (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) 58)) (-1387 (((-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) $) 63)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2411 (((-638 |#3|) $) 43)) (-2315 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) NIL) (((-765) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) $) NIL) (((-765) |#3| $) NIL) (((-765) (-1 (-112) |#3|) $) 67)) (-4064 (((-856) $) 27)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1723 (((-112) $ $) 49)))
-(((-1180 |#1| |#2| |#3|) (-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -4165 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1446 (|#1| (-638 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))))) (-15 -1446 (|#1|)) (-15 -4165 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2029 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1714 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -2368 ((-638 |#3|) |#1|)) (-15 -1714 ((-765) |#3| |#1|)) (-15 -2315 (|#3| |#1| |#2| |#3|)) (-15 -2315 (|#3| |#1| |#2|)) (-15 -2411 ((-638 |#3|) |#1|)) (-15 -1558 ((-112) |#2| |#1|)) (-15 -2355 ((-638 |#2|) |#1|)) (-15 -3222 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3222 (|#1| (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3222 (|#1| (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -3202 ((-3 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) "failed") (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3721 ((-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -1617 (|#1| (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -1387 ((-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -1714 ((-765) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -2368 ((-638 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -1714 ((-765) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3977 ((-112) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3715 ((-112) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -2029 (|#1| (-1 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -4165 (|#1| (-1 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|))) (-1181 |#2| |#3|) (-1090) (-1090)) (T -1180))
-NIL
-(-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -4064 ((-856) |#1|)) (-15 -4165 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1446 (|#1| (-638 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))))) (-15 -1446 (|#1|)) (-15 -4165 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2029 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3977 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1714 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -2368 ((-638 |#3|) |#1|)) (-15 -1714 ((-765) |#3| |#1|)) (-15 -2315 (|#3| |#1| |#2| |#3|)) (-15 -2315 (|#3| |#1| |#2|)) (-15 -2411 ((-638 |#3|) |#1|)) (-15 -1558 ((-112) |#2| |#1|)) (-15 -2355 ((-638 |#2|) |#1|)) (-15 -3222 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3222 (|#1| (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3222 (|#1| (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -3202 ((-3 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) "failed") (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3721 ((-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -1617 (|#1| (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -1387 ((-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -1714 ((-765) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) |#1|)) (-15 -2368 ((-638 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -1714 ((-765) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3977 ((-112) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -3715 ((-112) (-1 (-112) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -2029 (|#1| (-1 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)) (-15 -4165 (|#1| (-1 (-2 (|:| -2285 |#2|) (|:| -2677 |#3|)) (-2 (|:| -2285 |#2|) (|:| -2677 |#3|))) |#1|)))
-((-4053 (((-112) $ $) 19 (-4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1446 (($) 72) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 71)) (-1846 (((-1259) $ |#1| |#1|) 99 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#2| $ |#1| |#2|) 73)) (-1954 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 45 (|has| $ (-6 -4399)))) (-3612 (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 55 (|has| $ (-6 -4399)))) (-1468 (((-3 |#2| "failed") |#1| $) 61)) (-2674 (($) 7 T CONST)) (-1461 (($ $) 58 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399))))) (-3222 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 47 (|has| $ (-6 -4399))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 46 (|has| $ (-6 -4399))) (((-3 |#2| "failed") |#1| $) 62)) (-1475 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 54 (|has| $ (-6 -4399)))) (-3176 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 56 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 53 (|has| $ (-6 -4399))) (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 52 (|has| $ (-6 -4399)))) (-2041 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4400)))) (-1975 ((|#2| $ |#1|) 88)) (-2368 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 30 (|has| $ (-6 -4399))) (((-638 |#2|) $) 79 (|has| $ (-6 -4399)))) (-3116 (((-112) $ (-765)) 9)) (-3950 ((|#1| $) 96 (|has| |#1| (-844)))) (-4125 (((-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 29 (|has| $ (-6 -4399))) (((-638 |#2|) $) 80 (|has| $ (-6 -4399)))) (-4288 (((-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399))))) (-1556 ((|#1| $) 95 (|has| |#1| (-844)))) (-2029 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 34 (|has| $ (-6 -4400))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4400)))) (-4165 (($ (-1 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3683 (((-112) $ (-765)) 10)) (-1883 (((-1148) $) 22 (-4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-2066 (((-638 |#1|) $) 63)) (-2492 (((-112) |#1| $) 64)) (-3721 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 39)) (-1617 (($ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 40)) (-2355 (((-638 |#1|) $) 93)) (-1558 (((-112) |#1| $) 92)) (-1701 (((-1110) $) 21 (-4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-1424 ((|#2| $) 97 (|has| |#1| (-844)))) (-3202 (((-3 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) "failed") (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 51)) (-3193 (($ $ |#2|) 98 (|has| $ (-6 -4400)))) (-1387 (((-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 41)) (-3977 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 32 (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))))) 26 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 25 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) 24 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 23 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4399)) (|has| |#2| (-1090))))) (-2411 (((-638 |#2|) $) 91)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3643 (($) 49) (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 48)) (-1714 (((-765) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 31 (|has| $ (-6 -4399))) (((-765) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| $ (-6 -4399)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4399)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 59 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))))) (-4078 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 50)) (-4064 (((-856) $) 18 (-4050 (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856)))))) (-1903 (($ (-638 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) 42)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) $) 33 (|has| $ (-6 -4399))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (-4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-1181 |#1| |#2|) (-139) (-1090) (-1090)) (T -1181))
-((-4207 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-1446 (*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2285 *3) (|:| -2677 *4)))) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *1 (-1181 *3 *4)))) (-4165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))))
-(-13 (-605 |t#1| |t#2|) (-599 |t#1| |t#2|) (-10 -8 (-15 -4207 (|t#2| $ |t#1| |t#2|)) (-15 -1446 ($)) (-15 -1446 ($ (-638 (-2 (|:| -2285 |t#1|) (|:| -2677 |t#2|))))) (-15 -4165 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2285 |#1|) (|:| -2677 |#2|))) . T) ((-102) -4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-608 (-856)) -4050 (|has| |#2| (-1090)) (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-608 (-856)))) ((-150 #0#) . T) ((-609 (-534)) |has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-609 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-487 #0#) . T) ((-487 |#2|) . T) ((-599 |#1| |#2|) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-308 (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)))) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-605 |#1| |#2|) . T) ((-1090) -4050 (|has| |#2| (-1090)) (|has| (-2 (|:| -2285 |#1|) (|:| -2677 |#2|)) (-1090))) ((-1205) . T))
-((-4257 (((-112)) 24)) (-1600 (((-1259) (-1148)) 26)) (-3852 (((-112)) 36)) (-1705 (((-1259)) 34)) (-3630 (((-1259) (-1148) (-1148)) 25)) (-1490 (((-112)) 37)) (-1617 (((-1259) |#1| |#2|) 44)) (-3686 (((-1259)) 20)) (-2238 (((-3 |#2| "failed") |#1|) 42)) (-2122 (((-1259)) 35)))
-(((-1182 |#1| |#2|) (-10 -7 (-15 -3686 ((-1259))) (-15 -3630 ((-1259) (-1148) (-1148))) (-15 -1600 ((-1259) (-1148))) (-15 -1705 ((-1259))) (-15 -2122 ((-1259))) (-15 -4257 ((-112))) (-15 -3852 ((-112))) (-15 -1490 ((-112))) (-15 -2238 ((-3 |#2| "failed") |#1|)) (-15 -1617 ((-1259) |#1| |#2|))) (-1090) (-1090)) (T -1182))
-((-1617 (*1 *2 *3 *4) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-2238 (*1 *2 *3) (|partial| -12 (-4 *2 (-1090)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1090)))) (-1490 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3852 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4257 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-2122 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-1705 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)))) (-3630 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)))) (-3686 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))))
-(-10 -7 (-15 -3686 ((-1259))) (-15 -3630 ((-1259) (-1148) (-1148))) (-15 -1600 ((-1259) (-1148))) (-15 -1705 ((-1259))) (-15 -2122 ((-1259))) (-15 -4257 ((-112))) (-15 -3852 ((-112))) (-15 -1490 ((-112))) (-15 -2238 ((-3 |#2| "failed") |#1|)) (-15 -1617 ((-1259) |#1| |#2|)))
-((-2157 (((-1148) (-1148)) 18)) (-2923 (((-52) (-1148)) 21)))
-(((-1183) (-10 -7 (-15 -2923 ((-52) (-1148))) (-15 -2157 ((-1148) (-1148))))) (T -1183))
-((-2157 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-1183)))))
-(-10 -7 (-15 -2923 ((-52) (-1148))) (-15 -2157 ((-1148) (-1148))))
-((-4064 (((-1185) |#1|) 11)))
-(((-1184 |#1|) (-10 -7 (-15 -4064 ((-1185) |#1|))) (-1090)) (T -1184))
-((-4064 (*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-1184 *3)) (-4 *3 (-1090)))))
-(-10 -7 (-15 -4064 ((-1185) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-1518 (((-638 (-1148)) $) 34)) (-1527 (((-638 (-1148)) $ (-638 (-1148))) 37)) (-1467 (((-638 (-1148)) $ (-638 (-1148))) 36)) (-1816 (((-638 (-1148)) $ (-638 (-1148))) 38)) (-2078 (((-638 (-1148)) $) 33)) (-1458 (($) 22)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3567 (((-638 (-1148)) $) 35)) (-1479 (((-1259) $ (-561)) 29) (((-1259) $) 30)) (-4216 (($ (-856) (-561)) 26) (($ (-856) (-561) (-856)) NIL)) (-4064 (((-856) $) 40) (($ (-856)) 24)) (-1723 (((-112) $ $) NIL)))
-(((-1185) (-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4216 ($ (-856) (-561))) (-15 -4216 ($ (-856) (-561) (-856))) (-15 -1479 ((-1259) $ (-561))) (-15 -1479 ((-1259) $)) (-15 -3567 ((-638 (-1148)) $)) (-15 -1518 ((-638 (-1148)) $)) (-15 -1458 ($)) (-15 -2078 ((-638 (-1148)) $)) (-15 -1816 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1527 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1467 ((-638 (-1148)) $ (-638 (-1148))))))) (T -1185))
-((-4216 (*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185)))) (-4216 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185)))) (-1479 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-1185)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1185)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1458 (*1 *1) (-5 *1 (-1185))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1816 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1527 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1467 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
-(-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4216 ($ (-856) (-561))) (-15 -4216 ($ (-856) (-561) (-856))) (-15 -1479 ((-1259) $ (-561))) (-15 -1479 ((-1259) $)) (-15 -3567 ((-638 (-1148)) $)) (-15 -1518 ((-638 (-1148)) $)) (-15 -1458 ($)) (-15 -2078 ((-638 (-1148)) $)) (-15 -1816 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1527 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1467 ((-638 (-1148)) $ (-638 (-1148))))))
-((-4053 (((-112) $ $) NIL)) (-3930 (((-1148) $ (-1148)) 17) (((-1148) $) 16)) (-2254 (((-1148) $ (-1148)) 15)) (-2848 (($ $ (-1148)) NIL)) (-2802 (((-3 (-1148) "failed") $) 11)) (-1788 (((-1148) $) 8)) (-1942 (((-3 (-1148) "failed") $) 12)) (-1769 (((-1148) $) 9)) (-3368 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3305 (((-387) $) NIL)) (-1883 (((-1148) $) NIL)) (-3391 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4096 (((-112) $) 18)) (-4064 (((-856) $) NIL)) (-3550 (($ $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1186) (-13 (-363 (-387) (-1148)) (-10 -8 (-15 -3930 ((-1148) $ (-1148))) (-15 -3930 ((-1148) $)) (-15 -1788 ((-1148) $)) (-15 -2802 ((-3 (-1148) "failed") $)) (-15 -1942 ((-3 (-1148) "failed") $)) (-15 -4096 ((-112) $))))) (T -1186))
-((-3930 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-2802 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-1942 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))))
-(-13 (-363 (-387) (-1148)) (-10 -8 (-15 -3930 ((-1148) $ (-1148))) (-15 -3930 ((-1148) $)) (-15 -1788 ((-1148) $)) (-15 -2802 ((-3 (-1148) "failed") $)) (-15 -1942 ((-3 (-1148) "failed") $)) (-15 -4096 ((-112) $))))
-((-1659 (((-3 (-561) "failed") |#1|) 19)) (-3877 (((-3 (-561) "failed") |#1|) 14)) (-2635 (((-561) (-1148)) 28)))
-(((-1187 |#1|) (-10 -7 (-15 -1659 ((-3 (-561) "failed") |#1|)) (-15 -3877 ((-3 (-561) "failed") |#1|)) (-15 -2635 ((-561) (-1148)))) (-1042)) (T -1187))
-((-2635 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-1187 *4)) (-4 *4 (-1042)))) (-3877 (*1 *2 *3) (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))) (-1659 (*1 *2 *3) (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
-(-10 -7 (-15 -1659 ((-3 (-561) "failed") |#1|)) (-15 -3877 ((-3 (-561) "failed") |#1|)) (-15 -2635 ((-561) (-1148))))
-((-1388 (((-1123 (-224))) 9)))
-(((-1188) (-10 -7 (-15 -1388 ((-1123 (-224)))))) (T -1188))
-((-1388 (*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188)))))
-(-10 -7 (-15 -1388 ((-1123 (-224)))))
-((-4111 (($) 11)) (-3086 (($ $) 35)) (-3064 (($ $) 33)) (-4150 (($ $) 25)) (-3113 (($ $) 17)) (-2821 (($ $) 15)) (-3099 (($ $) 19)) (-4184 (($ $) 30)) (-3076 (($ $) 34)) (-4162 (($ $) 29)))
-(((-1189 |#1|) (-10 -8 (-15 -4111 (|#1|)) (-15 -3086 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -3099 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -4162 (|#1| |#1|))) (-1190)) (T -1189))
-NIL
-(-10 -8 (-15 -4111 (|#1|)) (-15 -3086 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -3099 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -4162 (|#1| |#1|)))
-((-3014 (($ $) 26)) (-4106 (($ $) 11)) (-4213 (($ $) 27)) (-4085 (($ $) 10)) (-3039 (($ $) 28)) (-4130 (($ $) 9)) (-4111 (($) 16)) (-4364 (($ $) 19)) (-3486 (($ $) 18)) (-3052 (($ $) 29)) (-4140 (($ $) 8)) (-3026 (($ $) 30)) (-4118 (($ $) 7)) (-3002 (($ $) 31)) (-4097 (($ $) 6)) (-3086 (($ $) 20)) (-4175 (($ $) 32)) (-3064 (($ $) 21)) (-4150 (($ $) 33)) (-3113 (($ $) 22)) (-4192 (($ $) 34)) (-2821 (($ $) 23)) (-4202 (($ $) 35)) (-3099 (($ $) 24)) (-4184 (($ $) 36)) (-3076 (($ $) 25)) (-4162 (($ $) 37)) (** (($ $ $) 17)))
+((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) 9)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) 7 T CONST)) (-3242 (($ $ $) NIL) (($) 8 T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) 11)) (-4133 (($ $ $) 10)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
+(((-1173 |#1|) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($)))) (-912)) (T -1173))
+((-4133 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) (-4132 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) (-4131 (*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))))
+(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))
+((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-3981 (((-635 (-635 (-939 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 57)) (-3980 (((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|)))) 69) (((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|))) 65) (((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166)) 70) (((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166)) 64) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|))))) 93) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|)))) 92) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166))) 94) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 91)))
+(((-1174 |#1|) (-10 -7 (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))))) (-15 -3981 ((-635 (-635 (-939 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166))))) (-554)) (T -1174))
+((-3981 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-939 *5)))) (-5 *1 (-1174 *5)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-292 (-406 (-939 *4)))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-406 (-939 *4))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-292 (-406 (-939 *5)))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-406 (-939 *5))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-1174 *4)) (-5 *3 (-635 (-292 (-406 (-939 *4))))))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-1174 *4)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5)) (-5 *3 (-635 (-292 (-406 (-939 *5))))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5)))))
+(-10 -7 (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))))) (-15 -3981 ((-635 (-635 (-939 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))))
+((-3982 (((-1148)) 7)) (-3984 (((-1148)) 9)) (-3985 (((-1259) (-1148)) 11)) (-3983 (((-1148)) 8)))
+(((-1175) (-10 -7 (-15 -3982 ((-1148))) (-15 -3983 ((-1148))) (-15 -3984 ((-1148))) (-15 -3985 ((-1259) (-1148))))) (T -1175))
+((-3985 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1175)))) (-3984 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-3983 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-3982 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
+(-10 -7 (-15 -3982 ((-1148))) (-15 -3983 ((-1148))) (-15 -3984 ((-1148))) (-15 -3985 ((-1259) (-1148))))
+((-3989 (((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 38)) (-3992 (((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|))) 24)) (-3993 (((-1178 (-635 |#1|)) (-635 |#1|)) 34)) (-3995 (((-635 (-635 |#1|)) (-635 |#1|)) 30)) (-3998 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))) 37)) (-3997 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|)))) 36)) (-3994 (((-635 (-635 |#1|)) (-635 (-635 |#1|))) 28)) (-3996 (((-635 |#1|) (-635 |#1|)) 31)) (-3988 (((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 18)) (-3987 (((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 16)) (-3986 (((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|))) 14)) (-3990 (((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 39)) (-3991 (((-635 (-635 |#1|)) (-1178 (-635 |#1|))) 41)))
+(((-1176 |#1|) (-10 -7 (-15 -3986 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -3987 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3988 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3989 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3990 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3991 ((-635 (-635 |#1|)) (-1178 (-635 |#1|)))) (-15 -3992 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -3993 ((-1178 (-635 |#1|)) (-635 |#1|))) (-15 -3994 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -3995 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -3996 ((-635 |#1|) (-635 |#1|))) (-15 -3997 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -3998 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))))) (-844)) (T -1176))
+((-3998 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4)))) (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4)))))) (-5 *1 (-1176 *4)) (-5 *3 (-635 (-635 (-635 *4)))))) (-3997 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-844)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5) (|:| |f4| (-635 *5)))) (-5 *1 (-1176 *6)) (-5 *4 (-635 *5)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-3995 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-635 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-1178 (-635 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-635 *4)))) (-3992 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 (-635 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-635 (-635 *4))))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-1178 (-635 *4))) (-4 *4 (-844)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4)) (-4 *4 (-844)))) (-3989 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-3988 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-3987 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-635 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5)))) (-3986 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-635 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4)))) (-5 *1 (-1176 *6)) (-5 *5 (-635 *4)))))
+(-10 -7 (-15 -3986 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -3987 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3988 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3989 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3990 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3991 ((-635 (-635 |#1|)) (-1178 (-635 |#1|)))) (-15 -3992 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -3993 ((-1178 (-635 |#1|)) (-635 |#1|))) (-15 -3994 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -3995 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -3996 ((-635 |#1|) (-635 |#1|))) (-15 -3997 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -3998 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|))))))
+((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1177 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091)) (T -1177))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400)))
+((-3999 (($ (-635 (-635 |#1|))) 10)) (-4000 (((-635 (-635 |#1|)) $) 11)) (-4353 (((-857) $) 26)))
+(((-1178 |#1|) (-10 -8 (-15 -3999 ($ (-635 (-635 |#1|)))) (-15 -4000 ((-635 (-635 |#1|)) $)) (-15 -4353 ((-857) $))) (-1091)) (T -1178))
+((-4353 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1178 *3)) (-4 *3 (-1091)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1091)))) (-3999 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-1178 *3)))))
+(-10 -8 (-15 -3999 ($ (-635 (-635 |#1|)))) (-15 -4000 ((-635 (-635 |#1|)) $)) (-15 -4353 ((-857) $)))
+((-4001 ((|#1| (-635 |#1|)) 32)) (-4003 ((|#1| |#1| (-544)) 18)) (-4002 (((-1160 |#1|) |#1| (-912)) 15)))
+(((-1179 |#1|) (-10 -7 (-15 -4001 (|#1| (-635 |#1|))) (-15 -4002 ((-1160 |#1|) |#1| (-912))) (-15 -4003 (|#1| |#1| (-544)))) (-362)) (T -1179))
+((-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))) (-4002 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-1160 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-362)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
+(-10 -7 (-15 -4001 (|#1| (-635 |#1|))) (-15 -4002 ((-1160 |#1|) |#1| (-912))) (-15 -4003 (|#1| |#1| (-544))))
+((-4004 (($) 10) (($ (-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)))) 14)) (-3809 (($ (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 39) (((-635 |#3|) $) 41)) (-2100 (($ (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4365 (($ (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1356 (((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 54)) (-4014 (($ (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 16)) (-2349 (((-635 |#2|) $) 19)) (-2350 (((-112) |#2| $) 59)) (-1425 (((-3 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) "failed") (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 58)) (-1357 (((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 63)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2351 (((-635 |#3|) $) 43)) (-4206 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-765) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) NIL) (((-765) |#3| $) NIL) (((-765) (-1 (-112) |#3|) $) 67)) (-4353 (((-857) $) 27)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3437 (((-112) $ $) 49)))
+(((-1180 |#1| |#2| |#3|) (-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4004 (|#1| (-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))))) (-15 -4004 (|#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -2096 ((-635 |#3|) |#1|)) (-15 -2097 ((-765) |#3| |#1|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -2350 ((-112) |#2| |#1|)) (-15 -2349 ((-635 |#2|) |#1|)) (-15 -3809 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3809 (|#1| (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -3809 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1425 ((-3 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) "failed") (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -1356 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -4014 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2097 ((-765) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2096 ((-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2097 ((-765) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2098 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2099 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2100 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -4365 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|))) (-1181 |#2| |#3|) (-1091) (-1091)) (T -1180))
+NIL
+(-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4004 (|#1| (-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))))) (-15 -4004 (|#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -2096 ((-635 |#3|) |#1|)) (-15 -2097 ((-765) |#3| |#1|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -2350 ((-112) |#2| |#1|)) (-15 -2349 ((-635 |#2|) |#1|)) (-15 -3809 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3809 (|#1| (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -3809 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1425 ((-3 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) "failed") (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -1356 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -4014 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2097 ((-765) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2096 ((-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2097 ((-765) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2098 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2099 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2100 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -4365 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)))
+((-2947 (((-112) $ $) 19 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4004 (($) 72) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 71)) (-2344 (((-1259) $ |#1| |#1|) 99 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#2| $ |#1| |#2|) 73)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 55 (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) 61)) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 46 (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) 62)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 54 (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 56 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 53 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 52 (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 88)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 30 (|has| $ (-6 -4400))) (((-635 |#2|) $) 79 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2346 ((|#1| $) 96 (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 29 (|has| $ (-6 -4400))) (((-635 |#2|) $) 80 (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-2347 ((|#1| $) 95 (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 34 (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2789 (((-635 |#1|) $) 63)) (-2354 (((-112) |#1| $) 64)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 39)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 40)) (-2349 (((-635 |#1|) $) 93)) (-2350 (((-112) |#1| $) 92)) (-3644 (((-1110) $) 21 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4207 ((|#2| $) 97 (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 51)) (-2345 (($ $ |#2|) 98 (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 41)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 32 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 26 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 25 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 24 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 23 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) 91)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1550 (($) 49) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 48)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 31 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 50)) (-4353 (((-857) $) 18 (-3936 (|has| |#2| (-608 (-857))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 42)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 33 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-1181 |#1| |#2|) (-139) (-1091) (-1091)) (T -1181))
+((-4194 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-4004 (*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-4004 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 *3) (|:| -2226 *4)))) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *1 (-1181 *3 *4)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(-13 (-605 |t#1| |t#2|) (-599 |t#1| |t#2|) (-10 -8 (-15 -4194 (|t#2| $ |t#1| |t#2|)) (-15 -4004 ($)) (-15 -4004 ($ (-635 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|))))) (-15 -4365 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-102) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))) ((-608 (-857)) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-1091)) (|has| |#2| (-608 (-857)))) ((-150 #1#) . T) ((-609 (-533)) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) ((-228 #1#) . T) ((-234 #1#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-487 #1#) . T) ((-487 |#2|) . T) ((-599 |#1| |#2|) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-605 |#1| |#2|) . T) ((-1091) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))) ((-1204) . T))
+((-4010 (((-112)) 24)) (-4007 (((-1259) (-1148)) 26)) (-4011 (((-112)) 36)) (-4008 (((-1259)) 34)) (-4006 (((-1259) (-1148) (-1148)) 25)) (-4012 (((-112)) 37)) (-4014 (((-1259) |#1| |#2|) 44)) (-4005 (((-1259)) 20)) (-4013 (((-3 |#2| "failed") |#1|) 42)) (-4009 (((-1259)) 35)))
+(((-1182 |#1| |#2|) (-10 -7 (-15 -4005 ((-1259))) (-15 -4006 ((-1259) (-1148) (-1148))) (-15 -4007 ((-1259) (-1148))) (-15 -4008 ((-1259))) (-15 -4009 ((-1259))) (-15 -4010 ((-112))) (-15 -4011 ((-112))) (-15 -4012 ((-112))) (-15 -4013 ((-3 |#2| "failed") |#1|)) (-15 -4014 ((-1259) |#1| |#2|))) (-1091) (-1091)) (T -1182))
+((-4014 (*1 *2 *3 *4) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4013 (*1 *2 *3) (|partial| -12 (-4 *2 (-1091)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1091)))) (-4012 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4011 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4010 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4009 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4008 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)))) (-4006 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)))) (-4005 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(-10 -7 (-15 -4005 ((-1259))) (-15 -4006 ((-1259) (-1148) (-1148))) (-15 -4007 ((-1259) (-1148))) (-15 -4008 ((-1259))) (-15 -4009 ((-1259))) (-15 -4010 ((-112))) (-15 -4011 ((-112))) (-15 -4012 ((-112))) (-15 -4013 ((-3 |#2| "failed") |#1|)) (-15 -4014 ((-1259) |#1| |#2|)))
+((-4016 (((-1148) (-1148)) 18)) (-4015 (((-51) (-1148)) 21)))
+(((-1183) (-10 -7 (-15 -4015 ((-51) (-1148))) (-15 -4016 ((-1148) (-1148))))) (T -1183))
+((-4016 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-1183)))))
+(-10 -7 (-15 -4015 ((-51) (-1148))) (-15 -4016 ((-1148) (-1148))))
+((-2947 (((-112) $ $) NIL)) (-4022 (((-635 (-1148)) $) 34)) (-4018 (((-635 (-1148)) $ (-635 (-1148))) 37)) (-4017 (((-635 (-1148)) $ (-635 (-1148))) 36)) (-4019 (((-635 (-1148)) $ (-635 (-1148))) 38)) (-4020 (((-635 (-1148)) $) 33)) (-4021 (($) 22)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4023 (((-635 (-1148)) $) 35)) (-4024 (((-1259) $ (-544)) 29) (((-1259) $) 30)) (-4377 (($ (-857) (-544)) 26) (($ (-857) (-544) (-857)) NIL)) (-4353 (((-857) $) 40) (($ (-857)) 24)) (-3437 (((-112) $ $) NIL)))
+(((-1184) (-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4377 ($ (-857) (-544) (-857))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -4022 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4018 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148))))))) (T -1184))
+((-4377 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184)))) (-4377 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1184)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1184)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4021 (*1 *1) (-5 *1 (-1184))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4019 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4018 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4017 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))))
+(-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4377 ($ (-857) (-544) (-857))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -4022 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4018 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148))))))
+((-4353 (((-1184) |#1|) 11)))
+(((-1185 |#1|) (-10 -7 (-15 -4353 ((-1184) |#1|))) (-1091)) (T -1185))
+((-4353 (*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-1185 *3)) (-4 *3 (-1091)))))
+(-10 -7 (-15 -4353 ((-1184) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-4029 (((-1148) $ (-1148)) 17) (((-1148) $) 16)) (-1841 (((-1148) $ (-1148)) 15)) (-1845 (($ $ (-1148)) NIL)) (-4027 (((-3 (-1148) "failed") $) 11)) (-4028 (((-1148) $) 8)) (-4026 (((-3 (-1148) "failed") $) 12)) (-1842 (((-1148) $) 9)) (-1846 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3949 (((-387) $) NIL)) (-3643 (((-1148) $) NIL)) (-1843 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4025 (((-112) $) 18)) (-4353 (((-857) $) NIL)) (-1844 (($ $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1186) (-13 (-364 (-387) (-1148)) (-10 -8 (-15 -4029 ((-1148) $ (-1148))) (-15 -4029 ((-1148) $)) (-15 -4028 ((-1148) $)) (-15 -4027 ((-3 (-1148) "failed") $)) (-15 -4026 ((-3 (-1148) "failed") $)) (-15 -4025 ((-112) $))))) (T -1186))
+((-4029 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4027 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4026 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))))
+(-13 (-364 (-387) (-1148)) (-10 -8 (-15 -4029 ((-1148) $ (-1148))) (-15 -4029 ((-1148) $)) (-15 -4028 ((-1148) $)) (-15 -4027 ((-3 (-1148) "failed") $)) (-15 -4026 ((-3 (-1148) "failed") $)) (-15 -4025 ((-112) $))))
+((-4030 (((-3 (-544) "failed") |#1|) 19)) (-4031 (((-3 (-544) "failed") |#1|) 14)) (-4032 (((-544) (-1148)) 28)))
+(((-1187 |#1|) (-10 -7 (-15 -4030 ((-3 (-544) "failed") |#1|)) (-15 -4031 ((-3 (-544) "failed") |#1|)) (-15 -4032 ((-544) (-1148)))) (-1042)) (T -1187))
+((-4032 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-1187 *4)) (-4 *4 (-1042)))) (-4031 (*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))) (-4030 (*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
+(-10 -7 (-15 -4030 ((-3 (-544) "failed") |#1|)) (-15 -4031 ((-3 (-544) "failed") |#1|)) (-15 -4032 ((-544) (-1148))))
+((-4033 (((-1123 (-224))) 9)))
+(((-1188) (-10 -7 (-15 -4033 ((-1123 (-224)))))) (T -1188))
+((-4033 (*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188)))))
+(-10 -7 (-15 -4033 ((-1123 (-224)))))
+((-4034 (($) 11)) (-3897 (($ $) 35)) (-3895 (($ $) 33)) (-3883 (($ $) 25)) (-3899 (($ $) 17)) (-3900 (($ $) 15)) (-3898 (($ $) 19)) (-3886 (($ $) 30)) (-3896 (($ $) 34)) (-3884 (($ $) 29)))
+(((-1189 |#1|) (-10 -8 (-15 -4034 (|#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3884 (|#1| |#1|))) (-1190)) (T -1189))
+NIL
+(-10 -8 (-15 -4034 (|#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)))
+((-3891 (($ $) 26)) (-4046 (($ $) 11)) (-3889 (($ $) 27)) (-4045 (($ $) 10)) (-3893 (($ $) 28)) (-4044 (($ $) 9)) (-4034 (($) 16)) (-4349 (($ $) 19)) (-4350 (($ $) 18)) (-3894 (($ $) 29)) (-4043 (($ $) 8)) (-3892 (($ $) 30)) (-4042 (($ $) 7)) (-3890 (($ $) 31)) (-4041 (($ $) 6)) (-3897 (($ $) 20)) (-3885 (($ $) 32)) (-3895 (($ $) 21)) (-3883 (($ $) 33)) (-3899 (($ $) 22)) (-3887 (($ $) 34)) (-3900 (($ $) 23)) (-3888 (($ $) 35)) (-3898 (($ $) 24)) (-3886 (($ $) 36)) (-3896 (($ $) 25)) (-3884 (($ $) 37)) (** (($ $ $) 17)))
(((-1190) (-139)) (T -1190))
-((-4111 (*1 *1) (-4 *1 (-1190))))
-(-13 (-1193) (-95) (-491) (-35) (-283) (-10 -8 (-15 -4111 ($))))
+((-4034 (*1 *1) (-4 *1 (-1190))))
+(-13 (-1193) (-95) (-491) (-35) (-283) (-10 -8 (-15 -4034 ($))))
(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-1193) . T))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2506 ((|#1| $) 17)) (-3122 (($ |#1| (-638 $)) 23) (($ (-638 |#1|)) 27) (($ |#1|) 25)) (-2684 (((-112) $ (-765)) 47)) (-2809 ((|#1| $ |#1|) 14 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 13 (|has| $ (-6 -4400)))) (-2674 (($) NIL T CONST)) (-2368 (((-638 |#1|) $) 51 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 42)) (-2129 (((-112) $ $) 32 (|has| |#1| (-1090)))) (-3116 (((-112) $ (-765)) 40)) (-4125 (((-638 |#1|) $) 52 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2029 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 22)) (-3683 (((-112) $ (-765)) 39)) (-3948 (((-638 |#1|) $) 36)) (-3441 (((-112) $) 35)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3977 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 73)) (-2508 (((-112) $) 9)) (-2910 (($) 10)) (-2315 ((|#1| $ "value") NIL)) (-4293 (((-561) $ $) 31)) (-2873 (((-638 $) $) 58)) (-2182 (((-112) $ $) 76)) (-1594 (((-638 $) $) 71)) (-1346 (($ $) 72)) (-1650 (((-112) $) 55)) (-1714 (((-765) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4399))) (((-765) |#1| $) 16 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-4225 (($ $) 57)) (-4064 (((-856) $) 60 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 12)) (-2552 (((-112) $ $) 29 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 28 (|has| |#1| (-1090)))) (-3548 (((-765) $) 38 (|has| $ (-6 -4399)))))
-(((-1191 |#1|) (-13 (-1003 |#1|) (-10 -8 (-6 -4399) (-6 -4400) (-15 -3122 ($ |#1| (-638 $))) (-15 -3122 ($ (-638 |#1|))) (-15 -3122 ($ |#1|)) (-15 -1650 ((-112) $)) (-15 -1346 ($ $)) (-15 -1594 ((-638 $) $)) (-15 -2182 ((-112) $ $)) (-15 -2873 ((-638 $) $)))) (-1090)) (T -1191))
-((-1650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1090)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-1191 *3)))) (-3122 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090)))) (-1346 (*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))) (-2182 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
-(-13 (-1003 |#1|) (-10 -8 (-6 -4399) (-6 -4400) (-15 -3122 ($ |#1| (-638 $))) (-15 -3122 ($ (-638 |#1|))) (-15 -3122 ($ |#1|)) (-15 -1650 ((-112) $)) (-15 -1346 ($ $)) (-15 -1594 ((-638 $) $)) (-15 -2182 ((-112) $ $)) (-15 -2873 ((-638 $) $))))
-((-4106 (($ $) 15)) (-4130 (($ $) 12)) (-4140 (($ $) 10)) (-4118 (($ $) 17)))
-(((-1192 |#1|) (-10 -8 (-15 -4118 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4106 (|#1| |#1|))) (-1193)) (T -1192))
-NIL
-(-10 -8 (-15 -4118 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4106 (|#1| |#1|)))
-((-4106 (($ $) 11)) (-4085 (($ $) 10)) (-4130 (($ $) 9)) (-4140 (($ $) 8)) (-4118 (($ $) 7)) (-4097 (($ $) 6)))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 17)) (-4039 (($ |#1| (-635 $)) 23) (($ (-635 |#1|)) 27) (($ |#1|) 25)) (-1293 (((-112) $ (-765)) 47)) (-3408 ((|#1| $ |#1|) 14 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 13 (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-2096 (((-635 |#1|) $) 51 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 42)) (-3410 (((-112) $ $) 32 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 40)) (-2554 (((-635 |#1|) $) 52 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 22)) (-4123 (((-112) $ (-765)) 39)) (-3413 (((-635 |#1|) $) 36)) (-3926 (((-112) $) 35)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 73)) (-3807 (((-112) $) 9)) (-3972 (($) 10)) (-4206 ((|#1| $ #1#) NIL)) (-3412 (((-544) $ $) 31)) (-4035 (((-635 $) $) 58)) (-4036 (((-112) $ $) 76)) (-4037 (((-635 $) $) 71)) (-4038 (($ $) 72)) (-4040 (((-112) $) 55)) (-2097 (((-765) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4400))) (((-765) |#1| $) 16 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 57)) (-4353 (((-857) $) 60 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 12)) (-3411 (((-112) $ $) 29 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 28 (|has| |#1| (-1091)))) (-4364 (((-765) $) 38 (|has| $ (-6 -4400)))))
+(((-1191 |#1|) (-13 (-1003 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -4039 ($ |#1| (-635 $))) (-15 -4039 ($ (-635 |#1|))) (-15 -4039 ($ |#1|)) (-15 -4040 ((-112) $)) (-15 -4038 ($ $)) (-15 -4037 ((-635 $) $)) (-15 -4036 ((-112) $ $)) (-15 -4035 ((-635 $) $)))) (-1091)) (T -1191))
+((-4040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1091)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-1191 *3)))) (-4039 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091)))) (-4038 (*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))) (-4036 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))))
+(-13 (-1003 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -4039 ($ |#1| (-635 $))) (-15 -4039 ($ (-635 |#1|))) (-15 -4039 ($ |#1|)) (-15 -4040 ((-112) $)) (-15 -4038 ($ $)) (-15 -4037 ((-635 $) $)) (-15 -4036 ((-112) $ $)) (-15 -4035 ((-635 $) $))))
+((-4046 (($ $) 15)) (-4044 (($ $) 12)) (-4043 (($ $) 10)) (-4042 (($ $) 17)))
+(((-1192 |#1|) (-10 -8 (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4046 (|#1| |#1|))) (-1193)) (T -1192))
+NIL
+(-10 -8 (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4046 (|#1| |#1|)))
+((-4046 (($ $) 11)) (-4045 (($ $) 10)) (-4044 (($ $) 9)) (-4043 (($ $) 8)) (-4042 (($ $) 7)) (-4041 (($ $) 6)))
(((-1193) (-139)) (T -1193))
-((-4106 (*1 *1 *1) (-4 *1 (-1193))) (-4085 (*1 *1 *1) (-4 *1 (-1193))) (-4130 (*1 *1 *1) (-4 *1 (-1193))) (-4140 (*1 *1 *1) (-4 *1 (-1193))) (-4118 (*1 *1 *1) (-4 *1 (-1193))) (-4097 (*1 *1 *1) (-4 *1 (-1193))))
-(-13 (-10 -8 (-15 -4097 ($ $)) (-15 -4118 ($ $)) (-15 -4140 ($ $)) (-15 -4130 ($ $)) (-15 -4085 ($ $)) (-15 -4106 ($ $))))
-((-1798 ((|#2| |#2|) 88)) (-4324 (((-112) |#2|) 26)) (-1655 ((|#2| |#2|) 30)) (-1665 ((|#2| |#2|) 32)) (-2720 ((|#2| |#2| (-1166)) 83) ((|#2| |#2|) 84)) (-3165 (((-168 |#2|) |#2|) 28)) (-2678 ((|#2| |#2| (-1166)) 85) ((|#2| |#2|) 86)))
-(((-1194 |#1| |#2|) (-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2720 (|#2| |#2| (-1166))) (-15 -2678 (|#2| |#2|)) (-15 -2678 (|#2| |#2| (-1166))) (-15 -1798 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -4324 ((-112) |#2|)) (-15 -3165 ((-168 |#2|) |#2|))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -1194))
-((-3165 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-168 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-112)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-1798 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-2678 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-2720 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
-(-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2720 (|#2| |#2| (-1166))) (-15 -2678 (|#2| |#2|)) (-15 -2678 (|#2| |#2| (-1166))) (-15 -1798 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -4324 ((-112) |#2|)) (-15 -3165 ((-168 |#2|) |#2|)))
-((-3719 ((|#4| |#4| |#1|) 27)) (-1622 ((|#4| |#4| |#1|) 28)))
-(((-1195 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 (|#4| |#4| |#1|)) (-15 -1622 (|#4| |#4| |#1|))) (-553) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -1195))
-((-1622 (*1 *2 *2 *3) (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-3719 (*1 *2 *2 *3) (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(-10 -7 (-15 -3719 (|#4| |#4| |#1|)) (-15 -1622 (|#4| |#4| |#1|)))
-((-2073 ((|#2| |#2|) 133)) (-2096 ((|#2| |#2|) 130)) (-3387 ((|#2| |#2|) 121)) (-4271 ((|#2| |#2|) 118)) (-2972 ((|#2| |#2|) 126)) (-3435 ((|#2| |#2|) 114)) (-4015 ((|#2| |#2|) 43)) (-2116 ((|#2| |#2|) 94)) (-3382 ((|#2| |#2|) 74)) (-2167 ((|#2| |#2|) 128)) (-3609 ((|#2| |#2|) 116)) (-1663 ((|#2| |#2|) 138)) (-3301 ((|#2| |#2|) 136)) (-4012 ((|#2| |#2|) 137)) (-1900 ((|#2| |#2|) 135)) (-3058 ((|#2| |#2|) 148)) (-3653 ((|#2| |#2|) 30 (-12 (|has| |#2| (-609 (-885 |#1|))) (|has| |#2| (-879 |#1|)) (|has| |#1| (-609 (-885 |#1|))) (|has| |#1| (-879 |#1|))))) (-1947 ((|#2| |#2|) 75)) (-4301 ((|#2| |#2|) 139)) (-3582 ((|#2| |#2|) 140)) (-4367 ((|#2| |#2|) 127)) (-4120 ((|#2| |#2|) 115)) (-4353 ((|#2| |#2|) 134)) (-1539 ((|#2| |#2|) 132)) (-3635 ((|#2| |#2|) 122)) (-3777 ((|#2| |#2|) 120)) (-1311 ((|#2| |#2|) 124)) (-2647 ((|#2| |#2|) 112)))
-(((-1196 |#1| |#2|) (-10 -7 (-15 -3582 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -2116 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -4301 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -4353 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -4367 (|#2| |#2|)) (-15 -3609 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -2972 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -4271 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1900 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-885 |#1|))) (IF (|has| |#2| (-609 (-885 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -3653 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-844) (-450)) (-13 (-429 |#1|) (-1190))) (T -1196))
-((-3653 (*1 *2 *2) (-12 (-4 *3 (-609 (-885 *3))) (-4 *3 (-879 *3)) (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-609 (-885 *3))) (-4 *2 (-879 *3)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3301 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1900 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2096 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4271 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2972 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3609 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4367 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4353 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4301 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1947 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2116 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3058 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3582 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))))
-(-10 -7 (-15 -3582 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -2116 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -4301 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -4353 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -4367 (|#2| |#2|)) (-15 -3609 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -2972 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -4271 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1900 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-885 |#1|))) (IF (|has| |#2| (-609 (-885 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -3653 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1818 (((-112) |#5| $) 59) (((-112) $) 101)) (-4089 ((|#5| |#5| $) 74)) (-3612 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4163 (((-638 |#5|) (-638 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-4061 (((-3 $ "failed") (-638 |#5|)) 125)) (-1437 (((-3 $ "failed") $) 111)) (-2471 ((|#5| |#5| $) 93)) (-2282 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-2310 ((|#5| |#5| $) 97)) (-3176 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-1973 (((-2 (|:| -1450 (-638 |#5|)) (|:| -3368 (-638 |#5|))) $) 54)) (-2369 (((-112) |#5| $) 57) (((-112) $) 102)) (-1994 ((|#4| $) 107)) (-1501 (((-3 |#5| "failed") $) 109)) (-3589 (((-638 |#5|) $) 48)) (-3067 (((-112) |#5| $) 66) (((-112) $) 106)) (-3641 ((|#5| |#5| $) 80)) (-4345 (((-112) $ $) 26)) (-2871 (((-112) |#5| $) 62) (((-112) $) 104)) (-2903 ((|#5| |#5| $) 77)) (-1424 (((-3 |#5| "failed") $) 108)) (-3702 (($ $ |#5|) 126)) (-3768 (((-765) $) 51)) (-4078 (($ (-638 |#5|)) 123)) (-3883 (($ $ |#4|) 121)) (-2049 (($ $ |#4|) 120)) (-1768 (($ $) 119)) (-4064 (((-856) $) NIL) (((-638 |#5|) $) 112)) (-3513 (((-765) $) 129)) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-2481 (((-112) $ (-1 (-112) |#5| (-638 |#5|))) 99)) (-1290 (((-638 |#4|) $) 114)) (-4024 (((-112) |#4| $) 117)) (-1723 (((-112) $ $) 19)))
-(((-1197 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3513 ((-765) |#1|)) (-15 -3702 (|#1| |#1| |#5|)) (-15 -3612 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4024 ((-112) |#4| |#1|)) (-15 -1290 ((-638 |#4|) |#1|)) (-15 -1437 ((-3 |#1| "failed") |#1|)) (-15 -1501 ((-3 |#5| "failed") |#1|)) (-15 -1424 ((-3 |#5| "failed") |#1|)) (-15 -2310 (|#5| |#5| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -2471 (|#5| |#5| |#1|)) (-15 -3641 (|#5| |#5| |#1|)) (-15 -2903 (|#5| |#5| |#1|)) (-15 -4089 (|#5| |#5| |#1|)) (-15 -4163 ((-638 |#5|) (-638 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3176 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3067 ((-112) |#1|)) (-15 -2871 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -2481 ((-112) |#1| (-1 (-112) |#5| (-638 |#5|)))) (-15 -3067 ((-112) |#5| |#1|)) (-15 -2871 ((-112) |#5| |#1|)) (-15 -1818 ((-112) |#5| |#1|)) (-15 -2282 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2369 ((-112) |#1|)) (-15 -2369 ((-112) |#5| |#1|)) (-15 -1973 ((-2 (|:| -1450 (-638 |#5|)) (|:| -3368 (-638 |#5|))) |#1|)) (-15 -3768 ((-765) |#1|)) (-15 -3589 ((-638 |#5|) |#1|)) (-15 -2003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2765 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2765 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4345 ((-112) |#1| |#1|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -2049 (|#1| |#1| |#4|)) (-15 -1994 (|#4| |#1|)) (-15 -4061 ((-3 |#1| "failed") (-638 |#5|))) (-15 -4064 ((-638 |#5|) |#1|)) (-15 -4078 (|#1| (-638 |#5|))) (-15 -3176 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3176 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3612 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3176 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|))) (-1198 |#2| |#3| |#4| |#5|) (-553) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1197))
-NIL
-(-10 -8 (-15 -3513 ((-765) |#1|)) (-15 -3702 (|#1| |#1| |#5|)) (-15 -3612 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4024 ((-112) |#4| |#1|)) (-15 -1290 ((-638 |#4|) |#1|)) (-15 -1437 ((-3 |#1| "failed") |#1|)) (-15 -1501 ((-3 |#5| "failed") |#1|)) (-15 -1424 ((-3 |#5| "failed") |#1|)) (-15 -2310 (|#5| |#5| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -2471 (|#5| |#5| |#1|)) (-15 -3641 (|#5| |#5| |#1|)) (-15 -2903 (|#5| |#5| |#1|)) (-15 -4089 (|#5| |#5| |#1|)) (-15 -4163 ((-638 |#5|) (-638 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3176 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3067 ((-112) |#1|)) (-15 -2871 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -2481 ((-112) |#1| (-1 (-112) |#5| (-638 |#5|)))) (-15 -3067 ((-112) |#5| |#1|)) (-15 -2871 ((-112) |#5| |#1|)) (-15 -1818 ((-112) |#5| |#1|)) (-15 -2282 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2369 ((-112) |#1|)) (-15 -2369 ((-112) |#5| |#1|)) (-15 -1973 ((-2 (|:| -1450 (-638 |#5|)) (|:| -3368 (-638 |#5|))) |#1|)) (-15 -3768 ((-765) |#1|)) (-15 -3589 ((-638 |#5|) |#1|)) (-15 -2003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2765 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2765 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4345 ((-112) |#1| |#1|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -2049 (|#1| |#1| |#4|)) (-15 -1994 (|#4| |#1|)) (-15 -4061 ((-3 |#1| "failed") (-638 |#5|))) (-15 -4064 ((-638 |#5|) |#1|)) (-15 -4078 (|#1| (-638 |#5|))) (-15 -3176 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3176 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3612 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3176 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4064 ((-856) |#1|)) (-15 -1723 ((-112) |#1| |#1|)))
-((-4053 (((-112) $ $) 7)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) 85)) (-3742 (((-638 $) (-638 |#4|)) 86)) (-1405 (((-638 |#3|) $) 33)) (-4214 (((-112) $) 26)) (-2444 (((-112) $) 17 (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) 101) (((-112) $) 97)) (-4089 ((|#4| |#4| $) 92)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) 27)) (-2684 (((-112) $ (-765)) 44)) (-3612 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) 79)) (-2674 (($) 45 T CONST)) (-3853 (((-112) $) 22 (|has| |#1| (-553)))) (-3733 (((-112) $ $) 24 (|has| |#1| (-553)))) (-4338 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1577 (((-112) $) 25 (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3293 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) 36)) (-3979 (($ (-638 |#4|)) 35)) (-1437 (((-3 $ "failed") $) 82)) (-2471 ((|#4| |#4| $) 89)) (-1461 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2310 ((|#4| |#4| $) 87)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) 105)) (-2368 (((-638 |#4|) $) 52 (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) 104) (((-112) $) 103)) (-1994 ((|#3| $) 34)) (-3116 (((-112) $ (-765)) 43)) (-4125 (((-638 |#4|) $) 53 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) 47)) (-2597 (((-638 |#3|) $) 32)) (-2247 (((-112) |#3| $) 31)) (-3683 (((-112) $ (-765)) 42)) (-1883 (((-1148) $) 9)) (-1501 (((-3 |#4| "failed") $) 83)) (-3589 (((-638 |#4|) $) 107)) (-3067 (((-112) |#4| $) 99) (((-112) $) 95)) (-3641 ((|#4| |#4| $) 90)) (-4345 (((-112) $ $) 110)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) 100) (((-112) $) 96)) (-2903 ((|#4| |#4| $) 91)) (-1701 (((-1110) $) 10)) (-1424 (((-3 |#4| "failed") $) 84)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2336 (((-3 $ "failed") $ |#4|) 78)) (-3702 (($ $ |#4|) 77)) (-3977 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) 38)) (-2508 (((-112) $) 41)) (-2910 (($) 40)) (-3768 (((-765) $) 106)) (-1714 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4399)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4399)))) (-4225 (($ $) 39)) (-4216 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-2049 (($ $ |#3|) 30)) (-1768 (($ $) 88)) (-2983 (($ $ |#3|) 29)) (-4064 (((-856) $) 11) (((-638 |#4|) $) 37)) (-3513 (((-765) $) 76 (|has| |#3| (-367)))) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) 81)) (-4024 (((-112) |#3| $) 80)) (-1723 (((-112) $ $) 6)) (-3548 (((-765) $) 46 (|has| $ (-6 -4399)))))
-(((-1198 |#1| |#2| |#3| |#4|) (-139) (-553) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1198))
-((-4345 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-2003 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2765 (-638 *8)))) (-5 *3 (-638 *8)) (-4 *1 (-1198 *5 *6 *7 *8)))) (-2003 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2765 (-638 *9)))) (-5 *3 (-638 *9)) (-4 *1 (-1198 *6 *7 *8 *9)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *6)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-2 (|:| -1450 (-638 *6)) (|:| -3368 (-638 *6)))))) (-2369 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-2282 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1198 *5 *6 *7 *3)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)))) (-1818 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2871 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3067 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2481 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-638 *7))) (-4 *1 (-1198 *4 *5 *6 *7)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-2871 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-3176 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1198 *5 *6 *7 *2)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *2 (-1056 *5 *6 *7)))) (-4163 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1198 *5 *6 *7 *8)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)))) (-4089 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-2903 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3641 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-2471 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1768 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-2310 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1198 *4 *5 *6 *7)))) (-3170 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| -1450 *1) (|:| -3368 (-638 *7))))) (-5 *3 (-638 *7)) (-4 *1 (-1198 *4 *5 *6 *7)))) (-1424 (*1 *2 *1) (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1501 (*1 *2 *1) (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1437 (*1 *1 *1) (|partial| -12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))) (-4024 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *3 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-3612 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1198 *4 *5 *3 *2)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3)))) (-2336 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-765)))))
-(-13 (-969 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4399) (-6 -4400) (-15 -4345 ((-112) $ $)) (-15 -2003 ((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |t#4|))) "failed") (-638 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2003 ((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |t#4|))) "failed") (-638 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3589 ((-638 |t#4|) $)) (-15 -3768 ((-765) $)) (-15 -1973 ((-2 (|:| -1450 (-638 |t#4|)) (|:| -3368 (-638 |t#4|))) $)) (-15 -2369 ((-112) |t#4| $)) (-15 -2369 ((-112) $)) (-15 -2282 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1818 ((-112) |t#4| $)) (-15 -2871 ((-112) |t#4| $)) (-15 -3067 ((-112) |t#4| $)) (-15 -2481 ((-112) $ (-1 (-112) |t#4| (-638 |t#4|)))) (-15 -1818 ((-112) $)) (-15 -2871 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -3176 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4163 ((-638 |t#4|) (-638 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4089 (|t#4| |t#4| $)) (-15 -2903 (|t#4| |t#4| $)) (-15 -3641 (|t#4| |t#4| $)) (-15 -2471 (|t#4| |t#4| $)) (-15 -1768 ($ $)) (-15 -2310 (|t#4| |t#4| $)) (-15 -3742 ((-638 $) (-638 |t#4|))) (-15 -3170 ((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |t#4|)))) (-638 |t#4|))) (-15 -1424 ((-3 |t#4| "failed") $)) (-15 -1501 ((-3 |t#4| "failed") $)) (-15 -1437 ((-3 $ "failed") $)) (-15 -1290 ((-638 |t#3|) $)) (-15 -4024 ((-112) |t#3| $)) (-15 -3612 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2336 ((-3 $ "failed") $ |t#4|)) (-15 -3702 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -3513 ((-765) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1205) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1166)) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3039 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-2001 (((-945 |#1|) $ (-765)) 16) (((-945 |#1|) $ (-765) (-765)) NIL)) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-765) $ (-1166)) NIL) (((-765) $ (-1166) (-765)) NIL)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1750 (((-112) $) NIL)) (-1381 (($ $ (-638 (-1166)) (-638 (-529 (-1166)))) NIL) (($ $ (-1166) (-529 (-1166))) NIL) (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-2563 (($ $ (-1166)) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-1982 (($ (-1 $) (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3702 (($ $ (-765)) NIL)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3486 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1436 (($ $ (-1166) $) NIL) (($ $ (-638 (-1166)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL)) (-3922 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-3768 (((-529 (-1166)) $) NIL)) (-3052 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-553))) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-1166)) NIL) (($ (-945 |#1|)) NIL)) (-3932 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (((-945 |#1|) $ (-765)) NIL)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-3086 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2821 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) NIL T CONST)) (-2257 (($) NIL T CONST)) (-3154 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1199 |#1|) (-13 (-734 |#1| (-1166)) (-10 -8 (-15 -3932 ((-945 |#1|) $ (-765))) (-15 -4064 ($ (-1166))) (-15 -4064 ($ (-945 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $ (-1166) |#1|)) (-15 -1982 ($ (-1 $) (-1166) |#1|))) |%noBranch|))) (-1042)) (T -1199))
-((-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-945 *4)) (-5 *1 (-1199 *4)) (-4 *4 (-1042)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-1042)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-5 *1 (-1199 *3)))) (-2563 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))) (-1982 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1199 *4))) (-5 *3 (-1166)) (-5 *1 (-1199 *4)) (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))))
-(-13 (-734 |#1| (-1166)) (-10 -8 (-15 -3932 ((-945 |#1|) $ (-765))) (-15 -4064 ($ (-1166))) (-15 -4064 ($ (-945 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $ (-1166) |#1|)) (-15 -1982 ($ (-1 $) (-1166) |#1|))) |%noBranch|)))
-((-3962 (($ |#1| (-638 (-638 (-936 (-224)))) (-112)) 18)) (-3541 (((-112) $ (-112)) 17)) (-3177 (((-112) $) 16)) (-1847 (((-638 (-638 (-936 (-224)))) $) 13)) (-3823 ((|#1| $) 8)) (-1694 (((-112) $) 15)))
-(((-1200 |#1|) (-10 -8 (-15 -3823 (|#1| $)) (-15 -1847 ((-638 (-638 (-936 (-224)))) $)) (-15 -1694 ((-112) $)) (-15 -3177 ((-112) $)) (-15 -3541 ((-112) $ (-112))) (-15 -3962 ($ |#1| (-638 (-638 (-936 (-224)))) (-112)))) (-967)) (T -1200))
-((-3962 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-112)) (-5 *1 (-1200 *2)) (-4 *2 (-967)))) (-3541 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-3823 (*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
-(-10 -8 (-15 -3823 (|#1| $)) (-15 -1847 ((-638 (-638 (-936 (-224)))) $)) (-15 -1694 ((-112) $)) (-15 -3177 ((-112) $)) (-15 -3541 ((-112) $ (-112))) (-15 -3962 ($ |#1| (-638 (-638 (-936 (-224)))) (-112))))
-((-2274 (((-936 (-224)) (-936 (-224))) 25)) (-1507 (((-936 (-224)) (-224) (-224) (-224) (-224)) 10)) (-3911 (((-638 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-638 (-638 (-224)))) 35)) (-3634 (((-224) (-936 (-224)) (-936 (-224))) 21)) (-3738 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 22)) (-1498 (((-638 (-638 (-224))) (-561)) 31)) (-1819 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 20)) (-1810 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 19)) (* (((-936 (-224)) (-224) (-936 (-224))) 18)))
-(((-1201) (-10 -7 (-15 -1507 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -1810 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -1819 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -3634 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -3738 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -2274 ((-936 (-224)) (-936 (-224)))) (-15 -1498 ((-638 (-638 (-224))) (-561))) (-15 -3911 ((-638 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-638 (-638 (-224))))))) (T -1201))
-((-3911 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-638 (-638 (-224)))) (-5 *4 (-224)) (-5 *2 (-638 (-936 *4))) (-5 *1 (-1201)) (-5 *3 (-936 *4)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-561)) (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-1201)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-3634 (*1 *2 *3 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201)))) (-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-1810 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201)))) (-1507 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224)))))
-(-10 -7 (-15 -1507 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -1810 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -1819 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -3634 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -3738 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -2274 ((-936 (-224)) (-936 (-224)))) (-15 -1498 ((-638 (-638 (-224))) (-561))) (-15 -3911 ((-638 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-638 (-638 (-224))))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3612 ((|#1| $ (-765)) 13)) (-4310 (((-765) $) 12)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-4064 (((-951 |#1|) $) 10) (($ (-951 |#1|)) 9) (((-856) $) 23 (|has| |#1| (-608 (-856))))) (-1723 (((-112) $ $) 16 (|has| |#1| (-1090)))))
-(((-1202 |#1|) (-13 (-488 (-951 |#1|)) (-10 -8 (-15 -3612 (|#1| $ (-765))) (-15 -4310 ((-765) $)) (IF (|has| |#1| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|))) (-1205)) (T -1202))
-((-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1205)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1205)))))
-(-13 (-488 (-951 |#1|)) (-10 -8 (-15 -3612 (|#1| $ (-765))) (-15 -4310 ((-765) $)) (IF (|has| |#1| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|)))
-((-3068 (((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)) (-561)) 80)) (-2400 (((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|))) 74)) (-1325 (((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|))) 59)))
-(((-1203 |#1|) (-10 -7 (-15 -2400 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -1325 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -3068 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)) (-561)))) (-348)) (T -1203))
-((-3068 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-4 *5 (-348)) (-5 *2 (-417 (-1162 (-1162 *5)))) (-5 *1 (-1203 *5)) (-5 *3 (-1162 (-1162 *5))))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))) (-2400 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))))
-(-10 -7 (-15 -2400 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -1325 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -3068 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)) (-561))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 9) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1204) (-1073)) (T -1204))
+((-4046 (*1 *1 *1) (-4 *1 (-1193))) (-4045 (*1 *1 *1) (-4 *1 (-1193))) (-4044 (*1 *1 *1) (-4 *1 (-1193))) (-4043 (*1 *1 *1) (-4 *1 (-1193))) (-4042 (*1 *1 *1) (-4 *1 (-1193))) (-4041 (*1 *1 *1) (-4 *1 (-1193))))
+(-13 (-10 -8 (-15 -4041 ($ $)) (-15 -4042 ($ $)) (-15 -4043 ($ $)) (-15 -4044 ($ $)) (-15 -4045 ($ $)) (-15 -4046 ($ $))))
+((-4049 ((|#2| |#2|) 88)) (-4052 (((-112) |#2|) 26)) (-4050 ((|#2| |#2|) 30)) (-4051 ((|#2| |#2|) 32)) (-4047 ((|#2| |#2| (-1166)) 83) ((|#2| |#2|) 84)) (-4053 (((-167 |#2|) |#2|) 28)) (-4048 ((|#2| |#2| (-1166)) 85) ((|#2| |#2|) 86)))
+(((-1194 |#1| |#2|) (-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4049 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4053 ((-167 |#2|) |#2|))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -1194))
+((-4053 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-167 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-112)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4048 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4047 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))))
+(-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4049 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4053 ((-167 |#2|) |#2|)))
+((-4054 ((|#4| |#4| |#1|) 27)) (-4055 ((|#4| |#4| |#1|) 28)))
+(((-1195 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4054 (|#4| |#4| |#1|)) (-15 -4055 (|#4| |#4| |#1|))) (-554) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -1195))
+((-4055 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-4054 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(-10 -7 (-15 -4054 (|#4| |#4| |#1|)) (-15 -4055 (|#4| |#4| |#1|)))
+((-4073 ((|#2| |#2|) 133)) (-4075 ((|#2| |#2|) 130)) (-4072 ((|#2| |#2|) 121)) (-4074 ((|#2| |#2|) 118)) (-4071 ((|#2| |#2|) 126)) (-4070 ((|#2| |#2|) 114)) (-4059 ((|#2| |#2|) 43)) (-4058 ((|#2| |#2|) 94)) (-4056 ((|#2| |#2|) 74)) (-4069 ((|#2| |#2|) 128)) (-4068 ((|#2| |#2|) 116)) (-4081 ((|#2| |#2|) 138)) (-4079 ((|#2| |#2|) 136)) (-4080 ((|#2| |#2|) 137)) (-4078 ((|#2| |#2|) 135)) (-4057 ((|#2| |#2|) 148)) (-4082 ((|#2| |#2|) 30 (-12 (|has| |#2| (-609 (-883 |#1|))) (|has| |#2| (-879 |#1|)) (|has| |#1| (-609 (-883 |#1|))) (|has| |#1| (-879 |#1|))))) (-4060 ((|#2| |#2|) 75)) (-4061 ((|#2| |#2|) 139)) (-4370 ((|#2| |#2|) 140)) (-4067 ((|#2| |#2|) 127)) (-4066 ((|#2| |#2|) 115)) (-4065 ((|#2| |#2|) 134)) (-4077 ((|#2| |#2|) 132)) (-4064 ((|#2| |#2|) 122)) (-4076 ((|#2| |#2|) 120)) (-4063 ((|#2| |#2|) 124)) (-4062 ((|#2| |#2|) 112)))
+(((-1196 |#1| |#2|) (-10 -7 (-15 -4370 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4062 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-883 |#1|))) (IF (|has| |#2| (-609 (-883 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -4082 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-844) (-450)) (-13 (-420 |#1|) (-1190))) (T -1196))
+((-4082 (*1 *2 *2) (-12 (-4 *3 (-609 (-883 *3))) (-4 *3 (-879 *3)) (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-609 (-883 *3))) (-4 *2 (-879 *3)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4370 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))))
+(-10 -7 (-15 -4370 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4062 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-883 |#1|))) (IF (|has| |#2| (-609 (-883 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -4082 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1166)) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4221 (((-939 |#1|) $ (-765)) 16) (((-939 |#1|) $ (-765) (-765)) NIL)) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $ (-1166)) NIL) (((-765) $ (-1166) (-765)) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4344 (((-112) $) NIL)) (-3276 (($ $ (-635 (-1166)) (-635 (-529 (-1166)))) NIL) (($ $ (-1166) (-529 (-1166))) NIL) (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $ (-1166)) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4083 (($ (-1 $) (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4175 (($ $ (-765)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (($ $ (-1166) $) NIL) (($ $ (-635 (-1166)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-4217 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4355 (((-529 (-1166)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-1166)) NIL) (($ (-939 |#1|)) NIL)) (-4084 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (((-939 |#1|) $ (-765)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1197 |#1|) (-13 (-734 |#1| (-1166)) (-10 -8 (-15 -4084 ((-939 |#1|) $ (-765))) (-15 -4353 ($ (-1166))) (-15 -4353 ($ (-939 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ (-1166) |#1|)) (-15 -4083 ($ (-1 $) (-1166) |#1|))) |%noBranch|))) (-1042)) (T -1197))
+((-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-939 *4)) (-5 *1 (-1197 *4)) (-4 *4 (-1042)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-1042)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-5 *1 (-1197 *3)))) (-4219 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)))) (-4083 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1197 *4))) (-5 *3 (-1166)) (-5 *1 (-1197 *4)) (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042)))))
+(-13 (-734 |#1| (-1166)) (-10 -8 (-15 -4084 ((-939 |#1|) $ (-765))) (-15 -4353 ($ (-1166))) (-15 -4353 ($ (-939 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ (-1166) |#1|)) (-15 -4083 ($ (-1 $) (-1166) |#1|))) |%noBranch|)))
+((-4100 (((-112) |#5| $) 59) (((-112) $) 101)) (-4095 ((|#5| |#5| $) 74)) (-4117 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4096 (((-635 |#5|) (-635 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-3558 (((-3 $ "failed") (-635 |#5|)) 125)) (-4205 (((-3 $ "failed") $) 111)) (-4092 ((|#5| |#5| $) 93)) (-4101 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-4090 ((|#5| |#5| $) 97)) (-4249 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-4103 (((-2 (|:| -4268 (-635 |#5|)) (|:| -1846 (-635 |#5|))) $) 54)) (-4102 (((-112) |#5| $) 57) (((-112) $) 102)) (-3581 ((|#4| $) 107)) (-4204 (((-3 |#5| "failed") $) 109)) (-4104 (((-635 |#5|) $) 48)) (-4098 (((-112) |#5| $) 66) (((-112) $) 106)) (-4093 ((|#5| |#5| $) 80)) (-4106 (((-112) $ $) 26)) (-4099 (((-112) |#5| $) 62) (((-112) $) 104)) (-4094 ((|#5| |#5| $) 77)) (-4207 (((-3 |#5| "failed") $) 108)) (-4175 (($ $ |#5|) 126)) (-4355 (((-765) $) 51)) (-3929 (($ (-635 |#5|)) 123)) (-3293 (($ $ |#4|) 121)) (-3295 (($ $ |#4|) 120)) (-4091 (($ $) 119)) (-4353 (((-857) $) NIL) (((-635 |#5|) $) 112)) (-4085 (((-765) $) 129)) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-4097 (((-112) $ (-1 (-112) |#5| (-635 |#5|))) 99)) (-4087 (((-635 |#4|) $) 114)) (-4340 (((-112) |#4| $) 117)) (-3437 (((-112) $ $) 19)))
+(((-1198 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4085 ((-765) |#1|)) (-15 -4175 (|#1| |#1| |#5|)) (-15 -4117 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4340 ((-112) |#4| |#1|)) (-15 -4087 ((-635 |#4|) |#1|)) (-15 -4205 ((-3 |#1| "failed") |#1|)) (-15 -4204 ((-3 |#5| "failed") |#1|)) (-15 -4207 ((-3 |#5| "failed") |#1|)) (-15 -4090 (|#5| |#5| |#1|)) (-15 -4091 (|#1| |#1|)) (-15 -4092 (|#5| |#5| |#1|)) (-15 -4093 (|#5| |#5| |#1|)) (-15 -4094 (|#5| |#5| |#1|)) (-15 -4095 (|#5| |#5| |#1|)) (-15 -4096 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4249 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4098 ((-112) |#1|)) (-15 -4099 ((-112) |#1|)) (-15 -4100 ((-112) |#1|)) (-15 -4097 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -4098 ((-112) |#5| |#1|)) (-15 -4099 ((-112) |#5| |#1|)) (-15 -4100 ((-112) |#5| |#1|)) (-15 -4101 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4102 ((-112) |#1|)) (-15 -4102 ((-112) |#5| |#1|)) (-15 -4103 ((-2 (|:| -4268 (-635 |#5|)) (|:| -1846 (-635 |#5|))) |#1|)) (-15 -4355 ((-765) |#1|)) (-15 -4104 ((-635 |#5|) |#1|)) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3581 (|#4| |#1|)) (-15 -3558 ((-3 |#1| "failed") (-635 |#5|))) (-15 -4353 ((-635 |#5|) |#1|)) (-15 -3929 (|#1| (-635 |#5|))) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4117 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-1199 |#2| |#3| |#4| |#5|) (-554) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1198))
+NIL
+(-10 -8 (-15 -4085 ((-765) |#1|)) (-15 -4175 (|#1| |#1| |#5|)) (-15 -4117 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4340 ((-112) |#4| |#1|)) (-15 -4087 ((-635 |#4|) |#1|)) (-15 -4205 ((-3 |#1| "failed") |#1|)) (-15 -4204 ((-3 |#5| "failed") |#1|)) (-15 -4207 ((-3 |#5| "failed") |#1|)) (-15 -4090 (|#5| |#5| |#1|)) (-15 -4091 (|#1| |#1|)) (-15 -4092 (|#5| |#5| |#1|)) (-15 -4093 (|#5| |#5| |#1|)) (-15 -4094 (|#5| |#5| |#1|)) (-15 -4095 (|#5| |#5| |#1|)) (-15 -4096 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4249 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4098 ((-112) |#1|)) (-15 -4099 ((-112) |#1|)) (-15 -4100 ((-112) |#1|)) (-15 -4097 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -4098 ((-112) |#5| |#1|)) (-15 -4099 ((-112) |#5| |#1|)) (-15 -4100 ((-112) |#5| |#1|)) (-15 -4101 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4102 ((-112) |#1|)) (-15 -4102 ((-112) |#5| |#1|)) (-15 -4103 ((-2 (|:| -4268 (-635 |#5|)) (|:| -1846 (-635 |#5|))) |#1|)) (-15 -4355 ((-765) |#1|)) (-15 -4104 ((-635 |#5|) |#1|)) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3581 (|#4| |#1|)) (-15 -3558 ((-3 |#1| "failed") (-635 |#5|))) (-15 -4353 ((-635 |#5|) |#1|)) (-15 -3929 (|#1| (-635 |#5|))) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4117 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)))
+((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| "failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ "failed") $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-4204 (((-3 |#4| "failed") $) 83)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| "failed") $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ "failed") $ |#4|) 78)) (-4175 (($ $ |#4|) 77)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400)))))
+(((-1199 |#1| |#2| |#3| |#4|) (-139) (-554) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1199))
+((-4106 (*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4105 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *8)))) (-5 *3 (-635 *8)) (-4 *1 (-1199 *5 *6 *7 *8)))) (-4105 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *9)))) (-5 *3 (-635 *9)) (-4 *1 (-1199 *6 *7 *8 *9)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *6)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-2 (|:| -4268 (-635 *6)) (|:| -1846 (-635 *6)))))) (-4102 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4101 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1199 *5 *6 *7 *3)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)))) (-4100 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4099 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4098 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1199 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4249 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1199 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *2 (-1056 *5 *6 *7)))) (-4096 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1199 *5 *6 *7 *8)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)))) (-4095 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4094 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4093 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4092 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4091 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-4090 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1199 *4 *5 *6 *7)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| -4268 *1) (|:| -1846 (-635 *7))))) (-5 *3 (-635 *7)) (-4 *1 (-1199 *4 *5 *6 *7)))) (-4207 (*1 *2 *1) (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4204 (*1 *2 *1) (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4205 (*1 *1 *1) (|partial| -12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))) (-4340 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-4117 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1199 *4 *5 *3 *2)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3)))) (-4086 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4175 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-765)))))
+(-13 (-969 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -4106 ((-112) $ $)) (-15 -4105 ((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4105 ((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4104 ((-635 |t#4|) $)) (-15 -4355 ((-765) $)) (-15 -4103 ((-2 (|:| -4268 (-635 |t#4|)) (|:| -1846 (-635 |t#4|))) $)) (-15 -4102 ((-112) |t#4| $)) (-15 -4102 ((-112) $)) (-15 -4101 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4100 ((-112) |t#4| $)) (-15 -4099 ((-112) |t#4| $)) (-15 -4098 ((-112) |t#4| $)) (-15 -4097 ((-112) $ (-1 (-112) |t#4| (-635 |t#4|)))) (-15 -4100 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -4098 ((-112) $)) (-15 -4249 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4096 ((-635 |t#4|) (-635 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4095 (|t#4| |t#4| $)) (-15 -4094 (|t#4| |t#4| $)) (-15 -4093 (|t#4| |t#4| $)) (-15 -4092 (|t#4| |t#4| $)) (-15 -4091 ($ $)) (-15 -4090 (|t#4| |t#4| $)) (-15 -4089 ((-635 $) (-635 |t#4|))) (-15 -4088 ((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |t#4|)))) (-635 |t#4|))) (-15 -4207 ((-3 |t#4| "failed") $)) (-15 -4204 ((-3 |t#4| "failed") $)) (-15 -4205 ((-3 $ "failed") $)) (-15 -4087 ((-635 |t#3|) $)) (-15 -4340 ((-112) |t#3| $)) (-15 -4117 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4086 ((-3 $ "failed") $ |t#4|)) (-15 -4175 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -4085 ((-765) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1204) . T))
+((-4112 (($ |#1| (-635 (-635 (-936 (-224)))) (-112)) 18)) (-4111 (((-112) $ (-112)) 17)) (-4110 (((-112) $) 16)) (-4108 (((-635 (-635 (-936 (-224)))) $) 13)) (-4107 ((|#1| $) 8)) (-4109 (((-112) $) 15)))
+(((-1200 |#1|) (-10 -8 (-15 -4107 (|#1| $)) (-15 -4108 ((-635 (-635 (-936 (-224)))) $)) (-15 -4109 ((-112) $)) (-15 -4110 ((-112) $)) (-15 -4111 ((-112) $ (-112))) (-15 -4112 ($ |#1| (-635 (-635 (-936 (-224)))) (-112)))) (-967)) (T -1200))
+((-4112 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-112)) (-5 *1 (-1200 *2)) (-4 *2 (-967)))) (-4111 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4107 (*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
+(-10 -8 (-15 -4107 (|#1| $)) (-15 -4108 ((-635 (-635 (-936 (-224)))) $)) (-15 -4109 ((-112) $)) (-15 -4110 ((-112) $)) (-15 -4111 ((-112) $ (-112))) (-15 -4112 ($ |#1| (-635 (-635 (-936 (-224)))) (-112))))
+((-4114 (((-936 (-224)) (-936 (-224))) 25)) (-4113 (((-936 (-224)) (-224) (-224) (-224) (-224)) 10)) (-4116 (((-635 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-635 (-635 (-224)))) 35)) (-4243 (((-224) (-936 (-224)) (-936 (-224))) 21)) (-4241 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 22)) (-4115 (((-635 (-635 (-224))) (-544)) 31)) (-4244 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 20)) (-4246 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 19)) (* (((-936 (-224)) (-224) (-936 (-224))) 18)))
+(((-1201) (-10 -7 (-15 -4113 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -4246 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4244 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4243 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -4241 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4114 ((-936 (-224)) (-936 (-224)))) (-15 -4115 ((-635 (-635 (-224))) (-544))) (-15 -4116 ((-635 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-635 (-635 (-224))))))) (T -1201))
+((-4116 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 (-936 *4))) (-5 *1 (-1201)) (-5 *3 (-936 *4)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1201)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-4241 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-4243 (*1 *2 *3 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201)))) (-4244 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-4246 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201)))) (-4113 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224)))))
+(-10 -7 (-15 -4113 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -4246 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4244 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4243 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -4241 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4114 ((-936 (-224)) (-936 (-224)))) (-15 -4115 ((-635 (-635 (-224))) (-544))) (-15 -4116 ((-635 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-635 (-635 (-224))))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4117 ((|#1| $ (-765)) 13)) (-4240 (((-765) $) 12)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4353 (((-951 |#1|) $) 10) (($ (-951 |#1|)) 9) (((-857) $) 23 (|has| |#1| (-608 (-857))))) (-3437 (((-112) $ $) 16 (|has| |#1| (-1091)))))
+(((-1202 |#1|) (-13 (-488 (-951 |#1|)) (-10 -8 (-15 -4117 (|#1| $ (-765))) (-15 -4240 ((-765) $)) (IF (|has| |#1| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) (-1204)) (T -1202))
+((-4117 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1204)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1204)))))
+(-13 (-488 (-951 |#1|)) (-10 -8 (-15 -4117 (|#1| $ (-765))) (-15 -4240 ((-765) $)) (IF (|has| |#1| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|)))
+((-4120 (((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)) (-544)) 80)) (-4118 (((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|))) 74)) (-4119 (((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|))) 59)))
+(((-1203 |#1|) (-10 -7 (-15 -4118 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4119 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4120 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)) (-544)))) (-349)) (T -1203))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-4 *5 (-349)) (-5 *2 (-404 (-1160 (-1160 *5)))) (-5 *1 (-1203 *5)) (-5 *3 (-1160 (-1160 *5))))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1160 (-1160 *4))))) (-4118 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1160 (-1160 *4))))))
+(-10 -7 (-15 -4118 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4119 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4120 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)) (-544))))
+NIL
+(((-1204) (-139)) (T -1204))
+NIL
+(-13 (-10 -7 (-6 -2407)))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 9) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1205) (-1073)) (T -1205))
NIL
(-1073)
-NIL
-(((-1205) (-139)) (T -1205))
-NIL
-(-13 (-10 -7 (-6 -1374)))
-((-2362 (((-112)) 14)) (-2660 (((-1259) (-638 |#1|) (-638 |#1|)) 18) (((-1259) (-638 |#1|)) 19)) (-3116 (((-112) |#1| |#1|) 31 (|has| |#1| (-844)))) (-3683 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-2033 ((|#1| (-638 |#1|)) 32 (|has| |#1| (-844))) ((|#1| (-638 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-2622 (((-2 (|:| -2438 (-638 |#1|)) (|:| -3140 (-638 |#1|)))) 16)))
-(((-1206 |#1|) (-10 -7 (-15 -2660 ((-1259) (-638 |#1|))) (-15 -2660 ((-1259) (-638 |#1|) (-638 |#1|))) (-15 -2622 ((-2 (|:| -2438 (-638 |#1|)) (|:| -3140 (-638 |#1|))))) (-15 -3683 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3683 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2033 (|#1| (-638 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2362 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -2033 (|#1| (-638 |#1|))) (-15 -3116 ((-112) |#1| |#1|))) |%noBranch|)) (-1090)) (T -1206))
-((-3116 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844)) (-4 *3 (-1090)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-844)) (-5 *1 (-1206 *2)))) (-2362 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2)) (-4 *2 (-1090)))) (-3683 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1090)) (-5 *2 (-112)) (-5 *1 (-1206 *3)))) (-3683 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))) (-2622 (*1 *2) (-12 (-5 *2 (-2 (|:| -2438 (-638 *3)) (|:| -3140 (-638 *3)))) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))) (-2660 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1259)) (-5 *1 (-1206 *4)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1259)) (-5 *1 (-1206 *4)))))
-(-10 -7 (-15 -2660 ((-1259) (-638 |#1|))) (-15 -2660 ((-1259) (-638 |#1|) (-638 |#1|))) (-15 -2622 ((-2 (|:| -2438 (-638 |#1|)) (|:| -3140 (-638 |#1|))))) (-15 -3683 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3683 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2033 (|#1| (-638 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2362 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -2033 (|#1| (-638 |#1|))) (-15 -3116 ((-112) |#1| |#1|))) |%noBranch|))
-((-2111 (((-1259) (-638 (-1166)) (-638 (-1166))) 13) (((-1259) (-638 (-1166))) 11)) (-2700 (((-1259)) 14)) (-1473 (((-2 (|:| -3140 (-638 (-1166))) (|:| -2438 (-638 (-1166))))) 18)))
-(((-1207) (-10 -7 (-15 -2111 ((-1259) (-638 (-1166)))) (-15 -2111 ((-1259) (-638 (-1166)) (-638 (-1166)))) (-15 -1473 ((-2 (|:| -3140 (-638 (-1166))) (|:| -2438 (-638 (-1166)))))) (-15 -2700 ((-1259))))) (T -1207))
-((-2700 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1207)))) (-1473 (*1 *2) (-12 (-5 *2 (-2 (|:| -3140 (-638 (-1166))) (|:| -2438 (-638 (-1166))))) (-5 *1 (-1207)))) (-2111 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))))
-(-10 -7 (-15 -2111 ((-1259) (-638 (-1166)))) (-15 -2111 ((-1259) (-638 (-1166)) (-638 (-1166)))) (-15 -1473 ((-2 (|:| -3140 (-638 (-1166))) (|:| -2438 (-638 (-1166)))))) (-15 -2700 ((-1259))))
-((-2557 (($ $) 17)) (-2725 (((-112) $) 24)))
-(((-1208 |#1|) (-10 -8 (-15 -2557 (|#1| |#1|)) (-15 -2725 ((-112) |#1|))) (-1209)) (T -1208))
-NIL
-(-10 -8 (-15 -2557 (|#1| |#1|)) (-15 -2725 ((-112) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 52)) (-3552 (((-417 $) $) 53)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2725 (((-112) $) 54)) (-2252 (((-112) $) 31)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1633 (((-417 $) $) 51)) (-1748 (((-3 $ "failed") $ $) 43)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+((-4124 (((-112)) 14)) (-4121 (((-1259) (-635 |#1|) (-635 |#1|)) 18) (((-1259) (-635 |#1|)) 19)) (-4126 (((-112) |#1| |#1|) 31 (|has| |#1| (-844)))) (-4123 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-4125 ((|#1| (-635 |#1|)) 32 (|has| |#1| (-844))) ((|#1| (-635 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-4122 (((-2 (|:| -3630 (-635 |#1|)) (|:| -3629 (-635 |#1|)))) 16)))
+(((-1206 |#1|) (-10 -7 (-15 -4121 ((-1259) (-635 |#1|))) (-15 -4121 ((-1259) (-635 |#1|) (-635 |#1|))) (-15 -4122 ((-2 (|:| -3630 (-635 |#1|)) (|:| -3629 (-635 |#1|))))) (-15 -4123 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4123 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4125 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4124 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -4125 (|#1| (-635 |#1|))) (-15 -4126 ((-112) |#1| |#1|))) |%noBranch|)) (-1091)) (T -1206))
+((-4126 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844)) (-4 *3 (-1091)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-844)) (-5 *1 (-1206 *2)))) (-4124 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))) (-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2)) (-4 *2 (-1091)))) (-4123 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1091)) (-5 *2 (-112)) (-5 *1 (-1206 *3)))) (-4123 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))) (-4122 (*1 *2) (-12 (-5 *2 (-2 (|:| -3630 (-635 *3)) (|:| -3629 (-635 *3)))) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))) (-4121 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4)))))
+(-10 -7 (-15 -4121 ((-1259) (-635 |#1|))) (-15 -4121 ((-1259) (-635 |#1|) (-635 |#1|))) (-15 -4122 ((-2 (|:| -3630 (-635 |#1|)) (|:| -3629 (-635 |#1|))))) (-15 -4123 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4123 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4125 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4124 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -4125 (|#1| (-635 |#1|))) (-15 -4126 ((-112) |#1| |#1|))) |%noBranch|))
+((-4127 (((-1259) (-635 (-1166)) (-635 (-1166))) 13) (((-1259) (-635 (-1166))) 11)) (-4129 (((-1259)) 14)) (-4128 (((-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166))))) 18)))
+(((-1207) (-10 -7 (-15 -4127 ((-1259) (-635 (-1166)))) (-15 -4127 ((-1259) (-635 (-1166)) (-635 (-1166)))) (-15 -4128 ((-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166)))))) (-15 -4129 ((-1259))))) (T -1207))
+((-4129 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1207)))) (-4128 (*1 *2) (-12 (-5 *2 (-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166))))) (-5 *1 (-1207)))) (-4127 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))))
+(-10 -7 (-15 -4127 ((-1259) (-635 (-1166)))) (-15 -4127 ((-1259) (-635 (-1166)) (-635 (-1166)))) (-15 -4128 ((-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166)))))) (-15 -4129 ((-1259))))
+((-4181 (($ $) 17)) (-4130 (((-112) $) 24)))
+(((-1208 |#1|) (-10 -8 (-15 -4181 (|#1| |#1|)) (-15 -4130 ((-112) |#1|))) (-1209)) (T -1208))
+NIL
+(-10 -8 (-15 -4181 (|#1| |#1|)) (-15 -4130 ((-112) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 52)) (-4376 (((-404 $) $) 53)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-4130 (((-112) $) 54)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 51)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24)))
(((-1209) (-139)) (T -1209))
-((-2725 (*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209)))) (-2557 (*1 *1 *1) (-4 *1 (-1209))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209)))))
-(-13 (-450) (-10 -8 (-15 -2725 ((-112) $)) (-15 -3552 ((-417 $) $)) (-15 -2557 ($ $)) (-15 -1633 ((-417 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-2674 (($) NIL)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-3034 (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
-(((-1210) (-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))) (T -1210))
-((-3024 (*1 *1 *1 *1) (-5 *1 (-1210))) (-3034 (*1 *1 *1 *1) (-5 *1 (-1210))) (-2674 (*1 *1) (-5 *1 (-1210))))
-(-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))
-((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-2674 (($) NIL)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-3034 (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
-(((-1211) (-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))) (T -1211))
-((-3024 (*1 *1 *1 *1) (-5 *1 (-1211))) (-3034 (*1 *1 *1 *1) (-5 *1 (-1211))) (-2674 (*1 *1) (-5 *1 (-1211))))
-(-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))
-((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4053 (((-112) $ $) NIL)) (-1386 (((-765)) NIL)) (-2674 (($) NIL)) (-1362 (($) NIL)) (-1597 (($ $ $) NIL) (($) NIL T CONST)) (-3017 (($ $ $) NIL) (($) NIL T CONST)) (-1335 (((-914) $) NIL)) (-1883 (((-1148) $) NIL)) (-2442 (($ (-914)) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) NIL)) (-3034 (($ $ $) NIL)) (-3024 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
-(((-1212) (-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))) (T -1212))
-((-3024 (*1 *1 *1 *1) (-5 *1 (-1212))) (-3034 (*1 *1 *1 *1) (-5 *1 (-1212))) (-2674 (*1 *1) (-5 *1 (-1212))))
-(-13 (-838) (-10 -8 (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -2674 ($))))
-((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4165 (((-1218 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1218 |#1| |#3| |#5|)) 23)))
-(((-1213 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4165 ((-1218 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1218 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1213))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1218 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1218 *6 *8 *10)) (-5 *1 (-1213 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166)))))
-(-10 -7 (-15 -4165 ((-1218 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1218 |#1| |#3| |#5|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 (-1072)) $) 77)) (-2421 (((-1166) $) 106)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-1991 (($ $ (-561)) 101) (($ $ (-561) (-561)) 100)) (-4228 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 108)) (-3014 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 165 (|has| |#1| (-362)))) (-3552 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4213 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 176)) (-3039 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) 17 T CONST)) (-1792 (($ $ $) 160 (|has| |#1| (-362)))) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-4243 (((-406 (-945 |#1|)) $ (-561)) 174 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 173 (|has| |#1| (-553)))) (-1771 (($ $ $) 159 (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2725 (((-112) $) 167 (|has| |#1| (-362)))) (-4372 (((-112) $) 76)) (-4111 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-561) $) 103) (((-561) $ (-561)) 102)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) 104)) (-3236 (($ (-1 |#1| (-561)) $) 175)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-1750 (((-112) $) 65)) (-1381 (($ |#1| (-561)) 64) (($ $ (-1072) (-561)) 79) (($ $ (-638 (-1072)) (-638 (-561))) 78)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-4364 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1563 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1883 (((-1148) $) 9)) (-1519 (($ $) 168 (|has| |#1| (-362)))) (-2563 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4050 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1603 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1633 (((-417 $) $) 164 (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 161 (|has| |#1| (-362)))) (-3702 (($ $ (-561)) 98)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3486 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-561)))))) (-1905 (((-765) $) 157 (|has| |#1| (-362)))) (-2315 ((|#1| $ (-561)) 107) (($ $ $) 84 (|has| (-561) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 158 (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-3768 (((-561) $) 67)) (-3052 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 75)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-3932 ((|#1| $ (-561)) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2298 ((|#1| $) 105)) (-3086 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3064 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-561)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
-(((-1214 |#1|) (-139) (-1042)) (T -1214))
-((-1543 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1214 *3)))) (-3236 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1214 *3)) (-4 *3 (-1042)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1214 *4)) (-4 *4 (-1042)) (-4 *4 (-553)) (-5 *2 (-406 (-945 *4))))) (-4243 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1214 *4)) (-4 *4 (-1042)) (-4 *4 (-553)) (-5 *2 (-406 (-945 *4))))) (-2563 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))) (-2563 (*1 *1 *1 *2) (-4050 (-12 (-5 *2 (-1166)) (-4 *1 (-1214 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-561)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1214 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -1405 ((-638 *2) *3))) (|has| *3 (-15 -2563 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561)))))))))
-(-13 (-1232 |t#1| (-561)) (-10 -8 (-15 -1543 ($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |t#1|))))) (-15 -3236 ($ (-1 |t#1| (-561)) $)) (IF (|has| |t#1| (-553)) (PROGN (-15 -4243 ((-406 (-945 |t#1|)) $ (-561))) (-15 -4243 ((-406 (-945 |t#1|)) $ (-561) (-561)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $)) (IF (|has| |t#1| (-15 -2563 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -1405 ((-638 (-1166)) |t#1|))) (-15 -2563 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-952)) (IF (|has| |t#1| (-29 (-561))) (-15 -2563 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-561)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-561) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-561) (-1102)) ((-289) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #0#) . T))
-((-4306 (((-112) $) 12)) (-4061 (((-3 |#3| "failed") $) 17) (((-3 (-1166) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL)) (-3979 ((|#3| $) 14) (((-1166) $) NIL) (((-406 (-561)) $) NIL) (((-561) $) NIL)))
-(((-1215 |#1| |#2| |#3|) (-10 -8 (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-1166) "failed") |#1|)) (-15 -3979 ((-1166) |#1|)) (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3979 (|#3| |#1|)) (-15 -4306 ((-112) |#1|))) (-1216 |#2| |#3|) (-1042) (-1245 |#2|)) (T -1215))
-NIL
-(-10 -8 (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -4061 ((-3 (-1166) "failed") |#1|)) (-15 -3979 ((-1166) |#1|)) (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3979 (|#3| |#1|)) (-15 -4306 ((-112) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-3892 ((|#2| $) 231 (-2198 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1405 (((-638 (-1072)) $) 77)) (-2421 (((-1166) $) 106)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-1991 (($ $ (-561)) 101) (($ $ (-561) (-561)) 100)) (-4228 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 108)) (-3580 ((|#2| $) 267)) (-2527 (((-3 |#2| "failed") $) 263)) (-1469 ((|#2| $) 264)) (-3014 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) 19)) (-2128 (((-417 (-1162 $)) (-1162 $)) 240 (-2198 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-2557 (($ $) 165 (|has| |#1| (-362)))) (-3552 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 237 (-2198 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-3698 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4213 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-1659 (((-561) $) 249 (-2198 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-1543 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 176)) (-3039 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#2| "failed") $) 270) (((-3 (-561) "failed") $) 260 (-2198 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) 258 (-2198 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-1166) "failed") $) 242 (-2198 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-3979 ((|#2| $) 271) (((-561) $) 259 (-2198 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-406 (-561)) $) 257 (-2198 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-1166) $) 241 (-2198 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-1857 (($ $) 266) (($ (-561) $) 265)) (-1792 (($ $ $) 160 (|has| |#1| (-362)))) (-1598 (($ $) 63)) (-3720 (((-682 |#2|) (-682 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 219 (-2198 (|has| |#2| (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) 218 (-2198 (|has| |#2| (-634 (-561))) (|has| |#1| (-362))))) (-3735 (((-3 $ "failed") $) 33)) (-4243 (((-406 (-945 |#1|)) $ (-561)) 174 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 173 (|has| |#1| (-553)))) (-1362 (($) 233 (-2198 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-1771 (($ $ $) 159 (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2725 (((-112) $) 167 (|has| |#1| (-362)))) (-1784 (((-112) $) 247 (-2198 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-4372 (((-112) $) 76)) (-4111 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 225 (-2198 (|has| |#2| (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 224 (-2198 (|has| |#2| (-879 (-561))) (|has| |#1| (-362))))) (-4027 (((-561) $) 103) (((-561) $ (-561)) 102)) (-2252 (((-112) $) 31)) (-3307 (($ $) 229 (|has| |#1| (-362)))) (-4077 ((|#2| $) 227 (|has| |#1| (-362)))) (-4343 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-2436 (((-3 $ "failed") $) 261 (-2198 (|has| |#2| (-1141)) (|has| |#1| (-362))))) (-3271 (((-112) $) 248 (-2198 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3508 (($ $ (-914)) 104)) (-3236 (($ (-1 |#1| (-561)) $) 175)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-1750 (((-112) $) 65)) (-1381 (($ |#1| (-561)) 64) (($ $ (-1072) (-561)) 79) (($ $ (-638 (-1072)) (-638 (-561))) 78)) (-1597 (($ $ $) 251 (-2198 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3017 (($ $ $) 252 (-2198 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4165 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-4364 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1563 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1484 (($ (-561) |#2|) 268)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 168 (|has| |#1| (-362)))) (-2563 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4050 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-3767 (($) 262 (-2198 (|has| |#2| (-1141)) (|has| |#1| (-362))) CONST)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1603 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-2569 (($ $) 232 (-2198 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4020 ((|#2| $) 235 (-2198 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4328 (((-417 (-1162 $)) (-1162 $)) 238 (-2198 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-3035 (((-417 (-1162 $)) (-1162 $)) 239 (-2198 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1633 (((-417 $) $) 164 (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 161 (|has| |#1| (-362)))) (-3702 (($ $ (-561)) 98)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3486 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) |#2|) 212 (-2198 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 |#2|)) 211 (-2198 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-293 |#2|))) 210 (-2198 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) 209 (-2198 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-2198 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-638 |#2|) (-638 |#2|)) 207 (-2198 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1905 (((-765) $) 157 (|has| |#1| (-362)))) (-2315 ((|#1| $ (-561)) 107) (($ $ $) 84 (|has| (-561) (-1102))) (($ $ |#2|) 206 (-2198 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 158 (|has| |#1| (-362)))) (-3922 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 216 (|has| |#1| (-362))) (($ $ (-765)) 87 (-4050 (-2198 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 85 (-4050 (-2198 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) 92 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166) (-765)) 91 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-638 (-1166))) 90 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166)) 89 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))))) (-1969 (($ $) 230 (|has| |#1| (-362)))) (-4088 ((|#2| $) 228 (|has| |#1| (-362)))) (-3768 (((-561) $) 67)) (-3052 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-4216 (((-224) $) 246 (-2198 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-378) $) 245 (-2198 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-534) $) 244 (-2198 (|has| |#2| (-609 (-534))) (|has| |#1| (-362)))) (((-885 (-378)) $) 223 (-2198 (|has| |#2| (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) 222 (-2198 (|has| |#2| (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 236 (-2198 (-2198 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#1| (-362))))) (-3426 (($ $) 75)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1166)) 243 (-2198 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362)))) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-3932 ((|#1| $ (-561)) 62)) (-3666 (((-3 $ "failed") $) 51 (-4050 (-2198 (-4050 (|has| |#2| (-144)) (-2198 (|has| $ (-144)) (|has| |#2| (-902)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3746 (((-765)) 28)) (-2298 ((|#1| $) 105)) (-2449 ((|#2| $) 234 (-2198 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3086 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3064 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-561)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2165 (($ $) 250 (-2198 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 214 (|has| |#1| (-362))) (($ $ (-765)) 88 (-4050 (-2198 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 86 (-4050 (-2198 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) 96 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166) (-765)) 95 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-638 (-1166))) 94 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166)) 93 (-4050 (-2198 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))))) (-1781 (((-112) $ $) 254 (-2198 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1758 (((-112) $ $) 255 (-2198 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 253 (-2198 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1746 (((-112) $ $) 256 (-2198 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
-(((-1216 |#1| |#2|) (-139) (-1042) (-1245 |t#1|)) (T -1216))
-((-3768 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1245 *3)) (-5 *2 (-561)))) (-1484 (*1 *1 *2 *3) (-12 (-5 *2 (-561)) (-4 *4 (-1042)) (-4 *1 (-1216 *4 *3)) (-4 *3 (-1245 *4)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1245 *3)))) (-1857 (*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1245 *2)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1245 *3)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1245 *3)))) (-2527 (*1 *2 *1) (|partial| -12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1245 *3)))))
-(-13 (-1214 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -1484 ($ (-561) |t#2|)) (-15 -3768 ((-561) $)) (-15 -3580 (|t#2| $)) (-15 -1857 ($ $)) (-15 -1857 ($ (-561) $)) (-15 -1469 (|t#2| $)) (-15 -2527 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-985 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-561)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -4050 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -4050 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-611 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 #2=(-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) ((-609 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) ((-609 (-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-561))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -4050 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-561) (-1102)) ((-289) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-512 (-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|))) ((-512 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-553) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 |#2|) |has| |#1| (-362)) ((-641 $) . T) ((-634 (-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-561)))) ((-634 |#2|) |has| |#1| (-362)) ((-711 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 |#2|) |has| |#1| (-362)) ((-711 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-785) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-788) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-789) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-814) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-842) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-844) -4050 (-12 (|has| |#1| (-362)) (|has| |#2| (-844))) (-12 (|has| |#1| (-362)) (|has| |#2| (-814)))) ((-893 (-1166)) -4050 (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) ((-879 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-561)))) ((-877 |#2|) |has| |#1| (-362)) ((-902) -12 (|has| |#1| (-362)) (|has| |#2| (-902))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-985 |#2|) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1015) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) ((-1031 (-406 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))) ((-1031 (-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))) ((-1031 #2#) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-1031 |#2|) . T) ((-1048 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 |#2|) |has| |#1| (-362)) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) -12 (|has| |#1| (-362)) (|has| |#2| (-1141))) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1205) |has| |#1| (-362)) ((-1209) |has| |#1| (-362)) ((-1214 |#1|) . T) ((-1232 |#1| #0#) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 70)) (-3892 ((|#2| $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 88)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-561)) 97) (($ $ (-561) (-561)) 99)) (-4228 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 47)) (-3580 ((|#2| $) 11)) (-2527 (((-3 |#2| "failed") $) 30)) (-1469 ((|#2| $) 31)) (-3014 (($ $) 192 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 168 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) 188 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 164 (|has| |#1| (-38 (-406 (-561)))))) (-1659 (((-561) $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-1543 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 57)) (-3039 (($ $) 196 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) 144) (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-1166) "failed") $) NIL (-12 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-3979 ((|#2| $) 143) (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-1166) $) NIL (-12 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-1857 (($ $) 61) (($ (-561) $) 24)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3720 (((-682 |#2|) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#1| (-362))))) (-3735 (((-3 $ "failed") $) 77)) (-4243 (((-406 (-945 |#1|)) $ (-561)) 112 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 114 (|has| |#1| (-553)))) (-1362 (($) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-1784 (((-112) $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-4372 (((-112) $) 64)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#2| (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#2| (-879 (-561))) (|has| |#1| (-362))))) (-4027 (((-561) $) 93) (((-561) $ (-561)) 95)) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL (|has| |#1| (-362)))) (-4077 ((|#2| $) 151 (|has| |#1| (-362)))) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2436 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1141)) (|has| |#1| (-362))))) (-3271 (((-112) $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3508 (($ $ (-914)) 136)) (-3236 (($ (-1 |#1| (-561)) $) 132)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-561)) 19) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-1597 (($ $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3017 (($ $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4165 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-4364 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1484 (($ (-561) |#2|) 10)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 145 (|has| |#1| (-362)))) (-2563 (($ $) 214 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 219 (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190)))))) (-3767 (($) NIL (-12 (|has| |#2| (-1141)) (|has| |#1| (-362))) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2569 (($ $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4020 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-561)) 126)) (-1748 (((-3 $ "failed") $ $) 116 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3486 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) |#2|) NIL (-12 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 |#2|)) NIL (-12 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-561)) 91) (($ $ $) 79 (|has| (-561) (-1102))) (($ $ |#2|) NIL (-12 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4050 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 137 (-4050 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) 140 (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1969 (($ $) NIL (|has| |#1| (-362)))) (-4088 ((|#2| $) 152 (|has| |#1| (-362)))) (-3768 (((-561) $) 12)) (-3052 (($ $) 198 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 194 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 190 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 166 (|has| |#1| (-38 (-406 (-561)))))) (-4216 (((-224) $) NIL (-12 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-534) $) NIL (-12 (|has| |#2| (-609 (-534))) (|has| |#1| (-362)))) (((-885 (-378)) $) NIL (-12 (|has| |#2| (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) NIL (-12 (|has| |#2| (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902)) (|has| |#1| (-362))))) (-3426 (($ $) 124)) (-4064 (((-856) $) 244) (($ (-561)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1166)) NIL (-12 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362)))) (($ (-406 (-561))) 155 (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-3932 ((|#1| $ (-561)) 74)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#2| (-902)) (|has| |#1| (-362))) (-12 (|has| |#2| (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3746 (((-765)) 142)) (-2298 ((|#1| $) 90)) (-2449 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3086 (($ $) 204 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 180 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) 200 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 208 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 184 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-561)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 210 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 206 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 182 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 202 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-2165 (($ $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-2246 (($) 13 T CONST)) (-2257 (($) 17 T CONST)) (-3154 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4050 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) NIL (-4050 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1781 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1758 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1723 (((-112) $ $) 63)) (-1770 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1746 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-1819 (($ $) 213) (($ $ $) 68)) (-1810 (($ $ $) 66)) (** (($ $ (-914)) NIL) (($ $ (-765)) 73) (($ $ (-561)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1217 |#1| |#2|) (-1216 |#1| |#2|) (-1042) (-1245 |#1|)) (T -1217))
-NIL
-(-1216 |#1| |#2|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-3892 (((-1246 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 10)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3012 (($ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3163 (((-112) $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-1991 (($ $ (-561)) NIL) (($ $ (-561) (-561)) NIL)) (-4228 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) NIL)) (-3580 (((-1246 |#1| |#2| |#3|) $) NIL)) (-2527 (((-3 (-1246 |#1| |#2| |#3|) "failed") $) NIL)) (-1469 (((-1246 |#1| |#2| |#3|) $) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1659 (((-561) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-1543 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) NIL)) (-3039 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-1246 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-561) "failed") $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-3979 (((-1246 |#1| |#2| |#3|) $) NIL) (((-1166) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-561)) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-561) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-1857 (($ $) NIL) (($ (-561) $) NIL)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-1246 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 (-1246 |#1| |#2| |#3|))) (|:| |vec| (-1254 (-1246 |#1| |#2| |#3|)))) (-682 $) (-1254 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362))))) (-3735 (((-3 $ "failed") $) NIL)) (-4243 (((-406 (-945 |#1|)) $ (-561)) NIL (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) NIL (|has| |#1| (-553)))) (-1362 (($) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-1784 (((-112) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-879 (-561))) (|has| |#1| (-362))))) (-4027 (((-561) $) NIL) (((-561) $ (-561)) NIL)) (-2252 (((-112) $) NIL)) (-3307 (($ $) NIL (|has| |#1| (-362)))) (-4077 (((-1246 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2436 (((-3 $ "failed") $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-3271 (((-112) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3508 (($ $ (-914)) NIL)) (-3236 (($ (-1 |#1| (-561)) $) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-561)) 17) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-1597 (($ $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3017 (($ $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4364 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1484 (($ (-561) (-1246 |#1| |#2| |#3|)) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-2563 (($ $) 25 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1250 |#2|)) 26 (|has| |#1| (-38 (-406 (-561)))))) (-3767 (($) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2569 (($ $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4020 (((-1246 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-561)) NIL)) (-1748 (((-3 $ "failed") $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3486 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) (-1246 |#1| |#2| |#3|)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-512 (-1166) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-1246 |#1| |#2| |#3|))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-512 (-1166) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-293 (-1246 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-308 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1246 |#1| |#2| |#3|))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-308 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-308 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1246 |#1| |#2| |#3|)) (-638 (-1246 |#1| |#2| |#3|))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-308 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-561)) NIL) (($ $ $) NIL (|has| (-561) (-1102))) (($ $ (-1246 |#1| |#2| |#3|)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-285 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1250 |#2|)) 24) (($ $ (-765)) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 23 (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1969 (($ $) NIL (|has| |#1| (-362)))) (-4088 (((-1246 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-3768 (((-561) $) NIL)) (-3052 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4216 (((-534) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-609 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-885 (-378)) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3426 (($ $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1246 |#1| |#2| |#3|)) NIL) (($ (-1250 |#2|)) 22) (($ (-1166)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553)))) (($ (-406 (-561))) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-561))))))) (-3932 ((|#1| $ (-561)) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) 11)) (-2449 (((-1246 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3086 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-561)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2165 (($ $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-2246 (($) 19 T CONST)) (-2257 (($) 15 T CONST)) (-3154 (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1781 (((-112) $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1758 (((-112) $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1746 (((-112) $ $) NIL (-4050 (-12 (|has| (-1246 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 20)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1246 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1246 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1218 |#1| |#2| |#3|) (-13 (-1216 |#1| (-1246 |#1| |#2| |#3|)) (-10 -8 (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1218))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(-13 (-1216 |#1| (-1246 |#1| |#2| |#3|)) (-10 -8 (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|)))
-((-4354 (((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112)) 12)) (-2989 (((-417 |#1|) |#1|) 22)) (-1633 (((-417 |#1|) |#1|) 21)))
-(((-1219 |#1|) (-10 -7 (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2989 ((-417 |#1|) |#1|)) (-15 -4354 ((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112)))) (-1230 (-561))) (T -1219))
-((-4354 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561))))))) (-5 *1 (-1219 *3)) (-4 *3 (-1230 (-561))))) (-2989 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1230 (-561))))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1230 (-561))))))
-(-10 -7 (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2989 ((-417 |#1|) |#1|)) (-15 -4354 ((-2 (|:| |contp| (-561)) (|:| -2762 (-638 (-2 (|:| |irr| |#1|) (|:| -3453 (-561)))))) |#1| (-112))))
-((-4165 (((-1146 |#2|) (-1 |#2| |#1|) (-1221 |#1|)) 23 (|has| |#1| (-842))) (((-1221 |#2|) (-1 |#2| |#1|) (-1221 |#1|)) 17)))
-(((-1220 |#1| |#2|) (-10 -7 (-15 -4165 ((-1221 |#2|) (-1 |#2| |#1|) (-1221 |#1|))) (IF (|has| |#1| (-842)) (-15 -4165 ((-1146 |#2|) (-1 |#2| |#1|) (-1221 |#1|))) |%noBranch|)) (-1205) (-1205)) (T -1220))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5)) (-4 *5 (-842)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1146 *6)) (-5 *1 (-1220 *5 *6)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1221 *6)) (-5 *1 (-1220 *5 *6)))))
-(-10 -7 (-15 -4165 ((-1221 |#2|) (-1 |#2| |#1|) (-1221 |#1|))) (IF (|has| |#1| (-842)) (-15 -4165 ((-1146 |#2|) (-1 |#2| |#1|) (-1221 |#1|))) |%noBranch|))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2650 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4165 (((-1146 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-842)))) (-2438 ((|#1| $) 14)) (-1737 ((|#1| $) 10)) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1751 (((-561) $) 18)) (-3140 ((|#1| $) 17)) (-2035 ((|#1| $) 11)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1293 (((-112) $) 16)) (-3582 (((-1146 |#1|) $) 38 (|has| |#1| (-842))) (((-1146 |#1|) (-638 $)) 37 (|has| |#1| (-842)))) (-4216 (($ |#1|) 25)) (-4064 (($ (-1084 |#1|)) 24) (((-856) $) 34 (|has| |#1| (-1090)))) (-3890 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1483 (($ $ (-561)) 13)) (-1723 (((-112) $ $) 27 (|has| |#1| (-1090)))))
-(((-1221 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -3890 ($ |#1|)) (-15 -2650 ($ |#1|)) (-15 -4064 ($ (-1084 |#1|))) (-15 -1293 ((-112) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1146 |#1|))) |%noBranch|))) (-1205)) (T -1221))
-((-3890 (*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1205)))) (-2650 (*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1205)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-1205)) (-5 *1 (-1221 *3)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1205)))))
-(-13 (-1083 |#1|) (-10 -8 (-15 -3890 ($ |#1|)) (-15 -2650 ($ |#1|)) (-15 -4064 ($ (-1084 |#1|))) (-15 -1293 ((-112) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1146 |#1|))) |%noBranch|)))
-((-4165 (((-1227 |#3| |#4|) (-1 |#4| |#2|) (-1227 |#1| |#2|)) 15)))
-(((-1222 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 ((-1227 |#3| |#4|) (-1 |#4| |#2|) (-1227 |#1| |#2|)))) (-1166) (-1042) (-1166) (-1042)) (T -1222))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1227 *5 *6)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1227 *7 *8)) (-5 *1 (-1222 *5 *6 *7 *8)) (-14 *7 (-1166)))))
-(-10 -7 (-15 -4165 ((-1227 |#3| |#4|) (-1 |#4| |#2|) (-1227 |#1| |#2|))))
-((-4189 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1930 ((|#1| |#3|) 13)) (-3027 ((|#3| |#3|) 19)))
-(((-1223 |#1| |#2| |#3|) (-10 -7 (-15 -1930 (|#1| |#3|)) (-15 -3027 (|#3| |#3|)) (-15 -4189 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-553) (-985 |#1|) (-1230 |#2|)) (T -1223))
-((-4189 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1223 *4 *5 *3)) (-4 *3 (-1230 *5)))) (-3027 (*1 *2 *2) (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-1223 *3 *4 *2)) (-4 *2 (-1230 *4)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-1223 *2 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -1930 (|#1| |#3|)) (-15 -3027 (|#3| |#3|)) (-15 -4189 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1803 (((-3 |#2| "failed") |#2| (-765) |#1|) 29)) (-1641 (((-3 |#2| "failed") |#2| (-765)) 30)) (-2194 (((-3 (-2 (|:| -1586 |#2|) (|:| -1599 |#2|)) "failed") |#2|) 42)) (-3509 (((-638 |#2|) |#2|) 44)) (-3292 (((-3 |#2| "failed") |#2| |#2|) 39)))
-(((-1224 |#1| |#2|) (-10 -7 (-15 -1641 ((-3 |#2| "failed") |#2| (-765))) (-15 -1803 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -3292 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2194 ((-3 (-2 (|:| -1586 |#2|) (|:| -1599 |#2|)) "failed") |#2|)) (-15 -3509 ((-638 |#2|) |#2|))) (-13 (-553) (-146)) (-1230 |#1|)) (T -1224))
-((-3509 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-146))) (-5 *2 (-638 *3)) (-5 *1 (-1224 *4 *3)) (-4 *3 (-1230 *4)))) (-2194 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-553) (-146))) (-5 *2 (-2 (|:| -1586 *3) (|:| -1599 *3))) (-5 *1 (-1224 *4 *3)) (-4 *3 (-1230 *4)))) (-3292 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-1230 *3)))) (-1803 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-1224 *4 *2)) (-4 *2 (-1230 *4)))) (-1641 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-1224 *4 *2)) (-4 *2 (-1230 *4)))))
-(-10 -7 (-15 -1641 ((-3 |#2| "failed") |#2| (-765))) (-15 -1803 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -3292 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2194 ((-3 (-2 (|:| -1586 |#2|) (|:| -1599 |#2|)) "failed") |#2|)) (-15 -3509 ((-638 |#2|) |#2|)))
-((-2717 (((-3 (-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) "failed") |#2| |#2|) 31)))
-(((-1225 |#1| |#2|) (-10 -7 (-15 -2717 ((-3 (-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) "failed") |#2| |#2|))) (-553) (-1230 |#1|)) (T -1225))
-((-2717 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-1225 *4 *3)) (-4 *3 (-1230 *4)))))
-(-10 -7 (-15 -2717 ((-3 (-2 (|:| -2970 |#2|) (|:| -1744 |#2|)) "failed") |#2| |#2|)))
-((-1639 ((|#2| |#2| |#2|) 19)) (-1327 ((|#2| |#2| |#2|) 30)) (-3694 ((|#2| |#2| |#2| (-765) (-765)) 36)))
-(((-1226 |#1| |#2|) (-10 -7 (-15 -1639 (|#2| |#2| |#2|)) (-15 -1327 (|#2| |#2| |#2|)) (-15 -3694 (|#2| |#2| |#2| (-765) (-765)))) (-1042) (-1230 |#1|)) (T -1226))
-((-3694 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1226 *4 *2)) (-4 *2 (-1230 *4)))) (-1327 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-1230 *3)))) (-1639 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-1230 *3)))))
-(-10 -7 (-15 -1639 (|#2| |#2| |#2|)) (-15 -1327 (|#2| |#2| |#2|)) (-15 -3694 (|#2| |#2| |#2| (-765) (-765))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2811 (((-1254 |#2|) $ (-765)) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-1493 (($ (-1162 |#2|)) NIL)) (-1596 (((-1162 $) $ (-1072)) NIL) (((-1162 |#2|) $) NIL)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-3012 (($ $) NIL (|has| |#2| (-553)))) (-3163 (((-112) $) NIL (|has| |#2| (-553)))) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-3431 (($ $ $) NIL (|has| |#2| (-553)))) (-2128 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-2557 (($ $) NIL (|has| |#2| (-450)))) (-3552 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3698 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2525 (($ $ (-765)) NIL)) (-2613 (($ $ (-765)) NIL)) (-2241 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-450)))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL)) (-3979 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-1072) $) NIL)) (-2395 (($ $ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-1792 (($ $ $) NIL (|has| |#2| (-362)))) (-1598 (($ $) NIL)) (-3720 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#2|)) (|:| |vec| (-1254 |#2|))) (-682 $) (-1254 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-1771 (($ $ $) NIL (|has| |#2| (-362)))) (-1666 (($ $ $) NIL)) (-3022 (($ $ $) NIL (|has| |#2| (-553)))) (-2566 (((-2 (|:| -4226 |#2|) (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#2| (-553)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#2| (-362)))) (-4229 (($ $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-1584 (((-638 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-902)))) (-3227 (($ $ |#2| (-765) $) NIL)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-4027 (((-765) $ $) NIL (|has| |#2| (-553)))) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-2436 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-1393 (($ (-1162 |#2|) (-1072)) NIL) (($ (-1162 $) (-1072)) NIL)) (-3508 (($ $ (-765)) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-1381 (($ |#2| (-765)) 17) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-1072)) NIL) (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL)) (-1522 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-1597 (($ $ $) NIL (|has| |#2| (-844)))) (-3017 (($ $ $) NIL (|has| |#2| (-844)))) (-1368 (($ (-1 (-765) (-765)) $) NIL)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-1709 (((-1162 |#2|) $) NIL)) (-2830 (((-3 (-1072) "failed") $) NIL)) (-1557 (($ $) NIL)) (-1572 ((|#2| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1883 (((-1148) $) NIL)) (-4311 (((-2 (|:| -2970 $) (|:| -1744 $)) $ (-765)) NIL)) (-4174 (((-3 (-638 $) "failed") $) NIL)) (-2540 (((-3 (-638 $) "failed") $) NIL)) (-3276 (((-3 (-2 (|:| |var| (-1072)) (|:| -4181 (-765))) "failed") $) NIL)) (-2563 (($ $) NIL (|has| |#2| (-38 (-406 (-561)))))) (-3767 (($) NIL (|has| |#2| (-1141)) CONST)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 ((|#2| $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1603 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3960 (($ $ (-765) |#2| $) NIL)) (-4328 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1633 (((-417 $) $) NIL (|has| |#2| (-902)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#2| (-362)))) (-1748 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-1436 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#2|) NIL) (($ $ (-638 (-1072)) (-638 |#2|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-1905 (((-765) $) NIL (|has| |#2| (-362)))) (-2315 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-553))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-553)))) (-3559 (((-3 $ "failed") $ (-765)) NIL)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#2| (-362)))) (-2753 (($ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-3922 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3768 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4216 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-2125 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-2280 (((-3 $ "failed") $ $) NIL (|has| |#2| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#2| (-553)))) (-4064 (((-856) $) 13) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-1072)) NIL) (($ (-1250 |#1|)) 19) (($ (-406 (-561))) NIL (-4050 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-3666 (((-3 $ "failed") $) NIL (-4050 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3996 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2246 (($) NIL T CONST)) (-2257 (($) 14 T CONST)) (-3154 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1723 (((-112) $ $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1828 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1227 |#1| |#2|) (-13 (-1230 |#2|) (-611 (-1250 |#1|)) (-10 -8 (-15 -3960 ($ $ (-765) |#2| $)))) (-1166) (-1042)) (T -1227))
-((-3960 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1227 *4 *3)) (-14 *4 (-1166)) (-4 *3 (-1042)))))
-(-13 (-1230 |#2|) (-611 (-1250 |#1|)) (-10 -8 (-15 -3960 ($ $ (-765) |#2| $))))
-((-4165 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1228 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|))) (-1042) (-1230 |#1|) (-1042) (-1230 |#3|)) (T -1228))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1230 *6)) (-5 *1 (-1228 *5 *4 *6 *2)) (-4 *4 (-1230 *5)))))
-(-10 -7 (-15 -4165 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2811 (((-1254 |#2|) $ (-765)) 114)) (-1405 (((-638 (-1072)) $) 15)) (-1493 (($ (-1162 |#2|)) 67)) (-3827 (((-765) $) NIL) (((-765) $ (-638 (-1072))) 18)) (-2128 (((-417 (-1162 $)) (-1162 $)) 184)) (-2557 (($ $) 174)) (-3552 (((-417 $) $) 172)) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 82)) (-2525 (($ $ (-765)) 71)) (-2613 (($ $ (-765)) 73)) (-2241 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-4061 (((-3 |#2| "failed") $) 117) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 (-1072) "failed") $) NIL)) (-3979 ((|#2| $) 115) (((-406 (-561)) $) NIL) (((-561) $) NIL) (((-1072) $) NIL)) (-3022 (($ $ $) 151)) (-2566 (((-2 (|:| -4226 |#2|) (|:| -2970 $) (|:| -1744 $)) $ $) 153)) (-4027 (((-765) $ $) 169)) (-2436 (((-3 $ "failed") $) 123)) (-1381 (($ |#2| (-765)) NIL) (($ $ (-1072) (-765)) 47) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-1522 (((-765) $) NIL) (((-765) $ (-1072)) 42) (((-638 (-765)) $ (-638 (-1072))) 43)) (-1709 (((-1162 |#2|) $) 59)) (-2830 (((-3 (-1072) "failed") $) 40)) (-4311 (((-2 (|:| -2970 $) (|:| -1744 $)) $ (-765)) 70)) (-2563 (($ $) 196)) (-3767 (($) 119)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 181)) (-4328 (((-417 (-1162 $)) (-1162 $)) 88)) (-3035 (((-417 (-1162 $)) (-1162 $)) 86)) (-1633 (((-417 $) $) 107)) (-1436 (($ $ (-638 (-293 $))) 39) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#2|) 31) (($ $ (-638 (-1072)) (-638 |#2|)) 28) (($ $ (-1072) $) 25) (($ $ (-638 (-1072)) (-638 $)) 23)) (-1905 (((-765) $) 187)) (-2315 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 190)) (-3922 (($ $ (-1072)) 140) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) 138) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3768 (((-765) $) NIL) (((-765) $ (-1072)) 16) (((-638 (-765)) $ (-638 (-1072))) 20)) (-2125 ((|#2| $) NIL) (($ $ (-1072)) 125)) (-2280 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-1072)) 51) (($ (-406 (-561))) NIL) (($ $) NIL)))
-(((-1229 |#1| |#2|) (-10 -8 (-15 -4064 (|#1| |#1|)) (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -2315 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1905 ((-765) |#1|)) (-15 -1421 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -2315 (|#2| (-406 |#1|) |#2|)) (-15 -2241 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2566 ((-2 (|:| -4226 |#2|) (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -2280 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -2280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4027 ((-765) |#1| |#1|)) (-15 -2315 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2613 (|#1| |#1| (-765))) (-15 -2525 (|#1| |#1| (-765))) (-15 -4311 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| (-765))) (-15 -1493 (|#1| (-1162 |#2|))) (-15 -1709 ((-1162 |#2|) |#1|)) (-15 -2811 ((-1254 |#2|) |#1| (-765))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -2315 (|#1| |#1| |#1|)) (-15 -2315 (|#2| |#1| |#2|)) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2128 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3035 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -4328 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2125 (|#1| |#1| (-1072))) (-15 -1405 ((-638 (-1072)) |#1|)) (-15 -3827 ((-765) |#1| (-638 (-1072)))) (-15 -3827 ((-765) |#1|)) (-15 -1381 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -1381 (|#1| |#1| (-1072) (-765))) (-15 -1522 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -1522 ((-765) |#1| (-1072))) (-15 -2830 ((-3 (-1072) "failed") |#1|)) (-15 -3768 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -3768 ((-765) |#1| (-1072))) (-15 -4064 (|#1| (-1072))) (-15 -4061 ((-3 (-1072) "failed") |#1|)) (-15 -3979 ((-1072) |#1|)) (-15 -1436 (|#1| |#1| (-638 (-1072)) (-638 |#1|))) (-15 -1436 (|#1| |#1| (-1072) |#1|)) (-15 -1436 (|#1| |#1| (-638 (-1072)) (-638 |#2|))) (-15 -1436 (|#1| |#1| (-1072) |#2|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -3768 ((-765) |#1|)) (-15 -1381 (|#1| |#2| (-765))) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -1522 ((-765) |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -3922 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1072) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1072)))) (-15 -3922 (|#1| |#1| (-1072))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|))) (-1230 |#2|) (-1042)) (T -1229))
-NIL
-(-10 -8 (-15 -4064 (|#1| |#1|)) (-15 -2002 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3552 ((-417 |#1|) |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -3767 (|#1|)) (-15 -2436 ((-3 |#1| "failed") |#1|)) (-15 -2315 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1905 ((-765) |#1|)) (-15 -1421 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -2315 (|#2| (-406 |#1|) |#2|)) (-15 -2241 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2566 ((-2 (|:| -4226 |#2|) (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -2280 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -2280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4027 ((-765) |#1| |#1|)) (-15 -2315 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2613 (|#1| |#1| (-765))) (-15 -2525 (|#1| |#1| (-765))) (-15 -4311 ((-2 (|:| -2970 |#1|) (|:| -1744 |#1|)) |#1| (-765))) (-15 -1493 (|#1| (-1162 |#2|))) (-15 -1709 ((-1162 |#2|) |#1|)) (-15 -2811 ((-1254 |#2|) |#1| (-765))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3922 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1166) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1166)))) (-15 -3922 (|#1| |#1| (-1166))) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| |#1| (-765))) (-15 -2315 (|#1| |#1| |#1|)) (-15 -2315 (|#2| |#1| |#2|)) (-15 -1633 ((-417 |#1|) |#1|)) (-15 -2128 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3035 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -4328 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -1963 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2125 (|#1| |#1| (-1072))) (-15 -1405 ((-638 (-1072)) |#1|)) (-15 -3827 ((-765) |#1| (-638 (-1072)))) (-15 -3827 ((-765) |#1|)) (-15 -1381 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -1381 (|#1| |#1| (-1072) (-765))) (-15 -1522 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -1522 ((-765) |#1| (-1072))) (-15 -2830 ((-3 (-1072) "failed") |#1|)) (-15 -3768 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -3768 ((-765) |#1| (-1072))) (-15 -4064 (|#1| (-1072))) (-15 -4061 ((-3 (-1072) "failed") |#1|)) (-15 -3979 ((-1072) |#1|)) (-15 -1436 (|#1| |#1| (-638 (-1072)) (-638 |#1|))) (-15 -1436 (|#1| |#1| (-1072) |#1|)) (-15 -1436 (|#1| |#1| (-638 (-1072)) (-638 |#2|))) (-15 -1436 (|#1| |#1| (-1072) |#2|)) (-15 -1436 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1436 (|#1| |#1| |#1| |#1|)) (-15 -1436 (|#1| |#1| (-293 |#1|))) (-15 -1436 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -3768 ((-765) |#1|)) (-15 -1381 (|#1| |#2| (-765))) (-15 -4061 ((-3 (-561) "failed") |#1|)) (-15 -3979 ((-561) |#1|)) (-15 -4061 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3979 ((-406 (-561)) |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -4061 ((-3 |#2| "failed") |#1|)) (-15 -4064 (|#1| |#2|)) (-15 -1522 ((-765) |#1|)) (-15 -2125 (|#2| |#1|)) (-15 -3922 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -3922 (|#1| |#1| (-1072) (-765))) (-15 -3922 (|#1| |#1| (-638 (-1072)))) (-15 -3922 (|#1| |#1| (-1072))) (-15 -4064 (|#1| (-561))) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2811 (((-1254 |#1|) $ (-765)) 238)) (-1405 (((-638 (-1072)) $) 110)) (-1493 (($ (-1162 |#1|)) 236)) (-1596 (((-1162 $) $ (-1072)) 125) (((-1162 |#1|) $) 124)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-3012 (($ $) 88 (|has| |#1| (-553)))) (-3163 (((-112) $) 90 (|has| |#1| (-553)))) (-3827 (((-765) $) 112) (((-765) $ (-638 (-1072))) 111)) (-2979 (((-3 $ "failed") $ $) 19)) (-3431 (($ $ $) 223 (|has| |#1| (-553)))) (-2128 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-2557 (($ $) 98 (|has| |#1| (-450)))) (-3552 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1963 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-3698 (((-112) $ $) 208 (|has| |#1| (-362)))) (-2525 (($ $ (-765)) 231)) (-2613 (($ $ (-765)) 230)) (-2241 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-450)))) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) 136)) (-3979 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) (((-1072) $) 137)) (-2395 (($ $ $ (-1072)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-1792 (($ $ $) 212 (|has| |#1| (-362)))) (-1598 (($ $) 154)) (-3720 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 (-561))) (|:| |vec| (-1254 (-561)))) (-682 $) (-1254 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -2942 (-682 |#1|)) (|:| |vec| (-1254 |#1|))) (-682 $) (-1254 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 211 (|has| |#1| (-362)))) (-1666 (($ $ $) 229)) (-3022 (($ $ $) 220 (|has| |#1| (-553)))) (-2566 (((-2 (|:| -4226 |#1|) (|:| -2970 $) (|:| -1744 $)) $ $) 219 (|has| |#1| (-553)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 206 (|has| |#1| (-362)))) (-4229 (($ $) 176 (|has| |#1| (-450))) (($ $ (-1072)) 105 (|has| |#1| (-450)))) (-1584 (((-638 $) $) 109)) (-2725 (((-112) $) 96 (|has| |#1| (-902)))) (-3227 (($ $ |#1| (-765) $) 172)) (-2199 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4027 (((-765) $ $) 224 (|has| |#1| (-553)))) (-2252 (((-112) $) 31)) (-2044 (((-765) $) 169)) (-2436 (((-3 $ "failed") $) 204 (|has| |#1| (-1141)))) (-1393 (($ (-1162 |#1|) (-1072)) 117) (($ (-1162 $) (-1072)) 116)) (-3508 (($ $ (-765)) 235)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 215 (|has| |#1| (-362)))) (-1859 (((-638 $) $) 126)) (-1750 (((-112) $) 152)) (-1381 (($ |#1| (-765)) 153) (($ $ (-1072) (-765)) 119) (($ $ (-638 (-1072)) (-638 (-765))) 118)) (-4362 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $ (-1072)) 120) (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 233)) (-1522 (((-765) $) 170) (((-765) $ (-1072)) 122) (((-638 (-765)) $ (-638 (-1072))) 121)) (-1597 (($ $ $) 79 (|has| |#1| (-844)))) (-3017 (($ $ $) 78 (|has| |#1| (-844)))) (-1368 (($ (-1 (-765) (-765)) $) 171)) (-4165 (($ (-1 |#1| |#1|) $) 151)) (-1709 (((-1162 |#1|) $) 237)) (-2830 (((-3 (-1072) "failed") $) 123)) (-1557 (($ $) 149)) (-1572 ((|#1| $) 148)) (-1563 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-1883 (((-1148) $) 9)) (-4311 (((-2 (|:| -2970 $) (|:| -1744 $)) $ (-765)) 232)) (-4174 (((-3 (-638 $) "failed") $) 114)) (-2540 (((-3 (-638 $) "failed") $) 115)) (-3276 (((-3 (-2 (|:| |var| (-1072)) (|:| -4181 (-765))) "failed") $) 113)) (-2563 (($ $) 216 (|has| |#1| (-38 (-406 (-561)))))) (-3767 (($) 203 (|has| |#1| (-1141)) CONST)) (-1701 (((-1110) $) 10)) (-1530 (((-112) $) 166)) (-1542 ((|#1| $) 167)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1603 (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-4328 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3035 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1633 (((-417 $) $) 99 (|has| |#1| (-902)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 213 (|has| |#1| (-362)))) (-1748 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 207 (|has| |#1| (-362)))) (-1436 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ (-1072) |#1|) 141) (($ $ (-638 (-1072)) (-638 |#1|)) 140) (($ $ (-1072) $) 139) (($ $ (-638 (-1072)) (-638 $)) 138)) (-1905 (((-765) $) 209 (|has| |#1| (-362)))) (-2315 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-553)))) (-3559 (((-3 $ "failed") $ (-765)) 234)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 210 (|has| |#1| (-362)))) (-2753 (($ $ (-1072)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-3922 (($ $ (-1072)) 42) (($ $ (-638 (-1072))) 41) (($ $ (-1072) (-765)) 40) (($ $ (-638 (-1072)) (-638 (-765))) 39) (($ $ (-765)) 253) (($ $) 251) (($ $ (-1166)) 250 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 249 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 248 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 247 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3768 (((-765) $) 150) (((-765) $ (-1072)) 130) (((-638 (-765)) $ (-638 (-1072))) 129)) (-4216 (((-885 (-378)) $) 82 (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-2125 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ (-1072)) 106 (|has| |#1| (-450)))) (-2881 (((-3 (-1254 $) "failed") (-682 $)) 104 (-2198 (|has| $ (-144)) (|has| |#1| (-902))))) (-2280 (((-3 $ "failed") $ $) 222 (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-553)))) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ (-1072)) 135) (($ (-406 (-561))) 72 (-4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561)))))) (($ $) 85 (|has| |#1| (-553)))) (-1868 (((-638 |#1|) $) 168)) (-3932 ((|#1| $ (-765)) 155) (($ $ (-1072) (-765)) 128) (($ $ (-638 (-1072)) (-638 (-765))) 127)) (-3666 (((-3 $ "failed") $) 73 (-4050 (-2198 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-3746 (((-765)) 28)) (-2803 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3996 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-1072)) 38) (($ $ (-638 (-1072))) 37) (($ $ (-1072) (-765)) 36) (($ $ (-638 (-1072)) (-638 (-765))) 35) (($ $ (-765)) 254) (($ $) 252) (($ $ (-1166)) 246 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 245 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 244 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 243 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1781 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 6)) (-1770 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1828 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1230 |#1|) (-139) (-1042)) (T -1230))
-((-2811 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1230 *4)) (-4 *4 (-1042)) (-5 *2 (-1254 *4)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1042)) (-5 *2 (-1162 *3)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-1042)) (-4 *1 (-1230 *3)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))) (-3559 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))) (-4362 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1230 *3)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1230 *4)))) (-2525 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))) (-2613 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)))) (-3922 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))) (-2753 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-2395 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-2315 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)) (-4 *3 (-553)))) (-4027 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1042)) (-4 *3 (-553)) (-5 *2 (-765)))) (-3431 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-2280 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-2280 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)) (-4 *3 (-553)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -4226 *3) (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1230 *3)))) (-2241 (*1 *2 *1 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1230 *3)))) (-2315 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2563 (*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))))
-(-13 (-942 |t#1| (-765) (-1072)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -2811 ((-1254 |t#1|) $ (-765))) (-15 -1709 ((-1162 |t#1|) $)) (-15 -1493 ($ (-1162 |t#1|))) (-15 -3508 ($ $ (-765))) (-15 -3559 ((-3 $ "failed") $ (-765))) (-15 -4362 ((-2 (|:| -2970 $) (|:| -1744 $)) $ $)) (-15 -4311 ((-2 (|:| -2970 $) (|:| -1744 $)) $ (-765))) (-15 -2525 ($ $ (-765))) (-15 -2613 ($ $ (-765))) (-15 -1666 ($ $ $)) (-15 -3922 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2753 (|t#1| $)) (-15 -2395 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -2315 ((-406 $) (-406 $) (-406 $))) (-15 -4027 ((-765) $ $)) (-15 -3431 ($ $ $)) (-15 -2280 ((-3 $ "failed") $ $)) (-15 -2280 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -3022 ($ $ $)) (-15 -2566 ((-2 (|:| -4226 |t#1|) (|:| -2970 $) (|:| -1744 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-15 -2241 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4395) (-15 -2315 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (-15 -2563 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-765)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4050 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 #2=(-1072)) . T) ((-611 |#1|) . T) ((-611 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-553)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #0#) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4050 (|has| |#1| (-902)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-512 #2# |#1|) . T) ((-512 #2# $) . T) ((-512 $ $) . T) ((-553) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-641 #1#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 #2#) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-378)) -12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378)))) ((-879 (-561)) -12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))) ((-942 |#1| #0# #2#) . T) ((-902) |has| |#1| (-902)) ((-913) |has| |#1| (-362)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #2#) . T) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-1141)) ((-1209) |has| |#1| (-902)))
-((-1405 (((-638 (-1072)) $) 28)) (-1598 (($ $) 25)) (-1381 (($ |#2| |#3|) NIL) (($ $ (-1072) |#3|) 22) (($ $ (-638 (-1072)) (-638 |#3|)) 21)) (-1557 (($ $) 14)) (-1572 ((|#2| $) 12)) (-3768 ((|#3| $) 10)))
-(((-1231 |#1| |#2| |#3|) (-10 -8 (-15 -1405 ((-638 (-1072)) |#1|)) (-15 -1381 (|#1| |#1| (-638 (-1072)) (-638 |#3|))) (-15 -1381 (|#1| |#1| (-1072) |#3|)) (-15 -1598 (|#1| |#1|)) (-15 -1381 (|#1| |#2| |#3|)) (-15 -3768 (|#3| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1572 (|#2| |#1|))) (-1232 |#2| |#3|) (-1042) (-786)) (T -1231))
-NIL
-(-10 -8 (-15 -1405 ((-638 (-1072)) |#1|)) (-15 -1381 (|#1| |#1| (-638 (-1072)) (-638 |#3|))) (-15 -1381 (|#1| |#1| (-1072) |#3|)) (-15 -1598 (|#1| |#1|)) (-15 -1381 (|#1| |#2| |#3|)) (-15 -3768 (|#3| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1572 (|#2| |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 (-1072)) $) 77)) (-2421 (((-1166) $) 106)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-1991 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-4228 (((-1146 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-4372 (((-112) $) 76)) (-4027 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2252 (((-112) $) 31)) (-3508 (($ $ (-914)) 104)) (-1750 (((-112) $) 65)) (-1381 (($ |#1| |#2|) 64) (($ $ (-1072) |#2|) 79) (($ $ (-638 (-1072)) (-638 |#2|)) 78)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3702 (($ $ |#2|) 98)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-1436 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2315 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1102)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3768 ((|#2| $) 67)) (-3426 (($ $) 75)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3932 ((|#1| $ |#2|) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2298 ((|#1| $) 105)) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-1408 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+((-4130 (*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209)))) (-4181 (*1 *1 *1) (-4 *1 (-1209))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209)))))
+(-13 (-450) (-10 -8 (-15 -4130 ((-112) $)) (-15 -4376 ((-404 $) $)) (-15 -4181 ($ $)) (-15 -4139 ((-404 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) NIL)) (-4133 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
+(((-1210) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -1210))
+((-4133 (*1 *1 *1 *1) (-5 *1 (-1210))) (-4132 (*1 *1 *1 *1) (-5 *1 (-1210))) (-4131 (*1 *1) (-5 *1 (-1210))))
+(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))
+((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) NIL)) (-4133 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
+(((-1211) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -1211))
+((-4133 (*1 *1 *1 *1) (-5 *1 (-1211))) (-4132 (*1 *1 *1 *1) (-5 *1 (-1211))) (-4131 (*1 *1) (-5 *1 (-1211))))
+(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))
+((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) NIL)) (-4133 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)))
+(((-1212) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -1212))
+((-4133 (*1 *1 *1 *1) (-5 *1 (-1212))) (-4132 (*1 *1 *1 *1) (-5 *1 (-1212))) (-4131 (*1 *1) (-5 *1 (-1212))))
+(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))
+((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-1243 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 10)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2213 (($ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2211 (((-112) $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4177 (($ $ (-544)) NIL) (($ $ (-544) (-544)) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) NIL)) (-4138 (((-1243 |#1| |#2| |#3|) $) NIL)) (-4135 (((-3 (-1243 |#1| |#2| |#3|) "failed") $) NIL)) (-4136 (((-1243 |#1| |#2| |#3|) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1243 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-544)) #2#) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-544) #2#) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-3557 (((-1243 |#1| |#2| |#3|) $) NIL) (((-1166) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-544)) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-544) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-4137 (($ $) NIL) (($ (-544) $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-1243 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-1243 |#1| |#2| |#3|))) (|:| |vec| (-1253 (-1243 |#1| |#2| |#3|)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362))))) (-3866 (((-3 $ "failed") $) NIL)) (-4134 (((-406 (-939 |#1|)) $ (-544)) NIL (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) NIL (|has| |#1| (-554)))) (-3377 (($) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3587 (((-112) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-879 (-377))) (|has| |#1| (-362)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-879 (-544))) (|has| |#1| (-362))))) (-4178 (((-544) $) NIL) (((-544) $ (-544)) NIL)) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL (|has| |#1| (-362)))) (-3381 (((-1243 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-3588 (((-112) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4183 (($ $ (-912)) NIL)) (-4222 (($ (-1 |#1| (-544)) $) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-544)) 17) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-2913 (($ $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3242 (($ $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4185 (($ (-544) (-1243 |#1| |#2| |#3|)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 25 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 26 (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3513 (($ $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3515 (((-1243 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-544)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) (-1243 |#1| |#2| |#3|)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-512 (-1166) (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-1243 |#1| |#2| |#3|))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-512 (-1166) (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-292 (-1243 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-292 (-1243 |#1| |#2| |#3|))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1243 |#1| |#2| |#3|)) (-635 (-1243 |#1| |#2| |#3|))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) NIL) (($ $ $) NIL (|has| (-544) (-1102))) (($ $ (-1243 |#1| |#2| |#3|)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-285 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1250 |#2|)) 24) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 23 (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-3378 (($ $) NIL (|has| |#1| (-362)))) (-3380 (((-1243 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-4355 (((-544) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-533) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-609 (-533))) (|has| |#1| (-362)))) (((-377) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-883 (-377)) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-609 (-883 (-377)))) (|has| |#1| (-362)))) (((-883 (-544)) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-609 (-883 (-544)))) (|has| |#1| (-362))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1243 |#1| |#2| |#3|)) NIL) (($ (-1250 |#2|)) 22) (($ (-1166)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-544))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-544))))))) (-4084 ((|#1| $ (-544)) NIL)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 11)) (-3516 (((-1243 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3040 (($) 19 T CONST)) (-3046 (($) 15 T CONST)) (-3051 (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-2945 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-2946 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3067 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 20)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1243 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1243 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1213 |#1| |#2| |#3|) (-13 (-1217 |#1| (-1243 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1213))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1217 |#1| (-1243 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|)))
+((-4365 (((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)) 23)))
+(((-1214 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4365 ((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1214))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1213 *6 *8 *10)) (-5 *1 (-1214 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166)))))
+(-10 -7 (-15 -4365 ((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 101) (($ $ (-544) (-544)) 100)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 176)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 174 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 173 (|has| |#1| (-554)))) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-544) $) 103) (((-544) $ (-544)) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104)) (-4222 (($ (-1 |#1| (-544)) $) 175)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-544)) 64) (($ $ (-1072) (-544)) 79) (($ $ (-635 (-1072)) (-635 (-544))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-544)))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) 107) (($ $ $) 84 (|has| (-544) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-4355 (((-544) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-544)) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
+(((-1215 |#1|) (-139) (-1042)) (T -1215))
+((-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1215 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1215 *3)) (-4 *3 (-1042)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554)) (-5 *2 (-406 (-939 *4))))) (-4134 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554)) (-5 *2 (-406 (-939 *4))))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) (-4219 (*1 *1 *1 *2) (-3936 (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-544)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544)))))))))
+(-13 (-1232 |t#1| (-544)) (-10 -8 (-15 -4225 ($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |t#1|))))) (-15 -4222 ($ (-1 |t#1| (-544)) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -4134 ((-406 (-939 |t#1|)) $ (-544))) (-15 -4134 ((-406 (-939 |t#1|)) $ (-544) (-544)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (IF (|has| |t#1| (-15 -4219 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -3467 ((-635 (-1166)) |t#1|))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-953)) (IF (|has| |t#1| (-29 (-544))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-544)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-544) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-544) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #1#) . T))
+((-3589 (((-112) $) 12)) (-3558 (((-3 |#3| #1="failed") $) 17) (((-3 (-1166) #1#) $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL)) (-3557 ((|#3| $) 14) (((-1166) $) NIL) (((-406 (-544)) $) NIL) (((-544) $) NIL)))
+(((-1216 |#1| |#2| |#3|) (-10 -8 (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3558 ((-3 |#3| #1#) |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|))) (-1217 |#2| |#3|) (-1042) (-1246 |#2|)) (T -1216))
+NIL
+(-10 -8 (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3558 ((-3 |#3| #1#) |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 ((|#2| $) 231 (-3240 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 101) (($ $ (-544) (-544)) 100)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 108)) (-4138 ((|#2| $) 267)) (-4135 (((-3 |#2| "failed") $) 263)) (-4136 ((|#2| $) 264)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 240 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 237 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) 249 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 176)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#2| #2="failed") $) 270) (((-3 (-544) #2#) $) 260 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-406 (-544)) #2#) $) 258 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-1166) #2#) $) 242 (-3240 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-3557 ((|#2| $) 271) (((-544) $) 259 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-406 (-544)) $) 257 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-1166) $) 241 (-3240 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-4137 (($ $) 266) (($ (-544) $) 265)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-2401 (((-682 |#2|) (-682 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 219 (-3240 (|has| |#2| (-634 (-544))) (|has| |#1| (-362)))) (((-682 (-544)) (-682 $)) 218 (-3240 (|has| |#2| (-634 (-544))) (|has| |#1| (-362))))) (-3866 (((-3 $ "failed") $) 33)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 174 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 173 (|has| |#1| (-554)))) (-3377 (($) 233 (-3240 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3587 (((-112) $) 247 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 225 (-3240 (|has| |#2| (-879 (-377))) (|has| |#1| (-362)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 224 (-3240 (|has| |#2| (-879 (-544))) (|has| |#1| (-362))))) (-4178 (((-544) $) 103) (((-544) $ (-544)) 102)) (-2545 (((-112) $) 31)) (-3379 (($ $) 229 (|has| |#1| (-362)))) (-3381 ((|#2| $) 227 (|has| |#1| (-362)))) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) 261 (-3240 (|has| |#2| (-1141)) (|has| |#1| (-362))))) (-3588 (((-112) $) 248 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-4183 (($ $ (-912)) 104)) (-4222 (($ (-1 |#1| (-544)) $) 175)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-544)) 64) (($ $ (-1072) (-544)) 79) (($ $ (-635 (-1072)) (-635 (-544))) 78)) (-2913 (($ $ $) 251 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3242 (($ $ $) 252 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4365 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-4185 (($ (-544) |#2|) 268)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3849 (($) 262 (-3240 (|has| |#2| (-1141)) (|has| |#1| (-362))) CONST)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-3513 (($ $) 232 (-3240 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-3515 ((|#2| $) 235 (-3240 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3087 (((-404 (-1160 $)) (-1160 $)) 238 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-3088 (((-404 (-1160 $)) (-1160 $)) 239 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) |#2|) 212 (-3240 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 |#2|)) 211 (-3240 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-292 |#2|))) 210 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-292 |#2|)) 209 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-635 |#2|) (-635 |#2|)) 207 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) 107) (($ $ $) 84 (|has| (-544) (-1102))) (($ $ |#2|) 206 (-3240 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 216 (|has| |#1| (-362))) (($ $ (-765)) 87 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 85 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) 92 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) 91 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) 90 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) 89 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-3378 (($ $) 230 (|has| |#1| (-362)))) (-3380 ((|#2| $) 228 (|has| |#1| (-362)))) (-4355 (((-544) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-224) $) 246 (-3240 (|has| |#2| (-1013)) (|has| |#1| (-362)))) (((-377) $) 245 (-3240 (|has| |#2| (-1013)) (|has| |#1| (-362)))) (((-533) $) 244 (-3240 (|has| |#2| (-609 (-533))) (|has| |#1| (-362)))) (((-883 (-377)) $) 223 (-3240 (|has| |#2| (-609 (-883 (-377)))) (|has| |#1| (-362)))) (((-883 (-544)) $) 222 (-3240 (|has| |#2| (-609 (-883 (-544)))) (|has| |#1| (-362))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 236 (-3240 (-3240 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#1| (-362))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1166)) 243 (-3240 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362)))) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-544)) 62)) (-3084 (((-3 $ "failed") $) 51 (-3936 (-3240 (-3936 (|has| |#2| (-144)) (-3240 (|has| $ (-144)) (|has| |#2| (-903)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3516 ((|#2| $) 234 (-3240 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) 250 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 214 (|has| |#1| (-362))) (($ $ (-765)) 88 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 86 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) 96 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) 95 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) 94 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) 93 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-2945 (((-112) $ $) 254 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-2946 (((-112) $ $) 255 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 253 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3067 (((-112) $ $) 256 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
+(((-1217 |#1| |#2|) (-139) (-1042) (-1246 |t#1|)) (T -1217))
+((-4355 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1246 *3)) (-5 *2 (-544)))) (-4185 (*1 *1 *2 *3) (-12 (-5 *2 (-544)) (-4 *4 (-1042)) (-4 *1 (-1217 *4 *3)) (-4 *3 (-1246 *4)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))) (-4137 (*1 *1 *1) (-12 (-4 *1 (-1217 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1246 *2)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1246 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))) (-4135 (*1 *2 *1) (|partial| -12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))))
+(-13 (-1215 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -4185 ($ (-544) |t#2|)) (-15 -4355 ((-544) $)) (-15 -4138 (|t#2| $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)) (-15 -4136 (|t#2| $)) (-15 -4135 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-984 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-544)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 #3=(-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) ((-609 (-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) ((-609 (-533)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-544))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -3936 (|has| |#1| (-15 * (|#1| (-544) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-544) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-512 (-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|))) ((-512 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 |#2|) |has| |#1| (-362)) ((-641 $) . T) ((-634 (-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544)))) ((-634 |#2|) |has| |#1| (-362)) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 |#2|) |has| |#1| (-362)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-785) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-788) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-791) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-814) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-842) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-844) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-844))) (-12 (|has| |#1| (-362)) (|has| |#2| (-814)))) ((-893 (-1166)) -3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))) ((-879 (-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-544)))) ((-877 |#2|) |has| |#1| (-362)) ((-903) -12 (|has| |#1| (-362)) (|has| |#2| (-903))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-984 |#2|) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1013) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) ((-1031 (-406 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544)))) ((-1031 (-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544)))) ((-1031 #3#) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-1031 |#2|) . T) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 |#2|) |has| |#1| (-362)) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) -12 (|has| |#1| (-362)) (|has| |#2| (-1141))) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1204) |has| |#1| (-362)) ((-1209) |has| |#1| (-362)) ((-1215 |#1|) . T) ((-1232 |#1| #1#) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 70)) (-3514 ((|#2| $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-306))))) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 88)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 97) (($ $ (-544) (-544)) 99)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 47)) (-4138 ((|#2| $) 11)) (-4135 (((-3 |#2| "failed") $) 30)) (-4136 ((|#2| $) 31)) (-3891 (($ $) 192 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 168 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) 188 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 164 (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 57)) (-3893 (($ $) 196 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) 144) (((-3 (-544) #2#) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-3 (-406 (-544)) #2#) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-3 (-1166) #2#) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))))) (-3557 ((|#2| $) 143) (((-544) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-406 (-544)) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-1166) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))))) (-4137 (($ $) 61) (($ (-544) $) 24)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 |#2|) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544))))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544)))))) (-3866 (((-3 $ "failed") $) 77)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 112 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 114 (|has| |#1| (-554)))) (-3377 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-543))))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3587 (((-112) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-3275 (((-112) $) 64)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-879 (-544)))))) (-4178 (((-544) $) 93) (((-544) $ (-544)) 95)) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL (|has| |#1| (-362)))) (-3381 ((|#2| $) 151 (|has| |#1| (-362)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1141))))) (-3588 (((-112) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-4183 (($ $ (-912)) 136)) (-4222 (($ (-1 |#1| (-544)) $) 132)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-544)) 19) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-2913 (($ $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-3242 (($ $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-4365 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-4349 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4185 (($ (-544) |#2|) 10)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 145 (|has| |#1| (-362)))) (-4219 (($ $) 214 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 219 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))))))) (-3849 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1141))) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3513 (($ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-306))))) (-3515 ((|#2| $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-543))))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 126)) (-3865 (((-3 $ "failed") $ $) 116 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) |#2|) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|)))) (($ $ (-635 (-1166)) (-635 |#2|)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) 91) (($ $ $) 79 (|has| (-544) (-1102))) (($ $ |#2|) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 137 (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166)) 140 (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))))) (-3378 (($ $) NIL (|has| |#1| (-362)))) (-3380 ((|#2| $) 152 (|has| |#1| (-362)))) (-4355 (((-544) $) 12)) (-3894 (($ $) 198 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 194 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 190 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 166 (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-224) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1013)))) (((-377) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1013)))) (((-533) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-609 (-533))))) (((-883 (-377)) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-544))))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-362)) (|has| |#2| (-903))))) (-3274 (($ $) 124)) (-4353 (((-857) $) 244) (($ (-544)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166))))) (($ (-406 (-544))) 155 (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-544)) 74)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-362)) (|has| |#2| (-903))) (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144)))))) (-3511 (((-765)) 142)) (-4179 ((|#1| $) 90)) (-3516 ((|#2| $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-543))))) (-3897 (($ $) 204 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 180 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 200 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 208 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 184 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 210 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 206 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 182 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 202 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-3040 (($) 13 T CONST)) (-3046 (($) 17 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) NIL (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))))) (-2945 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-2946 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-3437 (((-112) $ $) 63)) (-3066 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-3067 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-4244 (($ $) 213) (($ $ $) 68)) (-4246 (($ $ $) 66)) (** (($ $ (-912)) NIL) (($ $ (-765)) 73) (($ $ (-544)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1218 |#1| |#2|) (-1217 |#1| |#2|) (-1042) (-1246 |#1|)) (T -1218))
+NIL
+(-1217 |#1| |#2|)
+((-4141 (((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112)) 12)) (-4140 (((-404 |#1|) |#1|) 22)) (-4139 (((-404 |#1|) |#1|) 21)))
+(((-1219 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112)))) (-1229 (-544))) (T -1219))
+((-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))))
+(-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112))))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4143 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4365 (((-1143 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-842)))) (-3630 ((|#1| $) 14)) (-3632 ((|#1| $) 10)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3628 (((-544) $) 18)) (-3629 ((|#1| $) 17)) (-3631 ((|#1| $) 11)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4142 (((-112) $) 16)) (-4370 (((-1143 |#1|) $) 38 (|has| |#1| (-842))) (((-1143 |#1|) (-635 $)) 37 (|has| |#1| (-842)))) (-4377 (($ |#1|) 25)) (-4353 (($ (-1079 |#1|)) 24) (((-857) $) 34 (|has| |#1| (-1091)))) (-4144 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3633 (($ $ (-544)) 13)) (-3437 (((-112) $ $) 27 (|has| |#1| (-1091)))))
+(((-1220 |#1|) (-13 (-1084 |#1|) (-10 -8 (-15 -4144 ($ |#1|)) (-15 -4143 ($ |#1|)) (-15 -4353 ($ (-1079 |#1|))) (-15 -4142 ((-112) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1143 |#1|))) |%noBranch|))) (-1204)) (T -1220))
+((-4144 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204)))) (-4143 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-1204)) (-5 *1 (-1220 *3)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1204)))))
+(-13 (-1084 |#1|) (-10 -8 (-15 -4144 ($ |#1|)) (-15 -4143 ($ |#1|)) (-15 -4353 ($ (-1079 |#1|))) (-15 -4142 ((-112) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1143 |#1|))) |%noBranch|)))
+((-4365 (((-1143 |#2|) (-1 |#2| |#1|) (-1220 |#1|)) 23 (|has| |#1| (-842))) (((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|)) 17)))
+(((-1221 |#1| |#2|) (-10 -7 (-15 -4365 ((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) |%noBranch|)) (-1204) (-1204)) (T -1221))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-842)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1143 *6)) (-5 *1 (-1221 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1220 *6)) (-5 *1 (-1221 *5 *6)))))
+(-10 -7 (-15 -4365 ((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) |%noBranch|))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4173 (((-1253 |#2|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#2|)) NIL)) (-3469 (((-1160 $) $ (-1072)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) NIL (|has| |#2| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#2| (-362)))) (-4167 (($ $ (-765)) NIL)) (-4166 (($ $ (-765)) NIL)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-1072) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-2943 (($ $ $) NIL (|has| |#2| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#2| (-362)))) (-4165 (($ $ $) NIL)) (-4160 (($ $ $) NIL (|has| |#2| (-554)))) (-4159 (((-2 (|:| -4361 |#2|) (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-765) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-4178 (((-765) $ $) NIL (|has| |#2| (-554)))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-3470 (($ (-1160 |#2|) (-1072)) NIL) (($ (-1160 $) (-1072)) NIL)) (-4183 (($ $ (-765)) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-765)) 17) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4172 (((-1160 |#2|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) NIL)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#2| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#2| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4145 (($ $ (-765) |#2| $) NIL)) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#2|) NIL) (($ $ (-635 (-1072)) (-635 |#2|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#2| (-362)))) (-4206 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-554))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4355 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#2| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#2| (-554)))) (-4353 (((-857) $) 13) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-1072)) NIL) (($ (-1250 |#1|)) 19) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) 14 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1222 |#1| |#2|) (-13 (-1229 |#2|) (-611 (-1250 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#2| $)))) (-1166) (-1042)) (T -1222))
+((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1222 *4 *3)) (-14 *4 (-1166)) (-4 *3 (-1042)))))
+(-13 (-1229 |#2|) (-611 (-1250 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#2| $))))
+((-4365 (((-1222 |#3| |#4|) (-1 |#4| |#2|) (-1222 |#1| |#2|)) 15)))
+(((-1223 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 ((-1222 |#3| |#4|) (-1 |#4| |#2|) (-1222 |#1| |#2|)))) (-1166) (-1042) (-1166) (-1042)) (T -1223))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1222 *5 *6)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1222 *7 *8)) (-5 *1 (-1223 *5 *6 *7 *8)) (-14 *7 (-1166)))))
+(-10 -7 (-15 -4365 ((-1222 |#3| |#4|) (-1 |#4| |#2|) (-1222 |#1| |#2|))))
+((-4148 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4146 ((|#1| |#3|) 13)) (-4147 ((|#3| |#3|) 19)))
+(((-1224 |#1| |#2| |#3|) (-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-984 |#1|) (-1229 |#2|)) (T -1224))
+((-4148 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1224 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-1224 *3 *4 *2)) (-4 *2 (-1229 *4)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-1224 *2 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4150 (((-3 |#2| "failed") |#2| (-765) |#1|) 29)) (-4149 (((-3 |#2| "failed") |#2| (-765)) 30)) (-4152 (((-3 (-2 (|:| -3523 |#2|) (|:| -3522 |#2|)) "failed") |#2|) 42)) (-4153 (((-635 |#2|) |#2|) 44)) (-4151 (((-3 |#2| "failed") |#2| |#2|) 39)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -4149 ((-3 |#2| "failed") |#2| (-765))) (-15 -4150 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -4151 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4152 ((-3 (-2 (|:| -3523 |#2|) (|:| -3522 |#2|)) "failed") |#2|)) (-15 -4153 ((-635 |#2|) |#2|))) (-13 (-554) (-146)) (-1229 |#1|)) (T -1225))
+((-4153 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-635 *3)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-1229 *4)))) (-4152 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-1225 *4 *3)) (-4 *3 (-1229 *4)))) (-4151 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1229 *3)))) (-4150 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4)))) (-4149 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4)))))
+(-10 -7 (-15 -4149 ((-3 |#2| "failed") |#2| (-765))) (-15 -4150 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -4151 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4152 ((-3 (-2 (|:| -3523 |#2|) (|:| -3522 |#2|)) "failed") |#2|)) (-15 -4153 ((-635 |#2|) |#2|)))
+((-4154 (((-3 (-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) "failed") |#2| |#2|) 31)))
+(((-1226 |#1| |#2|) (-10 -7 (-15 -4154 ((-3 (-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) "failed") |#2| |#2|))) (-554) (-1229 |#1|)) (T -1226))
+((-4154 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-1226 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -4154 ((-3 (-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) "failed") |#2| |#2|)))
+((-4155 ((|#2| |#2| |#2|) 19)) (-4156 ((|#2| |#2| |#2|) 30)) (-4157 ((|#2| |#2| |#2| (-765) (-765)) 36)))
+(((-1227 |#1| |#2|) (-10 -7 (-15 -4155 (|#2| |#2| |#2|)) (-15 -4156 (|#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| (-765) (-765)))) (-1042) (-1229 |#1|)) (T -1227))
+((-4157 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1229 *4)))) (-4156 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3)))) (-4155 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -4155 (|#2| |#2| |#2|)) (-15 -4156 (|#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| (-765) (-765))))
+((-4173 (((-1253 |#2|) $ (-765)) 114)) (-3467 (((-635 (-1072)) $) 15)) (-4171 (($ (-1160 |#2|)) 67)) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) 18)) (-3089 (((-404 (-1160 $)) (-1160 $)) 184)) (-4181 (($ $) 174)) (-4376 (((-404 $) $) 172)) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 82)) (-4167 (($ $ (-765)) 71)) (-4166 (($ $ (-765)) 73)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3558 (((-3 |#2| #1="failed") $) 117) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 (-1072) #1#) $) NIL)) (-3557 ((|#2| $) 115) (((-406 (-544)) $) NIL) (((-544) $) NIL) (((-1072) $) NIL)) (-4160 (($ $ $) 151)) (-4159 (((-2 (|:| -4361 |#2|) (|:| -2124 $) (|:| -3285 $)) $ $) 153)) (-4178 (((-765) $ $) 169)) (-3848 (((-3 $ "failed") $) 123)) (-3276 (($ |#2| (-765)) NIL) (($ $ (-1072) (-765)) 47) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) 42) (((-635 (-765)) $ (-635 (-1072))) 43)) (-4172 (((-1160 |#2|) $) 59)) (-3468 (((-3 (-1072) "failed") $) 40)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) 70)) (-4219 (($ $) 196)) (-3849 (($) 119)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 181)) (-3087 (((-404 (-1160 $)) (-1160 $)) 88)) (-3088 (((-404 (-1160 $)) (-1160 $)) 86)) (-4139 (((-404 $) $) 107)) (-4174 (($ $ (-635 (-292 $))) 39) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#2|) 31) (($ $ (-635 (-1072)) (-635 |#2|)) 28) (($ $ (-1072) $) 25) (($ $ (-635 (-1072)) (-635 $)) 23)) (-1732 (((-765) $) 187)) (-4206 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 190)) (-4217 (($ $ (-1072)) 140) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) 138) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4355 (((-765) $) NIL) (((-765) $ (-1072)) 16) (((-635 (-765)) $ (-635 (-1072))) 20)) (-3199 ((|#2| $) NIL) (($ $ (-1072)) 125)) (-4161 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-1072)) 51) (($ (-406 (-544))) NIL) (($ $) NIL)))
+(((-1228 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4206 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 -4206 (|#2| (-406 |#1|) |#2|)) (-15 -4158 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4159 ((-2 (|:| -4361 |#2|) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4160 (|#1| |#1| |#1|)) (-15 -4161 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -4161 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4178 ((-765) |#1| |#1|)) (-15 -4206 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4166 (|#1| |#1| (-765))) (-15 -4167 (|#1| |#1| (-765))) (-15 -4168 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| (-765))) (-15 -4171 (|#1| (-1160 |#2|))) (-15 -4172 ((-1160 |#2|) |#1|)) (-15 -4173 ((-1253 |#2|) |#1| (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| |#2|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3089 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3199 (|#1| |#1| (-1072))) (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3201 ((-765) |#1| (-635 (-1072)))) (-15 -3201 ((-765) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -3276 (|#1| |#1| (-1072) (-765))) (-15 -3202 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -3202 ((-765) |#1| (-1072))) (-15 -3468 ((-3 (-1072) "failed") |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -4355 ((-765) |#1| (-1072))) (-15 -4353 (|#1| (-1072))) (-15 -3558 ((-3 (-1072) #1="failed") |#1|)) (-15 -3557 ((-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1072) |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 ((-765) |#1|)) (-15 -3276 (|#1| |#2| (-765))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3202 ((-765) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -4217 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1072) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1072)))) (-15 -4217 (|#1| |#1| (-1072))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1229 |#2|) (-1042)) (T -1228))
+NIL
+(-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4206 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 -4206 (|#2| (-406 |#1|) |#2|)) (-15 -4158 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4159 ((-2 (|:| -4361 |#2|) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4160 (|#1| |#1| |#1|)) (-15 -4161 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -4161 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4178 ((-765) |#1| |#1|)) (-15 -4206 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4166 (|#1| |#1| (-765))) (-15 -4167 (|#1| |#1| (-765))) (-15 -4168 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| (-765))) (-15 -4171 (|#1| (-1160 |#2|))) (-15 -4172 ((-1160 |#2|) |#1|)) (-15 -4173 ((-1253 |#2|) |#1| (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| |#2|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3089 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3199 (|#1| |#1| (-1072))) (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3201 ((-765) |#1| (-635 (-1072)))) (-15 -3201 ((-765) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -3276 (|#1| |#1| (-1072) (-765))) (-15 -3202 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -3202 ((-765) |#1| (-1072))) (-15 -3468 ((-3 (-1072) "failed") |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -4355 ((-765) |#1| (-1072))) (-15 -4353 (|#1| (-1072))) (-15 -3558 ((-3 (-1072) #1="failed") |#1|)) (-15 -3557 ((-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1072) |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 ((-765) |#1|)) (-15 -3276 (|#1| |#2| (-765))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3202 ((-765) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -4217 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1072) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1072)))) (-15 -4217 (|#1| |#1| (-1072))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4173 (((-1253 |#1|) $ (-765)) 238)) (-3467 (((-635 (-1072)) $) 110)) (-4171 (($ (-1160 |#1|)) 236)) (-3469 (((-1160 $) $ (-1072)) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 (-1072))) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-4162 (($ $ $) 223 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-1733 (((-112) $ $) 208 (|has| |#1| (-362)))) (-4167 (($ $ (-765)) 231)) (-4166 (($ $ (-765)) 230)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-450)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) 136)) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) (((-1072) $) 137)) (-4163 (($ $ $ (-1072)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-2943 (($ $ $) 212 (|has| |#1| (-362)))) (-4366 (($ $) 154)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 211 (|has| |#1| (-362)))) (-4165 (($ $ $) 229)) (-4160 (($ $ $) 220 (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) 219 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 206 (|has| |#1| (-362)))) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ (-1072)) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-765) $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ $) 224 (|has| |#1| (-554)))) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-3848 (((-3 $ "failed") $) 204 (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) 117) (($ (-1160 $) (-1072)) 116)) (-4183 (($ $ (-765)) 235)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) 215 (|has| |#1| (-362)))) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| (-765)) 153) (($ $ (-1072) (-765)) 119) (($ $ (-635 (-1072)) (-635 (-765))) 118)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) 120) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 233)) (-3202 (((-765) $) 170) (((-765) $ (-1072)) 122) (((-635 (-765)) $ (-635 (-1072))) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-4172 (((-1160 |#1|) $) 237)) (-3468 (((-3 (-1072) #4="failed") $) 123)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3643 (((-1148) $) 9)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) 232)) (-3205 (((-3 (-635 $) #4#) $) 114)) (-3204 (((-3 (-635 $) #4#) $) 115)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) 113)) (-4219 (($ $) 216 (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) 203 (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 213 (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 207 (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ (-1072) |#1|) 141) (($ $ (-635 (-1072)) (-635 |#1|)) 140) (($ $ (-1072) $) 139) (($ $ (-635 (-1072)) (-635 $)) 138)) (-1732 (((-765) $) 209 (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-554)))) (-4170 (((-3 $ "failed") $ (-765)) 234)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 210 (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) 42) (($ $ (-635 (-1072))) 41) (($ $ (-1072) (-765)) 40) (($ $ (-635 (-1072)) (-635 (-765))) 39) (($ $ (-765)) 253) (($ $) 251) (($ $ (-1166)) 250 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 249 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 248 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 247 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4355 (((-765) $) 150) (((-765) $ (-1072)) 130) (((-635 (-765)) $ (-635 (-1072))) 129)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ (-1072)) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4161 (((-3 $ "failed") $ $) 222 (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-554)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ (-1072)) 135) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544)))))) (($ $) 85 (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ (-765)) 155) (($ $ (-1072) (-765)) 128) (($ $ (-635 (-1072)) (-635 (-765))) 127)) (-3084 (((-3 $ #1#) $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1072)) 38) (($ $ (-635 (-1072))) 37) (($ $ (-1072) (-765)) 36) (($ $ (-635 (-1072)) (-635 (-765))) 35) (($ $ (-765)) 254) (($ $) 252) (($ $ (-1166)) 246 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 245 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 244 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 243 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1229 |#1|) (-139) (-1042)) (T -1229))
+((-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-5 *2 (-1160 *3)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1042)) (-4 *1 (-1229 *3)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4170 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4169 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *3)))) (-4168 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *4)))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4165 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)))) (-4217 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-4163 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-4206 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)))) (-4178 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)) (-5 *2 (-765)))) (-4162 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-4161 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-4161 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)))) (-4160 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-4159 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -4361 *3) (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *3)))) (-4158 (*1 *2 *1 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1229 *3)))) (-4206 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))))
+(-13 (-943 |t#1| (-765) (-1072)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -4173 ((-1253 |t#1|) $ (-765))) (-15 -4172 ((-1160 |t#1|) $)) (-15 -4171 ($ (-1160 |t#1|))) (-15 -4183 ($ $ (-765))) (-15 -4170 ((-3 $ "failed") $ (-765))) (-15 -4169 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -4168 ((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765))) (-15 -4167 ($ $ (-765))) (-15 -4166 ($ $ (-765))) (-15 -4165 ($ $ $)) (-15 -4217 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -4164 (|t#1| $)) (-15 -4163 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -4206 ((-406 $) (-406 $) (-406 $))) (-15 -4178 ((-765) $ $)) (-15 -4162 ($ $ $)) (-15 -4161 ((-3 $ "failed") $ $)) (-15 -4161 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -4160 ($ $ $)) (-15 -4159 ((-2 (|:| -4361 |t#1|) (|:| -2124 $) (|:| -3285 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-15 -4158 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4396) (-15 -4206 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (-15 -4219 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-765)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 #3=(-1072)) . T) ((-611 |#1|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| (-1072) (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| (-1072) (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| (-1072) (-609 (-883 (-544))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-554)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #1#) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-512 #3# |#1|) . T) ((-512 #3# $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-641 #2#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #2#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 #3#) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| (-1072) (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| (-1072) (-879 (-544)))) ((-943 |#1| #1# #3#) . T) ((-903) |has| |#1| (-903)) ((-914) |has| |#1| (-362)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #3#) . T) ((-1031 |#1|) . T) ((-1048 #2#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-1141)) ((-1209) |has| |#1| (-903)))
+((-4365 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|))) (-1042) (-1229 |#1|) (-1042) (-1229 |#3|)) (T -1230))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1229 *6)) (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1229 *5)))))
+(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3467 (((-635 (-1072)) $) 28)) (-4366 (($ $) 25)) (-3276 (($ |#2| |#3|) NIL) (($ $ (-1072) |#3|) 22) (($ $ (-635 (-1072)) (-635 |#3|)) 21)) (-3277 (($ $) 14)) (-3575 ((|#2| $) 12)) (-4355 ((|#3| $) 10)))
+(((-1231 |#1| |#2| |#3|) (-10 -8 (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 |#3|))) (-15 -3276 (|#1| |#1| (-1072) |#3|)) (-15 -4366 (|#1| |#1|)) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4355 (|#3| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -3575 (|#2| |#1|))) (-1232 |#2| |#3|) (-1042) (-786)) (T -1231))
+NIL
+(-10 -8 (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 |#3|))) (-15 -3276 (|#1| |#1| (-1072) |#3|)) (-15 -4366 (|#1| |#1|)) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4355 (|#3| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -3575 (|#2| |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-4180 (((-1143 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3275 (((-112) $) 76)) (-4178 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2545 (((-112) $) 31)) (-4183 (($ $ (-912)) 104)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64) (($ $ (-1072) |#2|) 79) (($ $ (-635 (-1072)) (-635 |#2|)) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4175 (($ $ |#2|) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4206 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4355 ((|#2| $) 67)) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-4176 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
(((-1232 |#1| |#2|) (-139) (-1042) (-786)) (T -1232))
-((-4228 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1146 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2315 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1166)))) (-2298 (*1 *2 *1) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4027 (*1 *2 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1991 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1991 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1408 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4064 (*2 (-1166)))) (-4 *2 (-1042)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1146 *3)))))
-(-13 (-966 |t#1| |t#2| (-1072)) (-10 -8 (-15 -4228 ((-1146 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2315 (|t#1| $ |t#2|)) (-15 -2421 ((-1166) $)) (-15 -2298 (|t#1| $)) (-15 -3508 ($ $ (-914))) (-15 -4027 (|t#2| $)) (-15 -4027 (|t#2| $ |t#2|)) (-15 -1991 ($ $ |t#2|)) (-15 -1991 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4064 (|t#1| (-1166)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1408 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3702 ($ $ |t#2|)) (IF (|has| |t#2| (-1102)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1436 ((-1146 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1102)) ((-289) |has| |#1| (-553)) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| |#2| (-1072)) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-2557 ((|#2| |#2|) 12)) (-3552 (((-417 |#2|) |#2|) 14)) (-2009 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561)))) 30)))
-(((-1233 |#1| |#2|) (-10 -7 (-15 -3552 ((-417 |#2|) |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2009 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561)))))) (-553) (-13 (-1230 |#1|) (-553) (-10 -8 (-15 -1603 ($ $ $))))) (T -1233))
-((-2009 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-561)))) (-4 *4 (-13 (-1230 *3) (-553) (-10 -8 (-15 -1603 ($ $ $))))) (-4 *3 (-553)) (-5 *1 (-1233 *3 *4)))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-1230 *3) (-553) (-10 -8 (-15 -1603 ($ $ $))))))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-1233 *4 *3)) (-4 *3 (-13 (-1230 *4) (-553) (-10 -8 (-15 -1603 ($ $ $))))))))
-(-10 -7 (-15 -3552 ((-417 |#2|) |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2009 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))))))
-((-4165 (((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|)) 24)))
-(((-1234 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4165 ((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1234))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1239 *6 *8 *10)) (-5 *1 (-1234 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166)))))
-(-10 -7 (-15 -4165 ((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 (-1072)) $) 77)) (-2421 (((-1166) $) 106)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-1991 (($ $ (-406 (-561))) 101) (($ $ (-406 (-561)) (-406 (-561))) 100)) (-4228 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 108)) (-3014 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 165 (|has| |#1| (-362)))) (-3552 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4213 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) 174)) (-3039 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) 17 T CONST)) (-1792 (($ $ $) 160 (|has| |#1| (-362)))) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 159 (|has| |#1| (-362)))) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2725 (((-112) $) 167 (|has| |#1| (-362)))) (-4372 (((-112) $) 76)) (-4111 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-406 (-561)) $) 103) (((-406 (-561)) $ (-406 (-561))) 102)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) 104) (($ $ (-406 (-561))) 173)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-1750 (((-112) $) 65)) (-1381 (($ |#1| (-406 (-561))) 64) (($ $ (-1072) (-406 (-561))) 79) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) 78)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-4364 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1563 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1883 (((-1148) $) 9)) (-1519 (($ $) 168 (|has| |#1| (-362)))) (-2563 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4050 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1603 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1633 (((-417 $) $) 164 (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 161 (|has| |#1| (-362)))) (-3702 (($ $ (-406 (-561))) 98)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3486 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-1905 (((-765) $) 157 (|has| |#1| (-362)))) (-2315 ((|#1| $ (-406 (-561))) 107) (($ $ $) 84 (|has| (-406 (-561)) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 158 (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-3768 (((-406 (-561)) $) 67)) (-3052 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 75)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-3932 ((|#1| $ (-406 (-561))) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2298 ((|#1| $) 105)) (-3086 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3064 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-406 (-561))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
-(((-1235 |#1|) (-139) (-1042)) (T -1235))
-((-1543 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4)))) (-4 *4 (-1042)) (-4 *1 (-1235 *4)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1235 *3)) (-4 *3 (-1042)))) (-2563 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))) (-2563 (*1 *1 *1 *2) (-4050 (-12 (-5 *2 (-1166)) (-4 *1 (-1235 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-561)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1235 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -1405 ((-638 *2) *3))) (|has| *3 (-15 -2563 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561)))))))))
-(-13 (-1232 |t#1| (-406 (-561))) (-10 -8 (-15 -1543 ($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |t#1|))))) (-15 -3508 ($ $ (-406 (-561)))) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $)) (IF (|has| |t#1| (-15 -2563 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -1405 ((-638 (-1166)) |t#1|))) (-15 -2563 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-952)) (IF (|has| |t#1| (-29 (-561))) (-15 -2563 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-561))) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-406 (-561)) (-1102)) ((-289) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #0#) . T))
-((-4306 (((-112) $) 12)) (-4061 (((-3 |#3| "failed") $) 17)) (-3979 ((|#3| $) 14)))
-(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3979 (|#3| |#1|)) (-15 -4306 ((-112) |#1|))) (-1237 |#2| |#3|) (-1042) (-1214 |#2|)) (T -1236))
-NIL
-(-10 -8 (-15 -4061 ((-3 |#3| "failed") |#1|)) (-15 -3979 (|#3| |#1|)) (-15 -4306 ((-112) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 (-1072)) $) 77)) (-2421 (((-1166) $) 106)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-1991 (($ $ (-406 (-561))) 101) (($ $ (-406 (-561)) (-406 (-561))) 100)) (-4228 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 108)) (-3014 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 165 (|has| |#1| (-362)))) (-3552 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4213 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) 174)) (-3039 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#2| "failed") $) 185)) (-3979 ((|#2| $) 186)) (-1792 (($ $ $) 160 (|has| |#1| (-362)))) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-2235 (((-406 (-561)) $) 182)) (-1771 (($ $ $) 159 (|has| |#1| (-362)))) (-1496 (($ (-406 (-561)) |#2|) 183)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2725 (((-112) $) 167 (|has| |#1| (-362)))) (-4372 (((-112) $) 76)) (-4111 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-406 (-561)) $) 103) (((-406 (-561)) $ (-406 (-561))) 102)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) 104) (($ $ (-406 (-561))) 173)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-1750 (((-112) $) 65)) (-1381 (($ |#1| (-406 (-561))) 64) (($ $ (-1072) (-406 (-561))) 79) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) 78)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-4364 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1563 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3169 ((|#2| $) 181)) (-3570 (((-3 |#2| "failed") $) 179)) (-1484 ((|#2| $) 180)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 168 (|has| |#1| (-362)))) (-2563 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4050 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1603 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1633 (((-417 $) $) 164 (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 161 (|has| |#1| (-362)))) (-3702 (($ $ (-406 (-561))) 98)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3486 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-1905 (((-765) $) 157 (|has| |#1| (-362)))) (-2315 ((|#1| $ (-406 (-561))) 107) (($ $ $) 84 (|has| (-406 (-561)) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 158 (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-3768 (((-406 (-561)) $) 67)) (-3052 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 75)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-3932 ((|#1| $ (-406 (-561))) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2298 ((|#1| $) 105)) (-3086 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3064 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-406 (-561))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
-(((-1237 |#1| |#2|) (-139) (-1042) (-1214 |t#1|)) (T -1237))
-((-3768 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1214 *3)) (-5 *2 (-406 (-561))))) (-1496 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-4 *4 (-1042)) (-4 *1 (-1237 *4 *3)) (-4 *3 (-1214 *4)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1214 *3)) (-5 *2 (-406 (-561))))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1214 *3)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1214 *3)))) (-3570 (*1 *2 *1) (|partial| -12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1214 *3)))))
-(-13 (-1235 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -1496 ($ (-406 (-561)) |t#2|)) (-15 -2235 ((-406 (-561)) $)) (-15 -3169 (|t#2| $)) (-15 -3768 ((-406 (-561)) $)) (-15 -1484 (|t#2| $)) (-15 -3570 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-561))) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-406 (-561)) (-1102)) ((-289) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1031 |#2|) . T) ((-1048 #1#) -4050 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #0#) . T) ((-1235 |#1|) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 96)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-406 (-561))) 106) (($ $ (-406 (-561)) (-406 (-561))) 108)) (-4228 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 51)) (-3014 (($ $) 180 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 156 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 152 (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) 61)) (-3039 (($ $) 184 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) NIL)) (-3979 ((|#2| $) NIL)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) 79)) (-2235 (((-406 (-561)) $) 13)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-1496 (($ (-406 (-561)) |#2|) 11)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-4372 (((-112) $) 68)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-406 (-561)) $) 103) (((-406 (-561)) $ (-406 (-561))) 104)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) 120) (($ $ (-406 (-561))) 118)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-406 (-561))) 31) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) 115)) (-4364 (($ $) 150 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3169 ((|#2| $) 12)) (-3570 (((-3 |#2| "failed") $) 41)) (-1484 ((|#2| $) 42)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) 93 (|has| |#1| (-362)))) (-2563 (($ $) 135 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 140 (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190)))))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-406 (-561))) 112)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3486 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-406 (-561))) 100) (($ $ $) 86 (|has| (-406 (-561)) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) 127 (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-3768 (((-406 (-561)) $) 16)) (-3052 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 182 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 158 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 154 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 110)) (-4064 (((-856) $) NIL) (($ (-561)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-561))) 128 (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-3932 ((|#1| $ (-406 (-561))) 99)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) 117)) (-2298 ((|#1| $) 98)) (-3086 (($ $) 192 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 168 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) 188 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 164 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 196 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 198 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 194 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 190 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 166 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 21 T CONST)) (-2257 (($) 17 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1723 (((-112) $ $) 66)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-1819 (($ $) 131) (($ $ $) 72)) (-1810 (($ $ $) 70)) (** (($ $ (-914)) NIL) (($ $ (-765)) 76) (($ $ (-561)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 146 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1238 |#1| |#2|) (-1237 |#1| |#2|) (-1042) (-1214 |#1|)) (T -1238))
-NIL
-(-1237 |#1| |#2|)
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 11)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) NIL (|has| |#1| (-553)))) (-1991 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-4228 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-2557 (($ $) NIL (|has| |#1| (-362)))) (-3552 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3698 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4213 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3039 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-1218 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1246 |#1| |#2| |#3|) "failed") $) 22)) (-3979 (((-1218 |#1| |#2| |#3|) $) NIL) (((-1246 |#1| |#2| |#3|) $) NIL)) (-1792 (($ $ $) NIL (|has| |#1| (-362)))) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-2235 (((-406 (-561)) $) 57)) (-1771 (($ $ $) NIL (|has| |#1| (-362)))) (-1496 (($ (-406 (-561)) (-1218 |#1| |#2| |#3|)) NIL)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2725 (((-112) $) NIL (|has| |#1| (-362)))) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) NIL)) (-2252 (((-112) $) NIL)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-406 (-561))) 30) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1563 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3169 (((-1218 |#1| |#2| |#3|) $) 60)) (-3570 (((-3 (-1218 |#1| |#2| |#3|) "failed") $) NIL)) (-1484 (((-1218 |#1| |#2| |#3|) $) NIL)) (-1883 (((-1148) $) NIL)) (-1519 (($ $) NIL (|has| |#1| (-362)))) (-2563 (($ $) 39 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1250 |#2|)) 40 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1603 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1633 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2682 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) NIL (|has| |#1| (-362)))) (-3702 (($ $ (-406 (-561))) NIL)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3474 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3486 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-1905 (((-765) $) NIL (|has| |#1| (-362)))) (-2315 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) NIL (|has| |#1| (-362)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $ (-1250 |#2|)) 38)) (-3768 (((-406 (-561)) $) NIL)) (-3052 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) NIL)) (-4064 (((-856) $) 88) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1218 |#1| |#2| |#3|)) 16) (($ (-1246 |#1| |#2| |#3|)) 17) (($ (-1250 |#2|)) 36) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-3932 ((|#1| $ (-406 (-561))) NIL)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) 12)) (-3086 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-406 (-561))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 32 T CONST)) (-2257 (($) 26 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 34)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1239 |#1| |#2| |#3|) (-13 (-1237 |#1| (-1218 |#1| |#2| |#3|)) (-1031 (-1246 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1239))
-((-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(-13 (-1237 |#1| (-1218 |#1| |#2| |#3|)) (-1031 (-1246 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -3922 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 34)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL)) (-3012 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 (-561) "failed") $) NIL (|has| (-1239 |#2| |#3| |#4|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-1239 |#2| |#3| |#4|) (-1031 (-406 (-561))))) (((-3 (-1239 |#2| |#3| |#4|) "failed") $) 20)) (-3979 (((-561) $) NIL (|has| (-1239 |#2| |#3| |#4|) (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| (-1239 |#2| |#3| |#4|) (-1031 (-406 (-561))))) (((-1239 |#2| |#3| |#4|) $) NIL)) (-1598 (($ $) 35)) (-3735 (((-3 $ "failed") $) 25)) (-4229 (($ $) NIL (|has| (-1239 |#2| |#3| |#4|) (-450)))) (-3227 (($ $ (-1239 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) 11)) (-1750 (((-112) $) NIL)) (-1381 (($ (-1239 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-1522 (((-318 |#2| |#3| |#4|) $) NIL)) (-1368 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-4165 (($ (-1 (-1239 |#2| |#3| |#4|) (-1239 |#2| |#3| |#4|)) $) NIL)) (-4107 (((-3 (-837 |#2|) "failed") $) 74)) (-1557 (($ $) NIL)) (-1572 (((-1239 |#2| |#3| |#4|) $) 18)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1530 (((-112) $) NIL)) (-1542 (((-1239 |#2| |#3| |#4|) $) NIL)) (-1748 (((-3 $ "failed") $ (-1239 |#2| |#3| |#4|)) NIL (|has| (-1239 |#2| |#3| |#4|) (-553))) (((-3 $ "failed") $ $) NIL)) (-2799 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1239 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $) 57)) (-3768 (((-318 |#2| |#3| |#4|) $) 14)) (-2125 (((-1239 |#2| |#3| |#4|) $) NIL (|has| (-1239 |#2| |#3| |#4|) (-450)))) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ (-1239 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL (-4050 (|has| (-1239 |#2| |#3| |#4|) (-38 (-406 (-561)))) (|has| (-1239 |#2| |#3| |#4|) (-1031 (-406 (-561))))))) (-1868 (((-638 (-1239 |#2| |#3| |#4|)) $) NIL)) (-3932 (((-1239 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-3666 (((-3 $ "failed") $) NIL (|has| (-1239 |#2| |#3| |#4|) (-144)))) (-3746 (((-765)) NIL)) (-2803 (($ $ $ (-765)) NIL (|has| (-1239 |#2| |#3| |#4|) (-171)))) (-3996 (((-112) $ $) NIL)) (-2246 (($) 62 T CONST)) (-2257 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ (-1239 |#2| |#3| |#4|)) NIL (|has| (-1239 |#2| |#3| |#4|) (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-1239 |#2| |#3| |#4|)) NIL) (($ (-1239 |#2| |#3| |#4|) $) NIL) (($ (-406 (-561)) $) NIL (|has| (-1239 |#2| |#3| |#4|) (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| (-1239 |#2| |#3| |#4|) (-38 (-406 (-561)))))))
-(((-1240 |#1| |#2| |#3| |#4|) (-13 (-325 (-1239 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-553) (-10 -8 (-15 -4107 ((-3 (-837 |#2|) "failed") $)) (-15 -2799 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1239 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $)))) (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)) (-13 (-27) (-1190) (-429 |#1|)) (-1166) |#2|) (T -1240))
-((-4107 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *2 (-837 *4)) (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4))) (-2799 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1239 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4)))))) (|:| |%type| (-1148)))) (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4))))
-(-13 (-325 (-1239 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-553) (-10 -8 (-15 -4107 ((-3 (-837 |#2|) "failed") $)) (-15 -2799 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1239 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $))))
-((-2506 ((|#2| $) 28)) (-2333 ((|#2| $) 18)) (-3164 (($ $) 35)) (-2151 (($ $ (-561)) 63)) (-2684 (((-112) $ (-765)) 32)) (-2809 ((|#2| $ |#2|) 60)) (-3281 ((|#2| $ |#2|) 58)) (-4207 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3347 (($ $ (-638 $)) 59)) (-2322 ((|#2| $) 17)) (-1437 (($ $) NIL) (($ $ (-765)) 41)) (-4092 (((-638 $) $) 25)) (-2129 (((-112) $ $) 49)) (-3116 (((-112) $ (-765)) 31)) (-3683 (((-112) $ (-765)) 30)) (-3441 (((-112) $) 27)) (-1501 ((|#2| $) 23) (($ $ (-765)) 45)) (-2315 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1650 (((-112) $) 21)) (-3235 (($ $) 38)) (-4193 (($ $) 64)) (-2118 (((-765) $) 40)) (-1491 (($ $) 39)) (-2754 (($ $ $) 57) (($ |#2| $) NIL)) (-3770 (((-638 $) $) 26)) (-1723 (((-112) $ $) 47)) (-3548 (((-765) $) 34)))
-(((-1241 |#1| |#2|) (-10 -8 (-15 -2151 (|#1| |#1| (-561))) (-15 -4207 (|#2| |#1| "last" |#2|)) (-15 -3281 (|#2| |#1| |#2|)) (-15 -4207 (|#1| |#1| "rest" |#1|)) (-15 -4207 (|#2| |#1| "first" |#2|)) (-15 -4193 (|#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -2118 ((-765) |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -2333 (|#2| |#1|)) (-15 -2322 (|#2| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -1501 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "last")) (-15 -1501 (|#2| |#1|)) (-15 -1437 (|#1| |#1| (-765))) (-15 -2315 (|#1| |#1| "rest")) (-15 -1437 (|#1| |#1|)) (-15 -2315 (|#2| |#1| "first")) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2809 (|#2| |#1| |#2|)) (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -3347 (|#1| |#1| (-638 |#1|))) (-15 -2129 ((-112) |#1| |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -2315 (|#2| |#1| "value")) (-15 -2506 (|#2| |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4092 ((-638 |#1|) |#1|)) (-15 -3770 ((-638 |#1|) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765)))) (-1242 |#2|) (-1205)) (T -1241))
-NIL
-(-10 -8 (-15 -2151 (|#1| |#1| (-561))) (-15 -4207 (|#2| |#1| "last" |#2|)) (-15 -3281 (|#2| |#1| |#2|)) (-15 -4207 (|#1| |#1| "rest" |#1|)) (-15 -4207 (|#2| |#1| "first" |#2|)) (-15 -4193 (|#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -2118 ((-765) |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -2333 (|#2| |#1|)) (-15 -2322 (|#2| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -1501 (|#1| |#1| (-765))) (-15 -2315 (|#2| |#1| "last")) (-15 -1501 (|#2| |#1|)) (-15 -1437 (|#1| |#1| (-765))) (-15 -2315 (|#1| |#1| "rest")) (-15 -1437 (|#1| |#1|)) (-15 -2315 (|#2| |#1| "first")) (-15 -2754 (|#1| |#2| |#1|)) (-15 -2754 (|#1| |#1| |#1|)) (-15 -2809 (|#2| |#1| |#2|)) (-15 -4207 (|#2| |#1| "value" |#2|)) (-15 -3347 (|#1| |#1| (-638 |#1|))) (-15 -2129 ((-112) |#1| |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -2315 (|#2| |#1| "value")) (-15 -2506 (|#2| |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4092 ((-638 |#1|) |#1|)) (-15 -3770 ((-638 |#1|) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3548 ((-765) |#1|)) (-15 -2684 ((-112) |#1| (-765))) (-15 -3116 ((-112) |#1| (-765))) (-15 -3683 ((-112) |#1| (-765))))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2506 ((|#1| $) 48)) (-2333 ((|#1| $) 65)) (-3164 (($ $) 67)) (-2151 (($ $ (-561)) 52 (|has| $ (-6 -4400)))) (-2684 (((-112) $ (-765)) 8)) (-2809 ((|#1| $ |#1|) 39 (|has| $ (-6 -4400)))) (-2956 (($ $ $) 56 (|has| $ (-6 -4400)))) (-3281 ((|#1| $ |#1|) 54 (|has| $ (-6 -4400)))) (-2337 ((|#1| $ |#1|) 58 (|has| $ (-6 -4400)))) (-4207 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4400))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4400))) (($ $ "rest" $) 55 (|has| $ (-6 -4400))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4400)))) (-3347 (($ $ (-638 $)) 41 (|has| $ (-6 -4400)))) (-2322 ((|#1| $) 66)) (-2674 (($) 7 T CONST)) (-1437 (($ $) 73) (($ $ (-765)) 71)) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-4092 (((-638 $) $) 50)) (-2129 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3116 (((-112) $ (-765)) 9)) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-112) $ (-765)) 10)) (-3948 (((-638 |#1|) $) 45)) (-3441 (((-112) $) 49)) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1501 ((|#1| $) 70) (($ $ (-765)) 68)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 76) (($ $ (-765)) 74)) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-4293 (((-561) $ $) 44)) (-1650 (((-112) $) 46)) (-3235 (($ $) 62)) (-4193 (($ $) 59 (|has| $ (-6 -4400)))) (-2118 (((-765) $) 63)) (-1491 (($ $) 64)) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-4225 (($ $) 13)) (-2448 (($ $ $) 61 (|has| $ (-6 -4400))) (($ $ |#1|) 60 (|has| $ (-6 -4400)))) (-2754 (($ $ $) 78) (($ |#1| $) 77)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3770 (((-638 $) $) 51)) (-2552 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-1242 |#1|) (-139) (-1205)) (T -1242))
-((-2754 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2754 (*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1205)))) (-1437 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1242 *3)) (-4 *3 (-1205)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1205)))) (-1501 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-1501 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1205)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-1491 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-3235 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2448 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2448 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-4193 (*1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2337 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-4207 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2956 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-4207 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4400)) (-4 *1 (-1242 *3)) (-4 *3 (-1205)))) (-3281 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-4207 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))) (-2151 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (|has| *1 (-6 -4400)) (-4 *1 (-1242 *3)) (-4 *3 (-1205)))))
-(-13 (-1003 |t#1|) (-10 -8 (-15 -2754 ($ $ $)) (-15 -2754 ($ |t#1| $)) (-15 -1424 (|t#1| $)) (-15 -2315 (|t#1| $ "first")) (-15 -1424 ($ $ (-765))) (-15 -1437 ($ $)) (-15 -2315 ($ $ "rest")) (-15 -1437 ($ $ (-765))) (-15 -1501 (|t#1| $)) (-15 -2315 (|t#1| $ "last")) (-15 -1501 ($ $ (-765))) (-15 -3164 ($ $)) (-15 -2322 (|t#1| $)) (-15 -2333 (|t#1| $)) (-15 -1491 ($ $)) (-15 -2118 ((-765) $)) (-15 -3235 ($ $)) (IF (|has| $ (-6 -4400)) (PROGN (-15 -2448 ($ $ $)) (-15 -2448 ($ $ |t#1|)) (-15 -4193 ($ $)) (-15 -2337 (|t#1| $ |t#1|)) (-15 -4207 (|t#1| $ "first" |t#1|)) (-15 -2956 ($ $ $)) (-15 -4207 ($ $ "rest" $)) (-15 -3281 (|t#1| $ |t#1|)) (-15 -4207 (|t#1| $ "last" |t#1|)) (-15 -2151 ($ $ (-561)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
-((-4165 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1243 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 (|#4| (-1 |#2| |#1|) |#3|))) (-1042) (-1042) (-1245 |#1|) (-1245 |#2|)) (T -1243))
-((-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1245 *6)) (-5 *1 (-1243 *5 *6 *4 *2)) (-4 *4 (-1245 *5)))))
-(-10 -7 (-15 -4165 (|#4| (-1 |#2| |#1|) |#3|)))
-((-4306 (((-112) $) 15)) (-3014 (($ $) 91)) (-4106 (($ $) 67)) (-4213 (($ $) 87)) (-4085 (($ $) 63)) (-3039 (($ $) 95)) (-4130 (($ $) 71)) (-4364 (($ $) 61)) (-3486 (($ $) 59)) (-3052 (($ $) 97)) (-4140 (($ $) 73)) (-3026 (($ $) 93)) (-4118 (($ $) 69)) (-3002 (($ $) 89)) (-4097 (($ $) 65)) (-4064 (((-856) $) 47) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3086 (($ $) 103)) (-4175 (($ $) 79)) (-3064 (($ $) 99)) (-4150 (($ $) 75)) (-3113 (($ $) 107)) (-4192 (($ $) 83)) (-2821 (($ $) 109)) (-4202 (($ $) 85)) (-3099 (($ $) 105)) (-4184 (($ $) 81)) (-3076 (($ $) 101)) (-4162 (($ $) 77)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-561))) 57)))
-(((-1244 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -4106 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4162 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3099 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3086 (|#1| |#1|)) (-15 -4364 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -4306 ((-112) |#1|)) (-15 -4064 ((-856) |#1|))) (-1245 |#2|) (-1042)) (T -1244))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -4106 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4162 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3099 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3086 (|#1| |#1|)) (-15 -4364 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4064 (|#1| |#2|)) (-15 -4064 (|#1| |#1|)) (-15 -4064 (|#1| (-406 (-561)))) (-15 -4064 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -4306 ((-112) |#1|)) (-15 -4064 ((-856) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1405 (((-638 (-1072)) $) 77)) (-2421 (((-1166) $) 106)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-3012 (($ $) 55 (|has| |#1| (-553)))) (-3163 (((-112) $) 57 (|has| |#1| (-553)))) (-1991 (($ $ (-765)) 101) (($ $ (-765) (-765)) 100)) (-4228 (((-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 108)) (-3014 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) 19)) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-4213 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 158) (($ (-1146 |#1|)) 156)) (-3039 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) 17 T CONST)) (-1598 (($ $) 63)) (-3735 (((-3 $ "failed") $) 33)) (-3854 (($ $) 155)) (-2001 (((-945 |#1|) $ (-765)) 153) (((-945 |#1|) $ (-765) (-765)) 152)) (-4372 (((-112) $) 76)) (-4111 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-765) $) 103) (((-765) $ (-765)) 102)) (-2252 (((-112) $) 31)) (-4343 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3508 (($ $ (-914)) 104)) (-3236 (($ (-1 |#1| (-561)) $) 154)) (-1750 (((-112) $) 65)) (-1381 (($ |#1| (-765)) 64) (($ $ (-1072) (-765)) 79) (($ $ (-638 (-1072)) (-638 (-765))) 78)) (-4165 (($ (-1 |#1| |#1|) $) 66)) (-4364 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) 68)) (-1572 ((|#1| $) 69)) (-1883 (((-1148) $) 9)) (-2563 (($ $) 150 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 149 (-4050 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1701 (((-1110) $) 10)) (-3702 (($ $ (-765)) 98)) (-1748 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3486 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1436 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-2315 ((|#1| $ (-765)) 107) (($ $ $) 84 (|has| (-765) (-1102)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-3768 (((-765) $) 67)) (-3052 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 75)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-1868 (((-1146 |#1|) $) 157)) (-3932 ((|#1| $ (-765)) 62)) (-3666 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3746 (((-765)) 28)) (-2298 ((|#1| $) 105)) (-3086 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3064 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-765)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
-(((-1245 |#1|) (-139) (-1042)) (T -1245))
-((-1543 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-765)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1245 *3)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1042)) (-5 *2 (-1146 *3)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-4 *1 (-1245 *3)))) (-3854 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1042)))) (-3236 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1245 *3)) (-4 *3 (-1042)))) (-2001 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1245 *4)) (-4 *4 (-1042)) (-5 *2 (-945 *4)))) (-2001 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1245 *4)) (-4 *4 (-1042)) (-5 *2 (-945 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2563 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))) (-2563 (*1 *1 *1 *2) (-4050 (-12 (-5 *2 (-1166)) (-4 *1 (-1245 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-561)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1245 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -1405 ((-638 *2) *3))) (|has| *3 (-15 -2563 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561)))))))))
-(-13 (-1232 |t#1| (-765)) (-10 -8 (-15 -1543 ($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |t#1|))))) (-15 -1868 ((-1146 |t#1|) $)) (-15 -1543 ($ (-1146 |t#1|))) (-15 -3854 ($ $)) (-15 -3236 ($ (-1 |t#1| (-561)) $)) (-15 -2001 ((-945 |t#1|) $ (-765))) (-15 -2001 ((-945 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -2563 ($ $)) (IF (|has| |t#1| (-15 -2563 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -1405 ((-638 (-1166)) |t#1|))) (-15 -2563 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-952)) (IF (|has| |t#1| (-29 (-561))) (-15 -2563 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-765)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-765) |#1|))) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-765) (-1102)) ((-289) |has| |#1| (-553)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) |has| |#1| (-553)) ((-641 #1#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4050 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1232 |#1| #0#) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-1405 (((-638 (-1072)) $) NIL)) (-2421 (((-1166) $) 86)) (-2612 (((-1227 |#2| |#1|) $ (-765)) 73)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-3012 (($ $) NIL (|has| |#1| (-553)))) (-3163 (((-112) $) 136 (|has| |#1| (-553)))) (-1991 (($ $ (-765)) 121) (($ $ (-765) (-765)) 123)) (-4228 (((-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 42)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4106 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2979 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 53) (($ (-1146 |#1|)) NIL)) (-3039 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($) NIL T CONST)) (-3120 (($ $) 127)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3854 (($ $) 134)) (-2001 (((-945 |#1|) $ (-765)) 63) (((-945 |#1|) $ (-765) (-765)) 65)) (-4372 (((-112) $) NIL)) (-4111 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4027 (((-765) $) NIL) (((-765) $ (-765)) NIL)) (-2252 (((-112) $) NIL)) (-2627 (($ $) 111)) (-4343 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3850 (($ (-561) (-561) $) 129)) (-3508 (($ $ (-914)) 133)) (-3236 (($ (-1 |#1| (-561)) $) 105)) (-1750 (((-112) $) NIL)) (-1381 (($ |#1| (-765)) 15) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4165 (($ (-1 |#1| |#1|) $) 93)) (-4364 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1557 (($ $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-4285 (($ $) 109)) (-1724 (($ $) 107)) (-3343 (($ (-561) (-561) $) 131)) (-2563 (($ $) 144 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 150 (-4050 (-12 (|has| |#1| (-15 -2563 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1405 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1250 |#2|)) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1701 (((-1110) $) NIL)) (-4339 (($ $ (-561) (-561)) 115)) (-3702 (($ $ (-765)) 117)) (-1748 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3486 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2815 (($ $) 113)) (-1436 (((-1146 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-2315 ((|#1| $ (-765)) 90) (($ $ $) 125 (|has| (-765) (-1102)))) (-3922 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) 102 (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1250 |#2|)) 98)) (-3768 (((-765) $) NIL)) (-3052 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3026 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3426 (($ $) 119)) (-4064 (((-856) $) NIL) (($ (-561)) 24) (($ (-406 (-561))) 142 (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1227 |#2| |#1|)) 79) (($ (-1250 |#2|)) 20)) (-1868 (((-1146 |#1|) $) NIL)) (-3932 ((|#1| $ (-765)) 89)) (-3666 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3746 (((-765)) NIL)) (-2298 ((|#1| $) 87)) (-3086 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3996 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4150 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3113 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4192 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1408 ((|#1| $ (-765)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4064 (|#1| (-1166))))))) (-2821 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4202 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3099 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4162 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2246 (($) 17 T CONST)) (-2257 (($) 13 T CONST)) (-3154 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-1723 (((-112) $ $) NIL)) (-1828 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) 101)) (-1810 (($ $ $) 18)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
-(((-1246 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-10 -8 (-15 -4064 ($ (-1227 |#2| |#1|))) (-15 -2612 ((-1227 |#2| |#1|) $ (-765))) (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (-15 -1724 ($ $)) (-15 -4285 ($ $)) (-15 -2627 ($ $)) (-15 -2815 ($ $)) (-15 -4339 ($ $ (-561) (-561))) (-15 -3120 ($ $)) (-15 -3850 ($ (-561) (-561) $)) (-15 -3343 ($ (-561) (-561) $)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1246))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-1227 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1246 *3 *4 *5)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1227 *5 *4)) (-5 *1 (-1246 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1724 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4285 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-2815 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4339 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-3120 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-3850 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-3343 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(-13 (-1245 |#1|) (-10 -8 (-15 -4064 ($ (-1227 |#2| |#1|))) (-15 -2612 ((-1227 |#2| |#1|) $ (-765))) (-15 -4064 ($ (-1250 |#2|))) (-15 -3922 ($ $ (-1250 |#2|))) (-15 -1724 ($ $)) (-15 -4285 ($ $)) (-15 -2627 ($ $)) (-15 -2815 ($ $)) (-15 -4339 ($ $ (-561) (-561))) (-15 -3120 ($ $)) (-15 -3850 ($ (-561) (-561) $)) (-15 -3343 ($ (-561) (-561) $)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -2563 ($ $ (-1250 |#2|))) |%noBranch|)))
-((-4030 (((-1 (-1146 |#1|) (-638 (-1146 |#1|))) (-1 |#2| (-638 |#2|))) 24)) (-4346 (((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4022 (((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|)) 13)) (-3310 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3274 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3690 ((|#2| (-1 |#2| (-638 |#2|)) (-638 |#1|)) 54)) (-3469 (((-638 |#2|) (-638 |#1|) (-638 (-1 |#2| (-638 |#2|)))) 61)) (-2912 ((|#2| |#2| |#2|) 43)))
-(((-1247 |#1| |#2|) (-10 -7 (-15 -4022 ((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|))) (-15 -4346 ((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4030 ((-1 (-1146 |#1|) (-638 (-1146 |#1|))) (-1 |#2| (-638 |#2|)))) (-15 -2912 (|#2| |#2| |#2|)) (-15 -3274 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3310 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3690 (|#2| (-1 |#2| (-638 |#2|)) (-638 |#1|))) (-15 -3469 ((-638 |#2|) (-638 |#1|) (-638 (-1 |#2| (-638 |#2|)))))) (-38 (-406 (-561))) (-1245 |#1|)) (T -1247))
-((-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 (-1 *6 (-638 *6)))) (-4 *5 (-38 (-406 (-561)))) (-4 *6 (-1245 *5)) (-5 *2 (-638 *6)) (-5 *1 (-1247 *5 *6)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-638 *2))) (-5 *4 (-638 *5)) (-4 *5 (-38 (-406 (-561)))) (-4 *2 (-1245 *5)) (-5 *1 (-1247 *5 *2)))) (-3310 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-1247 *4 *2)) (-4 *4 (-38 (-406 (-561)))))) (-3274 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-1247 *4 *2)) (-4 *4 (-38 (-406 (-561)))))) (-2912 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1245 *3)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-638 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-638 (-1146 *4)))) (-5 *1 (-1247 *4 *5)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-1146 *4) (-1146 *4))) (-5 *1 (-1247 *4 *5)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1247 *4 *5)))))
-(-10 -7 (-15 -4022 ((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|))) (-15 -4346 ((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4030 ((-1 (-1146 |#1|) (-638 (-1146 |#1|))) (-1 |#2| (-638 |#2|)))) (-15 -2912 (|#2| |#2| |#2|)) (-15 -3274 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3310 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3690 (|#2| (-1 |#2| (-638 |#2|)) (-638 |#1|))) (-15 -3469 ((-638 |#2|) (-638 |#1|) (-638 (-1 |#2| (-638 |#2|))))))
-((-2917 ((|#2| |#4| (-765)) 30)) (-1581 ((|#4| |#2|) 25)) (-1451 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-553)))) (-3360 (((-1 |#4| (-638 |#4|)) |#3|) 46)))
-(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1581 (|#4| |#2|)) (-15 -2917 (|#2| |#4| (-765))) (-15 -3360 ((-1 |#4| (-638 |#4|)) |#3|)) (IF (|has| |#1| (-553)) (-15 -1451 (|#4| (-406 |#2|))) |%noBranch|)) (-1042) (-1230 |#1|) (-649 |#2|) (-1245 |#1|)) (T -1248))
-((-1451 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-553)) (-4 *4 (-1042)) (-4 *2 (-1245 *4)) (-5 *1 (-1248 *4 *5 *6 *2)) (-4 *6 (-649 *5)))) (-3360 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-1230 *4)) (-5 *2 (-1 *6 (-638 *6))) (-5 *1 (-1248 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-1245 *4)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1230 *5)) (-5 *1 (-1248 *5 *2 *6 *3)) (-4 *6 (-649 *2)) (-4 *3 (-1245 *5)))) (-1581 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-1230 *4)) (-4 *2 (-1245 *4)) (-5 *1 (-1248 *4 *3 *5 *2)) (-4 *5 (-649 *3)))))
-(-10 -7 (-15 -1581 (|#4| |#2|)) (-15 -2917 (|#2| |#4| (-765))) (-15 -3360 ((-1 |#4| (-638 |#4|)) |#3|)) (IF (|has| |#1| (-553)) (-15 -1451 (|#4| (-406 |#2|))) |%noBranch|))
+((-4180 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4206 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1166)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4178 (*1 *2 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4177 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4177 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4176 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4353 (*2 (-1166)))) (-4 *2 (-1042)))) (-4175 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4174 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3)))))
+(-13 (-966 |t#1| |t#2| (-1072)) (-10 -8 (-15 -4180 ((-1143 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4206 (|t#1| $ |t#2|)) (-15 -4238 ((-1166) $)) (-15 -4179 (|t#1| $)) (-15 -4183 ($ $ (-912))) (-15 -4178 (|t#2| $)) (-15 -4178 (|t#2| $ |t#2|)) (-15 -4177 ($ $ |t#2|)) (-15 -4177 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4353 (|t#1| (-1166)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4176 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4175 ($ $ |t#2|)) (IF (|has| |t#2| (-1102)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4174 ((-1143 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1102)) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-966 |#1| |#2| (-1072)) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-4181 ((|#2| |#2|) 12)) (-4376 (((-404 |#2|) |#2|) 14)) (-4182 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-544))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-544)))) 30)))
+(((-1233 |#1| |#2|) (-10 -7 (-15 -4376 ((-404 |#2|) |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-544))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-544)))))) (-554) (-13 (-1229 |#1|) (-554) (-10 -8 (-15 -3545 ($ $ $))))) (T -1233))
+((-4182 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-544)))) (-4 *4 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $))))) (-4 *3 (-554)) (-5 *1 (-1233 *3 *4)))) (-4181 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $))))))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-1233 *4 *3)) (-4 *3 (-13 (-1229 *4) (-554) (-10 -8 (-15 -3545 ($ $ $))))))))
+(-10 -7 (-15 -4376 ((-404 |#2|) |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-544))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-544))))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1213 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1243 |#1| |#2| |#3|) #1#) $) 22)) (-3557 (((-1213 |#1| |#2| |#3|) $) NIL) (((-1243 |#1| |#2| |#3|) $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4187 (((-406 (-544)) $) 57)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) (-1213 |#1| |#2| |#3|)) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) 30) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4186 (((-1213 |#1| |#2| |#3|) $) 60)) (-4184 (((-3 (-1213 |#1| |#2| |#3|) "failed") $) NIL)) (-4185 (((-1213 |#1| |#2| |#3|) $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 39 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 40 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $ (-1250 |#2|)) 38)) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 88) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1213 |#1| |#2| |#3|)) 16) (($ (-1243 |#1| |#2| |#3|)) 17) (($ (-1250 |#2|)) 36) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 12)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 32 T CONST)) (-3046 (($) 26 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 34)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1234 |#1| |#2| |#3|) (-13 (-1238 |#1| (-1213 |#1| |#2| |#3|)) (-1031 (-1243 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1234))
+((-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1238 |#1| (-1213 |#1| |#2| |#3|)) (-1031 (-1243 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|)))
+((-4365 (((-1234 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1234 |#1| |#3| |#5|)) 24)))
+(((-1235 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4365 ((-1234 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1234 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1235))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1234 *6 *8 *10)) (-5 *1 (-1235 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166)))))
+(-10 -7 (-15 -4365 ((-1234 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1234 |#1| |#3| |#5|))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) 101) (($ $ (-406 (-544)) (-406 (-544))) 100)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) 174)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) 103) (((-406 (-544)) $ (-406 (-544))) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104) (($ $ (-406 (-544))) 173)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-406 (-544))) 64) (($ $ (-1072) (-406 (-544))) 79) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) 107) (($ $ $) 84 (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
+(((-1236 |#1|) (-139) (-1042)) (T -1236))
+((-4225 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4)))) (-4 *4 (-1042)) (-4 *1 (-1236 *4)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1236 *3)) (-4 *3 (-1042)))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) (-4219 (*1 *1 *1 *2) (-3936 (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-544)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544)))))))))
+(-13 (-1232 |t#1| (-406 (-544))) (-10 -8 (-15 -4225 ($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |t#1|))))) (-15 -4183 ($ $ (-406 (-544)))) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (IF (|has| |t#1| (-15 -4219 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -3467 ((-635 (-1166)) |t#1|))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-953)) (IF (|has| |t#1| (-29 (-544))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-406 (-544))) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-406 (-544)) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #1#) . T))
+((-3589 (((-112) $) 12)) (-3558 (((-3 |#3| "failed") $) 17)) (-3557 ((|#3| $) 14)))
+(((-1237 |#1| |#2| |#3|) (-10 -8 (-15 -3558 ((-3 |#3| "failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|))) (-1238 |#2| |#3|) (-1042) (-1215 |#2|)) (T -1237))
+NIL
+(-10 -8 (-15 -3558 ((-3 |#3| "failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) 101) (($ $ (-406 (-544)) (-406 (-544))) 100)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) 174)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#2| "failed") $) 185)) (-3557 ((|#2| $) 186)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-4187 (((-406 (-544)) $) 182)) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) |#2|) 183)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) 103) (((-406 (-544)) $ (-406 (-544))) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104) (($ $ (-406 (-544))) 173)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-406 (-544))) 64) (($ $ (-1072) (-406 (-544))) 79) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-4186 ((|#2| $) 181)) (-4184 (((-3 |#2| "failed") $) 179)) (-4185 ((|#2| $) 180)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) 107) (($ $ $) 84 (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
+(((-1238 |#1| |#2|) (-139) (-1042) (-1215 |t#1|)) (T -1238))
+((-4355 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3)) (-5 *2 (-406 (-544))))) (-4188 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-4 *4 (-1042)) (-4 *1 (-1238 *4 *3)) (-4 *3 (-1215 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3)) (-5 *2 (-406 (-544))))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))) (-4184 (*1 *2 *1) (|partial| -12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))))
+(-13 (-1236 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -4188 ($ (-406 (-544)) |t#2|)) (-15 -4187 ((-406 (-544)) $)) (-15 -4186 (|t#2| $)) (-15 -4355 ((-406 (-544)) $)) (-15 -4185 (|t#2| $)) (-15 -4184 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-406 (-544))) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-406 (-544)) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1031 |#2|) . T) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #1#) . T) ((-1236 |#1|) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 96)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) 106) (($ $ (-406 (-544)) (-406 (-544))) 108)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 51)) (-3891 (($ $) 180 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 156 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 152 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) 61)) (-3893 (($ $) 184 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| "failed") $) NIL)) (-3557 ((|#2| $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) 79)) (-4187 (((-406 (-544)) $) 13)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) |#2|) 11)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) 68)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) 103) (((-406 (-544)) $ (-406 (-544))) 104)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 120) (($ $ (-406 (-544))) 118)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) 31) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 115)) (-4349 (($ $) 150 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4186 ((|#2| $) 12)) (-4184 (((-3 |#2| "failed") $) 41)) (-4185 ((|#2| $) 42)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 93 (|has| |#1| (-362)))) (-4219 (($ $) 135 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 140 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) 112)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) 100) (($ $ $) 86 (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 127 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) 16)) (-3894 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 182 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 158 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 154 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 110)) (-4353 (((-857) $) NIL) (($ (-544)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-544))) 128 (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 99)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 117)) (-4179 ((|#1| $) 98)) (-3897 (($ $) 192 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 168 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 188 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 164 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 196 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 198 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 194 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 190 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 166 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 21 T CONST)) (-3046 (($) 17 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) 66)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-4244 (($ $) 131) (($ $ $) 72)) (-4246 (($ $ $) 70)) (** (($ $ (-912)) NIL) (($ $ (-765)) 76) (($ $ (-544)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 146 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1239 |#1| |#2|) (-1238 |#1| |#2|) (-1042) (-1215 |#1|)) (T -1239))
+NIL
+(-1238 |#1| |#2|)
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 34)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-406 (-544))))) (((-3 (-1234 |#2| |#3| |#4|) #1#) $) 20)) (-3557 (((-544) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-406 (-544))))) (((-1234 |#2| |#3| |#4|) $) NIL)) (-4366 (($ $) 35)) (-3866 (((-3 $ "failed") $) 25)) (-3902 (($ $) NIL (|has| (-1234 |#2| |#3| |#4|) (-450)))) (-1749 (($ $ (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 11)) (-4344 (((-112) $) NIL)) (-3276 (($ (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-3202 (((-318 |#2| |#3| |#4|) $) NIL)) (-1750 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-4365 (($ (-1 (-1234 |#2| |#3| |#4|) (-1234 |#2| |#3| |#4|)) $) NIL)) (-4190 (((-3 (-836 |#2|) "failed") $) 74)) (-3277 (($ $) NIL)) (-3575 (((-1234 |#2| |#3| |#4|) $) 18)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 (((-1234 |#2| |#3| |#4|) $) NIL)) (-3865 (((-3 $ "failed") $ (-1234 |#2| |#3| |#4|)) NIL (|has| (-1234 |#2| |#3| |#4|) (-554))) (((-3 $ "failed") $ $) NIL)) (-4189 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $) 57)) (-4355 (((-318 |#2| |#3| |#4|) $) 14)) (-3199 (((-1234 |#2| |#3| |#4|) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-1234 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL (-3936 (|has| (-1234 |#2| |#3| |#4|) (-1031 (-406 (-544)))) (|has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544))))))) (-4224 (((-635 (-1234 |#2| |#3| |#4|)) $) NIL)) (-4084 (((-1234 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| (-1234 |#2| |#3| |#4|) (-144)))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| (-1234 |#2| |#3| |#4|) (-171)))) (-2212 (((-112) $ $) NIL)) (-3040 (($) 62 T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ (-1234 |#2| |#3| |#4|)) NIL (|has| (-1234 |#2| |#3| |#4|) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-1234 |#2| |#3| |#4|)) NIL) (($ (-1234 |#2| |#3| |#4|) $) NIL) (($ (-406 (-544)) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544)))))))
+(((-1240 |#1| |#2| |#3| |#4|) (-13 (-325 (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4189 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $)))) (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)) (-13 (-27) (-1190) (-420 |#1|)) (-1166) |#2|) (T -1240))
+((-4190 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *2 (-836 *4)) (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4))) (-4189 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4)))))) (|:| |%type| (-1148)))) (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4))))
+(-13 (-325 (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4189 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $))))
+((-3806 ((|#2| $) 28)) (-4201 ((|#2| $) 18)) (-4203 (($ $) 35)) (-4191 (($ $ (-544)) 63)) (-1293 (((-112) $ (-765)) 32)) (-3408 ((|#2| $ |#2|) 60)) (-4192 ((|#2| $ |#2|) 58)) (-4194 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3409 (($ $ (-635 $)) 59)) (-4202 ((|#2| $) 17)) (-4205 (($ $) NIL) (($ $ (-765)) 41)) (-3414 (((-635 $) $) 25)) (-3410 (((-112) $ $) 49)) (-4126 (((-112) $ (-765)) 31)) (-4123 (((-112) $ (-765)) 30)) (-3926 (((-112) $) 27)) (-4204 ((|#2| $) 23) (($ $ (-765)) 45)) (-4206 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4040 (((-112) $) 21)) (-4198 (($ $) 38)) (-4196 (($ $) 64)) (-4199 (((-765) $) 40)) (-4200 (($ $) 39)) (-4208 (($ $ $) 57) (($ |#2| $) NIL)) (-3921 (((-635 $) $) 26)) (-3437 (((-112) $ $) 47)) (-4364 (((-765) $) 34)))
+(((-1241 |#1| |#2|) (-10 -8 (-15 -4191 (|#1| |#1| (-544))) (-15 -4194 (|#2| |#1| "last" |#2|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -4194 (|#1| |#1| "rest" |#1|)) (-15 -4194 (|#2| |#1| "first" |#2|)) (-15 -4196 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4201 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4206 (|#2| |#1| "first")) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -3408 (|#2| |#1| |#2|)) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3409 (|#1| |#1| (-635 |#1|))) (-15 -3410 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765)))) (-1242 |#2|) (-1204)) (T -1241))
+NIL
+(-10 -8 (-15 -4191 (|#1| |#1| (-544))) (-15 -4194 (|#2| |#1| "last" |#2|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -4194 (|#1| |#1| "rest" |#1|)) (-15 -4194 (|#2| |#1| "first" |#2|)) (-15 -4196 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4201 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4206 (|#2| |#1| "first")) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -3408 (|#2| |#1| |#2|)) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3409 (|#1| |#1| (-635 |#1|))) (-15 -3410 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ "rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4197 (($ $ $) 61 (|has| $ (-6 -4401))) (($ $ |#1|) 60 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 77)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-1242 |#1|) (-139) (-1204)) (T -1242))
+((-4208 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4205 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4200 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-4198 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4196 (*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4195 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4193 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4194 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4192 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))))
+(-13 (-1003 |t#1|) (-10 -8 (-15 -4208 ($ $ $)) (-15 -4208 ($ |t#1| $)) (-15 -4207 (|t#1| $)) (-15 -4206 (|t#1| $ "first")) (-15 -4207 ($ $ (-765))) (-15 -4205 ($ $)) (-15 -4206 ($ $ "rest")) (-15 -4205 ($ $ (-765))) (-15 -4204 (|t#1| $)) (-15 -4206 (|t#1| $ "last")) (-15 -4204 ($ $ (-765))) (-15 -4203 ($ $)) (-15 -4202 (|t#1| $)) (-15 -4201 (|t#1| $)) (-15 -4200 ($ $)) (-15 -4199 ((-765) $)) (-15 -4198 ($ $)) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4197 ($ $ $)) (-15 -4197 ($ $ |t#1|)) (-15 -4196 ($ $)) (-15 -4195 (|t#1| $ |t#1|)) (-15 -4194 (|t#1| $ "first" |t#1|)) (-15 -4193 ($ $ $)) (-15 -4194 ($ $ "rest" $)) (-15 -4192 (|t#1| $ |t#1|)) (-15 -4194 (|t#1| $ "last" |t#1|)) (-15 -4191 ($ $ (-544)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 86)) (-4218 (((-1222 |#2| |#1|) $ (-765)) 73)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) 136 (|has| |#1| (-554)))) (-4177 (($ $ (-765)) 121) (($ $ (-765) (-765)) 123)) (-4180 (((-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 42)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 53) (($ (-1143 |#1|)) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4211 (($ $) 127)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4223 (($ $) 134)) (-4221 (((-939 |#1|) $ (-765)) 63) (((-939 |#1|) $ (-765) (-765)) 65)) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $) NIL) (((-765) $ (-765)) NIL)) (-2545 (((-112) $) NIL)) (-4214 (($ $) 111)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4210 (($ (-544) (-544) $) 129)) (-4183 (($ $ (-912)) 133)) (-4222 (($ (-1 |#1| (-544)) $) 105)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 15) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 93)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4215 (($ $) 109)) (-4216 (($ $) 107)) (-4209 (($ (-544) (-544) $) 131)) (-4219 (($ $) 144 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 150 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4212 (($ $ (-544) (-544)) 115)) (-4175 (($ $ (-765)) 117)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4213 (($ $) 113)) (-4174 (((-1143 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-4206 ((|#1| $ (-765)) 90) (($ $ $) 125 (|has| (-765) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 102 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1250 |#2|)) 98)) (-4355 (((-765) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 119)) (-4353 (((-857) $) NIL) (($ (-544)) 24) (($ (-406 (-544))) 142 (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1222 |#2| |#1|)) 79) (($ (-1250 |#2|)) 20)) (-4224 (((-1143 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) 89)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 87)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-765)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 17 T CONST)) (-3046 (($) 13 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 101)) (-4246 (($ $ $) 18)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))))
+(((-1243 |#1| |#2| |#3|) (-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (-15 -4216 ($ $)) (-15 -4215 ($ $)) (-15 -4214 ($ $)) (-15 -4213 ($ $)) (-15 -4212 ($ $ (-544) (-544))) (-15 -4211 ($ $)) (-15 -4210 ($ (-544) (-544) $)) (-15 -4209 ($ (-544) (-544) $)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1243))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1243 *3 *4 *5)))) (-4218 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1243 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4216 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4215 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4214 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4213 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4212 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4210 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-4209 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (-15 -4216 ($ $)) (-15 -4215 ($ $)) (-15 -4214 ($ $)) (-15 -4213 ($ $)) (-15 -4212 ($ $ (-544) (-544))) (-15 -4211 ($ $)) (-15 -4210 ($ (-544) (-544) $)) (-15 -4209 ($ (-544) (-544) $)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|)))
+((-4365 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1244 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|))) (-1042) (-1042) (-1246 |#1|) (-1246 |#2|)) (T -1244))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1246 *6)) (-5 *1 (-1244 *5 *6 *4 *2)) (-4 *4 (-1246 *5)))))
+(-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3589 (((-112) $) 15)) (-3891 (($ $) 91)) (-4046 (($ $) 67)) (-3889 (($ $) 87)) (-4045 (($ $) 63)) (-3893 (($ $) 95)) (-4044 (($ $) 71)) (-4349 (($ $) 61)) (-4350 (($ $) 59)) (-3894 (($ $) 97)) (-4043 (($ $) 73)) (-3892 (($ $) 93)) (-4042 (($ $) 69)) (-3890 (($ $) 89)) (-4041 (($ $) 65)) (-4353 (((-857) $) 47) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3897 (($ $) 103)) (-3885 (($ $) 79)) (-3895 (($ $) 99)) (-3883 (($ $) 75)) (-3899 (($ $) 107)) (-3887 (($ $) 83)) (-3900 (($ $) 109)) (-3888 (($ $) 85)) (-3898 (($ $) 105)) (-3886 (($ $) 81)) (-3896 (($ $) 101)) (-3884 (($ $) 77)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-544))) 57)))
+(((-1245 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -3589 ((-112) |#1|)) (-15 -4353 ((-857) |#1|))) (-1246 |#2|) (-1042)) (T -1245))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -3589 ((-112) |#1|)) (-15 -4353 ((-857) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-765)) 101) (($ $ (-765) (-765)) 100)) (-4180 (((-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 158) (($ (-1143 |#1|)) 156)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-4223 (($ $) 155)) (-4221 (((-939 |#1|) $ (-765)) 153) (((-939 |#1|) $ (-765) (-765)) 152)) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $) 103) (((-765) $ (-765)) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104)) (-4222 (($ (-1 |#1| (-544)) $) 154)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-765)) 64) (($ $ (-1072) (-765)) 79) (($ $ (-635 (-1072)) (-635 (-765))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-4219 (($ $) 150 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 149 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-4175 (($ $ (-765)) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-4206 ((|#1| $ (-765)) 107) (($ $ $) 84 (|has| (-765) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-4355 (((-765) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4224 (((-1143 |#1|) $) 157)) (-4084 ((|#1| $ (-765)) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-765)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544)))))))
+(((-1246 |#1|) (-139) (-1042)) (T -1246))
+((-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-765)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1246 *3)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-5 *2 (-1143 *3)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-4 *1 (-1246 *3)))) (-4223 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1246 *3)) (-4 *3 (-1042)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4)))) (-4221 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) (-4219 (*1 *1 *1 *2) (-3936 (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-544)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544)))))))))
+(-13 (-1232 |t#1| (-765)) (-10 -8 (-15 -4225 ($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |t#1|))))) (-15 -4224 ((-1143 |t#1|) $)) (-15 -4225 ($ (-1143 |t#1|))) (-15 -4223 ($ $)) (-15 -4222 ($ (-1 |t#1| (-544)) $)) (-15 -4221 ((-939 |t#1|) $ (-765))) (-15 -4221 ((-939 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (IF (|has| |t#1| (-15 -4219 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -3467 ((-635 (-1166)) |t#1|))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-953)) (IF (|has| |t#1| (-29 (-544))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-765)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-765) |#1|))) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-765) (-1102)) ((-289) |has| |#1| (-554)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) |has| |#1| (-554)) ((-641 #2#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1232 |#1| #1#) . T))
+((-4228 (((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|))) 24)) (-4227 (((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4226 (((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|)) 13)) (-4231 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4230 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4232 ((|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|)) 54)) (-4233 (((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))) 61)) (-4229 ((|#2| |#2| |#2|) 43)))
+(((-1247 |#1| |#2|) (-10 -7 (-15 -4226 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -4227 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4228 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -4229 (|#2| |#2| |#2|)) (-15 -4230 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4231 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4232 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -4233 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))))) (-38 (-406 (-544))) (-1246 |#1|)) (T -1247))
+((-4233 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6)))) (-4 *5 (-38 (-406 (-544)))) (-4 *6 (-1246 *5)) (-5 *2 (-635 *6)) (-5 *1 (-1247 *5 *6)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5)) (-4 *5 (-38 (-406 (-544)))) (-4 *2 (-1246 *5)) (-5 *1 (-1247 *5 *2)))) (-4231 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2)) (-4 *4 (-38 (-406 (-544)))))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2)) (-4 *4 (-38 (-406 (-544)))))) (-4229 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1246 *3)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1247 *4 *5)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5)))))
+(-10 -7 (-15 -4226 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -4227 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4228 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -4229 (|#2| |#2| |#2|)) (-15 -4230 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4231 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4232 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -4233 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|))))))
+((-4235 ((|#2| |#4| (-765)) 30)) (-4234 ((|#4| |#2|) 25)) (-4237 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-554)))) (-4236 (((-1 |#4| (-635 |#4|)) |#3|) 46)))
+(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| |#2|)) (-15 -4235 (|#2| |#4| (-765))) (-15 -4236 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -4237 (|#4| (-406 |#2|))) |%noBranch|)) (-1042) (-1229 |#1|) (-651 |#2|) (-1246 |#1|)) (T -1248))
+((-4237 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-554)) (-4 *4 (-1042)) (-4 *2 (-1246 *4)) (-5 *1 (-1248 *4 *5 *6 *2)) (-4 *6 (-651 *5)))) (-4236 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-1229 *4)) (-5 *2 (-1 *6 (-635 *6))) (-5 *1 (-1248 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1246 *4)))) (-4235 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-1248 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1246 *5)))) (-4234 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-1229 *4)) (-4 *2 (-1246 *4)) (-5 *1 (-1248 *4 *3 *5 *2)) (-4 *5 (-651 *3)))))
+(-10 -7 (-15 -4234 (|#4| |#2|)) (-15 -4235 (|#2| |#4| (-765))) (-15 -4236 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -4237 (|#4| (-406 |#2|))) |%noBranch|))
NIL
(((-1249) (-139)) (T -1249))
NIL
-(-13 (-10 -7 (-6 -1374)))
-((-4053 (((-112) $ $) NIL)) (-2421 (((-1166)) 12)) (-1883 (((-1148) $) 17)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 11) (((-1166) $) 8)) (-1723 (((-112) $ $) 14)))
-(((-1250 |#1|) (-13 (-1090) (-608 (-1166)) (-10 -8 (-15 -4064 ((-1166) $)) (-15 -2421 ((-1166))))) (-1166)) (T -1250))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))) (-2421 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))))
-(-13 (-1090) (-608 (-1166)) (-10 -8 (-15 -4064 ((-1166) $)) (-15 -2421 ((-1166)))))
-((-2920 (($ (-765)) 18)) (-2832 (((-682 |#2|) $ $) 40)) (-1463 ((|#2| $) 48)) (-4310 ((|#2| $) 47)) (-3634 ((|#2| $ $) 35)) (-3738 (($ $ $) 44)) (-1819 (($ $) 22) (($ $ $) 28)) (-1810 (($ $ $) 15)) (* (($ (-561) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1251 |#1| |#2|) (-10 -8 (-15 -1463 (|#2| |#1|)) (-15 -4310 (|#2| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -2832 ((-682 |#2|) |#1| |#1|)) (-15 -3634 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2920 (|#1| (-765))) (-15 -1810 (|#1| |#1| |#1|))) (-1252 |#2|) (-1205)) (T -1251))
-NIL
-(-10 -8 (-15 -1463 (|#2| |#1|)) (-15 -4310 (|#2| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -2832 ((-682 |#2|) |#1| |#1|)) (-15 -3634 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2920 (|#1| (-765))) (-15 -1810 (|#1| |#1| |#1|)))
-((-4053 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2920 (($ (-765)) 112 (|has| |#1| (-23)))) (-1846 (((-1259) $ (-561) (-561)) 40 (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4400))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4400))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) 8)) (-4207 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) 58 (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4399)))) (-2674 (($) 7 T CONST)) (-4026 (($ $) 90 (|has| $ (-6 -4400)))) (-2659 (($ $) 100)) (-1461 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) 51)) (-4266 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) 30 (|has| $ (-6 -4399)))) (-2832 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-1458 (($ (-765) |#1|) 69)) (-3116 (((-112) $ (-765)) 9)) (-3950 (((-561) $) 43 (|has| (-561) (-844)))) (-1597 (($ $ $) 87 (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-1556 (((-561) $) 44 (|has| (-561) (-844)))) (-3017 (($ $ $) 86 (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1463 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-3683 (((-112) $ (-765)) 10)) (-4310 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-1883 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2355 (((-638 (-561)) $) 46)) (-1558 (((-112) (-561) $) 47)) (-1701 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1424 ((|#1| $) 42 (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3193 (($ $ |#1|) 41 (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) 14)) (-3764 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) 48)) (-2508 (((-112) $) 11)) (-2910 (($) 12)) (-2315 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1221 (-561))) 63)) (-3634 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-2883 (($ $ (-561)) 62) (($ $ (-1221 (-561))) 61)) (-3738 (($ $ $) 104 (|has| |#1| (-1042)))) (-1714 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4399))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4399))))) (-2879 (($ $ $ (-561)) 91 (|has| $ (-6 -4400)))) (-4225 (($ $) 13)) (-4216 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 70)) (-2754 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4064 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1723 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1770 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-844)))) (-1819 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1810 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-561) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-3548 (((-765) $) 6 (|has| $ (-6 -4399)))))
-(((-1252 |#1|) (-139) (-1205)) (T -1252))
-((-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-25)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1252 *3)) (-4 *3 (-23)) (-4 *3 (-1205)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-21)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-1252 *3)) (-4 *3 (-1205)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))) (-3634 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))) (-2832 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1205)) (-4 *3 (-1042)) (-5 *2 (-682 *3)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-995)) (-4 *2 (-1042)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-995)) (-4 *2 (-1042)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1810 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2920 ($ (-765))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1819 ($ $)) (-15 -1819 ($ $ $)) (-15 * ($ (-561) $))) |%noBranch|) (IF (|has| |t#1| (-720)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-15 -3634 (|t#1| $ $)) (-15 -2832 ((-682 |t#1|) $ $)) (-15 -3738 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-995)) (IF (|has| |t#1| (-1042)) (PROGN (-15 -4310 (|t#1| $)) (-15 -1463 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4050 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T))
-((-3522 (((-1254 |#2|) (-1 |#2| |#1| |#2|) (-1254 |#1|) |#2|) 13)) (-3176 ((|#2| (-1 |#2| |#1| |#2|) (-1254 |#1|) |#2|) 15)) (-4165 (((-3 (-1254 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1254 |#1|)) 28) (((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 18)))
-(((-1253 |#1| |#2|) (-10 -7 (-15 -3522 ((-1254 |#2|) (-1 |#2| |#1| |#2|) (-1254 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-1254 |#1|) |#2|)) (-15 -4165 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (-15 -4165 ((-3 (-1254 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1254 |#1|)))) (-1205) (-1205)) (T -1253))
-((-4165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6)))) (-3176 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1254 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-1253 *5 *2)))) (-3522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1254 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-1254 *5)) (-5 *1 (-1253 *6 *5)))))
-(-10 -7 (-15 -3522 ((-1254 |#2|) (-1 |#2| |#1| |#2|) (-1254 |#1|) |#2|)) (-15 -3176 (|#2| (-1 |#2| |#1| |#2|) (-1254 |#1|) |#2|)) (-15 -4165 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (-15 -4165 ((-3 (-1254 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1254 |#1|))))
-((-4053 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2920 (($ (-765)) NIL (|has| |#1| (-23)))) (-3861 (($ (-638 |#1|)) 9)) (-1846 (((-1259) $ (-561) (-561)) NIL (|has| $ (-6 -4400)))) (-2097 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1680 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4400))) (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-844))))) (-1318 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-2684 (((-112) $ (-765)) NIL)) (-4207 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400))) ((|#1| $ (-1221 (-561)) |#1|) NIL (|has| $ (-6 -4400)))) (-3612 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-2674 (($) NIL T CONST)) (-4026 (($ $) NIL (|has| $ (-6 -4400)))) (-2659 (($ $) NIL)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-3176 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4399))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4399)))) (-2041 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4400)))) (-1975 ((|#1| $ (-561)) NIL)) (-4266 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-2368 (((-638 |#1|) $) 15 (|has| $ (-6 -4399)))) (-2832 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-1458 (($ (-765) |#1|) NIL)) (-3116 (((-112) $ (-765)) NIL)) (-3950 (((-561) $) NIL (|has| (-561) (-844)))) (-1597 (($ $ $) NIL (|has| |#1| (-844)))) (-3405 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-4125 (((-638 |#1|) $) NIL (|has| $ (-6 -4399)))) (-4288 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-1556 (((-561) $) NIL (|has| (-561) (-844)))) (-3017 (($ $ $) NIL (|has| |#1| (-844)))) (-2029 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1463 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3683 (((-112) $ (-765)) NIL)) (-4310 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-1883 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3350 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2355 (((-638 (-561)) $) NIL)) (-1558 (((-112) (-561) $) NIL)) (-1701 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1424 ((|#1| $) NIL (|has| (-561) (-844)))) (-3202 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3193 (($ $ |#1|) NIL (|has| $ (-6 -4400)))) (-3977 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-1582 (((-112) $ $) NIL)) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2411 (((-638 |#1|) $) NIL)) (-2508 (((-112) $) NIL)) (-2910 (($) NIL)) (-2315 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-3634 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2883 (($ $ (-561)) NIL) (($ $ (-1221 (-561))) NIL)) (-3738 (($ $ $) NIL (|has| |#1| (-1042)))) (-1714 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#1| (-1090))))) (-2879 (($ $ $ (-561)) NIL (|has| $ (-6 -4400)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) 19 (|has| |#1| (-609 (-534))))) (-4078 (($ (-638 |#1|)) 8)) (-2754 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4064 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4399)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1770 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1819 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1810 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-561) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1254 |#1|) (-13 (-1252 |#1|) (-10 -8 (-15 -3861 ($ (-638 |#1|))))) (-1205)) (T -1254))
-((-3861 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1254 *3)))))
-(-13 (-1252 |#1|) (-10 -8 (-15 -3861 ($ (-638 |#1|)))))
-((-4053 (((-112) $ $) NIL)) (-2654 (((-1148) $ (-1148)) 92) (((-1148) $ (-1148) (-1148)) 90) (((-1148) $ (-1148) (-638 (-1148))) 89)) (-1361 (($) 59)) (-4221 (((-1259) $ (-466) (-914)) 45)) (-3481 (((-1259) $ (-914) (-1148)) 75) (((-1259) $ (-914) (-867)) 76)) (-3849 (((-1259) $ (-914) (-378) (-378)) 48)) (-3618 (((-1259) $ (-1148)) 71)) (-1713 (((-1259) $ (-914) (-1148)) 80)) (-2643 (((-1259) $ (-914) (-378) (-378)) 49)) (-1805 (((-1259) $ (-914) (-914)) 46)) (-2632 (((-1259) $) 72)) (-1561 (((-1259) $ (-914) (-1148)) 79)) (-3252 (((-1259) $ (-466) (-914)) 31)) (-3233 (((-1259) $ (-914) (-1148)) 78)) (-3623 (((-638 (-262)) $) 23) (($ $ (-638 (-262))) 24)) (-1974 (((-1259) $ (-765) (-765)) 43)) (-1534 (($ $) 60) (($ (-466) (-638 (-262))) 61)) (-1883 (((-1148) $) NIL)) (-2285 (((-561) $) 38)) (-1701 (((-1110) $) NIL)) (-2561 (((-1254 (-3 (-466) "undefined")) $) 37)) (-2260 (((-1254 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -3233 (-561)) (|:| -1566 (-561)) (|:| |spline| (-561)) (|:| -2276 (-561)) (|:| |axesColor| (-867)) (|:| -3481 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561)))) $) 36)) (-2014 (((-1259) $ (-914) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-867) (-561) (-867) (-561)) 70)) (-4363 (((-638 (-936 (-224))) $) NIL)) (-3927 (((-466) $ (-914)) 33)) (-3313 (((-1259) $ (-765) (-765) (-914) (-914)) 40)) (-2317 (((-1259) $ (-1148)) 81)) (-1566 (((-1259) $ (-914) (-1148)) 77)) (-4064 (((-856) $) 87)) (-1450 (((-1259) $) 82)) (-2276 (((-1259) $ (-914) (-1148)) 73) (((-1259) $ (-914) (-867)) 74)) (-1723 (((-112) $ $) NIL)))
-(((-1255) (-13 (-1090) (-10 -8 (-15 -4363 ((-638 (-936 (-224))) $)) (-15 -1361 ($)) (-15 -1534 ($ $)) (-15 -3623 ((-638 (-262)) $)) (-15 -3623 ($ $ (-638 (-262)))) (-15 -1534 ($ (-466) (-638 (-262)))) (-15 -2014 ((-1259) $ (-914) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-867) (-561) (-867) (-561))) (-15 -2260 ((-1254 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -3233 (-561)) (|:| -1566 (-561)) (|:| |spline| (-561)) (|:| -2276 (-561)) (|:| |axesColor| (-867)) (|:| -3481 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561)))) $)) (-15 -2561 ((-1254 (-3 (-466) "undefined")) $)) (-15 -3618 ((-1259) $ (-1148))) (-15 -3252 ((-1259) $ (-466) (-914))) (-15 -3927 ((-466) $ (-914))) (-15 -2276 ((-1259) $ (-914) (-1148))) (-15 -2276 ((-1259) $ (-914) (-867))) (-15 -3481 ((-1259) $ (-914) (-1148))) (-15 -3481 ((-1259) $ (-914) (-867))) (-15 -3233 ((-1259) $ (-914) (-1148))) (-15 -1561 ((-1259) $ (-914) (-1148))) (-15 -1566 ((-1259) $ (-914) (-1148))) (-15 -2317 ((-1259) $ (-1148))) (-15 -1450 ((-1259) $)) (-15 -3313 ((-1259) $ (-765) (-765) (-914) (-914))) (-15 -2643 ((-1259) $ (-914) (-378) (-378))) (-15 -3849 ((-1259) $ (-914) (-378) (-378))) (-15 -1713 ((-1259) $ (-914) (-1148))) (-15 -1974 ((-1259) $ (-765) (-765))) (-15 -4221 ((-1259) $ (-466) (-914))) (-15 -1805 ((-1259) $ (-914) (-914))) (-15 -2654 ((-1148) $ (-1148))) (-15 -2654 ((-1148) $ (-1148) (-1148))) (-15 -2654 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -2632 ((-1259) $)) (-15 -2285 ((-561) $)) (-15 -4064 ((-856) $))))) (T -1255))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1255)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-638 (-936 (-224)))) (-5 *1 (-1255)))) (-1361 (*1 *1) (-5 *1 (-1255))) (-1534 (*1 *1 *1) (-5 *1 (-1255))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255)))) (-3623 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255)))) (-1534 (*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-638 (-262))) (-5 *1 (-1255)))) (-2014 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-914)) (-5 *4 (-224)) (-5 *5 (-561)) (-5 *6 (-867)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-1254 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -3233 (-561)) (|:| -1566 (-561)) (|:| |spline| (-561)) (|:| -2276 (-561)) (|:| |axesColor| (-867)) (|:| -3481 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561))))) (-5 *1 (-1255)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-1254 (-3 (-466) "undefined"))) (-5 *1 (-1255)))) (-3618 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-3252 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-3927 (*1 *2 *1 *3) (-12 (-5 *3 (-914)) (-5 *2 (-466)) (-5 *1 (-1255)))) (-2276 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-2276 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-3481 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-3481 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-3233 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-1561 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-1566 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-2317 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1255)))) (-3313 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-2643 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-3849 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-1713 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-1974 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-4221 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-1805 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255)))) (-2654 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255)))) (-2654 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255)))) (-2654 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1255)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1255)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1255)))))
-(-13 (-1090) (-10 -8 (-15 -4363 ((-638 (-936 (-224))) $)) (-15 -1361 ($)) (-15 -1534 ($ $)) (-15 -3623 ((-638 (-262)) $)) (-15 -3623 ($ $ (-638 (-262)))) (-15 -1534 ($ (-466) (-638 (-262)))) (-15 -2014 ((-1259) $ (-914) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-867) (-561) (-867) (-561))) (-15 -2260 ((-1254 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -3233 (-561)) (|:| -1566 (-561)) (|:| |spline| (-561)) (|:| -2276 (-561)) (|:| |axesColor| (-867)) (|:| -3481 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561)))) $)) (-15 -2561 ((-1254 (-3 (-466) "undefined")) $)) (-15 -3618 ((-1259) $ (-1148))) (-15 -3252 ((-1259) $ (-466) (-914))) (-15 -3927 ((-466) $ (-914))) (-15 -2276 ((-1259) $ (-914) (-1148))) (-15 -2276 ((-1259) $ (-914) (-867))) (-15 -3481 ((-1259) $ (-914) (-1148))) (-15 -3481 ((-1259) $ (-914) (-867))) (-15 -3233 ((-1259) $ (-914) (-1148))) (-15 -1561 ((-1259) $ (-914) (-1148))) (-15 -1566 ((-1259) $ (-914) (-1148))) (-15 -2317 ((-1259) $ (-1148))) (-15 -1450 ((-1259) $)) (-15 -3313 ((-1259) $ (-765) (-765) (-914) (-914))) (-15 -2643 ((-1259) $ (-914) (-378) (-378))) (-15 -3849 ((-1259) $ (-914) (-378) (-378))) (-15 -1713 ((-1259) $ (-914) (-1148))) (-15 -1974 ((-1259) $ (-765) (-765))) (-15 -4221 ((-1259) $ (-466) (-914))) (-15 -1805 ((-1259) $ (-914) (-914))) (-15 -2654 ((-1148) $ (-1148))) (-15 -2654 ((-1148) $ (-1148) (-1148))) (-15 -2654 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -2632 ((-1259) $)) (-15 -2285 ((-561) $)) (-15 -4064 ((-856) $))))
-((-4053 (((-112) $ $) NIL)) (-1689 (((-1259) $ (-378)) 142) (((-1259) $ (-378) (-378) (-378)) 143)) (-2654 (((-1148) $ (-1148)) 150) (((-1148) $ (-1148) (-1148)) 148) (((-1148) $ (-1148) (-638 (-1148))) 147)) (-2300 (($) 50)) (-1525 (((-1259) $ (-378) (-378) (-378) (-378) (-378)) 118) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 116) (((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 117) (((-1259) $ (-561) (-561) (-378) (-378) (-378)) 119) (((-1259) $ (-378) (-378)) 120) (((-1259) $ (-378) (-378) (-378)) 127)) (-4199 (((-378)) 99) (((-378) (-378)) 100)) (-3472 (((-378)) 94) (((-378) (-378)) 96)) (-1592 (((-378)) 97) (((-378) (-378)) 98)) (-3389 (((-378)) 103) (((-378) (-378)) 104)) (-2639 (((-378)) 101) (((-378) (-378)) 102)) (-3849 (((-1259) $ (-378) (-378)) 144)) (-3618 (((-1259) $ (-1148)) 128)) (-1884 (((-1123 (-224)) $) 51) (($ $ (-1123 (-224))) 52)) (-2968 (((-1259) $ (-1148)) 156)) (-2755 (((-1259) $ (-1148)) 157)) (-3070 (((-1259) $ (-378) (-378)) 126) (((-1259) $ (-561) (-561)) 141)) (-1805 (((-1259) $ (-914) (-914)) 134)) (-2632 (((-1259) $) 114)) (-2088 (((-1259) $ (-1148)) 155)) (-2119 (((-1259) $ (-1148)) 111)) (-3623 (((-638 (-262)) $) 53) (($ $ (-638 (-262))) 54)) (-1974 (((-1259) $ (-765) (-765)) 133)) (-3929 (((-1259) $ (-765) (-936 (-224))) 162)) (-3114 (($ $) 56) (($ (-1123 (-224)) (-1148)) 57) (($ (-1123 (-224)) (-638 (-262))) 58)) (-4347 (((-1259) $ (-378) (-378) (-378)) 108)) (-1883 (((-1148) $) NIL)) (-2285 (((-561) $) 105)) (-2967 (((-1259) $ (-378)) 145)) (-1906 (((-1259) $ (-378)) 160)) (-1701 (((-1110) $) NIL)) (-2895 (((-1259) $ (-378)) 159)) (-1416 (((-1259) $ (-1148)) 113)) (-3313 (((-1259) $ (-765) (-765) (-914) (-914)) 132)) (-2113 (((-1259) $ (-1148)) 110)) (-2317 (((-1259) $ (-1148)) 112)) (-2820 (((-1259) $ (-156) (-156)) 131)) (-4064 (((-856) $) 139)) (-1450 (((-1259) $) 115)) (-4326 (((-1259) $ (-1148)) 158)) (-2276 (((-1259) $ (-1148)) 109)) (-1723 (((-112) $ $) NIL)))
-(((-1256) (-13 (-1090) (-10 -8 (-15 -3472 ((-378))) (-15 -3472 ((-378) (-378))) (-15 -1592 ((-378))) (-15 -1592 ((-378) (-378))) (-15 -4199 ((-378))) (-15 -4199 ((-378) (-378))) (-15 -2639 ((-378))) (-15 -2639 ((-378) (-378))) (-15 -3389 ((-378))) (-15 -3389 ((-378) (-378))) (-15 -2300 ($)) (-15 -3114 ($ $)) (-15 -3114 ($ (-1123 (-224)) (-1148))) (-15 -3114 ($ (-1123 (-224)) (-638 (-262)))) (-15 -1884 ((-1123 (-224)) $)) (-15 -1884 ($ $ (-1123 (-224)))) (-15 -3929 ((-1259) $ (-765) (-936 (-224)))) (-15 -3623 ((-638 (-262)) $)) (-15 -3623 ($ $ (-638 (-262)))) (-15 -1974 ((-1259) $ (-765) (-765))) (-15 -1805 ((-1259) $ (-914) (-914))) (-15 -3618 ((-1259) $ (-1148))) (-15 -3313 ((-1259) $ (-765) (-765) (-914) (-914))) (-15 -1525 ((-1259) $ (-378) (-378) (-378) (-378) (-378))) (-15 -1525 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -1525 ((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -1525 ((-1259) $ (-561) (-561) (-378) (-378) (-378))) (-15 -1525 ((-1259) $ (-378) (-378))) (-15 -1525 ((-1259) $ (-378) (-378) (-378))) (-15 -2317 ((-1259) $ (-1148))) (-15 -2276 ((-1259) $ (-1148))) (-15 -2113 ((-1259) $ (-1148))) (-15 -2119 ((-1259) $ (-1148))) (-15 -1416 ((-1259) $ (-1148))) (-15 -3070 ((-1259) $ (-378) (-378))) (-15 -3070 ((-1259) $ (-561) (-561))) (-15 -1689 ((-1259) $ (-378))) (-15 -1689 ((-1259) $ (-378) (-378) (-378))) (-15 -3849 ((-1259) $ (-378) (-378))) (-15 -2088 ((-1259) $ (-1148))) (-15 -2895 ((-1259) $ (-378))) (-15 -1906 ((-1259) $ (-378))) (-15 -2968 ((-1259) $ (-1148))) (-15 -2755 ((-1259) $ (-1148))) (-15 -4326 ((-1259) $ (-1148))) (-15 -4347 ((-1259) $ (-378) (-378) (-378))) (-15 -2967 ((-1259) $ (-378))) (-15 -2632 ((-1259) $)) (-15 -2820 ((-1259) $ (-156) (-156))) (-15 -2654 ((-1148) $ (-1148))) (-15 -2654 ((-1148) $ (-1148) (-1148))) (-15 -2654 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -1450 ((-1259) $)) (-15 -2285 ((-561) $))))) (T -1256))
-((-3472 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-1592 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-4199 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-4199 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-2639 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-2639 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-3389 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))) (-2300 (*1 *1) (-5 *1 (-1256))) (-3114 (*1 *1 *1) (-5 *1 (-1256))) (-3114 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1256)))) (-3114 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-638 (-262))) (-5 *1 (-1256)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1256)))) (-1884 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1256)))) (-3929 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1256)))) (-3623 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1256)))) (-1974 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1805 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-3618 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-3313 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1525 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1256)))) (-1525 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1525 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-561)) (-5 *4 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1525 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2317 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2113 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2119 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-3070 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-3070 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1689 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-3849 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2088 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2895 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-1906 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2968 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2755 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4326 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4347 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2967 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2820 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2654 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) (-2654 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) (-2654 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1256)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1256)))))
-(-13 (-1090) (-10 -8 (-15 -3472 ((-378))) (-15 -3472 ((-378) (-378))) (-15 -1592 ((-378))) (-15 -1592 ((-378) (-378))) (-15 -4199 ((-378))) (-15 -4199 ((-378) (-378))) (-15 -2639 ((-378))) (-15 -2639 ((-378) (-378))) (-15 -3389 ((-378))) (-15 -3389 ((-378) (-378))) (-15 -2300 ($)) (-15 -3114 ($ $)) (-15 -3114 ($ (-1123 (-224)) (-1148))) (-15 -3114 ($ (-1123 (-224)) (-638 (-262)))) (-15 -1884 ((-1123 (-224)) $)) (-15 -1884 ($ $ (-1123 (-224)))) (-15 -3929 ((-1259) $ (-765) (-936 (-224)))) (-15 -3623 ((-638 (-262)) $)) (-15 -3623 ($ $ (-638 (-262)))) (-15 -1974 ((-1259) $ (-765) (-765))) (-15 -1805 ((-1259) $ (-914) (-914))) (-15 -3618 ((-1259) $ (-1148))) (-15 -3313 ((-1259) $ (-765) (-765) (-914) (-914))) (-15 -1525 ((-1259) $ (-378) (-378) (-378) (-378) (-378))) (-15 -1525 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -1525 ((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -1525 ((-1259) $ (-561) (-561) (-378) (-378) (-378))) (-15 -1525 ((-1259) $ (-378) (-378))) (-15 -1525 ((-1259) $ (-378) (-378) (-378))) (-15 -2317 ((-1259) $ (-1148))) (-15 -2276 ((-1259) $ (-1148))) (-15 -2113 ((-1259) $ (-1148))) (-15 -2119 ((-1259) $ (-1148))) (-15 -1416 ((-1259) $ (-1148))) (-15 -3070 ((-1259) $ (-378) (-378))) (-15 -3070 ((-1259) $ (-561) (-561))) (-15 -1689 ((-1259) $ (-378))) (-15 -1689 ((-1259) $ (-378) (-378) (-378))) (-15 -3849 ((-1259) $ (-378) (-378))) (-15 -2088 ((-1259) $ (-1148))) (-15 -2895 ((-1259) $ (-378))) (-15 -1906 ((-1259) $ (-378))) (-15 -2968 ((-1259) $ (-1148))) (-15 -2755 ((-1259) $ (-1148))) (-15 -4326 ((-1259) $ (-1148))) (-15 -4347 ((-1259) $ (-378) (-378) (-378))) (-15 -2967 ((-1259) $ (-378))) (-15 -2632 ((-1259) $)) (-15 -2820 ((-1259) $ (-156) (-156))) (-15 -2654 ((-1148) $ (-1148))) (-15 -2654 ((-1148) $ (-1148) (-1148))) (-15 -2654 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -1450 ((-1259) $)) (-15 -2285 ((-561) $))))
-((-3476 (((-638 (-1148)) (-638 (-1148))) 94) (((-638 (-1148))) 90)) (-3992 (((-638 (-1148))) 88)) (-2545 (((-638 (-914)) (-638 (-914))) 63) (((-638 (-914))) 60)) (-1569 (((-638 (-765)) (-638 (-765))) 57) (((-638 (-765))) 53)) (-4255 (((-1259)) 65)) (-4369 (((-914) (-914)) 81) (((-914)) 80)) (-3650 (((-914) (-914)) 79) (((-914)) 78)) (-2778 (((-867) (-867)) 75) (((-867)) 74)) (-1470 (((-224)) 85) (((-224) (-378)) 87)) (-2068 (((-914)) 82) (((-914) (-914)) 83)) (-1908 (((-914) (-914)) 77) (((-914)) 76)) (-3243 (((-867) (-867)) 69) (((-867)) 67)) (-3987 (((-867) (-867)) 71) (((-867)) 70)) (-2007 (((-867) (-867)) 73) (((-867)) 72)))
-(((-1257) (-10 -7 (-15 -3243 ((-867))) (-15 -3243 ((-867) (-867))) (-15 -3987 ((-867))) (-15 -3987 ((-867) (-867))) (-15 -2007 ((-867))) (-15 -2007 ((-867) (-867))) (-15 -2778 ((-867))) (-15 -2778 ((-867) (-867))) (-15 -1908 ((-914))) (-15 -1908 ((-914) (-914))) (-15 -1569 ((-638 (-765)))) (-15 -1569 ((-638 (-765)) (-638 (-765)))) (-15 -2545 ((-638 (-914)))) (-15 -2545 ((-638 (-914)) (-638 (-914)))) (-15 -4255 ((-1259))) (-15 -3476 ((-638 (-1148)))) (-15 -3476 ((-638 (-1148)) (-638 (-1148)))) (-15 -3992 ((-638 (-1148)))) (-15 -3650 ((-914))) (-15 -4369 ((-914))) (-15 -3650 ((-914) (-914))) (-15 -4369 ((-914) (-914))) (-15 -2068 ((-914) (-914))) (-15 -2068 ((-914))) (-15 -1470 ((-224) (-378))) (-15 -1470 ((-224))))) (T -1257))
-((-1470 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1257)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1257)))) (-2068 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-2068 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-4369 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-4369 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-3650 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-3992 (*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1257)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1257)))) (-3476 (*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1257)))) (-4255 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1257)))) (-2545 (*1 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1257)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1257)))) (-1569 (*1 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1257)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-1908 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))) (-2778 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))) (-2007 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))) (-2007 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))) (-3987 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))) (-3243 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))))
-(-10 -7 (-15 -3243 ((-867))) (-15 -3243 ((-867) (-867))) (-15 -3987 ((-867))) (-15 -3987 ((-867) (-867))) (-15 -2007 ((-867))) (-15 -2007 ((-867) (-867))) (-15 -2778 ((-867))) (-15 -2778 ((-867) (-867))) (-15 -1908 ((-914))) (-15 -1908 ((-914) (-914))) (-15 -1569 ((-638 (-765)))) (-15 -1569 ((-638 (-765)) (-638 (-765)))) (-15 -2545 ((-638 (-914)))) (-15 -2545 ((-638 (-914)) (-638 (-914)))) (-15 -4255 ((-1259))) (-15 -3476 ((-638 (-1148)))) (-15 -3476 ((-638 (-1148)) (-638 (-1148)))) (-15 -3992 ((-638 (-1148)))) (-15 -3650 ((-914))) (-15 -4369 ((-914))) (-15 -3650 ((-914) (-914))) (-15 -4369 ((-914) (-914))) (-15 -2068 ((-914) (-914))) (-15 -2068 ((-914))) (-15 -1470 ((-224) (-378))) (-15 -1470 ((-224))))
-((-3338 (((-466) (-638 (-638 (-936 (-224)))) (-638 (-262))) 21) (((-466) (-638 (-638 (-936 (-224))))) 20) (((-466) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262))) 19)) (-2482 (((-1255) (-638 (-638 (-936 (-224)))) (-638 (-262))) 27) (((-1255) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262))) 26)) (-4064 (((-1255) (-466)) 38)))
-(((-1258) (-10 -7 (-15 -3338 ((-466) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -3338 ((-466) (-638 (-638 (-936 (-224)))))) (-15 -3338 ((-466) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -2482 ((-1255) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -2482 ((-1255) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -4064 ((-1255) (-466))))) (T -1258))
-((-4064 (*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1255)) (-5 *1 (-1258)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-1258)))) (-2482 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-1258)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262))) (-5 *2 (-466)) (-5 *1 (-1258)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-466)) (-5 *1 (-1258)))) (-3338 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-466)) (-5 *1 (-1258)))))
-(-10 -7 (-15 -3338 ((-466) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -3338 ((-466) (-638 (-638 (-936 (-224)))))) (-15 -3338 ((-466) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -2482 ((-1255) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -2482 ((-1255) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -4064 ((-1255) (-466))))
-((-2630 (($) 7)) (-4064 (((-856) $) 10)))
-(((-1259) (-13 (-608 (-856)) (-10 -8 (-15 -2630 ($))))) (T -1259))
-((-2630 (*1 *1) (-5 *1 (-1259))))
-(-13 (-608 (-856)) (-10 -8 (-15 -2630 ($))))
-((-1828 (($ $ |#2|) 10)))
-(((-1260 |#1| |#2|) (-10 -8 (-15 -1828 (|#1| |#1| |#2|))) (-1261 |#2|) (-362)) (T -1260))
-NIL
-(-10 -8 (-15 -1828 (|#1| |#1| |#2|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-2390 (((-133)) 28)) (-4064 (((-856) $) 11)) (-2246 (($) 18 T CONST)) (-1723 (((-112) $ $) 6)) (-1828 (($ $ |#1|) 29)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(-13 (-10 -7 (-6 -2407)))
+((-2947 (((-112) $ $) NIL)) (-4238 (((-1166)) 12)) (-3643 (((-1148) $) 17)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11) (((-1166) $) 8)) (-3437 (((-112) $ $) 14)))
+(((-1250 |#1|) (-13 (-1091) (-608 (-1166)) (-10 -8 (-15 -4353 ((-1166) $)) (-15 -4238 ((-1166))))) (-1166)) (T -1250))
+((-4353 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))) (-4238 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))))
+(-13 (-1091) (-608 (-1166)) (-10 -8 (-15 -4353 ((-1166) $)) (-15 -4238 ((-1166)))))
+((-4245 (($ (-765)) 18)) (-4242 (((-682 |#2|) $ $) 40)) (-4239 ((|#2| $) 48)) (-4240 ((|#2| $) 47)) (-4243 ((|#2| $ $) 35)) (-4241 (($ $ $) 44)) (-4244 (($ $) 22) (($ $ $) 28)) (-4246 (($ $ $) 15)) (* (($ (-544) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1251 |#1| |#2|) (-10 -8 (-15 -4239 (|#2| |#1|)) (-15 -4240 (|#2| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -4242 ((-682 |#2|) |#1| |#1|)) (-15 -4243 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4245 (|#1| (-765))) (-15 -4246 (|#1| |#1| |#1|))) (-1252 |#2|) (-1204)) (T -1251))
+NIL
+(-10 -8 (-15 -4239 (|#2| |#1|)) (-15 -4240 (|#2| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -4242 ((-682 |#2|) |#1| |#1|)) (-15 -4243 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4245 (|#1| (-765))) (-15 -4246 (|#1| |#1| |#1|)))
+((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-4245 (($ (-765)) 112 (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4239 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-4123 (((-112) $ (-765)) 10)) (-4240 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-4243 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-4241 (($ $ $) 104 (|has| |#1| (-1042)))) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4244 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4246 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-544) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400)))))
+(((-1252 |#1|) (-139) (-1204)) (T -1252))
+((-4246 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-25)))) (-4245 (*1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1252 *3)) (-4 *3 (-23)) (-4 *3 (-1204)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) (-4243 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))) (-4242 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-1042)) (-5 *2 (-682 *3)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4246 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4245 ($ (-765))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4244 ($ $)) (-15 -4244 ($ $ $)) (-15 * ($ (-544) $))) |%noBranch|) (IF (|has| |t#1| (-720)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-15 -4243 (|t#1| $ $)) (-15 -4242 ((-682 |t#1|) $ $)) (-15 -4241 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-995)) (IF (|has| |t#1| (-1042)) (PROGN (-15 -4240 (|t#1| $)) (-15 -4239 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T))
+((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765)) NIL (|has| |#1| (-23)))) (-4247 (($ (-635 |#1|)) 9)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 15 (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4239 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-4123 (((-112) $ (-765)) NIL)) (-4240 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4243 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4241 (($ $ $) NIL (|has| |#1| (-1042)))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 19 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 8)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4246 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-544) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1253 |#1|) (-13 (-1252 |#1|) (-10 -8 (-15 -4247 ($ (-635 |#1|))))) (-1204)) (T -1253))
+((-4247 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1253 *3)))))
+(-13 (-1252 |#1|) (-10 -8 (-15 -4247 ($ (-635 |#1|)))))
+((-4248 (((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|) 13)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|) 15)) (-4365 (((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|)) 28) (((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 18)))
+(((-1254 |#1| |#2|) (-10 -7 (-15 -4248 ((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4365 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (-15 -4365 ((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|)))) (-1204) (-1204)) (T -1254))
+((-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-1254 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1253 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-1253 *5)) (-5 *1 (-1254 *6 *5)))))
+(-10 -7 (-15 -4248 ((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4365 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (-15 -4365 ((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|))))
+((-4250 (((-466) (-635 (-635 (-936 (-224)))) (-635 (-260))) 21) (((-466) (-635 (-635 (-936 (-224))))) 20) (((-466) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260))) 19)) (-4251 (((-1256) (-635 (-635 (-936 (-224)))) (-635 (-260))) 27) (((-1256) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260))) 26)) (-4353 (((-1256) (-466)) 38)))
+(((-1255) (-10 -7 (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4353 ((-1256) (-466))))) (T -1255))
+((-4353 (*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1256)) (-5 *1 (-1255)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-1255)))) (-4251 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *6 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-1255)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260))) (-5 *2 (-466)) (-5 *1 (-1255)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-466)) (-5 *1 (-1255)))) (-4250 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *6 (-635 (-260))) (-5 *2 (-466)) (-5 *1 (-1255)))))
+(-10 -7 (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4353 ((-1256) (-466))))
+((-2947 (((-112) $ $) NIL)) (-4269 (((-1148) $ (-1148)) 92) (((-1148) $ (-1148) (-1148)) 90) (((-1148) $ (-1148) (-635 (-1148))) 89)) (-4265 (($) 59)) (-4252 (((-1259) $ (-466) (-912)) 45)) (-4258 (((-1259) $ (-912) (-1148)) 75) (((-1259) $ (-912) (-867)) 76)) (-4280 (((-1259) $ (-912) (-377) (-377)) 48)) (-4290 (((-1259) $ (-1148)) 71)) (-4253 (((-1259) $ (-912) (-1148)) 80)) (-4254 (((-1259) $ (-912) (-377) (-377)) 49)) (-4291 (((-1259) $ (-912) (-912)) 46)) (-4271 (((-1259) $) 72)) (-4256 (((-1259) $ (-912) (-1148)) 79)) (-4260 (((-1259) $ (-466) (-912)) 31)) (-4257 (((-1259) $ (-912) (-1148)) 78)) (-4293 (((-635 (-260)) $) 23) (($ $ (-635 (-260))) 24)) (-4292 (((-1259) $ (-765) (-765)) 43)) (-4264 (($ $) 60) (($ (-466) (-635 (-260))) 61)) (-3643 (((-1148) $) NIL)) (-4267 (((-544) $) 38)) (-3644 (((-1110) $) NIL)) (-4261 (((-1253 (-3 (-466) "undefined")) $) 37)) (-4262 (((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544)))) $) 36)) (-4263 (((-1259) $ (-912) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-867) (-544) (-867) (-544)) 70)) (-4266 (((-635 (-936 (-224))) $) NIL)) (-4259 (((-466) $ (-912)) 33)) (-4289 (((-1259) $ (-765) (-765) (-912) (-912)) 40)) (-4287 (((-1259) $ (-1148)) 81)) (-4255 (((-1259) $ (-912) (-1148)) 77)) (-4353 (((-857) $) 87)) (-4268 (((-1259) $) 82)) (-4286 (((-1259) $ (-912) (-1148)) 73) (((-1259) $ (-912) (-867)) 74)) (-3437 (((-112) $ $) NIL)))
+(((-1256) (-13 (-1091) (-10 -8 (-15 -4266 ((-635 (-936 (-224))) $)) (-15 -4265 ($)) (-15 -4264 ($ $)) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4264 ($ (-466) (-635 (-260)))) (-15 -4263 ((-1259) $ (-912) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-867) (-544) (-867) (-544))) (-15 -4262 ((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544)))) $)) (-15 -4261 ((-1253 (-3 (-466) "undefined")) $)) (-15 -4290 ((-1259) $ (-1148))) (-15 -4260 ((-1259) $ (-466) (-912))) (-15 -4259 ((-466) $ (-912))) (-15 -4286 ((-1259) $ (-912) (-1148))) (-15 -4286 ((-1259) $ (-912) (-867))) (-15 -4258 ((-1259) $ (-912) (-1148))) (-15 -4258 ((-1259) $ (-912) (-867))) (-15 -4257 ((-1259) $ (-912) (-1148))) (-15 -4256 ((-1259) $ (-912) (-1148))) (-15 -4255 ((-1259) $ (-912) (-1148))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4268 ((-1259) $)) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4254 ((-1259) $ (-912) (-377) (-377))) (-15 -4280 ((-1259) $ (-912) (-377) (-377))) (-15 -4253 ((-1259) $ (-912) (-1148))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4252 ((-1259) $ (-466) (-912))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4271 ((-1259) $)) (-15 -4267 ((-544) $)) (-15 -4353 ((-857) $))))) (T -1256))
+((-4353 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1256)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-635 (-936 (-224)))) (-5 *1 (-1256)))) (-4265 (*1 *1) (-5 *1 (-1256))) (-4264 (*1 *1 *1) (-5 *1 (-1256))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256)))) (-4264 (*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-635 (-260))) (-5 *1 (-1256)))) (-4263 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-912)) (-5 *4 (-224)) (-5 *5 (-544)) (-5 *6 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544))))) (-5 *1 (-1256)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1253 (-3 (-466) "undefined"))) (-5 *1 (-1256)))) (-4290 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4260 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4259 (*1 *2 *1 *3) (-12 (-5 *3 (-912)) (-5 *2 (-466)) (-5 *1 (-1256)))) (-4286 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4286 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4258 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4258 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4257 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4256 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4255 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4287 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4289 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4254 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4280 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4253 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4252 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4291 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4269 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) (-4269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) (-4269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1256)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1256)))))
+(-13 (-1091) (-10 -8 (-15 -4266 ((-635 (-936 (-224))) $)) (-15 -4265 ($)) (-15 -4264 ($ $)) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4264 ($ (-466) (-635 (-260)))) (-15 -4263 ((-1259) $ (-912) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-867) (-544) (-867) (-544))) (-15 -4262 ((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544)))) $)) (-15 -4261 ((-1253 (-3 (-466) "undefined")) $)) (-15 -4290 ((-1259) $ (-1148))) (-15 -4260 ((-1259) $ (-466) (-912))) (-15 -4259 ((-466) $ (-912))) (-15 -4286 ((-1259) $ (-912) (-1148))) (-15 -4286 ((-1259) $ (-912) (-867))) (-15 -4258 ((-1259) $ (-912) (-1148))) (-15 -4258 ((-1259) $ (-912) (-867))) (-15 -4257 ((-1259) $ (-912) (-1148))) (-15 -4256 ((-1259) $ (-912) (-1148))) (-15 -4255 ((-1259) $ (-912) (-1148))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4268 ((-1259) $)) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4254 ((-1259) $ (-912) (-377) (-377))) (-15 -4280 ((-1259) $ (-912) (-377) (-377))) (-15 -4253 ((-1259) $ (-912) (-1148))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4252 ((-1259) $ (-466) (-912))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4271 ((-1259) $)) (-15 -4267 ((-544) $)) (-15 -4353 ((-857) $))))
+((-2947 (((-112) $ $) NIL)) (-4281 (((-1259) $ (-377)) 142) (((-1259) $ (-377) (-377) (-377)) 143)) (-4269 (((-1148) $ (-1148)) 150) (((-1148) $ (-1148) (-1148)) 148) (((-1148) $ (-1148) (-635 (-1148))) 147)) (-4297 (($) 50)) (-4288 (((-1259) $ (-377) (-377) (-377) (-377) (-377)) 118) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 116) (((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 117) (((-1259) $ (-544) (-544) (-377) (-377) (-377)) 119) (((-1259) $ (-377) (-377)) 120) (((-1259) $ (-377) (-377) (-377)) 127)) (-4300 (((-377)) 99) (((-377) (-377)) 100)) (-4302 (((-377)) 94) (((-377) (-377)) 96)) (-4301 (((-377)) 97) (((-377) (-377)) 98)) (-4298 (((-377)) 103) (((-377) (-377)) 104)) (-4299 (((-377)) 101) (((-377) (-377)) 102)) (-4280 (((-1259) $ (-377) (-377)) 144)) (-4290 (((-1259) $ (-1148)) 128)) (-4295 (((-1123 (-224)) $) 51) (($ $ (-1123 (-224))) 52)) (-4276 (((-1259) $ (-1148)) 156)) (-4275 (((-1259) $ (-1148)) 157)) (-4282 (((-1259) $ (-377) (-377)) 126) (((-1259) $ (-544) (-544)) 141)) (-4291 (((-1259) $ (-912) (-912)) 134)) (-4271 (((-1259) $) 114)) (-4279 (((-1259) $ (-1148)) 155)) (-4284 (((-1259) $ (-1148)) 111)) (-4293 (((-635 (-260)) $) 53) (($ $ (-635 (-260))) 54)) (-4292 (((-1259) $ (-765) (-765)) 133)) (-4294 (((-1259) $ (-765) (-936 (-224))) 162)) (-4296 (($ $) 56) (($ (-1123 (-224)) (-1148)) 57) (($ (-1123 (-224)) (-635 (-260))) 58)) (-4273 (((-1259) $ (-377) (-377) (-377)) 108)) (-3643 (((-1148) $) NIL)) (-4267 (((-544) $) 105)) (-4272 (((-1259) $ (-377)) 145)) (-4277 (((-1259) $ (-377)) 160)) (-3644 (((-1110) $) NIL)) (-4278 (((-1259) $ (-377)) 159)) (-4283 (((-1259) $ (-1148)) 113)) (-4289 (((-1259) $ (-765) (-765) (-912) (-912)) 132)) (-4285 (((-1259) $ (-1148)) 110)) (-4287 (((-1259) $ (-1148)) 112)) (-4270 (((-1259) $ (-156) (-156)) 131)) (-4353 (((-857) $) 139)) (-4268 (((-1259) $) 115)) (-4274 (((-1259) $ (-1148)) 158)) (-4286 (((-1259) $ (-1148)) 109)) (-3437 (((-112) $ $) NIL)))
+(((-1257) (-13 (-1091) (-10 -8 (-15 -4302 ((-377))) (-15 -4302 ((-377) (-377))) (-15 -4301 ((-377))) (-15 -4301 ((-377) (-377))) (-15 -4300 ((-377))) (-15 -4300 ((-377) (-377))) (-15 -4299 ((-377))) (-15 -4299 ((-377) (-377))) (-15 -4298 ((-377))) (-15 -4298 ((-377) (-377))) (-15 -4297 ($)) (-15 -4296 ($ $)) (-15 -4296 ($ (-1123 (-224)) (-1148))) (-15 -4296 ($ (-1123 (-224)) (-635 (-260)))) (-15 -4295 ((-1123 (-224)) $)) (-15 -4295 ($ $ (-1123 (-224)))) (-15 -4294 ((-1259) $ (-765) (-936 (-224)))) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4290 ((-1259) $ (-1148))) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4288 ((-1259) $ (-377) (-377) (-377) (-377) (-377))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -4288 ((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4288 ((-1259) $ (-544) (-544) (-377) (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377) (-377))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4286 ((-1259) $ (-1148))) (-15 -4285 ((-1259) $ (-1148))) (-15 -4284 ((-1259) $ (-1148))) (-15 -4283 ((-1259) $ (-1148))) (-15 -4282 ((-1259) $ (-377) (-377))) (-15 -4282 ((-1259) $ (-544) (-544))) (-15 -4281 ((-1259) $ (-377))) (-15 -4281 ((-1259) $ (-377) (-377) (-377))) (-15 -4280 ((-1259) $ (-377) (-377))) (-15 -4279 ((-1259) $ (-1148))) (-15 -4278 ((-1259) $ (-377))) (-15 -4277 ((-1259) $ (-377))) (-15 -4276 ((-1259) $ (-1148))) (-15 -4275 ((-1259) $ (-1148))) (-15 -4274 ((-1259) $ (-1148))) (-15 -4273 ((-1259) $ (-377) (-377) (-377))) (-15 -4272 ((-1259) $ (-377))) (-15 -4271 ((-1259) $)) (-15 -4270 ((-1259) $ (-156) (-156))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4268 ((-1259) $)) (-15 -4267 ((-544) $))))) (T -1257))
+((-4302 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4301 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4301 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4300 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4300 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4299 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4299 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4298 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4297 (*1 *1) (-5 *1 (-1257))) (-4296 (*1 *1 *1) (-5 *1 (-1257))) (-4296 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1257)))) (-4296 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-635 (-260))) (-5 *1 (-1257)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257)))) (-4294 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257)))) (-4292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4291 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4290 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4289 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-544)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4287 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4286 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4285 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4283 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4281 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4281 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4280 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4279 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4278 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4277 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4275 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4274 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4273 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4272 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4270 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4269 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257)))) (-4269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257)))) (-4269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1257)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1257)))))
+(-13 (-1091) (-10 -8 (-15 -4302 ((-377))) (-15 -4302 ((-377) (-377))) (-15 -4301 ((-377))) (-15 -4301 ((-377) (-377))) (-15 -4300 ((-377))) (-15 -4300 ((-377) (-377))) (-15 -4299 ((-377))) (-15 -4299 ((-377) (-377))) (-15 -4298 ((-377))) (-15 -4298 ((-377) (-377))) (-15 -4297 ($)) (-15 -4296 ($ $)) (-15 -4296 ($ (-1123 (-224)) (-1148))) (-15 -4296 ($ (-1123 (-224)) (-635 (-260)))) (-15 -4295 ((-1123 (-224)) $)) (-15 -4295 ($ $ (-1123 (-224)))) (-15 -4294 ((-1259) $ (-765) (-936 (-224)))) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4290 ((-1259) $ (-1148))) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4288 ((-1259) $ (-377) (-377) (-377) (-377) (-377))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -4288 ((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4288 ((-1259) $ (-544) (-544) (-377) (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377) (-377))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4286 ((-1259) $ (-1148))) (-15 -4285 ((-1259) $ (-1148))) (-15 -4284 ((-1259) $ (-1148))) (-15 -4283 ((-1259) $ (-1148))) (-15 -4282 ((-1259) $ (-377) (-377))) (-15 -4282 ((-1259) $ (-544) (-544))) (-15 -4281 ((-1259) $ (-377))) (-15 -4281 ((-1259) $ (-377) (-377) (-377))) (-15 -4280 ((-1259) $ (-377) (-377))) (-15 -4279 ((-1259) $ (-1148))) (-15 -4278 ((-1259) $ (-377))) (-15 -4277 ((-1259) $ (-377))) (-15 -4276 ((-1259) $ (-1148))) (-15 -4275 ((-1259) $ (-1148))) (-15 -4274 ((-1259) $ (-1148))) (-15 -4273 ((-1259) $ (-377) (-377) (-377))) (-15 -4272 ((-1259) $ (-377))) (-15 -4271 ((-1259) $)) (-15 -4270 ((-1259) $ (-156) (-156))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4268 ((-1259) $)) (-15 -4267 ((-544) $))))
+((-4311 (((-635 (-1148)) (-635 (-1148))) 94) (((-635 (-1148))) 90)) (-4312 (((-635 (-1148))) 88)) (-4309 (((-635 (-912)) (-635 (-912))) 63) (((-635 (-912))) 60)) (-4308 (((-635 (-765)) (-635 (-765))) 57) (((-635 (-765))) 53)) (-4310 (((-1259)) 65)) (-4314 (((-912) (-912)) 81) (((-912)) 80)) (-4313 (((-912) (-912)) 79) (((-912)) 78)) (-4306 (((-867) (-867)) 75) (((-867)) 74)) (-4316 (((-224)) 85) (((-224) (-377)) 87)) (-4315 (((-912)) 82) (((-912) (-912)) 83)) (-4307 (((-912) (-912)) 77) (((-912)) 76)) (-4303 (((-867) (-867)) 69) (((-867)) 67)) (-4304 (((-867) (-867)) 71) (((-867)) 70)) (-4305 (((-867) (-867)) 73) (((-867)) 72)))
+(((-1258) (-10 -7 (-15 -4303 ((-867))) (-15 -4303 ((-867) (-867))) (-15 -4304 ((-867))) (-15 -4304 ((-867) (-867))) (-15 -4305 ((-867))) (-15 -4305 ((-867) (-867))) (-15 -4306 ((-867))) (-15 -4306 ((-867) (-867))) (-15 -4307 ((-912))) (-15 -4307 ((-912) (-912))) (-15 -4308 ((-635 (-765)))) (-15 -4308 ((-635 (-765)) (-635 (-765)))) (-15 -4309 ((-635 (-912)))) (-15 -4309 ((-635 (-912)) (-635 (-912)))) (-15 -4310 ((-1259))) (-15 -4311 ((-635 (-1148)))) (-15 -4311 ((-635 (-1148)) (-635 (-1148)))) (-15 -4312 ((-635 (-1148)))) (-15 -4313 ((-912))) (-15 -4314 ((-912))) (-15 -4313 ((-912) (-912))) (-15 -4314 ((-912) (-912))) (-15 -4315 ((-912) (-912))) (-15 -4315 ((-912))) (-15 -4316 ((-224) (-377))) (-15 -4316 ((-224))))) (T -1258))
+((-4316 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1258)))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-1258)))) (-4315 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4315 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4314 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4314 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4313 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4312 (*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))) (-4311 (*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))) (-4311 (*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))) (-4310 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1258)))) (-4309 (*1 *2 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258)))) (-4309 (*1 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258)))) (-4308 (*1 *2 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258)))) (-4308 (*1 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4307 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4306 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4305 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4305 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4304 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4304 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4303 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4303 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))))
+(-10 -7 (-15 -4303 ((-867))) (-15 -4303 ((-867) (-867))) (-15 -4304 ((-867))) (-15 -4304 ((-867) (-867))) (-15 -4305 ((-867))) (-15 -4305 ((-867) (-867))) (-15 -4306 ((-867))) (-15 -4306 ((-867) (-867))) (-15 -4307 ((-912))) (-15 -4307 ((-912) (-912))) (-15 -4308 ((-635 (-765)))) (-15 -4308 ((-635 (-765)) (-635 (-765)))) (-15 -4309 ((-635 (-912)))) (-15 -4309 ((-635 (-912)) (-635 (-912)))) (-15 -4310 ((-1259))) (-15 -4311 ((-635 (-1148)))) (-15 -4311 ((-635 (-1148)) (-635 (-1148)))) (-15 -4312 ((-635 (-1148)))) (-15 -4313 ((-912))) (-15 -4314 ((-912))) (-15 -4313 ((-912) (-912))) (-15 -4314 ((-912) (-912))) (-15 -4315 ((-912) (-912))) (-15 -4315 ((-912))) (-15 -4316 ((-224) (-377))) (-15 -4316 ((-224))))
+((-4317 (($) 7)) (-4353 (((-857) $) 10)))
+(((-1259) (-13 (-608 (-857)) (-10 -8 (-15 -4317 ($))))) (T -1259))
+((-4317 (*1 *1) (-5 *1 (-1259))))
+(-13 (-608 (-857)) (-10 -8 (-15 -4317 ($))))
+((-4356 (($ $ |#2|) 10)))
+(((-1260 |#1| |#2|) (-10 -8 (-15 -4356 (|#1| |#1| |#2|))) (-1261 |#2|) (-362)) (T -1260))
+NIL
+(-10 -8 (-15 -4356 (|#1| |#1| |#2|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4318 (((-133)) 28)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 29)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-1261 |#1|) (-139) (-362)) (T -1261))
-((-1828 (*1 *1 *1 *2) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-362)))) (-2390 (*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
-(-13 (-711 |t#1|) (-10 -8 (-15 -1828 ($ $ |t#1|)) (-15 -2390 ((-133)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1090) . T))
-((-4356 (((-638 (-1199 |#1|)) (-1166) (-1199 |#1|)) 74)) (-4194 (((-1146 (-1146 (-945 |#1|))) (-1166) (-1146 (-945 |#1|))) 53)) (-3753 (((-1 (-1146 (-1199 |#1|)) (-1146 (-1199 |#1|))) (-765) (-1199 |#1|) (-1146 (-1199 |#1|))) 64)) (-3132 (((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765)) 55)) (-3464 (((-1 (-1162 (-945 |#1|)) (-945 |#1|)) (-1166)) 29)) (-2759 (((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765)) 54)))
-(((-1262 |#1|) (-10 -7 (-15 -3132 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -2759 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -4194 ((-1146 (-1146 (-945 |#1|))) (-1166) (-1146 (-945 |#1|)))) (-15 -3464 ((-1 (-1162 (-945 |#1|)) (-945 |#1|)) (-1166))) (-15 -4356 ((-638 (-1199 |#1|)) (-1166) (-1199 |#1|))) (-15 -3753 ((-1 (-1146 (-1199 |#1|)) (-1146 (-1199 |#1|))) (-765) (-1199 |#1|) (-1146 (-1199 |#1|))))) (-362)) (T -1262))
-((-3753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1199 *6)) (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1262 *6)) (-5 *5 (-1146 *4)))) (-4356 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-638 (-1199 *5))) (-5 *1 (-1262 *5)) (-5 *4 (-1199 *5)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1162 (-945 *4)) (-945 *4))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1146 (-1146 (-945 *5)))) (-5 *1 (-1262 *5)) (-5 *4 (-1146 (-945 *5))))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4)))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4)))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
-(-10 -7 (-15 -3132 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -2759 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -4194 ((-1146 (-1146 (-945 |#1|))) (-1166) (-1146 (-945 |#1|)))) (-15 -3464 ((-1 (-1162 (-945 |#1|)) (-945 |#1|)) (-1166))) (-15 -4356 ((-638 (-1199 |#1|)) (-1166) (-1199 |#1|))) (-15 -3753 ((-1 (-1146 (-1199 |#1|)) (-1146 (-1199 |#1|))) (-765) (-1199 |#1|) (-1146 (-1199 |#1|)))))
-((-4258 (((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 75)) (-3637 (((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 74)))
-(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3637 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4258 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|))) (-348) (-1230 |#1|) (-1230 |#2|) (-408 |#2| |#3|)) (T -1263))
-((-4258 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 *3)) (-5 *2 (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-1263 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))) (-3637 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 *4)) (-5 *2 (-2 (|:| -2615 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
-(-10 -7 (-15 -3637 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4258 ((-2 (|:| -2615 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)))
-((-4053 (((-112) $ $) NIL)) (-2386 (((-1125) $) 11)) (-2092 (((-1125) $) 9)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1264) (-13 (-1073) (-10 -8 (-15 -2092 ((-1125) $)) (-15 -2386 ((-1125) $))))) (T -1264))
-((-2092 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
-(-13 (-1073) (-10 -8 (-15 -2092 ((-1125) $)) (-15 -2386 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3372 (((-1125) $) 9)) (-4064 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1723 (((-112) $ $) NIL)))
-(((-1265) (-13 (-1073) (-10 -8 (-15 -3372 ((-1125) $))))) (T -1265))
-((-3372 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1265)))))
-(-13 (-1073) (-10 -8 (-15 -3372 ((-1125) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 42)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) NIL)) (-2252 (((-112) $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-4064 (((-856) $) 63) (($ (-561)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-3746 (((-765)) NIL)) (-2350 (((-1259) (-765)) 16)) (-2246 (($) 27 T CONST)) (-2257 (($) 66 T CONST)) (-1723 (((-112) $ $) 68)) (-1828 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1819 (($ $) 70) (($ $ $) NIL)) (-1810 (($ $ $) 46)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-1266 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1828 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2350 ((-1259) (-765))))) (-1042) (-844) (-787) (-942 |#1| |#3| |#2|) (-638 |#2|) (-638 (-765)) (-765)) (T -1266))
-((-1828 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-787)) (-14 *6 (-638 *3)) (-5 *1 (-1266 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-942 *2 *4 *3)) (-14 *7 (-638 (-765))) (-14 *8 (-765)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-14 *8 (-638 *5)) (-5 *2 (-1259)) (-5 *1 (-1266 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-942 *4 *6 *5)) (-14 *9 (-638 *3)) (-14 *10 *3))))
-(-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1828 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2350 ((-1259) (-765)))))
-((-4053 (((-112) $ $) NIL)) (-3170 (((-638 (-2 (|:| -1450 $) (|:| -3368 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3742 (((-638 $) (-638 |#4|)) 89)) (-1405 (((-638 |#3|) $) NIL)) (-4214 (((-112) $) NIL)) (-2444 (((-112) $) NIL (|has| |#1| (-553)))) (-1818 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4089 ((|#4| |#4| $) NIL)) (-1318 (((-2 (|:| |under| $) (|:| -4020 $) (|:| |upper| $)) $ |#3|) NIL)) (-2684 (((-112) $ (-765)) NIL)) (-3612 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2674 (($) NIL T CONST)) (-3853 (((-112) $) NIL (|has| |#1| (-553)))) (-3733 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4338 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1577 (((-112) $) NIL (|has| |#1| (-553)))) (-4163 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3293 (((-638 |#4|) (-638 |#4|) $) 25 (|has| |#1| (-553)))) (-2191 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4061 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3979 (($ (-638 |#4|)) NIL)) (-1437 (((-3 $ "failed") $) 71)) (-2471 ((|#4| |#4| $) 76)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1744 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2282 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2310 ((|#4| |#4| $) NIL)) (-3176 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4399))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4399))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1973 (((-2 (|:| -1450 (-638 |#4|)) (|:| -3368 (-638 |#4|))) $) NIL)) (-2368 (((-638 |#4|) $) NIL (|has| $ (-6 -4399)))) (-2369 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1994 ((|#3| $) 77)) (-3116 (((-112) $ (-765)) NIL)) (-4125 (((-638 |#4|) $) 29 (|has| $ (-6 -4399)))) (-4288 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090))))) (-2466 (((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-638 |#4|)) 35)) (-2029 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4400)))) (-4165 (($ (-1 |#4| |#4|) $) NIL)) (-2597 (((-638 |#3|) $) NIL)) (-2247 (((-112) |#3| $) NIL)) (-3683 (((-112) $ (-765)) NIL)) (-1883 (((-1148) $) NIL)) (-1501 (((-3 |#4| "failed") $) NIL)) (-3589 (((-638 |#4|) $) 51)) (-3067 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3641 ((|#4| |#4| $) 75)) (-4345 (((-112) $ $) 86)) (-3258 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2903 ((|#4| |#4| $) NIL)) (-1701 (((-1110) $) NIL)) (-1424 (((-3 |#4| "failed") $) 70)) (-3202 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2336 (((-3 $ "failed") $ |#4|) NIL)) (-3702 (($ $ |#4|) NIL)) (-3977 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1436 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-1582 (((-112) $ $) NIL)) (-2508 (((-112) $) 68)) (-2910 (($) 43)) (-3768 (((-765) $) NIL)) (-1714 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4399)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-4225 (($ $) NIL)) (-4216 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4078 (($ (-638 |#4|)) NIL)) (-3883 (($ $ |#3|) NIL)) (-2049 (($ $ |#3|) NIL)) (-1768 (($ $) NIL)) (-2983 (($ $ |#3|) NIL)) (-4064 (((-856) $) NIL) (((-638 |#4|) $) 58)) (-3513 (((-765) $) NIL (|has| |#3| (-367)))) (-3362 (((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-638 |#4|)) 42)) (-2662 (((-638 $) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-638 $) (-638 |#4|)) 67)) (-2003 (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2765 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2481 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4399)))) (-1290 (((-638 |#3|) $) NIL)) (-4024 (((-112) |#3| $) NIL)) (-1723 (((-112) $ $) NIL)) (-3548 (((-765) $) NIL (|has| $ (-6 -4399)))))
-(((-1267 |#1| |#2| |#3| |#4|) (-13 (-1198 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2466 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2466 ((-3 $ "failed") (-638 |#4|))) (-15 -3362 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3362 ((-3 $ "failed") (-638 |#4|))) (-15 -2662 ((-638 $) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2662 ((-638 $) (-638 |#4|))))) (-553) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1267))
-((-2466 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))) (-2466 (*1 *1 *2) (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) (-3362 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))) (-3362 (*1 *1 *2) (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) (-2662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-638 (-1267 *6 *7 *8 *9))) (-5 *1 (-1267 *6 *7 *8 *9)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-1267 *4 *5 *6 *7))) (-5 *1 (-1267 *4 *5 *6 *7)))))
-(-13 (-1198 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2466 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2466 ((-3 $ "failed") (-638 |#4|))) (-15 -3362 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3362 ((-3 $ "failed") (-638 |#4|))) (-15 -2662 ((-638 $) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2662 ((-638 $) (-638 |#4|)))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2979 (((-3 $ "failed") $ $) 19)) (-2674 (($) 17 T CONST)) (-3735 (((-3 $ "failed") $) 33)) (-2252 (((-112) $) 31)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 39)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
+((-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-362)))) (-4318 (*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
+(-13 (-711 |t#1|) (-10 -8 (-15 -4356 ($ $ |t#1|)) (-15 -4318 ((-133)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1091) . T))
+((-4323 (((-635 (-1197 |#1|)) (-1166) (-1197 |#1|)) 74)) (-4321 (((-1143 (-1143 (-939 |#1|))) (-1166) (-1143 (-939 |#1|))) 53)) (-4324 (((-1 (-1143 (-1197 |#1|)) (-1143 (-1197 |#1|))) (-765) (-1197 |#1|) (-1143 (-1197 |#1|))) 64)) (-4319 (((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765)) 55)) (-4322 (((-1 (-1160 (-939 |#1|)) (-939 |#1|)) (-1166)) 29)) (-4320 (((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765)) 54)))
+(((-1262 |#1|) (-10 -7 (-15 -4319 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4320 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4321 ((-1143 (-1143 (-939 |#1|))) (-1166) (-1143 (-939 |#1|)))) (-15 -4322 ((-1 (-1160 (-939 |#1|)) (-939 |#1|)) (-1166))) (-15 -4323 ((-635 (-1197 |#1|)) (-1166) (-1197 |#1|))) (-15 -4324 ((-1 (-1143 (-1197 |#1|)) (-1143 (-1197 |#1|))) (-765) (-1197 |#1|) (-1143 (-1197 |#1|))))) (-362)) (T -1262))
+((-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1197 *6)) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1262 *6)) (-5 *5 (-1143 *4)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-635 (-1197 *5))) (-5 *1 (-1262 *5)) (-5 *4 (-1197 *5)))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1160 (-939 *4)) (-939 *4))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-939 *5)))) (-5 *1 (-1262 *5)) (-5 *4 (-1143 (-939 *5))))) (-4320 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4)))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4)))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
+(-10 -7 (-15 -4319 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4320 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4321 ((-1143 (-1143 (-939 |#1|))) (-1166) (-1143 (-939 |#1|)))) (-15 -4322 ((-1 (-1160 (-939 |#1|)) (-939 |#1|)) (-1166))) (-15 -4323 ((-635 (-1197 |#1|)) (-1166) (-1197 |#1|))) (-15 -4324 ((-1 (-1143 (-1197 |#1|)) (-1143 (-1197 |#1|))) (-765) (-1197 |#1|) (-1143 (-1197 |#1|)))))
+((-4326 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 75)) (-4325 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 74)))
+(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|))) (-349) (-1229 |#1|) (-1229 |#2|) (-409 |#2| |#3|)) (T -1263))
+((-4326 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-1263 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-4325 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
+(-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)))
+((-2947 (((-112) $ $) NIL)) (-4327 (((-1125) $) 11)) (-4328 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1264) (-13 (-1073) (-10 -8 (-15 -4328 ((-1125) $)) (-15 -4327 ((-1125) $))))) (T -1264))
+((-4328 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))) (-4327 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
+(-13 (-1073) (-10 -8 (-15 -4328 ((-1125) $)) (-15 -4327 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4329 (((-1125) $) 9)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL)))
+(((-1265) (-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $))))) (T -1265))
+((-4329 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1265)))))
+(-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $))))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 42)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 63) (($ (-544)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-3511 (((-765)) NIL)) (-4330 (((-1259) (-765)) 16)) (-3040 (($) 27 T CONST)) (-3046 (($) 66 T CONST)) (-3437 (((-112) $ $) 68)) (-4356 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) 70) (($ $ $) NIL)) (-4246 (($ $ $) 46)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-1266 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765))))) (-1042) (-844) (-787) (-943 |#1| |#3| |#2|) (-635 |#2|) (-635 (-765)) (-765)) (T -1266))
+((-4356 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-787)) (-14 *6 (-635 *3)) (-5 *1 (-1266 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-943 *2 *4 *3)) (-14 *7 (-635 (-765))) (-14 *8 (-765)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-14 *8 (-635 *5)) (-5 *2 (-1259)) (-5 *1 (-1266 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-943 *4 *6 *5)) (-14 *9 (-635 *3)) (-14 *10 *3))))
+(-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765)))))
+((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) 89)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) NIL (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3283 (((-635 |#4|) (-635 |#4|) $) 25 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 71)) (-4092 ((|#4| |#4| $) 76)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-2096 (((-635 |#4|) $) NIL (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 77)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-4333 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-635 |#4|)) 35)) (-2100 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) NIL)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-4204 (((-3 |#4| #1#) $) NIL)) (-4104 (((-635 |#4|) $) 51)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) 75)) (-4106 (((-112) $ $) 86)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 70)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) NIL)) (-4175 (($ $ |#4|) NIL)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 68)) (-3972 (($) 43)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) NIL)) (-3293 (($ $ |#3|) NIL)) (-3295 (($ $ |#3|) NIL)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) NIL) (((-635 |#4|) $) 58)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4332 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-635 |#4|)) 42)) (-4331 (((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-635 $) (-635 |#4|)) 67)) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-4340 (((-112) |#3| $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400)))))
+(((-1267 |#1| |#2| |#3| |#4|) (-13 (-1199 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4333 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4333 ((-3 $ "failed") (-635 |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|))) (-15 -4331 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4331 ((-635 $) (-635 |#4|))))) (-554) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1267))
+((-4333 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))) (-4333 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) (-4332 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))) (-4332 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) (-4331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-635 (-1267 *6 *7 *8 *9))) (-5 *1 (-1267 *6 *7 *8 *9)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 (-1267 *4 *5 *6 *7))) (-5 *1 (-1267 *4 *5 *6 *7)))))
+(-13 (-1199 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4333 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4333 ((-3 $ "failed") (-635 |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|))) (-15 -4331 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4331 ((-635 $) (-635 |#4|)))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 39)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
(((-1268 |#1|) (-139) (-1042)) (T -1268))
NIL
(-13 (-1042) (-111 |t#1| |t#1|) (-611 |t#1|) (-10 -7 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
-((-4053 (((-112) $ $) 59)) (-4306 (((-112) $) NIL)) (-2844 (((-638 |#1|) $) 45)) (-2371 (($ $ (-765)) 39)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ (-765)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-2674 (($) NIL T CONST)) (-3395 (($ $ $) 62) (($ $ (-813 |#1|)) 48) (($ $ |#1|) 52)) (-4061 (((-3 (-813 |#1|) "failed") $) NIL)) (-3979 (((-813 |#1|) $) NIL)) (-1598 (($ $) 32)) (-3735 (((-3 $ "failed") $) NIL)) (-3684 (((-112) $) NIL)) (-1960 (($ $) NIL)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-3077 (($ (-813 |#1|) |#2|) 31)) (-3658 (($ $) 33)) (-4224 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 12)) (-4091 (((-813 |#1|) $) NIL)) (-2384 (((-813 |#1|) $) 34)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-2339 (($ $ $) 61) (($ $ (-813 |#1|)) 50) (($ $ |#1|) 54)) (-2963 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1557 (((-813 |#1|) $) 28)) (-1572 ((|#2| $) 30)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3768 (((-765) $) 36)) (-1480 (((-112) $) 40)) (-1494 ((|#2| $) NIL)) (-4064 (((-856) $) NIL) (($ (-813 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-561)) NIL)) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-813 |#1|)) NIL)) (-4226 ((|#2| $ $) 64) ((|#2| $ (-813 |#1|)) NIL)) (-3746 (((-765)) NIL)) (-2246 (($) 13 T CONST)) (-2257 (($) 15 T CONST)) (-4299 (((-638 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1723 (((-112) $ $) 38)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 22)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-813 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1269 |#1| |#2|) (-13 (-381 |#2| (-813 |#1|)) (-1275 |#1| |#2|)) (-844) (-1042)) (T -1269))
-NIL
-(-13 (-381 |#2| (-813 |#1|)) (-1275 |#1| |#2|))
-((-4364 ((|#3| |#3| (-765)) 23)) (-3486 ((|#3| |#3| (-765)) 27)) (-2031 ((|#3| |#3| |#3| (-765)) 28)))
-(((-1270 |#1| |#2| |#3|) (-10 -7 (-15 -3486 (|#3| |#3| (-765))) (-15 -4364 (|#3| |#3| (-765))) (-15 -2031 (|#3| |#3| |#3| (-765)))) (-13 (-1042) (-711 (-406 (-561)))) (-844) (-1275 |#2| |#1|)) (T -1270))
-((-2031 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1275 *5 *4)))) (-4364 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1275 *5 *4)))) (-3486 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1275 *5 *4)))))
-(-10 -7 (-15 -3486 (|#3| |#3| (-765))) (-15 -4364 (|#3| |#3| (-765))) (-15 -2031 (|#3| |#3| |#3| (-765))))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2844 (((-638 |#1|) $) 41)) (-2979 (((-3 $ "failed") $ $) 19)) (-1567 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-2674 (($) 17 T CONST)) (-3395 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-4061 (((-3 (-813 |#1|) "failed") $) 65)) (-3979 (((-813 |#1|) $) 66)) (-3735 (((-3 $ "failed") $) 33)) (-3684 (((-112) $) 46)) (-1960 (($ $) 45)) (-2252 (((-112) $) 31)) (-1750 (((-112) $) 51)) (-3077 (($ (-813 |#1|) |#2|) 52)) (-3658 (($ $) 50)) (-4224 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-4091 (((-813 |#1|) $) 62)) (-4165 (($ (-1 |#2| |#2|) $) 42)) (-2339 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-1480 (((-112) $) 48)) (-1494 ((|#2| $) 47)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4226 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1271 |#1| |#2|) (-139) (-844) (-1042)) (T -1271))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4))))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-813 *4)) (-4 *1 (-1271 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-4226 (*1 *2 *1 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-2339 (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-2339 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-3395 (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-3395 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-3077 (*1 *1 *2 *3) (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1271 *4 *3)) (-4 *3 (-1042)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-3658 (*1 *1 *1) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4064 (*1 *1 *2) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-1960 (*1 *1 *1) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-1567 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)) (-4 *3 (-171)))) (-1567 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-4 *4 (-171)))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-638 *3)))))
-(-13 (-1042) (-1268 |t#2|) (-1031 (-813 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4091 ((-813 |t#1|) $)) (-15 -4224 ((-2 (|:| |k| (-813 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4226 (|t#2| $ (-813 |t#1|))) (-15 -4226 (|t#2| $ $)) (-15 -2339 ($ $ |t#1|)) (-15 -2339 ($ $ (-813 |t#1|))) (-15 -2339 ($ $ $)) (-15 -3395 ($ $ |t#1|)) (-15 -3395 ($ $ (-813 |t#1|))) (-15 -3395 ($ $ $)) (-15 -3077 ($ (-813 |t#1|) |t#2|)) (-15 -1750 ((-112) $)) (-15 -3658 ($ $)) (-15 -4064 ($ |t#1|)) (-15 -1480 ((-112) $)) (-15 -1494 (|t#2| $)) (-15 -3684 ((-112) $)) (-15 -1960 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -1567 ($ $ $)) (-15 -1567 ($ $ (-765)))) |%noBranch|) (-15 -4165 ($ (-1 |t#2| |t#2|) $)) (-15 -2844 ((-638 |t#1|) $)) (IF (|has| |t#2| (-6 -4392)) (-6 -4392) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 #0=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #0#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1268 |#2|) . T))
-((-2472 (((-112) $) 14)) (-4024 (((-112) $) 13)) (-1471 (($ $) 18) (($ $ (-765)) 19)))
-(((-1272 |#1| |#2|) (-10 -8 (-15 -1471 (|#1| |#1| (-765))) (-15 -1471 (|#1| |#1|)) (-15 -2472 ((-112) |#1|)) (-15 -4024 ((-112) |#1|))) (-1273 |#2|) (-362)) (T -1272))
-NIL
-(-10 -8 (-15 -1471 (|#1| |#1| (-765))) (-15 -1471 (|#1| |#1|)) (-15 -2472 ((-112) |#1|)) (-15 -4024 ((-112) |#1|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-1844 (((-2 (|:| -2385 $) (|:| -4386 $) (|:| |associate| $)) $) 42)) (-3012 (($ $) 41)) (-3163 (((-112) $) 39)) (-2472 (((-112) $) 95)) (-2176 (((-765)) 91)) (-2979 (((-3 $ "failed") $ $) 19)) (-2557 (($ $) 74)) (-3552 (((-417 $) $) 73)) (-3698 (((-112) $ $) 60)) (-2674 (($) 17 T CONST)) (-4061 (((-3 |#1| "failed") $) 102)) (-3979 ((|#1| $) 103)) (-1792 (($ $ $) 56)) (-3735 (((-3 $ "failed") $) 33)) (-1771 (($ $ $) 57)) (-3924 (((-2 (|:| -4226 (-638 $)) (|:| -3194 $)) (-638 $)) 52)) (-3598 (($ $ (-765)) 88 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2725 (((-112) $) 72)) (-4027 (((-827 (-914)) $) 85 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2252 (((-112) $) 31)) (-2286 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1563 (($ $ $) 47) (($ (-638 $)) 46)) (-1883 (((-1148) $) 9)) (-1519 (($ $) 71)) (-3168 (((-112) $) 94)) (-1701 (((-1110) $) 10)) (-2002 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1603 (($ $ $) 49) (($ (-638 $)) 48)) (-1633 (((-417 $) $) 75)) (-2794 (((-827 (-914))) 92)) (-2682 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3194 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1748 (((-3 $ "failed") $ $) 43)) (-3474 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1905 (((-765) $) 59)) (-1421 (((-2 (|:| -2970 $) (|:| -1744 $)) $ $) 58)) (-2768 (((-3 (-765) "failed") $ $) 86 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2390 (((-133)) 100)) (-3768 (((-827 (-914)) $) 93)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ |#1|) 101)) (-3666 (((-3 $ "failed") $) 84 (-4050 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3746 (((-765)) 28)) (-3996 (((-112) $ $) 40)) (-4024 (((-112) $) 96)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1471 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-1723 (((-112) $ $) 6)) (-1828 (($ $ $) 66) (($ $ |#1|) 99)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
-(((-1273 |#1|) (-139) (-362)) (T -1273))
-((-4024 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914))))) (-2794 (*1 *2) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914))))) (-2176 (*1 *2) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-765)))) (-1471 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-1471 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-4 *3 (-367)))))
-(-13 (-362) (-1031 |t#1|) (-1261 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -4024 ((-112) $)) (-15 -2472 ((-112) $)) (-15 -3168 ((-112) $)) (-15 -3768 ((-827 (-914)) $)) (-15 -2794 ((-827 (-914)))) (-15 -2176 ((-765))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -1471 ($ $)) (-15 -1471 ($ $ (-765)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4050 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -4050 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T) ((-1261 |#1|) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2844 (((-638 |#1|) $) 85)) (-2371 (($ $ (-765)) 88)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-765)) NIL (|has| |#2| (-171)))) (-2674 (($) NIL T CONST)) (-3395 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-4061 (((-3 (-813 |#1|) "failed") $) NIL) (((-3 (-886 |#1|) "failed") $) NIL)) (-3979 (((-813 |#1|) $) NIL) (((-886 |#1|) $) NIL)) (-1598 (($ $) 87)) (-3735 (((-3 $ "failed") $) NIL)) (-3684 (((-112) $) 76)) (-1960 (($ $) 80)) (-3638 (($ $ $ (-765)) 89)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-3077 (($ (-813 |#1|) |#2|) NIL) (($ (-886 |#1|) |#2|) 25)) (-3658 (($ $) 102)) (-4224 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4091 (((-813 |#1|) $) NIL)) (-2384 (((-813 |#1|) $) NIL)) (-4165 (($ (-1 |#2| |#2|) $) NIL)) (-2339 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-4364 (($ $ (-765)) 96 (|has| |#2| (-711 (-406 (-561)))))) (-2963 (((-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1557 (((-886 |#1|) $) 69)) (-1572 ((|#2| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3486 (($ $ (-765)) 93 (|has| |#2| (-711 (-406 (-561)))))) (-3768 (((-765) $) 86)) (-1480 (((-112) $) 70)) (-1494 ((|#2| $) 74)) (-4064 (((-856) $) 56) (($ (-561)) NIL) (($ |#2|) 50) (($ (-813 |#1|)) NIL) (($ |#1|) 58) (($ (-886 |#1|)) NIL) (($ (-657 |#1| |#2|)) 42) (((-1269 |#1| |#2|) $) 63) (((-1278 |#1| |#2|) $) 68)) (-1868 (((-638 |#2|) $) NIL)) (-3932 ((|#2| $ (-886 |#1|)) NIL)) (-4226 ((|#2| $ (-813 |#1|)) NIL) ((|#2| $ $) NIL)) (-3746 (((-765)) NIL)) (-2246 (($) 21 T CONST)) (-2257 (($) 24 T CONST)) (-4299 (((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1332 (((-3 (-657 |#1| |#2|) "failed") $) 101)) (-1723 (((-112) $ $) 64)) (-1819 (($ $) 95) (($ $ $) 94)) (-1810 (($ $ $) 20)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-886 |#1|)) NIL)))
-(((-1274 |#1| |#2|) (-13 (-1275 |#1| |#2|) (-381 |#2| (-886 |#1|)) (-10 -8 (-15 -4064 ($ (-657 |#1| |#2|))) (-15 -4064 ((-1269 |#1| |#2|) $)) (-15 -4064 ((-1278 |#1| |#2|) $)) (-15 -1332 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -3638 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-561)))) (PROGN (-15 -3486 ($ $ (-765))) (-15 -4364 ($ $ (-765)))) |%noBranch|))) (-844) (-171)) (T -1274))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-1274 *3 *4)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-1332 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-3638 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-3486 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))))
-(-13 (-1275 |#1| |#2|) (-381 |#2| (-886 |#1|)) (-10 -8 (-15 -4064 ($ (-657 |#1| |#2|))) (-15 -4064 ((-1269 |#1| |#2|) $)) (-15 -4064 ((-1278 |#1| |#2|) $)) (-15 -1332 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -3638 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-561)))) (PROGN (-15 -3486 ($ $ (-765))) (-15 -4364 ($ $ (-765)))) |%noBranch|)))
-((-4053 (((-112) $ $) 7)) (-4306 (((-112) $) 16)) (-2844 (((-638 |#1|) $) 41)) (-2371 (($ $ (-765)) 74)) (-2979 (((-3 $ "failed") $ $) 19)) (-1567 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-2674 (($) 17 T CONST)) (-3395 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-4061 (((-3 (-813 |#1|) "failed") $) 65)) (-3979 (((-813 |#1|) $) 66)) (-3735 (((-3 $ "failed") $) 33)) (-3684 (((-112) $) 46)) (-1960 (($ $) 45)) (-2252 (((-112) $) 31)) (-1750 (((-112) $) 51)) (-3077 (($ (-813 |#1|) |#2|) 52)) (-3658 (($ $) 50)) (-4224 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-4091 (((-813 |#1|) $) 62)) (-2384 (((-813 |#1|) $) 76)) (-4165 (($ (-1 |#2| |#2|) $) 42)) (-2339 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-1883 (((-1148) $) 9)) (-1701 (((-1110) $) 10)) (-3768 (((-765) $) 75)) (-1480 (((-112) $) 48)) (-1494 ((|#2| $) 47)) (-4064 (((-856) $) 11) (($ (-561)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4226 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-3746 (((-765)) 28)) (-2246 (($) 18 T CONST)) (-2257 (($) 30 T CONST)) (-1723 (((-112) $ $) 6)) (-1819 (($ $) 22) (($ $ $) 21)) (-1810 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1275 |#1| |#2|) (-139) (-844) (-1042)) (T -1275))
-((-2384 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1275 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
-(-13 (-1271 |t#1| |t#2|) (-10 -8 (-15 -2384 ((-813 |t#1|) $)) (-15 -3768 ((-765) $)) (-15 -2371 ($ $ (-765)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 #0=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #0#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1268 |#2|) . T) ((-1271 |#1| |#2|) . T))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2844 (((-638 (-1166)) $) NIL)) (-3511 (($ (-1269 (-1166) |#1|)) NIL)) (-2371 (($ $ (-765)) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-765)) NIL (|has| |#1| (-171)))) (-2674 (($) NIL T CONST)) (-3395 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-4061 (((-3 (-813 (-1166)) "failed") $) NIL)) (-3979 (((-813 (-1166)) $) NIL)) (-3735 (((-3 $ "failed") $) NIL)) (-3684 (((-112) $) NIL)) (-1960 (($ $) NIL)) (-2252 (((-112) $) NIL)) (-1750 (((-112) $) NIL)) (-3077 (($ (-813 (-1166)) |#1|) NIL)) (-3658 (($ $) NIL)) (-4224 (((-2 (|:| |k| (-813 (-1166))) (|:| |c| |#1|)) $) NIL)) (-4091 (((-813 (-1166)) $) NIL)) (-2384 (((-813 (-1166)) $) NIL)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-2339 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3582 (((-1269 (-1166) |#1|) $) NIL)) (-3768 (((-765) $) NIL)) (-1480 (((-112) $) NIL)) (-1494 ((|#1| $) NIL)) (-4064 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-813 (-1166))) NIL) (($ (-1166)) NIL)) (-4226 ((|#1| $ (-813 (-1166))) NIL) ((|#1| $ $) NIL)) (-3746 (((-765)) NIL)) (-2246 (($) NIL T CONST)) (-3661 (((-638 (-2 (|:| |k| (-1166)) (|:| |c| $))) $) NIL)) (-2257 (($) NIL T CONST)) (-1723 (((-112) $ $) NIL)) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1166) $) NIL)))
-(((-1276 |#1|) (-13 (-1275 (-1166) |#1|) (-10 -8 (-15 -3582 ((-1269 (-1166) |#1|) $)) (-15 -3511 ($ (-1269 (-1166) |#1|))) (-15 -3661 ((-638 (-2 (|:| |k| (-1166)) (|:| |c| $))) $)))) (-1042)) (T -1276))
-((-3582 (*1 *2 *1) (-12 (-5 *2 (-1269 (-1166) *3)) (-5 *1 (-1276 *3)) (-4 *3 (-1042)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-1269 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1276 *3)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| (-1166)) (|:| |c| (-1276 *3))))) (-5 *1 (-1276 *3)) (-4 *3 (-1042)))))
-(-13 (-1275 (-1166) |#1|) (-10 -8 (-15 -3582 ((-1269 (-1166) |#1|) $)) (-15 -3511 ($ (-1269 (-1166) |#1|))) (-15 -3661 ((-638 (-2 (|:| |k| (-1166)) (|:| |c| $))) $))))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) NIL)) (-2979 (((-3 $ "failed") $ $) NIL)) (-2674 (($) NIL T CONST)) (-4061 (((-3 |#2| "failed") $) NIL)) (-3979 ((|#2| $) NIL)) (-1598 (($ $) NIL)) (-3735 (((-3 $ "failed") $) 35)) (-3684 (((-112) $) 30)) (-1960 (($ $) 31)) (-2252 (((-112) $) NIL)) (-2044 (((-765) $) NIL)) (-1859 (((-638 $) $) NIL)) (-1750 (((-112) $) NIL)) (-3077 (($ |#2| |#1|) NIL)) (-4091 ((|#2| $) 19)) (-2384 ((|#2| $) 16)) (-4165 (($ (-1 |#1| |#1|) $) NIL)) (-2963 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1557 ((|#2| $) NIL)) (-1572 ((|#1| $) NIL)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-1480 (((-112) $) 27)) (-1494 ((|#1| $) 28)) (-4064 (((-856) $) 54) (($ (-561)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-1868 (((-638 |#1|) $) NIL)) (-3932 ((|#1| $ |#2|) NIL)) (-4226 ((|#1| $ |#2|) 24)) (-3746 (((-765)) 14)) (-2246 (($) 25 T CONST)) (-2257 (($) 11 T CONST)) (-4299 (((-638 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1723 (((-112) $ $) 26)) (-1828 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-1819 (($ $) NIL) (($ $ $) NIL)) (-1810 (($ $ $) 43)) (** (($ $ (-914)) NIL) (($ $ (-765)) 45)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3548 (((-765) $) 15)))
-(((-1277 |#1| |#2|) (-13 (-1042) (-1268 |#1|) (-381 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3548 ((-765) $)) (-15 -2384 (|#2| $)) (-15 -4091 (|#2| $)) (-15 -1598 ($ $)) (-15 -4226 (|#1| $ |#2|)) (-15 -1480 ((-112) $)) (-15 -1494 (|#1| $)) (-15 -3684 ((-112) $)) (-15 -1960 ($ $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1828 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4392)) (-6 -4392) |%noBranch|) (IF (|has| |#1| (-6 -4396)) (-6 -4396) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|))) (-1042) (-840)) (T -1277))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-1598 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-840)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-2384 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))) (-4091 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))) (-4226 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-1494 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-1960 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-1828 (*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-840)))))
-(-13 (-1042) (-1268 |#1|) (-381 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3548 ((-765) $)) (-15 -2384 (|#2| $)) (-15 -4091 (|#2| $)) (-15 -1598 ($ $)) (-15 -4226 (|#1| $ |#2|)) (-15 -1480 ((-112) $)) (-15 -1494 (|#1| $)) (-15 -3684 ((-112) $)) (-15 -1960 ($ $)) (-15 -4165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1828 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4392)) (-6 -4392) |%noBranch|) (IF (|has| |#1| (-6 -4396)) (-6 -4396) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|)))
-((-4053 (((-112) $ $) 26)) (-4306 (((-112) $) NIL)) (-2844 (((-638 |#1|) $) 120)) (-3511 (($ (-1269 |#1| |#2|)) 44)) (-2371 (($ $ (-765)) 32)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-765)) 46 (|has| |#2| (-171)))) (-2674 (($) NIL T CONST)) (-3395 (($ $ |#1|) 102) (($ $ (-813 |#1|)) 103) (($ $ $) 25)) (-4061 (((-3 (-813 |#1|) "failed") $) NIL)) (-3979 (((-813 |#1|) $) NIL)) (-3735 (((-3 $ "failed") $) 110)) (-3684 (((-112) $) 105)) (-1960 (($ $) 106)) (-2252 (((-112) $) NIL)) (-1750 (((-112) $) NIL)) (-3077 (($ (-813 |#1|) |#2|) 19)) (-3658 (($ $) NIL)) (-4224 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4091 (((-813 |#1|) $) 111)) (-2384 (((-813 |#1|) $) 114)) (-4165 (($ (-1 |#2| |#2|) $) 119)) (-2339 (($ $ |#1|) 100) (($ $ (-813 |#1|)) 101) (($ $ $) 56)) (-1883 (((-1148) $) NIL)) (-1701 (((-1110) $) NIL)) (-3582 (((-1269 |#1| |#2|) $) 84)) (-3768 (((-765) $) 117)) (-1480 (((-112) $) 70)) (-1494 ((|#2| $) 28)) (-4064 (((-856) $) 63) (($ (-561)) 77) (($ |#2|) 74) (($ (-813 |#1|)) 17) (($ |#1|) 73)) (-4226 ((|#2| $ (-813 |#1|)) 104) ((|#2| $ $) 27)) (-3746 (((-765)) 108)) (-2246 (($) 14 T CONST)) (-3661 (((-638 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2257 (($) 29 T CONST)) (-1723 (((-112) $ $) 13)) (-1819 (($ $) 88) (($ $ $) 91)) (-1810 (($ $ $) 55)) (** (($ $ (-914)) NIL) (($ $ (-765)) 49)) (* (($ (-914) $) NIL) (($ (-765) $) 47) (($ (-561) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1278 |#1| |#2|) (-13 (-1275 |#1| |#2|) (-10 -8 (-15 -3582 ((-1269 |#1| |#2|) $)) (-15 -3511 ($ (-1269 |#1| |#2|))) (-15 -3661 ((-638 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-844) (-1042)) (T -1278))
-((-3582 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *1 (-1278 *3 *4)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| *3) (|:| |c| (-1278 *3 *4))))) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
-(-13 (-1275 |#1| |#2|) (-10 -8 (-15 -3582 ((-1269 |#1| |#2|) $)) (-15 -3511 ($ (-1269 |#1| |#2|))) (-15 -3661 ((-638 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-3223 (((-638 (-1146 |#1|)) (-1 (-638 (-1146 |#1|)) (-638 (-1146 |#1|))) (-561)) 15) (((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|))) 11)))
-(((-1279 |#1|) (-10 -7 (-15 -3223 ((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|)))) (-15 -3223 ((-638 (-1146 |#1|)) (-1 (-638 (-1146 |#1|)) (-638 (-1146 |#1|))) (-561)))) (-1205)) (T -1279))
-((-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-638 (-1146 *5)) (-638 (-1146 *5)))) (-5 *4 (-561)) (-5 *2 (-638 (-1146 *5))) (-5 *1 (-1279 *5)) (-4 *5 (-1205)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1 (-1146 *4) (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1279 *4)) (-4 *4 (-1205)))))
-(-10 -7 (-15 -3223 ((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|)))) (-15 -3223 ((-638 (-1146 |#1|)) (-1 (-638 (-1146 |#1|)) (-638 (-1146 |#1|))) (-561))))
-((-1330 (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|))) 147) (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112)) 146) (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112)) 145) (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112) (-112)) 144) (((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-1039 |#1| |#2|)) 129)) (-2892 (((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|))) 71) (((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112)) 70) (((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112) (-112)) 69)) (-3552 (((-638 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|)) 60)) (-2034 (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|))) 114) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112)) 113) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112)) 112) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112) (-112)) 111) (((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 106)) (-3138 (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|))) 119) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112)) 118) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112)) 117) (((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 116)) (-4216 (((-638 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) 97) (((-1162 (-1017 (-406 |#1|))) (-1162 |#1|)) 88) (((-945 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|))) 95) (((-945 (-1017 (-406 |#1|))) (-945 |#1|)) 93) (((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|))) 32)))
-(((-1280 |#1| |#2| |#3|) (-10 -7 (-15 -2892 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112) (-112))) (-15 -2892 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112))) (-15 -2892 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-1039 |#1| |#2|))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -3552 ((-638 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4216 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4216 ((-945 (-1017 (-406 |#1|))) (-945 |#1|))) (-15 -4216 ((-945 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4216 ((-1162 (-1017 (-406 |#1|))) (-1162 |#1|))) (-15 -4216 ((-638 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))))) (-13 (-842) (-306) (-146) (-1015)) (-638 (-1166)) (-638 (-1166))) (T -1280))
-((-4216 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-774 *4 (-858 *6)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-638 (-1166))))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-1162 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *6))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166))) (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-638 (-1166))))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *5))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-3138 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-2034 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-2034 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *4)) (|:| -3752 (-638 (-945 *4)))))) (-5 *1 (-1280 *4 *5 *6)) (-5 *3 (-638 (-945 *4))) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-1330 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-1330 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-1330 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-2 (|:| -2016 (-1162 *4)) (|:| -3752 (-638 (-945 *4)))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-1039 *4 *5))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-2892 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-2892 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))))
-(-10 -7 (-15 -2892 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112) (-112))) (-15 -2892 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112))) (-15 -2892 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-1039 |#1| |#2|))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -1330 ((-638 (-2 (|:| -2016 (-1162 |#1|)) (|:| -3752 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -2034 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -3138 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -3552 ((-638 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4216 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4216 ((-945 (-1017 (-406 |#1|))) (-945 |#1|))) (-15 -4216 ((-945 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4216 ((-1162 (-1017 (-406 |#1|))) (-1162 |#1|))) (-15 -4216 ((-638 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|))))))
-((-2783 (((-3 (-1254 (-406 (-561))) "failed") (-1254 |#1|) |#1|) 21)) (-3773 (((-112) (-1254 |#1|)) 12)) (-2932 (((-3 (-1254 (-561)) "failed") (-1254 |#1|)) 16)))
-(((-1281 |#1|) (-10 -7 (-15 -3773 ((-112) (-1254 |#1|))) (-15 -2932 ((-3 (-1254 (-561)) "failed") (-1254 |#1|))) (-15 -2783 ((-3 (-1254 (-406 (-561))) "failed") (-1254 |#1|) |#1|))) (-634 (-561))) (T -1281))
-((-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-1254 (-406 (-561)))) (-5 *1 (-1281 *4)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-1254 (-561))) (-5 *1 (-1281 *4)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-1254 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-112)) (-5 *1 (-1281 *4)))))
-(-10 -7 (-15 -3773 ((-112) (-1254 |#1|))) (-15 -2932 ((-3 (-1254 (-561)) "failed") (-1254 |#1|))) (-15 -2783 ((-3 (-1254 (-406 (-561))) "failed") (-1254 |#1|) |#1|)))
-((-4053 (((-112) $ $) NIL)) (-4306 (((-112) $) 11)) (-2979 (((-3 $ "failed") $ $) NIL)) (-1386 (((-765)) 8)) (-2674 (($) NIL T CONST)) (-3735 (((-3 $ "failed") $) 43)) (-1362 (($) 36)) (-2252 (((-112) $) NIL)) (-2436 (((-3 $ "failed") $) 29)) (-1335 (((-914) $) 15)) (-1883 (((-1148) $) NIL)) (-3767 (($) 25 T CONST)) (-2442 (($ (-914)) 37)) (-1701 (((-1110) $) NIL)) (-4216 (((-561) $) 13)) (-4064 (((-856) $) 22) (($ (-561)) 19)) (-3746 (((-765)) 9)) (-2246 (($) 23 T CONST)) (-2257 (($) 24 T CONST)) (-1723 (((-112) $ $) 27)) (-1819 (($ $) 38) (($ $ $) 35)) (-1810 (($ $ $) 26)) (** (($ $ (-914)) NIL) (($ $ (-765)) 40)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 32) (($ $ $) 31)))
-(((-1282 |#1|) (-13 (-171) (-367) (-609 (-561)) (-1141)) (-914)) (T -1282))
-NIL
-(-13 (-171) (-367) (-609 (-561)) (-1141))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3193505 3193510 3193515 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3193490 3193495 3193500 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3193475 3193480 3193485 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3193460 3193465 3193470 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1282 3192636 3193335 3193412 "ZMOD" 3193417 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1281 3191746 3191910 3192119 "ZLINDEP" 3192468 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1280 3181050 3182814 3184786 "ZDSOLVE" 3189876 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1279 3180296 3180437 3180626 "YSTREAM" 3180896 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1278 3178107 3179597 3179801 "XRPOLY" 3180139 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1277 3174695 3175978 3176553 "XPR" 3177579 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1276 3172451 3174026 3174230 "XPOLY" 3174526 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1275 3170242 3171576 3171631 "XPOLYC" 3171919 NIL XPOLYC (NIL T T) -9 NIL 3172032 NIL) (-1274 3166660 3168759 3169147 "XPBWPOLY" 3169900 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3162571 3164823 3164865 "XF" 3165486 NIL XF (NIL T) -9 NIL 3165886 NIL) (-1272 3162192 3162280 3162449 "XF-" 3162454 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1271 3157526 3158781 3158836 "XFALG" 3161008 NIL XFALG (NIL T T) -9 NIL 3161797 NIL) (-1270 3156659 3156763 3156968 "XEXPPKG" 3157418 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1269 3154803 3156509 3156605 "XDPOLY" 3156610 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1268 3153748 3154314 3154357 "XALG" 3154362 NIL XALG (NIL T) -9 NIL 3154473 NIL) (-1267 3147217 3151725 3152219 "WUTSET" 3153340 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1266 3145508 3146269 3146592 "WP" 3147028 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1265 3145137 3145330 3145400 "WHILEAST" 3145460 T WHILEAST (NIL) -8 NIL NIL NIL) (-1264 3144636 3144854 3144948 "WHEREAST" 3145065 T WHEREAST (NIL) -8 NIL NIL NIL) (-1263 3143522 3143720 3144015 "WFFINTBS" 3144433 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1262 3141426 3141853 3142315 "WEIER" 3143094 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1261 3140573 3140997 3141039 "VSPACE" 3141175 NIL VSPACE (NIL T) -9 NIL 3141249 NIL) (-1260 3140411 3140438 3140529 "VSPACE-" 3140534 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1259 3140219 3140262 3140330 "VOID" 3140365 T VOID (NIL) -8 NIL NIL NIL) (-1258 3138355 3138714 3139120 "VIEW" 3139835 T VIEW (NIL) -7 NIL NIL NIL) (-1257 3134780 3135418 3136155 "VIEWDEF" 3137640 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1256 3124116 3126328 3128501 "VIEW3D" 3132629 T VIEW3D (NIL) -8 NIL NIL NIL) (-1255 3116398 3118027 3119606 "VIEW2D" 3122559 T VIEW2D (NIL) -8 NIL NIL NIL) (-1254 3111802 3116168 3116260 "VECTOR" 3116341 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1253 3110379 3110638 3110956 "VECTOR2" 3111532 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1252 3103906 3108163 3108206 "VECTCAT" 3109199 NIL VECTCAT (NIL T) -9 NIL 3109785 NIL) (-1251 3102920 3103174 3103564 "VECTCAT-" 3103569 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1250 3102401 3102571 3102691 "VARIABLE" 3102835 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1249 3102334 3102339 3102369 "UTYPE" 3102374 T UTYPE (NIL) -9 NIL NIL NIL) (-1248 3101164 3101318 3101580 "UTSODETL" 3102160 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1247 3098604 3099064 3099588 "UTSODE" 3100705 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1246 3090480 3096230 3096719 "UTS" 3098173 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1245 3081723 3087047 3087090 "UTSCAT" 3088202 NIL UTSCAT (NIL T) -9 NIL 3088959 NIL) (-1244 3079078 3079793 3080782 "UTSCAT-" 3080787 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1243 3078705 3078748 3078881 "UTS2" 3079029 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1242 3072978 3075543 3075586 "URAGG" 3077656 NIL URAGG (NIL T) -9 NIL 3078379 NIL) (-1241 3069917 3070780 3071903 "URAGG-" 3071908 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1240 3065641 3068531 3069003 "UPXSSING" 3069581 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1239 3057743 3064888 3065161 "UPXS" 3065426 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1238 3050856 3057647 3057719 "UPXSCONS" 3057724 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1237 3041101 3047851 3047913 "UPXSCCA" 3048487 NIL UPXSCCA (NIL T T) -9 NIL 3048720 NIL) (-1236 3040739 3040824 3040998 "UPXSCCA-" 3041003 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1235 3030837 3037360 3037403 "UPXSCAT" 3038051 NIL UPXSCAT (NIL T) -9 NIL 3038659 NIL) (-1234 3030267 3030346 3030525 "UPXS2" 3030752 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1233 3028921 3029174 3029525 "UPSQFREE" 3030010 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1232 3022709 3025723 3025778 "UPSCAT" 3026939 NIL UPSCAT (NIL T T) -9 NIL 3027713 NIL) (-1231 3021913 3022120 3022447 "UPSCAT-" 3022452 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1230 3007763 3015761 3015804 "UPOLYC" 3017905 NIL UPOLYC (NIL T) -9 NIL 3019126 NIL) (-1229 2999092 3001517 3004664 "UPOLYC-" 3004669 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1228 2998719 2998762 2998895 "UPOLYC2" 2999043 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1227 2990293 2998402 2998531 "UP" 2998638 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1226 2989632 2989739 2989903 "UPMP" 2990182 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1225 2989185 2989266 2989405 "UPDIVP" 2989545 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1224 2987753 2988002 2988318 "UPDECOMP" 2988934 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1223 2986988 2987100 2987285 "UPCDEN" 2987637 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1222 2986507 2986576 2986725 "UP2" 2986913 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1221 2985024 2985711 2985988 "UNISEG" 2986265 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1220 2984239 2984366 2984571 "UNISEG2" 2984867 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1219 2983299 2983479 2983705 "UNIFACT" 2984055 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1218 2967266 2982476 2982727 "ULS" 2983106 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1217 2955306 2967170 2967242 "ULSCONS" 2967247 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1216 2937922 2949864 2949926 "ULSCCAT" 2950564 NIL ULSCCAT (NIL T T) -9 NIL 2950852 NIL) (-1215 2936972 2937217 2937605 "ULSCCAT-" 2937610 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1214 2926847 2933284 2933327 "ULSCAT" 2934190 NIL ULSCAT (NIL T) -9 NIL 2934920 NIL) (-1213 2926277 2926356 2926535 "ULS2" 2926762 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1212 2925414 2925889 2925990 "UINT8" 2926101 T UINT8 (NIL) -8 NIL NIL 2926180) (-1211 2924550 2925025 2925126 "UINT32" 2925237 T UINT32 (NIL) -8 NIL NIL 2925316) (-1210 2923686 2924161 2924262 "UINT16" 2924373 T UINT16 (NIL) -8 NIL NIL 2924452) (-1209 2922089 2923012 2923042 "UFD" 2923254 T UFD (NIL) -9 NIL 2923368 NIL) (-1208 2921883 2921929 2922024 "UFD-" 2922029 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1207 2920965 2921148 2921364 "UDVO" 2921689 T UDVO (NIL) -7 NIL NIL NIL) (-1206 2918781 2919190 2919661 "UDPO" 2920529 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1205 2918714 2918719 2918749 "TYPE" 2918754 T TYPE (NIL) -9 NIL NIL NIL) (-1204 2918501 2918669 2918700 "TYPEAST" 2918705 T TYPEAST (NIL) -8 NIL NIL NIL) (-1203 2917472 2917674 2917914 "TWOFACT" 2918295 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1202 2916544 2916881 2917116 "TUPLE" 2917272 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1201 2914235 2914754 2915293 "TUBETOOL" 2916027 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1200 2913084 2913289 2913530 "TUBE" 2914028 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1199 2907848 2912056 2912339 "TS" 2912836 NIL TS (NIL T) -8 NIL NIL NIL) (-1198 2896515 2900607 2900704 "TSETCAT" 2905973 NIL TSETCAT (NIL T T T T) -9 NIL 2907504 NIL) (-1197 2891250 2892847 2894738 "TSETCAT-" 2894743 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1196 2885513 2886359 2887301 "TRMANIP" 2890386 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1195 2884954 2885017 2885180 "TRIMAT" 2885445 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1194 2882750 2882987 2883351 "TRIGMNIP" 2884703 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1193 2882270 2882383 2882413 "TRIGCAT" 2882626 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1192 2881939 2882018 2882159 "TRIGCAT-" 2882164 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1191 2878836 2880797 2881078 "TREE" 2881693 NIL TREE (NIL T) -8 NIL NIL NIL) (-1190 2878110 2878638 2878668 "TRANFUN" 2878703 T TRANFUN (NIL) -9 NIL 2878769 NIL) (-1189 2877389 2877580 2877860 "TRANFUN-" 2877865 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1188 2877193 2877225 2877286 "TOPSP" 2877350 T TOPSP (NIL) -7 NIL NIL NIL) (-1187 2876541 2876656 2876810 "TOOLSIGN" 2877074 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1186 2875202 2875718 2875957 "TEXTFILE" 2876324 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1185 2873141 2873655 2874084 "TEX" 2874795 T TEX (NIL) -8 NIL NIL NIL) (-1184 2872922 2872953 2873025 "TEX1" 2873104 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1183 2872570 2872633 2872723 "TEMUTL" 2872854 T TEMUTL (NIL) -7 NIL NIL NIL) (-1182 2870724 2871004 2871329 "TBCMPPK" 2872293 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1181 2862612 2868884 2868940 "TBAGG" 2869340 NIL TBAGG (NIL T T) -9 NIL 2869551 NIL) (-1180 2857682 2859170 2860924 "TBAGG-" 2860929 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1179 2857066 2857173 2857318 "TANEXP" 2857571 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1178 2850567 2856923 2857016 "TABLE" 2857021 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1177 2849979 2850078 2850216 "TABLEAU" 2850464 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1176 2844587 2845807 2847055 "TABLBUMP" 2848765 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1175 2844015 2844115 2844243 "SYSTEM" 2844481 T SYSTEM (NIL) -7 NIL NIL NIL) (-1174 2840478 2841173 2841956 "SYSSOLP" 2843266 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1173 2839535 2840002 2840115 "SYSNNI" 2840301 NIL SYSNNI (NIL NIL) -8 NIL NIL 2840380) (-1172 2838988 2839393 2839435 "SYSINT" 2839440 NIL SYSINT (NIL NIL) -8 NIL NIL 2839448) (-1171 2835322 2836249 2836965 "SYNTAX" 2838294 T SYNTAX (NIL) -8 NIL NIL NIL) (-1170 2832480 2833082 2833714 "SYMTAB" 2834712 T SYMTAB (NIL) -8 NIL NIL NIL) (-1169 2827729 2828631 2829614 "SYMS" 2831519 T SYMS (NIL) -8 NIL NIL NIL) (-1168 2825001 2827187 2827417 "SYMPOLY" 2827534 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1167 2824518 2824593 2824716 "SYMFUNC" 2824913 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1166 2820570 2821830 2822643 "SYMBOL" 2823727 T SYMBOL (NIL) -8 NIL NIL NIL) (-1165 2814109 2815798 2817518 "SWITCH" 2818872 T SWITCH (NIL) -8 NIL NIL NIL) (-1164 2807379 2812930 2813233 "SUTS" 2813864 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1163 2799480 2806626 2806899 "SUPXS" 2807164 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1162 2791010 2799098 2799224 "SUP" 2799389 NIL SUP (NIL T) -8 NIL NIL NIL) (-1161 2790169 2790296 2790513 "SUPFRACF" 2790878 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1160 2789790 2789849 2789962 "SUP2" 2790104 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1159 2788203 2788477 2788840 "SUMRF" 2789489 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1158 2787517 2787583 2787782 "SUMFS" 2788124 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1157 2771524 2786694 2786945 "SULS" 2787324 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1156 2771153 2771346 2771416 "SUCHTAST" 2771476 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1155 2770475 2770678 2770818 "SUCH" 2771061 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1154 2764369 2765381 2766340 "SUBSPACE" 2769563 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1153 2763799 2763889 2764053 "SUBRESP" 2764257 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1152 2757168 2758464 2759775 "STTF" 2762535 NIL STTF (NIL T) -7 NIL NIL NIL) (-1151 2751341 2752461 2753608 "STTFNC" 2756068 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1150 2742656 2744523 2746317 "STTAYLOR" 2749582 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1149 2735900 2742520 2742603 "STRTBL" 2742608 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1148 2731291 2735855 2735886 "STRING" 2735891 T STRING (NIL) -8 NIL NIL NIL) (-1147 2726179 2730664 2730694 "STRICAT" 2730753 T STRICAT (NIL) -9 NIL 2730815 NIL) (-1146 2718989 2723798 2724409 "STREAM" 2725603 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1145 2718499 2718576 2718720 "STREAM3" 2718906 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1144 2717481 2717664 2717899 "STREAM2" 2718312 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1143 2717169 2717221 2717314 "STREAM1" 2717423 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1142 2716185 2716366 2716597 "STINPROD" 2716985 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1141 2715763 2715947 2715977 "STEP" 2716057 T STEP (NIL) -9 NIL 2716135 NIL) (-1140 2709306 2715662 2715739 "STBL" 2715744 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1139 2704480 2708527 2708570 "STAGG" 2708723 NIL STAGG (NIL T) -9 NIL 2708812 NIL) (-1138 2702182 2702784 2703656 "STAGG-" 2703661 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1137 2700377 2701952 2702044 "STACK" 2702125 NIL STACK (NIL T) -8 NIL NIL NIL) (-1136 2693102 2698518 2698974 "SREGSET" 2700007 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1135 2685528 2686896 2688409 "SRDCMPK" 2691708 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1134 2678495 2682968 2682998 "SRAGG" 2684301 T SRAGG (NIL) -9 NIL 2684909 NIL) (-1133 2677512 2677767 2678146 "SRAGG-" 2678151 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1132 2672007 2676459 2676880 "SQMATRIX" 2677138 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1131 2665756 2668725 2669452 "SPLTREE" 2671352 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1130 2661746 2662412 2663058 "SPLNODE" 2665182 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1129 2660793 2661026 2661056 "SPFCAT" 2661500 T SPFCAT (NIL) -9 NIL NIL NIL) (-1128 2659530 2659740 2660004 "SPECOUT" 2660551 T SPECOUT (NIL) -7 NIL NIL NIL) (-1127 2651182 2652926 2652956 "SPADXPT" 2657348 T SPADXPT (NIL) -9 NIL 2659382 NIL) (-1126 2650943 2650983 2651052 "SPADPRSR" 2651135 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1125 2649126 2650898 2650929 "SPADAST" 2650934 T SPADAST (NIL) -8 NIL NIL NIL) (-1124 2641097 2642844 2642887 "SPACEC" 2647260 NIL SPACEC (NIL T) -9 NIL 2649076 NIL) (-1123 2639268 2641029 2641078 "SPACE3" 2641083 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1122 2638020 2638191 2638482 "SORTPAK" 2639073 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1121 2636070 2636373 2636792 "SOLVETRA" 2637684 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1120 2635081 2635303 2635577 "SOLVESER" 2635843 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1119 2630301 2631182 2632184 "SOLVERAD" 2634133 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1118 2626116 2626725 2627454 "SOLVEFOR" 2629668 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1117 2620413 2625465 2625562 "SNTSCAT" 2625567 NIL SNTSCAT (NIL T T T T) -9 NIL 2625637 NIL) (-1116 2614556 2618736 2619127 "SMTS" 2620103 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1115 2609007 2614444 2614521 "SMP" 2614526 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1114 2607166 2607467 2607865 "SMITH" 2608704 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1113 2600061 2604217 2604320 "SMATCAT" 2605671 NIL SMATCAT (NIL NIL T T T) -9 NIL 2606221 NIL) (-1112 2597001 2597824 2599002 "SMATCAT-" 2599007 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1111 2594714 2596237 2596280 "SKAGG" 2596541 NIL SKAGG (NIL T) -9 NIL 2596676 NIL) (-1110 2591056 2594130 2594325 "SINT" 2594512 T SINT (NIL) -8 NIL NIL 2594685) (-1109 2590828 2590866 2590932 "SIMPAN" 2591012 T SIMPAN (NIL) -7 NIL NIL NIL) (-1108 2590135 2590363 2590503 "SIG" 2590710 T SIG (NIL) -8 NIL NIL NIL) (-1107 2588973 2589194 2589469 "SIGNRF" 2589894 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1106 2587778 2587929 2588220 "SIGNEF" 2588802 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1105 2587111 2587361 2587485 "SIGAST" 2587676 T SIGAST (NIL) -8 NIL NIL NIL) (-1104 2584801 2585255 2585761 "SHP" 2586652 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1103 2578707 2584702 2584778 "SHDP" 2584783 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1102 2578306 2578472 2578502 "SGROUP" 2578595 T SGROUP (NIL) -9 NIL 2578657 NIL) (-1101 2578164 2578190 2578263 "SGROUP-" 2578268 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1100 2575000 2575697 2576420 "SGCF" 2577463 T SGCF (NIL) -7 NIL NIL NIL) (-1099 2569395 2574447 2574544 "SFRTCAT" 2574549 NIL SFRTCAT (NIL T T T T) -9 NIL 2574588 NIL) (-1098 2562819 2563834 2564970 "SFRGCD" 2568378 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1097 2555947 2557018 2558204 "SFQCMPK" 2561752 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1096 2555569 2555658 2555768 "SFORT" 2555888 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1095 2554714 2555409 2555530 "SEXOF" 2555535 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1094 2553848 2554595 2554663 "SEX" 2554668 T SEX (NIL) -8 NIL NIL NIL) (-1093 2549387 2550076 2550171 "SEXCAT" 2553108 NIL SEXCAT (NIL T T T T T) -9 NIL 2553686 NIL) (-1092 2546567 2549321 2549369 "SET" 2549374 NIL SET (NIL T) -8 NIL NIL NIL) (-1091 2544818 2545280 2545585 "SETMN" 2546308 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1090 2544424 2544550 2544580 "SETCAT" 2544697 T SETCAT (NIL) -9 NIL 2544782 NIL) (-1089 2544204 2544256 2544355 "SETCAT-" 2544360 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1088 2540591 2542665 2542708 "SETAGG" 2543578 NIL SETAGG (NIL T) -9 NIL 2543918 NIL) (-1087 2540049 2540165 2540402 "SETAGG-" 2540407 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1086 2539519 2539745 2539846 "SEQAST" 2539970 T SEQAST (NIL) -8 NIL NIL NIL) (-1085 2538718 2539012 2539073 "SEGXCAT" 2539359 NIL SEGXCAT (NIL T T) -9 NIL 2539479 NIL) (-1084 2537774 2538384 2538566 "SEG" 2538571 NIL SEG (NIL T) -8 NIL NIL NIL) (-1083 2536753 2536967 2537010 "SEGCAT" 2537532 NIL SEGCAT (NIL T) -9 NIL 2537753 NIL) (-1082 2535802 2536132 2536332 "SEGBIND" 2536588 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1081 2535423 2535482 2535595 "SEGBIND2" 2535737 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1080 2535024 2535224 2535301 "SEGAST" 2535368 T SEGAST (NIL) -8 NIL NIL NIL) (-1079 2534243 2534369 2534573 "SEG2" 2534868 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1078 2533680 2534178 2534225 "SDVAR" 2534230 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1077 2525970 2533450 2533580 "SDPOL" 2533585 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1076 2524563 2524829 2525148 "SCPKG" 2525685 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1075 2523699 2523879 2524079 "SCOPE" 2524385 T SCOPE (NIL) -8 NIL NIL NIL) (-1074 2522920 2523053 2523232 "SCACHE" 2523554 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1073 2522592 2522752 2522782 "SASTCAT" 2522787 T SASTCAT (NIL) -9 NIL 2522800 NIL) (-1072 2522106 2522427 2522503 "SAOS" 2522538 T SAOS (NIL) -8 NIL NIL NIL) (-1071 2521671 2521706 2521879 "SAERFFC" 2522065 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1070 2515645 2521568 2521648 "SAE" 2521653 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1069 2515238 2515273 2515432 "SAEFACT" 2515604 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1068 2513559 2513873 2514274 "RURPK" 2514904 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1067 2512195 2512474 2512786 "RULESET" 2513393 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1066 2509382 2509885 2510350 "RULE" 2511876 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1065 2509021 2509176 2509259 "RULECOLD" 2509334 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1064 2508519 2508738 2508832 "RSTRCAST" 2508949 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1063 2503368 2504162 2505082 "RSETGCD" 2507718 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1062 2492625 2497677 2497774 "RSETCAT" 2501893 NIL RSETCAT (NIL T T T T) -9 NIL 2502990 NIL) (-1061 2490552 2491091 2491915 "RSETCAT-" 2491920 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1060 2482939 2484314 2485834 "RSDCMPK" 2489151 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2480944 2481385 2481459 "RRCC" 2482545 NIL RRCC (NIL T T) -9 NIL 2482889 NIL) (-1058 2480295 2480469 2480748 "RRCC-" 2480753 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1057 2479765 2479991 2480092 "RPTAST" 2480216 T RPTAST (NIL) -8 NIL NIL NIL) (-1056 2453771 2463358 2463425 "RPOLCAT" 2474089 NIL RPOLCAT (NIL T T T) -9 NIL 2477248 NIL) (-1055 2445271 2447609 2450731 "RPOLCAT-" 2450736 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1054 2436318 2443482 2443964 "ROUTINE" 2444811 T ROUTINE (NIL) -8 NIL NIL NIL) (-1053 2433151 2435944 2436084 "ROMAN" 2436200 T ROMAN (NIL) -8 NIL NIL NIL) (-1052 2431426 2432011 2432271 "ROIRC" 2432956 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1051 2427819 2430062 2430092 "RNS" 2430396 T RNS (NIL) -9 NIL 2430669 NIL) (-1050 2426328 2426711 2427245 "RNS-" 2427320 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1049 2425777 2426159 2426189 "RNG" 2426194 T RNG (NIL) -9 NIL 2426215 NIL) (-1048 2425169 2425531 2425574 "RMODULE" 2425636 NIL RMODULE (NIL T) -9 NIL 2425678 NIL) (-1047 2424005 2424099 2424435 "RMCAT2" 2425070 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1046 2420882 2423351 2423648 "RMATRIX" 2423767 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1045 2413824 2416058 2416173 "RMATCAT" 2419532 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2420514 NIL) (-1044 2413199 2413346 2413653 "RMATCAT-" 2413658 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1043 2412766 2412841 2412969 "RINTERP" 2413118 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1042 2411899 2412419 2412449 "RING" 2412505 T RING (NIL) -9 NIL 2412591 NIL) (-1041 2411691 2411735 2411832 "RING-" 2411837 NIL RING- (NIL T) -8 NIL NIL NIL) (-1040 2410532 2410769 2411027 "RIDIST" 2411455 T RIDIST (NIL) -7 NIL NIL NIL) (-1039 2401848 2410000 2410206 "RGCHAIN" 2410380 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1038 2401224 2401604 2401645 "RGBCSPC" 2401703 NIL RGBCSPC (NIL T) -9 NIL 2401755 NIL) (-1037 2400408 2400763 2400804 "RGBCMDL" 2401036 NIL RGBCMDL (NIL T) -9 NIL 2401150 NIL) (-1036 2397402 2398016 2398686 "RF" 2399772 NIL RF (NIL T) -7 NIL NIL NIL) (-1035 2397048 2397111 2397214 "RFFACTOR" 2397333 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1034 2396773 2396808 2396905 "RFFACT" 2397007 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1033 2394890 2395254 2395636 "RFDIST" 2396413 T RFDIST (NIL) -7 NIL NIL NIL) (-1032 2394343 2394435 2394598 "RETSOL" 2394792 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1031 2393979 2394059 2394102 "RETRACT" 2394235 NIL RETRACT (NIL T) -9 NIL 2394322 NIL) (-1030 2393828 2393853 2393940 "RETRACT-" 2393945 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1029 2393457 2393650 2393720 "RETAST" 2393780 T RETAST (NIL) -8 NIL NIL NIL) (-1028 2386311 2393110 2393237 "RESULT" 2393352 T RESULT (NIL) -8 NIL NIL NIL) (-1027 2384937 2385580 2385779 "RESRING" 2386214 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1026 2384573 2384622 2384720 "RESLATC" 2384874 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1025 2384279 2384313 2384420 "REPSQ" 2384532 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1024 2381701 2382281 2382883 "REP" 2383699 T REP (NIL) -7 NIL NIL NIL) (-1023 2381399 2381433 2381544 "REPDB" 2381660 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1022 2375309 2376688 2377911 "REP2" 2380211 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1021 2371686 2372367 2373175 "REP1" 2374536 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1020 2364412 2369827 2370283 "REGSET" 2371316 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1019 2363225 2363560 2363810 "REF" 2364197 NIL REF (NIL T) -8 NIL NIL NIL) (-1018 2362602 2362705 2362872 "REDORDER" 2363109 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1017 2358607 2361815 2362042 "RECLOS" 2362430 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1016 2357659 2357840 2358055 "REALSOLV" 2358414 T REALSOLV (NIL) -7 NIL NIL NIL) (-1015 2357505 2357546 2357576 "REAL" 2357581 T REAL (NIL) -9 NIL 2357616 NIL) (-1014 2353988 2354790 2355674 "REAL0Q" 2356670 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1013 2349589 2350577 2351638 "REAL0" 2352969 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1012 2349087 2349306 2349400 "RDUCEAST" 2349517 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1011 2348492 2348564 2348771 "RDIV" 2349009 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1010 2347560 2347734 2347947 "RDIST" 2348314 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1009 2346157 2346444 2346816 "RDETRS" 2347268 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1008 2343969 2344423 2344961 "RDETR" 2345699 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1007 2342580 2342858 2343262 "RDEEFS" 2343685 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1006 2341075 2341381 2341813 "RDEEF" 2342268 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1005 2335336 2338211 2338241 "RCFIELD" 2339536 T RCFIELD (NIL) -9 NIL 2340266 NIL) (-1004 2333400 2333904 2334600 "RCFIELD-" 2334675 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1003 2329716 2331501 2331544 "RCAGG" 2332628 NIL RCAGG (NIL T) -9 NIL 2333093 NIL) (-1002 2329344 2329438 2329601 "RCAGG-" 2329606 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1001 2328679 2328791 2328956 "RATRET" 2329228 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1000 2328232 2328299 2328420 "RATFACT" 2328607 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-999 2327547 2327667 2327817 "RANDSRC" 2328102 T RANDSRC (NIL) -7 NIL NIL NIL) (-998 2327284 2327328 2327399 "RADUTIL" 2327496 T RADUTIL (NIL) -7 NIL NIL NIL) (-997 2320446 2326126 2326434 "RADIX" 2327008 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-996 2312103 2320290 2320418 "RADFF" 2320423 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-995 2311755 2311830 2311858 "RADCAT" 2312015 T RADCAT (NIL) -9 NIL NIL NIL) (-994 2311540 2311588 2311685 "RADCAT-" 2311690 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-993 2309691 2311315 2311404 "QUEUE" 2311484 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-992 2306267 2309628 2309673 "QUAT" 2309678 NIL QUAT (NIL T) -8 NIL NIL NIL) (-991 2305905 2305948 2306075 "QUATCT2" 2306218 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-990 2299652 2302954 2302994 "QUATCAT" 2303774 NIL QUATCAT (NIL T) -9 NIL 2304540 NIL) (-989 2295796 2296833 2298220 "QUATCAT-" 2298314 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-988 2293316 2294880 2294921 "QUAGG" 2295296 NIL QUAGG (NIL T) -9 NIL 2295471 NIL) (-987 2292948 2293141 2293209 "QQUTAST" 2293268 T QQUTAST (NIL) -8 NIL NIL NIL) (-986 2291873 2292346 2292518 "QFORM" 2292820 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-985 2283085 2288290 2288330 "QFCAT" 2288988 NIL QFCAT (NIL T) -9 NIL 2289989 NIL) (-984 2278657 2279858 2281449 "QFCAT-" 2281543 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-983 2278295 2278338 2278465 "QFCAT2" 2278608 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-982 2277755 2277865 2277995 "QEQUAT" 2278185 T QEQUAT (NIL) -8 NIL NIL NIL) (-981 2270903 2271974 2273158 "QCMPACK" 2276688 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-980 2268479 2268900 2269328 "QALGSET" 2270558 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-979 2267724 2267898 2268130 "QALGSET2" 2268299 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-978 2266415 2266638 2266955 "PWFFINTB" 2267497 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-977 2264597 2264765 2265119 "PUSHVAR" 2266229 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-976 2260515 2261569 2261610 "PTRANFN" 2263494 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-975 2258917 2259208 2259530 "PTPACK" 2260226 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-974 2258549 2258606 2258715 "PTFUNC2" 2258854 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-973 2253076 2257421 2257462 "PTCAT" 2257758 NIL PTCAT (NIL T) -9 NIL 2257911 NIL) (-972 2252734 2252769 2252893 "PSQFR" 2253035 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-971 2251329 2251627 2251961 "PSEUDLIN" 2252432 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-970 2238099 2240463 2242787 "PSETPK" 2249089 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-969 2231143 2233857 2233953 "PSETCAT" 2236974 NIL PSETCAT (NIL T T T T) -9 NIL 2237788 NIL) (-968 2228979 2229613 2230434 "PSETCAT-" 2230439 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-967 2228328 2228493 2228521 "PSCURVE" 2228789 T PSCURVE (NIL) -9 NIL 2228956 NIL) (-966 2224684 2226166 2226231 "PSCAT" 2227075 NIL PSCAT (NIL T T T) -9 NIL 2227315 NIL) (-965 2223747 2223963 2224363 "PSCAT-" 2224368 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-964 2222479 2223112 2223317 "PRTITION" 2223562 T PRTITION (NIL) -8 NIL NIL NIL) (-963 2221981 2222200 2222292 "PRTDAST" 2222407 T PRTDAST (NIL) -8 NIL NIL NIL) (-962 2211079 2213285 2215473 "PRS" 2219843 NIL PRS (NIL T T) -7 NIL NIL NIL) (-961 2208937 2210429 2210469 "PRQAGG" 2210652 NIL PRQAGG (NIL T) -9 NIL 2210754 NIL) (-960 2208323 2208552 2208580 "PROPLOG" 2208765 T PROPLOG (NIL) -9 NIL 2208887 NIL) (-959 2205493 2206137 2206601 "PROPFRML" 2207891 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-958 2204953 2205063 2205193 "PROPERTY" 2205383 T PROPERTY (NIL) -8 NIL NIL NIL) (-957 2199038 2203119 2203939 "PRODUCT" 2204179 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-956 2196351 2198496 2198730 "PR" 2198849 NIL PR (NIL T T) -8 NIL NIL NIL) (-955 2196147 2196179 2196238 "PRINT" 2196312 T PRINT (NIL) -7 NIL NIL NIL) (-954 2195487 2195604 2195756 "PRIMES" 2196027 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-953 2193552 2193953 2194419 "PRIMELT" 2195066 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-952 2193281 2193330 2193358 "PRIMCAT" 2193482 T PRIMCAT (NIL) -9 NIL NIL NIL) (-951 2189442 2193219 2193264 "PRIMARR" 2193269 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-950 2188449 2188627 2188855 "PRIMARR2" 2189260 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-949 2188092 2188148 2188259 "PREASSOC" 2188387 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-948 2187567 2187700 2187728 "PPCURVE" 2187933 T PPCURVE (NIL) -9 NIL 2188069 NIL) (-947 2187189 2187362 2187445 "PORTNUM" 2187504 T PORTNUM (NIL) -8 NIL NIL NIL) (-946 2184548 2184947 2185539 "POLYROOT" 2186770 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-945 2178493 2184152 2184312 "POLY" 2184421 NIL POLY (NIL T) -8 NIL NIL NIL) (-944 2177876 2177934 2178168 "POLYLIFT" 2178429 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-943 2174151 2174600 2175229 "POLYCATQ" 2177421 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-942 2160968 2166326 2166391 "POLYCAT" 2169905 NIL POLYCAT (NIL T T T) -9 NIL 2171833 NIL) (-941 2154418 2156279 2158663 "POLYCAT-" 2158668 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-940 2154005 2154073 2154193 "POLY2UP" 2154344 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-939 2153637 2153694 2153803 "POLY2" 2153942 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-938 2152322 2152561 2152837 "POLUTIL" 2153411 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-937 2150677 2150954 2151285 "POLTOPOL" 2152044 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-936 2146195 2150613 2150659 "POINT" 2150664 NIL POINT (NIL T) -8 NIL NIL NIL) (-935 2144382 2144739 2145114 "PNTHEORY" 2145840 T PNTHEORY (NIL) -7 NIL NIL NIL) (-934 2142801 2143098 2143510 "PMTOOLS" 2144080 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-933 2142394 2142472 2142589 "PMSYM" 2142717 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-932 2141904 2141973 2142147 "PMQFCAT" 2142319 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-931 2141259 2141369 2141525 "PMPRED" 2141781 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-930 2140655 2140741 2140902 "PMPREDFS" 2141160 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-929 2139298 2139506 2139891 "PMPLCAT" 2140417 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-928 2138830 2138909 2139061 "PMLSAGG" 2139213 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-927 2138305 2138381 2138562 "PMKERNEL" 2138748 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-926 2137922 2137997 2138110 "PMINS" 2138224 NIL PMINS (NIL T) -7 NIL NIL NIL) (-925 2137350 2137419 2137635 "PMFS" 2137847 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-924 2136578 2136696 2136901 "PMDOWN" 2137227 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-923 2135741 2135900 2136082 "PMASS" 2136416 T PMASS (NIL) -7 NIL NIL NIL) (-922 2135015 2135126 2135289 "PMASSFS" 2135627 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-921 2134670 2134738 2134832 "PLOTTOOL" 2134941 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-920 2129292 2130481 2131629 "PLOT" 2133542 T PLOT (NIL) -8 NIL NIL NIL) (-919 2125106 2126140 2127061 "PLOT3D" 2128391 T PLOT3D (NIL) -8 NIL NIL NIL) (-918 2124018 2124195 2124430 "PLOT1" 2124910 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-917 2099412 2104084 2108935 "PLEQN" 2119284 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-916 2098730 2098852 2099032 "PINTERP" 2099277 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-915 2098423 2098470 2098573 "PINTERPA" 2098677 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-914 2097671 2098192 2098279 "PI" 2098319 T PI (NIL) -8 NIL NIL 2098386) (-913 2096068 2097009 2097037 "PID" 2097219 T PID (NIL) -9 NIL 2097353 NIL) (-912 2095793 2095830 2095918 "PICOERCE" 2096025 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-911 2095113 2095252 2095428 "PGROEB" 2095649 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-910 2090700 2091514 2092419 "PGE" 2094228 T PGE (NIL) -7 NIL NIL NIL) (-909 2088824 2089070 2089436 "PGCD" 2090417 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-908 2088162 2088265 2088426 "PFRPAC" 2088708 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-907 2084842 2086710 2087063 "PFR" 2087841 NIL PFR (NIL T) -8 NIL NIL NIL) (-906 2083231 2083475 2083800 "PFOTOOLS" 2084589 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-905 2081764 2082003 2082354 "PFOQ" 2082988 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-904 2080237 2080449 2080812 "PFO" 2081548 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-903 2076825 2080126 2080195 "PF" 2080200 NIL PF (NIL NIL) -8 NIL NIL NIL) (-902 2074259 2075496 2075524 "PFECAT" 2076109 T PFECAT (NIL) -9 NIL 2076493 NIL) (-901 2073704 2073858 2074072 "PFECAT-" 2074077 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-900 2072308 2072559 2072860 "PFBRU" 2073453 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-899 2070175 2070526 2070958 "PFBR" 2071959 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-898 2066091 2067551 2068227 "PERM" 2069532 NIL PERM (NIL T) -8 NIL NIL NIL) (-897 2061357 2062298 2063168 "PERMGRP" 2065254 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-896 2059489 2060420 2060461 "PERMCAT" 2060907 NIL PERMCAT (NIL T) -9 NIL 2061212 NIL) (-895 2059142 2059183 2059307 "PERMAN" 2059442 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-894 2056678 2058807 2058929 "PENDTREE" 2059053 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-893 2054771 2055505 2055546 "PDRING" 2056203 NIL PDRING (NIL T) -9 NIL 2056489 NIL) (-892 2053874 2054092 2054454 "PDRING-" 2054459 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-891 2051116 2051867 2052535 "PDEPROB" 2053226 T PDEPROB (NIL) -8 NIL NIL NIL) (-890 2048663 2049165 2049720 "PDEPACK" 2050581 T PDEPACK (NIL) -7 NIL NIL NIL) (-889 2047575 2047765 2048016 "PDECOMP" 2048462 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-888 2045180 2045997 2046025 "PDECAT" 2046812 T PDECAT (NIL) -9 NIL 2047525 NIL) (-887 2044931 2044964 2045054 "PCOMP" 2045141 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-886 2043136 2043732 2044029 "PBWLB" 2044660 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-885 2035641 2037209 2038547 "PATTERN" 2041819 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-884 2035273 2035330 2035439 "PATTERN2" 2035578 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-883 2033030 2033418 2033875 "PATTERN1" 2034862 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-882 2030425 2030979 2031460 "PATRES" 2032595 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-881 2029989 2030056 2030188 "PATRES2" 2030352 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-880 2027872 2028277 2028684 "PATMATCH" 2029656 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-879 2027408 2027591 2027632 "PATMAB" 2027739 NIL PATMAB (NIL T) -9 NIL 2027822 NIL) (-878 2025953 2026262 2026520 "PATLRES" 2027213 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-877 2025499 2025622 2025663 "PATAB" 2025668 NIL PATAB (NIL T) -9 NIL 2025840 NIL) (-876 2022980 2023512 2024085 "PARTPERM" 2024946 T PARTPERM (NIL) -7 NIL NIL NIL) (-875 2022601 2022664 2022766 "PARSURF" 2022911 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-874 2022233 2022290 2022399 "PARSU2" 2022538 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-873 2021997 2022037 2022104 "PARSER" 2022186 T PARSER (NIL) -7 NIL NIL NIL) (-872 2021618 2021681 2021783 "PARSCURV" 2021928 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-871 2021250 2021307 2021416 "PARSC2" 2021555 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-870 2020889 2020947 2021044 "PARPCURV" 2021186 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-869 2020521 2020578 2020687 "PARPC2" 2020826 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-868 2020041 2020127 2020246 "PAN2EXPR" 2020422 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-867 2018847 2019162 2019390 "PALETTE" 2019833 T PALETTE (NIL) -8 NIL NIL NIL) (-866 2017315 2017852 2018212 "PAIR" 2018533 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-865 2011221 2016574 2016768 "PADICRC" 2017170 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-864 2004485 2010567 2010751 "PADICRAT" 2011069 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-863 2002835 2004422 2004467 "PADIC" 2004472 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-862 2000045 2001575 2001615 "PADICCT" 2002196 NIL PADICCT (NIL NIL) -9 NIL 2002478 NIL) (-861 1999002 1999202 1999470 "PADEPAC" 1999832 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-860 1998214 1998347 1998553 "PADE" 1998864 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-859 1996636 1997422 1997702 "OWP" 1998018 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-858 1995709 1996241 1996413 "OVAR" 1996504 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-857 1994973 1995094 1995255 "OUT" 1995568 T OUT (NIL) -7 NIL NIL NIL) (-856 1983880 1986082 1988282 "OUTFORM" 1992793 T OUTFORM (NIL) -8 NIL NIL NIL) (-855 1983216 1983477 1983604 "OUTBFILE" 1983773 T OUTBFILE (NIL) -8 NIL NIL NIL) (-854 1982523 1982688 1982716 "OUTBCON" 1983034 T OUTBCON (NIL) -9 NIL 1983200 NIL) (-853 1982124 1982236 1982393 "OUTBCON-" 1982398 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-852 1981532 1981853 1981942 "OSI" 1982055 T OSI (NIL) -8 NIL NIL NIL) (-851 1981088 1981400 1981428 "OSGROUP" 1981433 T OSGROUP (NIL) -9 NIL 1981455 NIL) (-850 1979833 1980060 1980345 "ORTHPOL" 1980835 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-849 1977419 1979668 1979789 "OREUP" 1979794 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-848 1974857 1977110 1977237 "ORESUP" 1977361 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-847 1972385 1972885 1973446 "OREPCTO" 1974346 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-846 1966209 1968376 1968417 "OREPCAT" 1970765 NIL OREPCAT (NIL T) -9 NIL 1971869 NIL) (-845 1963356 1964138 1965196 "OREPCAT-" 1965201 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-844 1962533 1962805 1962833 "ORDSET" 1963142 T ORDSET (NIL) -9 NIL 1963306 NIL) (-843 1962052 1962174 1962367 "ORDSET-" 1962372 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-842 1960686 1961443 1961471 "ORDRING" 1961673 T ORDRING (NIL) -9 NIL 1961798 NIL) (-841 1960331 1960425 1960569 "ORDRING-" 1960574 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-840 1959737 1960174 1960202 "ORDMON" 1960207 T ORDMON (NIL) -9 NIL 1960228 NIL) (-839 1958899 1959046 1959241 "ORDFUNS" 1959586 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-838 1958263 1958656 1958684 "ORDFIN" 1958749 T ORDFIN (NIL) -9 NIL 1958823 NIL) (-837 1954855 1956849 1957258 "ORDCOMP" 1957887 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-836 1954121 1954248 1954434 "ORDCOMP2" 1954715 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-835 1950729 1951612 1952426 "OPTPROB" 1953327 T OPTPROB (NIL) -8 NIL NIL NIL) (-834 1947531 1948170 1948874 "OPTPACK" 1950045 T OPTPACK (NIL) -7 NIL NIL NIL) (-833 1945244 1945984 1946012 "OPTCAT" 1946831 T OPTCAT (NIL) -9 NIL 1947481 NIL) (-832 1944687 1944921 1945026 "OPSIG" 1945159 T OPSIG (NIL) -8 NIL NIL NIL) (-831 1944455 1944494 1944560 "OPQUERY" 1944641 T OPQUERY (NIL) -7 NIL NIL NIL) (-830 1941621 1942766 1943270 "OP" 1943984 NIL OP (NIL T) -8 NIL NIL NIL) (-829 1941156 1941327 1941368 "OPERCAT" 1941503 NIL OPERCAT (NIL T) -9 NIL 1941571 NIL) (-828 1941002 1941029 1941115 "OPERCAT-" 1941120 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-827 1937847 1939799 1940168 "ONECOMP" 1940666 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-826 1937152 1937267 1937441 "ONECOMP2" 1937719 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-825 1936571 1936677 1936807 "OMSERVER" 1937042 T OMSERVER (NIL) -7 NIL NIL NIL) (-824 1933459 1936011 1936051 "OMSAGG" 1936112 NIL OMSAGG (NIL T) -9 NIL 1936176 NIL) (-823 1932082 1932345 1932627 "OMPKG" 1933197 T OMPKG (NIL) -7 NIL NIL NIL) (-822 1931512 1931615 1931643 "OM" 1931942 T OM (NIL) -9 NIL NIL NIL) (-821 1930094 1931061 1931230 "OMLO" 1931393 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-820 1929019 1929166 1929393 "OMEXPR" 1929920 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-819 1928337 1928565 1928701 "OMERR" 1928903 T OMERR (NIL) -8 NIL NIL NIL) (-818 1927515 1927758 1927918 "OMERRK" 1928197 T OMERRK (NIL) -8 NIL NIL NIL) (-817 1926993 1927192 1927300 "OMENC" 1927427 T OMENC (NIL) -8 NIL NIL NIL) (-816 1920888 1922073 1923244 "OMDEV" 1925842 T OMDEV (NIL) -8 NIL NIL NIL) (-815 1919957 1920128 1920322 "OMCONN" 1920714 T OMCONN (NIL) -8 NIL NIL NIL) (-814 1918578 1919520 1919548 "OINTDOM" 1919553 T OINTDOM (NIL) -9 NIL 1919574 NIL) (-813 1914384 1915568 1916284 "OFMONOID" 1917894 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-812 1913822 1914321 1914366 "ODVAR" 1914371 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-811 1911280 1913567 1913722 "ODR" 1913727 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-810 1903624 1911056 1911182 "ODPOL" 1911187 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-809 1897500 1903496 1903601 "ODP" 1903606 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-808 1896266 1896481 1896756 "ODETOOLS" 1897274 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-807 1893235 1893891 1894607 "ODESYS" 1895599 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-806 1888117 1889025 1890050 "ODERTRIC" 1892310 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-805 1887543 1887625 1887819 "ODERED" 1888029 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-804 1884431 1884979 1885656 "ODERAT" 1886966 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-803 1881391 1881855 1882452 "ODEPRRIC" 1883960 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-802 1879361 1879930 1880416 "ODEPROB" 1880925 T ODEPROB (NIL) -8 NIL NIL NIL) (-801 1875883 1876366 1877013 "ODEPRIM" 1878840 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-800 1875132 1875234 1875494 "ODEPAL" 1875775 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-799 1871294 1872085 1872949 "ODEPACK" 1874288 T ODEPACK (NIL) -7 NIL NIL NIL) (-798 1870327 1870434 1870663 "ODEINT" 1871183 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-797 1864428 1865853 1867300 "ODEIFTBL" 1868900 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-796 1859763 1860549 1861508 "ODEEF" 1863587 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-795 1859098 1859187 1859417 "ODECONST" 1859668 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-794 1857249 1857884 1857912 "ODECAT" 1858517 T ODECAT (NIL) -9 NIL 1859048 NIL) (-793 1854156 1856961 1857080 "OCT" 1857162 NIL OCT (NIL T) -8 NIL NIL NIL) (-792 1853794 1853837 1853964 "OCTCT2" 1854107 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-791 1848568 1850968 1851008 "OC" 1852105 NIL OC (NIL T) -9 NIL 1852963 NIL) (-790 1845795 1846543 1847533 "OC-" 1847627 NIL OC- (NIL T T) -8 NIL NIL NIL) (-789 1845173 1845615 1845643 "OCAMON" 1845648 T OCAMON (NIL) -9 NIL 1845669 NIL) (-788 1844730 1845045 1845073 "OASGP" 1845078 T OASGP (NIL) -9 NIL 1845098 NIL) (-787 1844017 1844480 1844508 "OAMONS" 1844548 T OAMONS (NIL) -9 NIL 1844591 NIL) (-786 1843457 1843864 1843892 "OAMON" 1843897 T OAMON (NIL) -9 NIL 1843917 NIL) (-785 1842761 1843253 1843281 "OAGROUP" 1843286 T OAGROUP (NIL) -9 NIL 1843306 NIL) (-784 1842451 1842501 1842589 "NUMTUBE" 1842705 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-783 1836024 1837542 1839078 "NUMQUAD" 1840935 T NUMQUAD (NIL) -7 NIL NIL NIL) (-782 1831780 1832768 1833793 "NUMODE" 1835019 T NUMODE (NIL) -7 NIL NIL NIL) (-781 1829161 1830015 1830043 "NUMINT" 1830966 T NUMINT (NIL) -9 NIL 1831730 NIL) (-780 1828109 1828306 1828524 "NUMFMT" 1828963 T NUMFMT (NIL) -7 NIL NIL NIL) (-779 1814468 1817413 1819945 "NUMERIC" 1825616 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-778 1808865 1813917 1814012 "NTSCAT" 1814017 NIL NTSCAT (NIL T T T T) -9 NIL 1814056 NIL) (-777 1808059 1808224 1808417 "NTPOLFN" 1808704 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-776 1795899 1804884 1805696 "NSUP" 1807280 NIL NSUP (NIL T) -8 NIL NIL NIL) (-775 1795531 1795588 1795697 "NSUP2" 1795836 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-774 1785528 1795305 1795438 "NSMP" 1795443 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-773 1783960 1784261 1784618 "NREP" 1785216 NIL NREP (NIL T) -7 NIL NIL NIL) (-772 1782551 1782803 1783161 "NPCOEF" 1783703 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-771 1781617 1781732 1781948 "NORMRETR" 1782432 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-770 1779658 1779948 1780357 "NORMPK" 1781325 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-769 1779343 1779371 1779495 "NORMMA" 1779624 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-768 1779170 1779300 1779329 "NONE" 1779334 T NONE (NIL) -8 NIL NIL NIL) (-767 1778959 1778988 1779057 "NONE1" 1779134 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-766 1778442 1778504 1778690 "NODE1" 1778891 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-765 1776713 1777536 1777791 "NNI" 1778138 T NNI (NIL) -8 NIL NIL 1778373) (-764 1775133 1775446 1775810 "NLINSOL" 1776381 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-763 1771401 1772369 1773268 "NIPROB" 1774254 T NIPROB (NIL) -8 NIL NIL NIL) (-762 1770158 1770392 1770694 "NFINTBAS" 1771163 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-761 1769332 1769808 1769849 "NETCLT" 1770021 NIL NETCLT (NIL T) -9 NIL 1770103 NIL) (-760 1768040 1768271 1768552 "NCODIV" 1769100 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-759 1767802 1767839 1767914 "NCNTFRAC" 1767997 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-758 1765982 1766346 1766766 "NCEP" 1767427 NIL NCEP (NIL T) -7 NIL NIL NIL) (-757 1764893 1765632 1765660 "NASRING" 1765770 T NASRING (NIL) -9 NIL 1765844 NIL) (-756 1764688 1764732 1764826 "NASRING-" 1764831 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-755 1763841 1764340 1764368 "NARNG" 1764485 T NARNG (NIL) -9 NIL 1764576 NIL) (-754 1763533 1763600 1763734 "NARNG-" 1763739 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-753 1762412 1762619 1762854 "NAGSP" 1763318 T NAGSP (NIL) -7 NIL NIL NIL) (-752 1753684 1755368 1757041 "NAGS" 1760759 T NAGS (NIL) -7 NIL NIL NIL) (-751 1752232 1752540 1752871 "NAGF07" 1753373 T NAGF07 (NIL) -7 NIL NIL NIL) (-750 1746770 1748061 1749368 "NAGF04" 1750945 T NAGF04 (NIL) -7 NIL NIL NIL) (-749 1739738 1741352 1742985 "NAGF02" 1745157 T NAGF02 (NIL) -7 NIL NIL NIL) (-748 1734962 1736062 1737179 "NAGF01" 1738641 T NAGF01 (NIL) -7 NIL NIL NIL) (-747 1728590 1730156 1731741 "NAGE04" 1733397 T NAGE04 (NIL) -7 NIL NIL NIL) (-746 1719759 1721880 1724010 "NAGE02" 1726480 T NAGE02 (NIL) -7 NIL NIL NIL) (-745 1715712 1716659 1717623 "NAGE01" 1718815 T NAGE01 (NIL) -7 NIL NIL NIL) (-744 1713507 1714041 1714599 "NAGD03" 1715174 T NAGD03 (NIL) -7 NIL NIL NIL) (-743 1705257 1707185 1709139 "NAGD02" 1711573 T NAGD02 (NIL) -7 NIL NIL NIL) (-742 1699068 1700493 1701933 "NAGD01" 1703837 T NAGD01 (NIL) -7 NIL NIL NIL) (-741 1695277 1696099 1696936 "NAGC06" 1698251 T NAGC06 (NIL) -7 NIL NIL NIL) (-740 1693742 1694074 1694430 "NAGC05" 1694941 T NAGC05 (NIL) -7 NIL NIL NIL) (-739 1693118 1693237 1693381 "NAGC02" 1693618 T NAGC02 (NIL) -7 NIL NIL NIL) (-738 1692178 1692735 1692775 "NAALG" 1692854 NIL NAALG (NIL T) -9 NIL 1692915 NIL) (-737 1692013 1692042 1692132 "NAALG-" 1692137 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-736 1685963 1687071 1688258 "MULTSQFR" 1690909 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-735 1685282 1685357 1685541 "MULTFACT" 1685875 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-734 1678375 1682245 1682298 "MTSCAT" 1683368 NIL MTSCAT (NIL T T) -9 NIL 1683882 NIL) (-733 1678087 1678141 1678233 "MTHING" 1678315 NIL MTHING (NIL T) -7 NIL NIL NIL) (-732 1677879 1677912 1677972 "MSYSCMD" 1678047 T MSYSCMD (NIL) -7 NIL NIL NIL) (-731 1673991 1676634 1676954 "MSET" 1677592 NIL MSET (NIL T) -8 NIL NIL NIL) (-730 1671086 1673552 1673593 "MSETAGG" 1673598 NIL MSETAGG (NIL T) -9 NIL 1673632 NIL) (-729 1666969 1668465 1669210 "MRING" 1670386 NIL MRING (NIL T T) -8 NIL NIL NIL) (-728 1666535 1666602 1666733 "MRF2" 1666896 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-727 1666153 1666188 1666332 "MRATFAC" 1666494 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-726 1663765 1664060 1664491 "MPRFF" 1665858 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-725 1657825 1663619 1663716 "MPOLY" 1663721 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-724 1657315 1657350 1657558 "MPCPF" 1657784 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-723 1656829 1656872 1657056 "MPC3" 1657266 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-722 1656024 1656105 1656326 "MPC2" 1656744 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-721 1654325 1654662 1655052 "MONOTOOL" 1655684 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-720 1653576 1653867 1653895 "MONOID" 1654114 T MONOID (NIL) -9 NIL 1654261 NIL) (-719 1653122 1653241 1653422 "MONOID-" 1653427 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-718 1643981 1649889 1649948 "MONOGEN" 1650622 NIL MONOGEN (NIL T T) -9 NIL 1651078 NIL) (-717 1641199 1641934 1642934 "MONOGEN-" 1643053 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-716 1640058 1640478 1640506 "MONADWU" 1640898 T MONADWU (NIL) -9 NIL 1641136 NIL) (-715 1639430 1639589 1639837 "MONADWU-" 1639842 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-714 1638815 1639033 1639061 "MONAD" 1639268 T MONAD (NIL) -9 NIL 1639380 NIL) (-713 1638500 1638578 1638710 "MONAD-" 1638715 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-712 1636816 1637413 1637692 "MOEBIUS" 1638253 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-711 1636208 1636586 1636626 "MODULE" 1636631 NIL MODULE (NIL T) -9 NIL 1636657 NIL) (-710 1635776 1635872 1636062 "MODULE-" 1636067 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-709 1633491 1634140 1634467 "MODRING" 1635600 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-708 1630477 1631596 1632117 "MODOP" 1633020 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-707 1629092 1629544 1629821 "MODMONOM" 1630340 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-706 1618899 1627383 1627797 "MODMON" 1628729 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-705 1616090 1617743 1618019 "MODFIELD" 1618774 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-704 1615094 1615371 1615561 "MMLFORM" 1615920 T MMLFORM (NIL) -8 NIL NIL NIL) (-703 1614620 1614663 1614842 "MMAP" 1615045 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-702 1612837 1613570 1613611 "MLO" 1614034 NIL MLO (NIL T) -9 NIL 1614276 NIL) (-701 1610204 1610719 1611321 "MLIFT" 1612318 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-700 1609595 1609679 1609833 "MKUCFUNC" 1610115 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-699 1609194 1609264 1609387 "MKRECORD" 1609518 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-698 1608242 1608403 1608631 "MKFUNC" 1609005 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-697 1607630 1607734 1607890 "MKFLCFN" 1608125 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-696 1607173 1607540 1607599 "MKCHSET" 1607604 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-695 1606450 1606552 1606737 "MKBCFUNC" 1607066 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-694 1603192 1606004 1606140 "MINT" 1606334 T MINT (NIL) -8 NIL NIL NIL) (-693 1602004 1602247 1602524 "MHROWRED" 1602947 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-692 1597430 1600539 1600944 "MFLOAT" 1601619 T MFLOAT (NIL) -8 NIL NIL NIL) (-691 1596787 1596863 1597034 "MFINFACT" 1597342 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-690 1593102 1593950 1594834 "MESH" 1595923 T MESH (NIL) -7 NIL NIL NIL) (-689 1591492 1591804 1592157 "MDDFACT" 1592789 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-688 1588334 1590651 1590692 "MDAGG" 1590947 NIL MDAGG (NIL T) -9 NIL 1591090 NIL) (-687 1578112 1587627 1587834 "MCMPLX" 1588147 T MCMPLX (NIL) -8 NIL NIL NIL) (-686 1577253 1577399 1577599 "MCDEN" 1577961 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-685 1575143 1575413 1575793 "MCALCFN" 1576983 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-684 1574068 1574308 1574541 "MAYBE" 1574949 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-683 1571680 1572203 1572765 "MATSTOR" 1573539 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-682 1567686 1571052 1571300 "MATRIX" 1571465 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-681 1563455 1564159 1564895 "MATLIN" 1567043 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-680 1553609 1556747 1556824 "MATCAT" 1561704 NIL MATCAT (NIL T T T) -9 NIL 1563121 NIL) (-679 1549973 1550986 1552342 "MATCAT-" 1552347 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-678 1548567 1548720 1549053 "MATCAT2" 1549808 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-677 1546679 1547003 1547387 "MAPPKG3" 1548242 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-676 1545660 1545833 1546055 "MAPPKG2" 1546503 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-675 1544159 1544443 1544770 "MAPPKG1" 1545366 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-674 1543265 1543565 1543742 "MAPPAST" 1544002 T MAPPAST (NIL) -8 NIL NIL NIL) (-673 1542876 1542934 1543057 "MAPHACK3" 1543201 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-672 1542468 1542529 1542643 "MAPHACK2" 1542808 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-671 1541906 1542009 1542151 "MAPHACK1" 1542359 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-670 1540012 1540606 1540910 "MAGMA" 1541634 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-669 1539518 1539736 1539827 "MACROAST" 1539941 T MACROAST (NIL) -8 NIL NIL NIL) (-668 1535985 1537757 1538218 "M3D" 1539090 NIL M3D (NIL T) -8 NIL NIL NIL) (-667 1530139 1534354 1534395 "LZSTAGG" 1535177 NIL LZSTAGG (NIL T) -9 NIL 1535472 NIL) (-666 1526113 1527270 1528727 "LZSTAGG-" 1528732 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-665 1523227 1524004 1524491 "LWORD" 1525658 NIL LWORD (NIL T) -8 NIL NIL NIL) (-664 1522830 1523031 1523106 "LSTAST" 1523172 T LSTAST (NIL) -8 NIL NIL NIL) (-663 1516031 1522601 1522735 "LSQM" 1522740 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-662 1515255 1515394 1515622 "LSPP" 1515886 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-661 1513067 1513368 1513824 "LSMP" 1514944 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-660 1509846 1510520 1511250 "LSMP1" 1512369 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-659 1503771 1509013 1509054 "LSAGG" 1509116 NIL LSAGG (NIL T) -9 NIL 1509194 NIL) (-658 1500466 1501390 1502603 "LSAGG-" 1502608 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-657 1498092 1499610 1499859 "LPOLY" 1500261 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-656 1497674 1497759 1497882 "LPEFRAC" 1498001 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-655 1496021 1496768 1497021 "LO" 1497506 NIL LO (NIL T T T) -8 NIL NIL NIL) (-654 1495673 1495785 1495813 "LOGIC" 1495924 T LOGIC (NIL) -9 NIL 1496005 NIL) (-653 1495535 1495558 1495629 "LOGIC-" 1495634 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-652 1494728 1494868 1495061 "LODOOPS" 1495391 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-651 1492186 1494644 1494710 "LODO" 1494715 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-650 1490724 1490959 1491312 "LODOF" 1491933 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-649 1487080 1489477 1489518 "LODOCAT" 1489956 NIL LODOCAT (NIL T) -9 NIL 1490167 NIL) (-648 1486813 1486871 1486998 "LODOCAT-" 1487003 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-647 1484168 1486654 1486772 "LODO2" 1486777 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-646 1481638 1484105 1484150 "LODO1" 1484155 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-645 1480498 1480663 1480975 "LODEEF" 1481461 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-644 1475784 1478628 1478669 "LNAGG" 1479616 NIL LNAGG (NIL T) -9 NIL 1480060 NIL) (-643 1474931 1475145 1475487 "LNAGG-" 1475492 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-642 1471094 1471856 1472495 "LMOPS" 1474346 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-641 1470489 1470851 1470892 "LMODULE" 1470953 NIL LMODULE (NIL T) -9 NIL 1470995 NIL) (-640 1467735 1470134 1470257 "LMDICT" 1470399 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-639 1467461 1467643 1467703 "LITERAL" 1467708 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-638 1460688 1466407 1466705 "LIST" 1467196 NIL LIST (NIL T) -8 NIL NIL NIL) (-637 1460213 1460287 1460426 "LIST3" 1460608 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-636 1459220 1459398 1459626 "LIST2" 1460031 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-635 1457354 1457666 1458065 "LIST2MAP" 1458867 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-634 1456084 1456720 1456761 "LINEXP" 1457016 NIL LINEXP (NIL T) -9 NIL 1457165 NIL) (-633 1454731 1454991 1455288 "LINDEP" 1455836 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-632 1451498 1452217 1452994 "LIMITRF" 1453986 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-631 1449774 1450069 1450485 "LIMITPS" 1451193 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-630 1444229 1449285 1449513 "LIE" 1449595 NIL LIE (NIL T T) -8 NIL NIL NIL) (-629 1443278 1443721 1443761 "LIECAT" 1443901 NIL LIECAT (NIL T) -9 NIL 1444052 NIL) (-628 1443119 1443146 1443234 "LIECAT-" 1443239 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-627 1435731 1442568 1442733 "LIB" 1442974 T LIB (NIL) -8 NIL NIL NIL) (-626 1431368 1432249 1433184 "LGROBP" 1434848 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-625 1429234 1429508 1429870 "LF" 1431089 NIL LF (NIL T T) -7 NIL NIL NIL) (-624 1428074 1428766 1428794 "LFCAT" 1429001 T LFCAT (NIL) -9 NIL 1429140 NIL) (-623 1424978 1425606 1426294 "LEXTRIPK" 1427438 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-622 1421749 1422548 1423051 "LEXP" 1424558 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-621 1421252 1421470 1421562 "LETAST" 1421677 T LETAST (NIL) -8 NIL NIL NIL) (-620 1419650 1419963 1420364 "LEADCDET" 1420934 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-619 1418840 1418914 1419143 "LAZM3PK" 1419571 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-618 1413795 1416917 1417455 "LAUPOL" 1418352 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-617 1413360 1413404 1413572 "LAPLACE" 1413745 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-616 1411334 1412461 1412712 "LA" 1413193 NIL LA (NIL T T T) -8 NIL NIL NIL) (-615 1410415 1410965 1411006 "LALG" 1411068 NIL LALG (NIL T) -9 NIL 1411127 NIL) (-614 1410129 1410188 1410324 "LALG-" 1410329 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-613 1409964 1409988 1410029 "KVTFROM" 1410091 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-612 1408767 1409181 1409410 "KTVLOGIC" 1409755 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-611 1408602 1408626 1408667 "KRCFROM" 1408729 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-610 1407506 1407693 1407992 "KOVACIC" 1408402 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-609 1407341 1407365 1407406 "KONVERT" 1407468 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-608 1407176 1407200 1407241 "KOERCE" 1407303 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-607 1404910 1405670 1406063 "KERNEL" 1406815 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-606 1404412 1404493 1404623 "KERNEL2" 1404824 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-605 1398263 1402951 1403005 "KDAGG" 1403382 NIL KDAGG (NIL T T) -9 NIL 1403588 NIL) (-604 1397792 1397916 1398121 "KDAGG-" 1398126 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1390967 1397453 1397608 "KAFILE" 1397670 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-602 1385422 1390478 1390706 "JORDAN" 1390788 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-601 1384828 1385071 1385192 "JOINAST" 1385321 T JOINAST (NIL) -8 NIL NIL NIL) (-600 1384674 1384733 1384788 "JAVACODE" 1384793 T JAVACODE (NIL) -8 NIL NIL NIL) (-599 1380973 1382879 1382933 "IXAGG" 1383862 NIL IXAGG (NIL T T) -9 NIL 1384321 NIL) (-598 1379892 1380198 1380617 "IXAGG-" 1380622 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-597 1375472 1379814 1379873 "IVECTOR" 1379878 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-596 1374238 1374475 1374741 "ITUPLE" 1375239 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-595 1372674 1372851 1373157 "ITRIGMNP" 1374060 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-594 1371419 1371623 1371906 "ITFUN3" 1372450 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-593 1371051 1371108 1371217 "ITFUN2" 1371356 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-592 1368888 1369913 1370212 "ITAYLOR" 1370785 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-591 1357871 1363025 1364188 "ISUPS" 1367758 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-590 1356975 1357115 1357351 "ISUMP" 1357718 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-589 1352239 1356776 1356855 "ISTRING" 1356928 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-588 1351742 1351960 1352052 "ISAST" 1352167 T ISAST (NIL) -8 NIL NIL NIL) (-587 1350952 1351033 1351249 "IRURPK" 1351656 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-586 1349888 1350089 1350329 "IRSN" 1350732 T IRSN (NIL) -7 NIL NIL NIL) (-585 1347917 1348272 1348708 "IRRF2F" 1349526 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-584 1347664 1347702 1347778 "IRREDFFX" 1347873 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-583 1346279 1346538 1346837 "IROOT" 1347397 NIL IROOT (NIL T) -7 NIL NIL NIL) (-582 1342911 1343963 1344655 "IR" 1345619 NIL IR (NIL T) -8 NIL NIL NIL) (-581 1340524 1341019 1341585 "IR2" 1342389 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-580 1339596 1339709 1339930 "IR2F" 1340407 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-579 1339387 1339421 1339481 "IPRNTPK" 1339556 T IPRNTPK (NIL) -7 NIL NIL NIL) (-578 1336006 1339276 1339345 "IPF" 1339350 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-577 1334369 1335931 1335988 "IPADIC" 1335993 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-576 1333709 1333929 1334059 "IP4ADDR" 1334259 T IP4ADDR (NIL) -8 NIL NIL NIL) (-575 1333209 1333413 1333523 "IOMODE" 1333619 T IOMODE (NIL) -8 NIL NIL NIL) (-574 1332282 1332806 1332933 "IOBFILE" 1333102 T IOBFILE (NIL) -8 NIL NIL NIL) (-573 1331770 1332186 1332214 "IOBCON" 1332219 T IOBCON (NIL) -9 NIL 1332240 NIL) (-572 1331267 1331325 1331515 "INVLAPLA" 1331706 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-571 1320916 1323269 1325655 "INTTR" 1328931 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-570 1317260 1318002 1318866 "INTTOOLS" 1320101 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-569 1316846 1316937 1317054 "INTSLPE" 1317163 T INTSLPE (NIL) -7 NIL NIL NIL) (-568 1314841 1316769 1316828 "INTRVL" 1316833 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-567 1312443 1312955 1313530 "INTRF" 1314326 NIL INTRF (NIL T) -7 NIL NIL NIL) (-566 1311854 1311951 1312093 "INTRET" 1312341 NIL INTRET (NIL T) -7 NIL NIL NIL) (-565 1309851 1310240 1310710 "INTRAT" 1311462 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-564 1307079 1307662 1308288 "INTPM" 1309336 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-563 1303782 1304381 1305126 "INTPAF" 1306465 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-562 1298961 1299923 1300974 "INTPACK" 1302751 T INTPACK (NIL) -7 NIL NIL NIL) (-561 1295873 1298690 1298817 "INT" 1298854 T INT (NIL) -8 NIL NIL NIL) (-560 1295125 1295277 1295485 "INTHERTR" 1295715 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-559 1294564 1294644 1294832 "INTHERAL" 1295039 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-558 1292410 1292853 1293310 "INTHEORY" 1294127 T INTHEORY (NIL) -7 NIL NIL NIL) (-557 1283718 1285339 1287118 "INTG0" 1290762 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-556 1264291 1269081 1273891 "INTFTBL" 1278928 T INTFTBL (NIL) -8 NIL NIL NIL) (-555 1263540 1263678 1263851 "INTFACT" 1264150 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-554 1260925 1261371 1261935 "INTEF" 1263094 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-553 1259392 1260097 1260125 "INTDOM" 1260426 T INTDOM (NIL) -9 NIL 1260633 NIL) (-552 1258761 1258935 1259177 "INTDOM-" 1259182 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-551 1255256 1257145 1257199 "INTCAT" 1257998 NIL INTCAT (NIL T) -9 NIL 1258318 NIL) (-550 1254729 1254831 1254959 "INTBIT" 1255148 T INTBIT (NIL) -7 NIL NIL NIL) (-549 1253400 1253554 1253868 "INTALG" 1254574 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-548 1252857 1252947 1253117 "INTAF" 1253304 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-547 1246311 1252667 1252807 "INTABL" 1252812 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-546 1245771 1246184 1246212 "INT8" 1246217 T INT8 (NIL) -8 NIL NIL 1246225) (-545 1245230 1245643 1245671 "INT32" 1245676 T INT32 (NIL) -8 NIL NIL 1245684) (-544 1244689 1245102 1245130 "INT16" 1245135 T INT16 (NIL) -8 NIL NIL 1245143) (-543 1239704 1242378 1242406 "INS" 1243340 T INS (NIL) -9 NIL 1244005 NIL) (-542 1236944 1237715 1238689 "INS-" 1238762 NIL INS- (NIL T) -8 NIL NIL NIL) (-541 1235719 1235946 1236244 "INPSIGN" 1236697 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-540 1234837 1234954 1235151 "INPRODPF" 1235599 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-539 1233731 1233848 1234085 "INPRODFF" 1234717 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-538 1232731 1232883 1233143 "INNMFACT" 1233567 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-537 1231928 1232025 1232213 "INMODGCD" 1232630 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-536 1230437 1230681 1231005 "INFSP" 1231673 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-535 1229621 1229738 1229921 "INFPROD0" 1230317 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-534 1226503 1227686 1228201 "INFORM" 1229114 T INFORM (NIL) -8 NIL NIL NIL) (-533 1226113 1226173 1226271 "INFORM1" 1226438 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-532 1225636 1225725 1225839 "INFINITY" 1226019 T INFINITY (NIL) -7 NIL NIL NIL) (-531 1224812 1225356 1225457 "INETCLTS" 1225555 T INETCLTS (NIL) -8 NIL NIL NIL) (-530 1223429 1223678 1223999 "INEP" 1224560 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-529 1222705 1223326 1223391 "INDE" 1223396 NIL INDE (NIL T) -8 NIL NIL NIL) (-528 1222269 1222337 1222454 "INCRMAPS" 1222632 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-527 1221087 1221538 1221744 "INBFILE" 1222083 T INBFILE (NIL) -8 NIL NIL NIL) (-526 1216398 1217323 1218267 "INBFF" 1220175 NIL INBFF (NIL T) -7 NIL NIL NIL) (-525 1215306 1215575 1215603 "INBCON" 1216116 T INBCON (NIL) -9 NIL 1216382 NIL) (-524 1214558 1214781 1215057 "INBCON-" 1215062 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-523 1214060 1214279 1214371 "INAST" 1214486 T INAST (NIL) -8 NIL NIL NIL) (-522 1213514 1213739 1213845 "IMPTAST" 1213974 T IMPTAST (NIL) -8 NIL NIL NIL) (-521 1210008 1213358 1213462 "IMATRIX" 1213467 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-520 1208720 1208843 1209158 "IMATQF" 1209864 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-519 1206940 1207167 1207504 "IMATLIN" 1208476 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-518 1201566 1206864 1206922 "ILIST" 1206927 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-517 1199519 1201426 1201539 "IIARRAY2" 1201544 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-516 1194952 1199430 1199494 "IFF" 1199499 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-515 1194326 1194569 1194685 "IFAST" 1194856 T IFAST (NIL) -8 NIL NIL NIL) (-514 1189369 1193618 1193806 "IFARRAY" 1194183 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-513 1188576 1189273 1189346 "IFAMON" 1189351 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-512 1188160 1188225 1188279 "IEVALAB" 1188486 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-511 1187835 1187903 1188063 "IEVALAB-" 1188068 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-510 1187493 1187749 1187812 "IDPO" 1187817 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-509 1186770 1187382 1187457 "IDPOAMS" 1187462 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-508 1186104 1186659 1186734 "IDPOAM" 1186739 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-507 1185189 1185439 1185492 "IDPC" 1185905 NIL IDPC (NIL T T) -9 NIL 1186054 NIL) (-506 1184685 1185081 1185154 "IDPAM" 1185159 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-505 1184088 1184577 1184650 "IDPAG" 1184655 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-504 1183856 1184003 1184053 "IDENT" 1184058 T IDENT (NIL) -8 NIL NIL NIL) (-503 1180111 1180959 1181854 "IDECOMP" 1183013 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-502 1172985 1174034 1175081 "IDEAL" 1179147 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-501 1172149 1172261 1172460 "ICDEN" 1172869 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-500 1171248 1171629 1171776 "ICARD" 1172022 T ICARD (NIL) -8 NIL NIL NIL) (-499 1169308 1169621 1170026 "IBPTOOLS" 1170925 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-498 1164942 1168928 1169041 "IBITS" 1169227 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-497 1161665 1162241 1162936 "IBATOOL" 1164359 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-496 1159445 1159906 1160439 "IBACHIN" 1161200 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-495 1157322 1159291 1159394 "IARRAY2" 1159399 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-494 1153475 1157248 1157305 "IARRAY1" 1157310 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-493 1147469 1151887 1152368 "IAN" 1153014 T IAN (NIL) -8 NIL NIL NIL) (-492 1146980 1147037 1147210 "IALGFACT" 1147406 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-491 1146508 1146621 1146649 "HYPCAT" 1146856 T HYPCAT (NIL) -9 NIL NIL NIL) (-490 1146046 1146163 1146349 "HYPCAT-" 1146354 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-489 1145668 1145841 1145924 "HOSTNAME" 1145983 T HOSTNAME (NIL) -8 NIL NIL NIL) (-488 1145513 1145550 1145591 "HOMOTOP" 1145596 NIL HOMOTOP (NIL T) -9 NIL 1145629 NIL) (-487 1142192 1143523 1143564 "HOAGG" 1144545 NIL HOAGG (NIL T) -9 NIL 1145224 NIL) (-486 1140786 1141185 1141711 "HOAGG-" 1141716 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-485 1134828 1140383 1140531 "HEXADEC" 1140658 T HEXADEC (NIL) -8 NIL NIL NIL) (-484 1133576 1133798 1134061 "HEUGCD" 1134605 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-483 1132679 1133413 1133543 "HELLFDIV" 1133548 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-482 1130907 1132456 1132544 "HEAP" 1132623 NIL HEAP (NIL T) -8 NIL NIL NIL) (-481 1130198 1130459 1130593 "HEADAST" 1130793 T HEADAST (NIL) -8 NIL NIL NIL) (-480 1124118 1130113 1130175 "HDP" 1130180 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-479 1117869 1123753 1123905 "HDMP" 1124019 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-478 1117194 1117333 1117497 "HB" 1117725 T HB (NIL) -7 NIL NIL NIL) (-477 1110691 1117040 1117144 "HASHTBL" 1117149 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-476 1110194 1110412 1110504 "HASAST" 1110619 T HASAST (NIL) -8 NIL NIL NIL) (-475 1108006 1109816 1109998 "HACKPI" 1110032 T HACKPI (NIL) -8 NIL NIL NIL) (-474 1103701 1107859 1107972 "GTSET" 1107977 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-473 1097227 1103579 1103677 "GSTBL" 1103682 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-472 1089540 1096258 1096523 "GSERIES" 1097018 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-471 1088707 1089098 1089126 "GROUP" 1089329 T GROUP (NIL) -9 NIL 1089463 NIL) (-470 1088073 1088232 1088483 "GROUP-" 1088488 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-469 1086442 1086761 1087148 "GROEBSOL" 1087750 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-468 1085382 1085644 1085695 "GRMOD" 1086224 NIL GRMOD (NIL T T) -9 NIL 1086392 NIL) (-467 1085150 1085186 1085314 "GRMOD-" 1085319 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-466 1080476 1081504 1082504 "GRIMAGE" 1084170 T GRIMAGE (NIL) -8 NIL NIL NIL) (-465 1078943 1079203 1079527 "GRDEF" 1080172 T GRDEF (NIL) -7 NIL NIL NIL) (-464 1078387 1078503 1078644 "GRAY" 1078822 T GRAY (NIL) -7 NIL NIL NIL) (-463 1077600 1077980 1078031 "GRALG" 1078184 NIL GRALG (NIL T T) -9 NIL 1078277 NIL) (-462 1077261 1077334 1077497 "GRALG-" 1077502 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-461 1074065 1076846 1077024 "GPOLSET" 1077168 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-460 1073419 1073476 1073734 "GOSPER" 1074002 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-459 1069178 1069857 1070383 "GMODPOL" 1073118 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-458 1068183 1068367 1068605 "GHENSEL" 1068990 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-457 1062234 1063077 1064104 "GENUPS" 1067267 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-456 1061931 1061982 1062071 "GENUFACT" 1062177 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-455 1061343 1061420 1061585 "GENPGCD" 1061849 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-454 1060817 1060852 1061065 "GENMFACT" 1061302 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-453 1059385 1059640 1059947 "GENEEZ" 1060560 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-452 1053298 1058996 1059158 "GDMP" 1059308 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-451 1042675 1047069 1048175 "GCNAALG" 1052281 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-450 1041102 1041930 1041958 "GCDDOM" 1042213 T GCDDOM (NIL) -9 NIL 1042370 NIL) (-449 1040572 1040699 1040914 "GCDDOM-" 1040919 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-448 1039244 1039429 1039733 "GB" 1040351 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-447 1027864 1030190 1032582 "GBINTERN" 1036935 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-446 1025701 1025993 1026414 "GBF" 1027539 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-445 1024482 1024647 1024914 "GBEUCLID" 1025517 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-444 1023831 1023956 1024105 "GAUSSFAC" 1024353 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-443 1022198 1022500 1022814 "GALUTIL" 1023550 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-442 1020506 1020780 1021104 "GALPOLYU" 1021925 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-441 1017871 1018161 1018568 "GALFACTU" 1020203 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-440 1009677 1011176 1012784 "GALFACT" 1016303 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-439 1007065 1007723 1007751 "FVFUN" 1008907 T FVFUN (NIL) -9 NIL 1009627 NIL) (-438 1006331 1006513 1006541 "FVC" 1006832 T FVC (NIL) -9 NIL 1007015 NIL) (-437 1005973 1006128 1006209 "FUNCTION" 1006283 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-436 1003744 1004295 1004761 "FT" 1005527 T FT (NIL) -8 NIL NIL NIL) (-435 1002562 1003045 1003248 "FTEM" 1003561 T FTEM (NIL) -8 NIL NIL NIL) (-434 1000818 1001107 1001511 "FSUPFACT" 1002253 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-433 999215 999504 999836 "FST" 1000506 T FST (NIL) -8 NIL NIL NIL) (-432 998386 998492 998687 "FSRED" 999097 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-431 997065 997320 997674 "FSPRMELT" 998101 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-430 994150 994588 995087 "FSPECF" 996628 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-429 976210 984653 984693 "FS" 988541 NIL FS (NIL T) -9 NIL 990830 NIL) (-428 964860 967850 971906 "FS-" 972203 NIL FS- (NIL T T) -8 NIL NIL NIL) (-427 964374 964428 964605 "FSINT" 964801 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-426 962701 963367 963670 "FSERIES" 964153 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-425 961715 961831 962062 "FSCINT" 962581 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-424 957949 960659 960700 "FSAGG" 961070 NIL FSAGG (NIL T) -9 NIL 961329 NIL) (-423 955711 956312 957108 "FSAGG-" 957203 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-422 954753 954896 955123 "FSAGG2" 955564 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-421 952408 952687 953241 "FS2UPS" 954471 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-420 951990 952033 952188 "FS2" 952359 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-419 950847 951018 951327 "FS2EXPXP" 951815 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-418 950273 950388 950540 "FRUTIL" 950727 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-417 941728 945768 947126 "FR" 948947 NIL FR (NIL T) -8 NIL NIL NIL) (-416 936803 939446 939486 "FRNAALG" 940882 NIL FRNAALG (NIL T) -9 NIL 941489 NIL) (-415 932481 933552 934827 "FRNAALG-" 935577 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-414 932119 932162 932289 "FRNAAF2" 932432 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-413 930526 930973 931268 "FRMOD" 931931 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-412 928305 928909 929226 "FRIDEAL" 930317 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-411 927500 927587 927876 "FRIDEAL2" 928212 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-410 926633 927047 927088 "FRETRCT" 927093 NIL FRETRCT (NIL T) -9 NIL 927269 NIL) (-409 925745 925976 926327 "FRETRCT-" 926332 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-408 922957 924133 924192 "FRAMALG" 925074 NIL FRAMALG (NIL T T) -9 NIL 925366 NIL) (-407 921091 921546 922176 "FRAMALG-" 922399 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-406 915049 920566 920842 "FRAC" 920847 NIL FRAC (NIL T) -8 NIL NIL NIL) (-405 914685 914742 914849 "FRAC2" 914986 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-404 914321 914378 914485 "FR2" 914622 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-403 908994 911846 911874 "FPS" 912993 T FPS (NIL) -9 NIL 913550 NIL) (-402 908443 908552 908716 "FPS-" 908862 NIL FPS- (NIL T) -8 NIL NIL NIL) (-401 905897 907532 907560 "FPC" 907785 T FPC (NIL) -9 NIL 907927 NIL) (-400 905690 905730 905827 "FPC-" 905832 NIL FPC- (NIL T) -8 NIL NIL NIL) (-399 904568 905178 905219 "FPATMAB" 905224 NIL FPATMAB (NIL T) -9 NIL 905376 NIL) (-398 902268 902744 903170 "FPARFRAC" 904205 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-397 897662 898160 898842 "FORTRAN" 901700 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-396 895378 895878 896417 "FORT" 897143 T FORT (NIL) -7 NIL NIL NIL) (-395 893054 893616 893644 "FORTFN" 894704 T FORTFN (NIL) -9 NIL 895328 NIL) (-394 892818 892868 892896 "FORTCAT" 892955 T FORTCAT (NIL) -9 NIL 893017 NIL) (-393 890951 891434 891824 "FORMULA" 892448 T FORMULA (NIL) -8 NIL NIL NIL) (-392 890739 890769 890838 "FORMULA1" 890915 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-391 890262 890314 890487 "FORDER" 890681 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-390 889358 889522 889715 "FOP" 890089 T FOP (NIL) -7 NIL NIL NIL) (-389 887966 888638 888812 "FNLA" 889240 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-388 886721 887110 887138 "FNCAT" 887598 T FNCAT (NIL) -9 NIL 887858 NIL) (-387 886287 886680 886708 "FNAME" 886713 T FNAME (NIL) -8 NIL NIL NIL) (-386 884950 885879 885907 "FMTC" 885912 T FMTC (NIL) -9 NIL 885948 NIL) (-385 881312 882473 883102 "FMONOID" 884354 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-384 880531 881054 881203 "FM" 881208 NIL FM (NIL T T) -8 NIL NIL NIL) (-383 877955 878601 878629 "FMFUN" 879773 T FMFUN (NIL) -9 NIL 880481 NIL) (-382 877224 877405 877433 "FMC" 877723 T FMC (NIL) -9 NIL 877905 NIL) (-381 874418 875252 875306 "FMCAT" 876501 NIL FMCAT (NIL T T) -9 NIL 876996 NIL) (-380 873311 874184 874284 "FM1" 874363 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-379 871085 871501 871995 "FLOATRP" 872862 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-378 864709 868814 869435 "FLOAT" 870484 T FLOAT (NIL) -8 NIL NIL NIL) (-377 862147 862647 863225 "FLOATCP" 864176 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-376 860956 861760 861801 "FLINEXP" 861806 NIL FLINEXP (NIL T) -9 NIL 861899 NIL) (-375 860110 860345 860673 "FLINEXP-" 860678 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-374 859186 859330 859554 "FLASORT" 859962 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-373 856403 857245 857297 "FLALG" 858524 NIL FLALG (NIL T T) -9 NIL 858991 NIL) (-372 850187 853889 853930 "FLAGG" 855192 NIL FLAGG (NIL T) -9 NIL 855844 NIL) (-371 848913 849252 849742 "FLAGG-" 849747 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-370 847955 848098 848325 "FLAGG2" 848766 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 844930 845904 845963 "FINRALG" 847091 NIL FINRALG (NIL T T) -9 NIL 847599 NIL) (-368 844090 844319 844658 "FINRALG-" 844663 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-367 843496 843709 843737 "FINITE" 843933 T FINITE (NIL) -9 NIL 844040 NIL) (-366 835954 838115 838155 "FINAALG" 841822 NIL FINAALG (NIL T) -9 NIL 843275 NIL) (-365 831295 832336 833480 "FINAALG-" 834859 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-364 830690 831050 831153 "FILE" 831225 NIL FILE (NIL T) -8 NIL NIL NIL) (-363 829374 829686 829740 "FILECAT" 830424 NIL FILECAT (NIL T T) -9 NIL 830640 NIL) (-362 827242 828736 828764 "FIELD" 828804 T FIELD (NIL) -9 NIL 828884 NIL) (-361 825862 826247 826758 "FIELD-" 826763 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-360 823740 824497 824844 "FGROUP" 825548 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-359 822830 822994 823214 "FGLMICPK" 823572 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-358 818697 822755 822812 "FFX" 822817 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-357 818298 818359 818494 "FFSLPE" 818630 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-356 814291 815070 815866 "FFPOLY" 817534 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-355 813795 813831 814040 "FFPOLY2" 814249 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-354 809681 813714 813777 "FFP" 813782 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-353 805114 809592 809656 "FF" 809661 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 800275 804457 804647 "FFNBX" 804968 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-351 795249 799410 799668 "FFNBP" 800129 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-350 789917 794533 794744 "FFNB" 795082 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-349 788749 788947 789262 "FFINTBAS" 789714 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-348 784977 787156 787184 "FFIELDC" 787804 T FFIELDC (NIL) -9 NIL 788180 NIL) (-347 783640 784010 784507 "FFIELDC-" 784512 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-346 783210 783255 783379 "FFHOM" 783582 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-345 780908 781392 781909 "FFF" 782725 NIL FFF (NIL T) -7 NIL NIL NIL) (-344 776561 780650 780751 "FFCGX" 780851 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-343 772228 776293 776400 "FFCGP" 776504 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-342 767446 771955 772063 "FFCG" 772164 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-341 749279 758317 758403 "FFCAT" 763568 NIL FFCAT (NIL T T T) -9 NIL 765019 NIL) (-340 744477 745524 746838 "FFCAT-" 748068 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-339 743888 743931 744166 "FFCAT2" 744428 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-338 733100 736860 738080 "FEXPR" 742740 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-337 732100 732535 732576 "FEVALAB" 732660 NIL FEVALAB (NIL T) -9 NIL 732921 NIL) (-336 731259 731469 731807 "FEVALAB-" 731812 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-335 729852 730642 730845 "FDIV" 731158 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-334 726918 727633 727748 "FDIVCAT" 729316 NIL FDIVCAT (NIL T T T T) -9 NIL 729753 NIL) (-333 726680 726707 726877 "FDIVCAT-" 726882 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-332 725900 725987 726264 "FDIV2" 726587 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-331 724586 724845 725134 "FCPAK1" 725631 T FCPAK1 (NIL) -7 NIL NIL NIL) (-330 723714 724086 724227 "FCOMP" 724477 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-329 707451 710864 714402 "FC" 720196 T FC (NIL) -8 NIL NIL NIL) (-328 700030 704015 704055 "FAXF" 705857 NIL FAXF (NIL T) -9 NIL 706549 NIL) (-327 697309 697964 698789 "FAXF-" 699254 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-326 692409 696685 696861 "FARRAY" 697166 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-325 687662 689694 689747 "FAMR" 690770 NIL FAMR (NIL T T) -9 NIL 691230 NIL) (-324 686552 686854 687289 "FAMR-" 687294 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-323 685748 686474 686527 "FAMONOID" 686532 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-322 683560 684244 684297 "FAMONC" 685238 NIL FAMONC (NIL T T) -9 NIL 685624 NIL) (-321 682252 683314 683451 "FAGROUP" 683456 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-320 680047 680366 680769 "FACUTIL" 681933 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-319 679146 679331 679553 "FACTFUNC" 679857 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-318 671551 678397 678609 "EXPUPXS" 679002 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-317 669034 669574 670160 "EXPRTUBE" 670985 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-316 665228 665820 666557 "EXPRODE" 668373 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-315 650602 663883 664311 "EXPR" 664832 NIL EXPR (NIL T) -8 NIL NIL NIL) (-314 645009 645596 646409 "EXPR2UPS" 649900 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-313 644645 644702 644809 "EXPR2" 644946 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-312 636050 643777 644074 "EXPEXPAN" 644482 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-311 635877 636007 636036 "EXIT" 636041 T EXIT (NIL) -8 NIL NIL NIL) (-310 635384 635601 635692 "EXITAST" 635806 T EXITAST (NIL) -8 NIL NIL NIL) (-309 635011 635073 635186 "EVALCYC" 635316 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-308 634552 634670 634711 "EVALAB" 634881 NIL EVALAB (NIL T) -9 NIL 634985 NIL) (-307 634033 634155 634376 "EVALAB-" 634381 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-306 631501 632769 632797 "EUCDOM" 633352 T EUCDOM (NIL) -9 NIL 633702 NIL) (-305 629906 630348 630938 "EUCDOM-" 630943 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-304 617446 620204 622954 "ESTOOLS" 627176 T ESTOOLS (NIL) -7 NIL NIL NIL) (-303 617078 617135 617244 "ESTOOLS2" 617383 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-302 616829 616871 616951 "ESTOOLS1" 617030 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-301 610734 612462 612490 "ES" 615258 T ES (NIL) -9 NIL 616667 NIL) (-300 605682 606968 608785 "ES-" 608949 NIL ES- (NIL T) -8 NIL NIL NIL) (-299 602057 602817 603597 "ESCONT" 604922 T ESCONT (NIL) -7 NIL NIL NIL) (-298 601802 601834 601916 "ESCONT1" 602019 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-297 601477 601527 601627 "ES2" 601746 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-296 601107 601165 601274 "ES1" 601413 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-295 600323 600452 600628 "ERROR" 600951 T ERROR (NIL) -7 NIL NIL NIL) (-294 593826 600182 600273 "EQTBL" 600278 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-293 586383 589140 590589 "EQ" 592410 NIL -3367 (NIL T) -8 NIL NIL NIL) (-292 586015 586072 586181 "EQ2" 586320 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-291 581307 582353 583446 "EP" 584954 NIL EP (NIL T) -7 NIL NIL NIL) (-290 579889 580190 580507 "ENV" 581010 T ENV (NIL) -8 NIL NIL NIL) (-289 579068 579588 579616 "ENTIRER" 579621 T ENTIRER (NIL) -9 NIL 579667 NIL) (-288 575570 577023 577393 "EMR" 578867 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-287 574714 574899 574953 "ELTAGG" 575333 NIL ELTAGG (NIL T T) -9 NIL 575544 NIL) (-286 574433 574495 574636 "ELTAGG-" 574641 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-285 574222 574251 574305 "ELTAB" 574389 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-284 573348 573494 573693 "ELFUTS" 574073 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-283 573090 573146 573174 "ELEMFUN" 573279 T ELEMFUN (NIL) -9 NIL NIL NIL) (-282 572960 572981 573049 "ELEMFUN-" 573054 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-281 567851 571060 571101 "ELAGG" 572041 NIL ELAGG (NIL T) -9 NIL 572504 NIL) (-280 566136 566570 567233 "ELAGG-" 567238 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-279 564793 565073 565368 "ELABEXPR" 565861 T ELABEXPR (NIL) -8 NIL NIL NIL) (-278 557659 559460 560287 "EFUPXS" 564069 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-277 551109 552910 553720 "EFULS" 556935 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-276 548531 548889 549368 "EFSTRUC" 550741 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-275 537603 539168 540728 "EF" 547046 NIL EF (NIL T T) -7 NIL NIL NIL) (-274 536704 537088 537237 "EAB" 537474 T EAB (NIL) -8 NIL NIL NIL) (-273 535913 536663 536691 "E04UCFA" 536696 T E04UCFA (NIL) -8 NIL NIL NIL) (-272 535122 535872 535900 "E04NAFA" 535905 T E04NAFA (NIL) -8 NIL NIL NIL) (-271 534331 535081 535109 "E04MBFA" 535114 T E04MBFA (NIL) -8 NIL NIL NIL) (-270 533540 534290 534318 "E04JAFA" 534323 T E04JAFA (NIL) -8 NIL NIL NIL) (-269 532751 533499 533527 "E04GCFA" 533532 T E04GCFA (NIL) -8 NIL NIL NIL) (-268 531962 532710 532738 "E04FDFA" 532743 T E04FDFA (NIL) -8 NIL NIL NIL) (-267 531171 531921 531949 "E04DGFA" 531954 T E04DGFA (NIL) -8 NIL NIL NIL) (-266 525349 526696 528060 "E04AGNT" 529827 T E04AGNT (NIL) -7 NIL NIL NIL) (-265 524055 524535 524575 "DVARCAT" 525050 NIL DVARCAT (NIL T) -9 NIL 525249 NIL) (-264 523259 523471 523785 "DVARCAT-" 523790 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-263 516159 523058 523187 "DSMP" 523192 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-262 510969 512104 513172 "DROPT" 515111 T DROPT (NIL) -8 NIL NIL NIL) (-261 510634 510693 510791 "DROPT1" 510904 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-260 505749 506875 508012 "DROPT0" 509517 T DROPT0 (NIL) -7 NIL NIL NIL) (-259 504094 504419 504805 "DRAWPT" 505383 T DRAWPT (NIL) -7 NIL NIL NIL) (-258 498681 499604 500683 "DRAW" 503068 NIL DRAW (NIL T) -7 NIL NIL NIL) (-257 498314 498367 498485 "DRAWHACK" 498622 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-256 497045 497314 497605 "DRAWCX" 498043 T DRAWCX (NIL) -7 NIL NIL NIL) (-255 496561 496629 496780 "DRAWCURV" 496971 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-254 487032 488991 491106 "DRAWCFUN" 494466 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-253 483845 485727 485768 "DQAGG" 486397 NIL DQAGG (NIL T) -9 NIL 486670 NIL) (-252 472124 478823 478906 "DPOLCAT" 480758 NIL DPOLCAT (NIL T T T T) -9 NIL 481303 NIL) (-251 466963 468309 470267 "DPOLCAT-" 470272 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-250 460118 466824 466922 "DPMO" 466927 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-249 453176 459898 460065 "DPMM" 460070 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-248 452840 453095 453143 "DOMCTOR" 453148 T DOMCTOR (NIL) -8 NIL NIL NIL) (-247 452135 452362 452499 "DOMAIN" 452723 T DOMAIN (NIL) -8 NIL NIL NIL) (-246 445886 451770 451922 "DMP" 452036 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-245 445486 445542 445686 "DLP" 445824 NIL DLP (NIL T) -7 NIL NIL NIL) (-244 439356 444813 445003 "DLIST" 445328 NIL DLIST (NIL T) -8 NIL NIL NIL) (-243 436200 438209 438250 "DLAGG" 438800 NIL DLAGG (NIL T) -9 NIL 439030 NIL) (-242 435013 435643 435671 "DIVRING" 435763 T DIVRING (NIL) -9 NIL 435846 NIL) (-241 434250 434440 434740 "DIVRING-" 434745 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-240 432352 432709 433115 "DISPLAY" 433864 T DISPLAY (NIL) -7 NIL NIL NIL) (-239 426294 432266 432329 "DIRPROD" 432334 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 425142 425345 425610 "DIRPROD2" 426087 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-237 414405 420357 420410 "DIRPCAT" 420820 NIL DIRPCAT (NIL NIL T) -9 NIL 421660 NIL) (-236 411731 412373 413254 "DIRPCAT-" 413591 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-235 411018 411178 411364 "DIOSP" 411565 T DIOSP (NIL) -7 NIL NIL NIL) (-234 407720 409930 409971 "DIOPS" 410405 NIL DIOPS (NIL T) -9 NIL 410634 NIL) (-233 407269 407383 407574 "DIOPS-" 407579 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-232 406161 406755 406783 "DIFRING" 406970 T DIFRING (NIL) -9 NIL 407080 NIL) (-231 405807 405884 406036 "DIFRING-" 406041 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-230 403612 404850 404891 "DIFEXT" 405254 NIL DIFEXT (NIL T) -9 NIL 405548 NIL) (-229 401897 402325 402991 "DIFEXT-" 402996 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-228 399219 401429 401470 "DIAGG" 401475 NIL DIAGG (NIL T) -9 NIL 401495 NIL) (-227 398603 398760 399012 "DIAGG-" 399017 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-226 394068 397562 397839 "DHMATRIX" 398372 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-225 389680 390589 391599 "DFSFUN" 393078 T DFSFUN (NIL) -7 NIL NIL NIL) (-224 384796 388611 388923 "DFLOAT" 389388 T DFLOAT (NIL) -8 NIL NIL NIL) (-223 383024 383305 383701 "DFINTTLS" 384504 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-222 380089 381045 381445 "DERHAM" 382690 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-221 377938 379864 379953 "DEQUEUE" 380033 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-220 377153 377286 377482 "DEGRED" 377800 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-219 373548 374293 375146 "DEFINTRF" 376381 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-218 371075 371544 372143 "DEFINTEF" 373067 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-217 370452 370695 370810 "DEFAST" 370980 T DEFAST (NIL) -8 NIL NIL NIL) (-216 364494 370049 370197 "DECIMAL" 370324 T DECIMAL (NIL) -8 NIL NIL NIL) (-215 362006 362464 362970 "DDFACT" 364038 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-214 361602 361645 361796 "DBLRESP" 361957 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-213 359501 359835 360195 "DBASE" 361369 NIL DBASE (NIL T) -8 NIL NIL NIL) (-212 358770 358981 359127 "DATAARY" 359400 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-211 357903 358729 358757 "D03FAFA" 358762 T D03FAFA (NIL) -8 NIL NIL NIL) (-210 357037 357862 357890 "D03EEFA" 357895 T D03EEFA (NIL) -8 NIL NIL NIL) (-209 354987 355453 355942 "D03AGNT" 356568 T D03AGNT (NIL) -7 NIL NIL NIL) (-208 354303 354946 354974 "D02EJFA" 354979 T D02EJFA (NIL) -8 NIL NIL NIL) (-207 353619 354262 354290 "D02CJFA" 354295 T D02CJFA (NIL) -8 NIL NIL NIL) (-206 352935 353578 353606 "D02BHFA" 353611 T D02BHFA (NIL) -8 NIL NIL NIL) (-205 352251 352894 352922 "D02BBFA" 352927 T D02BBFA (NIL) -8 NIL NIL NIL) (-204 345449 347037 348643 "D02AGNT" 350665 T D02AGNT (NIL) -7 NIL NIL NIL) (-203 343218 343740 344286 "D01WGTS" 344923 T D01WGTS (NIL) -7 NIL NIL NIL) (-202 342313 343177 343205 "D01TRNS" 343210 T D01TRNS (NIL) -8 NIL NIL NIL) (-201 341408 342272 342300 "D01GBFA" 342305 T D01GBFA (NIL) -8 NIL NIL NIL) (-200 340503 341367 341395 "D01FCFA" 341400 T D01FCFA (NIL) -8 NIL NIL NIL) (-199 339598 340462 340490 "D01ASFA" 340495 T D01ASFA (NIL) -8 NIL NIL NIL) (-198 338693 339557 339585 "D01AQFA" 339590 T D01AQFA (NIL) -8 NIL NIL NIL) (-197 337788 338652 338680 "D01APFA" 338685 T D01APFA (NIL) -8 NIL NIL NIL) (-196 336883 337747 337775 "D01ANFA" 337780 T D01ANFA (NIL) -8 NIL NIL NIL) (-195 335978 336842 336870 "D01AMFA" 336875 T D01AMFA (NIL) -8 NIL NIL NIL) (-194 335073 335937 335965 "D01ALFA" 335970 T D01ALFA (NIL) -8 NIL NIL NIL) (-193 334168 335032 335060 "D01AKFA" 335065 T D01AKFA (NIL) -8 NIL NIL NIL) (-192 333263 334127 334155 "D01AJFA" 334160 T D01AJFA (NIL) -8 NIL NIL NIL) (-191 326560 328111 329672 "D01AGNT" 331722 T D01AGNT (NIL) -7 NIL NIL NIL) (-190 325897 326025 326177 "CYCLOTOM" 326428 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-189 322632 323345 324072 "CYCLES" 325190 T CYCLES (NIL) -7 NIL NIL NIL) (-188 321944 322078 322249 "CVMP" 322493 NIL CVMP (NIL T) -7 NIL NIL NIL) (-187 319715 319973 320349 "CTRIGMNP" 321672 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-186 319438 319674 319702 "CTOR" 319707 T CTOR (NIL) -8 NIL NIL NIL) (-185 318974 319169 319270 "CTORKIND" 319357 T CTORKIND (NIL) -8 NIL NIL NIL) (-184 318445 318673 318701 "CTORCAT" 318821 T CTORCAT (NIL) -9 NIL 318904 NIL) (-183 318140 318220 318346 "CTORCAT-" 318351 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-182 317656 317843 317941 "CTORCALL" 318062 T CTORCALL (NIL) -8 NIL NIL NIL) (-181 317030 317129 317282 "CSTTOOLS" 317553 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-180 312829 313486 314244 "CRFP" 316342 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-179 312331 312550 312642 "CRCEAST" 312757 T CRCEAST (NIL) -8 NIL NIL NIL) (-178 311378 311563 311791 "CRAPACK" 312135 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-177 310762 310863 311067 "CPMATCH" 311254 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-176 310487 310515 310621 "CPIMA" 310728 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-175 306851 307523 308241 "COORDSYS" 309822 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-174 306235 306364 306514 "CONTOUR" 306721 T CONTOUR (NIL) -8 NIL NIL NIL) (-173 302161 304238 304730 "CONTFRAC" 305775 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-172 302041 302062 302090 "CONDUIT" 302127 T CONDUIT (NIL) -9 NIL NIL NIL) (-171 301214 301734 301762 "COMRING" 301767 T COMRING (NIL) -9 NIL 301819 NIL) (-170 300295 300572 300756 "COMPPROP" 301050 T COMPPROP (NIL) -8 NIL NIL NIL) (-169 299956 299991 300119 "COMPLPAT" 300254 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-168 290013 299765 299874 "COMPLEX" 299879 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 289649 289706 289813 "COMPLEX2" 289950 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-166 289367 289402 289500 "COMPFACT" 289608 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-165 273540 283760 283800 "COMPCAT" 284804 NIL COMPCAT (NIL T) -9 NIL 286189 NIL) (-164 263056 265979 269606 "COMPCAT-" 269962 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-163 262785 262813 262916 "COMMUPC" 263022 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-162 262580 262613 262672 "COMMONOP" 262746 T COMMONOP (NIL) -7 NIL NIL NIL) (-161 262163 262331 262418 "COMM" 262513 T COMM (NIL) -8 NIL NIL NIL) (-160 261767 261967 262042 "COMMAAST" 262108 T COMMAAST (NIL) -8 NIL NIL NIL) (-159 261016 261210 261238 "COMBOPC" 261576 T COMBOPC (NIL) -9 NIL 261751 NIL) (-158 259912 260122 260364 "COMBINAT" 260806 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-157 256110 256683 257323 "COMBF" 259334 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-156 254896 255226 255461 "COLOR" 255895 T COLOR (NIL) -8 NIL NIL NIL) (-155 254399 254617 254709 "COLONAST" 254824 T COLONAST (NIL) -8 NIL NIL NIL) (-154 254039 254086 254211 "CMPLXRT" 254346 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-153 253514 253739 253838 "CLLCTAST" 253960 T CLLCTAST (NIL) -8 NIL NIL NIL) (-152 249016 250044 251124 "CLIP" 252454 T CLIP (NIL) -7 NIL NIL NIL) (-151 247398 248122 248361 "CLIF" 248843 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-150 243620 245544 245585 "CLAGG" 246514 NIL CLAGG (NIL T) -9 NIL 247050 NIL) (-149 242042 242499 243082 "CLAGG-" 243087 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-148 241586 241671 241811 "CINTSLPE" 241951 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-147 239087 239558 240106 "CHVAR" 241114 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-146 238330 238850 238878 "CHARZ" 238883 T CHARZ (NIL) -9 NIL 238898 NIL) (-145 238084 238124 238202 "CHARPOL" 238284 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-144 237211 237764 237792 "CHARNZ" 237839 T CHARNZ (NIL) -9 NIL 237895 NIL) (-143 235200 235901 236236 "CHAR" 236896 T CHAR (NIL) -8 NIL NIL NIL) (-142 234926 234987 235015 "CFCAT" 235126 T CFCAT (NIL) -9 NIL NIL NIL) (-141 234171 234282 234464 "CDEN" 234810 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-140 230163 233324 233604 "CCLASS" 233911 T CCLASS (NIL) -8 NIL NIL NIL) (-139 229470 229613 229776 "CATEGORY" 230020 T -10 (NIL) -8 NIL NIL NIL) (-138 229134 229389 229437 "CATCTOR" 229442 T CATCTOR (NIL) -8 NIL NIL NIL) (-137 228608 228834 228933 "CATAST" 229055 T CATAST (NIL) -8 NIL NIL NIL) (-136 228111 228329 228421 "CASEAST" 228536 T CASEAST (NIL) -8 NIL NIL NIL) (-135 223163 224140 224893 "CARTEN" 227414 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 222271 222419 222640 "CARTEN2" 223010 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-133 220613 221421 221678 "CARD" 222034 T CARD (NIL) -8 NIL NIL NIL) (-132 220216 220417 220492 "CAPSLAST" 220558 T CAPSLAST (NIL) -8 NIL NIL NIL) (-131 219588 219916 219944 "CACHSET" 220076 T CACHSET (NIL) -9 NIL 220153 NIL) (-130 219084 219380 219408 "CABMON" 219458 T CABMON (NIL) -9 NIL 219514 NIL) (-129 218107 218630 218766 "BYTE" 218929 T BYTE (NIL) -8 NIL NIL 219045) (-128 213516 217575 217738 "BYTEBUF" 217964 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211073 213208 213315 "BTREE" 213442 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208571 210721 210843 "BTOURN" 210983 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205988 208041 208082 "BTCAT" 208150 NIL BTCAT (NIL T) -9 NIL 208227 NIL) (-124 205655 205735 205884 "BTCAT-" 205889 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200947 204798 204826 "BTAGG" 205048 T BTAGG (NIL) -9 NIL 205209 NIL) (-122 200437 200562 200768 "BTAGG-" 200773 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197481 199715 199930 "BSTREE" 200254 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196619 196745 196929 "BRILL" 197337 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193318 195345 195386 "BRAGG" 196035 NIL BRAGG (NIL T) -9 NIL 196293 NIL) (-118 191847 192253 192808 "BRAGG-" 192813 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185111 191193 191377 "BPADICRT" 191695 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183461 185048 185093 "BPADIC" 185098 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183159 183189 183303 "BOUNDZRO" 183425 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178674 179765 180632 "BOP" 182312 T BOP (NIL) -8 NIL NIL NIL) (-113 176295 176739 177259 "BOP1" 178187 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 174997 175719 175912 "BOOLEAN" 176122 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861 NIL) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339 NIL) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390 NIL) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236 NIL) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802 NIL) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437 NIL) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856 NIL) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283 NIL) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332 NIL) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T))
+((-2947 (((-112) $ $) 59)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 45)) (-4354 (($ $ (-765)) 39)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ (-765)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ $) 62) (($ $ (-813 |#1|)) 48) (($ $ |#1|) 52)) (-3558 (((-3 (-813 |#1|) "failed") $) NIL)) (-3557 (((-813 |#1|) $) NIL)) (-4366 (($ $) 32)) (-3866 (((-3 $ "failed") $) NIL)) (-4358 (((-112) $) NIL)) (-4357 (($ $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 |#1|) |#2|) 31)) (-4343 (($ $) 33)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 12)) (-4362 (((-813 |#1|) $) NIL)) (-4363 (((-813 |#1|) $) 34)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4347 (($ $ $) 61) (($ $ (-813 |#1|)) 50) (($ $ |#1|) 54)) (-1893 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-813 |#1|) $) 28)) (-3575 ((|#2| $) 30)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4355 (((-765) $) 36)) (-4360 (((-112) $) 40)) (-4359 ((|#2| $) NIL)) (-4353 (((-857) $) NIL) (($ (-813 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-544)) NIL)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-813 |#1|)) NIL)) (-4361 ((|#2| $ $) 64) ((|#2| $ (-813 |#1|)) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) 13 T CONST)) (-3046 (($) 15 T CONST)) (-3045 (((-635 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3437 (((-112) $ $) 38)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 22)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-813 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1269 |#1| |#2|) (-13 (-383 |#2| (-813 |#1|)) (-1276 |#1| |#2|)) (-844) (-1042)) (T -1269))
+NIL
+(-13 (-383 |#2| (-813 |#1|)) (-1276 |#1| |#2|))
+((-4349 ((|#3| |#3| (-765)) 23)) (-4350 ((|#3| |#3| (-765)) 27)) (-4334 ((|#3| |#3| |#3| (-765)) 28)))
+(((-1270 |#1| |#2| |#3|) (-10 -7 (-15 -4350 (|#3| |#3| (-765))) (-15 -4349 (|#3| |#3| (-765))) (-15 -4334 (|#3| |#3| |#3| (-765)))) (-13 (-1042) (-711 (-406 (-544)))) (-844) (-1276 |#2| |#1|)) (T -1270))
+((-4334 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))) (-4349 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))) (-4350 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))))
+(-10 -7 (-15 -4350 (|#3| |#3| (-765))) (-15 -4349 (|#3| |#3| (-765))) (-15 -4334 (|#3| |#3| |#3| (-765))))
+((-4339 (((-112) $) 14)) (-4340 (((-112) $) 13)) (-4335 (($ $) 18) (($ $ (-765)) 19)))
+(((-1271 |#1| |#2|) (-10 -8 (-15 -4335 (|#1| |#1| (-765))) (-15 -4335 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|))) (-1272 |#2|) (-362)) (T -1271))
+NIL
+(-10 -8 (-15 -4335 (|#1| |#1| (-765))) (-15 -4335 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|)))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4339 (((-112) $) 95)) (-4336 (((-765)) 91)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| "failed") $) 102)) (-3557 ((|#1| $) 103)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-1914 (($ $ (-765)) 88 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) 72)) (-4178 (((-826 (-912)) $) 85 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-4338 (((-112) $) 94)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-4337 (((-826 (-912))) 92)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-3 (-765) "failed") $ $) 86 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) 100)) (-4355 (((-826 (-912)) $) 93)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ |#1|) 101)) (-3084 (((-3 $ "failed") $) 84 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-4340 (((-112) $) 96)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-4335 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66) (($ $ |#1|) 99)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+(((-1272 |#1|) (-139) (-362)) (T -1272))
+((-4340 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912))))) (-4337 (*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912))))) (-4336 (*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-765)))) (-4335 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-4335 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-4 *3 (-367)))))
+(-13 (-362) (-1031 |t#1|) (-1261 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -4340 ((-112) $)) (-15 -4339 ((-112) $)) (-15 -4338 ((-112) $)) (-15 -4355 ((-826 (-912)) $)) (-15 -4337 ((-826 (-912)))) (-15 -4336 ((-765))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -4335 ($ $)) (-15 -4335 ($ $ (-765)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T) ((-1261 |#1|) . T))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4341 (((-635 |#1|) $) 41)) (-1391 (((-3 $ "failed") $ $) 19)) (-4342 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-4131 (($) 17 T CONST)) (-4346 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-3558 (((-3 (-813 |#1|) "failed") $) 65)) (-3557 (((-813 |#1|) $) 66)) (-3866 (((-3 $ "failed") $) 33)) (-4358 (((-112) $) 46)) (-4357 (($ $) 45)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 51)) (-4345 (($ (-813 |#1|) |#2|) 52)) (-4343 (($ $) 50)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-4362 (((-813 |#1|) $) 62)) (-4365 (($ (-1 |#2| |#2|) $) 42)) (-4347 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4360 (((-112) $) 48)) (-4359 ((|#2| $) 47)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4361 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1273 |#1| |#2|) (-139) (-844) (-1042)) (T -1273))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4))))) (-4361 (*1 *2 *1 *3) (-12 (-5 *3 (-813 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-4361 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-4347 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4347 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4347 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4346 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4346 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1273 *4 *3)) (-4 *3 (-1042)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-4343 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4353 (*1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-4357 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4342 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)) (-4 *3 (-171)))) (-4342 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-4 *4 (-171)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-635 *3)))))
+(-13 (-1042) (-1268 |t#2|) (-1031 (-813 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4362 ((-813 |t#1|) $)) (-15 -4348 ((-2 (|:| |k| (-813 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4361 (|t#2| $ (-813 |t#1|))) (-15 -4361 (|t#2| $ $)) (-15 -4347 ($ $ |t#1|)) (-15 -4347 ($ $ (-813 |t#1|))) (-15 -4347 ($ $ $)) (-15 -4346 ($ $ |t#1|)) (-15 -4346 ($ $ (-813 |t#1|))) (-15 -4346 ($ $ $)) (-15 -4345 ($ (-813 |t#1|) |t#2|)) (-15 -4344 ((-112) $)) (-15 -4343 ($ $)) (-15 -4353 ($ |t#1|)) (-15 -4360 ((-112) $)) (-15 -4359 (|t#2| $)) (-15 -4358 ((-112) $)) (-15 -4357 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -4342 ($ $ $)) (-15 -4342 ($ $ (-765)))) |%noBranch|) (-15 -4365 ($ (-1 |t#2| |t#2|) $)) (-15 -4341 ((-635 |t#1|) $)) (IF (|has| |t#2| (-6 -4393)) (-6 -4393) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 #1=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #1#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1268 |#2|) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 85)) (-4354 (($ $ (-765)) 88)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-765)) NIL (|has| |#2| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-3558 (((-3 (-813 |#1|) #1="failed") $) NIL) (((-3 (-886 |#1|) #1#) $) NIL)) (-3557 (((-813 |#1|) $) NIL) (((-886 |#1|) $) NIL)) (-4366 (($ $) 87)) (-3866 (((-3 $ "failed") $) NIL)) (-4358 (((-112) $) 76)) (-4357 (($ $) 80)) (-4351 (($ $ $ (-765)) 89)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 |#1|) |#2|) NIL) (($ (-886 |#1|) |#2|) 25)) (-4343 (($ $) 102)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4362 (((-813 |#1|) $) NIL)) (-4363 (((-813 |#1|) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4347 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-4349 (($ $ (-765)) 96 (|has| |#2| (-711 (-406 (-544)))))) (-1893 (((-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-886 |#1|) $) 69)) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4350 (($ $ (-765)) 93 (|has| |#2| (-711 (-406 (-544)))))) (-4355 (((-765) $) 86)) (-4360 (((-112) $) 70)) (-4359 ((|#2| $) 74)) (-4353 (((-857) $) 56) (($ (-544)) NIL) (($ |#2|) 50) (($ (-813 |#1|)) NIL) (($ |#1|) 58) (($ (-886 |#1|)) NIL) (($ (-657 |#1| |#2|)) 42) (((-1269 |#1| |#2|) $) 63) (((-1278 |#1| |#2|) $) 68)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-886 |#1|)) NIL)) (-4361 ((|#2| $ (-813 |#1|)) NIL) ((|#2| $ $) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) 21 T CONST)) (-3046 (($) 24 T CONST)) (-3045 (((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4352 (((-3 (-657 |#1| |#2|) "failed") $) 101)) (-3437 (((-112) $ $) 64)) (-4244 (($ $) 95) (($ $ $) 94)) (-4246 (($ $ $) 20)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-886 |#1|)) NIL)))
+(((-1274 |#1| |#2|) (-13 (-1276 |#1| |#2|) (-383 |#2| (-886 |#1|)) (-10 -8 (-15 -4353 ($ (-657 |#1| |#2|))) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1278 |#1| |#2|) $)) (-15 -4352 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -4351 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-544)))) (PROGN (-15 -4350 ($ $ (-765))) (-15 -4349 ($ $ (-765)))) |%noBranch|))) (-844) (-171)) (T -1274))
+((-4353 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-1274 *3 *4)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4352 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4351 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4350 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544)))) (-4 *3 (-844)) (-4 *4 (-171)))) (-4349 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544)))) (-4 *3 (-844)) (-4 *4 (-171)))))
+(-13 (-1276 |#1| |#2|) (-383 |#2| (-886 |#1|)) (-10 -8 (-15 -4353 ($ (-657 |#1| |#2|))) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1278 |#1| |#2|) $)) (-15 -4352 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -4351 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-544)))) (PROGN (-15 -4350 ($ $ (-765))) (-15 -4349 ($ $ (-765)))) |%noBranch|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4341 (((-635 (-1166)) $) NIL)) (-4369 (($ (-1269 (-1166) |#1|)) NIL)) (-4354 (($ $ (-765)) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-765)) NIL (|has| |#1| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-3558 (((-3 (-813 (-1166)) "failed") $) NIL)) (-3557 (((-813 (-1166)) $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4358 (((-112) $) NIL)) (-4357 (($ $) NIL)) (-2545 (((-112) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 (-1166)) |#1|) NIL)) (-4343 (($ $) NIL)) (-4348 (((-2 (|:| |k| (-813 (-1166))) (|:| |c| |#1|)) $) NIL)) (-4362 (((-813 (-1166)) $) NIL)) (-4363 (((-813 (-1166)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4347 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4370 (((-1269 (-1166) |#1|) $) NIL)) (-4355 (((-765) $) NIL)) (-4360 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-813 (-1166))) NIL) (($ (-1166)) NIL)) (-4361 ((|#1| $ (-813 (-1166))) NIL) ((|#1| $ $) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) NIL T CONST)) (-4368 (((-635 (-2 (|:| |k| (-1166)) (|:| |c| $))) $) NIL)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1166) $) NIL)))
+(((-1275 |#1|) (-13 (-1276 (-1166) |#1|) (-10 -8 (-15 -4370 ((-1269 (-1166) |#1|) $)) (-15 -4369 ($ (-1269 (-1166) |#1|))) (-15 -4368 ((-635 (-2 (|:| |k| (-1166)) (|:| |c| $))) $)))) (-1042)) (T -1275))
+((-4370 (*1 *2 *1) (-12 (-5 *2 (-1269 (-1166) *3)) (-5 *1 (-1275 *3)) (-4 *3 (-1042)))) (-4369 (*1 *1 *2) (-12 (-5 *2 (-1269 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1275 *3)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-1166)) (|:| |c| (-1275 *3))))) (-5 *1 (-1275 *3)) (-4 *3 (-1042)))))
+(-13 (-1276 #1=(-1166) |#1|) (-10 -8 (-15 -4370 ((-1269 #1# |#1|) $)) (-15 -4369 ($ (-1269 #1# |#1|))) (-15 -4368 ((-635 (-2 (|:| |k| #1#) (|:| |c| $))) $))))
+((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4341 (((-635 |#1|) $) 41)) (-4354 (($ $ (-765)) 74)) (-1391 (((-3 $ "failed") $ $) 19)) (-4342 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-4131 (($) 17 T CONST)) (-4346 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-3558 (((-3 (-813 |#1|) "failed") $) 65)) (-3557 (((-813 |#1|) $) 66)) (-3866 (((-3 $ "failed") $) 33)) (-4358 (((-112) $) 46)) (-4357 (($ $) 45)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 51)) (-4345 (($ (-813 |#1|) |#2|) 52)) (-4343 (($ $) 50)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-4362 (((-813 |#1|) $) 62)) (-4363 (((-813 |#1|) $) 76)) (-4365 (($ (-1 |#2| |#2|) $) 42)) (-4347 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 (((-765) $) 75)) (-4360 (((-112) $) 48)) (-4359 ((|#2| $) 47)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4361 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1276 |#1| |#2|) (-139) (-844) (-1042)) (T -1276))
+((-4363 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-4354 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
+(-13 (-1273 |t#1| |t#2|) (-10 -8 (-15 -4363 ((-813 |t#1|) $)) (-15 -4355 ((-765) $)) (-15 -4354 ($ $ (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 #1=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #1#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1268 |#2|) . T) ((-1273 |#1| |#2|) . T))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| "failed") $) NIL)) (-3557 ((|#2| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) 35)) (-4358 (((-112) $) 30)) (-4357 (($ $) 31)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ |#2| |#1|) NIL)) (-4362 ((|#2| $) 19)) (-4363 ((|#2| $) 16)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3277 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4360 (((-112) $) 27)) (-4359 ((|#1| $) 28)) (-4353 (((-857) $) 54) (($ (-544)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ |#2|) NIL)) (-4361 ((|#1| $ |#2|) 24)) (-3511 (((-765)) 14)) (-3040 (($) 25 T CONST)) (-3046 (($) 11 T CONST)) (-3045 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3437 (((-112) $ $) 26)) (-4356 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 43)) (** (($ $ (-912)) NIL) (($ $ (-765)) 45)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4364 (((-765) $) 15)))
+(((-1277 |#1| |#2|) (-13 (-1042) (-1268 |#1|) (-383 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4364 ((-765) $)) (-15 -4363 (|#2| $)) (-15 -4362 (|#2| $)) (-15 -4366 ($ $)) (-15 -4361 (|#1| $ |#2|)) (-15 -4360 ((-112) $)) (-15 -4359 (|#1| $)) (-15 -4358 ((-112) $)) (-15 -4357 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -4356 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) (-1042) (-840)) (T -1277))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-840)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-4363 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))) (-4362 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))) (-4361 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-4359 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-4357 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4356 (*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(-13 (-1042) (-1268 |#1|) (-383 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4364 ((-765) $)) (-15 -4363 (|#2| $)) (-15 -4362 (|#2| $)) (-15 -4366 ($ $)) (-15 -4361 (|#1| $ |#2|)) (-15 -4360 ((-112) $)) (-15 -4359 (|#1| $)) (-15 -4358 ((-112) $)) (-15 -4357 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -4356 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|)))
+((-2947 (((-112) $ $) 26)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 120)) (-4369 (($ (-1269 |#1| |#2|)) 44)) (-4354 (($ $ (-765)) 32)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-765)) 46 (|has| |#2| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ |#1|) 102) (($ $ (-813 |#1|)) 103) (($ $ $) 25)) (-3558 (((-3 (-813 |#1|) "failed") $) NIL)) (-3557 (((-813 |#1|) $) NIL)) (-3866 (((-3 $ "failed") $) 110)) (-4358 (((-112) $) 105)) (-4357 (($ $) 106)) (-2545 (((-112) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 |#1|) |#2|) 19)) (-4343 (($ $) NIL)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4362 (((-813 |#1|) $) 111)) (-4363 (((-813 |#1|) $) 114)) (-4365 (($ (-1 |#2| |#2|) $) 119)) (-4347 (($ $ |#1|) 100) (($ $ (-813 |#1|)) 101) (($ $ $) 56)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4370 (((-1269 |#1| |#2|) $) 84)) (-4355 (((-765) $) 117)) (-4360 (((-112) $) 70)) (-4359 ((|#2| $) 28)) (-4353 (((-857) $) 63) (($ (-544)) 77) (($ |#2|) 74) (($ (-813 |#1|)) 17) (($ |#1|) 73)) (-4361 ((|#2| $ (-813 |#1|)) 104) ((|#2| $ $) 27)) (-3511 (((-765)) 108)) (-3040 (($) 14 T CONST)) (-4368 (((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3046 (($) 29 T CONST)) (-3437 (((-112) $ $) 13)) (-4244 (($ $) 88) (($ $ $) 91)) (-4246 (($ $ $) 55)) (** (($ $ (-912)) NIL) (($ $ (-765)) 49)) (* (($ (-912) $) NIL) (($ (-765) $) 47) (($ (-544) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1278 |#1| |#2|) (-13 (-1276 |#1| |#2|) (-10 -8 (-15 -4370 ((-1269 |#1| |#2|) $)) (-15 -4369 ($ (-1269 |#1| |#2|))) (-15 -4368 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-844) (-1042)) (T -1278))
+((-4370 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4369 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *1 (-1278 *3 *4)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1278 *3 *4))))) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
+(-13 (-1276 |#1| |#2|) (-10 -8 (-15 -4370 ((-1269 |#1| |#2|) $)) (-15 -4369 ($ (-1269 |#1| |#2|))) (-15 -4368 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-4371 (((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-544)) 15) (((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|))) 11)))
+(((-1279 |#1|) (-10 -7 (-15 -4371 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -4371 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-544)))) (-1204)) (T -1279))
+((-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-544)) (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1279 *5)) (-4 *5 (-1204)))) (-4371 (*1 *2 *3) (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1279 *4)) (-4 *4 (-1204)))))
+(-10 -7 (-15 -4371 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -4371 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-544))))
+((-4373 (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|))) 147) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112)) 146) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112)) 145) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112) (-112)) 144) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-1039 |#1| |#2|)) 129)) (-4372 (((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|))) 71) (((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112)) 70) (((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112) (-112)) 69)) (-4376 (((-635 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|)) 60)) (-4374 (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|))) 114) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112)) 113) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112)) 112) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112) (-112)) 111) (((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 106)) (-4375 (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|))) 119) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112)) 118) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112)) 117) (((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 116)) (-4377 (((-635 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) 97) (((-1160 (-1017 (-406 |#1|))) (-1160 |#1|)) 88) (((-939 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|))) 95) (((-939 (-1017 (-406 |#1|))) (-939 |#1|)) 93) (((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|))) 32)))
+(((-1280 |#1| |#2| |#3|) (-10 -7 (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-1039 |#1| |#2|))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4376 ((-635 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4377 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-939 |#1|))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4377 ((-1160 (-1017 (-406 |#1|))) (-1160 |#1|))) (-15 -4377 ((-635 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))))) (-13 (-842) (-306) (-146) (-1013)) (-635 (-1166)) (-635 (-1166))) (T -1280))
+((-4377 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-774 *4 (-858 *6)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-1160 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *6))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *6 (-635 (-1166))) (-5 *2 (-939 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-939 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *5))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4375 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4374 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4374 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4373 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) (-5 *1 (-1280 *4 *5 *6)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4373 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4373 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4373 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4372 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *4 *5))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4372 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4372 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))))
+(-10 -7 (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-1039 |#1| |#2|))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4376 ((-635 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4377 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-939 |#1|))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4377 ((-1160 (-1017 (-406 |#1|))) (-1160 |#1|))) (-15 -4377 ((-635 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|))))))
+((-4380 (((-3 (-1253 (-406 (-544))) "failed") (-1253 |#1|) |#1|) 21)) (-4378 (((-112) (-1253 |#1|)) 12)) (-4379 (((-3 (-1253 (-544)) "failed") (-1253 |#1|)) 16)))
+(((-1281 |#1|) (-10 -7 (-15 -4378 ((-112) (-1253 |#1|))) (-15 -4379 ((-3 (-1253 (-544)) "failed") (-1253 |#1|))) (-15 -4380 ((-3 (-1253 (-406 (-544))) "failed") (-1253 |#1|) |#1|))) (-634 (-544))) (T -1281))
+((-4380 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-1253 (-406 (-544)))) (-5 *1 (-1281 *4)))) (-4379 (*1 *2 *3) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-1253 (-544))) (-5 *1 (-1281 *4)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-112)) (-5 *1 (-1281 *4)))))
+(-10 -7 (-15 -4378 ((-112) (-1253 |#1|))) (-15 -4379 ((-3 (-1253 (-544)) "failed") (-1253 |#1|))) (-15 -4380 ((-3 (-1253 (-406 (-544))) "failed") (-1253 |#1|) |#1|)))
+((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 11)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765)) 8)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) 43)) (-3377 (($) 36)) (-2545 (((-112) $) NIL)) (-3848 (((-3 $ "failed") $) 29)) (-2160 (((-912) $) 15)) (-3643 (((-1148) $) NIL)) (-3849 (($) 25 T CONST)) (-2535 (($ (-912)) 37)) (-3644 (((-1110) $) NIL)) (-4377 (((-544) $) 13)) (-4353 (((-857) $) 22) (($ (-544)) 19)) (-3511 (((-765)) 9)) (-3040 (($) 23 T CONST)) (-3046 (($) 24 T CONST)) (-3437 (((-112) $ $) 27)) (-4244 (($ $) 38) (($ $ $) 35)) (-4246 (($ $ $) 26)) (** (($ $ (-912)) NIL) (($ $ (-765)) 40)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 32) (($ $ $) 31)))
+(((-1282 |#1|) (-13 (-171) (-367) (-609 (-544)) (-1141)) (-912)) (T -1282))
+NIL
+(-13 (-171) (-367) (-609 (-544)) (-1141))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3183541 3183546 3183551 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3183526 3183531 3183536 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3183511 3183516 3183521 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3183496 3183501 3183506 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1282 3182672 3183371 3183448 "ZMOD" 3183453 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1281 3181782 3181946 3182155 "ZLINDEP" 3182504 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1280 3171086 3172850 3174822 "ZDSOLVE" 3179912 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1279 3170332 3170473 3170662 "YSTREAM" 3170932 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1278 3168143 3169633 3169837 "XRPOLY" 3170175 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1277 3164731 3166014 3166589 "XPR" 3167615 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1276 3162522 3163856 3163911 "XPOLYC" 3164199 NIL XPOLYC (NIL T T) -9 NIL 3164312 NIL) (-1275 3160287 3161862 3162066 "XPOLY" 3162362 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1274 3156707 3158804 3159192 "XPBWPOLY" 3159945 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3152041 3153296 3153351 "XFALG" 3155523 NIL XFALG (NIL T T) -9 NIL 3156312 NIL) (-1272 3147954 3150204 3150246 "XF" 3150867 NIL XF (NIL T) -9 NIL 3151267 NIL) (-1271 3147575 3147663 3147832 "XF-" 3147837 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1270 3146708 3146812 3147017 "XEXPPKG" 3147467 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1269 3144852 3146558 3146654 "XDPOLY" 3146659 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1268 3143797 3144363 3144406 "XALG" 3144411 NIL XALG (NIL T) -9 NIL 3144522 NIL) (-1267 3137293 3141774 3142268 "WUTSET" 3143389 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1266 3135584 3136345 3136668 "WP" 3137104 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1265 3135213 3135406 3135476 "WHILEAST" 3135536 T WHILEAST (NIL) -8 NIL NIL NIL) (-1264 3134712 3134930 3135024 "WHEREAST" 3135141 T WHEREAST (NIL) -8 NIL NIL NIL) (-1263 3133598 3133796 3134091 "WFFINTBS" 3134509 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1262 3131502 3131929 3132391 "WEIER" 3133170 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1261 3130649 3131073 3131115 "VSPACE" 3131251 NIL VSPACE (NIL T) -9 NIL 3131325 NIL) (-1260 3130487 3130514 3130605 "VSPACE-" 3130610 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1259 3130295 3130338 3130406 "VOID" 3130441 T VOID (NIL) -8 NIL NIL NIL) (-1258 3126720 3127358 3128095 "VIEWDEF" 3129580 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1257 3116056 3118268 3120441 "VIEW3D" 3124569 T VIEW3D (NIL) -8 NIL NIL NIL) (-1256 3108338 3109967 3111546 "VIEW2D" 3114499 T VIEW2D (NIL) -8 NIL NIL NIL) (-1255 3106474 3106833 3107239 "VIEW" 3107954 T VIEW (NIL) -7 NIL NIL NIL) (-1254 3105051 3105310 3105628 "VECTOR2" 3106204 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1253 3100455 3104821 3104913 "VECTOR" 3104994 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1252 3093982 3098239 3098282 "VECTCAT" 3099275 NIL VECTCAT (NIL T) -9 NIL 3099861 NIL) (-1251 3092996 3093250 3093640 "VECTCAT-" 3093645 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1250 3092477 3092647 3092767 "VARIABLE" 3092911 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1249 3092410 3092415 3092445 "UTYPE" 3092450 T UTYPE (NIL) -9 NIL NIL NIL) (-1248 3091240 3091394 3091656 "UTSODETL" 3092236 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1247 3088680 3089140 3089664 "UTSODE" 3090781 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1246 3079923 3085247 3085290 "UTSCAT" 3086402 NIL UTSCAT (NIL T) -9 NIL 3087159 NIL) (-1245 3077278 3077993 3078982 "UTSCAT-" 3078987 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1244 3076905 3076948 3077081 "UTS2" 3077229 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1243 3068781 3074531 3075020 "UTS" 3076474 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1242 3063055 3065619 3065662 "URAGG" 3067732 NIL URAGG (NIL T) -9 NIL 3068455 NIL) (-1241 3059997 3060859 3061981 "URAGG-" 3061986 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1240 3055728 3058611 3059083 "UPXSSING" 3059661 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1239 3048843 3055632 3055704 "UPXSCONS" 3055709 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1238 3039090 3045838 3045900 "UPXSCCA" 3046474 NIL UPXSCCA (NIL T T) -9 NIL 3046707 NIL) (-1237 3038728 3038813 3038987 "UPXSCCA-" 3038992 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1236 3028828 3035349 3035392 "UPXSCAT" 3036040 NIL UPXSCAT (NIL T) -9 NIL 3036648 NIL) (-1235 3028258 3028337 3028516 "UPXS2" 3028743 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1234 3020364 3027505 3027778 "UPXS" 3028043 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1233 3019021 3019273 3019623 "UPSQFREE" 3020108 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1232 3012809 3015823 3015878 "UPSCAT" 3017039 NIL UPSCAT (NIL T T) -9 NIL 3017813 NIL) (-1231 3012013 3012220 3012547 "UPSCAT-" 3012552 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1230 3011640 3011683 3011816 "UPOLYC2" 3011964 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1229 2997523 3005488 3005531 "UPOLYC" 3007632 NIL UPOLYC (NIL T) -9 NIL 3008853 NIL) (-1228 2988888 2991301 2994436 "UPOLYC-" 2994441 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1227 2988227 2988334 2988498 "UPMP" 2988777 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1226 2987780 2987861 2988000 "UPDIVP" 2988140 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1225 2986348 2986597 2986913 "UPDECOMP" 2987529 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1224 2985583 2985695 2985880 "UPCDEN" 2986232 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1223 2985102 2985171 2985320 "UP2" 2985508 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1222 2976716 2984785 2984914 "UP" 2985021 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1221 2975931 2976058 2976263 "UNISEG2" 2976559 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1220 2974448 2975135 2975412 "UNISEG" 2975689 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1219 2973508 2973688 2973914 "UNIFACT" 2974264 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1218 2961564 2973412 2973484 "ULSCONS" 2973489 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1217 2944196 2956122 2956184 "ULSCCAT" 2956822 NIL ULSCCAT (NIL T T) -9 NIL 2957110 NIL) (-1216 2943282 2943515 2943891 "ULSCCAT-" 2943896 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1215 2933159 2939594 2939637 "ULSCAT" 2940500 NIL ULSCAT (NIL T) -9 NIL 2941230 NIL) (-1214 2932589 2932668 2932847 "ULS2" 2933074 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1213 2916572 2931766 2932017 "ULS" 2932396 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1212 2915712 2916187 2916288 "UINT8" 2916399 T UINT8 (NIL) -8 NIL NIL 2916478) (-1211 2914851 2915326 2915427 "UINT32" 2915538 T UINT32 (NIL) -8 NIL NIL 2915617) (-1210 2913990 2914465 2914566 "UINT16" 2914677 T UINT16 (NIL) -8 NIL NIL 2914756) (-1209 2912393 2913316 2913346 "UFD" 2913558 T UFD (NIL) -9 NIL 2913672 NIL) (-1208 2912187 2912233 2912328 "UFD-" 2912333 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1207 2911269 2911452 2911668 "UDVO" 2911993 T UDVO (NIL) -7 NIL NIL NIL) (-1206 2909085 2909494 2909965 "UDPO" 2910833 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1205 2908872 2909040 2909071 "TYPEAST" 2909076 T TYPEAST (NIL) -8 NIL NIL NIL) (-1204 2908805 2908810 2908840 "TYPE" 2908845 T TYPE (NIL) -9 NIL NIL NIL) (-1203 2907776 2907978 2908218 "TWOFACT" 2908599 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1202 2906848 2907185 2907420 "TUPLE" 2907576 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1201 2904539 2905058 2905597 "TUBETOOL" 2906331 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1200 2903388 2903593 2903834 "TUBE" 2904332 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1199 2892055 2896147 2896244 "TSETCAT" 2901513 NIL TSETCAT (NIL T T T T) -9 NIL 2903044 NIL) (-1198 2886790 2888387 2890278 "TSETCAT-" 2890283 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1197 2881554 2885762 2886045 "TS" 2886542 NIL TS (NIL T) -8 NIL NIL NIL) (-1196 2875817 2876663 2877605 "TRMANIP" 2880690 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1195 2875258 2875321 2875484 "TRIMAT" 2875749 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1194 2873054 2873291 2873655 "TRIGMNIP" 2875007 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1193 2872574 2872687 2872717 "TRIGCAT" 2872930 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1192 2872243 2872322 2872463 "TRIGCAT-" 2872468 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1191 2869141 2871101 2871382 "TREE" 2871997 NIL TREE (NIL T) -8 NIL NIL NIL) (-1190 2868415 2868943 2868973 "TRANFUN" 2869008 T TRANFUN (NIL) -9 NIL 2869074 NIL) (-1189 2867694 2867885 2868165 "TRANFUN-" 2868170 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1188 2867498 2867530 2867591 "TOPSP" 2867655 T TOPSP (NIL) -7 NIL NIL NIL) (-1187 2866846 2866961 2867115 "TOOLSIGN" 2867379 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1186 2865507 2866023 2866262 "TEXTFILE" 2866629 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1185 2865288 2865319 2865391 "TEX1" 2865470 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1184 2863227 2863741 2864170 "TEX" 2864881 T TEX (NIL) -8 NIL NIL NIL) (-1183 2862875 2862938 2863028 "TEMUTL" 2863159 T TEMUTL (NIL) -7 NIL NIL NIL) (-1182 2861029 2861309 2861634 "TBCMPPK" 2862598 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1181 2852919 2859189 2859245 "TBAGG" 2859645 NIL TBAGG (NIL T T) -9 NIL 2859856 NIL) (-1180 2847989 2849477 2851231 "TBAGG-" 2851236 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1179 2847373 2847480 2847625 "TANEXP" 2847878 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1178 2846785 2846884 2847022 "TABLEAU" 2847270 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1177 2840288 2846642 2846735 "TABLE" 2846740 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1176 2834896 2836116 2837364 "TABLBUMP" 2839074 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1175 2834324 2834424 2834552 "SYSTEM" 2834790 T SYSTEM (NIL) -7 NIL NIL NIL) (-1174 2830787 2831482 2832265 "SYSSOLP" 2833575 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1173 2829847 2830314 2830427 "SYSNNI" 2830613 NIL SYSNNI (NIL NIL) -8 NIL NIL 2830692) (-1172 2829303 2829708 2829750 "SYSINT" 2829755 NIL SYSINT (NIL NIL) -8 NIL NIL 2829763) (-1171 2825649 2826564 2827280 "SYNTAX" 2828609 T SYNTAX (NIL) -8 NIL NIL NIL) (-1170 2822807 2823409 2824041 "SYMTAB" 2825039 T SYMTAB (NIL) -8 NIL NIL NIL) (-1169 2818080 2818976 2819953 "SYMS" 2821852 T SYMS (NIL) -8 NIL NIL NIL) (-1168 2815362 2817541 2817771 "SYMPOLY" 2817888 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1167 2814879 2814954 2815077 "SYMFUNC" 2815274 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1166 2810931 2812191 2813004 "SYMBOL" 2814088 T SYMBOL (NIL) -8 NIL NIL NIL) (-1165 2804470 2806159 2807879 "SWITCH" 2809233 T SWITCH (NIL) -8 NIL NIL NIL) (-1164 2797740 2803291 2803594 "SUTS" 2804225 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1163 2789845 2796987 2797260 "SUPXS" 2797525 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1162 2789004 2789131 2789348 "SUPFRACF" 2789713 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1161 2788625 2788684 2788797 "SUP2" 2788939 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1160 2780195 2788243 2788369 "SUP" 2788534 NIL SUP (NIL T) -8 NIL NIL NIL) (-1159 2778608 2778882 2779245 "SUMRF" 2779894 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1158 2777922 2777988 2778187 "SUMFS" 2778529 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1157 2761945 2777099 2777350 "SULS" 2777729 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1156 2761574 2761767 2761837 "SUCHTAST" 2761897 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1155 2760896 2761099 2761239 "SUCH" 2761482 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1154 2754790 2755802 2756761 "SUBSPACE" 2759984 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1153 2754220 2754310 2754474 "SUBRESP" 2754678 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1152 2748393 2749513 2750660 "STTFNC" 2753120 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1151 2741762 2743058 2744369 "STTF" 2747129 NIL STTF (NIL T) -7 NIL NIL NIL) (-1150 2733077 2734944 2736738 "STTAYLOR" 2740003 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1149 2726323 2732941 2733024 "STRTBL" 2733029 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1148 2721714 2726278 2726309 "STRING" 2726314 T STRING (NIL) -8 NIL NIL NIL) (-1147 2716602 2721087 2721117 "STRICAT" 2721176 T STRICAT (NIL) -9 NIL 2721238 NIL) (-1146 2716112 2716189 2716333 "STREAM3" 2716519 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1145 2715094 2715277 2715512 "STREAM2" 2715925 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1144 2714782 2714834 2714927 "STREAM1" 2715036 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1143 2707594 2712401 2713012 "STREAM" 2714206 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1142 2706610 2706791 2707022 "STINPROD" 2707410 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1141 2706188 2706372 2706402 "STEP" 2706482 T STEP (NIL) -9 NIL 2706560 NIL) (-1140 2699733 2706087 2706164 "STBL" 2706169 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1139 2694909 2698954 2698997 "STAGG" 2699150 NIL STAGG (NIL T) -9 NIL 2699239 NIL) (-1138 2692617 2693217 2694087 "STAGG-" 2694092 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1137 2690812 2692387 2692479 "STACK" 2692560 NIL STACK (NIL T) -8 NIL NIL NIL) (-1136 2683564 2688953 2689409 "SREGSET" 2690442 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1135 2675990 2677358 2678871 "SRDCMPK" 2682170 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1134 2668957 2673430 2673460 "SRAGG" 2674763 T SRAGG (NIL) -9 NIL 2675371 NIL) (-1133 2667974 2668229 2668608 "SRAGG-" 2668613 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1132 2662473 2666921 2667342 "SQMATRIX" 2667600 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1131 2656223 2659191 2659918 "SPLTREE" 2661818 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1130 2652213 2652879 2653525 "SPLNODE" 2655649 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1129 2651260 2651493 2651523 "SPFCAT" 2651967 T SPFCAT (NIL) -9 NIL NIL NIL) (-1128 2649997 2650207 2650471 "SPECOUT" 2651018 T SPECOUT (NIL) -7 NIL NIL NIL) (-1127 2641649 2643393 2643423 "SPADXPT" 2647815 T SPADXPT (NIL) -9 NIL 2649849 NIL) (-1126 2641410 2641450 2641519 "SPADPRSR" 2641602 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1125 2639593 2641365 2641396 "SPADAST" 2641401 T SPADAST (NIL) -8 NIL NIL NIL) (-1124 2631564 2633311 2633354 "SPACEC" 2637727 NIL SPACEC (NIL T) -9 NIL 2639543 NIL) (-1123 2629735 2631496 2631545 "SPACE3" 2631550 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1122 2628487 2628658 2628949 "SORTPAK" 2629540 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1121 2626537 2626840 2627259 "SOLVETRA" 2628151 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1120 2625548 2625770 2626044 "SOLVESER" 2626310 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1119 2620768 2621649 2622651 "SOLVERAD" 2624600 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1118 2616583 2617192 2617921 "SOLVEFOR" 2620135 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1117 2610907 2615932 2616029 "SNTSCAT" 2616034 NIL SNTSCAT (NIL T T T T) -9 NIL 2616104 NIL) (-1116 2605050 2609230 2609621 "SMTS" 2610597 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1115 2599527 2604938 2605015 "SMP" 2605020 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1114 2597686 2597987 2598385 "SMITH" 2599224 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1113 2590579 2594731 2594834 "SMATCAT" 2596188 NIL SMATCAT (NIL NIL T T T) -9 NIL 2596738 NIL) (-1112 2587540 2588356 2589527 "SMATCAT-" 2589532 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1111 2585253 2586776 2586819 "SKAGG" 2587080 NIL SKAGG (NIL T) -9 NIL 2587215 NIL) (-1110 2581597 2584669 2584864 "SINT" 2585051 T SINT (NIL) -8 NIL NIL 2585224) (-1109 2581369 2581407 2581473 "SIMPAN" 2581553 T SIMPAN (NIL) -7 NIL NIL NIL) (-1108 2580228 2580442 2580710 "SIGNRF" 2581135 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1107 2579054 2579198 2579482 "SIGNEF" 2580064 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1106 2578387 2578637 2578761 "SIGAST" 2578952 T SIGAST (NIL) -8 NIL NIL NIL) (-1105 2577694 2577922 2578062 "SIG" 2578269 T SIG (NIL) -8 NIL NIL NIL) (-1104 2575384 2575838 2576344 "SHP" 2577235 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1103 2569297 2575285 2575361 "SHDP" 2575366 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1102 2568896 2569062 2569092 "SGROUP" 2569185 T SGROUP (NIL) -9 NIL 2569247 NIL) (-1101 2568754 2568780 2568853 "SGROUP-" 2568858 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1100 2565590 2566287 2567010 "SGCF" 2568053 T SGCF (NIL) -7 NIL NIL NIL) (-1099 2560012 2565037 2565134 "SFRTCAT" 2565139 NIL SFRTCAT (NIL T T T T) -9 NIL 2565178 NIL) (-1098 2553436 2554451 2555587 "SFRGCD" 2558995 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1097 2546564 2547635 2548821 "SFQCMPK" 2552369 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1096 2546186 2546275 2546385 "SFORT" 2546505 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1095 2545331 2546026 2546147 "SEXOF" 2546152 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1094 2540870 2541559 2541654 "SEXCAT" 2544591 NIL SEXCAT (NIL T T T T T) -9 NIL 2545169 NIL) (-1093 2540004 2540751 2540819 "SEX" 2540824 T SEX (NIL) -8 NIL NIL NIL) (-1092 2538261 2538721 2539024 "SETMN" 2539747 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1091 2537867 2537993 2538023 "SETCAT" 2538140 T SETCAT (NIL) -9 NIL 2538225 NIL) (-1090 2537647 2537699 2537798 "SETCAT-" 2537803 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1089 2534034 2536108 2536151 "SETAGG" 2537021 NIL SETAGG (NIL T) -9 NIL 2537361 NIL) (-1088 2533492 2533608 2533845 "SETAGG-" 2533850 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1087 2530672 2533426 2533474 "SET" 2533479 NIL SET (NIL T) -8 NIL NIL NIL) (-1086 2530142 2530368 2530469 "SEQAST" 2530593 T SEQAST (NIL) -8 NIL NIL NIL) (-1085 2529341 2529635 2529696 "SEGXCAT" 2529982 NIL SEGXCAT (NIL T T) -9 NIL 2530102 NIL) (-1084 2528320 2528534 2528577 "SEGCAT" 2529099 NIL SEGCAT (NIL T) -9 NIL 2529320 NIL) (-1083 2527941 2528000 2528113 "SEGBIND2" 2528255 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1082 2526990 2527320 2527520 "SEGBIND" 2527776 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1081 2526591 2526791 2526868 "SEGAST" 2526935 T SEGAST (NIL) -8 NIL NIL NIL) (-1080 2525810 2525936 2526140 "SEG2" 2526435 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1079 2524866 2525476 2525658 "SEG" 2525663 NIL SEG (NIL T) -8 NIL NIL NIL) (-1078 2524303 2524801 2524848 "SDVAR" 2524853 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1077 2516634 2524073 2524203 "SDPOL" 2524208 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1076 2515227 2515493 2515812 "SCPKG" 2516349 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1075 2514363 2514543 2514743 "SCOPE" 2515049 T SCOPE (NIL) -8 NIL NIL NIL) (-1074 2513584 2513717 2513896 "SCACHE" 2514218 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1073 2513256 2513416 2513446 "SASTCAT" 2513451 T SASTCAT (NIL) -9 NIL 2513464 NIL) (-1072 2512770 2513091 2513167 "SAOS" 2513202 T SAOS (NIL) -8 NIL NIL NIL) (-1071 2512335 2512370 2512543 "SAERFFC" 2512729 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1070 2511928 2511963 2512122 "SAEFACT" 2512294 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1069 2505911 2511825 2511905 "SAE" 2511910 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1068 2504232 2504546 2504947 "RURPK" 2505577 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1067 2502868 2503147 2503459 "RULESET" 2504066 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1066 2502507 2502662 2502745 "RULECOLD" 2502820 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1065 2499694 2500197 2500662 "RULE" 2502188 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1064 2499192 2499411 2499505 "RSTRCAST" 2499622 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1063 2494041 2494835 2495755 "RSETGCD" 2498391 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1062 2483325 2488350 2488447 "RSETCAT" 2492566 NIL RSETCAT (NIL T T T T) -9 NIL 2493663 NIL) (-1061 2481252 2481791 2482615 "RSETCAT-" 2482620 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1060 2473639 2475014 2476534 "RSDCMPK" 2479851 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2471644 2472085 2472159 "RRCC" 2473245 NIL RRCC (NIL T T) -9 NIL 2473589 NIL) (-1058 2470995 2471169 2471448 "RRCC-" 2471453 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1057 2470465 2470691 2470792 "RPTAST" 2470916 T RPTAST (NIL) -8 NIL NIL NIL) (-1056 2444502 2454058 2454125 "RPOLCAT" 2464789 NIL RPOLCAT (NIL T T T) -9 NIL 2467948 NIL) (-1055 2436038 2438364 2441474 "RPOLCAT-" 2441479 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1054 2427087 2434249 2434731 "ROUTINE" 2435578 T ROUTINE (NIL) -8 NIL NIL NIL) (-1053 2423922 2426713 2426853 "ROMAN" 2426969 T ROMAN (NIL) -8 NIL NIL NIL) (-1052 2422199 2422782 2423042 "ROIRC" 2423727 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1051 2418596 2420835 2420865 "RNS" 2421169 T RNS (NIL) -9 NIL 2421442 NIL) (-1050 2417105 2417488 2418022 "RNS-" 2418097 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1049 2416554 2416936 2416966 "RNG" 2416971 T RNG (NIL) -9 NIL 2416992 NIL) (-1048 2415946 2416308 2416351 "RMODULE" 2416413 NIL RMODULE (NIL T) -9 NIL 2416455 NIL) (-1047 2414782 2414876 2415212 "RMCAT2" 2415847 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1046 2411659 2414128 2414425 "RMATRIX" 2414544 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1045 2404601 2406835 2406950 "RMATCAT" 2410309 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2411291 NIL) (-1044 2403976 2404123 2404430 "RMATCAT-" 2404435 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1043 2403543 2403618 2403746 "RINTERP" 2403895 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1042 2402676 2403196 2403226 "RING" 2403282 T RING (NIL) -9 NIL 2403368 NIL) (-1041 2402468 2402512 2402609 "RING-" 2402614 NIL RING- (NIL T) -8 NIL NIL NIL) (-1040 2401309 2401546 2401804 "RIDIST" 2402232 T RIDIST (NIL) -7 NIL NIL NIL) (-1039 2392652 2400777 2400983 "RGCHAIN" 2401157 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1038 2392028 2392408 2392449 "RGBCSPC" 2392507 NIL RGBCSPC (NIL T) -9 NIL 2392559 NIL) (-1037 2391212 2391567 2391608 "RGBCMDL" 2391840 NIL RGBCMDL (NIL T) -9 NIL 2391954 NIL) (-1036 2390858 2390921 2391024 "RFFACTOR" 2391143 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1035 2390583 2390618 2390715 "RFFACT" 2390817 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1034 2388700 2389064 2389446 "RFDIST" 2390223 T RFDIST (NIL) -7 NIL NIL NIL) (-1033 2385694 2386308 2386978 "RF" 2388064 NIL RF (NIL T) -7 NIL NIL NIL) (-1032 2385147 2385239 2385402 "RETSOL" 2385596 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1031 2384783 2384863 2384906 "RETRACT" 2385039 NIL RETRACT (NIL T) -9 NIL 2385126 NIL) (-1030 2384632 2384657 2384744 "RETRACT-" 2384749 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1029 2384261 2384454 2384524 "RETAST" 2384584 T RETAST (NIL) -8 NIL NIL NIL) (-1028 2377117 2383914 2384041 "RESULT" 2384156 T RESULT (NIL) -8 NIL NIL NIL) (-1027 2375743 2376386 2376585 "RESRING" 2377020 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1026 2375379 2375428 2375526 "RESLATC" 2375680 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1025 2375085 2375119 2375226 "REPSQ" 2375338 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1024 2374783 2374817 2374928 "REPDB" 2375044 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1023 2368693 2370072 2371295 "REP2" 2373595 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1022 2365070 2365751 2366559 "REP1" 2367920 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1021 2362492 2363072 2363674 "REP" 2364490 T REP (NIL) -7 NIL NIL NIL) (-1020 2355245 2360633 2361089 "REGSET" 2362122 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1019 2354058 2354393 2354643 "REF" 2355030 NIL REF (NIL T) -8 NIL NIL NIL) (-1018 2353435 2353538 2353705 "REDORDER" 2353942 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1017 2349471 2352648 2352875 "RECLOS" 2353263 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1016 2348523 2348704 2348919 "REALSOLV" 2349278 T REALSOLV (NIL) -7 NIL NIL NIL) (-1015 2345006 2345808 2346692 "REAL0Q" 2347688 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1014 2340607 2341595 2342656 "REAL0" 2343987 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1013 2340453 2340494 2340524 "REAL" 2340529 T REAL (NIL) -9 NIL 2340564 NIL) (-1012 2339951 2340170 2340264 "RDUCEAST" 2340381 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1011 2339356 2339428 2339635 "RDIV" 2339873 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1010 2338424 2338598 2338811 "RDIST" 2339178 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1009 2337021 2337308 2337680 "RDETRS" 2338132 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1008 2334833 2335287 2335825 "RDETR" 2336563 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1007 2333444 2333722 2334126 "RDEEFS" 2334549 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1006 2331939 2332245 2332677 "RDEEF" 2333132 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1005 2326209 2329075 2329105 "RCFIELD" 2330400 T RCFIELD (NIL) -9 NIL 2331130 NIL) (-1004 2324273 2324777 2325473 "RCFIELD-" 2325548 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1003 2320589 2322374 2322417 "RCAGG" 2323501 NIL RCAGG (NIL T) -9 NIL 2323966 NIL) (-1002 2320217 2320311 2320474 "RCAGG-" 2320479 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1001 2319552 2319664 2319829 "RATRET" 2320101 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1000 2319105 2319172 2319293 "RATFACT" 2319480 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-999 2318420 2318540 2318690 "RANDSRC" 2318975 T RANDSRC (NIL) -7 NIL NIL NIL) (-998 2318157 2318201 2318272 "RADUTIL" 2318369 T RADUTIL (NIL) -7 NIL NIL NIL) (-997 2311340 2316999 2317307 "RADIX" 2317881 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-996 2303008 2311184 2311312 "RADFF" 2311317 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-995 2302660 2302735 2302763 "RADCAT" 2302920 T RADCAT (NIL) -9 NIL NIL NIL) (-994 2302445 2302493 2302590 "RADCAT-" 2302595 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-993 2300596 2302220 2302309 "QUEUE" 2302389 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-992 2300234 2300277 2300404 "QUATCT2" 2300547 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-991 2293988 2297283 2297323 "QUATCAT" 2298103 NIL QUATCAT (NIL T) -9 NIL 2298869 NIL) (-990 2290153 2291183 2292563 "QUATCAT-" 2292657 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-989 2286736 2290090 2290135 "QUAT" 2290140 NIL QUAT (NIL T) -8 NIL NIL NIL) (-988 2284256 2285820 2285861 "QUAGG" 2286236 NIL QUAGG (NIL T) -9 NIL 2286411 NIL) (-987 2283888 2284081 2284149 "QQUTAST" 2284208 T QQUTAST (NIL) -8 NIL NIL NIL) (-986 2282813 2283286 2283458 "QFORM" 2283760 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-985 2282451 2282494 2282621 "QFCAT2" 2282764 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-984 2273679 2278868 2278908 "QFCAT" 2279566 NIL QFCAT (NIL T) -9 NIL 2280567 NIL) (-983 2269287 2270476 2272055 "QFCAT-" 2272149 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-982 2268747 2268857 2268987 "QEQUAT" 2269177 T QEQUAT (NIL) -8 NIL NIL NIL) (-981 2261895 2262966 2264150 "QCMPACK" 2267680 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-980 2261140 2261314 2261546 "QALGSET2" 2261715 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-979 2258722 2259141 2259567 "QALGSET" 2260797 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-978 2257413 2257636 2257953 "PWFFINTB" 2258495 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-977 2255612 2255780 2256134 "PUSHVAR" 2257227 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-976 2251530 2252584 2252625 "PTRANFN" 2254509 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-975 2249932 2250223 2250545 "PTPACK" 2251241 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-974 2249564 2249621 2249730 "PTFUNC2" 2249869 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-973 2244091 2248436 2248477 "PTCAT" 2248773 NIL PTCAT (NIL T) -9 NIL 2248926 NIL) (-972 2243749 2243784 2243908 "PSQFR" 2244050 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-971 2242344 2242642 2242976 "PSEUDLIN" 2243447 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-970 2229114 2231478 2233802 "PSETPK" 2240104 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-969 2222158 2224872 2224968 "PSETCAT" 2227989 NIL PSETCAT (NIL T T T T) -9 NIL 2228803 NIL) (-968 2219994 2220628 2221449 "PSETCAT-" 2221454 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-967 2219343 2219508 2219536 "PSCURVE" 2219804 T PSCURVE (NIL) -9 NIL 2219971 NIL) (-966 2215699 2217181 2217246 "PSCAT" 2218090 NIL PSCAT (NIL T T T) -9 NIL 2218330 NIL) (-965 2214762 2214978 2215378 "PSCAT-" 2215383 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-964 2213494 2214127 2214332 "PRTITION" 2214577 T PRTITION (NIL) -8 NIL NIL NIL) (-963 2212996 2213215 2213307 "PRTDAST" 2213422 T PRTDAST (NIL) -8 NIL NIL NIL) (-962 2202094 2204300 2206488 "PRS" 2210858 NIL PRS (NIL T T) -7 NIL NIL NIL) (-961 2199952 2201444 2201484 "PRQAGG" 2201667 NIL PRQAGG (NIL T) -9 NIL 2201769 NIL) (-960 2199338 2199567 2199595 "PROPLOG" 2199780 T PROPLOG (NIL) -9 NIL 2199902 NIL) (-959 2196508 2197152 2197616 "PROPFRML" 2198906 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-958 2195968 2196078 2196208 "PROPERTY" 2196398 T PROPERTY (NIL) -8 NIL NIL NIL) (-957 2190053 2194134 2194954 "PRODUCT" 2195194 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-956 2189849 2189881 2189940 "PRINT" 2190014 T PRINT (NIL) -7 NIL NIL NIL) (-955 2189189 2189306 2189458 "PRIMES" 2189729 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-954 2187254 2187655 2188121 "PRIMELT" 2188768 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-953 2186983 2187032 2187060 "PRIMCAT" 2187184 T PRIMCAT (NIL) -9 NIL NIL NIL) (-952 2185990 2186168 2186396 "PRIMARR2" 2186801 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-951 2182151 2185928 2185973 "PRIMARR" 2185978 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-950 2181794 2181850 2181961 "PREASSOC" 2182089 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-949 2179114 2181252 2181486 "PR" 2181605 NIL PR (NIL T T) -8 NIL NIL NIL) (-948 2178589 2178722 2178750 "PPCURVE" 2178955 T PPCURVE (NIL) -9 NIL 2179091 NIL) (-947 2178211 2178384 2178467 "PORTNUM" 2178526 T PORTNUM (NIL) -8 NIL NIL NIL) (-946 2175570 2175969 2176561 "POLYROOT" 2177792 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-945 2174953 2175011 2175245 "POLYLIFT" 2175506 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-944 2171228 2171677 2172306 "POLYCATQ" 2174498 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-943 2158059 2163403 2163468 "POLYCAT" 2166982 NIL POLYCAT (NIL T T T) -9 NIL 2168910 NIL) (-942 2151566 2153408 2155773 "POLYCAT-" 2155778 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-941 2151153 2151221 2151341 "POLY2UP" 2151492 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-940 2150785 2150842 2150951 "POLY2" 2151090 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-939 2144761 2150389 2150549 "POLY" 2150658 NIL POLY (NIL T) -8 NIL NIL NIL) (-938 2143446 2143685 2143961 "POLUTIL" 2144535 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-937 2141801 2142078 2142409 "POLTOPOL" 2143168 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-936 2137319 2141737 2141783 "POINT" 2141788 NIL POINT (NIL T) -8 NIL NIL NIL) (-935 2135506 2135863 2136238 "PNTHEORY" 2136964 T PNTHEORY (NIL) -7 NIL NIL NIL) (-934 2133925 2134222 2134634 "PMTOOLS" 2135204 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-933 2133518 2133596 2133713 "PMSYM" 2133841 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-932 2133028 2133097 2133271 "PMQFCAT" 2133443 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-931 2132424 2132510 2132671 "PMPREDFS" 2132929 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-930 2131779 2131889 2132045 "PMPRED" 2132301 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-929 2130422 2130630 2131015 "PMPLCAT" 2131541 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-928 2129954 2130033 2130185 "PMLSAGG" 2130337 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-927 2129429 2129505 2129686 "PMKERNEL" 2129872 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-926 2129046 2129121 2129234 "PMINS" 2129348 NIL PMINS (NIL T) -7 NIL NIL NIL) (-925 2128474 2128543 2128759 "PMFS" 2128971 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-924 2127702 2127820 2128025 "PMDOWN" 2128351 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-923 2126976 2127087 2127250 "PMASSFS" 2127588 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-922 2126139 2126298 2126480 "PMASS" 2126814 T PMASS (NIL) -7 NIL NIL NIL) (-921 2125794 2125862 2125956 "PLOTTOOL" 2126065 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-920 2121608 2122642 2123563 "PLOT3D" 2124893 T PLOT3D (NIL) -8 NIL NIL NIL) (-919 2120520 2120697 2120932 "PLOT1" 2121412 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-918 2115142 2116331 2117479 "PLOT" 2119392 T PLOT (NIL) -8 NIL NIL NIL) (-917 2090536 2095208 2100059 "PLEQN" 2110408 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-916 2090229 2090276 2090379 "PINTERPA" 2090483 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-915 2089547 2089669 2089849 "PINTERP" 2090094 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-914 2087944 2088885 2088913 "PID" 2089095 T PID (NIL) -9 NIL 2089229 NIL) (-913 2087669 2087706 2087794 "PICOERCE" 2087901 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-912 2086917 2087438 2087525 "PI" 2087565 T PI (NIL) -8 NIL NIL 2087632) (-911 2086237 2086376 2086552 "PGROEB" 2086773 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-910 2081824 2082638 2083543 "PGE" 2085352 T PGE (NIL) -7 NIL NIL NIL) (-909 2079948 2080194 2080560 "PGCD" 2081541 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-908 2079286 2079389 2079550 "PFRPAC" 2079832 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-907 2075968 2077834 2078187 "PFR" 2078965 NIL PFR (NIL T) -8 NIL NIL NIL) (-906 2074357 2074601 2074926 "PFOTOOLS" 2075715 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-905 2072890 2073129 2073480 "PFOQ" 2074114 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-904 2071363 2071575 2071938 "PFO" 2072674 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-903 2068797 2070034 2070062 "PFECAT" 2070647 T PFECAT (NIL) -9 NIL 2071031 NIL) (-902 2068242 2068396 2068610 "PFECAT-" 2068615 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-901 2066846 2067097 2067398 "PFBRU" 2067991 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-900 2064713 2065064 2065496 "PFBR" 2066497 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-899 2061303 2064602 2064671 "PF" 2064676 NIL PF (NIL NIL) -8 NIL NIL NIL) (-898 2056569 2057510 2058380 "PERMGRP" 2060466 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-897 2054701 2055632 2055673 "PERMCAT" 2056119 NIL PERMCAT (NIL T) -9 NIL 2056424 NIL) (-896 2054354 2054395 2054519 "PERMAN" 2054654 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-895 2050270 2051730 2052406 "PERM" 2053711 NIL PERM (NIL T) -8 NIL NIL NIL) (-894 2047808 2049935 2050057 "PENDTREE" 2050181 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-893 2045901 2046635 2046676 "PDRING" 2047333 NIL PDRING (NIL T) -9 NIL 2047619 NIL) (-892 2045004 2045222 2045584 "PDRING-" 2045589 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-891 2042246 2042997 2043665 "PDEPROB" 2044356 T PDEPROB (NIL) -8 NIL NIL NIL) (-890 2039793 2040295 2040850 "PDEPACK" 2041711 T PDEPACK (NIL) -7 NIL NIL NIL) (-889 2038705 2038895 2039146 "PDECOMP" 2039592 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-888 2036310 2037127 2037155 "PDECAT" 2037942 T PDECAT (NIL) -9 NIL 2038655 NIL) (-887 2036061 2036094 2036184 "PCOMP" 2036271 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-886 2034266 2034862 2035159 "PBWLB" 2035790 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-885 2033898 2033955 2034064 "PATTERN2" 2034203 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-884 2031655 2032043 2032500 "PATTERN1" 2033487 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-883 2024162 2025728 2027066 "PATTERN" 2030338 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-882 2023726 2023793 2023925 "PATRES2" 2024089 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-881 2021121 2021675 2022156 "PATRES" 2023291 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-880 2019004 2019409 2019816 "PATMATCH" 2020788 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-879 2018540 2018723 2018764 "PATMAB" 2018871 NIL PATMAB (NIL T) -9 NIL 2018954 NIL) (-878 2017085 2017394 2017652 "PATLRES" 2018345 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-877 2016631 2016754 2016795 "PATAB" 2016800 NIL PATAB (NIL T) -9 NIL 2016972 NIL) (-876 2014112 2014644 2015217 "PARTPERM" 2016078 T PARTPERM (NIL) -7 NIL NIL NIL) (-875 2013733 2013796 2013898 "PARSURF" 2014043 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-874 2013365 2013422 2013531 "PARSU2" 2013670 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-873 2013129 2013169 2013236 "PARSER" 2013318 T PARSER (NIL) -7 NIL NIL NIL) (-872 2012750 2012813 2012915 "PARSCURV" 2013060 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-871 2012382 2012439 2012548 "PARSC2" 2012687 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-870 2012021 2012079 2012176 "PARPCURV" 2012318 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-869 2011653 2011710 2011819 "PARPC2" 2011958 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-868 2011173 2011259 2011378 "PAN2EXPR" 2011554 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-867 2009979 2010294 2010522 "PALETTE" 2010965 T PALETTE (NIL) -8 NIL NIL NIL) (-866 2008447 2008984 2009344 "PAIR" 2009665 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-865 2002374 2007706 2007900 "PADICRC" 2008302 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-864 1995659 2001720 2001904 "PADICRAT" 2002222 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-863 1992871 1994399 1994439 "PADICCT" 1995020 NIL PADICCT (NIL NIL) -9 NIL 1995302 NIL) (-862 1991223 1992808 1992853 "PADIC" 1992858 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-861 1990180 1990380 1990648 "PADEPAC" 1991010 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-860 1989392 1989525 1989731 "PADE" 1990042 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-859 1987814 1988600 1988880 "OWP" 1989196 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-858 1986887 1987419 1987591 "OVAR" 1987682 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-857 1975794 1977996 1980196 "OUTFORM" 1984707 T OUTFORM (NIL) -8 NIL NIL NIL) (-856 1975130 1975391 1975518 "OUTBFILE" 1975687 T OUTBFILE (NIL) -8 NIL NIL NIL) (-855 1974437 1974602 1974630 "OUTBCON" 1974948 T OUTBCON (NIL) -9 NIL 1975114 NIL) (-854 1974038 1974150 1974307 "OUTBCON-" 1974312 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-853 1973302 1973423 1973584 "OUT" 1973897 T OUT (NIL) -7 NIL NIL NIL) (-852 1972710 1973031 1973120 "OSI" 1973233 T OSI (NIL) -8 NIL NIL NIL) (-851 1972266 1972578 1972606 "OSGROUP" 1972611 T OSGROUP (NIL) -9 NIL 1972633 NIL) (-850 1971011 1971238 1971523 "ORTHPOL" 1972013 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-849 1968611 1970846 1970967 "OREUP" 1970972 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-848 1966063 1968302 1968429 "ORESUP" 1968553 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-847 1963591 1964091 1964652 "OREPCTO" 1965552 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-846 1957422 1959582 1959623 "OREPCAT" 1961971 NIL OREPCAT (NIL T) -9 NIL 1963075 NIL) (-845 1954590 1955365 1956416 "OREPCAT-" 1956421 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-844 1953767 1954039 1954067 "ORDSET" 1954376 T ORDSET (NIL) -9 NIL 1954540 NIL) (-843 1953286 1953408 1953601 "ORDSET-" 1953606 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-842 1951920 1952677 1952705 "ORDRING" 1952907 T ORDRING (NIL) -9 NIL 1953032 NIL) (-841 1951565 1951659 1951803 "ORDRING-" 1951808 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-840 1950971 1951408 1951436 "ORDMON" 1951441 T ORDMON (NIL) -9 NIL 1951462 NIL) (-839 1950133 1950280 1950475 "ORDFUNS" 1950820 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-838 1949497 1949890 1949918 "ORDFIN" 1949983 T ORDFIN (NIL) -9 NIL 1950057 NIL) (-837 1948763 1948890 1949076 "ORDCOMP2" 1949357 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1945362 1947349 1947758 "ORDCOMP" 1948387 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-835 1941970 1942853 1943667 "OPTPROB" 1944568 T OPTPROB (NIL) -8 NIL NIL NIL) (-834 1938772 1939411 1940115 "OPTPACK" 1941286 T OPTPACK (NIL) -7 NIL NIL NIL) (-833 1936485 1937225 1937253 "OPTCAT" 1938072 T OPTCAT (NIL) -9 NIL 1938722 NIL) (-832 1935928 1936162 1936267 "OPSIG" 1936400 T OPSIG (NIL) -8 NIL NIL NIL) (-831 1935696 1935735 1935801 "OPQUERY" 1935882 T OPQUERY (NIL) -7 NIL NIL NIL) (-830 1935231 1935402 1935443 "OPERCAT" 1935578 NIL OPERCAT (NIL T) -9 NIL 1935646 NIL) (-829 1935077 1935104 1935190 "OPERCAT-" 1935195 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-828 1932245 1933388 1933892 "OP" 1934606 NIL OP (NIL T) -8 NIL NIL NIL) (-827 1931550 1931665 1931839 "ONECOMP2" 1932117 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-826 1928402 1930347 1930716 "ONECOMP" 1931214 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-825 1927821 1927927 1928057 "OMSERVER" 1928292 T OMSERVER (NIL) -7 NIL NIL NIL) (-824 1924709 1927261 1927301 "OMSAGG" 1927362 NIL OMSAGG (NIL T) -9 NIL 1927426 NIL) (-823 1923332 1923595 1923877 "OMPKG" 1924447 T OMPKG (NIL) -7 NIL NIL NIL) (-822 1921914 1922881 1923050 "OMLO" 1923213 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-821 1920839 1920986 1921213 "OMEXPR" 1921740 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-820 1920017 1920260 1920420 "OMERRK" 1920699 T OMERRK (NIL) -8 NIL NIL NIL) (-819 1919335 1919563 1919699 "OMERR" 1919901 T OMERR (NIL) -8 NIL NIL NIL) (-818 1918813 1919012 1919120 "OMENC" 1919247 T OMENC (NIL) -8 NIL NIL NIL) (-817 1912708 1913893 1915064 "OMDEV" 1917662 T OMDEV (NIL) -8 NIL NIL NIL) (-816 1911777 1911948 1912142 "OMCONN" 1912534 T OMCONN (NIL) -8 NIL NIL NIL) (-815 1911207 1911310 1911338 "OM" 1911637 T OM (NIL) -9 NIL NIL NIL) (-814 1909828 1910770 1910798 "OINTDOM" 1910803 T OINTDOM (NIL) -9 NIL 1910824 NIL) (-813 1905634 1906818 1907534 "OFMONOID" 1909144 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-812 1905072 1905571 1905616 "ODVAR" 1905621 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-811 1902532 1904817 1904972 "ODR" 1904977 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-810 1894917 1902308 1902434 "ODPOL" 1902439 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-809 1888800 1894789 1894894 "ODP" 1894899 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-808 1887566 1887781 1888056 "ODETOOLS" 1888574 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-807 1884535 1885191 1885907 "ODESYS" 1886899 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-806 1879417 1880325 1881350 "ODERTRIC" 1883610 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-805 1878843 1878925 1879119 "ODERED" 1879329 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-804 1875739 1876285 1876960 "ODERAT" 1878268 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-803 1872699 1873163 1873760 "ODEPRRIC" 1875268 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-802 1870669 1871238 1871724 "ODEPROB" 1872233 T ODEPROB (NIL) -8 NIL NIL NIL) (-801 1867191 1867674 1868321 "ODEPRIM" 1870148 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-800 1866440 1866542 1866802 "ODEPAL" 1867083 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-799 1862602 1863393 1864257 "ODEPACK" 1865596 T ODEPACK (NIL) -7 NIL NIL NIL) (-798 1861635 1861742 1861971 "ODEINT" 1862491 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-797 1855736 1857161 1858608 "ODEIFTBL" 1860208 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-796 1851085 1851867 1852822 "ODEEF" 1854899 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-795 1850420 1850509 1850739 "ODECONST" 1850990 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-794 1848571 1849206 1849234 "ODECAT" 1849839 T ODECAT (NIL) -9 NIL 1850370 NIL) (-793 1848209 1848252 1848379 "OCTCT2" 1848522 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-792 1845128 1847921 1848040 "OCT" 1848122 NIL OCT (NIL T) -8 NIL NIL NIL) (-791 1844506 1844948 1844976 "OCAMON" 1844981 T OCAMON (NIL) -9 NIL 1845002 NIL) (-790 1839287 1841680 1841720 "OC" 1842817 NIL OC (NIL T) -9 NIL 1843675 NIL) (-789 1836535 1837276 1838259 "OC-" 1838353 NIL OC- (NIL T T) -8 NIL NIL NIL) (-788 1836092 1836407 1836435 "OASGP" 1836440 T OASGP (NIL) -9 NIL 1836460 NIL) (-787 1835379 1835842 1835870 "OAMONS" 1835910 T OAMONS (NIL) -9 NIL 1835953 NIL) (-786 1834819 1835226 1835254 "OAMON" 1835259 T OAMON (NIL) -9 NIL 1835279 NIL) (-785 1834123 1834615 1834643 "OAGROUP" 1834648 T OAGROUP (NIL) -9 NIL 1834668 NIL) (-784 1833813 1833863 1833951 "NUMTUBE" 1834067 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-783 1827386 1828904 1830440 "NUMQUAD" 1832297 T NUMQUAD (NIL) -7 NIL NIL NIL) (-782 1823142 1824130 1825155 "NUMODE" 1826381 T NUMODE (NIL) -7 NIL NIL NIL) (-781 1820523 1821377 1821405 "NUMINT" 1822328 T NUMINT (NIL) -9 NIL 1823092 NIL) (-780 1819471 1819668 1819886 "NUMFMT" 1820325 T NUMFMT (NIL) -7 NIL NIL NIL) (-779 1805830 1808775 1811307 "NUMERIC" 1816978 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-778 1800254 1805279 1805374 "NTSCAT" 1805379 NIL NTSCAT (NIL T T T T) -9 NIL 1805418 NIL) (-777 1799448 1799613 1799806 "NTPOLFN" 1800093 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-776 1799080 1799137 1799246 "NSUP2" 1799385 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-775 1786965 1795905 1796717 "NSUP" 1798301 NIL NSUP (NIL T) -8 NIL NIL NIL) (-774 1777010 1786739 1786872 "NSMP" 1786877 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-773 1775442 1775743 1776100 "NREP" 1776698 NIL NREP (NIL T) -7 NIL NIL NIL) (-772 1774033 1774285 1774643 "NPCOEF" 1775185 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-771 1773099 1773214 1773430 "NORMRETR" 1773914 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-770 1771140 1771430 1771839 "NORMPK" 1772807 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-769 1770825 1770853 1770977 "NORMMA" 1771106 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-768 1770614 1770643 1770712 "NONE1" 1770789 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-767 1770441 1770571 1770600 "NONE" 1770605 T NONE (NIL) -8 NIL NIL NIL) (-766 1769924 1769986 1770172 "NODE1" 1770373 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-765 1768198 1769021 1769276 "NNI" 1769623 T NNI (NIL) -8 NIL NIL 1769858) (-764 1766618 1766931 1767295 "NLINSOL" 1767866 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-763 1762886 1763854 1764753 "NIPROB" 1765739 T NIPROB (NIL) -8 NIL NIL NIL) (-762 1761643 1761877 1762179 "NFINTBAS" 1762648 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-761 1760817 1761293 1761334 "NETCLT" 1761506 NIL NETCLT (NIL T) -9 NIL 1761588 NIL) (-760 1759525 1759756 1760037 "NCODIV" 1760585 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-759 1759287 1759324 1759399 "NCNTFRAC" 1759482 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-758 1757467 1757831 1758251 "NCEP" 1758912 NIL NCEP (NIL T) -7 NIL NIL NIL) (-757 1756385 1757117 1757145 "NASRING" 1757255 T NASRING (NIL) -9 NIL 1757329 NIL) (-756 1756180 1756224 1756318 "NASRING-" 1756323 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-755 1755333 1755832 1755860 "NARNG" 1755977 T NARNG (NIL) -9 NIL 1756068 NIL) (-754 1755025 1755092 1755226 "NARNG-" 1755231 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-753 1753904 1754111 1754346 "NAGSP" 1754810 T NAGSP (NIL) -7 NIL NIL NIL) (-752 1745176 1746860 1748533 "NAGS" 1752251 T NAGS (NIL) -7 NIL NIL NIL) (-751 1743724 1744032 1744363 "NAGF07" 1744865 T NAGF07 (NIL) -7 NIL NIL NIL) (-750 1738262 1739553 1740860 "NAGF04" 1742437 T NAGF04 (NIL) -7 NIL NIL NIL) (-749 1731230 1732844 1734477 "NAGF02" 1736649 T NAGF02 (NIL) -7 NIL NIL NIL) (-748 1726454 1727554 1728671 "NAGF01" 1730133 T NAGF01 (NIL) -7 NIL NIL NIL) (-747 1720082 1721648 1723233 "NAGE04" 1724889 T NAGE04 (NIL) -7 NIL NIL NIL) (-746 1711251 1713372 1715502 "NAGE02" 1717972 T NAGE02 (NIL) -7 NIL NIL NIL) (-745 1707204 1708151 1709115 "NAGE01" 1710307 T NAGE01 (NIL) -7 NIL NIL NIL) (-744 1704999 1705533 1706091 "NAGD03" 1706666 T NAGD03 (NIL) -7 NIL NIL NIL) (-743 1696749 1698677 1700631 "NAGD02" 1703065 T NAGD02 (NIL) -7 NIL NIL NIL) (-742 1690560 1691985 1693425 "NAGD01" 1695329 T NAGD01 (NIL) -7 NIL NIL NIL) (-741 1686769 1687591 1688428 "NAGC06" 1689743 T NAGC06 (NIL) -7 NIL NIL NIL) (-740 1685234 1685566 1685922 "NAGC05" 1686433 T NAGC05 (NIL) -7 NIL NIL NIL) (-739 1684610 1684729 1684873 "NAGC02" 1685110 T NAGC02 (NIL) -7 NIL NIL NIL) (-738 1683670 1684227 1684267 "NAALG" 1684346 NIL NAALG (NIL T) -9 NIL 1684407 NIL) (-737 1683505 1683534 1683624 "NAALG-" 1683629 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-736 1677455 1678563 1679750 "MULTSQFR" 1682401 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-735 1676774 1676849 1677033 "MULTFACT" 1677367 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-734 1669867 1673737 1673790 "MTSCAT" 1674860 NIL MTSCAT (NIL T T) -9 NIL 1675374 NIL) (-733 1669579 1669633 1669725 "MTHING" 1669807 NIL MTHING (NIL T) -7 NIL NIL NIL) (-732 1669371 1669404 1669464 "MSYSCMD" 1669539 T MSYSCMD (NIL) -7 NIL NIL NIL) (-731 1666466 1668932 1668973 "MSETAGG" 1668978 NIL MSETAGG (NIL T) -9 NIL 1669012 NIL) (-730 1662578 1665221 1665541 "MSET" 1666179 NIL MSET (NIL T) -8 NIL NIL NIL) (-729 1658463 1659957 1660702 "MRING" 1661878 NIL MRING (NIL T T) -8 NIL NIL NIL) (-728 1658029 1658096 1658227 "MRF2" 1658390 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-727 1657647 1657682 1657826 "MRATFAC" 1657988 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-726 1655259 1655554 1655985 "MPRFF" 1657352 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-725 1649345 1655113 1655210 "MPOLY" 1655215 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-724 1648835 1648870 1649078 "MPCPF" 1649304 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-723 1648349 1648392 1648576 "MPC3" 1648786 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-722 1647544 1647625 1647846 "MPC2" 1648264 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-721 1645845 1646182 1646572 "MONOTOOL" 1647204 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-720 1645096 1645387 1645415 "MONOID" 1645634 T MONOID (NIL) -9 NIL 1645781 NIL) (-719 1644642 1644761 1644942 "MONOID-" 1644947 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-718 1635510 1641409 1641468 "MONOGEN" 1642142 NIL MONOGEN (NIL T T) -9 NIL 1642598 NIL) (-717 1632749 1633477 1634470 "MONOGEN-" 1634589 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-716 1631608 1632028 1632056 "MONADWU" 1632448 T MONADWU (NIL) -9 NIL 1632686 NIL) (-715 1630980 1631139 1631387 "MONADWU-" 1631392 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-714 1630365 1630583 1630611 "MONAD" 1630818 T MONAD (NIL) -9 NIL 1630930 NIL) (-713 1630050 1630128 1630260 "MONAD-" 1630265 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-712 1628366 1628963 1629242 "MOEBIUS" 1629803 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-711 1627758 1628136 1628176 "MODULE" 1628181 NIL MODULE (NIL T) -9 NIL 1628207 NIL) (-710 1627326 1627422 1627612 "MODULE-" 1627617 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-709 1625085 1625734 1626061 "MODRING" 1627150 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-708 1622073 1623190 1623711 "MODOP" 1624614 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-707 1620688 1621140 1621417 "MODMONOM" 1621936 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-706 1610535 1618979 1619393 "MODMON" 1620325 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-705 1607752 1609403 1609679 "MODFIELD" 1610410 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-704 1606756 1607033 1607223 "MMLFORM" 1607582 T MMLFORM (NIL) -8 NIL NIL NIL) (-703 1606282 1606325 1606504 "MMAP" 1606707 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-702 1604499 1605232 1605273 "MLO" 1605696 NIL MLO (NIL T) -9 NIL 1605938 NIL) (-701 1601866 1602381 1602983 "MLIFT" 1603980 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-700 1601257 1601341 1601495 "MKUCFUNC" 1601777 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-699 1600856 1600926 1601049 "MKRECORD" 1601180 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-698 1599904 1600065 1600293 "MKFUNC" 1600667 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-697 1599292 1599396 1599552 "MKFLCFN" 1599787 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-696 1598835 1599202 1599261 "MKCHSET" 1599266 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-695 1598112 1598214 1598399 "MKBCFUNC" 1598728 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-694 1594856 1597666 1597802 "MINT" 1597996 T MINT (NIL) -8 NIL NIL NIL) (-693 1593668 1593911 1594188 "MHROWRED" 1594611 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-692 1589103 1592203 1592608 "MFLOAT" 1593283 T MFLOAT (NIL) -8 NIL NIL NIL) (-691 1588460 1588536 1588707 "MFINFACT" 1589015 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-690 1584795 1585638 1586517 "MESH" 1587601 T MESH (NIL) -7 NIL NIL NIL) (-689 1583185 1583497 1583850 "MDDFACT" 1584482 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-688 1580027 1582344 1582385 "MDAGG" 1582640 NIL MDAGG (NIL T) -9 NIL 1582783 NIL) (-687 1569823 1579320 1579527 "MCMPLX" 1579840 T MCMPLX (NIL) -8 NIL NIL NIL) (-686 1568964 1569110 1569310 "MCDEN" 1569672 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-685 1566854 1567124 1567504 "MCALCFN" 1568694 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-684 1565779 1566019 1566252 "MAYBE" 1566660 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-683 1563391 1563914 1564476 "MATSTOR" 1565250 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-682 1559396 1562763 1563011 "MATRIX" 1563176 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-681 1555165 1555869 1556605 "MATLIN" 1558753 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-680 1553759 1553912 1554245 "MATCAT2" 1555000 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-679 1543907 1547048 1547125 "MATCAT" 1552008 NIL MATCAT (NIL T T T) -9 NIL 1553425 NIL) (-678 1540271 1541284 1542640 "MATCAT-" 1542645 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-677 1538383 1538707 1539091 "MAPPKG3" 1539946 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-676 1537364 1537537 1537759 "MAPPKG2" 1538207 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-675 1535863 1536147 1536474 "MAPPKG1" 1537070 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-674 1534969 1535269 1535446 "MAPPAST" 1535706 T MAPPAST (NIL) -8 NIL NIL NIL) (-673 1534580 1534638 1534761 "MAPHACK3" 1534905 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-672 1534172 1534233 1534347 "MAPHACK2" 1534512 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-671 1533610 1533713 1533855 "MAPHACK1" 1534063 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-670 1531716 1532310 1532614 "MAGMA" 1533338 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-669 1531222 1531440 1531531 "MACROAST" 1531645 T MACROAST (NIL) -8 NIL NIL NIL) (-668 1527689 1529461 1529922 "M3D" 1530794 NIL M3D (NIL T) -8 NIL NIL NIL) (-667 1521845 1526058 1526099 "LZSTAGG" 1526881 NIL LZSTAGG (NIL T) -9 NIL 1527176 NIL) (-666 1517819 1518976 1520433 "LZSTAGG-" 1520438 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-665 1514933 1515710 1516197 "LWORD" 1517364 NIL LWORD (NIL T) -8 NIL NIL NIL) (-664 1514536 1514737 1514812 "LSTAST" 1514878 T LSTAST (NIL) -8 NIL NIL NIL) (-663 1507768 1514307 1514441 "LSQM" 1514446 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-662 1506992 1507131 1507359 "LSPP" 1507623 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-661 1503834 1504491 1505204 "LSMP1" 1506311 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-660 1501669 1501963 1502412 "LSMP" 1503530 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-659 1495596 1500836 1500877 "LSAGG" 1500939 NIL LSAGG (NIL T) -9 NIL 1501017 NIL) (-658 1492291 1493215 1494428 "LSAGG-" 1494433 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-657 1489917 1491435 1491684 "LPOLY" 1492086 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-656 1489499 1489584 1489707 "LPEFRAC" 1489826 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-655 1489151 1489263 1489291 "LOGIC" 1489402 T LOGIC (NIL) -9 NIL 1489483 NIL) (-654 1489013 1489036 1489107 "LOGIC-" 1489112 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-653 1488206 1488346 1488539 "LODOOPS" 1488869 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-652 1486744 1486979 1487332 "LODOF" 1487953 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-651 1483114 1485497 1485538 "LODOCAT" 1485976 NIL LODOCAT (NIL T) -9 NIL 1486187 NIL) (-650 1482847 1482905 1483032 "LODOCAT-" 1483037 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-649 1480216 1482688 1482806 "LODO2" 1482811 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-648 1477700 1480153 1480198 "LODO1" 1480203 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-647 1475172 1477616 1477682 "LODO" 1477687 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-646 1474032 1474197 1474509 "LODEEF" 1474995 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-645 1472379 1473126 1473379 "LO" 1473864 NIL LO (NIL T T T) -8 NIL NIL NIL) (-644 1467665 1470509 1470550 "LNAGG" 1471497 NIL LNAGG (NIL T) -9 NIL 1471941 NIL) (-643 1466812 1467026 1467368 "LNAGG-" 1467373 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-642 1462975 1463737 1464376 "LMOPS" 1466227 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-641 1462370 1462732 1462773 "LMODULE" 1462834 NIL LMODULE (NIL T) -9 NIL 1462876 NIL) (-640 1459616 1462015 1462138 "LMDICT" 1462280 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-639 1459342 1459524 1459584 "LITERAL" 1459589 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-638 1458867 1458941 1459080 "LIST3" 1459262 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-637 1457001 1457313 1457712 "LIST2MAP" 1458514 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-636 1456008 1456186 1456414 "LIST2" 1456819 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-635 1449237 1454954 1455252 "LIST" 1455743 NIL LIST (NIL T) -8 NIL NIL NIL) (-634 1447967 1448603 1448644 "LINEXP" 1448899 NIL LINEXP (NIL T) -9 NIL 1449048 NIL) (-633 1446614 1446874 1447171 "LINDEP" 1447719 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-632 1443452 1444152 1444910 "LIMITRF" 1445888 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-631 1441751 1442039 1442448 "LIMITPS" 1443154 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-630 1440800 1441243 1441283 "LIECAT" 1441423 NIL LIECAT (NIL T) -9 NIL 1441574 NIL) (-629 1440641 1440668 1440756 "LIECAT-" 1440761 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-628 1435128 1440152 1440380 "LIE" 1440462 NIL LIE (NIL T T) -8 NIL NIL NIL) (-627 1427742 1434577 1434742 "LIB" 1434983 T LIB (NIL) -8 NIL NIL NIL) (-626 1423379 1424260 1425195 "LGROBP" 1426859 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-625 1422219 1422911 1422939 "LFCAT" 1423146 T LFCAT (NIL) -9 NIL 1423285 NIL) (-624 1420085 1420359 1420721 "LF" 1421940 NIL LF (NIL T T) -7 NIL NIL NIL) (-623 1416989 1417617 1418305 "LEXTRIPK" 1419449 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-622 1413760 1414559 1415062 "LEXP" 1416569 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-621 1413263 1413481 1413573 "LETAST" 1413688 T LETAST (NIL) -8 NIL NIL NIL) (-620 1411661 1411974 1412375 "LEADCDET" 1412945 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-619 1410851 1410925 1411154 "LAZM3PK" 1411582 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-618 1405820 1408928 1409466 "LAUPOL" 1410363 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-617 1405385 1405429 1405597 "LAPLACE" 1405770 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-616 1404466 1405016 1405057 "LALG" 1405119 NIL LALG (NIL T) -9 NIL 1405178 NIL) (-615 1404180 1404239 1404375 "LALG-" 1404380 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-614 1402154 1403281 1403532 "LA" 1404013 NIL LA (NIL T T T) -8 NIL NIL NIL) (-613 1401989 1402013 1402054 "KVTFROM" 1402116 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-612 1400792 1401206 1401435 "KTVLOGIC" 1401780 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-611 1400627 1400651 1400692 "KRCFROM" 1400754 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-610 1399531 1399718 1400017 "KOVACIC" 1400427 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-609 1399366 1399390 1399431 "KONVERT" 1399493 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-608 1399201 1399225 1399266 "KOERCE" 1399328 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-607 1398703 1398784 1398914 "KERNEL2" 1399115 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-606 1396437 1397197 1397590 "KERNEL" 1398342 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-605 1390288 1394976 1395030 "KDAGG" 1395407 NIL KDAGG (NIL T T) -9 NIL 1395613 NIL) (-604 1389817 1389941 1390146 "KDAGG-" 1390151 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1382994 1389478 1389633 "KAFILE" 1389695 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-602 1377481 1382505 1382733 "JORDAN" 1382815 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-601 1376887 1377130 1377251 "JOINAST" 1377380 T JOINAST (NIL) -8 NIL NIL NIL) (-600 1376733 1376792 1376847 "JAVACODE" 1376852 T JAVACODE (NIL) -8 NIL NIL NIL) (-599 1373032 1374938 1374992 "IXAGG" 1375921 NIL IXAGG (NIL T T) -9 NIL 1376380 NIL) (-598 1371951 1372257 1372676 "IXAGG-" 1372681 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-597 1367531 1371873 1371932 "IVECTOR" 1371937 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-596 1366297 1366534 1366800 "ITUPLE" 1367298 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-595 1364733 1364910 1365216 "ITRIGMNP" 1366119 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-594 1363478 1363682 1363965 "ITFUN3" 1364509 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-593 1363110 1363167 1363276 "ITFUN2" 1363415 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-592 1360947 1361972 1362271 "ITAYLOR" 1362844 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-591 1349930 1355084 1356247 "ISUPS" 1359817 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-590 1349034 1349174 1349410 "ISUMP" 1349777 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-589 1344298 1348835 1348914 "ISTRING" 1348987 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-588 1343801 1344019 1344111 "ISAST" 1344226 T ISAST (NIL) -8 NIL NIL NIL) (-587 1343011 1343092 1343308 "IRURPK" 1343715 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-586 1341947 1342148 1342388 "IRSN" 1342791 T IRSN (NIL) -7 NIL NIL NIL) (-585 1339976 1340331 1340767 "IRRF2F" 1341585 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-584 1339723 1339761 1339837 "IRREDFFX" 1339932 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-583 1338338 1338597 1338896 "IROOT" 1339456 NIL IROOT (NIL T) -7 NIL NIL NIL) (-582 1337410 1337523 1337744 "IR2F" 1338221 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-581 1335023 1335518 1336084 "IR2" 1336888 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-580 1331655 1332707 1333399 "IR" 1334363 NIL IR (NIL T) -8 NIL NIL NIL) (-579 1331446 1331480 1331540 "IPRNTPK" 1331615 T IPRNTPK (NIL) -7 NIL NIL NIL) (-578 1328067 1331335 1331404 "IPF" 1331409 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-577 1326432 1327992 1328049 "IPADIC" 1328054 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-576 1325772 1325992 1326122 "IP4ADDR" 1326322 T IP4ADDR (NIL) -8 NIL NIL NIL) (-575 1325272 1325476 1325586 "IOMODE" 1325682 T IOMODE (NIL) -8 NIL NIL NIL) (-574 1324345 1324869 1324996 "IOBFILE" 1325165 T IOBFILE (NIL) -8 NIL NIL NIL) (-573 1323833 1324249 1324277 "IOBCON" 1324282 T IOBCON (NIL) -9 NIL 1324303 NIL) (-572 1323330 1323388 1323578 "INVLAPLA" 1323769 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-571 1313027 1315368 1317742 "INTTR" 1321006 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-570 1309371 1310113 1310977 "INTTOOLS" 1312212 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-569 1308957 1309048 1309165 "INTSLPE" 1309274 T INTSLPE (NIL) -7 NIL NIL NIL) (-568 1306952 1308880 1308939 "INTRVL" 1308944 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-567 1304554 1305066 1305641 "INTRF" 1306437 NIL INTRF (NIL T) -7 NIL NIL NIL) (-566 1303965 1304062 1304204 "INTRET" 1304452 NIL INTRET (NIL T) -7 NIL NIL NIL) (-565 1301962 1302351 1302821 "INTRAT" 1303573 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-564 1299190 1299773 1300399 "INTPM" 1301447 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-563 1295916 1296508 1297246 "INTPAF" 1298583 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-562 1291095 1292057 1293108 "INTPACK" 1294885 T INTPACK (NIL) -7 NIL NIL NIL) (-561 1290347 1290499 1290707 "INTHERTR" 1290937 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-560 1289786 1289866 1290054 "INTHERAL" 1290261 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-559 1287632 1288075 1288532 "INTHEORY" 1289349 T INTHEORY (NIL) -7 NIL NIL NIL) (-558 1278998 1280601 1282362 "INTG0" 1286002 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-557 1265271 1268636 1272021 "INTFTBL" 1275633 T INTFTBL (NIL) -8 NIL NIL NIL) (-556 1264520 1264658 1264831 "INTFACT" 1265130 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-555 1261911 1262355 1262917 "INTEF" 1264076 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-554 1260378 1261083 1261111 "INTDOM" 1261412 T INTDOM (NIL) -9 NIL 1261619 NIL) (-553 1259747 1259921 1260163 "INTDOM-" 1260168 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-552 1256242 1258131 1258185 "INTCAT" 1258984 NIL INTCAT (NIL T) -9 NIL 1259304 NIL) (-551 1255715 1255817 1255945 "INTBIT" 1256134 T INTBIT (NIL) -7 NIL NIL NIL) (-550 1254386 1254540 1254854 "INTALG" 1255560 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-549 1253843 1253933 1254103 "INTAF" 1254290 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-548 1247299 1253653 1253793 "INTABL" 1253798 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-547 1246762 1247175 1247203 "INT8" 1247208 T INT8 (NIL) -8 NIL NIL 1247216) (-546 1246224 1246637 1246665 "INT32" 1246670 T INT32 (NIL) -8 NIL NIL 1246678) (-545 1245686 1246099 1246127 "INT16" 1246132 T INT16 (NIL) -8 NIL NIL 1246140) (-544 1242600 1245415 1245542 "INT" 1245579 T INT (NIL) -8 NIL NIL NIL) (-543 1237617 1240289 1240317 "INS" 1241251 T INS (NIL) -9 NIL 1241916 NIL) (-542 1234857 1235628 1236602 "INS-" 1236675 NIL INS- (NIL T) -8 NIL NIL NIL) (-541 1233705 1233910 1234186 "INPSIGN" 1234632 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-540 1232823 1232940 1233137 "INPRODPF" 1233585 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-539 1231717 1231834 1232071 "INPRODFF" 1232703 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-538 1230717 1230869 1231129 "INNMFACT" 1231553 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-537 1229914 1230011 1230199 "INMODGCD" 1230616 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-536 1228423 1228667 1228991 "INFSP" 1229659 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-535 1227607 1227724 1227907 "INFPROD0" 1228303 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-534 1227217 1227277 1227375 "INFORM1" 1227542 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-533 1224099 1225282 1225797 "INFORM" 1226710 T INFORM (NIL) -8 NIL NIL NIL) (-532 1223622 1223711 1223825 "INFINITY" 1224005 T INFINITY (NIL) -7 NIL NIL NIL) (-531 1222798 1223342 1223443 "INETCLTS" 1223541 T INETCLTS (NIL) -8 NIL NIL NIL) (-530 1221415 1221664 1221985 "INEP" 1222546 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-529 1220691 1221312 1221377 "INDE" 1221382 NIL INDE (NIL T) -8 NIL NIL NIL) (-528 1220255 1220323 1220440 "INCRMAPS" 1220618 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-527 1219073 1219524 1219730 "INBFILE" 1220069 T INBFILE (NIL) -8 NIL NIL NIL) (-526 1214384 1215309 1216253 "INBFF" 1218161 NIL INBFF (NIL T) -7 NIL NIL NIL) (-525 1213292 1213561 1213589 "INBCON" 1214102 T INBCON (NIL) -9 NIL 1214368 NIL) (-524 1212544 1212767 1213043 "INBCON-" 1213048 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-523 1212046 1212265 1212357 "INAST" 1212472 T INAST (NIL) -8 NIL NIL NIL) (-522 1211500 1211725 1211831 "IMPTAST" 1211960 T IMPTAST (NIL) -8 NIL NIL NIL) (-521 1207993 1211344 1211448 "IMATRIX" 1211453 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-520 1206705 1206828 1207143 "IMATQF" 1207849 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-519 1204925 1205152 1205489 "IMATLIN" 1206461 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-518 1199553 1204849 1204907 "ILIST" 1204912 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-517 1197506 1199413 1199526 "IIARRAY2" 1199531 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-516 1192941 1197417 1197481 "IFF" 1197486 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-515 1192315 1192558 1192674 "IFAST" 1192845 T IFAST (NIL) -8 NIL NIL NIL) (-514 1187358 1191607 1191795 "IFARRAY" 1192172 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-513 1186565 1187262 1187335 "IFAMON" 1187340 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-512 1186149 1186214 1186268 "IEVALAB" 1186475 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-511 1185824 1185892 1186052 "IEVALAB-" 1186057 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-510 1185101 1185713 1185788 "IDPOAMS" 1185793 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-509 1184435 1184990 1185065 "IDPOAM" 1185070 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-508 1184093 1184349 1184412 "IDPO" 1184417 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-507 1183178 1183428 1183481 "IDPC" 1183894 NIL IDPC (NIL T T) -9 NIL 1184043 NIL) (-506 1182674 1183070 1183143 "IDPAM" 1183148 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-505 1182077 1182566 1182639 "IDPAG" 1182644 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-504 1181845 1181992 1182042 "IDENT" 1182047 T IDENT (NIL) -8 NIL NIL NIL) (-503 1178100 1178948 1179843 "IDECOMP" 1181002 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-502 1170974 1172023 1173070 "IDEAL" 1177136 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-501 1170138 1170250 1170449 "ICDEN" 1170858 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-500 1169237 1169618 1169765 "ICARD" 1170011 T ICARD (NIL) -8 NIL NIL NIL) (-499 1167297 1167610 1168015 "IBPTOOLS" 1168914 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-498 1162931 1166917 1167030 "IBITS" 1167216 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-497 1159654 1160230 1160925 "IBATOOL" 1162348 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-496 1157434 1157895 1158428 "IBACHIN" 1159189 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-495 1155311 1157280 1157383 "IARRAY2" 1157388 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-494 1151464 1155237 1155294 "IARRAY1" 1155299 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-493 1145467 1149876 1150357 "IAN" 1151003 T IAN (NIL) -8 NIL NIL NIL) (-492 1144978 1145035 1145208 "IALGFACT" 1145404 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-491 1144506 1144619 1144647 "HYPCAT" 1144854 T HYPCAT (NIL) -9 NIL NIL NIL) (-490 1144044 1144161 1144347 "HYPCAT-" 1144352 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-489 1143666 1143839 1143922 "HOSTNAME" 1143981 T HOSTNAME (NIL) -8 NIL NIL NIL) (-488 1143511 1143548 1143589 "HOMOTOP" 1143594 NIL HOMOTOP (NIL T) -9 NIL 1143627 NIL) (-487 1140190 1141521 1141562 "HOAGG" 1142543 NIL HOAGG (NIL T) -9 NIL 1143222 NIL) (-486 1138784 1139183 1139709 "HOAGG-" 1139714 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-485 1132847 1138381 1138529 "HEXADEC" 1138656 T HEXADEC (NIL) -8 NIL NIL NIL) (-484 1131595 1131817 1132080 "HEUGCD" 1132624 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-483 1130698 1131432 1131562 "HELLFDIV" 1131567 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-482 1128926 1130475 1130563 "HEAP" 1130642 NIL HEAP (NIL T) -8 NIL NIL NIL) (-481 1128217 1128478 1128612 "HEADAST" 1128812 T HEADAST (NIL) -8 NIL NIL NIL) (-480 1122144 1128132 1128194 "HDP" 1128199 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-479 1115926 1121779 1121931 "HDMP" 1122045 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-478 1115251 1115390 1115554 "HB" 1115782 T HB (NIL) -7 NIL NIL NIL) (-477 1108750 1115097 1115201 "HASHTBL" 1115206 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-476 1108253 1108471 1108563 "HASAST" 1108678 T HASAST (NIL) -8 NIL NIL NIL) (-475 1106069 1107875 1108057 "HACKPI" 1108091 T HACKPI (NIL) -8 NIL NIL NIL) (-474 1101791 1105922 1106035 "GTSET" 1106040 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-473 1095319 1101669 1101767 "GSTBL" 1101772 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-472 1087634 1094350 1094615 "GSERIES" 1095110 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-471 1086801 1087192 1087220 "GROUP" 1087423 T GROUP (NIL) -9 NIL 1087557 NIL) (-470 1086167 1086326 1086577 "GROUP-" 1086582 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-469 1084536 1084855 1085242 "GROEBSOL" 1085844 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-468 1083476 1083738 1083789 "GRMOD" 1084318 NIL GRMOD (NIL T T) -9 NIL 1084486 NIL) (-467 1083244 1083280 1083408 "GRMOD-" 1083413 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-466 1078570 1079598 1080598 "GRIMAGE" 1082264 T GRIMAGE (NIL) -8 NIL NIL NIL) (-465 1077037 1077297 1077621 "GRDEF" 1078266 T GRDEF (NIL) -7 NIL NIL NIL) (-464 1076481 1076597 1076738 "GRAY" 1076916 T GRAY (NIL) -7 NIL NIL NIL) (-463 1075694 1076074 1076125 "GRALG" 1076278 NIL GRALG (NIL T T) -9 NIL 1076371 NIL) (-462 1075355 1075428 1075591 "GRALG-" 1075596 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-461 1072159 1074940 1075118 "GPOLSET" 1075262 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-460 1071513 1071570 1071828 "GOSPER" 1072096 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-459 1067272 1067951 1068477 "GMODPOL" 1071212 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-458 1066277 1066461 1066699 "GHENSEL" 1067084 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-457 1060328 1061171 1062198 "GENUPS" 1065361 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-456 1060025 1060076 1060165 "GENUFACT" 1060271 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-455 1059437 1059514 1059679 "GENPGCD" 1059943 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-454 1058911 1058946 1059159 "GENMFACT" 1059396 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-453 1057479 1057734 1058041 "GENEEZ" 1058654 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-452 1051423 1057090 1057252 "GDMP" 1057402 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-451 1040822 1045194 1046300 "GCNAALG" 1050406 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-450 1039249 1040077 1040105 "GCDDOM" 1040360 T GCDDOM (NIL) -9 NIL 1040517 NIL) (-449 1038719 1038846 1039061 "GCDDOM-" 1039066 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-448 1027339 1029665 1032057 "GBINTERN" 1036410 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-447 1025176 1025468 1025889 "GBF" 1027014 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-446 1023957 1024122 1024389 "GBEUCLID" 1024992 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-445 1022629 1022814 1023118 "GB" 1023736 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-444 1021978 1022103 1022252 "GAUSSFAC" 1022500 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-443 1020345 1020647 1020961 "GALUTIL" 1021697 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-442 1018653 1018927 1019251 "GALPOLYU" 1020072 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-441 1016018 1016308 1016715 "GALFACTU" 1018350 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-440 1007824 1009323 1010931 "GALFACT" 1014450 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-439 1005212 1005870 1005898 "FVFUN" 1007054 T FVFUN (NIL) -9 NIL 1007774 NIL) (-438 1004478 1004660 1004688 "FVC" 1004979 T FVC (NIL) -9 NIL 1005162 NIL) (-437 1004120 1004275 1004356 "FUNCTION" 1004430 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-436 1002938 1003421 1003624 "FTEM" 1003937 T FTEM (NIL) -8 NIL NIL NIL) (-435 1000721 1001269 1001732 "FT" 1002495 T FT (NIL) -8 NIL NIL NIL) (-434 998977 999266 999670 "FSUPFACT" 1000412 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-433 997374 997663 997995 "FST" 998665 T FST (NIL) -8 NIL NIL NIL) (-432 996545 996651 996846 "FSRED" 997256 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-431 995224 995479 995833 "FSPRMELT" 996260 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-430 992309 992747 993246 "FSPECF" 994787 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-429 991823 991877 992054 "FSINT" 992250 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-428 990150 990816 991119 "FSERIES" 991602 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-427 989164 989280 989511 "FSCINT" 990030 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-426 988206 988349 988576 "FSAGG2" 989017 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 984440 987150 987191 "FSAGG" 987561 NIL FSAGG (NIL T) -9 NIL 987820 NIL) (-424 982202 982803 983599 "FSAGG-" 983694 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 979857 980136 980690 "FS2UPS" 981920 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-422 978714 978885 979194 "FS2EXPXP" 979682 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-421 978296 978339 978494 "FS2" 978665 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 960385 968799 968839 "FS" 972687 NIL FS (NIL T) -9 NIL 974976 NIL) (-419 949116 952079 956108 "FS-" 956405 NIL FS- (NIL T T) -8 NIL NIL NIL) (-418 948542 948657 948809 "FRUTIL" 948996 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-417 943649 946260 946300 "FRNAALG" 947696 NIL FRNAALG (NIL T) -9 NIL 948303 NIL) (-416 939378 940432 941690 "FRNAALG-" 942440 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 939016 939059 939186 "FRNAAF2" 939329 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 937423 937870 938165 "FRMOD" 938828 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 936618 936705 936994 "FRIDEAL2" 937330 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-412 934397 935001 935318 "FRIDEAL" 936409 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-411 933537 933944 933985 "FRETRCT" 933990 NIL FRETRCT (NIL T) -9 NIL 934166 NIL) (-410 932670 932894 933238 "FRETRCT-" 933243 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 929882 931058 931117 "FRAMALG" 931999 NIL FRAMALG (NIL T T) -9 NIL 932291 NIL) (-408 928016 928471 929101 "FRAMALG-" 929324 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 927652 927709 927816 "FRAC2" 927953 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-406 921631 927127 927403 "FRAC" 927408 NIL FRAC (NIL T) -8 NIL NIL NIL) (-405 921267 921324 921431 "FR2" 921568 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 912837 916843 918174 "FR" 919968 NIL FR (NIL T) -8 NIL NIL NIL) (-403 907514 910362 910390 "FPS" 911509 T FPS (NIL) -9 NIL 912066 NIL) (-402 906963 907072 907236 "FPS-" 907382 NIL FPS- (NIL T) -8 NIL NIL NIL) (-401 904419 906052 906080 "FPC" 906305 T FPC (NIL) -9 NIL 906447 NIL) (-400 904212 904252 904349 "FPC-" 904354 NIL FPC- (NIL T) -8 NIL NIL NIL) (-399 903090 903700 903741 "FPATMAB" 903746 NIL FPATMAB (NIL T) -9 NIL 903898 NIL) (-398 900790 901266 901692 "FPARFRAC" 902727 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-397 896223 896721 897403 "FORTRAN" 900222 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-396 893899 894461 894489 "FORTFN" 895549 T FORTFN (NIL) -9 NIL 896173 NIL) (-395 893663 893713 893741 "FORTCAT" 893800 T FORTCAT (NIL) -9 NIL 893862 NIL) (-394 891379 891879 892418 "FORT" 893144 T FORT (NIL) -7 NIL NIL NIL) (-393 891167 891197 891266 "FORMULA1" 891343 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 889300 889783 890173 "FORMULA" 890797 T FORMULA (NIL) -8 NIL NIL NIL) (-391 888823 888875 889048 "FORDER" 889242 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-390 887919 888083 888276 "FOP" 888650 T FOP (NIL) -7 NIL NIL NIL) (-389 886527 887199 887373 "FNLA" 887801 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-388 885282 885671 885699 "FNCAT" 886159 T FNCAT (NIL) -9 NIL 886419 NIL) (-387 884848 885241 885269 "FNAME" 885274 T FNAME (NIL) -8 NIL NIL NIL) (-386 883511 884440 884468 "FMTC" 884473 T FMTC (NIL) -9 NIL 884509 NIL) (-385 879873 881034 881663 "FMONOID" 882915 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-384 877297 877943 877971 "FMFUN" 879115 T FMFUN (NIL) -9 NIL 879823 NIL) (-383 874491 875325 875379 "FMCAT" 876574 NIL FMCAT (NIL T T) -9 NIL 877069 NIL) (-382 873760 873941 873969 "FMC" 874259 T FMC (NIL) -9 NIL 874441 NIL) (-381 872653 873526 873626 "FM1" 873705 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 871872 872395 872544 "FM" 872549 NIL FM (NIL T T) -8 NIL NIL NIL) (-379 869646 870062 870556 "FLOATRP" 871423 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-378 867084 867584 868162 "FLOATCP" 869113 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 860712 864813 865434 "FLOAT" 866483 T FLOAT (NIL) -8 NIL NIL NIL) (-376 859521 860325 860366 "FLINEXP" 860371 NIL FLINEXP (NIL T) -9 NIL 860464 NIL) (-375 858675 858910 859238 "FLINEXP-" 859243 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-374 857751 857895 858119 "FLASORT" 858527 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-373 854968 855810 855862 "FLALG" 857089 NIL FLALG (NIL T T) -9 NIL 857556 NIL) (-372 854010 854153 854380 "FLAGG2" 854821 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-371 847794 851496 851537 "FLAGG" 852799 NIL FLAGG (NIL T) -9 NIL 853451 NIL) (-370 846520 846859 847349 "FLAGG-" 847354 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-369 843495 844469 844528 "FINRALG" 845656 NIL FINRALG (NIL T T) -9 NIL 846164 NIL) (-368 842655 842884 843223 "FINRALG-" 843228 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-367 842061 842274 842302 "FINITE" 842498 T FINITE (NIL) -9 NIL 842605 NIL) (-366 834519 836680 836720 "FINAALG" 840387 NIL FINAALG (NIL T) -9 NIL 841840 NIL) (-365 829860 830901 832045 "FINAALG-" 833424 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-364 828544 828856 828910 "FILECAT" 829594 NIL FILECAT (NIL T T) -9 NIL 829810 NIL) (-363 827939 828299 828402 "FILE" 828474 NIL FILE (NIL T) -8 NIL NIL NIL) (-362 825809 827301 827329 "FIELD" 827369 T FIELD (NIL) -9 NIL 827449 NIL) (-361 824429 824814 825325 "FIELD-" 825330 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-360 822307 823064 823411 "FGROUP" 824115 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-359 821397 821561 821781 "FGLMICPK" 822139 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-358 817266 821322 821379 "FFX" 821384 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-357 816867 816928 817063 "FFSLPE" 817199 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-356 816371 816407 816616 "FFPOLY2" 816825 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 812364 813143 813939 "FFPOLY" 815607 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-354 808252 812283 812346 "FFP" 812351 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-353 803415 807595 807785 "FFNBX" 808106 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 798391 802550 802808 "FFNBP" 803269 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 793061 797675 797886 "FFNB" 798224 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 791893 792091 792406 "FFINTBAS" 792858 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 788123 790300 790328 "FFIELDC" 790948 T FFIELDC (NIL) -9 NIL 791324 NIL) (-348 786786 787156 787653 "FFIELDC-" 787658 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 786356 786401 786525 "FFHOM" 786728 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 784054 784538 785055 "FFF" 785871 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 779709 783796 783897 "FFCGX" 783997 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 775378 779441 779548 "FFCGP" 779652 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 770598 775105 775213 "FFCG" 775314 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 770009 770052 770287 "FFCAT2" 770549 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 751851 760880 760966 "FFCAT" 766131 NIL FFCAT (NIL T T T) -9 NIL 767582 NIL) (-340 747049 748096 749410 "FFCAT-" 750640 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-339 742484 746960 747024 "FF" 747029 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-338 731698 735456 736676 "FEXPR" 741336 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-337 730698 731133 731174 "FEVALAB" 731258 NIL FEVALAB (NIL T) -9 NIL 731519 NIL) (-336 729857 730067 730405 "FEVALAB-" 730410 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-335 726923 727638 727753 "FDIVCAT" 729321 NIL FDIVCAT (NIL T T T T) -9 NIL 729758 NIL) (-334 726685 726712 726882 "FDIVCAT-" 726887 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 725905 725992 726269 "FDIV2" 726592 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 724498 725288 725491 "FDIV" 725804 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-331 723184 723443 723732 "FCPAK1" 724229 T FCPAK1 (NIL) -7 NIL NIL NIL) (-330 722312 722684 722825 "FCOMP" 723075 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-329 706049 709462 713000 "FC" 718794 T FC (NIL) -8 NIL NIL NIL) (-328 698630 702613 702653 "FAXF" 704455 NIL FAXF (NIL T) -9 NIL 705147 NIL) (-327 695909 696564 697389 "FAXF-" 697854 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-326 691009 695285 695461 "FARRAY" 695766 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-325 686269 688294 688347 "FAMR" 689370 NIL FAMR (NIL T T) -9 NIL 689830 NIL) (-324 685159 685461 685896 "FAMR-" 685901 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-323 684355 685081 685134 "FAMONOID" 685139 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-322 682167 682851 682904 "FAMONC" 683845 NIL FAMONC (NIL T T) -9 NIL 684231 NIL) (-321 680859 681921 682058 "FAGROUP" 682063 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-320 678654 678973 679376 "FACUTIL" 680540 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-319 677753 677938 678160 "FACTFUNC" 678464 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-318 670160 677004 677216 "EXPUPXS" 677609 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-317 667643 668183 668769 "EXPRTUBE" 669594 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-316 663837 664429 665166 "EXPRODE" 666982 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-315 658244 658831 659644 "EXPR2UPS" 663135 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 657880 657937 658044 "EXPR2" 658181 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 643315 656535 656963 "EXPR" 657484 NIL EXPR (NIL T) -8 NIL NIL NIL) (-312 634746 642447 642744 "EXPEXPAN" 643152 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-311 634253 634470 634561 "EXITAST" 634675 T EXITAST (NIL) -8 NIL NIL NIL) (-310 634080 634210 634239 "EXIT" 634244 T EXIT (NIL) -8 NIL NIL NIL) (-309 633707 633769 633882 "EVALCYC" 634012 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-308 633248 633366 633407 "EVALAB" 633577 NIL EVALAB (NIL T) -9 NIL 633681 NIL) (-307 632729 632851 633072 "EVALAB-" 633077 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-306 630197 631465 631493 "EUCDOM" 632048 T EUCDOM (NIL) -9 NIL 632398 NIL) (-305 628602 629044 629634 "EUCDOM-" 629639 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-304 628234 628291 628400 "ESTOOLS2" 628539 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 627985 628027 628107 "ESTOOLS1" 628186 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 615525 618283 621033 "ESTOOLS" 625255 T ESTOOLS (NIL) -7 NIL NIL NIL) (-301 615270 615302 615384 "ESCONT1" 615487 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-300 611645 612405 613185 "ESCONT" 614510 T ESCONT (NIL) -7 NIL NIL NIL) (-299 611320 611370 611470 "ES2" 611589 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 610950 611008 611117 "ES1" 611256 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 604855 606583 606611 "ES" 609379 T ES (NIL) -9 NIL 610788 NIL) (-296 599803 601089 602906 "ES-" 603070 NIL ES- (NIL T) -8 NIL NIL NIL) (-295 599019 599148 599324 "ERROR" 599647 T ERROR (NIL) -7 NIL NIL NIL) (-294 592524 598878 598969 "EQTBL" 598974 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-293 592156 592213 592322 "EQ2" 592461 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 584713 587470 588919 "EQ" 590740 NIL -3935 (NIL T) -8 NIL NIL NIL) (-291 580005 581051 582144 "EP" 583652 NIL EP (NIL T) -7 NIL NIL NIL) (-290 578587 578888 579205 "ENV" 579708 T ENV (NIL) -8 NIL NIL NIL) (-289 577766 578286 578314 "ENTIRER" 578319 T ENTIRER (NIL) -9 NIL 578365 NIL) (-288 574324 575775 576145 "EMR" 577565 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-287 573468 573653 573707 "ELTAGG" 574087 NIL ELTAGG (NIL T T) -9 NIL 574298 NIL) (-286 573187 573249 573390 "ELTAGG-" 573395 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-285 572976 573005 573059 "ELTAB" 573143 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-284 572102 572248 572447 "ELFUTS" 572827 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-283 571844 571900 571928 "ELEMFUN" 572033 T ELEMFUN (NIL) -9 NIL NIL NIL) (-282 571714 571735 571803 "ELEMFUN-" 571808 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-281 566605 569814 569855 "ELAGG" 570795 NIL ELAGG (NIL T) -9 NIL 571258 NIL) (-280 564890 565324 565987 "ELAGG-" 565992 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-279 563547 563827 564122 "ELABEXPR" 564615 T ELABEXPR (NIL) -8 NIL NIL NIL) (-278 556540 558214 559041 "EFUPXS" 562823 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-277 550117 551791 552601 "EFULS" 555816 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-276 547539 547897 548376 "EFSTRUC" 549749 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-275 536611 538176 539736 "EF" 546054 NIL EF (NIL T T) -7 NIL NIL NIL) (-274 535712 536096 536245 "EAB" 536482 T EAB (NIL) -8 NIL NIL NIL) (-273 534921 535671 535699 "E04UCFA" 535704 T E04UCFA (NIL) -8 NIL NIL NIL) (-272 534130 534880 534908 "E04NAFA" 534913 T E04NAFA (NIL) -8 NIL NIL NIL) (-271 533339 534089 534117 "E04MBFA" 534122 T E04MBFA (NIL) -8 NIL NIL NIL) (-270 532548 533298 533326 "E04JAFA" 533331 T E04JAFA (NIL) -8 NIL NIL NIL) (-269 531759 532507 532535 "E04GCFA" 532540 T E04GCFA (NIL) -8 NIL NIL NIL) (-268 530970 531718 531746 "E04FDFA" 531751 T E04FDFA (NIL) -8 NIL NIL NIL) (-267 530179 530929 530957 "E04DGFA" 530962 T E04DGFA (NIL) -8 NIL NIL NIL) (-266 524357 525704 527068 "E04AGNT" 528835 T E04AGNT (NIL) -7 NIL NIL NIL) (-265 523063 523543 523583 "DVARCAT" 524058 NIL DVARCAT (NIL T) -9 NIL 524257 NIL) (-264 522267 522479 522793 "DVARCAT-" 522798 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-263 515208 522066 522195 "DSMP" 522200 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-262 514873 514932 515030 "DROPT1" 515143 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 509988 511114 512251 "DROPT0" 513756 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 504798 505933 507001 "DROPT" 508940 T DROPT (NIL) -8 NIL NIL NIL) (-259 503143 503468 503854 "DRAWPT" 504432 T DRAWPT (NIL) -7 NIL NIL NIL) (-258 502776 502829 502947 "DRAWHACK" 503084 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 501507 501776 502067 "DRAWCX" 502505 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 501023 501091 501242 "DRAWCURV" 501433 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 491494 493453 495568 "DRAWCFUN" 498928 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 486081 487004 488083 "DRAW" 490468 NIL DRAW (NIL T) -7 NIL NIL NIL) (-253 482894 484776 484817 "DQAGG" 485446 NIL DQAGG (NIL T) -9 NIL 485719 NIL) (-252 471209 477872 477955 "DPOLCAT" 479807 NIL DPOLCAT (NIL T T T T) -9 NIL 480352 NIL) (-251 466099 467428 469369 "DPOLCAT-" 469374 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-250 459261 465960 466058 "DPMO" 466063 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-249 452326 459041 459208 "DPMM" 459213 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-248 451990 452245 452293 "DOMCTOR" 452298 T DOMCTOR (NIL) -8 NIL NIL NIL) (-247 451285 451512 451649 "DOMAIN" 451873 T DOMAIN (NIL) -8 NIL NIL NIL) (-246 445067 450920 451072 "DMP" 451186 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-245 444667 444723 444867 "DLP" 445005 NIL DLP (NIL T) -7 NIL NIL NIL) (-244 438539 443994 444184 "DLIST" 444509 NIL DLIST (NIL T) -8 NIL NIL NIL) (-243 435384 437392 437433 "DLAGG" 437983 NIL DLAGG (NIL T) -9 NIL 438213 NIL) (-242 434197 434827 434855 "DIVRING" 434947 T DIVRING (NIL) -9 NIL 435030 NIL) (-241 433434 433624 433924 "DIVRING-" 433929 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-240 431536 431893 432299 "DISPLAY" 433048 T DISPLAY (NIL) -7 NIL NIL NIL) (-239 430384 430587 430852 "DIRPROD2" 431329 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 424333 430298 430361 "DIRPROD" 430366 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-237 413603 419548 419601 "DIRPCAT" 420011 NIL DIRPCAT (NIL NIL T) -9 NIL 420851 NIL) (-236 410929 411571 412452 "DIRPCAT-" 412789 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-235 410216 410376 410562 "DIOSP" 410763 T DIOSP (NIL) -7 NIL NIL NIL) (-234 406918 409128 409169 "DIOPS" 409603 NIL DIOPS (NIL T) -9 NIL 409832 NIL) (-233 406467 406581 406772 "DIOPS-" 406777 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-232 405359 405953 405981 "DIFRING" 406168 T DIFRING (NIL) -9 NIL 406278 NIL) (-231 405005 405082 405234 "DIFRING-" 405239 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-230 402810 404048 404089 "DIFEXT" 404452 NIL DIFEXT (NIL T) -9 NIL 404746 NIL) (-229 401095 401523 402189 "DIFEXT-" 402194 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-228 398417 400627 400668 "DIAGG" 400673 NIL DIAGG (NIL T) -9 NIL 400693 NIL) (-227 397801 397958 398210 "DIAGG-" 398215 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-226 393265 396760 397037 "DHMATRIX" 397570 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-225 388877 389786 390796 "DFSFUN" 392275 T DFSFUN (NIL) -7 NIL NIL NIL) (-224 383997 387808 388120 "DFLOAT" 388585 T DFLOAT (NIL) -8 NIL NIL NIL) (-223 382225 382506 382902 "DFINTTLS" 383705 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-222 379290 380246 380646 "DERHAM" 381891 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-221 377139 379065 379154 "DEQUEUE" 379234 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-220 376354 376487 376683 "DEGRED" 377001 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-219 372929 373629 374437 "DEFINTRF" 375627 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-218 370568 371009 371580 "DEFINTEF" 372476 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-217 369945 370188 370303 "DEFAST" 370473 T DEFAST (NIL) -8 NIL NIL NIL) (-216 364008 369542 369690 "DECIMAL" 369817 T DECIMAL (NIL) -8 NIL NIL NIL) (-215 361520 361978 362484 "DDFACT" 363552 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-214 361116 361159 361310 "DBLRESP" 361471 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-213 359015 359349 359709 "DBASE" 360883 NIL DBASE (NIL T) -8 NIL NIL NIL) (-212 358284 358495 358641 "DATAARY" 358914 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-211 357417 358243 358271 "D03FAFA" 358276 T D03FAFA (NIL) -8 NIL NIL NIL) (-210 356551 357376 357404 "D03EEFA" 357409 T D03EEFA (NIL) -8 NIL NIL NIL) (-209 354501 354967 355456 "D03AGNT" 356082 T D03AGNT (NIL) -7 NIL NIL NIL) (-208 353817 354460 354488 "D02EJFA" 354493 T D02EJFA (NIL) -8 NIL NIL NIL) (-207 353133 353776 353804 "D02CJFA" 353809 T D02CJFA (NIL) -8 NIL NIL NIL) (-206 352449 353092 353120 "D02BHFA" 353125 T D02BHFA (NIL) -8 NIL NIL NIL) (-205 351765 352408 352436 "D02BBFA" 352441 T D02BBFA (NIL) -8 NIL NIL NIL) (-204 344963 346551 348157 "D02AGNT" 350179 T D02AGNT (NIL) -7 NIL NIL NIL) (-203 342732 343254 343800 "D01WGTS" 344437 T D01WGTS (NIL) -7 NIL NIL NIL) (-202 341827 342691 342719 "D01TRNS" 342724 T D01TRNS (NIL) -8 NIL NIL NIL) (-201 340922 341786 341814 "D01GBFA" 341819 T D01GBFA (NIL) -8 NIL NIL NIL) (-200 340017 340881 340909 "D01FCFA" 340914 T D01FCFA (NIL) -8 NIL NIL NIL) (-199 339112 339976 340004 "D01ASFA" 340009 T D01ASFA (NIL) -8 NIL NIL NIL) (-198 338207 339071 339099 "D01AQFA" 339104 T D01AQFA (NIL) -8 NIL NIL NIL) (-197 337302 338166 338194 "D01APFA" 338199 T D01APFA (NIL) -8 NIL NIL NIL) (-196 336397 337261 337289 "D01ANFA" 337294 T D01ANFA (NIL) -8 NIL NIL NIL) (-195 335492 336356 336384 "D01AMFA" 336389 T D01AMFA (NIL) -8 NIL NIL NIL) (-194 334587 335451 335479 "D01ALFA" 335484 T D01ALFA (NIL) -8 NIL NIL NIL) (-193 333682 334546 334574 "D01AKFA" 334579 T D01AKFA (NIL) -8 NIL NIL NIL) (-192 332777 333641 333669 "D01AJFA" 333674 T D01AJFA (NIL) -8 NIL NIL NIL) (-191 326074 327625 329186 "D01AGNT" 331236 T D01AGNT (NIL) -7 NIL NIL NIL) (-190 325411 325539 325691 "CYCLOTOM" 325942 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-189 322146 322859 323586 "CYCLES" 324704 T CYCLES (NIL) -7 NIL NIL NIL) (-188 321458 321592 321763 "CVMP" 322007 NIL CVMP (NIL T) -7 NIL NIL NIL) (-187 319229 319487 319863 "CTRIGMNP" 321186 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-186 318765 318960 319061 "CTORKIND" 319148 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 318236 318464 318492 "CTORCAT" 318612 T CTORCAT (NIL) -9 NIL 318695 NIL) (-184 317931 318011 318137 "CTORCAT-" 318142 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 317447 317634 317732 "CTORCALL" 317853 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 316970 317238 317312 "CTOR" 317393 T CTOR (NIL) -8 NIL NIL NIL) (-181 316344 316443 316596 "CSTTOOLS" 316867 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-180 312143 312800 313558 "CRFP" 315656 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-179 311645 311864 311956 "CRCEAST" 312071 T CRCEAST (NIL) -8 NIL NIL NIL) (-178 310692 310877 311105 "CRAPACK" 311449 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-177 310076 310177 310381 "CPMATCH" 310568 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-176 309801 309829 309935 "CPIMA" 310042 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-175 306165 306837 307555 "COORDSYS" 309136 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-174 305549 305678 305828 "CONTOUR" 306035 T CONTOUR (NIL) -8 NIL NIL NIL) (-173 301477 303552 304044 "CONTFRAC" 305089 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-172 301357 301378 301406 "CONDUIT" 301443 T CONDUIT (NIL) -9 NIL NIL NIL) (-171 300530 301050 301078 "COMRING" 301083 T COMRING (NIL) -9 NIL 301135 NIL) (-170 299611 299888 300072 "COMPPROP" 300366 T COMPPROP (NIL) -8 NIL NIL NIL) (-169 299272 299307 299435 "COMPLPAT" 299570 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-168 298908 298965 299072 "COMPLEX2" 299209 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 288983 298717 298826 "COMPLEX" 298831 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-166 288701 288736 288834 "COMPFACT" 288942 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-165 272883 283094 283134 "COMPCAT" 284138 NIL COMPCAT (NIL T) -9 NIL 285523 NIL) (-164 262420 265336 268956 "COMPCAT-" 269312 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-163 262149 262177 262280 "COMMUPC" 262386 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-162 261944 261977 262036 "COMMONOP" 262110 T COMMONOP (NIL) -7 NIL NIL NIL) (-161 261548 261748 261823 "COMMAAST" 261889 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 261131 261299 261386 "COMM" 261481 T COMM (NIL) -8 NIL NIL NIL) (-159 260380 260574 260602 "COMBOPC" 260940 T COMBOPC (NIL) -9 NIL 261115 NIL) (-158 259276 259486 259728 "COMBINAT" 260170 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-157 255474 256047 256687 "COMBF" 258698 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-156 254260 254590 254825 "COLOR" 255259 T COLOR (NIL) -8 NIL NIL NIL) (-155 253763 253981 254073 "COLONAST" 254188 T COLONAST (NIL) -8 NIL NIL NIL) (-154 253403 253450 253575 "CMPLXRT" 253710 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-153 252878 253103 253202 "CLLCTAST" 253324 T CLLCTAST (NIL) -8 NIL NIL NIL) (-152 248380 249408 250488 "CLIP" 251818 T CLIP (NIL) -7 NIL NIL NIL) (-151 246762 247486 247725 "CLIF" 248207 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-150 242984 244908 244949 "CLAGG" 245878 NIL CLAGG (NIL T) -9 NIL 246414 NIL) (-149 241406 241863 242446 "CLAGG-" 242451 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-148 240950 241035 241175 "CINTSLPE" 241315 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-147 238451 238922 239470 "CHVAR" 240478 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-146 237694 238214 238242 "CHARZ" 238247 T CHARZ (NIL) -9 NIL 238262 NIL) (-145 237448 237488 237566 "CHARPOL" 237648 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-144 236575 237128 237156 "CHARNZ" 237203 T CHARNZ (NIL) -9 NIL 237259 NIL) (-143 234564 235265 235600 "CHAR" 236260 T CHAR (NIL) -8 NIL NIL NIL) (-142 234290 234351 234379 "CFCAT" 234490 T CFCAT (NIL) -9 NIL NIL NIL) (-141 233535 233646 233828 "CDEN" 234174 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-140 229527 232688 232968 "CCLASS" 233275 T CCLASS (NIL) -8 NIL NIL NIL) (-139 228834 228977 229140 "CATEGORY" 229384 T -10 (NIL) -8 NIL NIL NIL) (-138 228498 228753 228801 "CATCTOR" 228806 T CATCTOR (NIL) -8 NIL NIL NIL) (-137 227972 228198 228297 "CATAST" 228419 T CATAST (NIL) -8 NIL NIL NIL) (-136 227475 227693 227785 "CASEAST" 227900 T CASEAST (NIL) -8 NIL NIL NIL) (-135 226583 226731 226952 "CARTEN2" 227322 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221635 222612 223365 "CARTEN" 225886 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-133 219977 220785 221042 "CARD" 221398 T CARD (NIL) -8 NIL NIL NIL) (-132 219580 219781 219856 "CAPSLAST" 219922 T CAPSLAST (NIL) -8 NIL NIL NIL) (-131 218952 219280 219308 "CACHSET" 219440 T CACHSET (NIL) -9 NIL 219517 NIL) (-130 218448 218744 218772 "CABMON" 218822 T CABMON (NIL) -9 NIL 218878 NIL) (-129 213857 217916 218079 "BYTEBUF" 218305 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 212880 213403 213539 "BYTE" 213702 T BYTE (NIL) -8 NIL NIL 213818) (-127 210439 212572 212679 "BTREE" 212806 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 207939 210087 210209 "BTOURN" 210349 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205358 207409 207450 "BTCAT" 207518 NIL BTCAT (NIL T) -9 NIL 207595 NIL) (-124 205025 205105 205254 "BTCAT-" 205259 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200317 204168 204196 "BTAGG" 204418 T BTAGG (NIL) -9 NIL 204579 NIL) (-122 199807 199932 200138 "BTAGG-" 200143 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 196853 199085 199300 "BSTREE" 199624 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 195991 196117 196301 "BRILL" 196709 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 192691 194717 194758 "BRAGG" 195407 NIL BRAGG (NIL T) -9 NIL 195665 NIL) (-118 191223 191628 192182 "BRAGG-" 192187 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 184508 190569 190753 "BPADICRT" 191071 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 182860 184445 184490 "BPADIC" 184495 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 182558 182588 182702 "BOUNDZRO" 182824 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 180179 180623 181143 "BOP1" 182071 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 175694 176785 177652 "BOP" 179332 T BOP (NIL) -8 NIL NIL NIL) (-112 174396 175118 175311 "BOOLEAN" 175521 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 173758 174136 174190 "BMODULE" 174195 NIL BMODULE (NIL T T) -9 NIL 174260 NIL) (-110 169588 173556 173629 "BITS" 173705 T BITS (NIL) -8 NIL NIL NIL) (-109 169000 169122 169264 "BINDING" 169466 T BINDING (NIL) -8 NIL NIL NIL) (-108 163066 168599 168746 "BINARY" 168873 T BINARY (NIL) -8 NIL NIL NIL) (-107 160893 162321 162362 "BGAGG" 162622 NIL BGAGG (NIL T) -9 NIL 162759 NIL) (-106 160724 160756 160847 "BGAGG-" 160852 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 159822 160108 160313 "BFUNCT" 160539 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 158506 158687 158975 "BEZOUT" 159646 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155025 157358 157688 "BBTREE" 158209 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 154759 154812 154840 "BASTYPE" 154959 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 154612 154640 154713 "BASTYPE-" 154718 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154046 154122 154274 "BALFACT" 154523 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 152929 153461 153647 "AUTOMOR" 153891 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 152655 152660 152686 "ATTREG" 152691 T ATTREG (NIL) -9 NIL NIL NIL) (-97 150934 151352 151704 "ATTRBUT" 152321 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 150569 150762 150828 "ATTRAST" 150886 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150105 150218 150244 "ATRIG" 150445 T ATRIG (NIL) -9 NIL NIL NIL) (-94 149914 149955 150042 "ATRIG-" 150047 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 149585 149745 149771 "ASTCAT" 149776 T ASTCAT (NIL) -9 NIL 149806 NIL) (-92 149312 149371 149490 "ASTCAT-" 149495 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 147509 149088 149176 "ASTACK" 149255 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146014 146311 146676 "ASSOCEQ" 147191 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145068 145673 145797 "ASP9" 145921 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 143959 144673 144815 "ASP80" 144957 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 143723 143907 143946 "ASP8" 143951 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 142699 143400 143518 "ASP78" 143636 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 141690 142379 142496 "ASP77" 142613 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 140624 141328 141459 "ASP74" 141590 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 139546 140259 140391 "ASP73" 140523 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 138467 139181 139313 "ASP7" 139445 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 137593 138293 138393 "ASP6" 138398 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136563 137270 137388 "ASP55" 137506 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135535 136237 136356 "ASP50" 136475 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134645 135236 135346 "ASP49" 135456 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 133452 134184 134352 "ASP42" 134534 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 132251 132985 133155 "ASP41" 133339 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131361 131952 132062 "ASP4" 132172 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 130333 131038 131156 "ASP35" 131274 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130098 130281 130320 "ASP34" 130325 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 129835 129902 129978 "ASP33" 130053 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128752 129470 129602 "ASP31" 129734 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128517 128700 128739 "ASP30" 128744 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128252 128321 128397 "ASP29" 128472 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128017 128200 128239 "ASP28" 128244 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 127782 127965 128004 "ASP27" 128009 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 126888 127480 127591 "ASP24" 127702 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 125987 126690 126802 "ASP20" 126807 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 124953 125661 125780 "ASP19" 125899 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 124690 124757 124833 "ASP12" 124908 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 123564 124289 124433 "ASP10" 124577 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 122674 123265 123375 "ASP1" 123485 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 120573 122518 122609 "ARRAY2" 122614 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119605 119778 119999 "ARRAY12" 120396 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 115421 119253 119367 "ARRAY1" 119522 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 109780 111651 111726 "ARR2CAT" 114356 NIL ARR2CAT (NIL T T T) -9 NIL 115114 NIL) (-56 107214 107958 108912 "ARR2CAT-" 108917 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106808 107041 107120 "ARITY" 107153 T ARITY (NIL) -8 NIL NIL NIL) (-54 105556 105708 106014 "APPRULE" 106644 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105207 105255 105374 "APPLYORE" 105502 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104485 104608 104765 "ANY1" 105081 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 103459 103750 103945 "ANY" 104308 T ANY (NIL) -8 NIL NIL NIL) (-50 101024 101896 102223 "ANTISYM" 103183 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100539 100728 100825 "ANON" 100945 T ANON (NIL) -8 NIL NIL NIL) (-48 94680 99078 99532 "AN" 100103 T AN (NIL) -8 NIL NIL NIL) (-47 90936 92290 92341 "AMR" 93089 NIL AMR (NIL T T) -9 NIL 93689 NIL) (-46 90048 90269 90632 "AMR-" 90637 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74604 89965 90026 "ALIST" 90031 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71473 74198 74367 "ALGSC" 74522 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68029 68583 69190 "ALGPKG" 70913 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67306 67407 67591 "ALGMFACT" 67915 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63045 63730 64385 "ALGMANIP" 66829 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54462 62671 62821 "ALGFF" 62978 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53658 53789 53968 "ALGFACT" 54320 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52723 53289 53327 "ALGEBRA" 53332 NIL ALGEBRA (NIL T) -9 NIL 53373 NIL) (-37 52441 52500 52632 "ALGEBRA-" 52637 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34706 50443 50495 "ALAGG" 50631 NIL ALAGG (NIL T T) -9 NIL 50792 NIL) (-35 34242 34355 34381 "AHYP" 34582 T AHYP (NIL) -9 NIL NIL NIL) (-34 33173 33421 33447 "AGG" 33946 T AGG (NIL) -9 NIL 34225 NIL) (-33 32607 32769 32983 "AGG-" 32988 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30284 30706 31124 "AF" 32249 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29791 30009 30099 "ADDAST" 30212 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29060 29318 29474 "ACPLOT" 29653 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18408 26273 26324 "ACFS" 27035 NIL ACFS (NIL T) -9 NIL 27274 NIL) (-28 16422 16912 17687 "ACFS-" 17692 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 952d0c0d..365fa152 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,1418 +1,305 @@
-(735329 . 3440812770)
-(((*1 *1) (-5 *1 (-1169))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-561) (-561))) (-5 *1 (-360 *3)) (-4 *3 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
- (-5 *2 (-638 (-638 (-638 (-765))))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-741)))))
-(((*1 *1) (-5 *1 (-612))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-318 *3 *4 *5))
- (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1230 *2)) (-4 *2 (-1230 *4)) (-5 *1 (-978 *4 *2 *3 *5))
- (-4 *4 (-348)) (-4 *5 (-718 *2 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-4 *5 (-844)) (-5 *2 (-112)))))
+(727353 . 3442118609)
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-561)) (-5 *2 (-638 (-2 (|:| -1633 *3) (|:| -3768 *4))))
- (-5 *1 (-689 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-682 *2)) (-5 *4 (-561))
- (-4 *2 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *5 (-1230 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
-(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1) (-4 *1 (-283)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-417 *4)) (-4 *4 (-553))
- (-5 *2 (-638 (-2 (|:| -4226 (-765)) (|:| |logand| *4))))
- (-5 *1 (-319 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561)))))
- (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1275 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4))
- (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-936 (-224)))) (-5 *1 (-1255)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
- (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-942 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1)))
- (-4 *1 (-1230 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
- (-5 *1 (-981 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
- (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-362)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 (-406 *3)))
- (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-362)) (-4 *4 (-1230 *2))
- (-4 *5 (-1230 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6))
- (-4 *6 (-341 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-362)) (-4 *3 (-1230 *2)) (-4 *4 (-1230 (-406 *3)))
- (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4)))
- (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362))
- (-4 *1 (-334 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-747)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-638 (-1199 *5)))
- (-5 *1 (-1262 *5)) (-5 *4 (-1199 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-765)) (-5 *1 (-558)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-561))
- (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561)))))))
- (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-561))
- (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561)))))))
- (-5 *1 (-1219 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1254 (-1166))) (-5 *3 (-1254 (-451 *4 *5 *6 *7)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914))
- (-14 *6 (-638 (-1166))) (-14 *7 (-1254 (-682 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-451 *4 *5 *6 *7)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914))
- (-14 *6 (-638 *2)) (-14 *7 (-1254 (-682 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166)))
- (-14 *6 (-1254 (-682 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-1166))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166)))
- (-14 *6 (-1254 (-682 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171))
- (-14 *4 (-914)) (-14 *5 (-638 *2)) (-14 *6 (-1254 (-682 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-914))
- (-14 *4 (-638 (-1166))) (-14 *5 (-1254 (-682 *2))))))
-(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390)))))
-(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-390))))
- ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-390)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))))
-(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-4 *1 (-301))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1245 *4))
- (-4 *4 (-38 (-406 (-561))))
- (-5 *2 (-1 (-1146 *4) (-1146 *4) (-1146 *4))) (-5 *1 (-1247 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-819)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 *5)) (-4 *5 (-553))
- (-5 *2
- (-2 (|:| -4181 (-765)) (|:| -4226 *5) (|:| |radicand| (-638 *5))))
- (-5 *1 (-319 *5)) (-5 *4 (-765))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-561)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224)))
- (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-561)) (-5 *1 (-203)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042))
- (-5 *1 (-1150 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-561)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042))
- (-14 *4 (-1166)) (-14 *5 *3))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-5 *2 (-112)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 (-561))) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844))
- (-4 *4 (-265 *3)) (-4 *5 (-787)))))
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544)))
+ (-5 *2 (-1253 (-406 (-544)))) (-5 *1 (-1281 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1031 (-48)))
- (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4))
- (-5 *2 (-417 (-1162 (-48)))) (-5 *1 (-434 *4 *5 *3))
- (-4 *3 (-1230 *5)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553)))))
-(((*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-444)) (-5 *3 (-561)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1170)))))
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544)))
+ (-5 *2 (-1253 (-544))) (-5 *1 (-1281 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))))
-(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-112))
- (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-112)) (-5 *1 (-1194 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856)))
- (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856)))
- (|:| |args| (-638 (-856)))))
- (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1090))
- (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3))))
- (-5 *1 (-1066 *3 *4 *2))
- (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378))))
- (-5 *2 (-1028)) (-5 *1 (-304)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 (-436)))))
- (-5 *1 (-1170)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *3 (-1056 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
- (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-854)) (-5 *2 (-684 (-546))) (-5 *3 (-546)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1230 *4)) (-5 *2 (-1259))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1230 (-406 *5))) (-14 *7 *6))))
-(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))))
-(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-816)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-1042))
- (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1230 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1042))
- (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4))))
- ((*1 *1 *1) (-4 *1 (-543)))
- ((*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1205)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-995))
- (-4 *2 (-1042)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1090))
- (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3))))
- (-5 *1 (-1066 *3 *4 *2))
- (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-4 *2 (-1090)) (-5 *1 (-673 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
- (-4 *3 (-1230 *4)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-279))) (-5 *1 (-279))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-638 (-406 *7)))
- (-4 *7 (-1230 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-571 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1028)) (-5 *1 (-742)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-844)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
- (-5 *2 (-638 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |k| (-886 *3)) (|:| |c| *4))))
- (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *1 (-1025 *2))
- (-4 *2 (-13 (-1090) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787))
- (-4 *6 (-553)) (-4 *7 (-942 *6 *5 *3))
- (-5 *1 (-460 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1031 (-406 (-561))) (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $))
- (-15 -4088 (*7 $))))))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
- (-5 *1 (-742)))))
-(((*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
- (-5 *2 (-1162 (-945 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-638 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5))
- (-5 *2 (-638 (-2 (|:| -1494 *5) (|:| -3394 *3))))
- (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6))
- (-4 *7 (-649 (-406 *6))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
- (-4 *3 (-1090)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-112))
- (-5 *1 (-897 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-914)) (-5 *2 (-112)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3))
- (-4 *3 (-1230 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1090)) (-4 *4 (-1090))
- (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6)))))
-(((*1 *1) (-5 *1 (-290))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999))))
- ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378)))
- (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259))
- (-5 *1 (-782)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-638 (-224)))
- (-5 *1 (-466)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-372 *3)) (-4 *3 (-1205))
- (-4 *3 (-1090))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-1090))
- (-5 *2 (-561))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205))
- (-5 *2 (-561))))
- ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)) (-5 *3 (-140))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-1259))
- (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
- (-5 *2
- (-2 (|:| -1418 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -2430 (-406 *6))
- (|:| |special| (-406 *6))))
- (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-889 *3 *4))
- (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -1586 *3) (|:| -1599 *3))) (-5 *1 (-889 *3 *5))
- (-4 *3 (-1230 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
- (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
- (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
- (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
- (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *2 (-13 (-1090) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4))))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *4 (-1230 *3))
- (-5 *2
- (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-682 *3))))
- (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-1230 *3))
- (-5 *2
- (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-682 *3))))
- (-5 *1 (-762 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 *3))
- (-5 *2
- (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-682 *3))))
- (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *3 (-1230 *4)) (-4 *5 (-1230 *3))
- (-5 *2
- (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-682 *3))))
- (-5 *1 (-1263 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
-(((*1 *1)
- (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090))
- (-4 *4 (-659 *3))))
- ((*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-1166))
- (-4 *2 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-276 *5 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-561))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1080))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-310))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1265))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1105))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522))))
- ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171))))
- ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-360 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-385 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-642 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1254 *5)) (-4 *5 (-786)) (-5 *2 (-112))
- (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867)))
- (-5 *1 (-466)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 (-406 (-561))))
- (-5 *2
- (-638
- (-2 (|:| |outval| *4) (|:| |outmult| (-561))
- (|:| |outvect| (-638 (-682 *4))))))
- (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-765)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-638 (-561)))
- (|:| |cols| (-638 (-561)))))
- (-5 *4 (-682 *12)) (-5 *5 (-638 (-406 (-945 *9))))
- (-5 *6 (-638 (-638 *12))) (-5 *7 (-765)) (-5 *8 (-561))
- (-4 *9 (-13 (-306) (-146))) (-4 *12 (-942 *9 *11 *10))
- (-4 *10 (-13 (-844) (-609 (-1166)))) (-4 *11 (-787))
- (-5 *2
- (-2 (|:| |eqzro| (-638 *12)) (|:| |neqzro| (-638 *12))
- (|:| |wcond| (-638 (-945 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *9))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *9)))))))))
- (-5 *1 (-917 *9 *10 *11 *12)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-1214 *4)) (-4 *4 (-1042)) (-4 *4 (-553))
- (-5 *2 (-406 (-945 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-1214 *4)) (-4 *4 (-1042)) (-4 *4 (-553))
- (-5 *2 (-406 (-945 *4))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-4 *1 (-403))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-403))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4))
- (-14 *3 (-765)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3194 *1)))
- (-4 *1 (-846 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
- (-5 *2 (-638 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7))
- (-4 *7 (-942 *4 *6 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (|has| *4 (-6 (-4401 "*")))
- (-4 *4 (-1042)) (-5 *1 (-1021 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914))
- (|has| *4 (-6 (-4401 "*"))) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-854)) (-5 *2 (-684 (-1212))) (-5 *3 (-1212)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))
- (-4 *2 (-450))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1230 *2))
- (-4 *4 (-1230 (-406 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)) (-4 *3 (-450))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-450))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-4 *3 (-553)) (-5 *1 (-1153 *3 *2))
- (-4 *2 (-1230 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130))
- (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| -4226 *3) (|:| -3077 *4))))
- (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-5 *2 (-1146 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1278 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844))
- (-4 *2 (-171))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-813 *4)) (-4 *1 (-1271 *4 *2)) (-4 *4 (-844))
- (-4 *2 (-1042))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-543)))
- ((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4))))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-5 *6 (-1162 *3))
- (-4 *3 (-13 (-429 *7) (-27) (-1190)))
- (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3))
- (-5 *6 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1190)))
- (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-306))
- (-5 *2 (-765)) (-5 *1 (-453 *5 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 (-112) (-638 *1)))
- (-4 *1 (-1062 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-2 (|:| -2506 *4) (|:| -2211 (-561)))))
- (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-191)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-112))
+ (-5 *1 (-1281 *4)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-885 *4))
- (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1090)) (-4 *3 (-165 *5))))
+ (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-883 *4)) (-5 *1 (-169 *4 *5 *3))
+ (-4 *4 (-1091)) (-4 *3 (-165 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1084 (-837 (-378)))))
- (-5 *2 (-638 (-1084 (-837 (-224))))) (-5 *1 (-304))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-393))))
+ (-12 (-5 *3 (-635 (-1079 (-836 (-377)))))
+ (-5 *2 (-635 (-1079 (-836 (-224))))) (-5 *1 (-302))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
- (-4 *4 (-1230 *3))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4))
+ (-4 *4 (-1229 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3))
- (-5 *2 (-1254 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1254 *3))))
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-1253 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-553))
- (-4 *3 (-844))))
+ (-12 (-5 *2 (-404 *1)) (-4 *1 (-420 *3)) (-4 *3 (-554)) (-4 *3 (-844))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042))
(-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-461 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-534))))
- ((*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1230 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-533))))
+ ((*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5))
(-4 *5 (-609 (-1166))) (-4 *4 (-787)) (-4 *5 (-844))))
((*1 *1 *2)
- (-4050
- (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
- (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561)))
+ (-3936
+ (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544)))
(-4 *5 (-609 (-1166))))
(-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
- (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
+ (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)))))
((*1 *1 *2)
- (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042))
+ (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042))
(-4 *4 (-787)) (-4 *5 (-844))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8)))
(-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
(-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148))
(-5 *1 (-1060 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8)))
(-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-450))
(-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148))
(-5 *1 (-1135 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1171))))
- ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1171))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-774 *4 (-858 *5)))
- (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166)))
- (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *6 (-638 (-1166)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1171))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-774 *4 (-858 *5))) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-14 *5 (-635 (-1166))) (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1280 *4 *5 *6))
+ (-14 *6 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-939 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-774 *4 (-858 *6))) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-14 *6 (-635 (-1166))) (-5 *2 (-939 (-1017 (-406 *4))))
+ (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-1160 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))
+ (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *6 (-635 (-1166)))
+ (-5 *2 (-635 (-774 *4 (-858 *6)))) (-5 *1 (-1280 *4 *5 *6))
+ (-14 *5 (-635 (-1166))))))
+(((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3))
+ (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-4 *7 (-943 *6 *4 *5))
+ (-5 *2 (-404 (-1160 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1160 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-404 *1)) (-4 *1 (-943 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166)))))
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-404 *3))
+ (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-774 *4 (-858 *6)))
- (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166)))
- (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *5 (-638 (-1166)))))
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5))
+ (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7))
+ (-5 *3 (-1160 (-406 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209))))
((*1 *2 *3)
- (-12 (-5 *3 (-1162 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-1162 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166)))))
+ (-12 (-4 *4 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-1233 *4 *3))
+ (-4 *3 (-13 (-1229 *4) (-554) (-10 -8 (-15 -3545 ($ $ $)))))))
((*1 *2 *3)
- (-12
- (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))
- (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166)))
- (-5 *2 (-638 (-774 *4 (-858 *6)))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *5 (-638 (-1166))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *1 *1) (-4 *1 (-491)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-14 *5 (-635 (-1166)))
+ (-5 *2 (-635 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))))
+ (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-367)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-682 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205))
- (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4400)) (-4 *1 (-119 *3))
- (-4 *3 (-1205))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4400)) (-4 *1 (-119 *3))
- (-4 *3 (-1205))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090))
- (-4 *2 (-1205))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1166)) (-5 *1 (-627))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1221 (-561))) (|has| *1 (-6 -4400)) (-4 *1 (-644 *2))
- (-4 *2 (-1205))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4400)) (-4 *1 (-1003 *2))
- (-4 *2 (-1205))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2))
- (-4 *2 (-1205))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4400)) (-4 *1 (-1242 *3))
- (-4 *3 (-1205))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2))
- (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4)))))
+ (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
+ (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
+ (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-635 (-1166)))
+ (-5 *2 (-635 (-635 (-377)))) (-5 *1 (-1016)) (-5 *5 (-377))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4)))))
+ (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
+ (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
+ (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
+ (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-14 *5 (-635 (-1166)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4))))))
+ (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5))))))
+ (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166)))
+ (-14 *7 (-635 (-1166)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
- (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
- (-5 *1 (-258 *6))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5))))))
+ (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166)))
+ (-14 *7 (-635 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5))))))
+ (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166)))
+ (-14 *7 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4))))))
+ (-5 *1 (-1280 *4 *5 *6)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-635 (-1166))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6)))
+ (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378)))
- (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
- (-5 *1 (-258 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
- (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-609 (-534)) (-1090)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-609 (-534)) (-1090)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
- (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378)))
- (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
- (-5 *1 (-258 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-638 (-858 *4)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6))
- (-4 *6 (-450)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-638 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *5 *6))
- (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))))
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6)))
+ (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013)))
+ (-5 *2 (-635 (-1039 *4 *5))) (-5 *1 (-1280 *4 *5 *6))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *6 (-609 (-1166)))
- (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *2 (-1155 (-638 (-945 *4)) (-638 (-293 (-945 *4)))))
- (-5 *1 (-502 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5)))
- (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-765)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-682 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143))))
- ((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1146 (-1146 (-945 *5))))
- (-5 *1 (-1262 *5)) (-5 *4 (-1146 (-945 *5))))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5))
- (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6))
- (-4 *6 (-450))))
+ (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1279 *4))
+ (-4 *4 (-1204))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5))
- (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6))
- (-4 *6 (-450)))))
-(((*1 *2)
- (-12 (-4 *1 (-348))
- (-5 *2 (-638 (-2 (|:| -1633 (-561)) (|:| -4181 (-561))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-985 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3))
- (-4 *3 (-372 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-985 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5))))
+ (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-544))
+ (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1279 *5)) (-4 *5 (-1204)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-912)) (-4 *6 (-13 (-554) (-844))) (-5 *2 (-635 (-313 *6)))
+ (-5 *1 (-220 *5 *6)) (-5 *3 (-313 *6)) (-4 *5 (-1042))))
+ ((*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554))))
((*1 *2 *3)
- (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553))
- (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4)))
- (-5 *1 (-686 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *6 (-1230 *5))
- (-5 *2 (-2 (|:| -3394 *7) (|:| |rh| (-638 (-406 *6)))))
- (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-638 (-406 *6)))
- (-4 *7 (-649 *6)) (-4 *3 (-649 (-406 *6)))))
+ (-12 (-5 *3 (-580 *5)) (-4 *5 (-13 (-29 *4) (-1190)))
+ (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-635 *5))
+ (-5 *1 (-582 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-985 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1223 *4 *5 *3))
- (-4 *3 (-1230 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4))
- (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1090))
- (-5 *2 (-112)) (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-885 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-749)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1239 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5))
- (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1090)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844))
- (-14 *4
- (-1 (-112) (-2 (|:| -2442 *3) (|:| -4181 *2))
- (-2 (|:| -2442 *3) (|:| -4181 *2)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-584 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-844)) (-4 *5 (-902)) (-4 *6 (-787))
- (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-417 (-1162 *8)))
- (-5 *1 (-899 *5 *6 *7 *8)) (-5 *4 (-1162 *8))))
+ (-12 (-5 *3 (-580 (-406 (-939 *4))))
+ (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544))))
+ (-5 *2 (-635 (-313 *4))) (-5 *1 (-585 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-902)) (-4 *5 (-1230 *4)) (-5 *2 (-417 (-1162 *5)))
- (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *1 *1 *1) (-5 *1 (-378)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842))
+ (-4 *2 (-1139 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-429 *3))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
- (-4 *3 (-1090))))
+ (-12 (-5 *2 (-1269 (-1166) *3)) (-5 *1 (-1275 *3)) (-4 *3 (-1042))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
- (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3))
- (-5 *1 (-943 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $))
- (-15 -4088 (*7 $))))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561))
- (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171))
- (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787))
- (-4 *8 (-1042)) (-4 *2 (-942 *9 *7 *5))
- (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787))
- (-4 *4 (-942 *8 *6 *5)))))
+ (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-1042)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1269 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1275 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *1 (-1278 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
- (-14 *4 (-638 (-1166)))))
+ (-12 (-5 *2 (-635 (-2 (|:| |k| (-1166)) (|:| |c| (-1275 *3)))))
+ (-5 *1 (-1275 *3)) (-4 *3 (-1042))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
- (-14 *4 (-638 (-1166))))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4)))
- (-5 *2 (-1254 *6)) (-5 *1 (-335 *3 *4 *5 *6))
- (-4 *6 (-341 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1255)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1255)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
- (-5 *2 (-1256)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-293 *7)) (-5 *4 (-1166)) (-5 *5 (-638 (-262)))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-553) (-844) (-1031 (-561))))
- (-5 *2 (-1255)) (-5 *1 (-255 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255))
- (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1255)) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-609 (-534)) (-1090)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
- (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-378)))
- (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255))
- (-5 *1 (-258 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
- (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378)))
- (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256))
- (-5 *1 (-258 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1256))
- (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1256)) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-609 (-534)) (-1090)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
- (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378)))
- (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1256))
- (-5 *1 (-258 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1255)) (-5 *1 (-259))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1255))
- (-5 *1 (-259))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *2 (-1255)) (-5 *1 (-259))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-638 (-262)))
- (-5 *2 (-1255)) (-5 *1 (-259))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1256)) (-5 *1 (-259))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1256))
- (-5 *1 (-259)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-561))))
+ (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1278 *3 *4)))))
+ (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-544))))
((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-765))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-914))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-912))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
- (-4 *4 (-171))))
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171))))
((*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-156))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-156))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190)))
- (-5 *1 (-226 *3))))
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190))) (-5 *1 (-226 *3))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
- ((*1 *1 *2 *1)
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
- (-4 *6 (-237 (-3548 *3) (-765)))
+ (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765)))
(-14 *7
- (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *6))
- (-2 (|:| -2442 *5) (|:| -4181 *6))))
+ (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6))
+ (-2 (|:| -2535 *5) (|:| -2536 *6))))
(-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-844))
- (-4 *2 (-942 *4 *6 (-858 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ (-4 *2 (-943 *4 *6 (-858 *3)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-534)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *3 *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-533)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
((*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042))))
((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042))))
((*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1049))))
((*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-677 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-4 *7 (-1091)) (-5 *2 (-1 *7 *5)) (-5 *1 (-677 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-680 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-372 *3))
- (-4 *4 (-372 *3))))
+ (-12 (-4 *1 (-679 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-371 *3))
+ (-4 *4 (-371 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-680 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *2 (-372 *3))))
+ (-12 (-4 *1 (-679 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *2 (-371 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
((*1 *1 *1 *1) (-4 *1 (-714)))
((*1 *1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
((*1 *1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1254 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-553))
+ (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554))
(-5 *1 (-962 *3 *4))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-1049))))
((*1 *1 *1 *1) (-4 *1 (-1102)))
@@ -1424,1315 +311,578 @@
(-4 *2 (-237 *3 *4))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2))
- (-4 *2 (-942 *3 (-529 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
+ (-4 *2 (-943 *3 (-529 *4) *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-561)) (-4 *1 (-1252 *3)) (-4 *3 (-1205)) (-4 *3 (-21))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
+ (-12 (-5 *2 (-544)) (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
+ ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
+ (-14 *3 (-635 (-1166)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-635 (-1166))) (-4 *3 (-171)) (-4 *5 (-237 (-4364 *2) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5))
+ (-2 (|:| -2535 *4) (|:| -2536 *5))))
+ (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844))
+ (-4 *7 (-943 *3 *5 (-858 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844))))
+ ((*1 *1 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042)) (-4 *3 (-720))))
+ ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-786))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-638 (-1166)))))
+ (-14 *4 (-635 (-1166)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561))
- (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171))
- (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544))
+ (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8))
+ (-5 *1 (-135 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171))
- (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-171)) (-4 *6 (-171))
+ (-5 *2 (-167 *6)) (-5 *1 (-168 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1042) (-844)))
- (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166)))))
+ (-12 (-5 *2 (-1 (-313 *3) (-313 *3))) (-4 *3 (-13 (-1042) (-844)))
+ (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1166)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765))
- (-4 *6 (-1205)) (-4 *7 (-1205)) (-5 *2 (-239 *5 *7))
- (-5 *1 (-238 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1204))
+ (-4 *7 (-1204)) (-5 *2 (-238 *5 *7)) (-5 *1 (-239 *5 *6 *7))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-292 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-293 *3))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-292 *6)) (-5 *1 (-293 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-606 *1)) (-4 *1 (-297))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-607 *6))
- (-4 *6 (-301)) (-4 *2 (-1205)) (-5 *1 (-296 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-606 *6)) (-4 *6 (-297))
+ (-4 *2 (-1204)) (-5 *1 (-298 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-607 *5)) (-4 *5 (-301))
- (-4 *2 (-301)) (-5 *1 (-297 *5 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-607 *1)) (-4 *1 (-301))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-606 *5)) (-4 *5 (-297)) (-4 *2 (-297))
+ (-5 *1 (-299 *5 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042))
- (-4 *6 (-1042)) (-5 *2 (-682 *6)) (-5 *1 (-303 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-5 *2 (-682 *6)) (-5 *1 (-304 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-844))
- (-4 *6 (-844)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-313 *5)) (-4 *5 (-844)) (-4 *6 (-844))
+ (-5 *2 (-313 *6)) (-5 *1 (-314 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362))
- (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
- (-4 *9 (-362)) (-4 *10 (-1230 *9)) (-4 *11 (-1230 (-406 *10)))
- (-5 *2 (-335 *9 *10 *11 *12))
- (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-332 *5 *6 *7 *8)) (-4 *5 (-362))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *9 (-362)) (-4 *10 (-1229 *9)) (-4 *11 (-1229 (-406 *10)))
+ (-5 *2 (-332 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-341 *9 *10 *11))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1091))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209))
- (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6))) (-4 *9 (-1230 *8))
- (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1230 (-406 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209)) (-4 *6 (-1229 *5))
+ (-4 *7 (-1229 (-406 *6))) (-4 *9 (-1229 *8)) (-4 *2 (-341 *8 *9 *10))
+ (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7))
+ (-4 *10 (-1229 (-406 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1205)) (-4 *6 (-1205))
- (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *2 (-371 *6))
+ (-5 *1 (-372 *5 *4 *6 *2)) (-4 *4 (-371 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-1090))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-383 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-1091))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-404 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-553))
- (-4 *6 (-553)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-404 *5)) (-4 *5 (-554)) (-4 *6 (-554))
+ (-5 *2 (-404 *6)) (-5 *1 (-405 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-553))
- (-4 *6 (-553)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) (-4 *6 (-554))
+ (-5 *2 (-406 *6)) (-5 *1 (-407 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306))
- (-4 *6 (-985 *5)) (-4 *7 (-1230 *6))
- (-4 *8 (-13 (-408 *6 *7) (-1031 *6))) (-4 *9 (-306))
- (-4 *10 (-985 *9)) (-4 *11 (-1230 *10))
- (-5 *2 (-412 *9 *10 *11 *12))
- (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-408 *10 *11) (-1031 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
- (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-553)) (-5 *1 (-417 *3))))
+ (-4 *6 (-984 *5)) (-4 *7 (-1229 *6)) (-4 *8 (-13 (-409 *6 *7) (-1031 *6)))
+ (-4 *9 (-306)) (-4 *10 (-984 *9)) (-4 *11 (-1229 *10))
+ (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-413 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-409 *10 *11) (-1031 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-417 *6))
+ (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1042) (-844)))
- (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-429 *6))
- (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5))))
+ (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-420 *6)) (-5 *1 (-421 *5 *4 *6 *2))
+ (-4 *4 (-420 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090))
- (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-425 *6))
+ (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-425 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1204))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1205))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-844))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-844))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-362))
- (-4 *6 (-362)) (-5 *2 (-582 *6)) (-5 *1 (-581 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-362)) (-4 *6 (-362))
+ (-5 *2 (-580 *6)) (-5 *1 (-581 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -3413 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-362)) (-4 *6 (-362))
- (-5 *2 (-2 (|:| -3413 *6) (|:| |coeff| *6)))
- (-5 *1 (-581 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -2290 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362))
+ (-4 *6 (-362)) (-5 *2 (-2 (|:| -2290 *6) (|:| |coeff| *6)))
+ (-5 *1 (-581 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-581 *5 *2))))
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362))
+ (-4 *2 (-362)) (-5 *1 (-581 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-362)) (-4 *6 (-362))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-581 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6))))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-362)) (-4 *6 (-362))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-581 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-596 *7))
- (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-596 *8))
+ (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-596 *8))
(-5 *1 (-594 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-596 *7))
- (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-596 *7))
+ (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8))
(-5 *1 (-594 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1146 *7))
- (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1143 *7))
+ (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8))
(-5 *1 (-594 *6 *7 *8))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-638 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-638 *6)) (-5 *1 (-636 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-635 *6)) (-5 *1 (-636 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-638 *6)) (-5 *5 (-638 *7))
- (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-638 *8))
- (-5 *1 (-637 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7))
+ (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-635 *8))
+ (-5 *1 (-638 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1204))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042))
- (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-680 *8 *9 *10))
- (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-680 *5 *6 *7))
- (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-371 *5))
+ (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10))
+ (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7))
+ (-4 *9 (-371 *8)) (-4 *10 (-371 *8))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1042))
- (-4 *8 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5))
- (-4 *2 (-680 *8 *9 *10)) (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-680 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ (-4 *8 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10))
+ (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7))
+ (-4 *9 (-371 *8)) (-4 *10 (-371 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-553)) (-4 *7 (-553))
- (-4 *6 (-1230 *5)) (-4 *2 (-1230 (-406 *8)))
- (-5 *1 (-703 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1230 (-406 *6)))
- (-4 *8 (-1230 *7))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) (-4 *6 (-1229 *5))
+ (-4 *2 (-1229 (-406 *8))) (-5 *1 (-703 *5 *6 *4 *7 *8 *2))
+ (-4 *4 (-1229 (-406 *6))) (-4 *8 (-1229 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042))
- (-4 *5 (-844)) (-4 *6 (-787)) (-4 *2 (-942 *9 *7 *5))
- (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787))
- (-4 *4 (-942 *8 *6 *5))))
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042)) (-4 *5 (-844))
+ (-4 *6 (-787)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-4 *7 (-787))
- (-4 *9 (-1042)) (-4 *2 (-942 *9 *8 *6))
- (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-787))
- (-4 *4 (-942 *9 *7 *5))))
+ (-4 *9 (-1042)) (-4 *2 (-943 *9 *8 *6)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *8 (-787)) (-4 *4 (-943 *9 *7 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042))
- (-4 *6 (-1042)) (-4 *7 (-720)) (-5 *2 (-729 *6 *7))
- (-5 *1 (-728 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-4 *7 (-720)) (-5 *2 (-729 *6 *7)) (-5 *1 (-728 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4))
- (-4 *4 (-720))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4)) (-4 *4 (-720))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1042))
- (-4 *6 (-1042)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
- (-4 *2 (-791 *6)) (-5 *1 (-792 *4 *5 *2 *6)) (-4 *4 (-791 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-790 *6))
+ (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-790 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-5 *2 (-826 *6)) (-5 *1 (-827 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-827 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-826 *5 *6))))
+ (-12 (-5 *2 (-826 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091))
+ (-4 *6 (-1091)) (-5 *1 (-827 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-5 *2 (-837 *6)) (-5 *1 (-836 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-5 *2 (-836 *6)) (-5 *1 (-837 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-837 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-836 *5 *6))))
+ (-12 (-5 *2 (-836 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091))
+ (-4 *6 (-1091)) (-5 *1 (-837 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-882 *5 *6)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-882 *5 *7))
- (-5 *1 (-881 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-881 *5 *6)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-4 *7 (-1091)) (-5 *2 (-881 *5 *7)) (-5 *1 (-882 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-5 *2 (-883 *6)) (-5 *1 (-885 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1042))
- (-4 *6 (-1042)) (-5 *2 (-945 *6)) (-5 *1 (-939 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-5 *2 (-939 *6)) (-5 *1 (-940 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844))
- (-4 *8 (-1042)) (-4 *6 (-787))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844)) (-4 *8 (-1042))
+ (-4 *6 (-787))
(-4 *2
- (-13 (-1090)
- (-10 -8 (-15 -1810 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))))))
- (-5 *1 (-944 *6 *7 *8 *5 *2)) (-4 *5 (-942 *8 *6 *7))))
+ (-13 (-1091)
+ (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))))))
+ (-5 *1 (-945 *6 *7 *8 *5 *2)) (-4 *5 (-943 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-951 *6)) (-5 *1 (-950 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-951 *6)) (-5 *1 (-952 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042))
- (-4 *6 (-1042)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-945 *4))) (-4 *4 (-1042))
- (-4 *2 (-942 (-945 *4) *5 *6)) (-4 *5 (-787))
+ (-12 (-5 *3 (-1 *2 (-939 *4))) (-4 *4 (-1042)) (-4 *2 (-943 (-939 *4) *5 *6))
+ (-4 *5 (-787))
(-4 *6
(-13 (-844)
- (-10 -8 (-15 -4216 ((-1166) $))
- (-15 -2421 ((-3 $ "failed") (-1166))))))
+ (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))))
(-5 *1 (-977 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-553)) (-4 *6 (-553))
- (-4 *2 (-985 *6)) (-5 *1 (-983 *5 *6 *4 *2)) (-4 *4 (-985 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-4 *2 (-984 *6))
+ (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-984 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
- (-4 *2 (-990 *6)) (-5 *1 (-991 *4 *5 *2 *6)) (-4 *4 (-990 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-991 *6))
+ (-5 *1 (-992 *4 *5 *2 *6)) (-4 *4 (-991 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7))
- (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7))
- (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042))
- (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7))
- (-4 *9 (-237 *5 *7)) (-4 *2 (-1045 *5 *6 *10 *11 *12))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042)) (-14 *5 (-765))
+ (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7))
+ (-4 *2 (-1045 *5 *6 *10 *11 *12))
(-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
(-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10))
(-4 *12 (-237 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-1084 *6)) (-5 *1 (-1079 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-1079 *6)) (-5 *1 (-1080 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-842))
- (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-638 *6))
- (-5 *1 (-1079 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-842)) (-4 *5 (-1204))
+ (-4 *6 (-1204)) (-5 *2 (-635 *6)) (-5 *1 (-1080 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-1082 *6)) (-5 *1 (-1081 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-1082 *6)) (-5 *1 (-1083 *5 *6))))
((*1 *2 *3 *1)
(-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842))
(-4 *2 (-1139 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-1143 *6)) (-5 *1 (-1145 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-1146 *7))
- (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8))
- (-5 *1 (-1145 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7))
+ (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8))
+ (-5 *1 (-1146 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5)) (-4 *5 (-1042))
- (-4 *6 (-1042)) (-5 *2 (-1162 *6)) (-5 *1 (-1160 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-5 *2 (-1160 *6)) (-5 *1 (-1161 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1091))
+ (-4 *4 (-1091))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1218 *5 *7 *9)) (-4 *5 (-1042))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5 *7 *9)) (-4 *5 (-1042))
(-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1218 *6 *8 *10)) (-5 *1 (-1213 *5 *6 *7 *8 *9 *10))
+ (-5 *2 (-1213 *6 *8 *10)) (-5 *1 (-1214 *5 *6 *7 *8 *9 *10))
(-14 *8 (-1166))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-1221 *6)) (-5 *1 (-1220 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-1220 *6)) (-5 *1 (-1221 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5)) (-4 *5 (-842))
- (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1146 *6))
- (-5 *1 (-1220 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-842)) (-4 *5 (-1204))
+ (-4 *6 (-1204)) (-5 *2 (-1143 *6)) (-5 *1 (-1221 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1227 *5 *6)) (-14 *5 (-1166))
- (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1227 *7 *8))
- (-5 *1 (-1222 *5 *6 *7 *8)) (-14 *7 (-1166))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1222 *5 *6)) (-14 *5 (-1166))
+ (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1222 *7 *8))
+ (-5 *1 (-1223 *5 *6 *7 *8)) (-14 *7 (-1166))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
- (-4 *2 (-1230 *6)) (-5 *1 (-1228 *5 *4 *6 *2)) (-4 *4 (-1230 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1229 *6))
+ (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1229 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5 *7 *9)) (-4 *5 (-1042))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5 *7 *9)) (-4 *5 (-1042))
(-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1239 *6 *8 *10)) (-5 *1 (-1234 *5 *6 *7 *8 *9 *10))
+ (-5 *2 (-1234 *6 *8 *10)) (-5 *1 (-1235 *5 *6 *7 *8 *9 *10))
(-14 *8 (-1166))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
- (-4 *2 (-1245 *6)) (-5 *1 (-1243 *5 *6 *4 *2)) (-4 *4 (-1245 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1246 *6))
+ (-5 *1 (-1244 *5 *6 *4 *2)) (-4 *4 (-1246 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1205))
- (-4 *6 (-1205)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *6 (-1204))
+ (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1254 *5))
- (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1254 *6))
- (-5 *1 (-1253 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1253 *5))
+ (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844))
(-4 *4 (-1042))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-1277 *3 *4))
(-4 *4 (-840)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-406 (-945 (-561)))))
- (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-842) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-293 (-406 (-945 (-561))))))
- (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-842) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 (-293 (-945 *4))))
- (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-945 (-561)))))
- (-5 *2 (-638 (-293 (-945 *4)))) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-842) (-362)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1166))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-4 *4 (-13 (-29 *6) (-1190) (-952)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2615 (-638 *4))))
- (-5 *1 (-645 *6 *4 *3)) (-4 *3 (-649 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *2))
- (-4 *2 (-13 (-29 *6) (-1190) (-952)))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *1 (-645 *6 *2 *3)) (-4 *3 (-649 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *5)) (-4 *5 (-362))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1254 *5) "failed"))
- (|:| -2615 (-638 (-1254 *5)))))
- (-5 *1 (-660 *5)) (-5 *4 (-1254 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1254 *5) "failed"))
- (|:| -2615 (-638 (-1254 *5)))))
- (-5 *1 (-660 *5)) (-5 *4 (-1254 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *5)) (-4 *5 (-362))
- (-5 *2
- (-638
- (-2 (|:| |particular| (-3 (-1254 *5) "failed"))
- (|:| -2615 (-638 (-1254 *5))))))
- (-5 *1 (-660 *5)) (-5 *4 (-638 (-1254 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362))
- (-5 *2
- (-638
- (-2 (|:| |particular| (-3 (-1254 *5) "failed"))
- (|:| -2615 (-638 (-1254 *5))))))
- (-5 *1 (-660 *5)) (-5 *4 (-638 (-1254 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400))))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4400))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400))))
- (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4400))))
- (-5 *2
- (-638
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2615 (-638 *7)))))
- (-5 *1 (-661 *5 *6 *7 *3)) (-5 *4 (-638 *7))
- (-4 *3 (-680 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553))
- (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553))
- (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1166))
- (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-952)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166))
- (-4 *7 (-13 (-29 *6) (-1190) (-952)))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2
- (-2 (|:| |particular| (-1254 *7)) (|:| -2615 (-638 (-1254 *7)))))
- (-5 *1 (-796 *6 *7)) (-5 *4 (-1254 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166))
- (-4 *6 (-13 (-29 *5) (-1190) (-952)))
- (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2 (-638 (-1254 *6))) (-5 *1 (-796 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114)))
- (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952)))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2
- (-2 (|:| |particular| (-1254 *7)) (|:| -2615 (-638 (-1254 *7)))))
- (-5 *1 (-796 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114)))
- (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952)))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2
- (-2 (|:| |particular| (-1254 *7)) (|:| -2615 (-638 (-1254 *7)))))
- (-5 *1 (-796 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1166))
- (-4 *7 (-13 (-29 *6) (-1190) (-952)))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2615 (-638 *7))) *7 "failed"))
- (-5 *1 (-796 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1166))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2615 (-638 *3))) *3 "failed"))
- (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-952)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-638 *2))
- (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-5 *1 (-796 *6 *2))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-638 *2))
- (-4 *2 (-13 (-29 *6) (-1190) (-952)))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *1 (-796 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1254 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4))
- (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1254 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4))
- (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1254 (-315 *4))) (-5 *5 (-638 (-378)))
- (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1254 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4))
- (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1254 (-315 *4))) (-5 *5 (-638 (-378)))
- (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1254 (-315 *4))) (-5 *5 (-638 (-378)))
- (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -2615 (-638 *6))) "failed")
- *7 *6))
- (-4 *6 (-362)) (-4 *7 (-649 *6))
- (-5 *2 (-2 (|:| |particular| (-1254 *6)) (|:| -2615 (-682 *6))))
- (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1254 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148))
- (-5 *8 (-224)) (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378))
- (-5 *2 (-1028)) (-5 *1 (-890))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148))
- (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1028))
- (-5 *1 (-890))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 (-378)))
- (-5 *1 (-1016)) (-5 *4 (-378))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 (-378))) (-5 *1 (-1016))
- (-5 *4 (-378))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4))
- (-5 *3 (-315 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4))
- (-5 *3 (-293 (-315 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5))
- (-5 *3 (-293 (-315 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5))
- (-5 *3 (-315 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-1166)))
- (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1121 *5))
- (-5 *3 (-638 (-293 (-315 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
- (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5))))))
- (-5 *1 (-1174 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-1166))) (-4 *5 (-553))
- (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-1174 *5))
- (-5 *3 (-638 (-293 (-406 (-945 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-406 (-945 *4)))) (-4 *4 (-553))
- (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-1174 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4))))))
- (-5 *1 (-1174 *4)) (-5 *3 (-638 (-293 (-406 (-945 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-4 *5 (-553))
- (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5))
- (-5 *3 (-406 (-945 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-4 *5 (-553))
- (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5))
- (-5 *3 (-293 (-406 (-945 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4)))))
- (-5 *1 (-1174 *4)) (-5 *3 (-406 (-945 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4)))))
- (-5 *1 (-1174 *4)) (-5 *3 (-293 (-406 (-945 *4)))))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1198 *5 *6 *7 *8)) (-4 *5 (-553))
- (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-638 (-1166))) (-14 *5 (-765))
- (-5 *2
- (-638
- (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
- (-246 *4 (-406 (-561))))))
- (-5 *1 (-503 *4 *5))
- (-5 *3
- (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
- (-246 *4 (-406 (-561))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-832))) (-5 *1 (-139)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))
- (-14 *4 (-765)) (-4 *5 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-362))
- (-5 *2 (-112)) (-5 *1 (-660 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400))))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-5 *2 (-112))
- (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914))
- (-14 *4 (-914)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *2 (-1056 *4 *5 *6)) (-5 *1 (-770 *4 *5 *6 *2 *3))
- (-4 *3 (-1062 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-765)) (-4 *5 (-553))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-844))
- (-5 *1 (-607 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-768)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
- (-4 *5 (-553)) (-5 *2 (-638 (-638 (-945 *5)))) (-5 *1 (-1174 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6))
- (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *1))))
- (-4 *1 (-1062 *4 *5 *6 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574))))
- ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574)))))
-(((*1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-787))
- (-4 *3 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *5 (-553))
- (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-787))
- (-4 *3
- (-13 (-844)
- (-10 -8 (-15 -4216 ((-1166) $))
- (-15 -2421 ((-3 $ "failed") (-1166))))))
- (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *6))
- (-4 *6
- (-13 (-844)
- (-10 -8 (-15 -4216 ((-1166) $))
- (-15 -2421 ((-3 $ "failed") (-1166))))))
- (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2))
- (-4 *2 (-942 (-945 *4) *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-638
- (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
- (|:| |wcond| (-638 (-945 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *5))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *5))))))))))
- (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-942 *5 *7 *6))
- (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-561))
- (-5 *1 (-917 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *1 *1) (-4 *1 (-1193))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
- (-4 *3 (-1090)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-326 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-514 *3 *4))
- (-14 *4 (-561)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4))
- (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1230 *5))
- (-5 *2 (-638 *3)) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1230 *6))
- (-14 *7 (-914)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378)))
- (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259))
- (-5 *1 (-782)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224))
- (-5 *2 (-1028)) (-5 *1 (-743)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1166))
- (-4 *5 (-13 (-553) (-1031 (-561)) (-146)))
- (-5 *2
- (-2 (|:| -3413 (-406 (-945 *5))) (|:| |coeff| (-406 (-945 *5)))))
- (-5 *1 (-567 *5)) (-5 *3 (-406 (-945 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *1 *1) (-4 *1 (-1193))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *1 *1) (-5 *1 (-224)))
- ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1129))) ((*1 *1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
- (-5 *2 (-638 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-731 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787))
- (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))))
-(((*1 *2) (-12 (-5 *2 (-827 (-561))) (-5 *1 (-532))))
- ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *1 *1) (-4 *1 (-1193))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-367))
- (-4 *3 (-1090)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-417 *3)) (-4 *3 (-553)) (-5 *1 (-418 *3)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224)))
- (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
- (|:| |ub| (-638 (-837 (-224))))))
- (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-638 (-638 (-936 (-224)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-638 (-638 (-936 (-224))))))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-638
- (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *2))
- (|:| |logand| (-1162 *2)))))
- (-5 *4 (-638 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-362)) (-5 *1 (-582 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2))
- (-4 *3 (-13 (-844) (-553)))))
- ((*1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-1190))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2615 (-638 *1))))
- (-4 *1 (-366 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-451 *3 *4 *5 *6))
- (|:| -2615 (-638 (-451 *3 *4 *5 *6)))))
- (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
- (-5 *2 (-837 *4)) (-5 *1 (-312 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166))
- (-14 *6 *4)))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-34)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129))))
((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
- (-5 *2 (-837 *4)) (-5 *1 (-1240 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166))
- (-14 *6 *4))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *1 *1) (-4 *1 (-1193))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362))
- (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-544))))
((*1 *2 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
- (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
- (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-342 *3 *4)) (-14 *3 (-914))
- (-14 *4 (-914))))
- ((*1 *2)
- (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-1162 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-914)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224))
- (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-745)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *1 *1) (-4 *1 (-1193))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-674))))
- ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-963))))
- ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-1064))))
- ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1108)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-417 (-1162 *6)) (-1162 *6)))
- (-4 *6 (-362))
- (-5 *2
- (-638
- (-2 (|:| |outval| *7) (|:| |outmult| (-561))
- (|:| |outvect| (-638 (-682 *7))))))
- (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553)))))
+ (-12 (-5 *2 (-765)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3)))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-813 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))))
-(((*1 *1) (-5 *1 (-156)))
- ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-985 *2)) (-4 *4 (-1230 *3)) (-4 *2 (-306))
- (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1)))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493))))
+ (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1278 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844))
+ (-4 *2 (-171))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-813 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
((*1 *2 *1)
- (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4))
- (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4))
- (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166))
- (-5 *2
- (-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224)))
- (|:| |singularities| (-1146 (-224)))))
- (-5 *1 (-105)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *1 *1) (-4 *1 (-1193))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-765)) (-4 *5 (-171))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
- (-4 *4 (-171))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *2 *4)) (-4 *2 (-372 *3))
- (-4 *4 (-372 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1205))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205))
- (-14 *4 (-561)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1084 (-837 (-224)))) (-5 *1 (-304)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-794))
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-1028)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5))
+ (-4 *4 (-1091))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922))))
+ ((*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-224))))
+ ((*1 *1 *1 *1)
+ (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204)))
+ (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204)))))
+ ((*1 *1 *1 *1) (-4 *1 (-362)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-554)) (-4 *3 (-844))
+ (-4 *1 (-420 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-471)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-533)))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-171)) (-5 *1 (-614 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-720) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-171)) (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-720) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-171)) (-5 *1 (-645 *2 *4 *3)) (-4 *2 (-711 *4))
+ (-4 *3 (|SubsetCategory| (-720) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-171)) (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4))
+ (-4 *2 (|SubsetCategory| (-720) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1042))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-765))) (-14 *5 (-765))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2))
+ (-4 *6 (-237 *3 *2)) (-4 *2 (-362))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-787))
+ (-14 *6 (-635 *3)) (-5 *1 (-1266 *2 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-943 *2 *4 *3)) (-14 *7 (-635 (-765))) (-14 *8 (-765))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
((*1 *2 *1)
- (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-635 (-1166)))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090))))
+ (-12 (-5 *2 (-544)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1160 *8)) (-5 *4 (-635 *6)) (-4 *6 (-844))
+ (-4 *8 (-943 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042)) (-5 *2 (-635 (-765)))
+ (-5 *1 (-320 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090))))
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-561)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-150 *3))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-638 (-2 (|:| -4181 (-765)) (|:| -2298 *4) (|:| |num| *4))))
- (-4 *4 (-1230 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-112)) (-5 *1 (-436))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-5 *3 (-638 (-1166))) (-5 *4 (-112)) (-5 *1 (-436))))
+ (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-635 (-765)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2 (-765))))
((*1 *2 *1)
- (-12 (-5 *2 (-1146 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4))
- (-4 *4 (-171))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4))
- (-4 *4 (-171))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4))
- (-4 *4 (-171))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 (-638 *3)))) (-4 *3 (-1090))
- (-5 *1 (-668 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1090))
- (-14 *4
- (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *3))
- (-2 (|:| -2442 *2) (|:| -4181 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-832))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 *4))))
- (-4 *4 (-1090)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *5)) (-4 *5 (-13 (-1090) (-34)))
- (-5 *2 (-638 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5))
- (-4 *3 (-13 (-1090) (-34)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-2 (|:| |val| *4) (|:| -1495 *5))))
- (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34)))
- (-5 *2 (-638 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1495 *4)))
- (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34)))
- (-5 *1 (-1130 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-638 *3)) (-4 *3 (-13 (-1090) (-34)))
- (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-1130 *2 *3))) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34))) (-5 *1 (-1131 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3))
- (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *2 (-786))))
((*1 *2 *1)
- (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4))
- (-5 *2 (-1254 *6)) (-5 *1 (-412 *3 *4 *5 *6))
- (-4 *6 (-13 (-408 *4 *5) (-1031 *4)))))
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765))))
((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1)))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493))))
+ (-12 (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1246 *3))
+ (-5 *2 (-544))))
((*1 *2 *1)
- (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-616 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-720) *3))))
+ (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3))
+ (-5 *2 (-406 (-544)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912)))))
((*1 *2 *1)
- (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-655 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-720) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
-(((*1 *1 *1) (-4 *1 (-543))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-91 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-818)) (-5 *3 (-638 (-1166))) (-5 *1 (-819)))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-765)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))
- (-14 *4 (-765)) (-4 *5 (-171)))))
-(((*1 *1 *1) (-4 *1 (-624)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -3413 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1230 *7))
- (-5 *3 (-406 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-571 *7 *8)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1162 (-1017 *3))))
- (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1015))))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-745)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1227 *5 *4)))
- (-5 *1 (-1104 *4 *5)) (-5 *3 (-1227 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-854)) (-5 *2 (-684 (-129))) (-5 *3 (-129)))))
+ (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-362)) (-14 *6 (-1254 (-682 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-914)) (-14 *5 (-638 (-1166)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1205))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-14 *6 (-1253 (-682 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1204))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078 'JINT 'X 'ELAM) (-4078) (-692))))
- (-5 *1 (-61 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-338 (-3929 'X) (-3929) (-692))) (-5 *1 (-61 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 'XC) (-692))))
- (-5 *1 (-63 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929 'JINT 'X 'ELAM) (-3929) (-692))))
+ (-5 *1 (-62 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-4078 'X) (-4078) (-692))) (-5 *1 (-64 *3))
+ (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'XC) (-692)))) (-5 *1 (-64 *3))
(-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-4078) (-4078 'XC) (-692))) (-5 *1 (-66 *3))
+ (-12 (-5 *2 (-338 (-3929) (-3929 'XC) (-692))) (-5 *1 (-66 *3))
(-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078 'X) (-4078 '-3223) (-692))))
- (-5 *1 (-71 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929 'X) (-3929 '-4371) (-692)))) (-5 *1 (-71 *3))
+ (-14 *3 (-1166))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'X) (-692)))) (-5 *1 (-74 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 'X) (-692))))
- (-5 *1 (-74 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-338 (-3929) (-3929 'X) (-692))) (-5 *1 (-75 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078 'X 'EPS) (-4078 '-3223) (-692))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166))
- (-14 *5 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929 'X 'EPS) (-3929 '-4371) (-692))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078 'EPS) (-4078 'YA 'YB) (-692))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166))
- (-14 *5 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929 'EPS) (-3929 'YA 'YB) (-692))))
+ (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-4078) (-4078 'X) (-692))) (-5 *1 (-77 *3))
+ (-12 (-5 *2 (-338 (-3929) (-3929 'X) (-692))) (-5 *1 (-78 *3))
(-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-4078) (-4078 'X) (-692))) (-5 *1 (-78 *3))
+ (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'XC) (-692)))) (-5 *1 (-79 *3))
(-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 'XC) (-692))))
- (-5 *1 (-79 *3)) (-14 *3 (-1166))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078) (-4078 'X) (-692))))
- (-5 *1 (-80 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'X) (-692)))) (-5 *1 (-80 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078 'X '-3223) (-4078) (-692))))
- (-5 *1 (-82 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929 'X) (-3929 '-4371) (-692)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-682 (-338 (-4078 'X '-3223) (-4078) (-692))))
- (-5 *1 (-83 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929 'X '-4371) (-3929) (-692)))) (-5 *1 (-83 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-682 (-338 (-4078 'X) (-4078) (-692)))) (-5 *1 (-84 *3))
+ (-12 (-5 *2 (-682 (-338 (-3929 'X '-4371) (-3929) (-692)))) (-5 *1 (-84 *3))
(-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078 'X) (-4078) (-692))))
- (-5 *1 (-85 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-682 (-338 (-3929 'X) (-3929) (-692)))) (-5 *1 (-85 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-338 (-4078 'X) (-4078 '-3223) (-692))))
- (-5 *1 (-86 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-1253 (-338 (-3929 'X) (-3929) (-692)))) (-5 *1 (-86 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-682 (-338 (-4078 'XL 'XR 'ELAM) (-4078) (-692))))
- (-5 *1 (-87 *3)) (-14 *3 (-1166))))
+ (-12 (-5 *2 (-682 (-338 (-3929 'XL 'XR 'ELAM) (-3929) (-692))))
+ (-5 *1 (-88 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-4078 'X) (-4078 '-3223) (-692))) (-5 *1 (-89 *3))
+ (-12 (-5 *2 (-338 (-3929 'X) (-3929 '-4371) (-692))) (-5 *1 (-89 *3))
(-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171))))
+ (-12 (-5 *2 (-635 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544))
+ (-14 *4 (-765)) (-4 *5 (-171))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-561)) (-14 *4 (-765))))
+ (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544))
+ (-14 *4 (-765))))
((*1 *1 *2)
(-12 (-5 *2 (-1132 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))))
+ (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544))))
((*1 *1 *2)
- (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))))
+ (-12 (-5 *2 (-238 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171))
+ (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544))))
((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-682 *4))) (-4 *4 (-171))
- (-5 *2 (-1254 (-682 (-406 (-945 *4))))) (-5 *1 (-188 *4))))
+ (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171))
+ (-5 *2 (-1253 (-682 (-406 (-939 *4))))) (-5 *1 (-188 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1082 (-315 *4)))
- (-4 *4 (-13 (-844) (-553) (-609 (-378)))) (-5 *2 (-1082 (-378)))
- (-5 *1 (-257 *4))))
+ (-12 (-5 *3 (-1082 (-313 *4))) (-4 *4 (-13 (-844) (-554) (-609 (-377))))
+ (-5 *2 (-1082 (-377))) (-5 *1 (-258 *4))))
((*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274))))
((*1 *2 *1)
- (-12 (-4 *2 (-1230 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-12 (-4 *2 (-1229 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1239 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3)))
+ (-12 (-5 *2 (-1234 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3)))
(-14 *5 (-1166)) (-14 *6 *4)
- (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
+ (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)))
(-5 *1 (-312 *3 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5))
- (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ (-12 (-5 *2 (-313 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166)))
+ (-14 *4 (-635 (-1166))) (-4 *5 (-386))))
((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2))
+ (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *3 *4 *2))
(-4 *3 (-328 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3))
+ (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *2 *4 *3))
(-4 *3 (-328 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
@@ -2742,179 +892,167 @@
(-5 *2 (-1269 *3 *4))))
((*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))
(-4 *1 (-382))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-382))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382))))
((*1 *1 *2) (-12 (-5 *2 (-682 (-692))) (-4 *1 (-382))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))
- (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-383))))
- ((*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1090))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))
+ (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-384))))
+ ((*1 *2 *3) (-12 (-5 *2 (-392)) (-5 *1 (-393 *3)) (-4 *3 (-1091))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))
- (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-395))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))
+ (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-396))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-292 (-313 (-167 (-377))))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void")))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-292 (-313 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-561)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-292 (-313 (-544)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-313 (-377))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-561))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-313 (-544))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-687)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-292 (-313 (-687)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-692)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-292 (-313 (-692)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-694)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-292 (-313 (-694)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-687))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-313 (-687))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-692))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-313 (-692))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-694))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-313 (-694))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))
(-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
- (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 (-329))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
(-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
- (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21)))
- (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-561)))))))
+ (-12 (-5 *2 (-406 (-939 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-844))
+ (-4 *1 (-420 *3))))
((*1 *1 *2)
- (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-561)))))
- (-4 *3 (-13 (-844) (-21)))))
+ (-12 (-5 *2 (-939 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-844))
+ (-4 *1 (-420 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-406 (-945 (-406 *3)))) (-4 *3 (-553)) (-4 *3 (-844))
- (-4 *1 (-429 *3))))
+ (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-945 (-406 *3))) (-4 *3 (-553)) (-4 *3 (-844))
- (-4 *1 (-429 *3))))
+ (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-1042)) (-4 *3 (-844))
+ (-4 *1 (-420 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-406 *3)) (-4 *3 (-553)) (-4 *3 (-844))
- (-4 *1 (-429 *3))))
+ (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-13 (-171) (-38 (-406 (-544)))))))
((*1 *1 *2)
- (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-1042)) (-4 *3 (-844))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-433))))
+ (-12 (-5 *1 (-428 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-544)))))
+ (-4 *3 (-13 (-844) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-433))))
((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-433))))
((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-433))))
((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436))))
+ ((*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-435))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))
(-4 *1 (-438))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-438))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 (-692))) (-4 *1 (-438))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-692))) (-4 *1 (-438))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3529 (-638 (-329)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))
(-4 *1 (-439))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439))))
((*1 *1 *2)
- (-12 (-5 *2 (-1254 (-406 (-945 *3)))) (-4 *3 (-171))
- (-14 *6 (-1254 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-14 *4 (-914)) (-14 *5 (-638 (-1166)))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-466))))
+ (-12 (-5 *2 (-1253 (-406 (-939 *3)))) (-4 *3 (-171))
+ (-14 *6 (-1253 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-912))
+ (-14 *5 (-635 (-1166)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-466))))
((*1 *1 *2)
- (-12 (-5 *2 (-1239 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166))
- (-14 *5 *3) (-5 *1 (-472 *3 *4 *5))))
+ (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3)
+ (-5 *1 (-472 *3 *4 *5))))
((*1 *1 *2)
(-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493))))
((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-500))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1042))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601))))
+ ((*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1042))))
((*1 *2 *1)
(-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))
((*1 *2 *1)
(-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-5 *1 (-630 *3 *2)) (-4 *2 (-738 *3))))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))
+ ((*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-628 *3 *2)) (-4 *2 (-738 *3))))
((*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
((*1 *2 *1)
- (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3))
- (-4 *3 (-1090))))
+ (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3)) (-4 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1090))
- (-5 *1 (-668 *3))))
+ (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3))))
((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
- ((*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-674))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-674))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091))))
((*1 *1 *2)
- (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *2)) (-4 *4 (-372 *3))
- (-4 *2 (-372 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-694))) (-5 *1 (-687))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-692))) (-5 *1 (-687))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-561))) (-5 *1 (-687))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687))))
+ (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *2)) (-4 *4 (-371 *3))
+ (-4 *2 (-371 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-694))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-692))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-544))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687))))
((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-692))))
- ((*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-692))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-315 (-561))) (-5 *2 (-315 (-694))) (-5 *1 (-694))))
- ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377)) (-5 *1 (-692))))
+ ((*1 *2 *3) (-12 (-5 *3 (-313 (-544))) (-5 *2 (-313 (-694))) (-5 *1 (-694))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704))))
((*1 *2 *1)
(-12 (-4 *2 (-171)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
@@ -2924,125 +1062,110 @@
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 (-2 (|:| -4226 *3) (|:| -3077 *4))))
- (-4 *3 (-1042)) (-4 *4 (-720)) (-5 *1 (-729 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-757))))
+ (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-4 *3 (-1042))
+ (-4 *4 (-720)) (-5 *1 (-729 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-757))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
(|:| |mdnia|
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2185 (-638 (-1084 (-837 (-224)))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224)))))
(|:| |abserr| (-224)) (|:| |relerr| (-224))))))
(-5 *1 (-763))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224)))))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
(-5 *1 (-763))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
(-5 *1 (-763))))
- ((*1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-767 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-768 *3)) (-4 *3 (-1204))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
(|:| |abserr| (-224)) (|:| |relerr| (-224))))
(-5 *1 (-802))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-818))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-820))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224)))
- (|:| |lb| (-638 (-837 (-224))))
- (|:| |cf| (-638 (-315 (-224))))
- (|:| |ub| (-638 (-837 (-224))))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224)))
+ (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224))))
+ (|:| |ub| (-635 (-836 (-224))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-638 (-315 (-224))))
- (|:| -3767 (-638 (-224)))))))
+ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))
(-5 *1 (-835))))
((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))
+ (-12 (-5 *2 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))
(-5 *1 (-835))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224)))
- (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
- (|:| |ub| (-638 (-837 (-224))))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224)))
+ (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224))))
+ (|:| |ub| (-635 (-836 (-224))))))
(-5 *1 (-835))))
- ((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-852))))
+ ((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-852))))
((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))
+ ((*1 *2 *3) (-12 (-5 *3 (-939 (-48))) (-5 *2 (-313 (-544))) (-5 *1 (-868))))
((*1 *2 *3)
- (-12 (-5 *3 (-945 (-48))) (-5 *2 (-315 (-561))) (-5 *1 (-868))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-945 (-48)))) (-5 *2 (-315 (-561)))
- (-5 *1 (-868))))
+ (-12 (-5 *3 (-406 (-939 (-48)))) (-5 *2 (-313 (-544))) (-5 *1 (-868))))
((*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844))))
((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-638 (-315 (-224))))
+ (-2 (|:| |pde| (-635 (-313 (-224))))
(|:| |constraints|
- (-638
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-765)) (|:| |boundaryType| (-561))
- (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
- (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765))
+ (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224)))
+ (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148))
(|:| |tol| (-224))))
(-5 *1 (-891))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-404 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3))))
((*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306))))
((*1 *2 *3)
- (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-912 *4))
- (-4 *4 (-13 (-844) (-553)))))
+ (-12 (-5 *3 (-475)) (-5 *2 (-313 *4)) (-5 *1 (-913 *4))
+ (-4 *4 (-13 (-844) (-554)))))
((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960))))
((*1 *1 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960))))
- ((*1 *2 *3) (-12 (-5 *2 (-1259)) (-5 *1 (-1026 *3)) (-4 *3 (-1205))))
- ((*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1026 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1259)) (-5 *1 (-1026 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *3) (-12 (-5 *3 (-310)) (-5 *1 (-1026 *2)) (-4 *2 (-1204))))
((*1 *1 *2)
(-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5))
- (-14 *6 (-638 *2))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-1036 *3)) (-4 *3 (-553))))
+ (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2))))
+ ((*1 *2 *3) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-554))))
((*1 *1 *2)
(-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2))
- (-4 *2 (-942 *3 (-529 *4) *4))))
+ (-4 *2 (-943 *3 (-529 *4) *4))))
((*1 *1 *2)
(-12 (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4))
- (-4 *4 (-942 *3 (-529 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-856))))
+ (-4 *4 (-943 *3 (-529 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-857))))
((*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1134))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042))))
((*1 *1 *2)
(-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
@@ -3050,35 +1173,32 @@
(-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1227 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166))
- (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5))))
+ (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3)
+ (-5 *1 (-1164 *3 *4 *5))))
((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1165))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178 (-1166) (-436))) (-5 *1 (-1170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1177 (-1166) (-435))) (-5 *1 (-1170))))
((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171))))
((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171))))
((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171))))
- ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1177 *3)) (-4 *3 (-1090))))
- ((*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-1184 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1178 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-1185 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-5 *1 (-1197 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-1042))))
((*1 *1 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-5 *1 (-1199 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-1042))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1218 *3 *4 *5))
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-1204)) (-5 *1 (-1220 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1084 *3)) (-4 *3 (-1205)) (-5 *1 (-1221 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1246 *3 *4 *5))
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1227 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166))
- (-14 *5 *3) (-5 *1 (-1246 *3 *4 *5))))
+ (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3)
+ (-5 *1 (-1243 *3 *4 *5))))
((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1255))))
- ((*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1255)) (-5 *1 (-1258))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
+ ((*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1256)) (-5 *1 (-1255))))
+ ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1256))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
((*1 *2 *1)
(-12 (-5 *2 (-1278 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844))
(-4 *4 (-171))))
@@ -3088,914 +1208,1065 @@
((*1 *1 *2)
(-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
(-5 *1 (-1274 *3 *4)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1169))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259))
- (-5 *1 (-1169))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259))
- (-5 *1 (-1169)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5))
- (-14 *3 (-638 *2)) (-14 *4 (-638 *2)) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386))
- (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-561))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-561))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1254 (-406 (-945 (-561))))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1254 (-406 (-945 (-378))))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1254 (-945 (-561)))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1254 (-945 (-378)))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1254 (-315 (-561)))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1254 (-315 (-378)))) (-4 *1 (-439))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1230 *5))
- (-5 *2 (-1162 (-1162 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7))
- (-4 *3 (-1230 *6)) (-14 *7 (-914))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5))
- (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *1 (-969 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2)
- (|partial| -4050
- (-12 (-5 *2 (-945 *3))
- (-12 (-2186 (-4 *3 (-38 (-406 (-561)))))
- (-2186 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)))
- (-12 (-5 *2 (-945 *3))
- (-12 (-2186 (-4 *3 (-543))) (-2186 (-4 *3 (-38 (-406 (-561)))))
- (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)))
- (-12 (-5 *2 (-945 *3))
- (-12 (-2186 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561))))
- (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)))))
- ((*1 *1 *2)
- (|partial| -4050
- (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
- (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561)))
- (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
- (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))
- (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-1042)) (-5 *2 (-1254 *4))
- (-5 *1 (-1167 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-5 *2 (-1254 *3)) (-5 *1 (-1167 *3))
- (-4 *3 (-1042)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
- (-5 *1 (-742)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1230 (-561))) (-5 *1 (-484 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1230 (-406 (-561))))
- (-5 *2 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))))
- (-5 *1 (-906 *3 *4)) (-4 *4 (-1230 (-406 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1230 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3))
- (-4 *3 (-1230 (-406 *4))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224))
- (-5 *2 (-1028)) (-5 *1 (-743)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-362)) (-5 *2 (-638 (-1146 *4))) (-5 *1 (-284 *4 *5))
- (-5 *3 (-1146 *4)) (-4 *5 (-1245 *4)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1230 *3))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
+ (-5 *1 (-657 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-171)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1230 *3))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-420 *4))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765)))
- (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1230 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553))
- (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553))
- (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-682 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2615 (-638 *6)))
- *7 *6))
- (-4 *6 (-362)) (-4 *7 (-649 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1254 *6) "failed"))
- (|:| -2615 (-638 (-1254 *6)))))
- (-5 *1 (-807 *6 *7)) (-5 *4 (-1254 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))))
-(((*1 *1 *1) (-5 *1 (-1165)))
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554)))
+ (-5 *1 (-157 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-544))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1) (-4 *1 (-283)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
- (-5 *1 (-204)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-914)) (-5 *1 (-440 *2))
- (-4 *2 (-1230 (-561)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-914)) (-5 *4 (-765)) (-5 *1 (-440 *2))
- (-4 *2 (-1230 (-561)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *1 (-440 *2))
- (-4 *2 (-1230 (-561)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765))
- (-5 *1 (-440 *2)) (-4 *2 (-1230 (-561)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765))
- (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1230 (-561)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-417 *2)) (-4 *2 (-1230 *5))
- (-5 *1 (-442 *5 *2)) (-4 *5 (-1042)))))
-(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-816)))))
-(((*1 *1 *1) (-4 *1 (-624)))
+ (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-5 *1 (-622 *3 *4 *5))
+ (-14 *5 (-912))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-674))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1108)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 (-1162 *4))) (-5 *3 (-1162 *4))
- (-4 *4 (-902)) (-5 *1 (-656 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-945 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-638 *5))) (-4 *5 (-1245 *4))
- (-4 *4 (-38 (-406 (-561))))
- (-5 *2 (-1 (-1146 *4) (-638 (-1146 *4)))) (-5 *1 (-1247 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844))
+ (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544))))
+ (-4 *3 (-844)) (-4 *4 (-171)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
- (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
- (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-914))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1) (-4 *1 (-283)))
((*1 *2 *3)
- (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362)))
- (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-4 *7 (-341 *4 *5 *6))
- (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-827 (-914)))))
- ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ (-12 (-5 *3 (-404 *4)) (-4 *4 (-554))
+ (-5 *2 (-635 (-2 (|:| -4361 (-765)) (|:| |logand| *4)))) (-5 *1 (-319 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
((*1 *2 *1)
- (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4))
- (-4 *4 (-1230 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042))
- (-4 *3 (-844))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844))
- (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
- (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6)))
- (-4 *8 (-341 *5 *6 *7))
- (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-765))
- (-5 *1 (-904 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6))
- (-4 *4 (-1230 (-406 (-561)))) (-4 *5 (-1230 (-406 *4)))
- (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-765))
- (-5 *1 (-905 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362))
- (-4 *7 (-1230 *6)) (-4 *4 (-1230 (-406 *7))) (-4 *8 (-341 *6 *7 *4))
- (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765))
- (-5 *1 (-1011 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1042)) (-4 *3 (-553))
- (-5 *2 (-765))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844))
+ (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544))))
+ (-4 *3 (-844)) (-4 *4 (-171)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-544)) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1273 *4 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
-(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-372 *2)) (-4 *2 (-1205))))
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
((*1 *1 *1)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1198 *4 *5 *3 *6)) (-4 *4 (-553)) (-4 *5 (-787))
- (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4))
- (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-1146 *4)))
- (-5 *1 (-1247 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543))))
- ((*1 *1 *1) (-4 *1 (-1051))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1205))
- (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-240))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-561)) (-5 *1 (-240)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6)
- (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3407 *6)))
- (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6)))))
+ (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844))
+ (-4 *3 (-13 (-171) (-711 (-406 (-544))))) (-14 *4 (-912))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)) (-4 *3 (-171)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362))
- (-5 *2 (-638 (-2 (|:| C (-682 *5)) (|:| |g| (-1254 *5)))))
- (-5 *1 (-971 *5)) (-5 *3 (-682 *5)) (-5 *4 (-1254 *5)))))
+ (-12 (-5 *4 (-765)) (-5 *2 (-635 (-1166))) (-5 *1 (-209)) (-5 *3 (-1166))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-313 (-224))) (-5 *4 (-765)) (-5 *2 (-635 (-1166)))
+ (-5 *1 (-266))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-635 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-635 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1199 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-912)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-826 (-912))) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912))))
+ ((*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912))))))
+(((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-765)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
+ (-12 (-4 *3 (-349)) (-4 *4 (-328 *3)) (-4 *5 (-1229 *4))
+ (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1229 *5)) (-14 *6 (-912))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-362)) (-4 *2 (-367)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844))
+ (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-844))
- (-5 *2
- (-2 (|:| |f1| (-638 *4)) (|:| |f2| (-638 (-638 (-638 *4))))
- (|:| |f3| (-638 (-638 *4))) (|:| |f4| (-638 (-638 (-638 *4))))))
- (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 (-638 *4)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561)))
- (-5 *1 (-189)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1166))
- (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *1 (-1169)))))
-(((*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4390)) (-4 *1 (-403))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914))))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692))))
- ((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-450)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-638 *3)) (-5 *5 (-914)) (-4 *3 (-1230 *4))
- (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6))
- (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1245 *5)) (-4 *6 (-1230 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-362))
- (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1227 *6 *5)))
- (-5 *1 (-861 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-362))
- (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1227 *6 *5)))
- (-5 *1 (-861 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-396)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1230 *4)) (-4 *4 (-1209))
- (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1230 (-406 *3))))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-635 (-1267 *4 *5 *6 *7)))
+ (-5 *1 (-1267 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-5 *2 (-635 (-1267 *6 *7 *8 *9))) (-5 *1 (-1267 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148))))
- ((*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-883 *4 *3))
- (-4 *3 (-1205))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787))
- (-5 *2 (-112)) (-5 *1 (-980 *3 *4 *5 *6))
- (-4 *6 (-942 *3 *5 *4))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-859 *4 *5 *6 *7))
+ (-4 *4 (-1042)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 *3)) (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787))
+ (-14 *8 (-635 *5)) (-5 *2 (-1259)) (-5 *1 (-1266 *4 *5 *6 *7 *8 *9 *10))
+ (-4 *7 (-943 *4 *6 *5)) (-14 *9 (-635 *3)) (-14 *10 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))))))
-(((*1 *1) (-5 *1 (-156)))
- ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-922 *4 *2))
- (-4 *2 (-429 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-315 (-561)))
- (-5 *1 (-923)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1257)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-638 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-429 *4) (-995))) (-4 *4 (-13 (-844) (-553)))
- (-5 *1 (-275 *4 *2)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-765))
- (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-561))))))
- (-5 *1 (-245 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8)))
- (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787))
+ (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *2))
+ (-4 *3 (-13 (-1091) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1265)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))))
+ (-4 *4 (-1229 *3))
(-5 *2
- (-2 (|:| |upol| (-1162 *8)) (|:| |Lval| (-638 *8))
- (|:| |Lfact|
- (-638 (-2 (|:| -1633 (-1162 *8)) (|:| -4181 (-561)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-736 *6 *7 *8 *9)))))
-(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))))
-(((*1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *1) (-4 *1 (-348)))
+ (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4))
- (-4 *4 (-13 (-553) (-844) (-146)))
+ (-12 (-5 *3 (-544)) (-4 *4 (-1229 *3))
(-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-638 (-1162 *5)))
- (|:| |prim| (-1162 *5))))
- (-5 *1 (-431 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-553) (-844) (-146)))
+ (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-762 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3))
(-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1162 *3))
- (|:| |pol2| (-1162 *3)) (|:| |prim| (-1162 *3))))
- (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-945 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146)))
+ (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3))
(-5 *2
- (-2 (|:| |coef1| (-561)) (|:| |coef2| (-561))
- (|:| |prim| (-1162 *5))))
- (-5 *1 (-953 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166)))
- (-4 *5 (-13 (-362) (-146)))
+ (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-1263 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))))
+ (-4 *4 (-1229 *3))
(-5 *2
- (-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 *5)))
- (|:| |prim| (-1162 *5))))
- (-5 *1 (-953 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-5 *5 (-1166))
- (-4 *6 (-13 (-362) (-146)))
+ (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1229 (-544)))
(-5 *2
- (-2 (|:| -4226 (-638 (-561))) (|:| |poly| (-638 (-1162 *6)))
- (|:| |prim| (-1162 *6))))
- (-5 *1 (-953 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-311)) (-5 *1 (-295))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-1148))) (-5 *3 (-1148)) (-5 *2 (-311))
- (-5 *1 (-295)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *5 (-1230 *4)) (-5 *2 (-1162 (-406 *5))) (-5 *1 (-610 *4 *5))
- (-5 *3 (-406 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2 (-1162 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6)))))
+ (-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544))
+ (|:| |basisInv| (-682 (-544)))))
+ (-5 *1 (-762 *3 *4)) (-4 *4 (-409 (-544) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4))
+ (-5 *2
+ (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4))))
+ (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4))
+ (-5 *2
+ (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4))))
+ (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1197 *6))
+ (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1262 *6)) (-5 *5 (-1143 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-635 (-1197 *5)))
+ (-5 *1 (-1262 *5)) (-5 *4 (-1197 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-406 (-561))))
- (-5 *2 (-2 (|:| -4213 (-1146 *4)) (|:| -3002 (-1146 *4))))
- (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1160 (-939 *4)) (-939 *4)))
+ (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-939 *5))))
+ (-5 *1 (-1262 *5)) (-5 *4 (-1143 (-939 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
- (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 *2))
- (-14 *4 (-638 *2)) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5))
- (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166)))))
- ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-945 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 (-406 (-945 (-561))))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 (-406 (-945 (-378))))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 (-945 (-561)))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 (-945 (-378)))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 (-315 (-561)))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 (-315 (-378)))) (-4 *1 (-439))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4))))
+ (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4))))
+ (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
+(((*1 *2)
+ (-12 (-14 *4 (-765)) (-4 *5 (-1204)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5))
+ (-4 *3 (-237 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-171))))
((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *2 (-544)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-912))))
+ ((*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
+(((*1 *1) (-5 *1 (-1259))))
+(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-1258))))
+ ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1258)))))
+(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))
+ ((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))))
+(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))
+ ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))
+ ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))
+ ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))
+ ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))
+ ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))))
+(((*1 *1) (-5 *1 (-1257))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-635 (-260))) (-5 *1 (-1257))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1257))))
+ ((*1 *1 *1) (-5 *1 (-1257))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4)) (-4 *4 (-1042))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2185 (-638 (-1084 (-837 (-224)))))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
- (-5 *1 (-763))))
- ((*1 *2 *1)
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *1 (-260))))
+ ((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *1 (-802))))
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *3 (-635 (-260))) (-5 *1 (-261))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-544)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *2 (-1259)) (-5 *1 (-1257))))
((*1 *2 *1)
(-12
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224)))
- (|:| |lb| (-638 (-837 (-224))))
- (|:| |cf| (-638 (-315 (-224))))
- (|:| |ub| (-638 (-837 (-224))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-638 (-315 (-224))))
- (|:| -3767 (-638 (-224)))))))
- (-5 *1 (-835))))
- ((*1 *2 *1)
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *1 (-1257))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1257))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1257))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-936 (-224)))) (-5 *1 (-1256)))))
+(((*1 *1) (-5 *1 (-1256))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-635 (-260))) (-5 *1 (-1256))))
+ ((*1 *1 *1) (-5 *1 (-1256))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-912)) (-5 *4 (-224)) (-5 *5 (-544)) (-5 *6 (-867))
+ (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-638 (-315 (-224))))
- (|:| |constraints|
- (-638
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-765)) (|:| |boundaryType| (-561))
- (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
- (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
- (|:| |tol| (-224))))
- (-5 *1 (-891))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1205))))
+ (-1253
+ (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224))
+ (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544))
+ (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867))
+ (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544)))))
+ (-5 *1 (-1256)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1253 (-3 (-466) "undefined"))) (-5 *1 (-1256)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-912)) (-5 *2 (-466)) (-5 *1 (-1256)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 (-377))) (-5 *3 (-635 (-260))) (-5 *1 (-261))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912))
+ (-5 *6 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-1255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260)))
+ (-5 *2 (-1256)) (-5 *1 (-1255)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912))
+ (-5 *6 (-635 (-260))) (-5 *2 (-466)) (-5 *1 (-1255))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-466)) (-5 *1 (-1255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260))) (-5 *2 (-466))
+ (-5 *1 (-1255)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *2 (-1204))
+ (-5 *1 (-59 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (|has| *1 (-6 -4400))
+ (-4 *1 (-150 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2))
+ (-4 *2 (-1204))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2))
+ (-4 *2 (-1204))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-5 *2 (-2 (|:| -2154 (-1160 *4)) (|:| |deg| (-912))))
+ (-5 *1 (-220 *4 *5)) (-5 *3 (-1160 *4)) (-4 *5 (-13 (-554) (-844)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765))
+ (-4 *6 (-1204)) (-4 *2 (-1204)) (-5 *1 (-239 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1229 *4))
+ (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-313 *2)) (-4 *2 (-554)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1229 *2))
+ (-4 *4 (-1229 (-406 *3))) (-4 *5 (-341 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1204)) (-4 *2 (-1204))
+ (-5 *1 (-372 *5 *4 *2 *6)) (-4 *4 (-371 *5)) (-4 *6 (-371 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1091)) (-4 *2 (-1091))
+ (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2))))
+ ((*1 *1 *1) (-5 *1 (-493)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *2 (-1204))
+ (-5 *1 (-636 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042)) (-4 *6 (-371 *5))
+ (-4 *7 (-371 *5)) (-4 *8 (-371 *2)) (-4 *9 (-371 *2))
+ (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-679 *5 *6 *7))
+ (-4 *10 (-679 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-4050
- (-12 (-5 *2 (-945 *3))
- (-12 (-2186 (-4 *3 (-38 (-406 (-561)))))
- (-2186 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)))
- (-12 (-5 *2 (-945 *3))
- (-12 (-2186 (-4 *3 (-543))) (-2186 (-4 *3 (-38 (-406 (-561)))))
- (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)))
- (-12 (-5 *2 (-945 *3))
- (-12 (-2186 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561))))
- (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)))))
+ (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-362))
+ (-4 *3 (-171)) (-4 *1 (-718 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *2 (-1204))
+ (-5 *1 (-952 *5 *2))))
((*1 *1 *2)
- (-4050
- (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
- (-12 (-2186 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561)))
- (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
- (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))))
- (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042)) (-14 *5 (-765))
+ (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7))
+ (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2))
+ (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *2 (-1204))
+ (-5 *1 (-1145 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1199 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *2 (-1056 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *2 (-1204))
+ (-5 *1 (-1254 *5 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1204)) (-4 *5 (-1204))
+ (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-238 *6 *7)) (-14 *6 (-765))
+ (-4 *7 (-1204)) (-4 *5 (-1204)) (-5 *2 (-238 *6 *5))
+ (-5 *1 (-239 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-4 *2 (-371 *5))
+ (-5 *1 (-372 *6 *4 *5 *2)) (-4 *4 (-371 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1091)) (-4 *5 (-1091)) (-4 *2 (-425 *5))
+ (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-425 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1204)) (-4 *5 (-1204))
+ (-5 *2 (-635 *5)) (-5 *1 (-636 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1204)) (-4 *5 (-1204))
+ (-5 *2 (-951 *5)) (-5 *1 (-952 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1204)) (-4 *3 (-1204))
+ (-5 *2 (-1143 *3)) (-5 *1 (-1145 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1253 *6)) (-4 *6 (-1204)) (-4 *5 (-1204))
+ (-5 *2 (-1253 *5)) (-5 *1 (-1254 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1253 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-213 *2))
+ (-4 *2
+ (-13 (-844)
+ (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $))
+ (-15 -2115 ((-1259) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-533)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-25)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042))
- (-4 *4 (-787)) (-4 *5 (-844)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1230 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3))
- (-4 *3 (-1230 (-406 *4))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4399)) (-4 *1 (-487 *4))
- (-4 *4 (-1205)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
+ (-12 (-5 *2 (-765)) (-4 *1 (-1252 *3)) (-4 *3 (-23)) (-4 *3 (-1204)))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-213 *2))
+ (-4 *2
+ (-13 (-844)
+ (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $))
+ (-15 -2115 ((-1259) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
+ ((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857))))
+ ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-1042)) (-5 *2 (-682 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1230 (-561))))))
-(((*1 *2 *3) (-12 (-5 *3 (-815)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5))
- (-4 *3 (-1090)) (-4 *5 (-659 *4))))
+ (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))
+ ((*1 *1 *1) (-4 *1 (-543)))
+ ((*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1204)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1204))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692)))))
+ (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-635 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1166))))
+ ((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-406 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-554)) (-4 *4 (-1042))
+ (-4 *2 (-1246 *4)) (-5 *1 (-1248 *4 *5 *6 *2)) (-4 *6 (-651 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-1229 *4)) (-5 *2 (-1 *6 (-635 *6)))
+ (-5 *1 (-1248 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1246 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362))
- (-4 *7 (-1230 (-406 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3626 *3)))
- (-5 *1 (-559 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362))
- (-5 *2
- (-2 (|:| |answer| (-406 *6)) (|:| -3626 (-406 *6))
- (|:| |specpart| (-406 *6)) (|:| |polypart| *6)))
- (-5 *1 (-560 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-224)) (-5 *5 (-561)) (-5 *2 (-1200 *3))
- (-5 *1 (-784 *3)) (-4 *3 (-967))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-112))
- (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
+ (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1229 *5))
+ (-5 *1 (-1248 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1246 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-776 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-956 *3 *2)) (-4 *2 (-130)) (-4 *3 (-553))
- (-4 *3 (-1042)) (-4 *2 (-786))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-1162 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-553))
- (-4 *3 (-1042))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-1227 *4 *3)) (-14 *4 (-1166))
- (-4 *3 (-1042)))))
+ (-12 (-4 *4 (-1042)) (-4 *3 (-1229 *4)) (-4 *2 (-1246 *4))
+ (-5 *1 (-1248 *4 *3 *5 *2)) (-4 *5 (-651 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6))))
+ (-4 *5 (-38 (-406 (-544)))) (-4 *6 (-1246 *5)) (-5 *2 (-635 *6))
+ (-5 *1 (-1247 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5)) (-4 *5 (-38 (-406 (-544))))
+ (-4 *2 (-1246 *5)) (-5 *1 (-1247 *5 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2))
+ (-4 *4 (-38 (-406 (-544)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2))
+ (-4 *4 (-38 (-406 (-544)))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1246 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-638 *3)) (|:| |image| (-638 *3))))
- (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
+ (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544))))
+ (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1247 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-417 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544))))
+ (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-561)) (-5 *1 (-935)))))
-(((*1 *1 *1) (-4 *1 (-543))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544))))
+ (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-5 *2 (-1259)) (-5 *1 (-1169))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166))
- (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *2 (-1259))
- (-5 *1 (-1169))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1166))
- (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2630 "void"))) (-5 *2 (-1259))
- (-5 *1 (-1169)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-174))) (-5 *1 (-1075)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090))
- (-4 *2 (-844)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561)))
- (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $))
- (-15 -4088 ((-1115 *3 (-607 $)) $))
- (-15 -4064 ($ (-1115 *3 (-607 $))))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))))
-(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-378)))
- ((*1 *1) (-5 *1 (-378))))
-(((*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
+ (-12 (-5 *4 (-406 (-544)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544)))
+ (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6))
+ (-4 *6 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544)))
+ (-4 *7 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544)))
+ (-4 *3 (-13 (-27) (-1190) (-420 *7)))
+ (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8))
+ (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544)))
+ (-4 *8 (-13 (-27) (-1190) (-420 *7)))
+ (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544))))
+ (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8)))
+ (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042))
+ (-5 *1 (-591 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042))
+ (-4 *1 (-1215 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-765)) (-5 *3 (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4))))
+ (-4 *4 (-1042)) (-4 *1 (-1236 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-4 *1 (-1246 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-765)) (|:| |c| *3)))) (-4 *3 (-1042))
+ (-4 *1 (-1246 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1254 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112))
- (-5 *1 (-356 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-746)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-635 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-635 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-5 *2 (-1143 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-591 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1215 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1246 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844))
+ (-5 *2 (-939 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844))
+ (-5 *2 (-939 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-406 (-544))) (-4 *4 (-1031 (-544))) (-4 *4 (-13 (-844) (-554)))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-420 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-133)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-544))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1246 *4))
+ (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1217 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1215 *4))
+ (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1238 *4 *5)) (-4 *6 (-976 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-283)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *1) (-5 *1 (-377)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-1102))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-544))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-533))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-533))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1091)) (-5 *1 (-675 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-4 *3 (-362))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-544)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)) (-4 *4 (-641 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *5))
+ (-4 *5 (-641 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-828 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-5 *1 (-828 *4)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-544)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-912))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-544)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4))))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-171)) (-4 *2 (-1230 *4)) (-5 *1 (-176 *4 *2 *3))
- (-4 *3 (-718 *4 *2))))
+ (-12 (-5 *4 (-1082 (-836 *3))) (-4 *3 (-13 (-1190) (-953) (-29 *5)))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3)))
+ (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
+ (-5 *1 (-218 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1082 (-836 *3))) (-5 *5 (-1148))
+ (-4 *3 (-13 (-1190) (-953) (-29 *6)))
+ (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1#)
+ (|:| |pole| #2#)))
+ (-5 *1 (-218 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 (-406 (-945 *5)))) (-5 *4 (-1166))
- (-5 *2 (-945 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-5 *2 (-945 *4))
- (-5 *1 (-291 *4)) (-4 *4 (-450))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1230 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-682 (-168 (-406 (-561)))))
- (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *4))
- (-4 *4 (-13 (-362) (-842)))))
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1082 (-836 (-313 *5))))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5))))
+ (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
+ (-5 *1 (-219 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1082 (-836 (-313 *6))))
+ (-5 *5 (-1148))
+ (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-219 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *4 (-1166))
- (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *5))
- (-4 *5 (-13 (-362) (-842)))))
+ (-12 (-5 *4 (-1082 (-836 (-406 (-939 *5))))) (-5 *3 (-406 (-939 *5)))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-219 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1082 (-836 (-406 (-939 *6))))) (-5 *5 (-1148))
+ (-5 *3 (-406 (-939 *6)))
+ (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-219 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-429 *5 *3))
+ (-4 *3 (-13 (-1190) (-953) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377))
+ (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377))
+ (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377))
+ (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *2 (-1028))
+ (-5 *1 (-562))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377)))))
+ (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377)))))
+ (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377)))))
+ (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377)))))
+ (-5 *5 (-377)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377))))
+ (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377))))
+ (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562))))
((*1 *2 *3)
- (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-945 (-406 (-561))))
- (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842)))))
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4))
+ (-5 *2 (-580 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *4 (-1166))
- (-5 *2 (-945 (-406 (-561)))) (-5 *1 (-773 *5))
- (-4 *5 (-13 (-362) (-842))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 (-914))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5))
- (-14 *4 (-914)) (-14 *5 (-986 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
- (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4))
- (-4 *4 (-1230 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5))
- (-4 *4 (-1042)) (-4 *5 (-844))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042))
- (-4 *2 (-844))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146))
+ (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544))))
+ (-5 *2 (-3 (-313 *5) (-635 (-313 *5)))) (-5 *1 (-585 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844))
+ (-4 *3 (-38 (-406 (-544))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-939 *3)) (-4 *3 (-38 (-406 (-544))))
+ (-4 *3 (-1042))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6))
- (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-4 *2 (-844))
+ (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-943 *3 (-529 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042))
+ (-5 *1 (-1150 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *2 (-844))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-4 *2 (-942 *4 (-529 *5) *5))
- (-5 *1 (-1116 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-844))))
+ (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-38 (-406 (-544))))
+ (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3936
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042))
+ (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190))
+ (-4 *3 (-38 (-406 (-544))))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042))
+ (-12 (|has| *3 (-15 -3467 ((-635 *2) *3)))
+ (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3936
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042))
+ (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190))
+ (-4 *3 (-38 (-406 (-544))))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042))
+ (-12 (|has| *3 (-15 -3467 ((-635 *2) *3)))
+ (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3936
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042))
+ (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190))
+ (-4 *3 (-38 (-406 (-544))))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042))
+ (-12 (|has| *3 (-15 -3467 ((-635 *2) *3)))
+ (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1164 *4 *5 *6))
+ (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4)))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-945 *4)) (-5 *1 (-1199 *4))
- (-4 *4 (-1042)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1028)) (-5 *1 (-743))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-387)) (-5 *2 (-1028)) (-5 *1 (-743)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4))
- (-4 *4 (-1042))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1259))
- (-5 *1 (-1256)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-914)) (-5 *2 (-466)) (-5 *1 (-1255)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-913)) (-5 *2 (-2 (|:| -4226 (-638 *1)) (|:| -3194 *1)))
- (-5 *3 (-638 *1)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3))
- (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2))
- (-4 *2 (-680 *3 *5 *6)))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1243 *4 *5 *6))
+ (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4))
- (-4 *4 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042))))
((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765))))
((*1 *1 *1) (-4 *1 (-232)))
((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-265 *3)) (-4 *3 (-844))))
((*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
- (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4)))))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
- (-4 *4 (-1230 *3))))
+ (-4 *4 (-1229 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
- (-4 *3 (-1230 *2))))
+ (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-582 *2))
- (-5 *3 (-1166))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-582 *2)) (-4 *2 (-362))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4))
- (-4 *4 (-1090))))
+ (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-580 *2)) (-5 *3 (-1166))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-580 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090))))
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4))
+ (-4 *4 (-1091))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
@@ -4006,12611 +2277,10191 @@
(-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1218 *3 *4 *5))
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1230 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1239 *3 *4 *5))
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1246 *3 *4 *5))
+ (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5))
(-4 *3 (-1042)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166)))
- (-4 *5 (-450))
- (-5 *2
- (-2 (|:| |gblist| (-638 (-246 *4 *5)))
- (|:| |gvlist| (-638 (-561)))))
- (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-962 *4 *3))
- (-4 *3 (-1230 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-4 *4 (-1205)) (-5 *2 (-112))
- (-5 *1 (-1146 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-1148))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1028))
- (-5 *1 (-744)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
- (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-638 *3))
- (-5 *1 (-587 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
- (-5 *2
- (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5))))))
- (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5)))
- (-14 *6 (-638 (-1166)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146)))
- (-5 *2
- (-638 (-2 (|:| -2016 (-1162 *4)) (|:| -3752 (-638 (-945 *4))))))
- (-5 *1 (-1068 *4 *5)) (-5 *3 (-638 (-945 *4)))
- (-14 *5 (-638 (-1166)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
- (-5 *2
- (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5))))))
- (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5)))
- (-14 *6 (-638 (-1166))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844))
- (-5 *2 (-2 (|:| -4226 (-561)) (|:| |var| (-607 *1))))
- (-4 *1 (-429 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-638 (-638 (-224)))) (-5 *4 (-224))
- (-5 *2 (-638 (-936 *4))) (-5 *1 (-1201)) (-5 *3 (-936 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2630 "void")))
- (-5 *1 (-436)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692))))
- ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090))
- (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))))
-(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1230 (-168 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1230 (-168 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-945 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *2 (-1028)) (-5 *1 (-745)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
- (-5 *1 (-742)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-4 *6 (-450))
- (-5 *2 (-638 (-638 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362))
- (-4 *5 (-13 (-362) (-842))))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1254 (-638 (-2 (|:| -2506 (-903 *3)) (|:| -2442 (-1110))))))
- (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914))))
- ((*1 *2)
- (-12 (-5 *2 (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110))))))
- (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110))))))
- (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2))
- (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4399) (-6 -4400))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2))
- (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4399) (-6 -4400)))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4))
- (-4 *4 (-641 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-360 (-114))) (-5 *1 (-830 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -3413 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1230 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
- ((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306))))
- ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306))))
- ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-561)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1230 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3))
- (-4 *3 (-1230 (-406 *4))))))
-(((*1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190)))
- (-4 *4 (-13 (-553) (-844)))
- (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190)))
- (-5 *1 (-595 *4 *5 *2)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-290)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1042) (-844)))
- (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-682 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1254 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
- (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1230 *5))
- (-5 *2 (-682 *5)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
- ((*1 *1 *1) (|partial| -4 *1 (-716))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1075))) (-5 *1 (-290)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-553))
- (-4 *7 (-942 *3 *5 *6))
- (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *8) (|:| |radicand| *8)))
- (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765))
- (-4 *8
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $))))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1162 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3))
- (-4 *3 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3)))
- (-4 *3 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4))))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952))))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-638 (-224))) (-5 *1 (-203)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-750)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2)))
- (-5 *2 (-885 *3)) (-5 *1 (-1066 *3 *4 *5))
- (-4 *5 (-13 (-429 *4) (-879 *3) (-609 *2))))))
-(((*1 *1) (-5 *1 (-817))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166))
- (-4 *4 (-13 (-553) (-1031 (-561)) (-146))) (-5 *1 (-567 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *1 *1) (-5 *1 (-1054))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1254 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-898 (-561))) (-5 *4 (-561)) (-5 *2 (-682 *4))
- (-5 *1 (-1021 *5)) (-4 *5 (-1042))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1021 *4))
- (-4 *4 (-1042))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-898 (-561)))) (-5 *4 (-561))
- (-5 *2 (-638 (-682 *4))) (-5 *1 (-1021 *5)) (-4 *5 (-1042))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-638 (-561)))) (-5 *2 (-638 (-682 (-561))))
- (-5 *1 (-1021 *4)) (-4 *4 (-1042)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-638 (-936 (-224)))))
- (-5 *2 (-638 (-1084 (-224)))) (-5 *1 (-921)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-638 (-561))) (-5 *3 (-112)) (-5 *1 (-1100)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450))
- (-5 *1 (-911 *4)))))
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166))
+ (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042))
- (-5 *1 (-1150 *4))))
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4))))
((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-561)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042))
- (-14 *4 (-1166)) (-14 *5 *3))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2)
- (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5)))
- (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-561)) (-5 *1 (-378)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-856)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-1230 (-406 *3))) (-5 *2 (-914))
- (-5 *1 (-906 *4 *5)) (-4 *5 (-1230 (-406 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-582 *3)) (-4 *3 (-362)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3))
- (-4 *3 (-13 (-1190) (-29 *5))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-649 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3394 *3) (|:| -2409 (-638 *5))))
- (-5 *1 (-1018 *5 *3)) (-5 *4 (-638 *5)) (-4 *3 (-649 *5)))))
+ (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166))
+ (-14 *5 *3))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166))
+ (-14 *5 *3))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-302))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-1028))) (-5 *2 (-1028)) (-5 *1 (-302))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *1) (-5 *1 (-1054)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1144 *4))
+ (-4 *4 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-561))))
+ (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1091)) (-4 *3 (-844)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561))
- (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-958))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $))
- (-15 -4088 ((-1115 *3 (-607 $)) $))
- (-15 -4064 ($ (-1115 *3 (-607 $)))))))))
+ (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2))
+ (-4 *5 (-371 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2))
+ (-4 *5 (-371 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 (-544))) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2))
+ (-14 *4 (-544)) (-14 *5 (-765))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-765))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-765))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-765))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-171)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-544)) (-14 *4 (-765))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4))
+ (-4 *4
+ (-13 (-844)
+ (-10 -8 (-15 -4206 ((-1148) $ *3)) (-15 -4024 ((-1259) $))
+ (-15 -2115 ((-1259) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-982)) (-5 *1 (-213 *3))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $))
+ (-15 -2115 ((-1259) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1229 *3))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2))
+ (-4 *4 (-1229 (-406 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-417 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-51)) (-5 *1 (-627))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-635 (-883 *4))) (-5 *1 (-883 *4))
+ (-4 *4 (-1091))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-238 *4 *2)) (-14 *4 (-912)) (-4 *2 (-362))
+ (-5 *1 (-986 *4 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042))
+ (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2))
+ (-4 *7 (-237 *4 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-912)) (-4 *4 (-1091))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4))))
+ (-5 *1 (-1065 *4 *5 *2))
+ (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-912)) (-4 *4 (-1091))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4))))
+ (-5 *1 (-1067 *4 *5 *2))
+ (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-544))) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091))
+ (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-544)) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091))
+ (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091))))
+ ((*1 *1 *1 *1) (-4 *1 (-1134)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-406 *1)) (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $))
- (-15 -4088 ((-1115 *3 (-607 $)) $))
- (-15 -4064 ($ (-1115 *3 (-607 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *4 (-607 $)) $))
- (-15 -4088 ((-1115 *4 (-607 $)) $))
- (-15 -4064 ($ (-1115 *4 (-607 $)))))))
- (-4 *4 (-553)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-607 *2)))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *4 (-607 $)) $))
- (-15 -4088 ((-1115 *4 (-607 $)) $))
- (-15 -4064 ($ (-1115 *4 (-607 $)))))))
- (-4 *4 (-553)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-561)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1054))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
+ (-12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1242 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1242 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1204))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2))
+ (-4 *5 (-371 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3))
+ (-4 *3 (-1204))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091))
+ (-4 *2 (-1204))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1166)) (-5 *1 (-627))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1220 (-544))) (|has| *1 (-6 -4401)) (-4 *1 (-644 *2))
+ (-4 *2 (-1204))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2))
+ (-4 *2 (-1204))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2))
+ (-4 *2 (-1204))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3))
+ (-4 *3 (-1204))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2))
+ (-4 *2 (-1204)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1143 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3))
+ (-4 *3 (-1204)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *2 (-638 (-638 (-561))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *6 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765))))
+ (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)))
+ (-5 *2 (-836 *4)) (-5 *1 (-312 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4)))
((*1 *2 *1)
- (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-765)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-682 (-1162 *8))) (-4 *5 (-1042)) (-4 *8 (-1042))
- (-4 *6 (-1230 *5)) (-5 *2 (-682 *6)) (-5 *1 (-499 *5 *6 *7 *8))
- (-4 *7 (-1230 *6)))))
+ (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)))
+ (-5 *2 (-836 *4)) (-5 *1 (-1240 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *6)) (-4 *5 (-1090))
- (-4 *6 (-1205)) (-5 *2 (-1 *6 *5)) (-5 *1 (-635 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090))
- (-4 *2 (-1205)) (-5 *1 (-635 *5 *2))))
+ (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1234 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6))
+ (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4))))))
+ (|:| |%type| (-1148))))
+ (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3)))
+ (-14 *5 (-1166)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-406 (-544)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 *5)) (-4 *6 (-1090))
- (-4 *5 (-1205)) (-5 *2 (-1 *5 *6)) (-5 *1 (-635 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090))
- (-4 *2 (-1205)) (-5 *1 (-635 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-638 *5)) (-5 *4 (-638 *6))
- (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *1 (-635 *5 *6))))
+ (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544)))
+ (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1090)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3))
- (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4399)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *2 (-1259)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(((*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-561)) (-14 *4 (-765)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 *4)) (-5 *1 (-1131 *3 *4))
- (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-450)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3))
- (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1080)))))
-(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2425 (-561)) (|:| -2762 (-638 *3))))
- (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
-(((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259))
- (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259))
- (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
- (-5 *1 (-175 *3)))))
+ (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8))
+ (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544)))
+ (-4 *8 (-13 (-27) (-1190) (-420 *7)))
+ (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544))))
+ (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8)))
+ (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-406 (-544))) (-4 *4 (-1042)) (-4 *1 (-1238 *4 *3))
+ (-4 *3 (-1215 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-170)))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-638 *2) *2 *2 *2)) (-4 *2 (-1090))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-103 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042))
- (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561)))))
- (-4 *2 (-13 (-844) (-21))))))
-(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-607 *4)) (-5 *1 (-606 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-844)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4064 ($ *7)))))
- (-4 *7 (-842))
- (-4 *8
- (-13 (-1232 *3 *7) (-362) (-1190)
- (-10 -8 (-15 -3922 ($ $)) (-15 -2563 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
- (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8))
- (-14 *10 (-1166)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3))
+ (-5 *2 (-406 (-544))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-450))
- (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-822) (-844) (-1042)))
- (-5 *2 (-1148)) (-5 *1 (-820 *4))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 *5)) (-5 *4 (-112))
- (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1148))
- (-5 *1 (-820 *5))))
+ (-12 (-5 *4 (-544)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4)))
+ (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-816)) (-5 *4 (-315 *5))
- (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1259))
- (-5 *1 (-820 *5))))
+ (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-816)) (-5 *4 (-315 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-822) (-844) (-1042))) (-5 *2 (-1259))
- (-5 *1 (-820 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-822)) (-5 *2 (-1148))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-112)) (-5 *2 (-1148))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *2 (-1259))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *4 (-112)) (-5 *2 (-1259)))))
-(((*1 *1 *1 *1) (-4 *1 (-142)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(((*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1254 (-638 *3))) (-4 *4 (-306))
- (-5 *2 (-638 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090))
- (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
+ (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-544))
+ (-5 *2 (-51)) (-5 *1 (-315 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544)))
+ (-4 *7 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544)))
+ (-4 *3 (-13 (-27) (-1190) (-420 *7)))
+ (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-544)) (-4 *4 (-1042)) (-4 *1 (-1217 *4 *3))
+ (-4 *3 (-1246 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844))
- (-4 *5 (-787)) (-4 *2 (-265 *4)))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-112))
- (-5 *1 (-1281 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561))))
- (-4 *2 (-171)))))
+ (|partial| -12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-912)) (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1236 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-544))))
+ (-4 *4 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $))))) (-4 *3 (-554))
+ (-5 *1 (-1233 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-450))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1))))
+ (-4 *1 (-1062 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1209)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-554)) (-5 *1 (-1233 *3 *2))
+ (-4 *2 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $))))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4))
- (-14 *3 (-914)) (-4 *4 (-1042)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130))
+ (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4))))))
((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
- (-14 *4 (-638 (-1166)))))
+ (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-5 *1 (-729 *3 *4))
+ (-4 *3 (-1042)) (-4 *4 (-720))))
((*1 *2 *1)
- (-12 (-5 *2 (-561)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
- (-14 *4 (-638 (-1166)))))
+ (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-1148))) (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *1 (-240))))
+ ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
(-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 *8)) (-5 *4 (-638 *6)) (-4 *6 (-844))
- (-4 *8 (-942 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042))
- (-5 *2 (-638 (-765))) (-5 *1 (-320 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
- (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23))))
+ ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-912))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-332 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362)))
+ (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *7 (-341 *4 *5 *6))
+ (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-826 (-912)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
((*1 *2 *1)
- (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4))
- (-4 *4 (-1230 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
+ (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765)))))
+ (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-765))
+ (-5 *1 (-904 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6))
+ (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4)))
+ (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-765)) (-5 *1 (-905 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-332 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362))
+ (-4 *7 (-1229 *6)) (-4 *4 (-1229 (-406 *7))) (-4 *8 (-341 *6 *7 *4))
+ (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765)) (-5 *1 (-1011 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)) (-5 *2 (-765))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(((*1 *1 *1) (-4 *1 (-1051)))
+ ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-544))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
- (-4 *3 (-844)) (-5 *2 (-765))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844))
- (-4 *2 (-786))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1245 *3))
- (-5 *2 (-561))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1214 *3))
- (-5 *2 (-406 (-561)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914)))))
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-864 *4)) (-14 *4 *3) (-5 *3 (-544))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-406 (-544))) (-5 *1 (-865 *4 *5)) (-5 *3 (-544))
+ (-4 *5 (-863 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-544)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (|has| *2 (-15 ** (*2 *2 *3)))
+ (|has| *2 (-15 -4353 (*2 (-1166)))) (-4 *2 (-1042)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-173 *3)) (-4 *3 (-306))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-667 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-844))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *2 (-1056 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1229 *4))
+ (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-682 (-313 (-224)))) (-5 *3 (-635 (-1166)))
+ (-5 *4 (-1253 (-313 (-224)))) (-5 *1 (-204))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-292 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1091))
+ (-4 *3 (-1204)) (-5 *1 (-292 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-308 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)) (-5 *1 (-292 *2))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-292 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-292 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-544))) (-5 *4 (-1168 (-406 (-544)))) (-5 *1 (-309 *2))
+ (-4 *2 (-38 (-406 (-544))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-844))
+ (-4 *5 (-171))))
+ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1)) (-4 *1 (-420 *5))
+ (-4 *5 (-844)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-635 *1)))
+ (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765)))
+ (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-420 *5)) (-4 *5 (-844))
+ (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765))) (-5 *4 (-635 (-1 *1 *1)))
+ (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 *1)) (-5 *4 (-1166))
+ (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-533)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1166)) (-4 *1 (-420 *4)) (-4 *4 (-844))
+ (-4 *4 (-609 (-533)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-533)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-1166))) (-4 *1 (-420 *3)) (-4 *3 (-844))
+ (-4 *3 (-609 (-533)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-533)))))
+ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1091))
+ (-4 *5 (-1204))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-826 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166)) (-4 *4 (-554))
+ (-5 *1 (-1033 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1166))) (-5 *4 (-635 (-406 (-939 *5))))
+ (-5 *2 (-406 (-939 *5))) (-4 *5 (-554)) (-5 *1 (-1033 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-5 *2 (-406 (-939 *4))) (-4 *4 (-554))
+ (-5 *1 (-1033 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-292 (-406 (-939 *4))))) (-5 *2 (-406 (-939 *4)))
+ (-4 *4 (-554)) (-5 *1 (-1033 *4))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-5 *2 (-1160 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1042)) (-4 *1 (-1229 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-943 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1)))
+ (-4 *1 (-1229 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-1042))
+ (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)))))
+(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1229 *2))
+ (-4 *2 (-171))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-171)) (-5 *1 (-408 *3 *2 *4))
+ (-4 *3 (-409 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1229 *2)) (-5 *2 (-544)) (-5 *1 (-762 *3 *4))
+ (-4 *4 (-409 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))
+ (-4 *3 (-171))))
+ ((*1 *2 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))
+ (-4 *3 (-171))))
+ ((*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))
+ (-4 *3 (-554))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -4361 *4) (|:| -2124 *3) (|:| -3285 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-554)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -4361 *3) (|:| -2124 *1) (|:| -3285 *1)))
+ (-4 *1 (-1229 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| -1912 (-618 *4 *5)) (|:| -1911 (-406 *5))))
+ (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-765)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844))))
- ((*1 *1) (-4 *1 (-1141))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090))
- (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4))
- (-4 *2 (-1230 *4)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1090))
- (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-168 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
- (-5 *1 (-752)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 *4))))
- (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-607 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166)))
- (-4 *2 (-13 (-429 *5) (-27) (-1190)))
- (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1090)))))
+ (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912))
+ (-4 *4 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-450)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1229 *3)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1227 *4 *2))
+ (-4 *2 (-1229 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3)))
+ (-5 *1 (-1226 *4 *3)) (-4 *3 (-1229 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995))))))
+ (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-635 *3)) (-5 *1 (-1225 *4 *3))
+ (-4 *3 (-1229 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814))
- (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-554) (-146)))
+ (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-1225 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1225 *3 *2))
+ (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146)))
+ (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146)))
+ (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-914))
- (-5 *2 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110))))))
- (-5 *1 (-345 *4)) (-4 *4 (-348)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))))))
+ (-12 (-4 *4 (-554)) (-4 *5 (-984 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3))
+ (-4 *3 (-371 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-984 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3))
+ (-4 *6 (-371 *4)) (-4 *3 (-371 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4))) (-5 *1 (-686 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5))
+ (-5 *2 (-2 (|:| -3667 *7) (|:| |rh| (-635 (-406 *6)))))
+ (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6))) (-4 *7 (-651 *6))
+ (-4 *3 (-651 (-406 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-984 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1224 *4 *5 *3))
+ (-4 *3 (-1229 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-141 *3 *4 *2))
+ (-4 *2 (-371 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-4 *2 (-371 *4))
+ (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-371 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554)) (-5 *2 (-682 *4))
+ (-5 *1 (-686 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-1224 *3 *4 *2))
+ (-4 *2 (-1229 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *2 (-638 *3)) (-5 *1 (-917 *4 *5 *6 *3))
- (-4 *3 (-942 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1166)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1166))
- (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-572 *4 *2))
- (-4 *2 (-13 (-1190) (-952) (-1129) (-29 *4))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1199 *6))
- (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1262 *6))
- (-5 *5 (-1146 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262))))
+ (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3))
+ (-4 *3 (-371 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362))
- (-5 *2 (-682 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1254 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-682 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-1254 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1230 *4)) (-5 *2 (-682 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1230 *4)) (-5 *2 (-1254 *4))))
+ (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-501 *2 *4 *5 *3))
+ (-4 *5 (-371 *2)) (-4 *3 (-371 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1230 *4)) (-5 *2 (-682 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3))
- (-5 *2 (-1254 *3))))
+ (-12 (-5 *3 (-682 *4)) (-4 *4 (-984 *2)) (-4 *2 (-554))
+ (-5 *1 (-686 *2 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171))
- (-5 *2 (-682 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1254 *3))))
+ (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-1224 *2 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-775 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-949 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) (-4 *3 (-1042))
+ (-4 *2 (-786))))
+ ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1160 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-554))
+ (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1222 *4 *3)) (-14 *4 (-1166)) (-4 *3 (-1042)))))
+(((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1079 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1204)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-544))
+ (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544)))))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362))
- (-5 *2 (-1254 *5)) (-5 *1 (-1076 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-362))
- (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-448 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6))))
- (-5 *1 (-971 *6)) (-5 *3 (-682 *6)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1254 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362))
- (-5 *1 (-660 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-362))
- (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4400))))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400))))
- (-5 *1 (-661 *4 *5 *2 *3)) (-4 *3 (-680 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-638 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362))
- (-5 *1 (-808 *2 *3)) (-4 *3 (-649 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
+ (-2 (|:| |contp| (-544))
+ (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544)))))))
+ (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4))
- (-4 *3 (-165 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765))
- (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-428 *3 *4))
- (-4 *3 (-429 *4))))
- ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543))))
- ((*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-790 *3 *4))
- (-4 *3 (-791 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-984 *3 *4))
- (-4 *3 (-985 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-989 *3 *4))
- (-4 *3 (-990 *4))))
- ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005))))
- ((*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765))))
- ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-561)) (-4 *6 (-362)) (-4 *6 (-367))
- (-4 *6 (-1042)) (-5 *2 (-638 (-638 (-682 *6)))) (-5 *1 (-1022 *6))
- (-5 *3 (-638 (-682 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042))
- (-5 *2 (-638 (-638 (-682 *4)))) (-5 *1 (-1022 *4))
- (-5 *3 (-638 (-682 *4)))))
+ (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042))
- (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
- (-5 *3 (-638 (-682 *5)))))
+ (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042))
- (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
- (-5 *3 (-638 (-682 *5))))))
+ (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544))))))
+ ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *10))
- (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8))
- (-4 *10 (-1099 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-635 (-48))) (-5 *2 (-404 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1229 (-48)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6)))
- (-5 *1 (-623 *5 *6))))
+ (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3))
+ (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-943 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-638 (-1166)))
- (-5 *2
- (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6)))))
- (-5 *1 (-623 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6)))
- (-5 *1 (-1039 *5 *6))))
+ (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787))
+ (-4 *7 (-943 (-48) *6 *5)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-42 *5 *6 *7))
+ (-5 *3 (-1160 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-166 *4 *3))
+ (-4 *3 (-1229 (-167 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8))))
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3))
+ (-4 *3 (-1229 (-167 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1198 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190)))))
- ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1230 *5))
- (-5 *1 (-801 *5 *2 *3 *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *3 (-649 *2)) (-4 *6 (-649 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-406 *2))) (-4 *2 (-1230 *5))
- (-5 *1 (-801 *5 *2 *3 *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2))
- (-4 *6 (-649 (-406 *2))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-914)) (-4 *3 (-362))
- (-14 *4 (-986 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1230 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
- ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
- ((*1 *1 *1) (|partial| -4 *1 (-716)))
- ((*1 *1 *1) (|partial| -4 *1 (-720)))
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3))
+ (-4 *3 (-1229 (-167 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362)))
- (-4 *2 (-1230 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1254 (-406 (-945 *4))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *4)))))))
- (-5 *3 (-638 *7)) (-4 *4 (-13 (-306) (-146)))
- (-4 *7 (-942 *4 *6 *5)) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3))
- (-4 *3 (-609 (-534)))))
+ (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224)))
- (-5 *1 (-697 *3)) (-4 *3 (-609 (-534))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-873)))))
-(((*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561))))
+ (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
- (-14 *3 (-638 (-1166))))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1254 (-1254 (-561)))) (-5 *3 (-914)) (-5 *1 (-464)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1084 *4)) (-4 *4 (-1205))
- (-5 *1 (-1082 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *1)) (-5 *4 (-1254 *1)) (-4 *1 (-634 *5))
- (-4 *5 (-1042))
- (-5 *2 (-2 (|:| -2942 (-682 *5)) (|:| |vec| (-1254 *5))))))
+ (-12 (-5 *2 (-404 (-167 (-544)))) (-5 *1 (-444)) (-5 *3 (-167 (-544)))))
((*1 *2 *3)
- (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042))
- (-5 *2 (-682 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
- (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
- (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-326 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 *2))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4399)) (-4 *1 (-487 *4))
- (-4 *4 (-1205)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-817))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-638 (-561))) (-5 *3 (-682 (-561))) (-5 *1 (-1100)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-765)) (-4 *5 (-553))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *3)) (-4 *3 (-1099 *5 *6 *7 *8))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-587 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-638 *6)))
- (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-638 *6)) (-4 *4 (-609 (-885 *5)))))
+ (-12
+ (-4 *4
+ (-13 (-844)
+ (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))))
+ (-4 *5 (-787)) (-4 *7 (-554)) (-5 *2 (-404 *3))
+ (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-554)) (-4 *3 (-943 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-5 *2 (-404 (-1160 *4))) (-5 *1 (-456 *4))
+ (-5 *3 (-1160 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 *3))) (-5 *1 (-880 *5 *3 *4))
- (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5)))))
+ (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-404 *3))
+ (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1229 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 (-945 *3))))
- (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1042))
- (-2186 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5))
- (-4 *4 (-609 (-885 *5)))))
+ (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146)))
+ (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3)) (-5 *1 (-538 *5 *6 *7 *3))
+ (-4 *3 (-943 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-5 *2 (-882 *5 *3)) (-5 *1 (-880 *5 *3 *4))
- (-2186 (-4 *3 (-1031 (-1166)))) (-2186 (-4 *3 (-1042)))
- (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))))
-(((*1 *1 *1) (-5 *1 (-1054))))
+ (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146)))
+ (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-943 *7 *6 *5))
+ (-5 *2 (-404 (-1160 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1160 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *6 (-1229 *5)) (-5 *2 (-635 (-648 (-406 *6)))) (-5 *1 (-652 *5 *6))
+ (-5 *3 (-648 (-406 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5))
+ (-5 *3 (-648 (-406 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-665 *4)))
+ (-5 *1 (-665 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-544)) (-5 *2 (-635 *3)) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-5 *2 (-404 *3))
+ (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-4 *7 (-943 *6 *5 *4))
+ (-5 *2 (-404 (-1160 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1160 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787))
+ (-4 *5
+ (-13 (-844)
+ (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))))
+ (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-724 *4 *5 *6 *3))
+ (-4 *3 (-943 (-939 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))))
+ (-4 *6 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-726 *4 *5 *6 *3))
+ (-4 *3 (-943 (-406 (-939 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146)))
+ (-5 *2 (-404 *3)) (-5 *1 (-727 *4 *5 *6 *3))
+ (-4 *3 (-943 (-406 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146)))
+ (-5 *2 (-404 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-735 *4 *5 *6 *7))
+ (-5 *3 (-1160 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-404 *3)) (-5 *1 (-1035 *3))
+ (-4 *3 (-1229 (-406 (-939 (-544)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1229 (-406 (-544))))
+ (-4 *5 (-13 (-362) (-146) (-718 (-406 (-544)) *4))) (-5 *2 (-404 *3))
+ (-5 *1 (-1070 *4 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1229 (-406 (-939 (-544)))))
+ (-4 *5 (-13 (-362) (-146) (-718 (-406 (-939 (-544))) *4))) (-5 *2 (-404 *3))
+ (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5))
+ (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7))
+ (-5 *3 (-1160 (-406 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209))))
+ ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-544))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-864 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-544))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-544)) (-14 *3 *2) (-5 *1 (-865 *3 *4)) (-4 *4 (-863 *3))))
+ ((*1 *1 *1) (-12 (-14 *2 (-544)) (-5 *1 (-865 *2 *3)) (-4 *3 (-863 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-544)) (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-1246 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1217 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1246 *2)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4))
- (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4)))))
((*1 *2 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-173 *3)) (-4 *3 (-306))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-667 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-844))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
- (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-292 *3)) (-5 *5 (-765)) (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-315 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6))
+ (-4 *6 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-765)))
+ (-4 *7 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-765)))
+ (-4 *3 (-13 (-27) (-1190) (-420 *7)))
+ (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51))
+ (-5 *1 (-457 *7 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1259)) (-5 *1 (-213 *4))
- (-4 *4
- (-13 (-844)
- (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 (*2 $))
- (-15 -3699 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3))
- (-4 *3
- (-13 (-844)
- (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 (*2 $))
- (-15 -3699 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-221 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-253 *3))))
- ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224)))
- (-5 *2 (-1256)) (-5 *1 (-256)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *3 (-561))
- (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1226 *4 *2))
- (-4 *2 (-1230 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-638 (-958))) (-5 *1 (-290)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166)))))
- (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094))
- (-5 *1 (-396))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166)))))
- (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094))
- (-5 *1 (-396))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-638 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166))
- (-5 *2 (-1094)) (-5 *1 (-396)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-638 *2))) (-5 *4 (-638 *5))
- (-4 *5 (-38 (-406 (-561)))) (-4 *2 (-1245 *5))
- (-5 *1 (-1247 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
+ (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554))
+ (-5 *2 (-406 (-939 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554))
+ (-5 *2 (-406 (-939 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-128)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912))))
+ ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211)))
+ ((*1 *1 *1 *1) (-5 *1 (-1212))))
+(((*1 *1 *1 *1) (-5 *1 (-128)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912))))
+ ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211)))
+ ((*1 *1 *1 *1) (-5 *1 (-1212))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128)))
+ ((*1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171))))
+ ((*1 *1) (-4 *1 (-720))) ((*1 *1) (-5 *1 (-1166)))
+ ((*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) ((*1 *1) (-5 *1 (-1210)))
+ ((*1 *1) (-5 *1 (-1211))) ((*1 *1) (-5 *1 (-1212))))
+(((*1 *2 *3) (-12 (-5 *3 (-167 (-544))) (-5 *2 (-112)) (-5 *1 (-444))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))
+ (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-955 *3)) (-4 *3 (-543))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1207)))))
(((*1 *2)
- (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
+ (-12 (-5 *2 (-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166)))))
+ (-5 *1 (-1207)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844)) (-4 *3 (-1091)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *7 (-1230 *5)) (-4 *4 (-718 *5 *7))
- (-5 *2 (-2 (|:| -2942 (-682 *6)) (|:| |vec| (-1254 *5))))
- (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-649 *5)) (-4 *3 (-649 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-840)))))
+ (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2))
+ (-4 *2 (-1091))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-844)) (-5 *1 (-1206 *2)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))))
(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1090)) (-5 *2 (-112))
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1091)) (-5 *2 (-112))
(-5 *1 (-1206 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3630 (-635 *3)) (|:| -3629 (-635 *3))))
+ (-5 *1 (-1206 *3)) (-4 *3 (-1091)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))))
-(((*1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
- ((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4390)) (-4 *1 (-403))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914))))
- ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-1146 (-561))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1230 *4)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-856)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
- (-5 *2 (-1028)) (-5 *1 (-750)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259))
- (-5 *1 (-447 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-561))
- (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1230 *5))
- (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5))
- (-4 *3 (-1230 *4))
- (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
- (-4 *3 (-1090)))))
+ (-12 (-5 *4 (-544)) (-4 *5 (-349)) (-5 *2 (-404 (-1160 (-1160 *5))))
+ (-5 *1 (-1203 *5)) (-5 *3 (-1160 (-1160 *5))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148)))))
- (-5 *2 (-1028)) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))
- (-5 *2 (-1028)) (-5 *1 (-304)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-699 *3 *4)) (-4 *3 (-1205)) (-4 *4 (-1205)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))))
-(((*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532))))
- ((*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-348)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-902)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2))
- (-4 *2 (-1230 (-168 *3))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
+ (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4))
+ (-5 *3 (-1160 (-1160 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4))
+ (-5 *3 (-1160 (-1160 *4))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3))
+ (-4 *3 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1199 *4 *5 *3 *2)) (-4 *4 (-554)) (-4 *5 (-787))
+ (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 (-936 *4)))
+ (-5 *1 (-1201)) (-5 *3 (-936 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1201)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-912)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042)) (-4 *4 (-1204))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5))
+ (-2 (|:| -2535 *2) (|:| -2536 *5))))
+ (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844))
+ (-4 *7 (-943 *4 *5 (-858 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-224)) (-5 *5 (-544)) (-5 *2 (-1200 *3)) (-5 *1 (-784 *3))
+ (-4 *3 (-967))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-112)) (-5 *1 (-1200 *2))
+ (-4 *2 (-967)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3)))
- (-5 *1 (-681 *3 *4 *5 *6)) (-4 *6 (-680 *3 *4 *5))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-693 *3))
- (-4 *3 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *9)))) (-5 *3 (-635 *9))
+ (-4 *1 (-1199 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *8)))) (-5 *3 (-635 *8))
+ (-4 *1 (-1199 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |k| (-1166)) (|:| |c| (-1276 *3)))))
- (-5 *1 (-1276 *3)) (-4 *3 (-1042))))
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-2 (|:| -4268 (-635 *6)) (|:| -1846 (-635 *6)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |k| *3) (|:| |c| (-1278 *3 *4)))))
- (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
- ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
- ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
-(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844))
- (-4 *3 (-13 (-171) (-711 (-406 (-561))))) (-14 *4 (-914))))
- ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
- ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
-(((*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532))))
- ((*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-561))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844))
- (-5 *1 (-447 *5 *6 *7 *4)))))
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1199 *5 *6 *7 *3)) (-4 *5 (-554))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-561))))
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-609 (-885 *3))) (-4 *3 (-879 *3))
- (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-609 (-885 *3))) (-4 *2 (-879 *3))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-844) (-553))))))
-(((*1 *1 *1) (-5 *1 (-856)))
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090))))
- ((*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1147))))
- ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166)))))
-(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-746)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-638 *3)) (-5 *1 (-954 *3)) (-4 *3 (-543)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))
- (-5 *2 (-638 (-224))) (-5 *1 (-304)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844))
- (-4 *4 (-265 *3)) (-4 *5 (-787)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-914)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-362)) (-14 *5 (-986 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-914))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-234 *3))))
- ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1199 *4 *5 *6 *7))
+ (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8))
+ (-4 *1 (-1199 *5 *6 *7 *8)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *2 (-1056 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867))))
- ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378))))
- ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-378)))))
+ (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *2 (-1056 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
- (-4 *4 (-171))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2))
- (-4 *2 (-429 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
- (-5 *1 (-157 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-171)))))
-(((*1 *2)
- (-12 (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4)))
- (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *4 (-1230 *3))
- (-5 *2
- (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-682 *3))))
- (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1230 (-561)))
- (-5 *2
- (-2 (|:| -2615 (-682 (-561))) (|:| |basisDen| (-561))
- (|:| |basisInv| (-682 (-561)))))
- (-5 *1 (-762 *3 *4)) (-4 *4 (-408 (-561) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-348)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 *4))
- (-5 *2
- (-2 (|:| -2615 (-682 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-682 *4))))
- (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-348)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 *4))
- (-5 *2
- (-2 (|:| -2615 (-682 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-682 *4))))
- (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-1042))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856))))
- ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450))
- (-5 *2
- (-638
- (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4))))
- (|:| |eigmult| (-765))
- (|:| |eigvec| (-638 (-682 (-406 (-945 *4))))))))
- (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-920))
- (-5 *2
- (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
- (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
- (-5 *1 (-152))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561)))
- (-5 *2
- (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
- (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
- (-5 *1 (-152)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5))
- (-4 *4 (-1090)) (-4 *5 (-1090)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561))))
- (-4 *2 (-171)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-561))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-638
- (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *3))
- (|:| |logand| (-1162 *3)))))
- (-5 *1 (-582 *3)) (-4 *3 (-362)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-1254 (-682 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1254 (-682 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1254 (-682 *3)))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *5 (-1056 *2 *3 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *10))
+ (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8))
+ (-4 *10 (-1099 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362))
- (-5 *2 (-1254 (-682 (-406 (-945 *5))))) (-5 *1 (-1076 *5))
- (-5 *4 (-682 (-406 (-945 *5))))))
+ (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362))
- (-5 *2 (-1254 (-682 (-945 *5)))) (-5 *1 (-1076 *5))
- (-5 *4 (-682 (-945 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362))
- (-5 *2 (-1254 (-682 *4))) (-5 *1 (-1076 *4)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1256))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1230 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4))
- (-5 *1 (-808 *4 *5)) (-4 *5 (-649 *4))))
+ (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1166)))
+ (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6)))))
+ (-5 *1 (-623 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8)))
+ (-5 *1 (-1020 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8)))
+ (-5 *1 (-1020 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1039 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-362))
- (-5 *2 (-682 *5)) (-5 *1 (-808 *5 *6)) (-4 *6 (-649 *5)))))
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-1062 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8)))
+ (-5 *1 (-1136 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8)))
+ (-5 *1 (-1136 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1199 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1254 (-692))) (-5 *1 (-304)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-682 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-682 *11)) (-5 *4 (-638 (-406 (-945 *8))))
- (-5 *5 (-765)) (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146)))
- (-4 *11 (-942 *8 *10 *9)) (-4 *9 (-13 (-844) (-609 (-1166))))
- (-4 *10 (-787))
- (-5 *2
- (-2
- (|:| |rgl|
- (-638
- (-2 (|:| |eqzro| (-638 *11)) (|:| |neqzro| (-638 *11))
- (|:| |wcond| (-638 (-945 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *8))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *8))))))))))
- (|:| |rgsz| (-561))))
- (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-561)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
- (-5 *1 (-175 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *3))
- (-4 *3 (-1205))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205))))
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| -4268 *1) (|:| -1846 (-635 *7))))) (-5 *3 (-635 *7))
+ (-4 *1 (-1199 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-765)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166)))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1198 *4 *5 *3 *2)) (-4 *4 (-553))
- (-4 *5 (-787)) (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3))))
+ (-12 (-5 *3 (-635 (-912))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5))
+ (-14 *4 (-912)) (-14 *5 (-986 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
- ((*1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2))
- (-5 *2 (-378)) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
- (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553))
- (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
- (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-378))
- (-5 *1 (-779 *5)))))
+ (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5))
+ (-4 *4 (-1042)) (-4 *5 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *2 (-844))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *2 (-943 *4 (-529 *5) *5)) (-5 *1 (-1116 *4 *5 *2))
+ (-4 *4 (-1042)) (-4 *5 (-844))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-939 *4)) (-5 *1 (-1197 *4)) (-4 *4 (-1042)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-544))))
+ (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5))
+ (-4 *5 (-943 *4 (-529 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1197 *4))) (-5 *3 (-1166)) (-5 *1 (-1197 *4))
+ (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-609 (-883 *3))) (-4 *3 (-879 *3)) (-4 *3 (-13 (-844) (-450)))
+ (-5 *1 (-1196 *3 *2)) (-4 *2 (-609 (-883 *3))) (-4 *2 (-879 *3))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-5 *2 (-1162 *3)) (-5 *1 (-1179 *3))
- (-4 *3 (-362)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-561))))
- (-4 *2 (-171)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-561))
- (-5 *6
- (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))))
- (-5 *7 (-1 (-1259) (-1254 *5) (-1254 *5) (-378)))
- (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259))
- (-5 *1 (-782))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-561))
- (-5 *6
- (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4327 (-378))))
- (-5 *7 (-1 (-1259) (-1254 *5) (-1254 *5) (-378)))
- (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259))
- (-5 *1 (-782)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
-(((*1 *1 *1) (-4 *1 (-862 *2))))
-(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224)))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1028)) (-5 *1 (-747)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765))))
- ((*1 *1 *1) (-4 *1 (-401))))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1230 *6))
- (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-561))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -3394
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1008 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
- (-5 *2 (-412 *4 (-406 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1254 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4)))
- (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-4 *3 (-306))
- (-5 *1 (-412 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *6)))))
-(((*1 *1 *1) (-4 *1 (-1051))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-561) (-224) (-1166) (-1148) (-1171)))
- (-5 *1 (-1171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-4 *6 (-13 (-553) (-844)))
- (-5 *2 (-638 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6))
- (-4 *5 (-1042))))
- ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-582 *5)) (-4 *5 (-13 (-29 *4) (-1190)))
- (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
- (-5 *2 (-638 *5)) (-5 *1 (-580 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-582 (-406 (-945 *4))))
- (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
- (-5 *2 (-638 (-315 *4))) (-5 *1 (-585 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842))
- (-4 *2 (-1139 *4))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844))
+ (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-313 (-544))) (-5 *1 (-1109))))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1269 (-1166) *3)) (-5 *1 (-1276 *3)) (-4 *3 (-1042))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-1042)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-1171))) (-5 *1 (-1171)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1245 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1254 *6)) (-5 *4 (-1254 (-561))) (-5 *5 (-561))
- (-4 *6 (-1090)) (-5 *2 (-1 *6)) (-5 *1 (-1010 *6)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-607 *4)) (-5 *6 (-1162 *4))
- (-4 *4 (-13 (-429 *7) (-27) (-1190)))
- (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-607 *4)) (-5 *6 (-406 (-1162 *4)))
- (-4 *4 (-13 (-429 *7) (-27) (-1190)))
- (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1230 *6))
- (-4 *6 (-13 (-27) (-429 *5)))
- (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1230 (-406 *7)))
- (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3))
- (-4 *3 (-341 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-815)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *4 (-553))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1850 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1042))
- (-4 *2 (-1214 *3)))))
+ (-4 *2 (-13 (-420 *3) (-1190))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7)))
- (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-167 (-313 *4)))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4))))))
((*1 *2 *3)
- (-12 (-4 *4 (-902)) (-4 *5 (-1230 *4)) (-5 *2 (-417 (-1162 *5)))
- (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042))))
- ((*1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-52)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *3 (-638 (-262)))
- (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4401 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
- (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1230 *2))
- (-4 *4 (-680 *2 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-964)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224)))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1028)) (-5 *1 (-747)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 *1)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6))
- (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-561))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844))
- (-5 *1 (-447 *5 *6 *7 *4)))))
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-167 *3)) (-5 *1 (-1194 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-420 *4))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1090)) (-4 *2 (-844))
- (-5 *1 (-113 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-638 (-607 *6))) (-5 *4 (-1166)) (-5 *2 (-607 *6))
- (-4 *6 (-429 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3))
- (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306))
- (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 *7)))
- (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-417 *1)) (-4 *1 (-942 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-417 *3))
- (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4))))
+ (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-112))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450))
- (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7))))
- (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209))))
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-112))
+ (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-1233 *4 *3))
- (-4 *3 (-13 (-1230 *4) (-553) (-10 -8 (-15 -1603 ($ $ $)))))))
+ (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
((*1 *2 *3)
- (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-14 *5 (-638 (-1166)))
- (-5 *2
- (-638 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))))
- (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166))))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
- (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-4 *1 (-172)))
+ (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544))))
+ (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544))))
+ (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *1 *1)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4399)) (-4 *1 (-34)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-561))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-840)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-638 (-315 (-224))))
- (|:| |constraints|
- (-638
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-765)) (|:| |boundaryType| (-561))
- (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
- (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
- (|:| |tol| (-224))))
- (-5 *2 (-112)) (-5 *1 (-209)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-52)) (-5 *1 (-885 *4))
- (-4 *4 (-1090)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-1254 (-682 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-682 *4)) (-4 *5 (-649 *4)))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -2130 (-765)) (|:| |period| (-765))))
- (-5 *1 (-1146 *4)) (-4 *4 (-1205)) (-5 *3 (-765)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 (-406 (-945 (-561))))) (-5 *4 (-638 (-1166)))
- (-5 *2 (-638 (-638 *5))) (-5 *1 (-379 *5))
- (-4 *5 (-13 (-842) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-842) (-362))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 (-607 *5))) (-5 *3 (-1166)) (-4 *5 (-429 *4))
- (-4 *4 (-844)) (-5 *1 (-570 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224))
- (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-751)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-649 *3)) (-4 *3 (-1042)) (-4 *3 (-362))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
- (-5 *1 (-652 *5 *2)) (-4 *2 (-649 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1166))
- (|:| |arrayIndex| (-638 (-945 (-561))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1166)) (|:| |rand| (-856))
- (|:| |ints2Floats?| (-112))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329))
- (|:| |elseClause| (-329))))
- (|:| |returnBranch|
- (-2 (|:| -2508 (-112))
- (|:| -2506
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2382 (-856))))))
- (|:| |blockBranch| (-638 (-329)))
- (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148))
- (|:| |forBranch|
- (-2 (|:| -2185 (-1082 (-945 (-561))))
- (|:| |span| (-945 (-561))) (|:| -3316 (-329))))
- (|:| |labelBranch| (-1110))
- (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3316 (-329))))
- (|:| |commonBranch|
- (-2 (|:| -3305 (-1166)) (|:| |contents| (-638 (-1166)))))
- (|:| |printBranch| (-638 (-856)))))
- (-5 *1 (-329)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-742)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4))
- (-5 *2 (-2 (|:| -4226 (-406 *5)) (|:| |poly| *3)))
- (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1230 (-406 *5))))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844))
- (-5 *2 (-59 (-638 (-665 *5)))) (-5 *1 (-665 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042))
- (-5 *1 (-1150 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1205))
- (-4 *5 (-1205)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-765))
- (-4 *7 (-1205)) (-4 *5 (-1205)) (-5 *2 (-239 *6 *5))
- (-5 *1 (-238 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1205)) (-4 *5 (-1205))
- (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1090)) (-4 *5 (-1090))
- (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-638 *6)) (-4 *6 (-1205))
- (-4 *5 (-1205)) (-5 *2 (-638 *5)) (-5 *1 (-636 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1205))
- (-4 *5 (-1205)) (-5 *2 (-951 *5)) (-5 *1 (-950 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1146 *6)) (-4 *6 (-1205))
- (-4 *3 (-1205)) (-5 *2 (-1146 *3)) (-5 *1 (-1144 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1254 *6)) (-4 *6 (-1205))
- (-4 *5 (-1205)) (-5 *2 (-1254 *5)) (-5 *1 (-1253 *6 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-534))) (-5 *1 (-534)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-638 *4)) (-4 *4 (-844))
- (-5 *1 (-1176 *4)))))
-(((*1 *1) (-5 *1 (-575)))
- ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-857))))
- ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-857))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1259)) (-5 *1 (-857))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-1146 *4))
- (-4 *4 (-1090)) (-4 *4 (-1205)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *5 (-553))
- (-5 *2
- (-2 (|:| |minor| (-638 (-914))) (|:| -3394 *3)
- (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166))))
- (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-942 *3 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
- (-4 *3 (-960)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367))
- (-5 *2 (-765)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1269 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1276 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *1 (-1278 *3 *4)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
- (-5 *1 (-742)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-146))) (-5 *2 (-638 *3))
- (-5 *1 (-1224 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-914)) (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-786))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1235 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-638 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *6 (-1230 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-646 (-406 *7))) (-5 *4 (-1 (-638 *6) *7))
- (-5 *5 (-1 (-417 *7) *7))
- (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *7 (-1230 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-638 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *6 (-1230 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-647 *7 (-406 *7))) (-5 *4 (-1 (-638 *6) *7))
- (-5 *5 (-1 (-417 *7) *7))
- (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *7 (-1230 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-646 (-406 *5))) (-4 *5 (-1230 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
- (-4 *6 (-1230 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-647 *5 (-406 *5))) (-4 *5 (-1230 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
- (-4 *6 (-1230 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-582 *3)) (-5 *1 (-554 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -2430 (-417 *3)) (|:| |special| (-417 *3))))
- (-5 *1 (-721 *5 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-1092 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-638 *4))) (-5 *1 (-897 *4))
- (-5 *3 (-638 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-897 *4))
- (-5 *3 (-1092 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-638
- (-2 (|:| -3400 (-765))
- (|:| |eqns|
- (-638
- (-2 (|:| |det| *7) (|:| |rows| (-638 (-561)))
- (|:| |cols| (-638 (-561))))))
- (|:| |fgb| (-638 *7)))))
- (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *1) (-5 *1 (-1054))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765))
- (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191))))
- ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-299))))
- ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-304)))))
-(((*1 *2)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-682 (-406 (-945 (-561)))))
- (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024))
- (-5 *3 (-315 (-561))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-942 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
- (-4 *7 (-787))
- (-5 *2
- (-638
- (-2 (|:| |det| *8) (|:| |rows| (-638 (-561)))
- (|:| |cols| (-638 (-561))))))
- (-5 *1 (-917 *5 *6 *7 *8)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-561))) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-553)) (-4 *8 (-942 *7 *5 *6))
- (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *9) (|:| |radicand| *9)))
- (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765))
- (-4 *9
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *8)) (-15 -4077 (*8 $)) (-15 -4088 (*8 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -3590 *4))) (-5 *5 (-765))
- (-4 *4 (-942 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-447 *6 *7 *8 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1205)))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
- (-14 *4 (-638 (-1166)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1) (-4 *1 (-283)))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-5 *1 (-622 *3 *4 *5))
- (-14 *5 (-914))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561)))))
- (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1275 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4))
- (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-1191 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-638 (-638 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-638 (-638 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-638 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3))
- (-4 *3 (-641 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4064 ($ *7)))))
- (-4 *7 (-842))
- (-4 *8
- (-13 (-1232 *3 *7) (-362) (-1190)
- (-10 -8 (-15 -3922 ($ $)) (-15 -2563 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
- (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8))
- (-14 *10 (-1166)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 (-378))) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
+ (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *5)) (-5 *1 (-878 *3 *4 *5))
- (-4 *3 (-1090)) (-4 *5 (-659 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+ (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-844) (-554)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-1190))))
+(((*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-920))
- (-5 *2
- (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
- (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
- (-5 *1 (-152))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561)))
- (-5 *2
- (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
- (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
- (-5 *1 (-152))))
+ (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-1187 *4)) (-4 *4 (-1042)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-544))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4))
+ (-5 *2 (-544))))
((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450)))
+ (-5 *2 (-544)) (-5 *1 (-1107 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 *3))
+ (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544))
+ (-5 *1 (-1107 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148))
+ (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544))
+ (-5 *1 (-1107 *6 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-544))
+ (-5 *1 (-1108 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 (-406 (-939 *6))))
+ (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1166)) (-5 *5 (-1148))
+ (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6))))
+ ((*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-363 *2)) (-4 *2 (-1091))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-113))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $))
+ (-15 -2115 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-392))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-392))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-704))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1184))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1184)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-765)) (-4 *3 (-1204)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3))))
+ ((*1 *1) (-5 *1 (-170)))
+ ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1091))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388))))
+ ((*1 *1) (-5 *1 (-392)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1204))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091))
+ (-4 *4 (-659 *3))))
+ ((*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042))))
+ ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042))))
+ ((*1 *1 *1) (-5 *1 (-1166))) ((*1 *1) (-5 *1 (-1166)))
+ ((*1 *1) (-5 *1 (-1184))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-1183)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-281 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
- (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
- (-5 *1 (-152)) (-5 *3 (-638 (-936 (-224))))))
- ((*1 *2 *3)
+ (-2
+ (|:| -4267
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2226
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1589
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-557))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
- (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
- (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 (-224)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1257)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-992 *3)) (-4 *3 (-171)) (-5 *1 (-793 *3)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-913)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209))
- (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5)))
- (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 (-1 *6 (-638 *6))))
- (-4 *5 (-38 (-406 (-561)))) (-4 *6 (-1245 *5)) (-5 *2 (-638 *6))
- (-5 *1 (-1247 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-970 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1162 (-945 *4)) (-945 *4)))
- (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553))
- (-5 *2 (-1162 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 (-638 *4))))
- (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1230 *3))
- (-4 *3 (-13 (-362) (-146) (-1031 (-561)))) (-5 *1 (-565 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-185))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))))
-(((*1 *1 *1) (-5 *1 (-1054))))
+ (-2
+ (|:| -4267
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (|:| -2226
+ (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377))
+ (|:| |expense| (-377)) (|:| |accuracy| (-377))
+ (|:| |intermediateResults| (-377))))))
+ (-5 *1 (-797))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-1146 (-224))) (-5 *1 (-191))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166)))
- (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *4 (-638 (-1166)))
- (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))))
+ (|partial| -12 (-4 *2 (-1091)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1091)))))
(((*1 *2)
- (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4))
- (-4 *4 (-1230 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091))
+ (-4 *5 (-1091)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1603 *3)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
+ (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091))
+ (-4 *5 (-1091)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| -4267 *3) (|:| -2226 *4)))) (-4 *3 (-1091))
+ (-4 *4 (-1091)) (-4 *1 (-1181 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8))
- (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146)))
- (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-112))
- (-5 *1 (-917 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-638
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844))
- (-5 *1 (-447 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-951 (-1110)))
- (-5 *1 (-345 *4)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-768)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-958)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1245 *3)))))
-(((*1 *1) (-5 *1 (-185))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-4 *2 (-1090))
- (-5 *1 (-882 *4 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
+ (-12 (-5 *4 (-912)) (-5 *2 (-1160 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-362)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
- (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
- (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5))))
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-635 (-635 *3)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4401 "*"))) (-4 *2 (-1042)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-1178 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4))
- (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146))
- (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))))
-(((*1 *1) (-5 *1 (-185))))
+ (-12 (-4 *4 (-844))
+ (-5 *2
+ (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4))))
+ (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4))))))
+ (-5 *1 (-1176 *4)) (-5 *3 (-635 (-635 (-635 *4)))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-844)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5) (|:| |f4| (-635 *5))))
+ (-5 *1 (-1176 *6)) (-5 *4 (-635 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2395 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1146 *7))) (-4 *6 (-844))
- (-4 *7 (-942 *5 (-529 *6) *6)) (-4 *5 (-1042))
- (-5 *2 (-1 (-1146 *7) *7)) (-5 *1 (-1116 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-993 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-765)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *2 (-1200 (-919)))
- (-5 *1 (-317))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *7 (-1148))
- (-5 *2 (-1200 (-919))) (-5 *1 (-317))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561))
- (-5 *2 (-1200 (-919))) (-5 *1 (-317))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561)) (-5 *8 (-1148))
- (-5 *2 (-1200 (-919))) (-5 *1 (-317)))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ (|partial| -12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561))))
- ((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1) (-4 *1 (-862 *2)))
+ (|partial| -12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-4 *7 (-984 *4)) (-4 *2 (-679 *7 *8 *9))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-679 *4 *5 *6))
+ (-4 *8 (-371 *7)) (-4 *9 (-371 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2)) (-4 *2 (-362))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))
+ ((*1 *1 *1) (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042))))
((*1 *1 *1)
- (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786))
- (-4 *4 (-844)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-738 *3)) (-4 *3 (-171)))))
+ (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4))
+ (-5 *3 (-635 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1230 *4))
- (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765))))
- (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1230 (-406 *5))))))
+ (-12 (-4 *4 (-844)) (-5 *2 (-1178 (-635 *4))) (-5 *1 (-1176 *4))
+ (-5 *3 (-635 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 (-635 *4)))) (-5 *1 (-1176 *4))
+ (-5 *3 (-635 (-635 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1178 (-635 *4))) (-4 *4 (-844)) (-5 *2 (-635 (-635 *4)))
+ (-5 *1 (-1176 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4)))
+ (-5 *1 (-1176 *4)) (-4 *4 (-844)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-787))
- (-4 *3 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *5 (-553))
- (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-787))
- (-4 *3
- (-13 (-844)
- (-10 -8 (-15 -4216 ((-1166) $))
- (-15 -2421 ((-3 $ "failed") (-1166))))))
- (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *6))
- (-4 *6
- (-13 (-844)
- (-10 -8 (-15 -4216 ((-1166) $))
- (-15 -2421 ((-3 $ "failed") (-1166))))))
- (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2))
- (-4 *2 (-942 (-945 *4) *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3))
- (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))))
-(((*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042))))
- ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
- (-5 *2 (-638 (-638 (-936 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042))
- (-4 *1 (-1124 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 (-936 *3)))) (-4 *3 (-1042))
- (-4 *1 (-1124 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-112))
- (-4 *1 (-1124 *4)) (-4 *4 (-1042))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112))
- (-4 *1 (-1124 *4)) (-4 *4 (-1042))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-638 (-170)))
- (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-638 (-638 (-936 *5)))) (-5 *3 (-638 (-170)))
- (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-638 *11)) (-5 *5 (-638 (-1162 *9)))
- (-5 *6 (-638 *9)) (-5 *7 (-638 *12)) (-5 *8 (-638 (-765)))
- (-4 *11 (-844)) (-4 *9 (-306)) (-4 *12 (-942 *9 *10 *11))
- (-4 *10 (-787)) (-5 *2 (-638 (-1162 *12)))
- (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1162 *12)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-168 (-224))))
- (-5 *2 (-1028)) (-5 *1 (-749)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1230 *2)))))
-(((*1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362)))))
-(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378))))
- ((*1 *1 *1 *1) (-4 *1 (-543)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
- ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-765)))))
+ (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-4 *4 (-844))
+ (-5 *1 (-1176 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2))
- (-4 *2 (-641 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-830 *2)) (-4 *2 (-1042)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
- ((*1 *1 *1) (|partial| -4 *1 (-716))))
-(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))))
+ (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-844))
+ (-5 *1 (-1176 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1090))
- (-5 *1 (-671 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4))
- (-14 *3 (-914)) (-4 *4 (-1042))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
+ (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-635 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920))
- (-5 *1 (-918 *3)) (-4 *3 (-609 (-534)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920))
- (-5 *1 (-918 *3)) (-4 *3 (-609 (-534)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-919))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-919))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-619 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301))))
- ((*1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-5 *1 (-856))))
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-635 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4))))
+ (-5 *1 (-1176 *6)) (-5 *5 (-635 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1175)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-561))) (-5 *4 (-898 (-561)))
- (-5 *2 (-682 (-561))) (-5 *1 (-586))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561))))
- (-5 *1 (-586))))
+ (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554))
+ (-5 *2 (-635 (-635 (-939 *5)))) (-5 *1 (-1174 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-406 (-939 (-544)))))
+ (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-842) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-561))) (-5 *4 (-638 (-898 (-561))))
- (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-586)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))
- (-14 *4 *2) (-4 *5 (-171))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-914)) (-5 *1 (-164 *3 *4))
- (-4 *3 (-165 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-914))))
- ((*1 *2)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3))
- (-5 *2 (-914))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6))))
+ (-12 (-5 *3 (-635 (-292 (-406 (-939 (-544))))))
+ (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-842) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-362))
- (-5 *2 (-765)) (-5 *1 (-660 *5))))
+ (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 (-292 (-939 *4))))
+ (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4400))))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4400)))) (-5 *2 (-765))
- (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3))
- (-4 *3 (-680 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553))
- (-5 *2 (-765)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
- (-5 *2 (-856)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-561))
- (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-171))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-813 *3)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-5 *2 (-1148)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765))
- (-5 *1 (-1154 *4 *5)) (-14 *4 (-914))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5))
- (-14 *4 (-914)) (-4 *5 (-1042))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042))
- (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-970 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6))
- (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-970 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166)))
- (-4 *5 (-450)) (-5 *2 (-638 (-246 *4 *5))) (-5 *1 (-626 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-310))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844))
- (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-561))) (-5 *1 (-1109))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146)))
- (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5)))))
- (-5 *1 (-1119 *5))))
+ (-12 (-5 *3 (-292 (-406 (-939 (-544))))) (-5 *2 (-635 (-292 (-939 *4))))
+ (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1166))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-4 *4 (-13 (-29 *6) (-1190) (-953)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4))))
+ (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-651 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *2))
+ (-4 *2 (-13 (-29 *6) (-1190) (-953)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-651 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146)))
- (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5)))))
- (-5 *1 (-1119 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3))
- (-4 *3 (-641 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3))
- (-4 *3 (-641 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042))))
- ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-885 *6)))
- (-5 *5 (-1 (-882 *6 *8) *8 (-885 *6) (-882 *6 *8))) (-4 *6 (-1090))
- (-4 *8 (-13 (-1042) (-609 (-885 *6)) (-1031 *7)))
- (-5 *2 (-882 *6 *8)) (-4 *7 (-13 (-1042) (-844)))
- (-5 *1 (-934 *6 *7 *8)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *5 (-1230 *4)) (-5 *2 (-638 (-646 (-406 *5))))
- (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1230 *4)) (-4 *4 (-1209))
- (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1230 (-406 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-1254 *1)) (-4 *4 (-171))
- (-4 *1 (-366 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-1254 *1)) (-4 *4 (-171))
- (-4 *1 (-369 *4 *5)) (-4 *5 (-1230 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
- (-4 *4 (-1230 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2))
- (-4 *2 (-429 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
- (-5 *1 (-157 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3))))
- (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *3 *2))
- (-4 *3 (-13 (-1090) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1265)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3)))
- (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
- (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3))
- (-4 *3 (-846 *5)))))
-(((*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1148)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1090))
- (-4 *4 (-1090))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401))))
+ (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4))))
+ (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401))))
+ (-4 *7 (-13 (-371 *5) (-10 -7 (-6 -4401))))
+ (-5 *2 (-635 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2162 (-635 *7)))))
+ (-5 *1 (-660 *5 *6 *7 *3)) (-5 *4 (-635 *7)) (-4 *3 (-679 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-362))
(-5 *2
- (-3 (|:| I (-315 (-561))) (|:| -3249 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
- (-5 *1 (-1165)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2)))))
-(((*1 *1) (-5 *1 (-817))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-885 *4))
- (-4 *4 (-1090)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5))
- (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-1267 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
- (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-765))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-1230 *4)) (-5 *2 (-1 *6 (-638 *6)))
- (-5 *1 (-1248 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-1245 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-561)) (-5 *1 (-484 *4))
- (-4 *4 (-1230 *2)))))
-(((*1 *2)
- (-12 (-4 *1 (-348))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2)
- (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5)))
- (-5 *2 (-638 (-638 *4))) (-5 *1 (-340 *3 *4 *5 *6))
- (-4 *3 (-341 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-638 (-638 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
- (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
- (-5 *4 (-315 (-378))) (-5 *1 (-329))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
- (-5 *4 (-315 (-561))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-168 (-378)))))
- (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-378)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-561)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-168 (-378)))))
- (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-378)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-561)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-378))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-561))) (-5 *1 (-329))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
- (-5 *4 (-315 (-687))) (-5 *1 (-329))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
- (-5 *4 (-315 (-692))) (-5 *1 (-329))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
- (-5 *4 (-315 (-694))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-687)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-692)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-315 (-694)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-687)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-692)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-694)))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-687))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-692))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1254 (-694))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-687))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-692))) (-5 *1 (-329))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-694))) (-5 *1 (-329))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329))))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-607 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1190)))
- (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-1162 (-406 (-1162 *6)))) (-5 *1 (-557 *5 *6 *7))
- (-5 *3 (-1162 *6)) (-4 *7 (-1090))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1230 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1230 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1162 *11)) (-5 *6 (-638 *10))
- (-5 *7 (-638 (-765))) (-5 *8 (-638 *11)) (-4 *10 (-844))
- (-4 *11 (-306)) (-4 *9 (-787)) (-4 *5 (-942 *11 *9 *10))
- (-5 *2 (-638 (-1162 *5))) (-5 *1 (-736 *9 *10 *11 *5))
- (-5 *3 (-1162 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-942 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6))
- (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-638 *2)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-543)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-644 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-765))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))))
-(((*1 *2)
- (-12 (-5 *2 (-682 (-903 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-914))
- (-14 *4 (-914))))
- ((*1 *2)
- (-12 (-5 *2 (-682 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
- (-14 *4
- (-3 (-1162 *3)
- (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-914)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 *1)) (|has| *1 (-6 -4400)) (-4 *1 (-1003 *3))
- (-4 *3 (-1205)))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-561))) (-5 *1 (-304)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148)))))
-(((*1 *1 *1) (-4 *1 (-654))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042))
- (-5 *1 (-1150 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-561)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1042))
- (-14 *4 (-1166)) (-14 *5 *3))))
-(((*1 *1) (-5 *1 (-329))))
-(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))))
-(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867))
- (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-466)) (-5 *1 (-1258))))
+ (-2 (|:| |particular| (-3 (-1253 *5) #2="failed"))
+ (|:| -2162 (-635 (-1253 *5)))))
+ (-5 *1 (-661 *5)) (-5 *4 (-1253 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1253 *5) #2#)) (|:| -2162 (-635 (-1253 *5)))))
+ (-5 *1 (-661 *5)) (-5 *4 (-1253 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-635
+ (-2 (|:| |particular| (-3 (-1253 *5) #2#))
+ (|:| -2162 (-635 (-1253 *5))))))
+ (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362))
+ (-5 *2
+ (-635
+ (-2 (|:| |particular| (-3 (-1253 *5) #2#))
+ (|:| -2162 (-635 (-1253 *5))))))
+ (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-466))
- (-5 *1 (-1258))))
+ (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1166))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-953)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166))
+ (-4 *7 (-13 (-29 *6) (-1190) (-953)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7)))))
+ (-5 *1 (-796 *6 *7)) (-5 *4 (-1253 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262)))
- (-5 *2 (-466)) (-5 *1 (-1258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1254 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553))
- (-5 *2 (-1254 *4)) (-5 *1 (-633 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 (-561))) (-4 *4 (-1031 (-561)))
- (-4 *4 (-13 (-844) (-553))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-133)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-224)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-561))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3))
- (-4 *5 (-1245 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1216 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3))
- (-4 *5 (-1214 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1237 *4 *5))
- (-4 *6 (-976 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-283)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *1) (-5 *1 (-378)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-1102))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-561))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-561)) (-4 *4 (-348))
- (-5 *1 (-526 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-534))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-534))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1090))
- (-5 *1 (-675 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042))
- (-5 *1 (-683 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4))
- (-4 *4 (-641 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-4 *4 (-1042))
- (-5 *1 (-708 *4 *5)) (-4 *5 (-641 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-830 *3)) (-4 *3 (-1042))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-5 *1 (-830 *4)) (-4 *4 (-1042))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-561)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-914))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4))))
+ (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166))
+ (-4 *6 (-13 (-29 *5) (-1190) (-953)))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-635 (-1253 *6))) (-5 *1 (-796 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-1166))
+ (-4 *7 (-13 (-29 *6) (-1190) (-953)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7)))))
+ (-5 *1 (-796 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-1166))
+ (-4 *7 (-13 (-29 *6) (-1190) (-953)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7)))))
+ (-5 *1 (-796 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-1166))
+ (-4 *7 (-13 (-29 *6) (-1190) (-953)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2162 (-635 *7))) *7 #3="failed"))
+ (-5 *1 (-796 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-113)) (-5 *5 (-1166))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2162 (-635 *3))) *3 #3#))
+ (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-953)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-292 *2)) (-5 *4 (-113)) (-5 *5 (-635 *2))
+ (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-5 *1 (-796 *6 *2))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-292 *2)) (-5 *5 (-635 *2))
+ (-4 *2 (-13 (-29 *6) (-1190) (-953)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *1 (-796 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4))
+ (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4))
+ (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377)))
+ (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4))
+ (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377)))
+ (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377)))
+ (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1 (-3 (-2 (|:| |particular| *6) (|:| -2162 (-635 *6))) "failed") *7 *6))
+ (-4 *6 (-362)) (-4 *7 (-651 *6))
+ (-5 *2 (-2 (|:| |particular| (-1253 *6)) (|:| -2162 (-682 *6))))
+ (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148))
+ (-5 *8 (-224)) (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028))
+ (-5 *1 (-890))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148))
+ (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028)) (-5 *1 (-890))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 (-377))) (-5 *1 (-1016))
+ (-5 *4 (-377))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 (-377))) (-5 *1 (-1016))
+ (-5 *4 (-377))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
- (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
- (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-995)))))
+ (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-313 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301))))
- ((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
+ (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4))
+ (-5 *3 (-292 (-313 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5))
+ (-5 *3 (-292 (-313 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-313 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1166)))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1121 *5))
+ (-5 *3 (-635 (-292 (-313 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1166))) (-4 *5 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5))
+ (-5 *3 (-635 (-292 (-406 (-939 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5))))
+ (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-1174 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
- (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4))))
+ (-12 (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4))))))
+ (-5 *1 (-1174 *4)) (-5 *3 (-635 (-292 (-406 (-939 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5)))))
+ (-5 *1 (-1174 *5)) (-5 *3 (-406 (-939 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5)))))
+ (-5 *1 (-1174 *5)) (-5 *3 (-292 (-406 (-939 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
- (-5 *1 (-625 *4 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-951 (-1162 *4))) (-5 *1 (-356 *4))
- (-5 *3 (-1162 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-638 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1090))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-638 *4))) (-4 *4 (-1090))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090))
- (-5 *1 (-113 *4))))
+ (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4))
+ (-5 *3 (-406 (-939 *4)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-638 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1090))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042))
- (-5 *1 (-708 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-919)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130))
- (-4 *2 (-1090))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553))))
+ (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4))
+ (-5 *3 (-292 (-406 (-939 *4)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-544))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1081))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-311))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1265))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1106))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-1171))) (-5 *1 (-1171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-544) (-224) (-1166) (-1148) (-1171))) (-5 *1 (-1171)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-112)) (-5 *1 (-612))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2362)) (-5 *2 (-112)) (-5 *1 (-612))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2363)) (-5 *2 (-112)) (-5 *1 (-612))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-1090)) (-5 *1 (-642 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-813 *2)) (-4 *2 (-844)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-745)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-638 (-1 *4 (-638 *4)))) (-4 *4 (-1090))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-1 *4 (-638 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1090)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
- ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1205))
- (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
+ (-12 (-5 *3 (|[\|\|]| -2488)) (-5 *2 (-112)) (-5 *1 (-684 *4))
+ (-4 *4 (-608 (-857)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042))
- (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))))
-(((*1 *1) (-5 *1 (-466))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1090))
- (-4 *3 (-1090)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
- ((*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-132))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-160))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1086)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
- (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-638 (-945 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-638 (-945 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-638 (-945 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-638 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-451 *4 *5 *6 *7))) (-5 *2 (-638 (-945 *4)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-553)) (-4 *4 (-171))
- (-14 *5 (-914)) (-14 *6 (-638 (-1166))) (-14 *7 (-1254 (-682 *4))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-1247 *4 *2))
- (-4 *4 (-38 (-406 (-561)))))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-857))) (-5 *2 (-112))
+ (-5 *1 (-684 *4))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1265))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112)) (-5 *1 (-1171)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290))) ((*1 *1) (-5 *1 (-857)))
+ ((*1 *1)
+ (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1075)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34)))))
+ ((*1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1170))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *4 (-1166)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1170))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *1 (-1170)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-435)) (-5 *1 (-1170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170)))))
(((*1 *2 *3 *1)
(-12 (-5 *3 (-433))
(-5 *2
- (-638
- (-3 (|:| -3305 (-1166))
- (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))))
+ (-635
+ (-3 (|:| -3949 (-1166))
+ (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))))
(-5 *1 (-1170)))))
-(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-1042))))
- ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844))
- (-4 *5 (-1031 (-561))) (-4 *5 (-553)) (-5 *1 (-41 *5 *2))
- (-4 *2 (-429 *5))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *5 (-607 $)) $))
- (-15 -4088 ((-1115 *5 (-607 $)) $))
- (-15 -4064 ($ (-1115 *5 (-607 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-635
+ (-635
+ (-3 (|:| -3949 (-1166))
+ (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))))
+ (-5 *1 (-1170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1170)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1170)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435)))))
+ (-5 *1 (-1170)))))
+(((*1 *1) (-5 *1 (-1169))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))
+ ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))))
+(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))))
+(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-5 *2 (-1259))
+ (-5 *1 (-1169))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))
+ (-5 *2 (-1259)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))
+ (-5 *2 (-1259)) (-5 *1 (-1169)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1166)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 "void")))
+ (-5 *1 (-1169)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4))
+ (-5 *1 (-1167 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-912)) (-5 *2 (-1253 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1042)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1166)))))
(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-96))))
((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1091))))
((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148))))
((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-437 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1091))))
((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-958))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1065 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1105))))
- ((*1 *1 *1) (-5 *1 (-1166))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-773 *4))
- (-4 *4 (-13 (-362) (-842))))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-745)))))
-(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090))))
- ((*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-561) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
- (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
- (-4 *3 (-553)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1224 *3 *2))
- (-4 *2 (-1230 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-682 *7)) (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-417 (-945 *6))) (-5 *5 (-1166)) (-5 *3 (-945 *6))
- (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1230 *4)) (-5 *2 (-682 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-682 *4))
- (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3))
- (-5 *2 (-682 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5))
- (-14 *4 (-914)) (-4 *5 (-1042)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-553)) (-4 *2 (-942 *3 *5 *4))
- (-5 *1 (-726 *5 *4 *6 *2)) (-5 *3 (-406 (-945 *6))) (-4 *5 (-787))
- (-4 *4 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *3 (-128)) (-5 *2 (-765)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-638 (-1162 *11))) (-5 *3 (-1162 *11))
- (-5 *4 (-638 *10)) (-5 *5 (-638 *8)) (-5 *6 (-638 (-765)))
- (-5 *7 (-1254 (-638 (-1162 *8)))) (-4 *10 (-844))
- (-4 *8 (-306)) (-4 *11 (-942 *8 *9 *10)) (-4 *9 (-787))
- (-5 *1 (-701 *9 *10 *8 *11)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-4 *7 (-942 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-638 *7)) (|:| |n0| (-638 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1170)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844))
- (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4181 (-561))))
- (-4 *1 (-429 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1042)) (-4 *4 (-844))
- (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4181 (-561))))
- (-4 *1 (-429 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844))
- (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4181 (-561))))
- (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1066 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1106)))) ((*1 *1 *1) (-5 *1 (-1166))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4181 (-765))))
- (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ (-12
+ (-5 *2
+ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857)))
+ (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857)))
+ (|:| |args| (-635 (-857)))))
+ (-5 *1 (-1166)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857)))
+ (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857)))
+ (|:| |args| (-635 (-857)))))
+ (-5 *1 (-1166))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-1166)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))))
+(((*1 *1 *1) (-5 *1 (-857)))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -4181 (-765))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
- (-4 *7 (-942 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -4181 (-561))))
- (-5 *1 (-943 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $))
- (-15 -4088 (*7 $))))))))
-(((*1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-105)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-1247 *4 *2))
- (-4 *4 (-38 (-406 (-561)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-638 *5) (-638 *5))) (-5 *4 (-561))
- (-5 *2 (-638 *5)) (-5 *1 (-675 *5)) (-4 *5 (-1090)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166)))))
+(((*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1166)))))
+(((*1 *1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
- (-4 *3 (-1230 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3))
- (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2))
- (-4 *2 (-680 *3 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1146 *3))) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *3 (-1056 *6 *7 *8))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9))))
- (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8))
- (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844))
- (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1495 *9))))
- (-5 *1 (-1098 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561)))))
- (-4 *2 (-13 (-844) (-21))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *1) (-5 *1 (-1165)))
((*1 *1 *2)
- (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-856))))
- ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-955)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6))
- (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1245 *5)) (-4 *6 (-1230 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3))
- (-4 *4 (-13 (-362) (-842))) (-4 *3 (-1230 *2)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-746)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-867))))
- ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-1254 *5)) (-4 *5 (-306))
- (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1022 *5)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-638 (-1166))) (-4 *2 (-171))
- (-4 *4 (-237 (-3548 *5) (-765)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2442 *3) (|:| -4181 *4))
- (-2 (|:| -2442 *3) (|:| -4181 *4))))
- (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844))
- (-4 *7 (-942 *2 *4 (-858 *5))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *1 (-681 *4 *5 *6 *2))
- (-4 *2 (-680 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
- (-5 *1 (-175 *3)))))
-(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))))
-(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
- ((*1 *1 *1) (-4 *1 (-1134))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1090)) (-4 *6 (-1090))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1090)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146))
- (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-591 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1214 *3)) (-4 *3 (-1042))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1245 *3)) (-4 *3 (-1042)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *6))))
- (-5 *4 (-1019 (-837 (-561)))) (-5 *5 (-1166)) (-5 *7 (-406 (-561)))
- (-4 *6 (-1042)) (-5 *2 (-856)) (-5 *1 (-591 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5))
- (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224))
- (-5 *7 (-682 (-561)))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-747)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1146 *4) (-1146 *4))) (-5 *2 (-1146 *4))
- (-5 *1 (-1279 *4)) (-4 *4 (-1205))))
+ (-12
+ (-5 *2
+ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377)))
+ (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-544)) (-5 *2 (-857))
+ (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1091)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-857)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-99 *3))
+ (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-857))))
+ ((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1160 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1079 *3)) (-4 *3 (-943 *7 *6 *4)) (-4 *6 (-787)) (-4 *4 (-844))
+ (-4 *7 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544))))
+ (-5 *1 (-590 *6 *4 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-638 (-1146 *5)) (-638 (-1146 *5)))) (-5 *4 (-561))
- (-5 *2 (-638 (-1146 *5))) (-5 *1 (-1279 *5)) (-4 *5 (-1205)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-234 *3))
- (-4 *3 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-234 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090))
- (-5 *1 (-731 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 (-945 *6))) (-4 *6 (-553))
- (-4 *2 (-942 (-406 (-945 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2))
- (-4 *5 (-787))
- (-4 *4 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-885 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1090))
- (-4 *5 (-1205)) (-5 *1 (-883 *4 *5))))
+ (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-554))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544)))) (-5 *1 (-590 *5 *4 *6 *3))
+ (-4 *3 (-943 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1) (-5 *1 (-857)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-885 *4)) (-5 *3 (-638 (-1 (-112) *5))) (-4 *4 (-1090))
- (-4 *5 (-1205)) (-5 *1 (-883 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-885 *5)) (-5 *3 (-638 (-1166)))
- (-5 *4 (-1 (-112) (-638 *6))) (-4 *5 (-1090)) (-4 *6 (-1205))
- (-5 *1 (-883 *5 *6))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1205)) (-4 *4 (-844))
- (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-1 (-112) *5))) (-4 *5 (-1205)) (-4 *4 (-844))
- (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4))))
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190)))
+ (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-1158 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1205))
- (-5 *2 (-315 (-561))) (-5 *1 (-931 *5))))
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544))))
+ (-5 *2 (-406 (-939 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-939 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-638 (-1 (-112) *5))) (-4 *5 (-1205))
- (-5 *2 (-315 (-561))) (-5 *1 (-931 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1 (-112) (-638 *6)))
- (-4 *6 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))) (-4 *4 (-1090))
- (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
- (-5 *1 (-1066 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834))))
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544))))
+ (-5 *2 (-3 (-406 (-939 *5)) (-313 *5))) (-5 *1 (-1159 *5))
+ (-5 *3 (-406 (-939 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378)))
- (-5 *2 (-1028)) (-5 *1 (-834)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-952) (-29 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-554 *6 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-4 *7 (-844))
- (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306))
- (-5 *2 (-638 (-765))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-478)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *5 (-1230 *4))
- (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -3394 *5))))
- (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-649 *5))
- (-4 *6 (-649 (-406 *5))))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
- (-4 *2 (-1230 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1230 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-142)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
+ (-12 (-5 *4 (-1082 (-939 *5))) (-5 *3 (-939 *5))
+ (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-406 *3))
+ (-5 *1 (-1159 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040))
- (-5 *3 (-561)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 *2)) (-4 *2 (-942 (-406 (-945 *6)) *5 *4))
- (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787))
- (-4 *4 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $)))))
- (-4 *6 (-553)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561)))
- (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $))
- (-15 -4088 ((-1115 *3 (-607 $)) $))
- (-15 -4064 ($ (-1115 *3 (-607 $))))))))))
-(((*1 *1) (-5 *1 (-575))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2))
- (-4 *2 (-1205)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-582 *2)) (-4 *2 (-13 (-29 *4) (-1190)))
- (-5 *1 (-580 *4 *2))
- (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-582 (-406 (-945 *4))))
- (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
- (-5 *2 (-315 *4)) (-5 *1 (-585 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
+ (-12 (-5 *4 (-1082 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5)))
+ (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-3 *3 (-313 *5)))
+ (-5 *1 (-1159 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-1162 *6))
- (-5 *1 (-320 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-417 *3)) (-4 *3 (-553))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-2 (|:| -1633 *4) (|:| -3768 (-561)))))
- (-4 *4 (-1230 (-561))) (-5 *2 (-765)) (-5 *1 (-440 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
- (-14 *4 (-638 (-1166)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
- (-14 *4 (-638 (-1166)))))
- ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362))
- (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4)))
- (-4 *2 (-341 *3 *4 *5))))
+ (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-884 *4 *5)) (-4 *5 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-150 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-171))))
- ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1230 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1205)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
+ (-12 (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4))))
+ (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void")))
+ (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-112)) (-5 *1 (-435))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *3 (-635 (-1166)))
+ (-5 *4 (-112)) (-5 *1 (-435))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1090))
- (-4 *2 (-1205)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-638 (-112))) (-5 *5 (-682 (-224)))
- (-5 *6 (-682 (-561))) (-5 *7 (-224)) (-5 *3 (-561)) (-5 *2 (-1028))
- (-5 *1 (-748)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112))
- (-5 *2 (-1028)) (-5 *1 (-739)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561))
- (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-1209))
- (-4 *6 (-1230 (-406 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-341 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-1066 *3 *4 *5))) (-4 *3 (-1090))
- (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
- (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3))))
- (-5 *1 (-1067 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765)))
- (-5 *1 (-897 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 (-479 *3 *4))) (-14 *3 (-638 (-1166)))
- (-4 *4 (-450)) (-5 *1 (-626 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-1054)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1230 (-406 *2)))
- (-4 *2 (-1230 *5)) (-5 *1 (-214 *5 *2 *6 *3))
- (-4 *3 (-341 *5 *2 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-378)) (-5 *1 (-1033)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))
- (-5 *2 (-406 (-561))) (-5 *1 (-1013 *4)) (-4 *4 (-1230 (-561))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1205))
- (-4 *2 (-1205)) (-5 *1 (-58 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (|has| *1 (-6 -4399))
- (-4 *1 (-150 *2)) (-4 *2 (-1205))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *2))
- (-4 *2 (-1205))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *2))
- (-4 *2 (-1205))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1042))
- (-5 *2 (-2 (|:| -3590 (-1162 *4)) (|:| |deg| (-914))))
- (-5 *1 (-220 *4 *5)) (-5 *3 (-1162 *4)) (-4 *5 (-13 (-553) (-844)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765))
- (-4 *6 (-1205)) (-4 *2 (-1205)) (-5 *1 (-238 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1230 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-553)) (-4 *2 (-844))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1230 *2))
- (-4 *4 (-1230 (-406 *3))) (-4 *5 (-341 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1205)) (-4 *2 (-1205))
- (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1090)) (-4 *2 (-1090))
- (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2))))
- ((*1 *1 *1) (-5 *1 (-493)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-638 *5)) (-4 *5 (-1205))
- (-4 *2 (-1205)) (-5 *1 (-636 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042))
- (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2))
- (-4 *9 (-372 *2)) (-5 *1 (-678 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-680 *5 *6 *7)) (-4 *10 (-680 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171))))
((*1 *1 *2)
- (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1230 *3))))
+ (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1091))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3))
+ (-2 (|:| -2535 *2) (|:| -2536 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-832))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-362))
- (-4 *3 (-171)) (-4 *1 (-718 *3 *4))))
+ (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4)))) (-4 *4 (-1091))
+ (-5 *1 (-881 *3 *4)) (-4 *3 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1091) (-34)))
+ (-5 *2 (-635 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5))
+ (-4 *3 (-13 (-1091) (-34)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -1688 *5))))
+ (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34)))
+ (-5 *2 (-635 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5))))
((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1230 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1205))
- (-4 *2 (-1205)) (-5 *1 (-950 *5 *2))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1688 *4))) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3))
+ (-4 *2 (-13 (-1091) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1130 *2 *3))) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3))
+ (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34)))))
((*1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5))
- (-14 *6 (-638 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042))
- (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7))
- (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2))
- (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1146 *5)) (-4 *5 (-1205))
- (-4 *2 (-1205)) (-5 *1 (-1144 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1198 *5 *6 *7 *2)) (-4 *5 (-553)) (-4 *6 (-787))
- (-4 *7 (-844)) (-4 *2 (-1056 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1254 *5)) (-4 *5 (-1205))
- (-4 *2 (-1205)) (-5 *1 (-1253 *5 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-224) (-224) (-224)))
- (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
- (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224)))
- (-5 *1 (-690))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-224)))
- (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224)))
- (-5 *4 (-1084 (-224))) (-5 *5 (-638 (-262))) (-5 *1 (-690)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166))
- (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))
- (-5 *2 (-638 (-2 (|:| -1450 *1) (|:| -3368 (-638 *7)))))
- (-5 *3 (-638 *7)) (-4 *1 (-1198 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3))))
+ (-5 *1 (-1065 *3 *4 *2))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3))))
+ (-5 *1 (-1065 *3 *4 *2))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1214 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561))))
- (-4 *5 (-879 (-561)))
- (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-564 *5 *3)) (-4 *3 (-624))
- (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-837 *2)) (-4 *2 (-1129))
- (-4 *2 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561)))
- (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
- (-5 *1 (-564 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
- (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-168 *3)) (-5 *1 (-1194 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844))))
- ((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-112))
- (-5 *1 (-262)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *3 (-1230 *4)) (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-649 *3))
- (-4 *5 (-649 (-406 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 *5))
- (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1230 *4))
- (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-649 *5)) (-4 *6 (-649 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1031 (-561))) (-4 *3 (-13 (-844) (-553)))
- (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1162 *4)) (-5 *1 (-164 *3 *4))
- (-4 *3 (-165 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-301))))
- ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3))))
- ((*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1230 *3))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362)))
- (-4 *2 (-1230 *3)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-638 *11))
- (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1495 *11))))))
- (-5 *6 (-765))
- (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1495 *11))))
- (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9))
- (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787))
- (-4 *9 (-844)) (-5 *1 (-1060 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-638 *11))
- (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1495 *11))))))
- (-5 *6 (-765))
- (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1495 *11))))
- (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9))
- (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787))
- (-4 *9 (-844)) (-5 *1 (-1135 *7 *8 *9 *10 *11)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-999)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4))
+ (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912))
+ (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912))
(-4 *4 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765))))
- ((*1 *1 *1) (-4 *1 (-232)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
- (-4 *4 (-1230 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
- (-4 *3 (-1230 *2))))
- ((*1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-912))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4))
- (-4 *4 (-1090))))
+ (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-912)) (-4 *5 (-1042))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-750)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-638 *1)) (-4 *1 (-429 *4))
- (-4 *4 (-844))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))))
-(((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217))))
- ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-59 *3)) (-4 *3 (-1205))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-59 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3))
- (-4 *3 (-1230 *4))))
+ (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042))
+ (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4))
+ (-14 *3 (-912)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-912)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-912))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-912)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042))
+ (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-912)) (-4 *5 (-1042)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-912)) (-4 *5 (-1042)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912))
+ (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912))
+ (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-311))))
((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
- (-5 *2 (-1162 (-945 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-844) (-553))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4)))))
- (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-945 *4)))
- (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450))
- (-5 *1 (-359 *3 *4)) (-14 *4 (-638 (-1166)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450))
- (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-534))) (-5 *2 (-1166)) (-5 *1 (-534)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-504))) (-5 *1 (-481)))))
-(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4))))
- (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))))
-(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ (-12 (-5 *2 (-635 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912))
+ (-4 *4 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-450))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2))
+ (-4 *4 (-1229 (-406 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 (-638 *6))) (-4 *6 (-942 *3 *5 *4))
- (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166))))
- (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-638 (-1166))) (-4 *5 (-450))
- (-5 *2
- (-2 (|:| |glbase| (-638 (-246 *4 *5))) (|:| |glval| (-638 (-561)))))
- (-5 *1 (-626 *4 *5)) (-5 *3 (-638 (-246 *4 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-682 *2)) (-4 *4 (-1230 *2))
- (-4 *2 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-1191 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-638 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-406 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-13 (-362) (-146)))
- (-5 *1 (-398 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))
+ (-4 *3 (-450))))
((*1 *1 *1)
- (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
- (-14 *4 *2))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844))
- (-4 *3 (-1090)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110))))))
- (-4 *4 (-348)) (-5 *2 (-682 *4)) (-5 *1 (-345 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-638 (-262))) (-5 *1 (-1256))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1256))))
- ((*1 *1 *1) (-5 *1 (-1256))))
+ (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-450))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3))
+ (-4 *3 (-1229 *4)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1028))
- (-5 *1 (-743)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527))))
- ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765))
- (-5 *1 (-938 *4 *5)) (-4 *5 (-1230 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-62 *3)) (-14 *3 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-69 *3)) (-14 *3 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-72 *3)) (-14 *3 (-1166))))
- ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1259))))
- ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-396))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128))))
- ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1259)) (-5 *1 (-1128)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4))
- (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1245 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-168 (-224))) (-5 *3 (-765)) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3))
- (-4 *3 (-1230 *4)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3))
- (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-741)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531)))
- (-5 *1 (-531))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-947)) (-4 *3 (-1090)) (-5 *2 (-684 *1))
- (-4 *1 (-761 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1205)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-765))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1042))
- (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
- ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-315 (-224))))
- (-5 *2
- (-2 (|:| |additions| (-561)) (|:| |multiplications| (-561))
- (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))))
- (-5 *1 (-304)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-1230 *4)) (-5 *1 (-537 *4 *2 *5 *6))
- (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-607 *4)) (-5 *6 (-1166))
- (-4 *4 (-13 (-429 *7) (-27) (-1190)))
- (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1212))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224)))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7))
- (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-902)) (-4 *5 (-787))
- (-4 *6 (-844)) (-5 *1 (-899 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5))
- (-4 *5 (-1230 *4)) (-4 *4 (-902)) (-5 *1 (-900 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224)))
- (-5 *5 (-112)) (-5 *2 (-1256)) (-5 *1 (-256)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224))
- (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-561)) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3))
- (-4 *3 (-1042))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1271 *4 *3))
- (-4 *3 (-1042)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *3 (-945 (-561)))
- (-5 *1 (-329))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *1 (-329)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *1 *1) (-5 *1 (-378)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-1256))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084 (-837 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
- (-5 *1 (-304))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-561)) (-4 *5 (-348)) (-5 *2 (-417 (-1162 (-1162 *5))))
- (-5 *1 (-1203 *5)) (-5 *3 (-1162 (-1162 *5))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306))
- (-4 *4 (-985 *3)) (-4 *5 (-1230 *4)) (-4 *6 (-408 *4 *5))
- (-14 *7 (-1254 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1254 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-985 *3))
- (-4 *5 (-1230 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-561)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543))
- (-4 *3 (-553))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-561)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-561)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543))
- (-4 *3 (-1090))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543))
- (-4 *3 (-1090))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-561)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3))
- (-4 *3 (-1031 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1090))
- (-5 *1 (-671 *2))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1090)) (-5 *1 (-675 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-436)) (-5 *1 (-1170)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1209)) (-4 *5 (-1230 *3)) (-4 *6 (-1230 (-406 *5)))
- (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *1 *1) (-4 *1 (-491)))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-981 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-561)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-417 *2)) (-4 *2 (-553)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-682 (-406 (-945 (-561)))))
- (-5 *2
- (-638
- (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561))
- (|:| |radvect| (-638 (-682 (-315 (-561))))))))
- (-5 *1 (-1024)))))
-(((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1 *1) (-4 *1 (-755))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914))
- (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-779 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259))
- (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259))
- (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-390)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-638 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
- (-5 *1 (-209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-883 *4 *5)) (-4 *5 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *1 *1) (-4 *1 (-491)))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *4 (-553))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -1850 *4))) (-5 *1 (-962 *4 *3))
- (-4 *3 (-1230 *4)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))
- (-14 *4 (-1166)) (-14 *5 *2)))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-4 *2 (-13 (-27) (-1190) (-429 *3) (-10 -8 (-15 -4064 ($ *4)))))
- (-4 *4 (-842))
- (-4 *5
- (-13 (-1232 *2 *4) (-362) (-1190)
- (-10 -8 (-15 -3922 ($ $)) (-15 -2563 ($ $)))))
- (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-1254 *2)) (-4 *5 (-306))
- (-4 *6 (-985 *5)) (-4 *2 (-13 (-408 *6 *7) (-1031 *6)))
- (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1230 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1))
- (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914))))
- ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211)))
- ((*1 *1 *1 *1) (-5 *1 (-1212))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2))
- (-4 *3 (-13 (-844) (-553))))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-885 *3)) (|:| |den| (-885 *3))))
- (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166))
- (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-191))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166))
- (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042))
- (-5 *1 (-847 *5 *2)) (-4 *2 (-846 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-141 *3 *4 *2))
- (-4 *2 (-372 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-4 *2 (-372 *4))
- (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553))
- (-5 *2 (-682 *4)) (-5 *1 (-686 *4 *5))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-1223 *3 *4 *2))
- (-4 *2 (-1230 *4)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
((*1 *1 *1) (-4 *1 (-491)))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914))))
- ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211)))
- ((*1 *1 *1 *1) (-5 *1 (-1212))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4))
- (-4 *4 (-1230 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))))
-(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1090)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-776 *3)) (|:| |polden| *3) (|:| -3523 (-765))))
- (-5 *1 (-776 *3)) (-4 *3 (-1042))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3523 (-765))))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *1)
- (-12 (-4 *1 (-403)) (-2186 (|has| *1 (-6 -4390)))
- (-2186 (|has| *1 (-6 -4382)))))
- ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844))))
- ((*1 *1) (-4 *1 (-838))) ((*1 *1 *1 *1) (-4 *1 (-844)))
- ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-844) (-553))))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
((*1 *1 *1) (-4 *1 (-491)))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-980 (-406 (-561)) (-858 *3) (-239 *4 (-765))
- (-246 *3 (-406 (-561)))))
- (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-979 *3 *4)))))
-(((*1 *1 *1) (-4 *1 (-553))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *1 *1 *1) (-5 *1 (-377)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2))
+ (-4 *2 (-1217 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-406 (-544))))
+ (-5 *2 (-2 (|:| -3889 (-1143 *4)) (|:| -3890 (-1143 *4))))
+ (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-406 (-544))))
+ (-5 *2 (-2 (|:| -4045 (-1143 *4)) (|:| -4041 (-1143 *4))))
+ (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-544))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362))
+ (-4 *4 (-1042)) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042))
+ (-5 *3 (-406 (-544))) (-5 *1 (-1150 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4))
+ (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450))
- (-5 *2
- (-2 (|:| |dpolys| (-638 (-246 *5 *6)))
- (|:| |coords| (-638 (-561)))))
- (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))))
-(((*1 *1 *1) (-5 *1 (-224)))
+ (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4))
+ (-4 *4 (-1042)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-544))) (-4 *4 (-1042))
+ (-5 *1 (-1150 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042))
+ (-5 *3 (-544)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042))
+ (-5 *3 (-544)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-912)) (-4 *3 (-362))
+ (-14 *4 (-986 *2 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *1 *1) (-5 *1 (-378))) ((*1 *1) (-5 *1 (-378))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553))))
+ (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1) (|partial| -4 *1 (-716))) ((*1 *1 *1) (|partial| -4 *1 (-720)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-770 *5 *6 *7 *3 *4))
+ (-4 *4 (-1062 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362)))
+ (-4 *2 (-1229 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))
+ (-4 *2 (-554))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-554)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2)) (-4 *2 (-554))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-765)))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553)))))
+ (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-554))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554))
+ (-5 *1 (-962 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042))
+ (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112))
+ (-5 *1 (-1143 *4)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765))))
+ (-5 *1 (-1143 *4)) (-4 *4 (-1204)) (-5 *3 (-765)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1204)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1204)))))
+(((*1 *1) (-5 *1 (-575)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-853))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-853))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-853))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1143 *4)) (-4 *4 (-1091))
+ (-4 *4 (-1204)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-857)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)))))
(((*1 *2)
- (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4))
- (-4 *4 (-1230 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1253 (-635 (-544)))) (-5 *1 (-478))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-535 *4 *2))
+ (-4 *2 (-1246 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-4 *5 (-1229 *4))
+ (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1246 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3)))
+ (-5 *1 (-540 *4 *2)) (-4 *2 (-1246 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146)))
+ (-5 *1 (-1142 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3))
+ (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *1 *1) (-4 *1 (-491)))
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1246 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
-(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-156))))
- ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1259)) (-5 *1 (-1128)))))
-(((*1 *2)
- (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561)))))
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3))
+ (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1246 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3))
+ (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1246 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-306)) (-4 *3 (-985 *2)) (-4 *4 (-1230 *3))
- (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3))))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))
+ ((*1 *1) (-4 *1 (-1141))))
+(((*1 *1 *1) (|partial| -4 *1 (-1141))))
+(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1137 *3)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-635 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3))
+ (-4 *3 (-1056 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-635 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *2 (-1056 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-635 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3))
+ (-4 *3 (-1056 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8)))
+ (-5 *1 (-1020 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8)))
+ (-5 *1 (-1136 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1020 *5 *6 *7 *8)))))
+ (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-635 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1136 *5 *6 *7 *8)))))
+ (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259))
+ (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259))
+ (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-635 *11))
+ (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11))))))
+ (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11))))
+ (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9))
+ (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844))
+ (-5 *1 (-1060 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-635 *11))
+ (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11))))))
+ (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11))))
+ (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9))
+ (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844))
+ (-5 *1 (-1135 *7 *8 *9 *10 *11)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
- (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 *4)))))
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2459 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| |poly| *6) (|:| -3475 (-406 *6)) (|:| |special| (-406 *6))))
+ (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-889 *3 *4))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-889 *3 *5))
+ (-4 *3 (-1229 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *6)
(-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787))
(-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
(-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1062 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
(-4 *3 (-1056 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
(-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
(-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787))
(-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
(-5 *1 (-1135 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
(-4 *3 (-1056 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
(-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
(-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561))))
- (-5 *1 (-189)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-279)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
- (-4 *3 (-1230 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1230 (-561)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
+ (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1230 (-561)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3))
- (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3))
- (-4 *3 (-1230 (-406 (-561))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
- (-4 *2 (-680 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042))
- (-5 *2 (-1254 (-1254 *5))) (-5 *1 (-1022 *5)) (-5 *4 (-1254 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-748)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1090)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-638 (-293 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1230 *5))
- (-4 *7 (-1230 (-406 *6))) (-5 *2 (-638 (-945 *5)))
- (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209))
- (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5))) (-4 *4 (-362))
- (-5 *2 (-638 (-945 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1230 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-5 *1 (-329)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-618 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -1599 *4) (|:| |sol?| (-112)))
- (-561) *4))
- (-4 *4 (-362)) (-4 *5 (-1230 *4)) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-306) (-146)))
- (-4 *2 (-942 *4 *6 *5)) (-5 *1 (-917 *4 *5 *6 *2))
- (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1495 *7))))
- (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1495 *7))))
- (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561))))
- ((*1 *1 *1) (-5 *1 (-1110))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2753 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-682 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1230 (-48))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-561)) (-5 *1 (-1146 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5))
- (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1162 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3))
- (-4 *3 (-362)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561))))
- ((*1 *1 *1 *1) (-5 *1 (-1110))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4))
- (-14 *3 (-914)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-561))) (-5 *1 (-304)))))
-(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-143))) (-5 *1 (-140))))
- ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-561))) (-5 *5 (-1 (-1146 *4))) (-4 *4 (-362))
- (-4 *4 (-1042)) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-1254 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4))
- (-5 *1 (-1022 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224)))
- (-5 *1 (-304)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561))))
- ((*1 *1 *1 *1) (-5 *1 (-1110))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-553)) (-4 *2 (-1042))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1230 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *1))))
- (-4 *1 (-1062 *4 *5 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-329)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378))))
- ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-378)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 (-561)))
- (-5 *2 (-1254 (-561))) (-5 *1 (-1281 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-682 (-315 (-224))))
+ (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
- (-5 *1 (-204)))))
-(((*1 *1 *1 *1) (-5 *1 (-161)))
- ((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-161)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995))))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-914)) (-4 *5 (-306)) (-4 *3 (-1230 *5))
- (-5 *2 (-2 (|:| |plist| (-638 *3)) (|:| |modulo| *5)))
- (-5 *1 (-458 *5 *3)) (-5 *4 (-638 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-1162 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *4 (-607 $)) $))
- (-15 -4088 ((-1115 *4 (-607 $)) $))
- (-15 -4064 ($ (-1115 *4 (-607 $))))))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1252 *3)) (-4 *3 (-23)) (-4 *3 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-561)) (|has| *1 (-6 -4390)) (-4 *1 (-403))
- (-5 *2 (-914)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1230 *5))
- (-5 *1 (-1248 *5 *2 *6 *3)) (-4 *6 (-649 *2)) (-4 *3 (-1245 *5)))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
+ (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
+ (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8))) (-4 *7 (-844))
- (-4 *8 (-306)) (-4 *6 (-787)) (-4 *9 (-942 *8 *6 *7))
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
(-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-638 (-2 (|:| -1633 (-1162 *9)) (|:| -4181 (-561)))))))
- (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834))))
- ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-638 (-378))) (-5 *5 (-638 (-837 (-378))))
- (-5 *6 (-638 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1028))
- (-5 *1 (-834))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378)))
- (-5 *5 (-638 (-837 (-378)))) (-5 *2 (-1028)) (-5 *1 (-834))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378))) (-5 *2 (-1028))
- (-5 *1 (-834))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
+ (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378)))
- (-5 *2 (-1028)) (-5 *1 (-834)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-170))))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1247 *3 *2))
- (-4 *2 (-1245 *3)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
(-5 *2
- (-2 (|:| -1603 (-776 *3)) (|:| |coef1| (-776 *3))
- (|:| |coef2| (-776 *3))))
- (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-2 (|:| -1603 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290)))
- ((*1 *1) (-5 *1 (-856)))
- ((*1 *1)
- (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787))
- (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1075)))
- ((*1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34)))))
- ((*1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1170))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
- (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *4 *5 *6 *3)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
- ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))))
+ (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6))
- (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842)))))
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-945 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6))
- (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-945 (-561))) (-5 *3 (-1166))
- (-5 *4 (-1084 (-406 (-561)))) (-5 *1 (-30)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
- (-4 *2 (-1230 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))
- ((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-1054))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-550)))))
-(((*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-755))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1230 *5))
- (-5 *1 (-721 *5 *2)) (-4 *5 (-362)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
- (-5 *2 (-1028)) (-5 *1 (-750)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1259)) (-5 *1 (-1128))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1259)) (-5 *1 (-1128)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-945 *4)))
- (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-1039 *4 *5))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-765)) (-4 *5 (-553))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2))
- (-4 *2 (-1230 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6)))
- (-5 *1 (-623 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-856))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-362))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *5))) (-4 *5 (-1042))
- (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5))
- (-4 *7 (-237 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
- (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-348)) (-5 *2 (-1254 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-902))
- (-5 *2 (-1254 *1)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-607 *3)) (-5 *5 (-1 (-1162 *3) (-1162 *3)))
- (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-844) (-553)))
- (-5 *2 (-582 *3)) (-5 *1 (-548 *6 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (|has| *1 (-6 -4400)) (-4 *1 (-372 *3))
- (-4 *3 (-1205)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-844)) (-4 *3 (-1090)))))
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553))
- (-4 *3 (-942 *7 *5 *6))
- (-5 *2
- (-2 (|:| -4181 (-765)) (|:| -4226 *3) (|:| |radicand| (-638 *3))))
- (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765))
- (-4 *8
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *3)) (-15 -4077 (*3 $)) (-15 -4088 (*3 $))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-306))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
- (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-445 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
- (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-445 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1162 *6)) (-5 *3 (-561)) (-4 *6 (-306)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1092 (-765))) (-5 *6 (-765))
- (-5 *2
- (-2 (|:| |contp| (-561))
- (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561)))))))
- (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-765)) (-4 *5 (-553))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-962 *5 *3)) (-4 *3 (-1230 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2))
- (-4 *2 (-1230 (-168 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
- (-4 *7 (-787))
- (-5 *2
- (-638
- (-2 (|:| -3400 (-765))
- (|:| |eqns|
- (-638
- (-2 (|:| |det| *8) (|:| |rows| (-638 (-561)))
- (|:| |cols| (-638 (-561))))))
- (|:| |fgb| (-638 *8)))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1162 (-561))) (-5 *3 (-561)) (-4 *1 (-862 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3))
- (-4 *3 (-13 (-429 *4) (-995))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6))
- (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))))
-(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224)))
- (-5 *1 (-690)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4390)) (-4 *1 (-403))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-919))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-919))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
+ ((*1 *1 *1) (-4 *1 (-1134))))
(((*1 *1 *1) (-4 *1 (-1134))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-768)) (-5 *1 (-114)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-561) "failed") *5)) (-4 *5 (-1042))
- (-5 *2 (-561)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1230 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042))
- (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042))
- (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-576)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5))
- (-14 *3 (-765)) (-14 *4 (-765)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-751)))))
+(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
+ ((*1 *1 *1) (-4 *1 (-1134))))
+(((*1 *1 *1) (-4 *1 (-1134))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-544)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9))))
- (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259))
- (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091)) (-4 *6 (-1204))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204))
+ (-5 *1 (-637 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1091)) (-4 *5 (-1204))
+ (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204))
+ (-5 *1 (-637 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091))
+ (-4 *6 (-1204)) (-5 *1 (-637 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1091))
+ (-4 *2 (-1204)) (-5 *1 (-637 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1220 (-544))))))
+(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-544)) (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-544))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204))
+ (-5 *2 (-544))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544)) (-5 *3 (-140))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-844))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-580 *4)) (-4 *4 (-13 (-29 *3) (-1190)))
+ (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544))))
+ (-5 *1 (-582 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-580 (-406 (-939 *3))))
+ (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *1 (-585 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9))))
- (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259))
- (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450))
- (-5 *1 (-911 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1148)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
- (-5 *2 (-1028)) (-5 *1 (-748)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1130 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-765)) (-5 *2 (-638 (-1166))) (-5 *1 (-209))
- (-5 *3 (-1166))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -3475 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-765)) (-5 *2 (-638 (-1166)))
- (-5 *1 (-266))))
+ (-12 (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5))
+ (-5 *3 (-635 (-682 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1253 (-1253 *5))) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5))
+ (-5 *3 (-635 (-682 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1134))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1134)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765))
+ (-4 *5 (-171))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *2 *4)) (-4 *2 (-371 *3))
+ (-4 *4 (-371 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4))
+ (-14 *3 (-765)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1131 *3 *4))
+ (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34)))
+ (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1131 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204))
+ (-4 *2 (-1091))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3))
+ (-4 *3 (-1204))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091))
+ (-5 *1 (-730 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3))
+ (-4 *3 (-1091))))
+ ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-234 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091))
+ (-5 *1 (-730 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34)))
+ (-5 *1 (-1131 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-1130 *3 *4))) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
- (-5 *2 (-638 *3))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112))
+ (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-638 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-852))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-958))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1204))))
((*1 *2 *1)
- (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-638 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))))
+ (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *2 *3))
+ (-4 *3 (-13 (-1091) (-34))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112))
+ (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-832))))
- ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1105))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1108)))))
-(((*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34)))
- (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-638 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-638 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787))
- (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1205)) (-4 *3 (-1042))
- (-5 *2 (-682 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-561))))
- (-5 *1 (-304)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-942 *5 *4 *2))
- (-4 *2 (-844)) (-5 *1 (-943 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *6)) (-15 -4077 (*6 $))
- (-15 -4088 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553))
- (-5 *2 (-1166)) (-5 *1 (-1036 *4)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-638
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-561)))))
- (-4 *2 (-553)) (-5 *1 (-417 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-561))
- (|:| -2762 (-638 (-2 (|:| |irr| *4) (|:| -3453 (-561)))))))
- (-4 *4 (-1230 (-561))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-2 (|:| -2409 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028))
- (-5 *1 (-740)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166)))
- (-4 *6 (-13 (-553) (-1031 *5))) (-4 *5 (-553))
- (-5 *2 (-638 (-638 (-293 (-406 (-945 *6)))))) (-5 *1 (-1032 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6))
- (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-970 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-561)) (-5 *4 (-417 *2)) (-4 *2 (-942 *7 *5 *6))
- (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-306)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113)))
+ ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *2 (-13 (-1091) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34)))
+ (-4 *4 (-13 (-1091) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34)))
+ (-4 *3 (-13 (-1091) (-34))))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1130 *5 *6)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34))))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1245 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1216 *3 *4))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1214 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1237 *3 *4)) (-4 *5 (-976 *4))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *1 *1) (-5 *1 (-224))) ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1151 *3))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))) ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-167 (-224))) (-5 *3 (-765)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
- (-5 *1 (-1152 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-156)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1090)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *4 (-1166))
- (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))))
+(((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
((*1 *1 *1)
- (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
- (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
+ ((*1 *1 *1) (-4 *1 (-842)))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
+ ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-63 *3)) (-14 *3 (-1166))))
+ ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-69 *3)) (-14 *3 (-1166))))
+ ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-72 *3)) (-14 *3 (-1166))))
+ ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-394))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1259))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-1126)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))))
(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-1230 *4)) (-4 *4 (-1042))
- (-5 *2 (-1254 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-553))
- (-5 *2 (-2 (|:| -2942 (-682 *5)) (|:| |vec| (-1254 (-638 (-914))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1003 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-964)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112))
- (-5 *2 (-1028)) (-5 *1 (-747)))))
+ (-12 (-5 *3 (-635 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042))
+ (-5 *2 (-765)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
- (-4 *3 (-960)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4))
- (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1230 *5)))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-936 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042))
+ (-4 *1 (-1124 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 (-936 *3)))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4))
+ (-4 *4 (-1042))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4))
+ (-4 *4 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170))
+ (-4 *1 (-1124 *5)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-635 (-936 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170))
+ (-4 *1 (-1124 *5)) (-4 *5 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-638 *6))
- (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-786)) (-4 *3 (-171)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-2 (|:| -1633 (-1162 *6)) (|:| -4181 (-561)))))
- (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561))
- (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-635 (-765))))))))
(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1239 *4 *5 *6))
- (|:| |%expon| (-318 *4 *5 *6))
- (|:| |%expTerms|
- (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4))))))
- (|:| |%type| (-1148))))
- (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3)))
- (-14 *5 (-1166)) (-14 *6 *4))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *1) (-5 *1 (-1075))))
-(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-638 *5))
- (-5 *1 (-883 *4 *5)) (-4 *5 (-1205)))))
-(((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-914)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-827 (-914))) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914))))
- ((*1 *2)
- (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914))))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
+ (-5 *2 (-635 (-635 (-635 (-936 *3))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))))
- (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *7)) (-4 *7 (-844))
- (-4 *8 (-942 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-170)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-170))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
(-5 *2
- (-2 (|:| |particular| (-3 (-1254 (-406 *8)) "failed"))
- (|:| -2615 (-638 (-1254 (-406 *8))))))
- (-5 *1 (-662 *5 *6 *7 *8)))))
+ (-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765))
+ (|:| |constructs| (-765)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544)))))
+ (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2))
+ (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2))
+ (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2))
+ (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2))
+ (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *2 (-1254 (-315 (-378))))
- (-5 *1 (-304)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5))
- (-14 *4 (-914)) (-4 *5 (-1042)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612))))
-(((*1 *1) (-5 *1 (-436))))
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-1042)) (-4 *2 (-1229 *4))
+ (-5 *1 (-442 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-406 (-1160 (-313 *5)))) (-5 *3 (-1253 (-313 *5)))
+ (-5 *4 (-544)) (-4 *5 (-13 (-554) (-844))) (-5 *1 (-1120 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-406 (-1160 (-313 *3)))) (-4 *3 (-13 (-554) (-844)))
+ (-5 *1 (-1120 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 (-561)))
- (-5 *2 (-1254 (-406 (-561)))) (-5 *1 (-1281 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3))
- (-4 *3 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3)))
- (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3)))
- (-4 *3 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3)))
- (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))))
-(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
- (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3))
- (-4 *3 (-846 *5)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-638 (-1166))) (-4 *2 (-171))
- (-4 *3 (-237 (-3548 *4) (-765)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *3))
- (-2 (|:| -2442 *5) (|:| -4181 *3))))
- (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844))
- (-4 *7 (-942 *2 *3 (-858 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190))))
- ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-607 *3)) (-4 *3 (-844)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *7 (-893 *6))
- (-5 *2 (-682 *7)) (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-372 *7))
- (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4399)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-765))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1227 *4 *5)) (-5 *3 (-638 *5)) (-14 *4 (-1166))
- (-4 *5 (-362)) (-5 *1 (-916 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *5)) (-4 *5 (-362)) (-5 *2 (-1162 *5))
- (-5 *1 (-916 *4 *5)) (-14 *4 (-1166))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-638 *6)) (-5 *4 (-765)) (-4 *6 (-362))
- (-5 *2 (-406 (-945 *6))) (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166)))))
-(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 (-561)))))
- (-5 *1 (-360 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 (-765)))))
- (-5 *1 (-385 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| -1633 *3) (|:| -4181 (-561)))))
- (-5 *1 (-417 *3)) (-4 *3 (-553))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 (-765)))))
- (-5 *1 (-813 *3)) (-4 *3 (-844)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4))))
- (-5 *1 (-1262 *4)) (-4 *4 (-362)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-897 *4))
- (-4 *4 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-638 (-1166)))
- (-4 *2 (-13 (-429 (-168 *5)) (-995) (-1190)))
- (-4 *5 (-13 (-553) (-844))) (-5 *1 (-595 *5 *6 *2))
- (-4 *6 (-13 (-429 *5) (-995) (-1190))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1028))) (-5 *2 (-1028)) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *1) (-5 *1 (-1054)))
+ (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5)))))
+ (-5 *1 (-1119 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5)))))
+ (-5 *1 (-1119 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-313 *5)))
+ (-5 *1 (-1119 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166)))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-313 *5))))
+ (-5 *1 (-1119 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5))))
+ (-5 *1 (-1119 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1143 *4))
- (-4 *4 (-1205))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2))))
+ (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5))))
+ (-5 *1 (-1119 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1230 *2))
- (-4 *2 (-171))))
- ((*1 *2)
- (-12 (-4 *4 (-1230 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4))
- (-4 *3 (-408 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1230 *2)) (-4 *2 (-171))))
- ((*1 *2)
- (-12 (-4 *3 (-1230 *2)) (-5 *2 (-561)) (-5 *1 (-762 *3 *4))
- (-4 *4 (-408 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)) (-4 *3 (-171))))
+ (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166)))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5)))))
+ (-5 *1 (-1119 *5))))
((*1 *2 *3)
- (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1230 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-638 (-112))) (-5 *7 (-682 (-224)))
- (-5 *8 (-682 (-561))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *5 (-112))
- (-5 *2 (-1028)) (-5 *1 (-748)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1230 *3)))))
-(((*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-755))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-4 *4 (-450))
- (-5 *2 (-638 (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4)))))
- (-5 *1 (-291 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-638 (-168 *4))) (-5 *1 (-154 *3 *4))
- (-4 *3 (-1230 (-168 (-561)))) (-4 *4 (-13 (-362) (-842)))))
+ (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-635 (-635 (-292 (-313 *4))))) (-5 *1 (-1119 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-292 (-406 (-939 *5))))) (-5 *4 (-635 (-1166)))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5)))))
+ (-5 *1 (-1119 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4)))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4)))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))))
-(((*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))))
-(((*1 *1 *1) (-5 *1 (-534))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
- (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))))))
+ (-12 (-5 *3 (-635 (-292 (-406 (-939 *4)))))
+ (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *4)))))
+ (-5 *1 (-1119 *4)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-682 *3))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-682 *3))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-5 *1 (-692))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-362)) (-5 *1 (-971 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3))
- (-4 *3 (-1056 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166)))
- (-14 *4 (-638 (-1166))) (-4 *5 (-386)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-749)))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-190)) (-5 *3 (-561))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5))))
- (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5)))))
- (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844)))
- (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190)))
- (-5 *1 (-595 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-995) (-1190))))))
-(((*1 *2 *3) (-12 (-5 *3 (-168 (-561))) (-5 *2 (-112)) (-5 *1 (-444))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
- (-246 *4 (-406 (-561)))))
- (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
- (-5 *1 (-503 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-954 *3)) (-4 *3 (-543))))
- ((*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867)))
- (-5 *4 (-638 (-914))) (-5 *5 (-638 (-262))) (-5 *1 (-466))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867)))
- (-5 *4 (-638 (-914))) (-5 *1 (-466))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466))))
- ((*1 *1 *1) (-5 *1 (-466))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-787))
- (-4 *5 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *6 (-553))
- (-5 *2 (-2 (|:| -1403 (-945 *6)) (|:| -3815 (-945 *6))))
- (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-942 (-406 (-945 *6)) *4 *5)))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553))
- (-4 *8 (-942 *7 *5 *6))
- (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *3) (|:| |radicand| *3)))
- (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *8)) (-15 -4077 (*8 $)) (-15 -4088 (*8 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-635 *5))
+ (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1118 *3 *5)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-371 *4) (-10 -7 (-6 -4401))))
+ (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))) (-5 *1 (-660 *4 *5 *2 *3))
+ (-4 *3 (-679 *4 *5 *2))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1253 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362))
+ (-5 *1 (-661 *4))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362))
+ (-5 *1 (-808 *2 *3)) (-4 *3 (-651 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-844))
+ (-4 *7 (-943 *5 (-529 *6) *6)) (-4 *5 (-1042)) (-5 *2 (-1 (-1143 *7) *7))
+ (-5 *1 (-1116 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-306)) (-4 *6 (-371 *5)) (-4 *4 (-371 *5))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4))))
+ (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2))
- (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
- (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4))))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3))
+ (-4 *3 (-679 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-638 (-262)))
- (-5 *1 (-260))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-479 *5 *6))) (-5 *3 (-479 *5 *6))
- (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-1254 *6))
- (-5 *1 (-626 *5 *6)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-553))
- (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-1225 *4 *3))
- (-4 *3 (-1230 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
- (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-638 (-765)))))
+ (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *1)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6))
+ (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4))
+ (-4 *2 (-237 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
- (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 (-765))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -1599 *7) (|:| |sol?| (-112)))
- (-561) *7))
- (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1230 *7))
- (-5 *3 (-406 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-571 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753)))))
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2))
+ (-4 *2 (-1042)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
-(((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
+ (-12 (-5 *3 (-682 *2)) (-4 *4 (-1229 *2))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))))
+ (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-409 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2))
+ (-4 *2 (-1042)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191))))
+ (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-362))
+ (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2))
+ (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299))))
+ (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171))
+ (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2))
+ (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2))
+ (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-741)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-844) (-553))))))
+ (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171))
+ (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2))
+ (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1) (-4 *1 (-960))) ((*1 *1 *1) (-5 *1 (-1110))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1110))))
+(((*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544))))
+ ((*1 *1 *1) (-5 *1 (-1110))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544))))
+ ((*1 *1 *1 *1) (-5 *1 (-1110))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544))))
+ ((*1 *1 *1 *1) (-5 *1 (-1110))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-832))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1105))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-674))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-963))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1064))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1105)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-674))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1105)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166))
+ (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166))
+ (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-607 *5))) (-4 *4 (-844)) (-5 *2 (-607 *5))
- (-5 *1 (-570 *4 *5)) (-4 *5 (-429 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-638 (-1066 *4 *5 *2))) (-4 *4 (-1090))
- (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
- (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))
- (-5 *1 (-54 *4 *5 *2))))
+ (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544))
+ (-5 *1 (-1104 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544))
+ (-5 *1 (-1104 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 *4))
+ (-5 *1 (-1104 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4)))
+ (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4)))
+ (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1100)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-544)) (-5 *1 (-1100))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-638 (-1066 *5 *6 *2))) (-5 *4 (-914)) (-4 *5 (-1090))
- (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-885 *5))))
- (-4 *2 (-13 (-429 *6) (-879 *5) (-609 (-885 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1207)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+ (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-635 (-544))) (-5 *4 (-544))
+ (-5 *1 (-1100)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *3 (-112)) (-5 *1 (-1100)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-682 (-544))) (-5 *3 (-635 (-544))) (-5 *1 (-1100)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-2 (|:| |deg| (-765)) (|:| -3046 *5))))
- (-4 *5 (-1230 *4)) (-4 *4 (-348)) (-5 *2 (-638 *5))
- (-5 *1 (-215 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-2 (|:| -1633 *5) (|:| -3768 (-561)))))
- (-5 *4 (-561)) (-4 *5 (-1230 *4)) (-5 *2 (-638 *5))
- (-5 *1 (-689 *5)))))
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-1100)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+ (-12 (-5 *2 (-635 (-544))) (-5 *3 (-682 (-544))) (-5 *1 (-1100)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561))))
- (-5 *1 (-1100)))))
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1259))
- (-5 *1 (-770 *6 *7 *8 *4 *5)) (-4 *5 (-1062 *6 *7 *8 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2942 (-682 (-406 (-945 *4))))
- (|:| |vec| (-638 (-406 (-945 *4)))) (|:| -3400 (-765))
- (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787))
- (-5 *2
- (-2 (|:| |partsol| (-1254 (-406 (-945 *4))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *4)))))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-306))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3194 *1)))
- (-4 *1 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-329)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3))
- (-4 *3 (-13 (-1190) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-1031 (-561)) (-146)))
- (-5 *2 (-582 (-406 (-945 *5)))) (-5 *1 (-567 *5))
- (-5 *3 (-406 (-945 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2))
- (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
- (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1146 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2185
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-556)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-855))))
- ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-855)))))
-(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
- (-4 *4 (-171))))
- ((*1 *1) (-4 *1 (-720))) ((*1 *1) (-5 *1 (-1166)))
- ((*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914))))
- ((*1 *1) (-5 *1 (-1210))) ((*1 *1) (-5 *1 (-1211)))
- ((*1 *1) (-5 *1 (-1212))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4))
+ (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
- (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
- (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1166))
- (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
- (-4 *4 (-13 (-29 *6) (-1190) (-952)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2615 (-638 *4))))
- (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-649 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1162 *7)) (-5 *3 (-561)) (-4 *7 (-942 *6 *4 *5))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
- (-5 *1 (-320 *4 *5 *6 *7)))))
-(((*1 *1)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *4)) (-5 *1 (-878 *3 *4 *5))
- (-4 *3 (-1090)) (-4 *5 (-659 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-638 *6) "failed") (-561) *6 *6)) (-4 *6 (-362))
- (-4 *7 (-1230 *6))
- (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6)))
- (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))))
-(((*1 *1) (-5 *1 (-329))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-1267 *4 *5 *6 *7)))
- (-5 *1 (-1267 *4 *5 *6 *7))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4))
+ (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4))
+ (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553))
- (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-638 (-1267 *6 *7 *8 *9)))
- (-5 *1 (-1267 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112))
+ (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450))
+ (-4 *7 (-787)) (-4 *4 (-844))
+ (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9))))
+ (-5 *1 (-1098 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9))))
+ (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9))
+ (-4 *4 (-1062 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9))))
+ (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9))
+ (-4 *4 (-1062 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9))
+ (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2
+ (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9)))))
+ (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9))
+ (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2
+ (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9)))))
+ (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3))
- (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-638 *7) (-638 *7))) (-5 *2 (-638 *7))
- (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787))
- (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1259))
- (-5 *1 (-1206 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1259))
- (-5 *1 (-1206 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205))))
+ (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7))))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1230 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400)))))))
-(((*1 *1 *1 *1) (-4 *1 (-960))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1255))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1256))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-888))
- (-5 *3
- (-2 (|:| |pde| (-638 (-315 (-224))))
- (|:| |constraints|
- (-638
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-765)) (|:| |boundaryType| (-561))
- (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
- (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
- (|:| |tol| (-224))))
- (-5 *2 (-1028)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-682 *2)) (-5 *4 (-765))
- (-4 *2 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *5 (-1230 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1084 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1205))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3486 *4))))
- (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400)))))))
+ (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7))))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8)))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8)))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
(-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
- ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-844)) (-5 *3 (-638 *6)) (-5 *5 (-638 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-638 *5)) (|:| |f3| *5)
- (|:| |f4| (-638 *5))))
- (-5 *1 (-1176 *6)) (-5 *4 (-638 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
- (-246 *4 (-406 (-561)))))
- (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
- (-5 *1 (-503 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1259)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-1187 *4))
- (-4 *4 (-1042)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-682 (-945 *4))) (-5 *1 (-1021 *4))
- (-4 *4 (-1042)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -2409 (-114)) (|:| |arg| (-638 (-885 *3)))))
- (-5 *1 (-885 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-885 *4)))
- (-5 *1 (-885 *4)) (-4 *4 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1040)))))
-(((*1 *1) (-5 *1 (-1259))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+ (-5 *1 (-1097 *4 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1166))
- (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166))
- (-5 *2 (-638 *4)) (-5 *1 (-1104 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
- (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6)))
- (-4 *8 (-341 *5 *6 *7))
- (-4 *4 (-13 (-844) (-553) (-1031 (-561))))
- (-5 *2 (-2 (|:| -4027 (-765)) (|:| -1411 *8)))
- (-5 *1 (-904 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6))
- (-4 *4 (-1230 (-406 (-561)))) (-4 *5 (-1230 (-406 *4)))
- (-4 *6 (-341 (-406 (-561)) *4 *5))
- (-5 *2 (-2 (|:| -4027 (-765)) (|:| -1411 *6)))
- (-5 *1 (-905 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2438 (-638 *3)) (|:| -3140 (-638 *3))))
- (-5 *1 (-1206 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-981 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7)))
- (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
- (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8)))
- (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7)))
- (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7))))
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-981 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
- (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8)))
- (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1097 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3))
+ (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3))
+ (-4 *3 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9))
- (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6))
- (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)) (-4 *2 (-306))))
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-981 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
- (-4 *2 (-680 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-224))
- (-5 *2
- (-2 (|:| |brans| (-638 (-638 (-936 *4))))
- (|:| |xValues| (-1084 *4)) (|:| |yValues| (-1084 *4))))
- (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 *4)))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1254 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306))
- (-4 *3 (-553)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-4 *4 (-362)) (-5 *2 (-1254 *1))
- (-4 *1 (-328 *4))))
- ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1254 *1)) (-4 *1 (-328 *3))))
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-1259)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-171)) (-4 *4 (-1230 *3)) (-5 *2 (-1254 *1))
- (-4 *1 (-408 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4))
- (-5 *2 (-1254 *6)) (-5 *1 (-412 *3 *4 *5 *6))
- (-4 *6 (-13 (-408 *4 *5) (-1031 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1230 *4))
- (-5 *2 (-1254 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))
- (-4 *6 (-408 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1254 *1)) (-4 *1 (-416 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1254 (-1254 *4))) (-5 *1 (-526 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *5)) (-4 *5 (-1230 *3)) (-4 *3 (-306))
- (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1227 *5 *4)) (-5 *1 (-1164 *4 *5 *6))
- (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1227 *5 *4)) (-5 *1 (-1246 *4 *5 *6))
- (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-914))
- (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4401 "*")))))
- (-5 *1 (-895 *4 *2)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-1259)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259))
- (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-981 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259))
- (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1230 *5))
- (-5 *2 (-2 (|:| -4181 (-765)) (|:| -4226 *3) (|:| |radicand| *6)))
- (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1230 *3)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4401 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
- (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1230 *2))
- (-4 *4 (-680 *2 *5 *6)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1230 *4))
- (-5 *2 (-1254 (-638 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-638 *6)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))
- (-5 *2 (-638 (-406 (-561)))) (-5 *1 (-1013 *4))
- (-4 *4 (-1230 (-561))))))
-(((*1 *1 *1) (-4 *1 (-624)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362))
- (-4 *5 (-553)) (-5 *2 (-1254 *5)) (-5 *1 (-633 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1254 *4)) (-4 *4 (-634 *5))
- (-2186 (-4 *5 (-362))) (-4 *5 (-553)) (-5 *2 (-1254 (-406 *5)))
- (-5 *1 (-633 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1097 *4 *5 *6 *7 *8))
+ (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844)) (-5 *1 (-1096 *5 *4))
+ (-4 *4 (-420 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042))
- (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3))
- (-4 *3 (-846 *5)))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-837 (-378))) (-5 *2 (-837 (-224))) (-5 *1 (-304)))))
-(((*1 *1) (-5 *1 (-156)))
- ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814))
- (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1162 *4))
- (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2))
- (-4 *3 (-13 (-844) (-553))))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-638 (-765)))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-1230 *4)) (-5 *1 (-537 *4 *2 *5 *6))
- (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-638 (-776 *3))) (-5 *1 (-776 *3)) (-4 *3 (-553))
- (-4 *3 (-1042)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306))
- (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5))
- (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-306)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2506 *4) (|:| -3984 *4) (|:| |totalpts| (-561))
- (|:| |success| (-112))))
- (-5 *1 (-783)) (-5 *5 (-561)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146))
- (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-561)))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-561)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362))
- (-5 *2
- (-2 (|:| |ir| (-582 (-406 *6))) (|:| |specpart| (-406 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *4 (-1166))
- (-5 *1 (-1169))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1170))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *1 (-1170)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5))))
- (-5 *1 (-1119 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-13 (-306) (-844) (-146)))
- (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1119 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5))))
- (-5 *1 (-1119 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-293 (-406 (-945 *4))))
- (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *4))))
- (-5 *1 (-1119 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
- (-4 *5 (-13 (-306) (-844) (-146)))
- (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-406 (-945 *4))))
- (-4 *4 (-13 (-306) (-844) (-146)))
- (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-293 (-406 (-945 *5))))) (-5 *4 (-638 (-1166)))
- (-4 *5 (-13 (-306) (-844) (-146)))
- (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-293 (-406 (-945 *4)))))
- (-4 *4 (-13 (-306) (-844) (-146)))
- (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
- (-5 *1 (-331))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-945 (-561)))) (-5 *2 (-329))
- (-5 *1 (-331))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042))
- (-4 *3 (-1090)))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-561)))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-544)))))
((*1 *2 *1)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543))
- (-4 *3 (-553))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-561)))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4))))
+ (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))
((*1 *2 *1)
- (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-561)))))
+ (-12 (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-4 *7 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-1094 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1094 *3 *2 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))))
+(((*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2))))
((*1 *2 *1)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543))
- (-4 *3 (-1090))))
+ (-12 (-4 *1 (-1094 *3 *4 *2 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-4 *1 (-403))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-403))))
((*1 *2 *1)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543))
- (-4 *3 (-1090))))
+ (-12 (-4 *1 (-1094 *3 *4 *5 *2 *6)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1094 *3 *4 *5 *6 *2)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091))
+ (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091))
+ (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-664))))
((*1 *2 *1)
- (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-561)))))
+ (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912))
+ (-14 *4 (-912)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912))
+ (-14 *4 (-912)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1253 (-1092 *3 *4))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912))
+ (-14 *4 (-912)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-898 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-912)) (-5 *2 (-112)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-765)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-589 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1148)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))
+ ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 (-606 *4))) (-4 *4 (-420 *3)) (-4 *3 (-844))
+ (-5 *1 (-570 *3 *4))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1086)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1084 *3)) (-4 *3 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1204)) (-5 *2 (-544)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1079 *4)) (-4 *4 (-1204)) (-5 *1 (-1082 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1081)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260))))
((*1 *2 *3)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))
- (-5 *2 (-1028)) (-5 *1 (-742)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2395 *3) (|:| |coef1| (-776 *3))))
- (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042))
- (-5 *1 (-1154 *4 *5)) (-14 *4 (-914))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5))
- (-14 *4 (-914)) (-4 *5 (-1042))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042))
- (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))))
-(((*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216))))
- ((*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485))))
- ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306))))
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1253 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-1253 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561))))
- ((*1 *1 *1) (-4 *1 (-1051))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-858 *4))
- (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553))
- (-5 *2 (-2 (|:| -4226 *4) (|:| -2970 *3) (|:| -1744 *3)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-1056 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| -4226 *3) (|:| -2970 *1) (|:| -1744 *1)))
- (-4 *1 (-1230 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 *8))
- (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *9 (-942 *8 *6 *7))
- (-4 *6 (-787)) (-5 *2 (-1162 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-240))))
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-1253 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1259)) (-5 *1 (-240)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1082 (-837 *3))) (-4 *3 (-13 (-1190) (-952) (-29 *5)))
- (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-218 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1082 (-837 *3))) (-5 *5 (-1148))
- (-4 *3 (-13 (-1190) (-952) (-29 *6)))
- (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-218 *6 *3))))
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-417 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1082 (-837 (-315 *5))))
- (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1082 (-837 (-315 *6))))
- (-5 *5 (-1148))
- (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6))))
+ (-12 (-5 *4 (-635 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362))
+ (-5 *2 (-1253 *5)) (-5 *1 (-1076 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-1253 (-682 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 (-682 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362))
+ (-5 *2 (-1253 (-682 (-406 (-939 *5))))) (-5 *1 (-1076 *5))
+ (-5 *4 (-682 (-406 (-939 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-939 *5))))
+ (-5 *1 (-1076 *5)) (-5 *4 (-682 (-939 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-5 *2 (-1253 (-682 *4)))
+ (-5 *1 (-1076 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1075)))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174))))
+ ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075)))))
+(((*1 *1) (-5 *1 (-1075))))
+(((*1 *1) (-5 *1 (-1075))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-544) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))))
+(((*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
+(((*1 *1) (-5 *1 (-1072))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-635 *3)) (-5 *1 (-587 *5 *6 *7 *8 *3))
+ (-4 *3 (-1099 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1082 (-837 (-406 (-945 *5))))) (-5 *3 (-406 (-945 *5)))
- (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1082 (-837 (-406 (-945 *6))))) (-5 *5 (-1148))
- (-5 *3 (-406 (-945 *6)))
- (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5))))))
+ (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-306) (-146)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4))))))
+ (-5 *1 (-1068 *4 *5)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
+ (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5))))))
+ (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-1065 *3 *4 *5))) (-4 *3 (-1091))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3))))
+ (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3))))
+ (-5 *1 (-1067 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3))))
+ (-5 *2 (-635 (-1065 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5))
+ (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4))))
+ (-5 *1 (-1065 *4 *5 *2))
+ (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3))))
+ (-5 *1 (-1065 *3 *4 *2))
+ (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-883 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1091)) (-4 *5 (-1204))
+ (-5 *1 (-884 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-883 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1091))
+ (-4 *5 (-1204)) (-5 *1 (-884 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-883 *5)) (-5 *3 (-635 (-1166))) (-5 *4 (-1 (-112) (-635 *6)))
+ (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *1 (-884 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-3 *3 (-638 *3))) (-5 *1 (-427 *5 *3))
- (-4 *3 (-13 (-1190) (-952) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
- (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
- (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
- (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1204))
+ (-5 *2 (-313 (-544))) (-5 *1 (-930 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
- (-5 *2 (-1028)) (-5 *1 (-562))))
+ (-12 (-5 *3 (-1166)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1204))
+ (-5 *2 (-313 (-544))) (-5 *1 (-930 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1204)) (-4 *4 (-844))
+ (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1204)) (-4 *4 (-844))
+ (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1 (-112) (-635 *6)))
+ (-4 *6 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-4 *4 (-1091))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4))))
+ (-5 *1 (-1065 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2)))
+ (-5 *2 (-883 *3)) (-5 *1 (-1065 *3 *4 *5))
+ (-4 *5 (-13 (-420 *4) (-879 *3) (-609 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3))))
+ (-5 *2 (-635 (-1166))) (-5 *1 (-1065 *3 *4 *5))
+ (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-311))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 *4)) (-5 *1 (-1063 *5 *6 *7 *3 *4))
+ (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
- (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
- (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
- (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
- (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378))))
- (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378))))
- (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1230 *4))
- (-5 *2 (-582 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146))
- (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
- (-5 *2 (-3 (-315 *5) (-638 (-315 *5)))) (-5 *1 (-585 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844))
- (-4 *3 (-38 (-406 (-561))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1166)) (-5 *1 (-945 *3)) (-4 *3 (-38 (-406 (-561))))
- (-4 *3 (-1042))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-4 *2 (-844))
- (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-942 *3 (-529 *2) *2))))
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112))
+ (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450))
+ (-4 *7 (-787)) (-4 *4 (-844))
+ (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9))))
+ (-5 *1 (-1063 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-3 (-112) (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *1))))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-3 *3 (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-554)) (-4 *2 (-1042))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1))))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042))
- (-5 *1 (-1150 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-38 (-406 (-561))))
- (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-4050
- (-12 (-5 *2 (-1166)) (-4 *1 (-1214 *3)) (-4 *3 (-1042))
- (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190))
- (-4 *3 (-38 (-406 (-561))))))
- (-12 (-5 *2 (-1166)) (-4 *1 (-1214 *3)) (-4 *3 (-1042))
- (-12 (|has| *3 (-15 -1405 ((-638 *2) *3)))
- (|has| *3 (-15 -2563 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1218 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
- ((*1 *1 *1 *2)
- (-4050
- (-12 (-5 *2 (-1166)) (-4 *1 (-1235 *3)) (-4 *3 (-1042))
- (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190))
- (-4 *3 (-38 (-406 (-561))))))
- (-12 (-5 *2 (-1166)) (-4 *1 (-1235 *3)) (-4 *3 (-1042))
- (-12 (|has| *3 (-15 -1405 ((-638 *2) *3)))
- (|has| *3 (-15 -2563 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1239 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-4050
- (-12 (-5 *2 (-1166)) (-4 *1 (-1245 *3)) (-4 *3 (-1042))
- (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190))
- (-4 *3 (-38 (-406 (-561))))))
- (-12 (-5 *2 (-1166)) (-4 *1 (-1245 *3)) (-4 *3 (-1042))
- (-12 (|has| *3 (-15 -1405 ((-638 *2) *3)))
- (|has| *3 (-15 -2563 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1246 *3 *4 *5))
- (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
-(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561))))
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-1254 (-3 (-466) "undefined"))) (-5 *1 (-1255)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090))
- (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
- (-5 *1 (-1066 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1090))
- (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
- (-5 *1 (-1066 *3 *4 *2))
- (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765))
- (-14 *4 (-765)) (-4 *5 (-171)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-450))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *1))))
- (-4 *1 (-1062 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1209)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-553)) (-5 *1 (-1233 *3 *2))
- (-4 *2 (-13 (-1230 *3) (-553) (-10 -8 (-15 -1603 ($ $ $))))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
- (-5 *2
- (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4))
- (|:| |genIdeal| (-502 *4 *5 *6 *7))))
- (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| |k| (-665 *3)) (|:| |c| *4))))
- (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
- (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1028)) (-5 *1 (-742)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090))
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4))
(-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
-(((*1 *1) (-5 *1 (-817))))
-(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-815)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2))
- (-4 *2 (-1245 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1230 *3))
- (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1245 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1245 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146)))
- (-5 *1 (-1142 *3)))))
+ (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4))
+ (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
- (-14 *6
- (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *2))
- (-2 (|:| -2442 *5) (|:| -4181 *2))))
- (-4 *2 (-237 (-3548 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-844)) (-4 *7 (-942 *4 *2 (-858 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1257)))))
+ (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4))
+ (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876))
- (-5 *3 (-638 (-561)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876))
- (-5 *3 (-638 (-561))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1190)))
- (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-582 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-638 (-1254 *4))) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
+ (-12 (-4 *3 (-1031 (-544))) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-420 *3))))
((*1 *2)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553))
- (-5 *2 (-638 (-1254 *3))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
- (-4 *3 (-1090))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-1160 *4)) (-5 *1 (-164 *3 *4))
+ (-4 *3 (-165 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-297))))
+ ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3))))
+ ((*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5))))
+ (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
- (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3))
- (-5 *1 (-943 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $))
- (-15 -4088 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553))
- (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-450)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092 *4)) (-4 *4 (-1090)) (-5 *2 (-1 *4))
- (-5 *1 (-1010 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378))))
+ (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005))))
+ ((*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005))))
((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-561))) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4))))
- (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1230 *4))
- (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-534))) (-5 *1 (-534)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042))
- (-5 *3 (-561)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1042))
- (-4 *2 (-1245 *3)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-945 *6)) (-5 *4 (-1166))
- (-5 *5 (-837 *7))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1162 *6)) (-5 *4 (-837 *6))
- (-4 *6 (-13 (-1190) (-29 *5)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-223 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1230 *3)) (-4 *3 (-1042)))))
-(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1495 *4))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561))))
+ (-12 (-5 *3 (-1160 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1))))
((*1 *2 *3)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561)))
- (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-751)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-744)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1230 *4)) (-5 *1 (-801 *4 *2 *3 *5))
- (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2))
- (-4 *5 (-649 (-406 *2)))))
+ (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554)))))
((*1 *2 *3 *4)
- (-12 (-4 *2 (-1230 *4)) (-5 *1 (-801 *4 *2 *5 *3))
- (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-649 *2))
- (-4 *3 (-649 (-406 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1423 *3) (|:| -4181 (-765)))) (-5 *1 (-583 *3))
- (-4 *3 (-543)))))
+ (-12 (-5 *3 (-1160 *2)) (-5 *4 (-1166)) (-4 *2 (-420 *5)) (-5 *1 (-32 *5 *2))
+ (-4 *5 (-13 (-844) (-554)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-4 *1 (-1005))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-5 *4 (-857))
+ (-4 *1 (-1005))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-912)) (-4 *4 (-13 (-842) (-362)))
+ (-4 *1 (-1059 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1017 *3))
+ (-4 *3 (-13 (-842) (-362) (-1013)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-153))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-765)))))
+(((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217))))
+ ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-635 (-1166))) (-4 *5 (-237 (-4364 *3) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5))
+ (-2 (|:| -2535 *4) (|:| -2536 *5))))
+ (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844))
+ (-4 *7 (-943 *2 *5 (-858 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1091))))
+ ((*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *3 (-720))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
+ (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-561)) (-4 *4 (-348))
- (-5 *1 (-526 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224)))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
-(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1)))
+ (-4 *1 (-1056 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-638
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-787)) (-4 *6 (-942 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844))
- (-5 *1 (-447 *4 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ (-2 (|:| -4361 *3) (|:| |gap| (-765)) (|:| -2124 (-775 *3))
+ (|:| -3285 (-775 *3))))
+ (-5 *1 (-775 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1)))
+ (-4 *1 (-1056 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |polnum| (-775 *3)) (|:| |polden| *3) (|:| -3880 (-765))))
+ (-5 *1 (-775 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3880 (-765))))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2))
+ (-14 *4 (-635 *2)) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-544))) (-4 *1 (-396))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-377))) (-4 *1 (-396))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-544))) (-4 *1 (-396))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-377))) (-4 *1 (-396))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5))
+ (-5 *2 (-1160 (-1160 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6))
+ (-14 *7 (-912))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2)
+ (|partial| -3936
+ (-12 (-5 *2 (-939 *3))
+ (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544))))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-939 *3))
+ (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544)))))
+ (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-939 *3))
+ (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544))))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (|partial| -3936
+ (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544)))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377)))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377)))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544)))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544)))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2))
+ (-14 *4 (-635 *2)) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-939 (-377))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439))))
((*1 *2 *1)
- (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112))
- (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4))))
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224)))))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+ (-5 *1 (-763))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-852))))
- ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-958))))
- ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1205))))
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *1 (-802))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *2 *3))
- (-4 *3 (-13 (-1090) (-34))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *3)
(-12
- (-5 *3
+ (-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224)))
- (|:| |lb| (-638 (-837 (-224))))
- (|:| |cf| (-638 (-315 (-224))))
- (|:| |ub| (-638 (-837 (-224))))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224)))
+ (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224))))
+ (|:| |ub| (-635 (-836 (-224))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-638 (-315 (-224))))
- (|:| -3767 (-638 (-224)))))))
- (-5 *2 (-638 (-1148))) (-5 *1 (-266)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-914)) (-5 *1 (-1023 *2))
- (-4 *2 (-13 (-1090) (-10 -8 (-15 -1810 ($ $ $))))))))
-(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
- ((*1 *1 *1) (-4 *1 (-1134))))
-(((*1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112))
- (-5 *2 (-1028)) (-5 *1 (-739)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112))
- (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))))
-(((*1 *2 *3)
+ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))
+ (-5 *1 (-835))))
+ ((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27))))
+ (-5 *2
+ (-2 (|:| |pde| (-635 (-313 (-224))))
+ (|:| |constraints|
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765))
+ (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224)))
+ (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148))
+ (|:| |tol| (-224))))
+ (-5 *1 (-891))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *2)
+ (-3936
+ (-12 (-5 *2 (-939 *3))
+ (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544))))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-939 *3))
+ (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544)))))
+ (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-939 *3))
+ (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544))))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (-3936
+ (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544)))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 *2)) (-5 *4 (-1166)) (-4 *2 (-429 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-844) (-553)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-4 *1 (-1005))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-5 *4 (-856))
- (-4 *1 (-1005))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-914)) (-4 *4 (-13 (-842) (-362)))
- (-4 *1 (-1059 *4 *2)) (-4 *2 (-1230 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-837 *4)) (-5 *3 (-607 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1190) (-29 *6)))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-223 *6 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *2 (-1028)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-224) (-224) (-224)))
- (-5 *4 (-1 (-224) (-224) (-224) (-224)))
- (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690)))))
-(((*1 *2 *3)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
- (-246 *4 (-406 (-561)))))
- (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
- (-5 *1 (-503 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1166))) (-4 *6 (-362))
- (-5 *2 (-638 (-293 (-945 *6)))) (-5 *1 (-536 *5 *6 *7))
- (-4 *5 (-450)) (-4 *7 (-13 (-362) (-842))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867))
- (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-1255))
- (-5 *1 (-1258))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262)))
- (-5 *2 (-1255)) (-5 *1 (-1258)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-638 *7))) (-4 *1 (-1198 *4 *5 *6 *7))
- (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-561))) (-5 *4 (-561)) (-5 *2 (-52))
- (-5 *1 (-998)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
(-5 *2
- (-638
- (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7))
- (|:| |wcond| (-638 (-945 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *4))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *4))))))))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-638 (-2 (|:| |totdeg| (-765)) (|:| -3590 *3))))
- (-5 *4 (-765)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787))
- (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553))
- (-5 *2 (-1162 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-561))))
+ (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3))))
+ (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3))))
+ (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1))) (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef2| (-775 *3))))
+ (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *3 (-554)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *3 (-554)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-554)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450))))
+ ((*1 *1 *1 *1) (-4 *1 (-450)))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544)))))
+ ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-765)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2))
+ (-4 *2 (-943 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1160 *7))) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306))
+ (-5 *2 (-1160 *7)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-912)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-450)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-450)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-450)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-450)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *2 (-450)))))
+(((*1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-377)) (-5 *1 (-1054)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054)))))
+(((*1 *1) (-5 *1 (-1054))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-1054)))))
+(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1053))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))
((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3)))))
-(((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5))
+ (-4 *3 (-237 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)) (-5 *2 (-765))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1091))))
+ ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1091))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1091)) (-5 *2 (-765)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-765)) (-5 *1 (-717 *3 *4 *5))
+ (-4 *3 (-718 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-404 *4) *4)) (-4 *4 (-554)) (-5 *2 (-404 *4))
+ (-5 *1 (-418 *4))))
+ ((*1 *1 *1) (-5 *1 (-918)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *1 *1) (-5 *1 (-920)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))
+ (-5 *4 (-406 (-544))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3 *2 *2)
(|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378))))
- (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259))
- (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-638 (-607 *4))) (-4 *4 (-429 *3)) (-4 *3 (-844))
- (-5 *1 (-570 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5))
- (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-1267 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
- (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-607 *4)) (-4 *4 (-844)) (-4 *2 (-844))
- (-5 *1 (-606 *2 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042))
- (-5 *1 (-708 *3 *4))))
+ (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))
+ (-5 *4 (-406 (-544))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))
+ (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-635 (-606 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-606 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-167 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1175)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028))
- (-5 *1 (-748)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-553)) (-4 *4 (-844))
- (-5 *1 (-570 *4 *2)) (-4 *2 (-429 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-837 (-224)))) (-5 *4 (-224)) (-5 *2 (-638 *4))
- (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1227 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166))
- (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
+ (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-412 *3 *2 *4 *5))
+ (-4 *3 (-306)) (-4 *5 (-13 (-409 *2 *4) (-1031 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6))
+ (-4 *3 (-306)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1253 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-912)) (-4 *5 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-493)))) (-5 *1 (-493))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-493))) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-635 (-606 (-493)))) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-606 (-493))) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1229 *4))
+ (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-544)))))
+(((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485))))
+ ((*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *1 *1) (-4 *1 (-1051))))
(((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259))
- (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5))
+ (-4 *3 (-237 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543))))
+ ((*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-789 *3 *4)) (-4 *3 (-790 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-983 *3 *4)) (-4 *3 (-984 *4))))
((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259))
- (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-990 *3 *4)) (-4 *3 (-991 *4))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005))))
+ ((*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-435)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543))))
- ((*1 *1 *1) (-4 *1 (-1051))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-243 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-682 (-561))) (-5 *5 (-112)) (-5 *7 (-682 (-224)))
- (-5 *3 (-561)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-367))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1254 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348))))
+ (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5))
+ (-14 *3 (-765)) (-14 *4 (-765)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-857))))
((*1 *2 *1)
- (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1090))
- (-14 *4
- (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *3))
- (-2 (|:| -2442 *2) (|:| -4181 *3)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1162 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-1162 *7)) (-5 *1 (-320 *4 *5 *6 *7))
- (-4 *7 (-942 *6 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844)))
- (-4 *2 (-13 (-429 *4) (-995) (-1190))) (-5 *1 (-595 *4 *2 *3))
- (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1141))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
- (-5 *1 (-981 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
- (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-912))
+ (-4 *4 (-362))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1042)) (-4 *1 (-1045 *3 *4 *5 *6 *7))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1090)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-153))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1057)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 (-168 (-406 (-561)))))
- (-5 *2
- (-638
- (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-561))
- (|:| |outvect| (-638 (-682 (-168 *4)))))))
- (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362))
- (-5 *2
- (-2 (|:| A (-682 *5))
- (|:| |eqs|
- (-638
- (-2 (|:| C (-682 *5)) (|:| |g| (-1254 *5)) (|:| -3394 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1254 *5))
- (-4 *6 (-649 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-649 *5))
- (-5 *2 (-2 (|:| -2942 (-682 *6)) (|:| |vec| (-1254 *5))))
- (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1254 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-638 (-765))) (-5 *1 (-962 *4 *3))
- (-4 *3 (-1230 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-731 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090))))
- ((*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090)))))
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1092 (-1092 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856))))
- ((*1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-246 *5 *6))) (-4 *6 (-450))
- (-5 *2 (-246 *5 *6)) (-14 *5 (-638 (-1166))) (-5 *1 (-626 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1090)) (-4 *5 (-1090))
- (-5 *2 (-1 *5)) (-5 *1 (-676 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-638 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1205))))
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-5 *2 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-638 (-1166)))
- (-5 *2
- (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6)))))
- (-5 *1 (-623 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3))
- (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-823)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1137 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-960))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-5 *2 (-1254 *3)) (-5 *1 (-706 *3 *4))
- (-4 *4 (-1230 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1205)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3))
- (-4 *3 (-667 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042))
- (-5 *1 (-1150 *3)))))
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-638
- (-2
- (|:| -2285
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| -2677
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1146 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2185
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-556))))
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205))
- (-5 *2 (-638 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1042)) (-5 *1 (-821 *2 *3)) (-4 *2 (-702 *3)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *3 (-893 *6))
- (-5 *2 (-682 *3)) (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-372 *3))
- (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4399)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1254 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1230 *4)) (-5 *2 (-682 *4))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-544))))
((*1 *2 *1)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1230 *3))
- (-5 *2 (-682 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-638
- (-2
- (|:| -2285
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224))))
- (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224)))
- (|:| |g| (-315 (-224))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| -2677
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378)))))))
- (-5 *1 (-797)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4))))
- (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-732)))))
-(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-687))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-694))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-692))) (-5 *1 (-329))))
- ((*1 *1) (-5 *1 (-329))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-191)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2))
- (-4 *2 (-649 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)) (-4 *3 (-171))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1230 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-546))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-638 (-607 *3)))
- (|:| |vals| (-638 *3))))
- (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-14 *4 (-765)) (-4 *5 (-1205)) (-5 *2 (-133))
- (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-171))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-544))))
((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
- (-5 *2 (-561)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-914))))
- ((*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-682 *4))) (-4 *4 (-171))
- (-5 *2 (-1254 (-682 (-945 *4)))) (-5 *1 (-188 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-262))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-813 *3))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-544))))
((*1 *2 *1)
- (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-406 (-1162 (-315 *3)))) (-4 *3 (-13 (-553) (-844)))
- (-5 *1 (-1120 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
- (-4 *2 (-680 *3 *4 *5)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-544))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
- (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3))
- (-4 *3 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1090)))))
-(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378))))
- ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-378)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112))
- (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1028)) (-5 *1 (-750)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-301)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-171))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1275 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-1042)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1239 *3 *4 *5)) (-4 *3 (-13 (-362) (-844)))
- (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-765))))
((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-638 *3))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-765))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
- (-5 *2 (-638 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1090)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2))
+ (-4 *5 (-371 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *2 (-1091)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2))
+ (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1204)) (-4 *5 (-371 *4))
+ (-4 *2 (-371 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042))
+ (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1204)) (-4 *5 (-371 *4))
+ (-4 *2 (-371 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042))
+ (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
- ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1162 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
+ (-12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4))
+ (-4 *2 (-679 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2))
+ (-4 *3 (-679 *4 *5 *6)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2)) (-4 *2 (-306))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4))
+ (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 *2)
+ (-4 *5 (-171))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-912)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-912))))
+ ((*1 *2)
+ (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-912))))
((*1 *2 *3)
- (-12 (-5 *3 (-1162 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1))))
+ (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765))
+ (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401))))
+ (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-765))
+ (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-765))
+ (-5 *1 (-661 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1230 *4)) (-5 *2 (-638 *1))
- (-4 *1 (-1059 *4 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+ (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-646 (-406 *2))) (-4 *2 (-1230 *4)) (-5 *1 (-804 *4 *2))
- (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))))
+ (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765))
+ (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765))))
((*1 *2 *3)
- (-12 (-5 *3 (-647 *2 (-406 *2))) (-4 *2 (-1230 *4))
- (-5 *1 (-804 *4 *2))
- (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561))))
- (-4 *5 (-879 (-561)))
- (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-564 *5 *3)) (-4 *3 (-624))
- (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042))
- (-5 *1 (-683 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2))
- (-4 *2 (-649 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205))
- (-5 *2 (-638 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1162 *7))
- (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1230 *5))
- (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1230 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
+ (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4400)) (-4 *4 (-362)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-519 *4 *5 *6 *3))
- (-4 *3 (-680 *4 *5 *6))))
+ (-12 (|has| *6 (-6 -4401)) (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6))))
((*1 *2 *3)
- (-12 (|has| *9 (-6 -4400)) (-4 *4 (-553)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *8 (-372 *7))
- (-4 *9 (-372 *7)) (-5 *2 (-638 *6))
- (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-680 *4 *5 *6))
- (-4 *10 (-680 *7 *8 *9))))
+ (-12 (|has| *9 (-6 -4401)) (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-4 *7 (-984 *4)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)) (-5 *2 (-635 *6))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-679 *4 *5 *6))
+ (-4 *10 (-679 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-638 *5))))
+ (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-635 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-681 *4 *5 *6 *3))
- (-4 *3 (-680 *4 *5 *6))))
+ (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *2 (-635 *6)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553))
- (-5 *2 (-638 *7)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-635 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1222 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1166)) (-4 *5 (-362))
+ (-5 *1 (-915 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1160 *5)) (-5 *1 (-915 *4 *5))
+ (-14 *4 (-1166))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-765)) (-4 *6 (-362)) (-5 *2 (-406 (-939 *6)))
+ (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1040)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-859 *4 *5 *6 *7))
- (-4 *4 (-1042)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787))
- (-14 *8 (-638 *5)) (-5 *2 (-1259))
- (-5 *1 (-1266 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-942 *4 *6 *5))
- (-14 *9 (-638 *3)) (-14 *10 *3))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1245 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1090)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1090)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1146 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2185
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1028)) (-5 *1 (-304)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-638
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-787)) (-4 *3 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
- (-5 *1 (-447 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
- (-4 *3 (-960)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1230 *3))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))))
+(((*1 *1 *1 *1) (-4 *1 (-142)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-688 *3)) (-4 *3 (-1090))
- (-5 *2 (-638 (-2 (|:| -2677 *3) (|:| -1714 (-765))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205))
- (-14 *4 (-561)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-171))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-813 *3)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-553)) (-5 *2 (-417 *4))
- (-5 *1 (-418 *4))))
- ((*1 *1 *1) (-5 *1 (-919)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
- ((*1 *1 *1) (-5 *1 (-920)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))
- (-5 *4 (-406 (-561))) (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))
- (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))
- (-5 *4 (-406 (-561))) (-5 *1 (-1014 *3)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))
- (-5 *1 (-1014 *3)) (-4 *3 (-1230 (-406 (-561))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040))
+ (-5 *3 (-544)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-1126)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -2615 (-682 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-682 *3))))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1254 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4))
- (-14 *3 (-914)) (-14 *4 (-914)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-306))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2395 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-502 (-406 (-561)) (-239 *4 (-765)) (-858 *3)
- (-246 *3 (-406 (-561)))))
- (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1205)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1205))))
- ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))))
+ (-12 (-5 *3 (-1087 *4)) (-4 *4 (-1091)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4))))
+ ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1079 (-544))) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))))
+(((*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-156))) ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-156))) ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-156))) ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(((*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-842)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2762 (-417 *3))))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
- (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8))))
- (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-607 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-5 *5 (-1162 *2))
- (-4 *2 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-607 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166)))
- (-5 *5 (-406 (-1162 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205))
- (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
- (-4 *5 (-372 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 (-561))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 (-561)) (-14 *5 (-765))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-765))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-765))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-765))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-765))))
+ (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-404 (-939 *4))))
+ (-5 *1 (-1036 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166))
+ (-14 *5 *3) (-5 *1 (-318 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-377)) (-5 *1 (-1034)))))
+(((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))))
+(((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))))
+(((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1160 (-406 (-1160 *2)))) (-5 *4 (-606 *2))
+ (-4 *2 (-13 (-420 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1091))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1160 *1)) (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *3 (-844))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1160 *4)) (-4 *4 (-1042)) (-4 *1 (-943 *4 *5 *3))
+ (-4 *5 (-787)) (-4 *3 (-844))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-1160 *2))) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042))
+ (-4 *2
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))
+ (-5 *1 (-944 *5 *4 *6 *7 *2)) (-4 *7 (-943 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-1160 (-406 (-939 *5))))) (-5 *4 (-1166))
+ (-5 *2 (-406 (-939 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-554)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-606 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844)) (-4 *4 (-554))
+ (-5 *2 (-406 (-1160 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-1160 (-406 (-1160 *3)))) (-5 *1 (-558 *6 *3 *7)) (-5 *5 (-1160 *3))
+ (-4 *7 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1250 *5)) (-14 *5 (-1166)) (-4 *6 (-1042))
+ (-5 *2 (-1222 *5 (-939 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-939 *6))))
((*1 *2 *1)
- (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-561))
- (-14 *4 (-765))))
+ (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-1160 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4))
- (-4 *4
- (-13 (-844)
- (-10 -8 (-15 -2315 ((-1148) $ *3)) (-15 -1479 ((-1259) $))
- (-15 -3699 ((-1259) $)))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-982)) (-5 *1 (-213 *3))
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1160 *1))
+ (-4 *1 (-943 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *5 *4))
+ (-5 *2 (-406 (-1160 *3))) (-5 *1 (-944 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-844)
- (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $))
- (-15 -3699 ((-1259) $)))))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205))))
- ((*1 *2 *1 *2)
- (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1230 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1230 *2))
- (-4 *4 (-1230 (-406 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-416 *2)) (-4 *2 (-171))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-52)) (-5 *1 (-627))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-638 (-885 *4))) (-5 *1 (-885 *4))
- (-4 *4 (-1090))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4))
- (-4 *4 (-1090))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-914)) (-4 *2 (-362))
- (-5 *1 (-986 *4 *2))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042))
- (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7))
- (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-914)) (-4 *4 (-1090))
- (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
- (-5 *1 (-1066 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-914)) (-4 *4 (-1090))
- (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
- (-5 *1 (-1067 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-561))) (-4 *1 (-1093 *3 *4 *5 *6 *7))
- (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090))
- (-4 *7 (-1090))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090))
- (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090))))
- ((*1 *1 *1 *1) (-4 *1 (-1134)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-406 *1)) (-4 *1 (-1230 *2)) (-4 *2 (-1042))
- (-4 *2 (-362))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-406 *1)) (-4 *1 (-1230 *3)) (-4 *3 (-1042))
- (-4 *3 (-553))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1242 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1242 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4)))))
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1160 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))
+ (-4 *7 (-943 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042))
+ (-5 *1 (-944 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146))
- (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
- (-5 *2 (-315 *5)) (-5 *1 (-585 *5)))))
+ (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-406 (-1160 (-406 (-939 *5)))))
+ (-5 *1 (-1033 *5)) (-5 *3 (-406 (-939 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
- (-5 *2 (-1162 *3)))))
+ (|partial| -12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-943 *5 *4 *2))
+ (-4 *2 (-844)) (-5 *1 (-944 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *6)) (-15 -3381 (*6 $)) (-15 -3380 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-1166))
+ (-5 *1 (-1033 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-2 (|:| -1633 *4) (|:| -3768 (-561)))))
- (-4 *4 (-1230 (-561))) (-5 *2 (-731 (-765))) (-5 *1 (-440 *4))))
+ (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))
+ (-5 *2 (-635 (-1166))) (-5 *1 (-266))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1042)) (-5 *2 (-635 *5)) (-5 *1 (-320 *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-386))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-635 (-1166)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-635 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5))
+ (-5 *2 (-635 *5)) (-5 *1 (-944 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1087 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844))
+ (-5 *2 (-635 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-417 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-1042))
- (-5 *2 (-731 (-765))) (-5 *1 (-442 *4 *5)))))
+ (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-1166)))
+ (-5 *1 (-1033 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27))
- (-5 *2 (-638 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166)))
+ (-4 *6 (-13 (-554) (-1031 *5))) (-4 *5 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *6)))))) (-5 *1 (-1032 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-606 *6)) (-4 *6 (-13 (-420 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-1160 (-406 (-1160 *6)))) (-5 *1 (-558 *5 *6 *7)) (-5 *3 (-1160 *6))
+ (-4 *7 (-1091))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042))))
+ ((*1 *2 *1) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1160 *11)) (-5 *6 (-635 *10)) (-5 *7 (-635 (-765)))
+ (-5 *8 (-635 *11)) (-4 *10 (-844)) (-4 *11 (-306)) (-4 *9 (-787))
+ (-4 *5 (-943 *11 *9 *10)) (-5 *2 (-635 (-1160 *5)))
+ (-5 *1 (-736 *9 *10 *11 *5)) (-5 *3 (-1160 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166)))
- (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2))))
+ (-12 (-4 *2 (-943 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *3 (-362))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-635 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *1 (-1025 *2))
+ (-4 *2 (-13 (-1091) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-912)) (-5 *1 (-1024 *2))
+ (-4 *2 (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1253 *5))) (-5 *4 (-544)) (-5 *2 (-1253 *5))
+ (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-544)) (-4 *6 (-362)) (-4 *6 (-367))
+ (-4 *6 (-1042)) (-5 *2 (-635 (-635 (-682 *6)))) (-5 *1 (-1023 *6))
+ (-5 *3 (-635 (-682 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042))
+ (-5 *2 (-635 (-635 (-682 *4)))) (-5 *1 (-1023 *4))
+ (-5 *3 (-635 (-682 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042))
+ (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5))
+ (-5 *3 (-635 (-682 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-5 *2 (-378)) (-5 *1 (-779 *3))
- (-4 *3 (-609 *2))))
+ (-12 (-5 *4 (-912)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042))
+ (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5))
+ (-5 *3 (-635 (-682 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-112)) (-5 *1 (-1023 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-112))
+ (-5 *1 (-1023 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-544)) (-5 *2 (-682 *6))
+ (-5 *1 (-1023 *6)) (-4 *6 (-362)) (-4 *6 (-1042))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1023 *4))
+ (-4 *4 (-362)) (-4 *4 (-1042))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-5 *2 (-682 *5))
+ (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-1042)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-1253 *5)) (-4 *5 (-306))
+ (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1023 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042))
+ (-5 *2 (-1253 (-1253 *5))) (-5 *1 (-1023 *5)) (-5 *4 (-1253 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042))
+ (-5 *1 (-1023 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-1253 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4))
+ (-5 *1 (-1023 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-895 (-544))) (-5 *4 (-544)) (-5 *2 (-682 *4))
+ (-5 *1 (-1022 *5)) (-4 *5 (-1042))))
((*1 *2 *3)
- (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2))
- (-5 *2 (-378)) (-5 *1 (-779 *4))))
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1022 *4))
+ (-4 *4 (-1042))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
- (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
+ (-12 (-5 *3 (-635 (-895 (-544)))) (-5 *4 (-544)) (-5 *2 (-635 (-682 *4)))
+ (-5 *1 (-1022 *5)) (-4 *5 (-1042))))
((*1 *2 *3)
- (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 *2))
- (-5 *2 (-378)) (-5 *1 (-779 *4))))
+ (-12 (-5 *3 (-635 (-635 (-544)))) (-5 *2 (-635 (-682 (-544))))
+ (-5 *1 (-1022 *4)) (-4 *4 (-1042)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (-4 *4 (-1042)) (-5 *1 (-1022 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (-4 *4 (-1042))
+ (-5 *1 (-1022 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-682 (-939 *4))) (-5 *1 (-1022 *4))
+ (-4 *4 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*")))
+ (-4 *4 (-1042)) (-5 *1 (-1022 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*")))
+ (-4 *4 (-1042)) (-5 *1 (-1022 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544)))))
+ (-5 *1 (-1021)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021)))))
+(((*1 *2 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-682 (-406 (-939 (-544)))))
+ (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-313 (-544))))
+ (-5 *1 (-1021)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544)))))
+ (-5 *1 (-1021)) (-5 *3 (-313 (-544))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-939 (-544)))))
+ (-5 *2
+ (-635
+ (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544))
+ (|:| |radvect| (-635 (-682 (-313 (-544))))))))
+ (-5 *1 (-1021)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1204)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-651 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3667 *3) (|:| -2881 (-635 *5))))
+ (-5 *1 (-1018 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-651 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1052 (-1017 *4) (-1160 (-1017 *4)))) (-5 *3 (-857))
+ (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1013))))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1160 (-1017 *3))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1013))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
+ (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544)))
+ (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-406 (-544)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544)))
+ (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
- (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4))))
+ (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))
+ (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844))
- (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
- (-14 *3 (-638 (-1166))))))
-(((*1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561)))))
+ (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))
+ (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544))))
+ (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *4) (|:| -3522 *4))))
+ (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5))))
+ (-5 *1 (-1015 *3)) (-4 *3 (-1229 *5))
+ (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))
+ (-5 *2 (-635 (-406 (-544)))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))
+ (-5 *2 (-406 (-544))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-420 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-113))))
((*1 *2 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
- (-5 *2 (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -1744 *1)))
- (-4 *1 (-1056 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -1744 *1)))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-582 *3) *3 (-1166)))
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *4))
+ (-4 *4 (-420 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-113)) (-5 *1 (-162))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *4))
+ (-4 *4 (-13 (-420 *3) (-995)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-296 *3)) (-4 *3 (-297))))
+ ((*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-113))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *4 (-844)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *4))
+ (-4 *4 (-420 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-606 *3)) (-4 *3 (-844))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *4))
+ (-4 *4 (-13 (-420 *3) (-995) (-1190)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1253 *6)) (-5 *4 (-1253 (-544))) (-5 *5 (-544)) (-4 *6 (-1091))
+ (-5 *2 (-1 *6)) (-5 *1 (-1010 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -3806 *4) (|:| -1605 (-544))))) (-4 *4 (-1091))
+ (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4))
+ (-5 *2 (-635 (-406 *5))) (-5 *1 (-1009 *4 *5)) (-5 *3 (-406 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6))
+ (|:| |c2| (-406 *6)) (|:| -3479 *6)))
+ (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1229 *6))
+ (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-544))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -3667
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1008 *6 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3479 *6)))
+ (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1166))
(-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1166)))
- (-4 *3 (-283)) (-4 *3 (-624)) (-4 *3 (-1031 *4)) (-4 *3 (-429 *7))
- (-5 *4 (-1166)) (-4 *7 (-609 (-885 (-561)))) (-4 *7 (-450))
- (-4 *7 (-879 (-561))) (-4 *7 (-844)) (-5 *2 (-582 *3))
- (-5 *1 (-570 *7 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-130)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-635 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1190) (-27) (-420 *8)))
+ (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544))
+ (-5 *2 (-635 *4)) (-5 *1 (-1007 *8 *4)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1166))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-635 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1190) (-27) (-420 *8)))
+ (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1006 *8 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544))))
+ ((*1 *1 *1) (-4 *1 (-995))) ((*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1005))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1005))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-912))))
+ ((*1 *1 *1) (-4 *1 (-1005))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-857)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-544)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4401)) (-4 *1 (-1003 *3))
+ (-4 *3 (-1204)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-544)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543))
+ (-4 *3 (-554))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-544)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-544)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543))
+ (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543))
+ (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-544)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-544)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-544)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))))
+(((*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-999)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999))))
+ ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-544))) (-5 *4 (-544)) (-5 *2 (-51)) (-5 *1 (-998)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-404 *5)) (-4 *5 (-554))
+ (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *5) (|:| |radicand| (-635 *5))))
+ (-5 *1 (-319 *5)) (-5 *4 (-765))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-544)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-993 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *1 *1 *1) (-4 *1 (-471)))
+ ((*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-876))))
+ ((*1 *1 *1) (-5 *1 (-964)))
+ ((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))))
(((*1 *1 *2)
+ (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-912)) (-4 *4 (-362))
+ (-5 *1 (-986 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6))
+ (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1)))
+ (-4 *1 (-420 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-614 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-720) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-645 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-720) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-984 *2)) (-4 *4 (-1229 *3)) (-4 *2 (-306))
+ (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-554)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1)))
+ (-4 *1 (-420 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4))
+ (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4))
+ (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))))
+(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-1042))))
+ ((*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))))
+(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-554))))
+ ((*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349))))
+ ((*1 *1) (-4 *1 (-367)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349))))
+ ((*1 *1 *1) (-4 *1 (-543))) ((*1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1) (-5 *1 (-544))) ((*1 *1 *1) (-5 *1 (-765)))
+ ((*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091))))
+ ((*1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-543)) (-4 *2 (-554)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3))
- (|:| |genIdeal| (-502 *3 *4 *5 *6))))
- (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))))
-(((*1 *1) (-5 *1 (-1256))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-638 (-1148))) (-5 *3 (-561)) (-5 *4 (-1148))
- (-5 *1 (-240))))
- ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+ (-979 (-406 (-544)) (-858 *3) (-238 *4 (-765)) (-246 *3 (-406 (-544)))))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-980 *3 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-943 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-844))
+ (-4 *6 (-787)) (-5 *1 (-979 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844))
+ (-4 *5 (-787)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-635 *6))
+ (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-979 *3 *4 *5 *2)) (-4 *3 (-450))
+ (-4 *4 (-844)) (-4 *5 (-787)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1229 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-978 *4 *2 *3 *5))
+ (-4 *4 (-349)) (-4 *5 (-718 *2 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844))
- (-5 *1 (-570 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-290)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-348))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2762 (-638 (-2 (|:| |irr| *3) (|:| -3453 (-561)))))))
- (-5 *1 (-215 *5 *3)) (-4 *3 (-1230 *5)))))
+ (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))))
+ (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2))
+ (-4 *2 (-943 (-406 (-939 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -4377 ((-1166) $))
+ (-15 -4238 ((-3 $ #1="failed") (-1166))))))
+ (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *6))
+ (-4 *6
+ (-13 (-844)
+ (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166))))))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2))
+ (-4 *2 (-943 (-939 *4) *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))))
+ (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2))
+ (-4 *2 (-943 (-406 (-939 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -4377 ((-1166) $))
+ (-15 -4238 ((-3 $ #1="failed") (-1166))))))
+ (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *6))
+ (-4 *6
+ (-13 (-844)
+ (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166))))))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2))
+ (-4 *2 (-943 (-939 *4) *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-867))))
+ ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867))))
+ ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-156))))
+ ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *6)) (-5 *4 (-1166)) (-4 *6 (-429 *5))
- (-4 *5 (-844)) (-5 *2 (-638 (-607 *6))) (-5 *1 (-570 *5 *6)))))
+ (-12 (-4 *5 (-362))
+ (-5 *2 (-635 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5))))) (-5 *1 (-971 *5))
+ (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-5 *1 (-692))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
+ (-5 *1 (-971 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362))
+ (-5 *2 (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6))))
+ (-5 *1 (-971 *6)) (-5 *3 (-682 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306))
+ (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-844))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
- (-5 *1 (-331)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1255))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1256)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1198 *5 *6 *7 *3))
- (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
- ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1230 *3)) (-4 *3 (-1042))
- (-4 *3 (-553))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306))
+ (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306))
+ (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-914)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042))
- (-4 *4 (-1205))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
- (-4 *5 (-237 (-3548 *3) (-765)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *5))
- (-2 (|:| -2442 *2) (|:| -4181 *5))))
- (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844))
- (-4 *7 (-942 *4 *5 (-858 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))))
-(((*1 *1 *1 *1) (-4 *1 (-654))))
-(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-945 (-561)))) (-5 *1 (-436))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1094))
- (-5 *1 (-753))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-561))) (-5 *2 (-1094))
- (-5 *1 (-753)))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
+ (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1254 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-348))
- (-5 *1 (-526 *5)))))
+ (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *1 (-970 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787))
+ (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1254 (-1254 (-561)))) (-5 *1 (-464)))))
-(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1052 (-1017 *4) (-1162 (-1017 *4)))) (-5 *3 (-856))
- (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1015))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259))
- (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259))
- (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))))
-(((*1 *1 *1 *1) (-4 *1 (-654))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1254
- (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -3233 (-561))
- (|:| -1566 (-561)) (|:| |spline| (-561)) (|:| -2276 (-561))
- (|:| |axesColor| (-867)) (|:| -3481 (-561))
- (|:| |unitsColor| (-867)) (|:| |showing| (-561)))))
- (-5 *1 (-1255)))))
+ (|partial| -12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -3728 (-635 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1090) (-1031 *5)))
- (-4 *5 (-879 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-924 *4 *5 *6)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2))
- (-4 *2 (-1230 *4)))))
-(((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-534))) ((*1 *1) (-4 *1 (-716)))
- ((*1 *1) (-4 *1 (-720)))
- ((*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
- ((*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))))
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-112))
- (-5 *1 (-359 *4 *5)) (-14 *5 (-638 (-1166)))))
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))
+ ((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-774 *4 (-858 *5)))) (-4 *4 (-450))
- (-14 *5 (-638 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1017 *3))
- (-4 *3 (-13 (-842) (-362) (-1015)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
- (-4 *3 (-1230 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362)))
- (-4 *3 (-1230 *2)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554))
+ (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
+ (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554))
+ (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
+ (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554))
+ (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
+ (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-682 *3))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2))
- (-4 *2 (-1245 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1230 *3))
- (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1245 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1245 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146)))
- (-5 *1 (-1142 *3)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787))
- (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-534)))
- ((*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1230 (-406 *2)))
- (-4 *2 (-1230 *4)) (-5 *1 (-340 *3 *4 *2 *5))
- (-4 *3 (-341 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209))
- (-4 *4 (-1230 (-406 *2))) (-4 *2 (-1230 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
- (-5 *1 (-331)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-4 *4 (-553)) (-4 *5 (-1230 *4))
- (-5 *2 (-2 (|:| -2155 (-618 *4 *5)) (|:| -1353 (-406 *5))))
- (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5))))
+ (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))
+ (-4 *5 (-1056 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))
+ (-4 *5 (-1056 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))
+ (-4 *5 (-1056 *3 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3515 *1) (|:| |upper| *1)))
+ (-4 *1 (-969 *4 *5 *3 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-635 (-635 (-936 (-224)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-635 (-635 (-936 (-224))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))))
+(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))))
+(((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
+ ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091))))
((*1 *2 *1)
- (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4))
- (-14 *3 (-914)) (-4 *4 (-1042))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-450)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1230 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
- (-5 *1 (-742)))))
+ (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6))
+ (-2 (|:| -2535 *5) (|:| -2536 *6))))
+ (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-844))
+ (-4 *8 (-943 *4 *6 (-858 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2)) (-4 *3 (-1042))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-912))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-912))
+ (-4 *2 (-362)) (-14 *5 (-986 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844)) (-4 *6 (-237 (-4364 *4) (-765)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6))
+ (-2 (|:| -2535 *5) (|:| -2536 *6))))
+ (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8))
+ (-4 *8 (-943 *2 *6 (-858 *4)))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5))
+ (-4 *4 (-1042)) (-4 *5 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *2 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-966 *4 *5 *6))
+ (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786)) (-4 *2 (-844)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844))
+ (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))
+ ((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1) (-4 *1 (-863 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))))
+(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-964)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-406 (-561)))
- (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-607 *3)) (-4 *3 (-429 *5))
- (-4 *5 (-13 (-844) (-553) (-1031 (-561))))
- (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-432 *5 *3)))))
+ (-12 (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-964)) (-5 *3 (-635 (-544))))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-964)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *2 (-554)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1229 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2124 (-765)) (|:| -3285 (-765)))) (-5 *1 (-765))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3261 *4))) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3261 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-554)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-635 (-765))) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1229 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1090)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1090)))))
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4164 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4))
- (-5 *3 (-638 *4)))))
-(((*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23)))))
+ (-12 (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4164 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3545 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3545 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3545 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-554))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3))
+ (-4 *3 (-1229 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-554))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3))
+ (-4 *3 (-1229 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4163 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-554))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *1)
+ (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391)))
+ (-3726 (|has| *1 (-6 -4383)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844))))
+ ((*1 *1) (-4 *1 (-838))) ((*1 *1 *1 *1) (-4 *1 (-844)))
+ ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1214 *3))
- (-5 *2 (-406 (-561))))))
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-767)) (-5 *1 (-113))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-958)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-857))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-956)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-635 *3)) (-5 *1 (-955 *3)) (-4 *3 (-543)))))
+(((*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543)))))
+(((*1 *1) (-4 *1 (-349)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-554) (-844) (-146)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1160 *5)))
+ (|:| |prim| (-1160 *5))))
+ (-5 *1 (-431 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-554) (-844) (-146)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1160 *3)) (|:| |pol2| (-1160 *3))
+ (|:| |prim| (-1160 *3))))
+ (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-420 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-939 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 *5))))
+ (-5 *1 (-954 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166)))
+ (-4 *5 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *5)))
+ (|:| |prim| (-1160 *5))))
+ (-5 *1 (-954 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-5 *5 (-1166))
+ (-4 *6 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *6)))
+ (|:| |prim| (-1160 *6))))
+ (-5 *1 (-954 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-5 *1 (-580 *2)) (-4 *2 (-1031 *3)) (-4 *2 (-362))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2))
+ (-4 *2 (-13 (-420 *4) (-995) (-1190)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-995) (-1190)))
+ (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-1166))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-953)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-912)) (-4 *5 (-554)) (-5 *2 (-682 *5))
+ (-5 *1 (-950 *5 *3)) (-4 *3 (-651 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *3 (-943 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| (-635 *3))))
+ (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765))
+ (-4 *8
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *3)) (-15 -3381 (*3 $)) (-15 -3380 (*3 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554))
+ (-4 *8 (-943 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *3)))
+ (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-544))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554))
+ (-4 *8 (-943 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *9) (|:| |radicand| *9)))
+ (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765))
+ (-4 *9
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-554)) (-4 *7 (-943 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *8) (|:| |radicand| *8)))
+ (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765))
+ (-4 *8
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2536 (-544)))) (-4 *1 (-420 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-883 *3))))
+ (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2536 (-544))))
+ (-5 *1 (-944 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2785)) (-5 *2 (-112)) (-5 *1 (-612))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -4375)) (-5 *2 (-112)) (-5 *1 (-612))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1614)) (-5 *2 (-112)) (-5 *1 (-612))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1872)) (-5 *2 (-112)) (-5 *1 (-684 *4))
- (-4 *4 (-608 (-856)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-856))) (-5 *2 (-112))
- (-5 *1 (-684 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1265))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171))))
+ (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844))
+ (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171))))
+ (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1042)) (-4 *4 (-844))
+ (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-765))))
+ (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-765))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-544))))
+ (-5 *1 (-944 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-420 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-420 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-383 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-720))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-943 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171))))
+ (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-635 (-765)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112)) (-5 *1 (-1171)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
- (-5 *2 (-1028)) (-5 *1 (-750)))))
-(((*1 *2)
- (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4)) (-4 *6 (-1230 (-406 *5)))
- (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-1105)))))
+ (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2 (-765)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-765)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1))
+ (-4 *1 (-943 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)) (-4 *2 (-450))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1229 (-544))) (-5 *2 (-635 (-544)))
+ (-5 *1 (-484 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))
+ (-4 *3 (-450)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-544)) (-4 *5 (-842)) (-4 *5 (-362))
+ (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1229 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1230 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-844))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-582 *4)) (-4 *4 (-13 (-29 *3) (-1190)))
- (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
- (-5 *1 (-580 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-582 (-406 (-945 *3))))
- (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
- (-5 *1 (-585 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -2430 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1254 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
- (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
- (-5 *3 (-638 (-682 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1254 (-1254 *5))) (-4 *5 (-362)) (-4 *5 (-1042))
- (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
- (-5 *3 (-638 (-682 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-638 *1)) (-4 *1 (-1134))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-638 *1)) (-4 *1 (-1134)))))
-(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
- (-4 *4 (-171)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2))
- (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4399) (-6 -4400))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2))
- (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4399) (-6 -4400)))))))
-(((*1 *1) (-5 *1 (-1075))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378)))
- (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259))
- (-5 *1 (-782))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1259) (-1254 *5) (-1254 *5) (-378)))
- (-5 *3 (-1254 (-378))) (-5 *5 (-378)) (-5 *2 (-1259))
- (-5 *1 (-782)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1110))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1599 *6) (|:| |sol?| (-112))) (-561)
- *6))
- (-4 *6 (-362)) (-4 *7 (-1230 *6))
- (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6)))
- (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-406 (-561)))
- (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787))
- (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3394 (-638 *9)) (|:| -1495 *4) (|:| |ineq| (-638 *9))))
- (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9))
- (-4 *4 (-1062 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787))
- (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3394 (-638 *9)) (|:| -1495 *4) (|:| |ineq| (-638 *9))))
- (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9))
- (-4 *4 (-1062 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2395 *3) (|:| |coef1| (-776 *3)) (|:| |coef2| (-776 *3))))
- (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))))
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765))
+ (-5 *1 (-938 *4 *5)) (-4 *5 (-1229 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3))
+ (-4 *3 (-1229 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1227 *5 *4)))
- (-5 *1 (-1104 *4 *5)) (-5 *3 (-1227 *5 *4)))))
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3))
+ (-4 *3 (-1229 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
- (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-638 (-1162 *13))) (-5 *3 (-1162 *13))
- (-5 *4 (-638 *12)) (-5 *5 (-638 *10)) (-5 *6 (-638 *13))
- (-5 *7 (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| *13)))))
- (-5 *8 (-638 (-765))) (-5 *9 (-1254 (-638 (-1162 *10))))
- (-4 *12 (-844)) (-4 *10 (-306)) (-4 *13 (-942 *10 *11 *12))
- (-4 *11 (-787)) (-5 *1 (-701 *11 *12 *10 *13)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2753 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
- (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
- (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4))
- (-4 *2 (-237 *3 *4)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -4226 *3) (|:| |gap| (-765)) (|:| -2970 (-776 *3))
- (|:| -1744 (-776 *3))))
- (-5 *1 (-776 *3)) (-4 *3 (-1042))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
- (-5 *2
- (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -2970 *1)
- (|:| -1744 *1)))
- (-4 *1 (-1056 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2
- (-2 (|:| -4226 *1) (|:| |gap| (-765)) (|:| -2970 *1)
- (|:| -1744 *1)))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *1) (-4 *1 (-960))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1166))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-638 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -3413 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1190) (-27) (-429 *8)))
- (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3)))
- (-5 *3 (-561)) (-5 *2 (-638 *4)) (-5 *1 (-1007 *8 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -2765 (-638 *7))))
- (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5))
+ (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042))
- (-5 *3 (-561)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-914)) (-4 *4 (-362))
- (-5 *1 (-986 *3 *4)))))
+ (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5))
+ (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-544)) (-5 *1 (-935)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-190)) (-5 *3 (-544))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-883 *6)))
+ (-5 *5 (-1 (-881 *6 *8) *8 (-883 *6) (-881 *6 *8))) (-4 *6 (-1091))
+ (-4 *8 (-13 (-1042) (-609 (-883 *6)) (-1031 *7))) (-5 *2 (-881 *6 *8))
+ (-4 *7 (-13 (-1042) (-844))) (-5 *1 (-934 *6 *7 *8)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
- (-4 *3 (-165 *6)) (-4 (-945 *6) (-879 *5))
- (-4 *6 (-13 (-879 *5) (-171))) (-5 *1 (-177 *5 *6 *3))))
+ (-12 (-5 *2 (-881 *5 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *3 (-165 *6))
+ (-4 (-939 *6) (-879 *5)) (-4 *6 (-13 (-879 *5) (-171)))
+ (-5 *1 (-177 *5 *6 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-882 *4 *1)) (-5 *3 (-885 *4)) (-4 *1 (-879 *4))
- (-4 *4 (-1090))))
+ (-12 (-5 *2 (-881 *4 *1)) (-5 *3 (-883 *4)) (-4 *1 (-879 *4))
+ (-4 *4 (-1091))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
- (-4 *6 (-13 (-1090) (-1031 *3))) (-4 *3 (-879 *5))
- (-5 *1 (-924 *5 *3 *6))))
+ (-12 (-5 *2 (-881 *5 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091))
+ (-4 *6 (-13 (-1091) (-1031 *3))) (-4 *3 (-879 *5)) (-5 *1 (-924 *5 *3 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090))
- (-4 *3 (-13 (-429 *6) (-609 *4) (-879 *5) (-1031 (-607 $))))
- (-5 *4 (-885 *5)) (-4 *6 (-13 (-553) (-844) (-879 *5)))
+ (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091))
+ (-4 *3 (-13 (-420 *6) (-609 *4) (-879 *5) (-1031 (-606 $))))
+ (-5 *4 (-883 *5)) (-4 *6 (-13 (-554) (-844) (-879 *5)))
(-5 *1 (-925 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 (-561) *3)) (-5 *4 (-885 (-561))) (-4 *3 (-543))
+ (-12 (-5 *2 (-881 (-544) *3)) (-5 *4 (-883 (-544))) (-4 *3 (-543))
(-5 *1 (-926 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 *6)) (-5 *3 (-607 *6)) (-4 *5 (-1090))
- (-4 *6 (-13 (-844) (-1031 (-607 $)) (-609 *4) (-879 *5)))
- (-5 *4 (-885 *5)) (-5 *1 (-927 *5 *6))))
+ (-12 (-5 *2 (-881 *5 *6)) (-5 *3 (-606 *6)) (-4 *5 (-1091))
+ (-4 *6 (-13 (-844) (-1031 (-606 $)) (-609 *4) (-879 *5))) (-5 *4 (-883 *5))
+ (-5 *1 (-927 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
+ (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091))
(-4 *6 (-879 *5)) (-4 *3 (-659 *6)) (-5 *1 (-928 *5 *6 *3))))
((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-882 *6 *3) *8 (-885 *6) (-882 *6 *3)))
- (-4 *8 (-844)) (-5 *2 (-882 *6 *3)) (-5 *4 (-885 *6))
- (-4 *6 (-1090)) (-4 *3 (-13 (-942 *9 *7 *8) (-609 *4)))
- (-4 *7 (-787)) (-4 *9 (-13 (-1042) (-844) (-879 *6)))
- (-5 *1 (-929 *6 *7 *8 *9 *3))))
+ (-12 (-5 *5 (-1 (-881 *6 *3) *8 (-883 *6) (-881 *6 *3))) (-4 *8 (-844))
+ (-5 *2 (-881 *6 *3)) (-5 *4 (-883 *6)) (-4 *6 (-1091))
+ (-4 *3 (-13 (-943 *9 *7 *8) (-609 *4))) (-4 *7 (-787))
+ (-4 *9 (-13 (-1042) (-844) (-879 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090))
- (-4 *3 (-13 (-942 *8 *6 *7) (-609 *4))) (-5 *4 (-885 *5))
- (-4 *7 (-879 *5)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *8 (-13 (-1042) (-844) (-879 *5)))
+ (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091))
+ (-4 *3 (-13 (-943 *8 *6 *7) (-609 *4))) (-5 *4 (-883 *5)) (-4 *7 (-879 *5))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-13 (-1042) (-844) (-879 *5)))
(-5 *1 (-929 *5 *6 *7 *8 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-985 *6))
- (-4 *6 (-13 (-553) (-879 *5) (-609 *4))) (-5 *4 (-885 *5))
+ (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-984 *6))
+ (-4 *6 (-13 (-554) (-879 *5) (-609 *4))) (-5 *4 (-883 *5))
(-5 *1 (-932 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-885 *5))
- (-4 *5 (-1090)) (-5 *1 (-933 *5))))
+ (-12 (-5 *2 (-881 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-883 *5))
+ (-4 *5 (-1091)) (-5 *1 (-933 *5))))
((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-638 (-885 *7))) (-5 *5 (-1 *9 (-638 *9)))
- (-5 *6 (-1 (-882 *7 *9) *9 (-885 *7) (-882 *7 *9))) (-4 *7 (-1090))
- (-4 *9 (-13 (-1042) (-609 (-885 *7)) (-1031 *8)))
- (-5 *2 (-882 *7 *9)) (-5 *3 (-638 *9)) (-4 *8 (-13 (-1042) (-844)))
- (-5 *1 (-934 *7 *8 *9)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *1) (-4 *1 (-960))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042))
- (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-942 *2 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-1254 *3))
- (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-27) (-429 *4)))
- (-4 *4 (-13 (-844) (-553) (-1031 (-561))))
- (-4 *7 (-1230 (-406 *6))) (-5 *1 (-549 *4 *5 *6 *7 *2))
- (-4 *2 (-341 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-553) (-146)))
- (-5 *2 (-2 (|:| -1586 *3) (|:| -1599 *3))) (-5 *1 (-1224 *4 *3))
- (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1259)) (-5 *1 (-825)))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
- (-4 *3 (-553)))))
-(((*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1) (-5 *1 (-627))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1) (-4 *1 (-960))) ((*1 *1 *1) (-5 *1 (-1110))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-406 (-561))))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842)))
- (-5 *2 (-638 (-2 (|:| -2762 (-638 *3)) (|:| -3984 *5))))
- (-5 *1 (-180 *5 *3)) (-4 *3 (-1230 (-168 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-362) (-842)))
- (-5 *2 (-638 (-2 (|:| -2762 (-638 *3)) (|:| -3984 *4))))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-750)))))
-(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+ (-12 (-5 *4 (-635 (-883 *7))) (-5 *5 (-1 *9 (-635 *9)))
+ (-5 *6 (-1 (-881 *7 *9) *9 (-883 *7) (-881 *7 *9))) (-4 *7 (-1091))
+ (-4 *9 (-13 (-1042) (-609 (-883 *7)) (-1031 *8))) (-5 *2 (-881 *7 *9))
+ (-5 *3 (-635 *9)) (-4 *8 (-13 (-1042) (-844))) (-5 *1 (-934 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1230 *4)) (-5 *1 (-803 *4 *2 *3 *5))
- (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2))
- (-4 *5 (-649 (-406 *2))))))
-(((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-5 *2 (-765)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-638 *3)) (-4 *3 (-1205)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -3413 (-406 *6)) (|:| |coeff| (-406 *6))))
- (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-156)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1603 (-776 *3)) (|:| |coef2| (-776 *3))))
- (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-2 (|:| -1603 *1) (|:| |coef2| *1)))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3305 (-1148))))
- (-5 *1 (-816)))))
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1091) (-1031 *5)))
+ (-4 *5 (-879 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-924 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922))))
+ ((*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922))))
+ ((*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-313 (-544))) (-5 *1 (-922))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-923 *4 *2)) (-4 *2 (-420 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-406 (-561))))
- (-5 *2 (-2 (|:| -4085 (-1146 *4)) (|:| -4097 (-1146 *4))))
- (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))))
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-1079 (-224))))
+ (-5 *1 (-921)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224)))
+ (-5 *1 (-918))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224)))
+ (-5 *1 (-918))))
+ ((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224)))
+ (-5 *1 (-920))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224)))
+ (-5 *1 (-920)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224)))
+ (-5 *1 (-918))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224)))
+ (-5 *1 (-918))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3))
+ (-4 *3 (-609 (-533)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3))
+ (-4 *3 (-609 (-533)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-920)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-918))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3))
+ (-4 *3 (-609 (-533)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112))
+ (-5 *1 (-917 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-765)) (-5 *5 (-638 *3)) (-4 *3 (-306)) (-4 *6 (-844))
- (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8))
- (-4 *8 (-942 *3 *7 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
- ((*1 *1 *1) (-4 *1 (-842)))
- ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
- ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1230 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306))
- (-4 *10 (-942 *9 *7 *8))
+ (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166))))
+ (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-943 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))
+ (-5 *4 (-682 *12)) (-5 *5 (-635 (-406 (-939 *9)))) (-5 *6 (-635 (-635 *12)))
+ (-5 *7 (-765)) (-5 *8 (-544)) (-4 *9 (-13 (-306) (-146)))
+ (-4 *12 (-943 *9 *11 *10)) (-4 *10 (-13 (-844) (-609 (-1166))))
+ (-4 *11 (-787))
(-5 *2
- (-2 (|:| |deter| (-638 (-1162 *10)))
- (|:| |dterm|
- (-638 (-638 (-2 (|:| -4298 (-765)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-638 *6)) (|:| |nlead| (-638 *10))))
- (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1162 *10)) (-5 *4 (-638 *6))
- (-5 *5 (-638 *10)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
- (-14 *4 (-638 (-1166)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1205))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
- (-14 *4 (-638 (-1166)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1230 *3)) (-5 *1 (-398 *3 *2))
- (-4 *3 (-13 (-362) (-146))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553))))))
-(((*1 *1 *1) (-5 *1 (-1054))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (|has| *1 (-6 -4400)) (-4 *1 (-1242 *3))
- (-4 *3 (-1205)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7))
- (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205))
- (-4 *7 (-1205))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6))
- (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-638 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1230 *5))
- (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3394 *3))))
- (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6))
- (-4 *7 (-649 (-406 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-638 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *6 (-1230 *5))
- (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3394 (-647 *6 (-406 *6))))))
- (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-741)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224)))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1042)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1254 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
- ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
- ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-246 *3 *4))
- (-14 *3 (-638 (-1166))) (-4 *4 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-561))) (-14 *3 (-638 (-1166)))
- (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1042))
- (-4 *5 (-237 (-3548 *3) (-765)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-479 *3 *4))
- (-14 *3 (-638 (-1166))) (-4 *4 (-1042)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3))
- (-4 *3 (-1230 *4)))))
+ (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12))
+ (|:| |wcond| (-635 (-939 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *9))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *9)))))))))
+ (-5 *1 (-917 *9 *10 *11 *12)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+ (-12 (-5 *2 (-682 *7)) (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-943 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787))
+ (-5 *2
+ (-635
+ (-2 (|:| |det| *8) (|:| |rows| (-635 (-544)))
+ (|:| |cols| (-635 (-544))))))
+ (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-943 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2395 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090))
- (-5 *2 (-112)))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-917 *4 *5 *6 *7))
+ (-5 *3 (-544)) (-4 *7 (-943 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-943 *3 *5 *4))
+ (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166))))
+ (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1))
- (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *1) (-5 *1 (-156))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))
- (-4 *2 (-450))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-1230 (-561))) (-5 *2 (-638 (-561)))
- (-5 *1 (-484 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)) (-4 *3 (-450)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6))
- (|:| -3407 *6)))
- (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-638 (-114))))))
-(((*1 *2)
- (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| -3494 (-765))
+ (|:| |eqns|
+ (-635
+ (-2 (|:| |det| *7) (|:| |rows| (-635 (-544)))
+ (|:| |cols| (-635 (-544))))))
+ (|:| |fgb| (-635 *7)))))
+ (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1254 (-638 (-561)))) (-5 *1 (-478))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1230 (-406 (-561)))) (-5 *1 (-906 *3 *2))
- (-4 *2 (-1230 (-406 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-1254 *4))
- (-5 *1 (-808 *4 *3)) (-4 *3 (-649 *4)))))
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| -3494 (-765))
+ (|:| |eqns|
+ (-635
+ (-2 (|:| |det| *7) (|:| |rows| (-635 (-544)))
+ (|:| |cols| (-635 (-544))))))
+ (|:| |fgb| (-635 *7)))))
+ (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-664))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914))
- (-14 *4 (-914)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
- (-5 *1 (-750)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1090)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -3413 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-362)) (-4 *7 (-1230 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
- (-2 (|:| -3413 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
- (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
- (-5 *2 (-638 (-638 (-638 (-936 *3))))))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-797)))))
-(((*1 *1) (-4 *1 (-348))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-844)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1166))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-638 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -3413 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1190) (-27) (-429 *8)))
- (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3)))
- (-5 *3 (-561))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -1599 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1006 *8 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-635 *3)) (-5 *1 (-917 *4 *5 *6 *3))
+ (-4 *3 (-943 *4 *6 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1042))
- (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -1728 (-682 (-406 (-939 *4)))) (|:| |vec| (-635 (-406 (-939 *4))))
+ (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787))
+ (-5 *2
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *4))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *4))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))
+ (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-943 *4 *6 *5))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146)))
+ (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787))
+ (-5 *2
+ (-635
+ (-2 (|:| -3494 (-765))
+ (|:| |eqns|
+ (-635
+ (-2 (|:| |det| *8) (|:| |rows| (-635 (-544)))
+ (|:| |cols| (-635 (-544))))))
+ (|:| |fgb| (-635 *8)))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-4 *7 (-943 *4 *6 *5))
+ (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
- (-4 *5 (-429 *4)) (-5 *2 (-417 (-1162 (-406 (-561)))))
- (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1230 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
- (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-970 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-4 *1 (-142)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
+ (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-943 *4 *6 *5))
+ (-5 *1 (-917 *4 *5 *6 *2)) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
- (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-823)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-535 *4 *2))
- (-4 *2 (-1245 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3)))
- (-4 *5 (-1230 *4)) (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2))
- (-4 *2 (-1245 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3)))
- (-5 *1 (-540 *4 *2)) (-4 *2 (-1245 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146)))
- (-5 *1 (-1142 *4)))))
+ (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
+ (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7))
+ (-4 *7 (-943 *4 *6 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995))))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))))
-(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
- ((*1 *1 *1 *1) (-4 *1 (-471)))
- ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
- ((*1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-876))))
- ((*1 *1 *1) (-5 *1 (-964)))
- ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1230 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-638 (-607 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-607 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-406 (-939 *4))) (-5 *1 (-917 *4 *5 *6 *3))
+ (-4 *3 (-943 *4 *6 *5))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1230 (-168 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1230 *2)) (-4 *2 (-171))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1230 *2)) (-4 *2 (-985 *3)) (-5 *1 (-412 *3 *2 *4 *5))
- (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1031 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1230 *2)) (-4 *2 (-985 *3))
- (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4))
- (-14 *6 (-1254 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-4 *5 (-1042))
- (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))
- (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1230 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-493)))) (-5 *1 (-493))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-493))) (-5 *1 (-493))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-638 (-607 (-493))))
- (-5 *1 (-493))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-607 (-493))) (-5 *1 (-493))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-914)) (-4 *4 (-348))
- (-5 *1 (-526 *4))))
+ (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
+ (-5 *2 (-682 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1230 *4))
- (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1230 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171))))
- ((*1 *1 *1) (-4 *1 (-1051))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
+ (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-682 *11)) (-5 *4 (-635 (-406 (-939 *8)))) (-5 *5 (-765))
+ (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-943 *8 *10 *9))
+ (-4 *9 (-13 (-844) (-609 (-1166)))) (-4 *10 (-787))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-635
+ (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11))
+ (|:| |wcond| (-635 (-939 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *8))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *8))))))))))
+ (|:| |rgsz| (-544))))
+ (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-544)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
+ (-5 *2
+ (-635
+ (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7))
+ (|:| |wcond| (-635 (-939 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *4))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
- (-4 *7 (-787))
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-939 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *5))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *5))))))))))
+ (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-943 *5 *7 *6))
+ (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-544))
+ (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146)))
+ (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787))
(-5 *2
- (-638
- (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
- (|:| |wcond| (-638 (-945 *5)))
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-939 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *5))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *5))))))))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-638 *8))))
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *5))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *5))))))))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-635 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *8)) (-5 *4 (-638 (-1166))) (-4 *8 (-942 *5 *7 *6))
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-635 (-1166))) (-4 *8 (-943 *5 *7 *6))
(-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
(-4 *7 (-787))
(-5 *2
- (-638
- (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
- (|:| |wcond| (-638 (-945 *5)))
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-939 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *5))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *5))))))))))
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *5))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *5))))))))))
(-5 *1 (-917 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787))
+ (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
(-5 *2
- (-638
- (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7))
- (|:| |wcond| (-638 (-945 *4)))
+ (-635
+ (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7))
+ (|:| |wcond| (-635 (-939 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *4))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *4))))))))))
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *4))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))))))
(-5 *1 (-917 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-682 *9)) (-5 *5 (-914)) (-4 *9 (-942 *6 *8 *7))
+ (-12 (-5 *3 (-682 *9)) (-5 *5 (-912)) (-4 *9 (-943 *6 *8 *7))
(-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166))))
(-4 *8 (-787))
(-5 *2
- (-638
- (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9))
- (|:| |wcond| (-638 (-945 *6)))
+ (-635
+ (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9))
+ (|:| |wcond| (-635 (-939 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *6))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *6))))))))))
- (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-638 *9))))
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *6))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *6))))))))))
+ (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-635 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-914))
- (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-912))
+ (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
(-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787))
(-5 *2
- (-638
- (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9))
- (|:| |wcond| (-638 (-945 *6)))
+ (-635
+ (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9))
+ (|:| |wcond| (-635 (-939 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *6))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *6))))))))))
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *6))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *6))))))))))
(-5 *1 (-917 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *8)) (-5 *4 (-914)) (-4 *8 (-942 *5 *7 *6))
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-912)) (-4 *8 (-943 *5 *7 *6))
(-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
(-4 *7 (-787))
(-5 *2
- (-638
- (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
- (|:| |wcond| (-638 (-945 *5)))
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-939 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1254 (-406 (-945 *5))))
- (|:| -2615 (-638 (-1254 (-406 (-945 *5))))))))))
+ (-2 (|:| |partsol| (-1253 (-406 (-939 *5))))
+ (|:| -2162 (-635 (-1253 (-406 (-939 *5))))))))))
(-5 *1 (-917 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 *9)) (-5 *5 (-1148))
- (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1148))
+ (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544))
(-5 *1 (-917 *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-1148))
- (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-1148))
+ (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544))
(-5 *1 (-917 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-942 *5 *7 *6))
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-943 *5 *7 *6))
(-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
- (-4 *7 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *5 *6 *7 *8))))
+ (-4 *7 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 *10)) (-5 *5 (-914))
- (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
- (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561))
+ (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 *10)) (-5 *5 (-912)) (-5 *6 (-1148))
+ (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
+ (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544))
(-5 *1 (-917 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 (-1166))) (-5 *5 (-914))
- (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
- (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561))
+ (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 (-1166))) (-5 *5 (-912)) (-5 *6 (-1148))
+ (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
+ (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544))
(-5 *1 (-917 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-682 *9)) (-5 *4 (-914)) (-5 *5 (-1148))
- (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561))
- (-5 *1 (-917 *6 *7 *8 *9)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257))))
- ((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-856) (-856) (-856))) (-5 *4 (-561)) (-5 *2 (-856))
- (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1090)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-856)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-856))))
- ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-856))))
- ((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-856)) (-5 *1 (-1162 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-638
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224)))))
- (-5 *1 (-556))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-5 *2 (-638 *3))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-638
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224)))))
- (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1090)) (-5 *2 (-765)))))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-912)) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7))
+ (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166))))
+ (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1229 *4))
+ (-5 *1 (-916 *4 *2)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-191)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1205))
- (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042))
- (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-914)) (-5 *2 (-2 (|:| -4361 (-635 *1)) (|:| -2544 *1)))
+ (-5 *3 (-635 *1)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-914)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450))
+ (-5 *1 (-911 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450))
+ (-5 *1 (-911 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-912))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2))
+ (-4 *2 (-943 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-404 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-146)))
+ (-5 *2 (-51)) (-5 *1 (-908 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-404 (-939 *6))) (-5 *5 (-1166)) (-5 *3 (-939 *6))
+ (-4 *6 (-13 (-306) (-146))) (-5 *2 (-51)) (-5 *1 (-908 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-404 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1229 (-406 (-544)))) (-5 *1 (-906 *3 *2))
+ (-4 *2 (-1229 (-406 *3))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-112)) (-5 *1 (-299)))))
+ (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3))
+ (-4 *3 (-1229 (-406 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
- (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-942 *4 *6 *5)) (-4 *4 (-450))
- (-4 *5 (-844)) (-4 *6 (-787)) (-5 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-638
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-561)))))
- (-5 *1 (-417 *3)) (-4 *3 (-553))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-765)) (-4 *3 (-348)) (-4 *5 (-1230 *3))
- (-5 *2 (-638 (-1162 *3))) (-5 *1 (-496 *3 *5 *6))
- (-4 *6 (-1230 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-1254 *5))) (-5 *4 (-561)) (-5 *2 (-1254 *5))
- (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028))
- (-5 *1 (-740)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-702 *3)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
- (-5 *2 (-1028)) (-5 *1 (-745)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2))
- (-4 *2 (-667 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-4 *1 (-896 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-534)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-819)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-5 *2 (-765))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
- (-5 *2 (-765))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-720)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 *5)) (-4 *5 (-362)) (-5 *2 (-638 *6))
- (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
+ (-12 (-5 *3 (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))))
+ (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *5))
+ (-4 *5 (-1229 (-406 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5))
- (-4 *3 (-1230 *4))
- (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205))
- (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090))
- (-4 *2 (-1205)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224)))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-746)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-638 (-1166)))
- (-5 *2 (-638 (-638 (-378)))) (-5 *1 (-1016)) (-5 *5 (-378))))
+ (-12 (-4 *3 (-1229 (-406 (-544))))
+ (-5 *2 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))) (-5 *1 (-906 *3 *4))
+ (-4 *4 (-1229 (-406 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4)))))
- (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3))
+ (-4 *3 (-1229 (-406 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-544)) (-4 *4 (-1229 (-406 *3))) (-5 *2 (-912))
+ (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-844) (-554) (-1031 (-544))))
+ (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *8)))
+ (-5 *1 (-904 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-945 *4)))
- (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6))
- (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2))
- (-4 *2 (-1090))))
+ (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6))
+ (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4)))
+ (-4 *6 (-341 (-406 (-544)) *4 *5))
+ (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *6))) (-5 *1 (-905 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5))
+ (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-112))
+ (-5 *1 (-904 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-844))
- (-5 *1 (-1206 *2)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7))
- (-4 *7 (-942 *5 *6 *4)) (-4 *5 (-902)) (-4 *6 (-787))
- (-4 *4 (-844)) (-5 *1 (-899 *5 *6 *4 *7)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561)))))
- (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1275 *5 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-638 (-638 *4))) (-5 *2 (-638 *4)) (-4 *4 (-306))
- (-5 *1 (-178 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 *8))
- (-5 *4
- (-638
- (-2 (|:| -2615 (-682 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-682 *7)))))
- (-5 *5 (-765)) (-4 *8 (-1230 *7)) (-4 *7 (-1230 *6)) (-4 *6 (-348))
- (-5 *2
- (-2 (|:| -2615 (-682 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-682 *7))))
- (-5 *1 (-496 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *3))
- (-4 *3 (-1205)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-348)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ (-12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544))))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-905 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-450))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1129))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042))
- (-5 *1 (-1022 *4)))))
+ (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-4 *5 (-903)) (-5 *1 (-455 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-903)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1))
+ (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844))))
+ ((*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1))
+ (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844))))
+ ((*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))))
+(((*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224)))
- (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))))
-(((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
-(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-579)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *4 (-765))
- (-5 *2 (-682 (-224))) (-5 *1 (-266)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+ (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5)) (-4 *5 (-165 *4))
+ (-4 *4 (-543)) (-5 *1 (-148 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-1229 *4))
+ (-4 *4 (-349)) (-5 *1 (-357 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1160 (-544)))) (-5 *3 (-1160 (-544)))
+ (-5 *1 (-569))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1160 *1))) (-5 *3 (-1160 *1)) (-4 *1 (-903)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-349)) (-5 *2 (-1253 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-903))
+ (-5 *2 (-1253 *1)))))
+(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-349)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-903)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 (-168 (-561))))) (-5 *2 (-638 (-168 *4)))
- (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561))))))
- (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 (-168 *5))))
- (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-842))))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-844)) (-4 *5 (-903)) (-4 *6 (-787))
+ (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-404 (-1160 *8))) (-5 *1 (-900 *5 *6 *7 *8))
+ (-5 *4 (-1160 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5)))
+ (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-914)) (-5 *4 (-224)) (-5 *5 (-561)) (-5 *6 (-867))
- (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-561)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306))
- (-4 *9 (-942 *8 *6 *7))
- (-5 *2 (-2 (|:| -3590 (-1162 *9)) (|:| |polval| (-1162 *8))))
- (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)) (-5 *4 (-1162 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
-(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224)))))
- ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-561))))
- (-4 *4 (-13 (-1230 *3) (-553) (-10 -8 (-15 -1603 ($ $ $)))))
- (-4 *3 (-553)) (-5 *1 (-1233 *3 *4)))))
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-455 *3 *4 *2 *5))
+ (-4 *5 (-943 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-900 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-903)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6))
+ (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5)))
+ (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6))
+ (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5)))
+ (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7))
+ (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-900 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5))
+ (-4 *5 (-1229 *4)) (-4 *4 (-903)) (-5 *1 (-901 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7))
+ (-4 *7 (-943 *5 *6 *4)) (-4 *5 (-903)) (-4 *6 (-787)) (-4 *4 (-844))
+ (-5 *1 (-900 *5 *6 *4 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *6))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) ((*1 *1) (-4 *1 (-543)))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-635 (-765)))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-1087 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-635 *4))) (-5 *1 (-898 *4))
+ (-5 *3 (-635 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-898 *4))
+ (-5 *3 (-1087 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1087 (-1087 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765)))
+ (-5 *1 (-898 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765)))
+ (-5 *1 (-898 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-898 *4)) (-4 *4 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-897 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-4 *1 (-897 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-912))
+ (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4402 "*"))))) (-5 *1 (-896 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3))))
+ (-5 *1 (-895 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367)) (-4 *3 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765))))
+ ((*1 *1 *1) (-4 *1 (-232)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
+ (-4 *4 (-1229 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4))
+ (-4 *4 (-1091))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091)))))
(((*1 *2 *3)
(-12 (-5 *3 (-763))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))))
(-5 *1 (-562))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-763)) (-5 *4 (-1054))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))))
(-5 *1 (-562))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-781)) (-5 *3 (-1054))
(-5 *4
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224)))))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))
+ (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))
(|:| |extra| (-1028))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-781)) (-5 *3 (-1054))
(-5 *4
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))
+ (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))
(|:| |extra| (-1028))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-794)) (-5 *3 (-1054))
(-5 *4
(-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
(|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))))))
+ (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))))))
((*1 *2 *3)
(-12 (-5 *3 (-802))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148)))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148)))))
(-5 *1 (-799))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-802)) (-5 *4 (-1054))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148)))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148)))))
(-5 *1 (-799))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-833)) (-5 *3 (-1054))
- (-5 *4
- (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))
- (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))))))
+ (-5 *4 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))
+ (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-833)) (-5 *3 (-1054))
(-5 *4
- (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224)))
- (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
- (|:| |ub| (-638 (-837 (-224))))))
- (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224)))
+ (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224))))
+ (|:| |ub| (-635 (-836 (-224))))))
+ (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))))))
((*1 *2 *3)
(-12 (-5 *3 (-835))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148)))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148)))))
(-5 *1 (-834))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-835)) (-5 *4 (-1054))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148)))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148)))))
(-5 *1 (-834))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-888)) (-5 *3 (-1054))
(-5 *4
- (-2 (|:| |pde| (-638 (-315 (-224))))
+ (-2 (|:| |pde| (-635 (-313 (-224))))
(|:| |constraints|
- (-638
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-765)) (|:| |boundaryType| (-561))
- (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
- (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765))
+ (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224)))
+ (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148))
(|:| |tol| (-224))))
- (-5 *2 (-2 (|:| -2008 (-378)) (|:| |explanations| (-1148))))))
+ (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))))))
((*1 *2 *3)
(-12 (-5 *3 (-891))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148)))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148)))))
(-5 *1 (-890))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-891)) (-5 *4 (-1054))
(-5 *2
- (-2 (|:| -2008 (-378)) (|:| -3305 (-1148))
- (|:| |explanations| (-638 (-1148)))))
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148)))))
(-5 *1 (-890)))))
-(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1257)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1229 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7))
- (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205))
- (-4 *7 (-1205)))))
+ (-12 (-4 *1 (-888))
+ (-5 *3
+ (-2 (|:| |pde| (-635 (-313 (-224))))
+ (|:| |constraints|
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765))
+ (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224)))
+ (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148))
+ (|:| |tol| (-224))))
+ (-5 *2 (-1028)))))
+(((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-533))) ((*1 *1) (-4 *1 (-716))) ((*1 *1) (-4 *1 (-720)))
+ ((*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))
+ ((*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091))
+ (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |k| (-886 *3)) (|:| |c| *4))))
+ (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1204))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-638 *4))) (-4 *4 (-844))
- (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1090)) (-5 *2 (-55)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787))
- (-4 *8 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2765 (-638 *9))))
- (-5 *3 (-638 *9)) (-4 *1 (-1198 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-635 *5)) (-5 *1 (-884 *4 *5))
+ (-4 *5 (-1204)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1204)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-112))
+ (-5 *1 (-881 *4 *5)) (-4 *5 (-1091))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2765 (-638 *8))))
- (-5 *3 (-638 *8)) (-4 *1 (-1198 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-450))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *5 (-902)) (-5 *1 (-455 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-902)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042))
- (-4 *5 (-844)) (-5 *2 (-945 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042))
- (-4 *5 (-844)) (-5 *2 (-945 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-1245 *4)) (-4 *4 (-1042))
- (-5 *2 (-945 *4))))
+ (-12 (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3))
+ (-4 *3 (-1204))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1204))
+ (-5 *2 (-112)) (-5 *1 (-884 *5 *6)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-533))) ((*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 (-883 *3)))))
+ (-5 *1 (-883 *3)) (-4 *3 (-1091))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-1245 *4)) (-4 *4 (-1042))
- (-5 *2 (-945 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224)))))
- ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-883 *4))) (-5 *1 (-883 *4))
+ (-4 *4 (-1091)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-302))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |num| (-883 *3)) (|:| |den| (-883 *3))))
+ (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844))))
+ (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-883 *4)) (-4 *4 (-1091)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-51)) (-5 *1 (-883 *4)) (-4 *4 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51))))
+ (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091))
+ (-4 *5 (-659 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4))))))
-(((*1 *1 *1) (-4 *1 (-1051)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *2 (-1028)) (-5 *1 (-748)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-882 *4 *5)) (-5 *3 (-882 *4 *6)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1230 *5))
- (-4 *7 (-1230 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
- (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-112))
- (-5 *1 (-904 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6))
- (-4 *4 (-1230 (-406 (-561)))) (-4 *5 (-1230 (-406 *4)))
- (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-905 *4 *5 *6)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-914))
- (-4 *2 (-1090)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091))
+ (-4 *4 (-659 *3))))
+ ((*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765)))
- (-5 *1 (-897 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-561))))
- (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5))
- (-4 *5 (-942 *4 (-529 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1199 *4))) (-5 *3 (-1166)) (-5 *1 (-1199 *4))
- (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9))
- (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *9 (-1056 *6 *7 *8))
- (-5 *2
- (-638
- (-2 (|:| -3394 (-638 *9)) (|:| -1495 *10) (|:| |ineq| (-638 *9)))))
- (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9))
- (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *9 (-1056 *6 *7 *8))
- (-5 *2
- (-638
- (-2 (|:| -3394 (-638 *9)) (|:| -1495 *10) (|:| |ineq| (-638 *9)))))
- (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-638 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-561))
- (-5 *2 (-682 *6)) (-5 *1 (-1022 *6)) (-4 *6 (-362)) (-4 *6 (-1042))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1022 *4))
- (-4 *4 (-362)) (-4 *4 (-1042))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-5 *2 (-682 *5))
- (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))))
-(((*1 *1 *1) (-4 *1 (-624)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
-(((*1 *2)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
- (-4 *5 (-372 *2)) (-4 *2 (-1205))))
+ (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-4 *2 (-1091))
+ (-5 *1 (-881 *4 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-635 *6)))
+ (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-609 (-883 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 *3))) (-5 *1 (-880 *5 *3 *4))
+ (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 (-939 *3)))) (-5 *1 (-880 *5 *3 *4))
+ (-4 *3 (-1042)) (-3726 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5))
+ (-4 *4 (-609 (-883 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-5 *2 (-881 *5 *3)) (-5 *1 (-880 *5 *3 *4))
+ (-3726 (-4 *3 (-1031 (-1166)))) (-3726 (-4 *3 (-1042))) (-4 *3 (-879 *5))
+ (-4 *4 (-609 (-883 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-113))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-4 *2 (-1090)) (-5 *1 (-212 *4 *2))
- (-14 *4 (-914))))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7))
- (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
- (-5 *2 (-2 (|:| -1450 (-638 *6)) (|:| -3368 (-638 *6)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-246 *4 *5))) (-5 *2 (-246 *4 *5))
- (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1162 *7)) (-4 *5 (-1042))
- (-4 *7 (-1042)) (-4 *2 (-1230 *5)) (-5 *1 (-499 *5 *2 *6 *7))
- (-4 *6 (-1230 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042))
- (-4 *4 (-1230 *5)) (-5 *2 (-1162 *7)) (-5 *1 (-499 *5 *4 *6 *7))
- (-4 *6 (-1230 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-553))))
- ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-765)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *3 (-1056 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *3 (-1056 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
- (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3))))
+ (-12 (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-879 *5))
+ (-4 *4 (-609 (-883 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *3 (-1056 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-638 *4))
- (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1495 *4))))))
- (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5))
- (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 *3)) (-4 *3 (-1230 *5))
- (-4 *5 (-1230 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 (-1162 (-561)))) (-5 *3 (-1162 (-561)))
- (-5 *1 (-569))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-638 (-1162 *1))) (-5 *3 (-1162 *1))
- (-4 *1 (-902)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-765)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2))
- (-4 *2 (-1230 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4)))
- (-5 *1 (-1176 *4)) (-4 *4 (-844)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450))
- (-5 *2
- (-638
- (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4))))
- (|:| |geneigvec| (-638 (-682 (-406 (-945 *4))))))))
- (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-234 *3))
- (-4 *3 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876))
- (-5 *3 (-638 (-561))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084 (-837 (-378)))) (-5 *2 (-1084 (-837 (-224))))
- (-5 *1 (-304)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-406 (-561))) (-4 *1 (-551 *3))
- (-4 *3 (-13 (-403) (-1190)))))
- ((*1 *1 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1254 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348)))))
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1091)) (-5 *2 (-112))
+ (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-883 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-881 *4 *5)) (-5 *3 (-881 *4 *6)) (-4 *4 (-1091))
+ (-4 *5 (-1091)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1090))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+ (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *4)) (-5 *1 (-878 *3 *4 *5))
+ (-4 *3 (-1091)) (-4 *5 (-659 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *5)) (-5 *1 (-878 *3 *4 *5))
+ (-4 *3 (-1091)) (-4 *5 (-659 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2395 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1205)))))
-(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1090) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1254 *4)) (-4 *4 (-1042)) (-4 *2 (-1230 *4))
- (-5 *1 (-442 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-406 (-1162 (-315 *5)))) (-5 *3 (-1254 (-315 *5)))
- (-5 *4 (-561)) (-4 *5 (-13 (-553) (-844))) (-5 *1 (-1120 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1230 (-406 *2)))
- (-4 *2 (-1230 *4)) (-5 *1 (-340 *3 *4 *2 *5))
- (-4 *3 (-341 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209))
- (-4 *4 (-1230 (-406 *2))) (-4 *2 (-1230 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $))
- (-15 -4088 ((-1115 *3 (-607 $)) $))
- (-15 -4064 ($ (-1115 *3 (-607 $))))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2762 (-638 (-2 (|:| |irr| *10) (|:| -3453 (-561)))))))
- (-5 *6 (-638 *3)) (-5 *7 (-638 *8)) (-4 *8 (-844)) (-4 *3 (-306))
- (-4 *10 (-942 *3 *9 *8)) (-4 *9 (-787))
- (-5 *2
- (-2 (|:| |polfac| (-638 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-638 (-1162 *3)))))
- (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-638 (-1162 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-141 *2 *4 *3))
- (-4 *3 (-372 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-501 *2 *4 *5 *3))
- (-4 *5 (-372 *2)) (-4 *3 (-372 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-682 *4)) (-4 *4 (-985 *2)) (-4 *2 (-553))
- (-5 *1 (-686 *2 *4))))
+ (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544)))))
((*1 *2 *3)
- (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-1223 *2 *4 *3))
- (-4 *3 (-1230 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-293 (-827 *3)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-827 *3)) (-5 *1 (-631 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-827 (-945 *5)))) (-4 *5 (-450))
- (-5 *2 (-827 (-406 (-945 *5)))) (-5 *1 (-632 *5))
- (-5 *3 (-406 (-945 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5)))
- (-4 *5 (-450)) (-5 *2 (-827 *3)) (-5 *1 (-632 *5)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
- (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))))
- (-4 *4 (-1230 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *5))
- (-4 *5 (-1230 (-406 *4))))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-745)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-224) (-224) (-224)))
- (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
- (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224)))
- (-5 *1 (-690)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-571 *5 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-746)))))
+ (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *3 (-635 (-544))) (-5 *1 (-876)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-873)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1230 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
+ (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-117 *3)) (-14 *3 (-544))))
+ ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3))))
+ ((*1 *2 *3) (-12 (-5 *2 (-173 (-544))) (-5 *1 (-759 *3)) (-4 *3 (-403))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-864 *3)) (-14 *3 (-544))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-544)) (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-865 *3 *4))
+ (-4 *4 (-863 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
+ ((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912))))
+ ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-1143 (-544))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1229 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))))
+(((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))))
+(((*1 *1 *1) (-4 *1 (-863 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *3 (-544)) (-4 *1 (-863 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6))
+ (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362))
+ (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5)))
+ (-5 *1 (-861 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362))
+ (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5)))
+ (-5 *1 (-861 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6))
+ (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-857)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))))
+(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190)))))
+ ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1204)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-765))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-606 *3)) (-4 *3 (-844))))
+ ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))))
+(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))))
+(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544))))
+ (-5 *4 (-313 (-167 (-377)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-377)))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-544)))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-167 (-377))))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-377)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-544)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-167 (-377))))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-377)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-544)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-167 (-377)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-377))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-544))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-687)))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-692)))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-694)))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-687)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-692)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-694)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-687)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-692)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-694)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-687))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-692))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-694))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-687))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-692))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-694))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329))))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))))
+(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857))))
+ ((*1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857)))
+ ((*1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))
+ ((*1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1) (-4 *1 (-297)))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))
+ ((*1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3))))
+ (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765)))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765)))
+ ((*1 *1 *1 *1) (-5 *1 (-857))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-128))) (-5 *3 (-128)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-547))) (-5 *3 (-547)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-1212))) (-5 *3 (-1212)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-129)) (-5 *2 (-765)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-51))) (-5 *2 (-1259)) (-5 *1 (-853)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-544))))
+ (-4 *2 (-171)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3))
+ (-4 *3 (-846 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1254 *5)) (-4 *5 (-786)) (-5 *2 (-112))
- (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-378)) (-5 *1 (-1054)))))
+ (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3)))
+ (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3))
+ (-4 *3 (-846 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-846 *3))))
+ (-12 (-4 *3 (-554)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042))
- (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3))) (-5 *1 (-847 *5 *3))
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3))
(-4 *3 (-846 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-638 (-52))) (-5 *2 (-1259)) (-5 *1 (-857)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4))
- (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995))))))
-(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1257)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4))
- (-14 *4 (-638 (-1166)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
- (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-448 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
- (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-5 *1 (-448 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450))
- (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1230 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-107 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112))
- (-5 *1 (-665 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
- (-4 *3 (-13 (-1090) (-34))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-554)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3))
+ (-4 *3 (-846 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *1 (-417 *3)) (-4 *3 (-171))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042)) (-5 *1 (-847 *2 *3))
+ (-4 *3 (-846 *2)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042)) (-5 *1 (-847 *5 *2))
+ (-4 *2 (-846 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1)))
+ (-4 *1 (-846 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130))
- (-4 *3 (-786)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-360 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1090))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5))
- (-4 *4 (-1090)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844)))))
+ (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1)))
+ (-4 *1 (-846 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
- (-4 *4 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *2
- (-2 (|:| |solns| (-638 *5))
- (|:| |maps| (-638 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1118 *3 *5)) (-4 *3 (-1230 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112))
- (-5 *1 (-356 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-112))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+ (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391)))
+ (-3726 (|has| *1 (-6 -4383)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844)))) ((*1 *1) (-4 *1 (-838)))
+ ((*1 *1 *1 *1) (-4 *1 (-844))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1162 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
- (-4 *2 (-1230 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9))
- (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6))
- (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042))
- (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
- (-4 *2 (-680 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362))))
- ((*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1256))))
- ((*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1256)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1148)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4))
- (-5 *2
- (-3 (|:| |overq| (-1162 (-406 (-561))))
- (|:| |overan| (-1162 (-48))) (|:| -4256 (-112))))
- (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1230 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-765)) (-4 *5 (-348)) (-4 *6 (-1230 *5))
- (-5 *2
- (-638
- (-2 (|:| -2615 (-682 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-682 *6)))))
- (-5 *1 (-496 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2615 (-682 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-682 *6))))
- (-4 *7 (-1230 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-478)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-816)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-804 *5 *6))))
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5))
+ (-14 *4 (-765)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5))
+ (-14 *4 (-765)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5))
+ (-14 *4 (-765)))))
+(((*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091)))))
+(((*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 (-406 *6))) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2 (-2 (|:| -2615 (-638 (-406 *6))) (|:| -2942 (-682 *5))))
- (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6)))))
+ (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028))
+ (-5 *1 (-834)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834))))
+ ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377))))
+ (-5 *6 (-635 (-313 (-377)))) (-5 *3 (-313 (-377))) (-5 *2 (-1028))
+ (-5 *1 (-834))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377))))
+ (-5 *2 (-1028)) (-5 *1 (-834))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-804 *5 *6))))
+ (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *2 (-1028))
+ (-5 *1 (-834))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-647 *6 (-406 *6))) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2 (-2 (|:| -2615 (-638 (-406 *6))) (|:| -2942 (-682 *5))))
- (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6))))))
+ (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028))
+ (-5 *1 (-834)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-534)) (-5 *1 (-533 *4))
- (-4 *4 (-1205)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1131 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348))
- (-5 *2 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110))))))
- (-5 *1 (-345 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-638 *7) *7 (-1162 *7))) (-5 *5 (-1 (-417 *7) *7))
- (-4 *7 (-1230 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-5 *2 (-638 (-2 (|:| |frac| (-406 *7)) (|:| -3394 *3))))
- (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-649 *7))
- (-4 *8 (-649 (-406 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-5 *2
- (-638 (-2 (|:| |frac| (-406 *6)) (|:| -3394 (-647 *6 (-406 *6))))))
- (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))))
-(((*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *5 (-1230 *4)) (-5 *2 (-638 (-2 (|:| -2298 *5) (|:| -3723 *5))))
- (-5 *1 (-801 *4 *5 *3 *6)) (-4 *3 (-649 *5))
- (-4 *6 (-649 (-406 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *4 (-1230 *5)) (-5 *2 (-638 (-2 (|:| -2298 *4) (|:| -3723 *4))))
- (-5 *1 (-801 *5 *4 *3 *6)) (-4 *3 (-649 *4))
- (-4 *6 (-649 (-406 *4)))))
+ (-12 (-4 *1 (-833))
+ (-5 *3
+ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224)))
+ (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224))))
+ (|:| |ub| (-635 (-836 (-224))))))
+ (-5 *2 (-1028))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *5 (-1230 *4)) (-5 *2 (-638 (-2 (|:| -2298 *5) (|:| -3723 *5))))
- (-5 *1 (-801 *4 *5 *6 *3)) (-4 *6 (-649 *5))
- (-4 *3 (-649 (-406 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
- (-4 *4 (-1230 *5)) (-5 *2 (-638 (-2 (|:| -2298 *4) (|:| -3723 *4))))
- (-5 *1 (-801 *5 *4 *6 *3)) (-4 *6 (-649 *4))
- (-4 *3 (-649 (-406 *4))))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-749))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387))
- (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-5 *2 (-638 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
- (-5 *2 (-638 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1146 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-720))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-638 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1042)) (-5 *2 (-1146 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -3413 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-362)) (-4 *7 (-1230 *6))
- (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6)))
- (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
- (-4 *3 (-1056 *6 *7 *8))
- (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1495 *4))))
- (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1495 *9))))
- (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8))
- (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844))
- (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1495 *9))))
- (-5 *1 (-1063 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-624)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1254 *5)) (-4 *5 (-786)) (-5 *2 (-112))
- (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 *1))
- (-4 *1 (-381 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-720))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-942 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166))
- (-5 *1 (-261 *2)) (-4 *2 (-1205))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-52))
- (-5 *1 (-262)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-561))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-864 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-561))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-561)) (-14 *3 *2) (-5 *1 (-865 *3 *4))
- (-4 *4 (-862 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-561)) (-5 *1 (-865 *2 *3)) (-4 *3 (-862 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-561)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-1245 *3))))
+ (-12 (-4 *1 (-833))
+ (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))
+ (-5 *2 (-1028)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1091)) (-5 *2 (-55)))))
+(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-681 *4 *5 *6 *3))
+ (-4 *3 (-679 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2))))
((*1 *1 *1)
- (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1245 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
+ (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042))))
+ ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-4 *5 (-362))
- (-4 *5 (-1042)) (-5 *2 (-112)) (-5 *1 (-1022 *5))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-635 *2)) (-5 *1 (-114 *2))
+ (-4 *2 (-1091))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1091))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042))
- (-5 *2 (-112)) (-5 *1 (-1022 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-553)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-914))
- (-5 *2 (-1259)) (-5 *1 (-466))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-914))
- (-5 *2 (-1259)) (-5 *1 (-466)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5))
- (-4 *3 (-1230 *4))
- (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-1200 *3))
- (-4 *3 (-967)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1205)) (-5 *2 (-1259)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
- ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2385 *1) (|:| -4386 *1) (|:| |associate| *1)))
- (-4 *1 (-553)))))
-(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *3)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450))
- (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-447 *5 *6 *7 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-635 *4))) (-5 *1 (-114 *4))
+ (-4 *4 (-1091))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042))
+ (-5 *1 (-708 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042))
+ (-5 *1 (-708 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-113)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2)) (-4 *2 (-641 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-828 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-360 (-113))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4))
+ (-4 *4 (-641 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-360 (-113))) (-5 *1 (-828 *2)) (-4 *2 (-1042)))))
+(((*1 *2) (-12 (-5 *2 (-826 (-544))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1259)) (-5 *1 (-825)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166))
- (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
- (-5 *2 (-2 (|:| -3322 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1230 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-556))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-914))
- (-5 *2
- (-3 (-1162 *4)
- (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110)))))))
- (-5 *1 (-345 *4)) (-4 *4 (-348)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-112))
- (-5 *1 (-882 *4 *5)) (-4 *5 (-1090))))
+ (-12 (-5 *3 (-816)) (-5 *4 (-51)) (-5 *2 (-1259)) (-5 *1 (-825)))))
+(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-51)) (-5 *1 (-825)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))))
+(((*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823)))))
+(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-51)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-822 *2 *3)) (-4 *2 (-702 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-702 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1148))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1148))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *2 (-1259))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1259))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-313 *4)) (-4 *4 (-13 (-815) (-844) (-1042))) (-5 *2 (-1148))
+ (-5 *1 (-821 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-5 *2 (-112))
- (-5 *1 (-883 *5 *3)) (-4 *3 (-1205))))
+ (-12 (-5 *3 (-313 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-815) (-844) (-1042)))
+ (-5 *2 (-1148)) (-5 *1 (-821 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
- (-4 *6 (-1205)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))))
+ (-12 (-5 *3 (-817)) (-5 *4 (-313 *5)) (-4 *5 (-13 (-815) (-844) (-1042)))
+ (-5 *2 (-1259)) (-5 *1 (-821 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-817)) (-5 *4 (-313 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-815) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-821 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-819)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-635 (-1166))) (-5 *1 (-819)))))
+(((*1 *1) (-5 *1 (-818))))
+(((*1 *1) (-5 *1 (-818))))
+(((*1 *1) (-5 *1 (-818))))
+(((*1 *1) (-5 *1 (-818))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3949 (-1148)))) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-816)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-816)))))
+(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))))
+(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-816)))))
(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-844)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *8 (-1056 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-638 *8))
- (|:| |towers| (-638 (-1020 *5 *6 *7 *8)))))
- (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-638 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-4 *8 (-1056 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-638 *8))
- (|:| |towers| (-638 (-1136 *5 *6 *7 *8)))))
- (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
-(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694))))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))
- (-4 *2 (-362))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-224))))
- ((*1 *1 *1 *1)
- (-4050 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205)))
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205)))))
- ((*1 *1 *1 *1) (-4 *1 (-362)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-553)) (-4 *3 (-844))
- (-4 *1 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-471)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1254 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-534)))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-171)) (-5 *1 (-616 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-720) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-171)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-720) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171)) (-4 *2 (-362))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-171)) (-5 *1 (-655 *2 *4 *3)) (-4 *2 (-711 *4))
- (-4 *3 (|SubsetCategory| (-720) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-171)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4))
- (-4 *2 (|SubsetCategory| (-720) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)) (-4 *2 (-362))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362))
- (-4 *2 (-1042)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-765)))
- (-14 *5 (-765))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042))
- (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-362))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844))
- (-4 *4 (-787)) (-14 *6 (-638 *3))
- (-5 *1 (-1266 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-942 *2 *4 *3))
- (-14 *7 (-638 (-765))) (-14 *8 (-765))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042))
- (-4 *3 (-840)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224))))
- (-5 *2 (-1028)) (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4)))
- (-5 *2 (-2 (|:| |num| (-1254 *4)) (|:| |den| *4))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4)))
- (-5 *2 (-1254 *6)) (-5 *1 (-335 *3 *4 *5 *6))
- (-4 *6 (-341 *3 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1129))))
-(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-329)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-213 *2))
- (-4 *2
- (-13 (-844)
- (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $))
- (-15 -3699 ((-1259) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
- ((*1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-21)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))))
(((*1 *2 *1 *1)
(-12
- (-5 *2
- (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3))))
- (-5 *1 (-385 *3)) (-4 *3 (-1090))))
+ (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1091))))
((*1 *2 *1 *1)
(-12
- (-5 *2
- (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3))))
+ (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3))))
(-5 *1 (-813 *3)) (-4 *3 (-844)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1230 *6))
- (-4 *6 (-13 (-27) (-429 *5)))
- (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1230 (-406 *7)))
- (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3))
- (-4 *3 (-341 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-980 *3 *4 *5 *2))
- (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-213 *2))
- (-4 *2
- (-13 (-844)
- (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 ((-1259) $))
- (-15 -3699 ((-1259) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2))
- (-4 *2 (-1230 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-534)))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-25)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-360 *3)) (-4 *3 (-1091))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1091))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5)) (-4 *4 (-1091))
+ (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1091))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-385 *2)) (-4 *2 (-1091))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-1091)) (-5 *1 (-642 *2 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-813 *2)) (-4 *2 (-844)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-329)))))
-(((*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
-(((*1 *1 *1) (-4 *1 (-1134))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 (-2 (|:| -1633 (-1162 *6)) (|:| -4181 (-561)))))
- (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
- (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146)))
- (-5 *1 (-1224 *4 *2)) (-4 *2 (-1230 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844))
- (-4 *5 (-787)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))))
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-544))))) (-5 *1 (-360 *3))
+ (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-385 *3))
+ (-4 *3 (-1091))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -2536 (-544))))) (-5 *1 (-404 *3))
+ (-4 *3 (-554))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-813 *3))
+ (-4 *3 (-844)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1253 *4))
+ (-5 *1 (-808 *4 *3)) (-4 *3 (-651 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2))
- (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)) (-5 *1 (-808 *4 *5))
+ (-4 *5 (-651 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-682 *5))
+ (-5 *1 (-808 *5 *6)) (-4 *6 (-651 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-837 *3))) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2
- (-3 (-837 *3)
- (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-837 *3) "failed")))
- "failed"))
- (-5 *1 (-631 *5 *3))))
+ (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554))
+ (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1148))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-837 *3)) (-5 *1 (-631 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-837 (-945 *5)))) (-4 *5 (-450))
+ (-12 (-5 *3 (-682 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2162 (-635 *6))) *7 *6))
+ (-4 *6 (-362)) (-4 *7 (-651 *6))
(-5 *2
- (-3 (-837 (-406 (-945 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-837 (-406 (-945 *5))) "failed")))
- "failed"))
- (-5 *1 (-632 *5)) (-5 *3 (-406 (-945 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5)))
- (-4 *5 (-450))
+ (-2 (|:| |particular| (-3 (-1253 *6) "failed"))
+ (|:| -2162 (-635 (-1253 *6)))))
+ (-5 *1 (-807 *6 *7)) (-5 *4 (-1253 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362))
(-5 *2
- (-3 (-837 *3)
- (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-837 *3) "failed")))
- "failed"))
- (-5 *1 (-632 *5))))
+ (-2 (|:| A (-682 *5))
+ (|:| |eqs|
+ (-635
+ (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5)) (|:| -3667 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5))
+ (-4 *6 (-651 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-651 *5))
+ (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5))))
+ (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-293 (-406 (-945 *6)))) (-5 *5 (-1148))
- (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-837 *3))
- (-5 *1 (-632 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7)))
- (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-902)) (-4 *5 (-1230 *4)) (-5 *2 (-417 (-1162 *5)))
- (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765)))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4)))
- (-5 *2 (-2 (|:| |num| (-1254 *4)) (|:| |den| *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-682 (-406 (-945 (-561)))))
- (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4))
- (-4 *4 (-1042)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1019 (-837 (-561)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
- (-4 *3 (-1230 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348))
- (-4 *2
- (-13 (-401)
- (-10 -7 (-15 -4064 (*2 *4)) (-15 -1335 ((-914) *2))
- (-15 -2615 ((-1254 *2) (-914))) (-15 -1471 (*2 *2)))))
- (-5 *1 (-355 *2 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
+ (-12 (-5 *3 (-648 (-406 *7))) (-5 *4 (-1 (-635 *6) *7))
+ (-5 *5 (-1 (-404 *7) *7))
+ (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7))
+ (-5 *5 (-1 (-404 *7) *7))
+ (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-648 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-27))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *5 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-27))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450))
- (-5 *2 (-638 (-638 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7))
- (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-638
- (-638
- (-3 (|:| -3305 (-1166))
- (|:| -3809 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))))
- (-5 *1 (-1170)))))
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5))
+ (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 *3))))
+ (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *6 (-1229 *5))
+ (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 (-649 *6 (-406 *6))))))
+ (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-635 *7) *7 (-1160 *7))) (-5 *5 (-1 (-404 *7) *7))
+ (-4 *7 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-544)))))
+ (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -3667 *3))))
+ (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-651 *7)) (-4 *8 (-651 (-406 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-635 (-2 (|:| |frac| (-406 *6)) (|:| -3667 (-649 *6 (-406 *6))))))
+ (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-561)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1031 *4)) (-4 *3 (-13 (-844) (-553))))))
+ (-12 (-4 *5 (-362)) (-4 *7 (-1229 *5)) (-4 *4 (-718 *5 *7))
+ (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5))))
+ (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-315 (-561))))
- (-5 *1 (-1024)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-815)) (-5 *4 (-52)) (-5 *2 (-1259)) (-5 *1 (-825)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-429 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *4))
- (-4 *4 (-429 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-114)) (-5 *1 (-162))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *4))
- (-4 *4 (-13 (-429 *3) (-995)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301))))
- ((*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-844)) (-5 *1 (-428 *3 *4))
- (-4 *3 (-429 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *4))
- (-4 *4 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *4))
- (-4 *4 (-13 (-429 *3) (-995) (-1190)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))))
-(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765)))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-682 (-561))) (-5 *3 (-638 (-561))) (-5 *1 (-1100)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
+ (-12 (-5 *3 (-648 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-561)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920))
- (-5 *1 (-918 *3)) (-4 *3 (-609 (-534)))))
+ (-12 (-5 *3 (-649 *2 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4))))
+ (-5 *1 (-804 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-5 *2 (-920)) (-5 *1 (-918 *3))
- (-4 *3 (-609 (-534)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-920))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
- (-5 *1 (-920)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 (-406 (-945 *6))))
- (-5 *3 (-406 (-945 *6)))
- (-4 *6 (-13 (-553) (-1031 (-561)) (-146)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-567 *6)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561))))
- (-4 *5 (-1230 *4))
- (-5 *2 (-2 (|:| -3413 (-406 *5)) (|:| |coeff| (-406 *5))))
- (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3))))
- (-5 *1 (-813 *3)) (-4 *3 (-844))))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-378)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1146 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042))
- (-5 *3 (-406 (-561))) (-5 *1 (-1150 *4)))))
-(((*1 *1) (-5 *1 (-143)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-262)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1146 *4)) (-5 *3 (-1 *4 (-561))) (-4 *4 (-1042))
- (-5 *1 (-1150 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-553)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4))
- (-4 *4 (-1230 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-720))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1230 *4)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))
- (-4 *2 (-553))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-553)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042))
- (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-553))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-765)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-553))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
+ (-12 (-5 *3 (-648 (-406 *6))) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5))))
+ (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4))))
+ (-5 *1 (-804 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6 (-406 *6))) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5))))
+ (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-1229 *4))
+ (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-651 *3)) (-4 *5 (-651 (-406 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-4 *4 (-1230 *3)) (-4 *3 (-553))
- (-5 *1 (-962 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042))
- (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-553))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3))
- (-4 *3 (-1056 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-638 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-638 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3))
- (-4 *3 (-1056 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
- (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2))
- (-4 *2 (-1245 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1230 *3))
- (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1245 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1245 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146)))
- (-5 *1 (-1142 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))))
-(((*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1100)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-556)))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))
- (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561)))))
+ (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544)))))
+ (-4 *5 (-1229 *4)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-651 *5))
+ (-4 *6 (-651 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5))
+ (-5 *2 (-635 (-2 (|:| -4359 *5) (|:| -3667 *3)))) (-5 *1 (-803 *5 *6 *3 *7))
+ (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4))
+ (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -3667 *5))))
+ (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1229 *4)) (-5 *1 (-803 *4 *2 *3 *5))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2))
+ (-4 *5 (-651 (-406 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *3 *5))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2))
+ (-4 *5 (-651 (-406 *2)))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))
- (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561)))
- (-5 *4 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))))
+ (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *5 *3))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-651 *2))
+ (-4 *3 (-651 (-406 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4))
+ (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *3 *6))
+ (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5)))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))
- (-5 *1 (-1013 *3)) (-4 *3 (-1230 (-561))) (-5 *4 (-406 (-561)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-406 (-561)))
- (-5 *2 (-638 (-2 (|:| -1586 *5) (|:| -1599 *5)))) (-5 *1 (-1013 *3))
- (-4 *3 (-1230 (-561))) (-5 *4 (-2 (|:| -1586 *5) (|:| -1599 *5)))))
+ (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5))
+ (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *3 *6))
+ (-4 *3 (-651 *4)) (-4 *6 (-651 (-406 *4)))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))
- (-5 *1 (-1014 *3)) (-4 *3 (-1230 (-406 (-561))))))
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4))
+ (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *6 *3))
+ (-4 *6 (-651 *5)) (-4 *3 (-651 (-406 *5)))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-638 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561))))))
- (-5 *1 (-1014 *3)) (-4 *3 (-1230 (-406 (-561))))
- (-5 *4 (-2 (|:| -1586 (-406 (-561))) (|:| -1599 (-406 (-561)))))))
+ (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5))
+ (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *6 *3))
+ (-4 *6 (-651 *4)) (-4 *3 (-651 (-406 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1229 *5))
+ (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544)))))
+ (-4 *3 (-651 *2)) (-4 *6 (-651 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-406 (-561)))
- (-5 *2 (-638 (-2 (|:| -1586 *4) (|:| -1599 *4)))) (-5 *1 (-1014 *3))
- (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-406 (-561)))
- (-5 *2 (-638 (-2 (|:| -1586 *5) (|:| -1599 *5)))) (-5 *1 (-1014 *3))
- (-4 *3 (-1230 *5)) (-5 *4 (-2 (|:| -1586 *5) (|:| -1599 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1230 *2)) (-4 *2 (-171))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-914)) (-4 *4 (-348))
- (-5 *1 (-526 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995))))))
+ (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2))
+ (-4 *6 (-651 (-406 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-648 *4)) (-4 *4 (-341 *5 *6 *7))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4))))
+ (-5 *1 (-800 *5 *6 *7 *4)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
(-5 *2 (-1 *5 *5)) (-5 *1 (-798 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1190) (-952))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-765))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -3552 ((-417 $) $)))))
- (-4 *4 (-1230 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1042))
- (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-4 *5 (-1042))
- (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))
- (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1230 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-310))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-646 *4)) (-4 *4 (-341 *5 *6 *7))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *6 (-1230 *5)) (-4 *7 (-1230 (-406 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2615 (-638 *4))))
- (-5 *1 (-800 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))))
+ (-4 *5 (-13 (-29 *4) (-1190) (-953))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953))))))
(((*1 *2 *3)
- (-12
+ (|partial| -12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-787)) (-4 *2 (-942 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2))
- (-4 *4 (-450)) (-4 *6 (-844)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-561)) (|has| *1 (-6 -4390)) (-4 *1 (-403))
- (-5 *2 (-914)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
- (-14 *4 *2))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1205)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4))
- (-4 *4 (-171)))))
-(((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301))))
- ((*1 *1 *1) (-4 *1 (-301)))
- ((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
- ((*1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028))
- (-5 *1 (-750)))))
-(((*1 *2 *3) (-12 (-5 *3 (-406 (-561))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
- (-4 *3 (-1090)) (-5 *2 (-765))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4399)) (-4 *1 (-487 *4))
- (-4 *4 (-1205)) (-5 *2 (-765)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7)))
- (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
- (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8)))
- (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1042)) (-5 *2 (-1162 *3)))))
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377))
+ (|:| |expense| (-377)) (|:| |accuracy| (-377))
+ (|:| |intermediateResults| (-377))))
+ (-5 *1 (-797)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-1177 *3)))))
+ (-12
+ (-5 *2
+ (-635
+ (-2
+ (|:| -4267
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (|:| -2226
+ (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377))
+ (|:| |expense| (-377)) (|:| |accuracy| (-377))
+ (|:| |intermediateResults| (-377)))))))
+ (-5 *1 (-797)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-2 (|:| -2285 (-1166)) (|:| -2677 *4))))
- (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224)))))
+ (-5 *1 (-557))))
((*1 *2 *1)
- (-12 (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090))
- (-4 *7 (-1090)) (-5 *2 (-638 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1146 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2185
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-556)))))
-(((*1 *2)
- (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
- (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844))
- (-5 *2 (-2 (|:| |val| *1) (|:| -4181 (-561)))) (-4 *1 (-429 *3))))
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-635 *3))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4181 (-885 *3))))
- (-5 *1 (-885 *3)) (-4 *3 (-1090))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
- (-4 *7 (-942 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -4181 (-561))))
- (-5 *1 (-943 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $))
- (-15 -4088 (*7 $))))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1042))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3194 *1)))
- (-4 *1 (-846 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-589 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1110)))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-304)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1166))
- (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-554 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
- ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3))))
- ((*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))))
-(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *4 (-638 (-1166)))
- (-5 *2 (-682 (-315 (-224)))) (-5 *1 (-204))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1090)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6))
- (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-372 *6))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4399)))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-844) (-553))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))
- ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))
- (-5 *2 (-1028)) (-5 *1 (-740)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-417 *6)) (-4 *6 (-1230 *5))
- (-4 *5 (-1042)) (-5 *2 (-638 *6)) (-5 *1 (-442 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-247)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *1 (-582 *2)) (-4 *2 (-1031 *3))
- (-4 *2 (-362))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2))
- (-4 *2 (-13 (-429 *4) (-995) (-1190)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-995) (-1190)))
- (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-1166))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-952)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-290)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561))))
- (-4 *5 (-1230 *4)) (-5 *2 (-638 (-406 *5))) (-5 *1 (-1009 *4 *5))
- (-5 *3 (-406 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110))))))
- (-4 *4 (-348)) (-5 *2 (-1259)) (-5 *1 (-526 *4)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-372 *2)) (-4 *2 (-1205))
- (-4 *2 (-844))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4400))
- (-4 *1 (-372 *3)) (-4 *3 (-1205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1230 *4))
- (-4 *5 (-1230 (-406 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1230 *3))
- (-4 *5 (-1230 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1254 *4)) (-4 *4 (-1205)) (-4 *1 (-237 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-896 *3)))))
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224)))))
+ (-5 *1 (-797)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-797)))))
+(((*1 *1) (-5 *1 (-797))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1166))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)))
+ (-4 *4 (-13 (-29 *6) (-1190) (-953)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4))))
+ (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-651 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-833))
- (-5 *3
- (-2 (|:| |fn| (-315 (-224))) (|:| -3767 (-638 (-224)))
- (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
- (|:| |ub| (-638 (-837 (-224))))))
- (-5 *2 (-1028))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-833))
+ (-12 (-4 *1 (-794))
(-5 *3
- (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
(-5 *2 (-1028)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844))
- (-5 *2 (-638 (-665 *5))) (-5 *1 (-665 *5)))))
-(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1603 *3)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-792 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))))
+(((*1 *1 *1) (-4 *1 (-242)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2))
+ (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204)))
+ (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204)))))
+ ((*1 *1 *1) (-4 *1 (-471)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190)))))
+ ((*1 *1 *1 *1) (-4 *1 (-787))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377))
+ (-5 *2
+ (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-544)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377)))
+ (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-544))
+ (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))))
+ (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377)))
+ (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-544))
+ (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))))
+ (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377)))
+ (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377)))
+ (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377)))
+ (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377)))
+ (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))))
(((*1 *2 *3 *2)
(-12 (-4 *1 (-781)) (-5 *2 (-1028))
(-5 *3
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2185 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))))
+ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224)))))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
((*1 *2 *3 *2)
(-12 (-4 *1 (-781)) (-5 *2 (-1028))
(-5 *3
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224)))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4))
- (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780)))))
+(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780)))))
+(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844))) (-5 *2 (-168 *5))
- (-5 *1 (-595 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-995) (-1190)))
- (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))))
-(((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-561))))
- ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
- (-4 *3 (-1230 *4)) (-5 *2 (-561))))
+ (|partial| -12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450)))
- (-5 *2 (-561)) (-5 *1 (-1106 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450)))
- (-5 *2 (-561)) (-5 *1 (-1106 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148))
- (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450)))
- (-5 *2 (-561)) (-5 *1 (-1106 *6 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))))
+ (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-561))
- (-5 *1 (-1107 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 (-406 (-945 *6))))
- (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-561))
- (-5 *1 (-1107 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1166))
- (-5 *5 (-1148)) (-4 *6 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *6))))
+ (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
-(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-638
- (-2 (|:| -3400 (-765))
- (|:| |eqns|
- (-638
- (-2 (|:| |det| *7) (|:| |rows| (-638 (-561)))
- (|:| |cols| (-638 (-561))))))
- (|:| |fgb| (-638 *7)))))
- (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-746)))))
-(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ (|partial| -12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554))
+ (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4))
- (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1230 (-561))) (-5 *1 (-484 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-168 (-224))) (-5 *6 (-1148))
- (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-657 *4 *5)))
- (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-561)))))
- (-14 *6 (-914)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692))))
- ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1166)) (-5 *6 (-112))
- (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-4 *3 (-13 (-1190) (-952) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-218 *7 *3)) (-5 *5 (-837 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-553)))))
-(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1053))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
- (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561))))
- ((*1 *1 *1) (-4 *1 (-995)))
- ((*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1005))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1005))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-914))))
- ((*1 *1 *1) (-4 *1 (-1005))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-182)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146)))
- (-5 *1 (-1224 *4 *2)) (-4 *2 (-1230 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-1209)) (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4)))
- (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1042)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-1230 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
-(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1230 (-48)))))
+ (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844))
+ (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1230 (-48)))))
+ (|partial| -12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844))
+ (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787))
- (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-942 (-48) *6 *5))))
+ (|partial| -12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554))
+ (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377)))
+ (-5 *1 (-779 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2))
+ (-5 *2 (-377)) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787))
- (-4 *7 (-942 (-48) *6 *5)) (-5 *2 (-417 (-1162 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042))
+ (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3))
- (-4 *3 (-1230 (-168 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4)))))
+ (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2))
+ (-5 *2 (-377)) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1230 (-168 *4)))))
+ (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554))
+ (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
- (-4 *3 (-1230 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561)))))
+ (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844))
+ (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1230 (-561)))))
+ (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844))
+ (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-167 (-377))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-377)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3))
- (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1230 (-561)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 (-168 (-561)))) (-5 *1 (-444))
- (-5 *3 (-168 (-561)))))
+ (-12 (-5 *4 (-912)) (-5 *2 (-167 (-377))) (-5 *1 (-779 *3))
+ (-4 *3 (-609 (-377)))))
((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-844)
- (-10 -8 (-15 -4216 ((-1166) $))
- (-15 -2421 ((-3 $ "failed") (-1166))))))
- (-4 *5 (-787)) (-4 *7 (-553)) (-5 *2 (-417 *3))
- (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-553))
- (-4 *3 (-942 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1162 *4))) (-5 *1 (-456 *4))
- (-5 *3 (-1162 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1230 *5)) (-4 *5 (-362))
- (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-417 *3))
- (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1230 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7)))
- (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787))
- (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3))
- (-4 *3 (-942 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7)))
- (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787))
- (-4 *8 (-942 *7 *6 *5)) (-5 *2 (-417 (-1162 *8)))
- (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1162 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-638 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *6 (-1230 *5)) (-5 *2 (-638 (-646 (-406 *6))))
- (-5 *1 (-650 *5 *6)) (-5 *3 (-646 (-406 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
- (-4 *5 (-1230 *4)) (-5 *2 (-638 (-646 (-406 *5))))
- (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-665 *4)))
- (-5 *1 (-665 *4))))
+ (-12 (-5 *3 (-167 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-561)) (-5 *2 (-638 *3)) (-5 *1 (-689 *3))
- (-4 *3 (-1230 *4))))
+ (-12 (-5 *3 (-167 *5)) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348)) (-5 *2 (-417 *3))
- (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4))))
+ (-12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348))
- (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7)))
- (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-787))
- (-4 *5
- (-13 (-844)
- (-10 -8 (-15 -4216 ((-1166) $))
- (-15 -2421 ((-3 $ "failed") (-1166))))))
- (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3))
- (-4 *3 (-942 (-945 *6) *4 *5))))
+ (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-787))
- (-4 *5 (-13 (-844) (-10 -8 (-15 -4216 ((-1166) $))))) (-4 *6 (-553))
- (-5 *2 (-417 *3)) (-5 *1 (-726 *4 *5 *6 *3))
- (-4 *3 (-942 (-406 (-945 *6)) *4 *5))))
+ (-12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146)))
- (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3))
- (-4 *3 (-942 (-406 *6) *4 *5))))
+ (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377)))
+ (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146)))
- (-5 *2 (-417 *3)) (-5 *1 (-735 *4 *5 *6 *3))
- (-4 *3 (-942 *6 *5 *4))))
+ (-12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844))
+ (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844))
+ (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-912)) (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7)))
- (-5 *1 (-735 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-377))
+ (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 *2))
+ (-5 *2 (-377)) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3))
- (-4 *3 (-1230 (-406 (-561))))))
+ (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2)) (-5 *2 (-377))
+ (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 *2))
+ (-5 *2 (-377)) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1034 *3))
- (-4 *3 (-1230 (-406 (-945 (-561)))))))
+ (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 *2))
+ (-5 *2 (-377)) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844))
+ (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544))))
+ (-4 *2 (-171)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544))))
+ (-4 *2 (-171)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-635 (-775 *3))) (-5 *1 (-775 *3)) (-4 *3 (-554))
+ (-4 *3 (-1042)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3))))
+ (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)))) (-5 *1 (-775 *3))
+ (-4 *3 (-554)) (-4 *3 (-1042)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3))
+ (-4 *3 (-554)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-406 (-544))))
+ (-5 *2
+ (-635
+ (-2 (|:| |outval| *4) (|:| |outmult| (-544))
+ (|:| |outvect| (-635 (-682 *4))))))
+ (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-773 *4))
+ (-4 *4 (-13 (-362) (-842))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-1230 (-406 (-561))))
- (-4 *5 (-13 (-362) (-146) (-718 (-406 (-561)) *4)))
- (-5 *2 (-417 *3)) (-5 *1 (-1069 *4 *5 *3)) (-4 *3 (-1230 *5))))
+ (-12 (-4 *4 (-171)) (-4 *2 (-1229 *4)) (-5 *1 (-176 *4 *2 *3))
+ (-4 *3 (-718 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-406 (-939 *5)))) (-5 *4 (-1166)) (-5 *2 (-939 *5))
+ (-5 *1 (-291 *5)) (-4 *5 (-450))))
((*1 *2 *3)
- (-12 (-4 *4 (-1230 (-406 (-945 (-561)))))
- (-4 *5 (-13 (-362) (-146) (-718 (-406 (-945 (-561))) *4)))
- (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1230 *5))))
+ (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-5 *2 (-939 *4)) (-5 *1 (-291 *4))
+ (-4 *4 (-450))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450))
- (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7))))
- (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209))))
+ (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-939 (-167 (-406 (-544)))))
+ (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *4 (-1166))
+ (-5 *2 (-939 (-167 (-406 (-544))))) (-5 *1 (-758 *5))
+ (-4 *5 (-13 (-362) (-842)))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1599 *6) (|:| |sol?| (-112))) (-561)
- *6))
- (-4 *6 (-362)) (-4 *7 (-1230 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
- (-2 (|:| -3413 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
- (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
- (-5 *1 (-331)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (-4 *4 (-1042))
- (-5 *1 (-1021 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914)) (-4 *4 (-1042))
- (-5 *1 (-1021 *4)))))
+ (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-939 (-406 (-544))))
+ (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *4 (-1166))
+ (-5 *2 (-939 (-406 (-544)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-362) (-842))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3))
- (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-765)) (-4 *5 (-171))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-765)) (-4 *5 (-171))))
- ((*1 *2 *2 *3)
- (-12
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-635 (-765)))
+ (-5 *1 (-772 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *6)) (-4 *7 (-943 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1229 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306))
+ (-4 *10 (-943 *9 *7 *8))
(-5 *2
- (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
- (-246 *4 (-406 (-561)))))
- (-5 *3 (-638 (-858 *4))) (-14 *4 (-638 (-1166))) (-14 *5 (-765))
- (-5 *1 (-503 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2395 *4)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
+ (-2 (|:| |deter| (-635 (-1160 *10)))
+ (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10))))
+ (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1160 *10)) (-5 *4 (-635 *6))
+ (-5 *5 (-635 *10)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-635 *3))
+ (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-912)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-638 (-168 *4)))
- (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1019 (-837 (-561))))
- (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *4)))) (-4 *4 (-1042))
- (-5 *1 (-591 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1084 *3)) (-4 *3 (-942 *7 *6 *4)) (-4 *6 (-787))
- (-4 *4 (-844)) (-4 *7 (-553))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561))))
- (-5 *1 (-590 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-553))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561))))
- (-5 *1 (-590 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4))))
+ (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1259)) (-5 *1 (-770 *6 *7 *8 *4 *5))
+ (-4 *5 (-1062 *6 *7 *8 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190)))
- (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-1158 *4 *2))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4)))))
+ ((*1 *1 *1) (-5 *1 (-377)))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561))))
- (-5 *2 (-406 (-945 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-945 *5))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4))))
+ (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *2 (-1056 *4 *5 *6))
+ (-5 *1 (-770 *4 *5 *6 *2 *3)) (-4 *3 (-1062 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377))))
+ ((*1 *1 *1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-765)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531))) (-5 *1 (-531))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561))))
- (-5 *2 (-3 (-406 (-945 *5)) (-315 *5))) (-5 *1 (-1159 *5))
- (-5 *3 (-406 (-945 *5)))))
+ (-12 (-5 *4 (-947)) (-4 *3 (-1091)) (-5 *2 (-684 *1)) (-4 *1 (-761 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-167 (-406 (-544)))))
+ (-5 *2
+ (-635
+ (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-544))
+ (|:| |outvect| (-635 (-682 (-167 *4)))))))
+ (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-635 (-167 *4)))
+ (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-755))))
+(((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1 *1) (-4 *1 (-755))))
+(((*1 *1 *1 *1) (-4 *1 (-755))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-753)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-939 (-544)))) (-5 *1 (-435))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1082 (-945 *5))) (-5 *3 (-945 *5))
- (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-406 *3))
- (-5 *1 (-1159 *5))))
+ (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1093)) (-5 *1 (-753))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1082 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5)))
- (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-3 *3 (-315 *5)))
- (-5 *1 (-1159 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-281 *2)) (-4 *2 (-1205))))
- ((*1 *1 *2)
- (-12
+ (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-544))) (-5 *2 (-1093)) (-5 *1 (-753)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-167 (-224))) (-5 *6 (-1148)) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-167 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-751)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-751)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544)))
+ (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-167 (-224))))
+ (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-749))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224))))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224))))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-635 (-112))) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544)))
+ (-5 *7 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-682 (-544))) (-5 *5 (-112)) (-5 *7 (-682 (-224)))
+ (-5 *3 (-544)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-635 (-112))) (-5 *7 (-682 (-224))) (-5 *8 (-682 (-544)))
+ (-5 *3 (-544)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1028))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3
+ *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224))
+ (-5 *7 (-682 (-544))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-544))
+ (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3
+ *8)
+ (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-544)))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-544))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *2 (-1028))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1028))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1028))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1028))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224))
+ (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224))
+ (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224))
+ (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *3 (-544))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224))
+ (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6
+ *4)
+ (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224)))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-1148))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1028))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP))))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1028))
+ (-5 *1 (-743))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-387))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1028))
+ (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028))
+ (-5 *1 (-740)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028))
+ (-5 *1 (-740)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-544))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028))
+ (-5 *1 (-740)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028))
+ (-5 *1 (-739)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028))
+ (-5 *1 (-739)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-738 *3)) (-4 *3 (-171)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1160 *6)) (-5 *3 (-544)) (-4 *6 (-306)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-4 *7 (-844))
+ (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306)) (-5 *2 (-635 (-765)))
+ (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-544)) (-5 *4 (-404 *2)) (-4 *2 (-943 *7 *5 *6))
+ (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-306)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8)))
+ (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787))
(-5 *2
- (-2
- (|:| -2285
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| -2677
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1146 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2185
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-556))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |upol| (-1160 *8)) (|:| |Lval| (-635 *8))
+ (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 *8)) (|:| -2536 (-544)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-736 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-844)) (-4 *8 (-306))
+ (-4 *6 (-787)) (-4 *9 (-943 *8 *6 *7))
(-5 *2
- (-2
- (|:| -2285
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (|:| -2677
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378))))))
- (-5 *1 (-797))))
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 *9)) (|:| -2536 (-544)))))))
+ (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-544)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306))
+ (-4 *9 (-943 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2154 (-1160 *9)) (|:| |polval| (-1160 *8))))
+ (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9)) (-5 *4 (-1160 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3))
+ (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-943 *6 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544)))))
+ (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544))
+ (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3))
+ (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-732)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-730 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091))))
+ ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204))
+ (-5 *2 (-635 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-730 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-554)) (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-726 *5 *4 *6 *2))
+ (-5 *3 (-406 (-939 *6))) (-4 *5 (-787))
+ (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1160 (-939 *6))) (-4 *6 (-554))
+ (-4 *2 (-943 (-406 (-939 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2))
+ (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1160 *2)) (-4 *2 (-943 (-406 (-939 *6)) *5 *4))
+ (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787))
+ (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))))
+ (-4 *6 (-554)) (-5 *2 (-2 (|:| -2778 (-939 *6)) (|:| -2208 (-939 *6))))
+ (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-943 (-406 (-939 *6)) *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544))
+ (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8))
+ (-5 *1 (-135 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561))))
- (-5 *1 (-189)))))
-(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-450)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34)))
- (-5 *1 (-1131 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-1130 *3 *4))) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844))))
+ (-12 (-5 *3 (-635 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787))
+ (-4 *8 (-1042)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1229 *5))
+ (-5 *1 (-721 *5 *2)) (-4 *5 (-362)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -3475 (-404 *3)) (|:| |special| (-404 *3))))
+ (-5 *1 (-721 *5 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *2 (-341 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-171))))
+ ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1253 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
+ (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554))))
+ ((*1 *1 *1) (|partial| -4 *1 (-716))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554))))
+ ((*1 *1 *1) (|partial| -4 *1 (-716))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
+ (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-765)) (-5 *1 (-586)))))
+ (-12 (-5 *2 (-1234 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5))
+ (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1091)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *2))
+ (-2 (|:| -2535 *3) (|:| -2536 *2)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-367))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1091))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3))
+ (-2 (|:| -2535 *2) (|:| -2536 *3)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4))
- (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787))
- (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844)))))
-(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
+ (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3))))
- ((*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-842)) (-5 *1 (-302 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450))))
- ((*1 *1 *1 *1) (-4 *1 (-450)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1230 (-561)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1230 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-765)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306))
- (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5))
- (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-306))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 (-1162 *7))) (-4 *4 (-787)) (-4 *5 (-844))
- (-4 *6 (-306)) (-5 *2 (-1162 *7)) (-5 *1 (-909 *4 *5 *6 *7))
- (-4 *7 (-942 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-914)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2))
- (-4 *2 (-1230 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)) (-4 *2 (-450)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4)))
- (-4 *4 (-844)) (-5 *1 (-1176 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-349)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))))
+(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))))
+(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-635 (-1160 *13))) (-5 *3 (-1160 *13))
+ (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13))
+ (-5 *7 (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *13)))))
+ (-5 *8 (-635 (-765))) (-5 *9 (-1253 (-635 (-1160 *10)))) (-4 *12 (-844))
+ (-4 *10 (-306)) (-4 *13 (-943 *10 *11 *12)) (-4 *11 (-787))
+ (-5 *1 (-701 *11 *12 *10 *13)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1160 *9))) (-5 *6 (-635 *9))
+ (-5 *7 (-635 *12)) (-5 *8 (-635 (-765))) (-4 *11 (-844)) (-4 *9 (-306))
+ (-4 *12 (-943 *9 *10 *11)) (-4 *10 (-787)) (-5 *2 (-635 (-1160 *12)))
+ (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1160 *12)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-635 (-1160 *11))) (-5 *3 (-1160 *11))
+ (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-765)))
+ (-5 *7 (-1253 (-635 (-1160 *8)))) (-4 *10 (-844)) (-4 *8 (-306))
+ (-4 *11 (-943 *8 *9 *10)) (-4 *9 (-787)) (-5 *1 (-701 *9 *10 *8 *11)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7))
+ (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6))
+ (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5))
- (-4 *4 (-1090)) (-4 *5 (-1090)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844))))
- ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
- ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
- (-14 *3 (-638 (-1166)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-638 (-1166))) (-4 *3 (-171))
- (-4 *5 (-237 (-3548 *2) (-765)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2442 *4) (|:| -4181 *5))
- (-2 (|:| -2442 *4) (|:| -4181 *5))))
- (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844))
- (-4 *7 (-942 *3 *5 (-858 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1230 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042))
- (-4 *3 (-720))))
- ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
-(((*1 *1)
- (-12 (-4 *1 (-403)) (-2186 (|has| *1 (-6 -4390)))
- (-2186 (|has| *1 (-6 -4382)))))
- ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844))))
- ((*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844))))
- ((*1 *1) (-4 *1 (-838))) ((*1 *1 *1 *1) (-4 *1 (-844))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-607 *1)) (-4 *1 (-429 *4)) (-4 *4 (-844))
- (-4 *4 (-553)) (-5 *2 (-406 (-1162 *1)))))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6))
+ (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-699 *3 *4))
+ (-4 *3 (-1204)) (-4 *4 (-1204)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1166)) (-5 *1 (-533))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3))
+ (-4 *3 (-609 (-533))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3))
+ (-4 *3 (-609 (-533)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-697 *3))
+ (-4 *3 (-609 (-533))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7))
+ (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204)))))
+(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-681 *3 *4 *5 *6))
+ (-4 *6 (-679 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-693 *3))
+ (-4 *3 (-306)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544))))
+ ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692)))))
+(((*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692))))
+ ((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692))))
+ ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))))
+(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692))))
+ ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-1 (-224) (-224) (-224) (-224)))
+ (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224)))
+ (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
+ (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-690)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
+ (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-690))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190)))
- (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-1162 (-406 (-1162 *3)))) (-5 *1 (-557 *6 *3 *7))
- (-5 *5 (-1162 *3)) (-4 *7 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1250 *5)) (-14 *5 (-1166)) (-4 *6 (-1042))
- (-5 *2 (-1227 *5 (-945 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-945 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-1162 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1162 *1))
- (-4 *1 (-942 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042))
- (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-406 (-1162 *3)))
- (-5 *1 (-943 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1162 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $)))))
- (-4 *7 (-942 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844))
- (-4 *6 (-1042)) (-5 *1 (-943 *5 *4 *6 *7 *3))))
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-224)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224)))
+ (-5 *4 (-1079 (-224))) (-5 *5 (-635 (-260))) (-5 *1 (-690)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *5)))) (-4 *5 (-1229 *4))
+ (-4 *4 (-349)) (-5 *2 (-635 *5)) (-5 *1 (-215 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1166)) (-4 *5 (-553))
- (-5 *2 (-406 (-1162 (-406 (-945 *5))))) (-5 *1 (-1036 *5))
- (-5 *3 (-406 (-945 *5))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+ (-12 (-5 *3 (-635 (-2 (|:| -4139 *5) (|:| -4355 (-544))))) (-5 *4 (-544))
+ (-4 *5 (-1229 *4)) (-5 *2 (-635 *5)) (-5 *1 (-689 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-544)) (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -4355 *4))))
+ (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091))))
+ ((*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1091)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
+ (-12 (-4 *1 (-688 *3)) (-4 *3 (-1091))
+ (-5 *2 (-635 (-2 (|:| -2226 *3) (|:| -2097 (-765))))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *7 (-893 *6)) (-5 *2 (-682 *7))
+ (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-371 *7))
+ (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166)))
+ (-5 *2 (-682 (-313 (-224)))) (-5 *1 (-204))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6))
+ (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-371 *6))
+ (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *3 (-893 *6)) (-5 *2 (-682 *3))
+ (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-371 *3))
+ (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3))
+ (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3))
+ (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1091)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3))
+ (-4 *5 (-371 *2)) (-4 *3 (-13 (-371 *4) (-10 -7 (-6 -4400)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4))
+ (-4 *3 (-371 *2)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-1253 *3))
+ (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3))
+ (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))))
+(((*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))))
+(((*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))
+ ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561)))
- (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -4077 ((-1115 *3 (-607 $)) $))
- (-15 -4088 ((-1115 *3 (-607 $)) $))
- (-15 -4064 ($ (-1115 *3 (-607 $))))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1256)))))
+ (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1230 (-168 *2))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1221 (-561))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-914)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1162 *1))
- (-4 *1 (-328 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362))
- (-4 *2 (-1230 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4))
- (-5 *1 (-526 *4)))))
+ (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3))
+ (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3))
+ (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-1110)) (-4 *4 (-348))
- (-5 *1 (-526 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205))))
- ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844))))
- ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
- ((*1 *1 *1) (-5 *1 (-856)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-942 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-544)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))
+ (-5 *1 (-681 *4 *5 *6 *2)) (-4 *2 (-679 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1042)) (-4 *3 (-1230 *4)) (-4 *2 (-1245 *4))
- (-5 *1 (-1248 *4 *3 *5 *2)) (-4 *5 (-649 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-97)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-607 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1031 (-561)))
- (-4 *4 (-13 (-844) (-553))) (-5 *2 (-1162 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-607 *1)) (-4 *1 (-1042)) (-4 *1 (-301))
- (-5 *2 (-1162 *1)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
- (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1091)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-306))
- (-5 *2 (-406 (-417 (-945 *4)))) (-5 *1 (-1035 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1090))
- (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
- (-5 *2 (-638 (-1066 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5))
- (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
-(((*1 *1 *1) (-5 *1 (-1054))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
- (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-638 (-1166))) (-4 *5 (-237 (-3548 *3) (-765)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2442 *4) (|:| -4181 *5))
- (-2 (|:| -2442 *4) (|:| -4181 *5))))
- (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844))
- (-4 *7 (-942 *2 *5 (-858 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1090))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1230 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844))
- (-4 *3 (-720))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844))
- (-4 *2 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844)))))
-(((*1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *2 *2)
- (-12
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1091)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1091)) (-4 *4 (-1091)) (-4 *6 (-1091))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-676 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5))
+ (-5 *1 (-676 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1091))
+ (-4 *3 (-1091)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1091))
+ (-5 *1 (-671 *2))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1091)) (-5 *1 (-675 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1091)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-544)) (-5 *2 (-635 *5))
+ (-5 *1 (-675 *5)) (-4 *5 (-1091)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1205))) (-5 *3 (-1205)) (-5 *1 (-674)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091))
+ (-4 *2 (-1091)) (-5 *1 (-673 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1091)) (-5 *1 (-671 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-939 (-544)))) (-5 *2 (-329))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1091)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1253 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1091)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112)) (-5 *1 (-665 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844))
+ (-5 *2 (-58 (-635 (-665 *5)))) (-5 *1 (-665 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844)) (-5 *2 (-635 (-665 *5)))
+ (-5 *1 (-665 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-844))
+ (-4 *8 (-943 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787))
(-5 *2
- (-638
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844))
- (-5 *1 (-447 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1257))))
- ((*1 *2 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))))
+ (-2 (|:| |particular| (-3 (-1253 (-406 *8)) "failed"))
+ (|:| -2162 (-635 (-1253 (-406 *8))))))
+ (-5 *1 (-662 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401))))
+ (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-112))
+ (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-112))
+ (-5 *1 (-661 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1160 *4))) (-5 *3 (-1160 *4)) (-4 *4 (-903))
+ (-5 *1 (-656 *4)))))
+(((*1 *1 *1) (-4 *1 (-655))))
+(((*1 *1 *1 *1) (-4 *1 (-655))))
+(((*1 *1 *1 *1) (-4 *1 (-655))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2))
+ (-4 *2 (-651 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1271 *3 *4)) (-4 *3 (-844))
- (-4 *4 (-1042)) (-4 *4 (-171))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1271 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))
- (-4 *3 (-171)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-544))))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450))))
- ((*1 *1 *1 *1) (-4 *1 (-450))))
-(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1255)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-746)))))
+ (-12 (-5 *2 (-765)) (-4 *1 (-651 *3)) (-4 *3 (-1042)) (-4 *3 (-362))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-653 *5 *2))
+ (-4 *2 (-651 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2))
+ (-4 *2 (-651 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-168 (-378))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-378)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-914)) (-5 *2 (-168 (-378))) (-5 *1 (-779 *3))
- (-4 *3 (-609 (-378)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5))
+ (-5 *3 (-648 (-406 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-644 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4))))
+ (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))) (-4 *3 (-1091))
+ (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23))
+ (-14 *5 *4))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-544) (-544))) (-5 *1 (-360 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1091))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5))
+ (-4 *3 (-1091)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-360 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-385 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-642 *3 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1091)))))
+(((*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1204)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *1)) (-5 *4 (-1253 *1)) (-4 *1 (-634 *5)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042)) (-5 *2 (-682 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362))
+ (-4 *5 (-554)) (-5 *2 (-1253 *5)) (-5 *1 (-633 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-168 *5)) (-5 *4 (-914)) (-4 *5 (-171))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-3726 (-4 *5 (-362)))
+ (-4 *5 (-554)) (-5 *2 (-1253 (-406 *5))) (-5 *1 (-633 *5 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554))
+ (-5 *2 (-1253 *4)) (-5 *1 (-633 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554)) (-5 *2 (-112))
+ (-5 *1 (-633 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-292 (-836 *3))) (-4 *3 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (-836 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-836 *3) #1="failed"))
+ (|:| |rightHandLimit| (-3 (-836 *3) #1#)))
+ "failed"))
+ (-5 *1 (-631 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-292 *3)) (-5 *5 (-1148))
+ (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-836 *3))
+ (-5 *1 (-631 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ (-12 (-5 *4 (-292 (-836 (-939 *5)))) (-4 *5 (-450))
+ (-5 *2
+ (-3 (-836 (-406 (-939 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 *5))) #2="failed"))
+ (|:| |rightHandLimit| (-3 (-836 (-406 (-939 *5))) #2#)))
+ #3="failed"))
+ (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450))
+ (-5 *2
+ (-3 (-836 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-836 *3) #2#))
+ (|:| |rightHandLimit| (-3 (-836 *3) #2#)))
+ #3#))
+ (-5 *1 (-632 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-292 (-406 (-939 *6)))) (-5 *5 (-1148))
+ (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-836 *3))
+ (-5 *1 (-632 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-292 (-826 *3)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-826 *3))
+ (-5 *1 (-631 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ (-12 (-5 *4 (-292 (-826 (-939 *5)))) (-4 *5 (-450))
+ (-5 *2 (-826 (-406 (-939 *5)))) (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450))
+ (-5 *2 (-826 *3)) (-5 *1 (-632 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627)))))
+(((*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *1) (-5 *1 (-627))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-450))
+ (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-858 *4)) (-14 *4 (-635 (-1166)))
+ (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450))
+ (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1166))) (-5 *1 (-626 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-635 (-260)))
+ (-5 *1 (-261))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844))
- (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844))
- (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-635 (-1166)))
+ (-4 *6 (-450)) (-5 *2 (-1253 *6)) (-5 *1 (-626 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1166))) (-4 *4 (-450))
+ (-5 *1 (-626 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166)))
+ (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553))
- (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-779 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205))
- (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
- (-4 *6 (-237 (-3548 *3) (-765)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *6))
- (-2 (|:| -2442 *5) (|:| -4181 *6))))
- (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-844)) (-4 *8 (-942 *4 *6 (-858 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2))
- (-4 *3 (-1042))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786))
- (-4 *4 (-844)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090))
- (-4 *2 (-844)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4400)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-749)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-638 (-406 *6))) (-5 *3 (-406 *6))
- (-4 *6 (-1230 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-565 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-52)))))
-(((*1 *1 *1 *1) (-5 *1 (-224)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033))))
- ((*1 *1 *1 *1) (-4 *1 (-1129))))
-(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627)))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-545))))))
-(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
-(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
+ (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166)))
+ (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450))
+ (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-626 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306))
- (-5 *2 (-638 (-765))) (-5 *1 (-772 *3 *4 *5 *6 *7))
- (-4 *3 (-1230 *6)) (-4 *7 (-942 *6 *4 *5)))))
+ (-12 (-14 *4 (-635 (-1166))) (-4 *5 (-450))
+ (-5 *2 (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-544)))))
+ (-5 *1 (-626 *4 *5)) (-5 *3 (-635 (-246 *4 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450))
+ (-5 *2 (-2 (|:| |gblist| (-635 (-246 *4 *5))) (|:| |gvlist| (-635 (-544)))))
+ (-5 *1 (-626 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995) (-1190)))))
+ ((*1 *1 *1) (-4 *1 (-625))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995) (-1190)))))
+ ((*1 *1 *1) (-4 *1 (-625))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995) (-1190)))))
+ ((*1 *1 *1) (-4 *1 (-625))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995) (-1190)))))
+ ((*1 *1 *1) (-4 *1 (-625))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995) (-1190)))))
+ ((*1 *1 *1) (-4 *1 (-625))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995) (-1190)))))
+ ((*1 *1 *1) (-4 *1 (-625))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-420 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-406 (-561)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561)))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6))
- (-4 *6 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1221 (-561)))
- (-4 *7 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-561)))
- (-4 *3 (-13 (-27) (-1190) (-429 *7)))
- (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8))
- (-5 *5 (-1221 (-406 (-561)))) (-5 *6 (-406 (-561)))
- (-4 *8 (-13 (-27) (-1190) (-429 *7)))
- (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-406 (-561))))
- (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8)))
- (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3))))
- (-4 *3 (-1042)) (-5 *1 (-591 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3))))
- (-4 *3 (-1042)) (-4 *1 (-1214 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-765))
- (-5 *3 (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4))))
- (-4 *4 (-1042)) (-4 *1 (-1235 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-4 *1 (-1245 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1146 (-2 (|:| |k| (-765)) (|:| |c| *3))))
- (-4 *3 (-1042)) (-4 *1 (-1245 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
- ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))
- (-5 *2 (-378)) (-5 *1 (-266))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112))
+ (-5 *1 (-157 *4 *5)) (-4 *5 (-420 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112))
+ (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-420 *4) (-995)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297))))
+ ((*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-419 *4 *5))
+ (-4 *4 (-420 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112))
+ (-5 *1 (-430 *4 *5)) (-4 *5 (-420 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112))
+ (-5 *1 (-624 *4 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8))
- (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787))
- (-4 *7 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114))))
- ((*1 *1) (-5 *1 (-575))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1210))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-466)) (-5 *3 (-638 (-262))) (-5 *1 (-1255))))
- ((*1 *1 *1) (-5 *1 (-1255))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+ (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1166)))
+ (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6)))))
+ (-5 *1 (-623 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))
- (-5 *2 (-1028)) (-5 *1 (-742)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-638 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-553))
- (-4 *3 (-1205)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *1 (-262))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-561)) (-5 *4 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *2 (-1259)) (-5 *1 (-1256))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2643 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *1 (-1256))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1211))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *2 (-553)) (-5 *1 (-962 *2 *4))
- (-4 *4 (-1230 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
- ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
- (-4 *3 (-844)) (-5 *2 (-765)))))
-(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))))
-(((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
-(((*1 *1 *1) (-4 *1 (-242)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1230 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-4050 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205)))
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205)))))
- ((*1 *1 *1) (-4 *1 (-471)))
- ((*1 *2 *2) (-12 (-5 *2 (-1254 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
+ (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224))))
- (-5 *2 (-1028)) (-5 *1 (-748)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-435)))))
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450))
+ (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450))
+ (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1042))
- (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1230 *4)))))
+ (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-112))
+ (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-774 *4 (-858 *5)))) (-4 *4 (-450))
+ (-14 *5 (-635 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-657 *4 *5)))
+ (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-544)))))
+ (-14 *6 (-912)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |k| (-665 *3)) (|:| |c| *4))))
+ (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-635 (-292 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2812 (-635 (-2 (|:| |irr| *10) (|:| -2530 (-544)))))))
+ (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-844)) (-4 *3 (-306))
+ (-4 *10 (-943 *3 *9 *8)) (-4 *9 (-787))
+ (-5 *2
+ (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-635 (-1160 *3)))))
+ (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-635 (-1160 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-765)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-844))
+ (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8))
+ (-4 *8 (-943 *3 *7 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1042)) (-4 *4 (-1230 *3)) (-5 *1 (-163 *3 *4 *2))
- (-4 *2 (-1230 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-619 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1062 *3 *4 *5 *6))
+ (-4 *2 (-1099 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-29 *4))))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612))))
+(((*1 *1) (-5 *1 (-612))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-1160 (-406 *5))) (-5 *1 (-610 *4 *5))
+ (-5 *3 (-406 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544)))))
+ (-5 *2 (-1160 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-606 *4)) (-4 *4 (-844)) (-4 *2 (-844))
+ (-5 *1 (-607 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-606 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-844)) (-4 *4 (-844)))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-606 *3)) (-4 *3 (-844)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-113)) (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-844))
+ (-5 *1 (-606 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
- (-5 *2 (-2 (|:| -2285 *3) (|:| -2677 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))))
-(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
-(((*1 *1 *1) (-5 *1 (-1054))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1259))
- (-5 *1 (-466))))
- ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224)))))
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
- (-4 *5 (-237 (-3548 *3) (-765)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2442 *2) (|:| -4181 *5))
- (-2 (|:| -2442 *2) (|:| -4181 *5))))
- (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-942 *4 *5 (-858 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-293 (-945 (-561))))
+ (-12
(-5 *2
- (-2 (|:| |varOrder| (-638 (-1166)))
- (|:| |inhom| (-3 (-638 (-1254 (-765))) "failed"))
- (|:| |hom| (-638 (-1254 (-765))))))
- (-5 *1 (-235)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-753)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-561)) (-5 *1 (-443 *2)) (-4 *2 (-1042)))))
-(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086))))
+ (-635
+ (-2
+ (|:| -4267
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2226
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1589
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-557))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
+ (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1091))
+ (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-371 *2))
+ (-4 *4 (-371 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-638 *5)) (-5 *4 (-561)) (-4 *5 (-842)) (-4 *5 (-362))
- (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1230 *5)))))
+ (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1091))
+ (-4 *2 (-1204)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1091))
+ (-4 *4 (-1204)) (-5 *2 (-1259)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-635 (-1166)))
+ (-4 *2 (-13 (-420 (-167 *5)) (-995) (-1190))) (-4 *5 (-13 (-554) (-844)))
+ (-5 *1 (-595 *5 *6 *2)) (-4 *6 (-13 (-420 *5) (-995) (-1190))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-348)) (-5 *3 (-561)) (-5 *2 (-1178 (-914) (-765))))))
+ (-12 (-4 *4 (-13 (-554) (-844))) (-5 *2 (-167 *5)) (-5 *1 (-595 *4 *5 *3))
+ (-4 *5 (-13 (-420 *4) (-995) (-1190)))
+ (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-1201)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1254 (-561))) (-5 *3 (-561)) (-5 *1 (-1100))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1254 (-561))) (-5 *3 (-638 (-561))) (-5 *4 (-561))
- (-5 *1 (-1100)))))
+ (-12 (-4 *4 (-13 (-554) (-844)))
+ (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *3 *2))
+ (-4 *3 (-13 (-420 *4) (-995) (-1190))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
+ (-12 (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 *4) (-995) (-1190)))
+ (-5 *1 (-595 *4 *2 *3)) (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190)))
+ (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190)))
+ (-5 *1 (-595 *4 *5 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1019 (-836 (-544))))
+ (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *4)))) (-4 *4 (-1042))
+ (-5 *1 (-591 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1019 (-836 (-544)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-5 *1 (-591 *3))
+ (-4 *3 (-1042)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
+(((*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *6))))
+ (-5 *4 (-1019 (-836 (-544)))) (-5 *5 (-1166)) (-5 *7 (-406 (-544)))
+ (-4 *6 (-1042)) (-5 *2 (-857)) (-5 *1 (-591 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1099 *5 *6 *7 *8))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-587 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-544))) (-5 *4 (-895 (-544))) (-5 *2 (-682 (-544)))
+ (-5 *1 (-586))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-406 (-561)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561)))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8))
- (-5 *5 (-1221 (-406 (-561)))) (-5 *6 (-406 (-561)))
- (-4 *8 (-13 (-27) (-1190) (-429 *7)))
- (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-406 (-561))))
- (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8)))
- (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-406 (-561))) (-4 *4 (-1042)) (-4 *1 (-1237 *4 *3))
- (-4 *3 (-1214 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))))
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-544))) (-5 *4 (-635 (-895 (-544))))
+ (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-765)) (-5 *1 (-586)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-427 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146))
+ (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *5))
+ (-5 *1 (-585 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-676 *4 *5)) (-4 *4 (-1090))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3))))
+ (-12 (-5 *3 (-580 *2)) (-4 *2 (-13 (-29 *4) (-1190))) (-5 *1 (-582 *4 *2))
+ (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1162 *3)) (-4 *3 (-1042)) (-4 *1 (-1230 *3)))))
+ (-12 (-5 *3 (-580 (-406 (-939 *4))))
+ (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *4))
+ (-5 *1 (-585 *4)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-584 *4)) (-4 *4 (-349)))))
+(((*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3076 *3) (|:| -2536 (-765)))) (-5 *1 (-583 *3))
+ (-4 *3 (-543)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
+(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1254 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
- (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
- (-4 *4 (-1090)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-406 (-945 *6)) (-1155 (-1166) (-945 *6))))
- (-5 *5 (-765)) (-4 *6 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *6)))))
- (-5 *1 (-291 *6)) (-5 *4 (-682 (-406 (-945 *6))))))
- ((*1 *2 *3 *4)
+ (-635
+ (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *2))
+ (|:| |logand| (-1160 *2)))))
+ (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362))
+ (-5 *1 (-580 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362)))))
+(((*1 *2 *1)
(-12
+ (-5 *2
+ (-635
+ (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *3))
+ (|:| |logand| (-1160 *3)))))
+ (-5 *1 (-580 *3)) (-4 *3 (-362)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-580 *3)) (-4 *3 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-362)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-579)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576)))))
+(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-128))) (-5 *1 (-576)))))
+(((*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113))))
+ ((*1 *1) (-5 *1 (-575))))
+(((*1 *1) (-5 *1 (-575))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-1129) (-29 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-571 *5 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |ir| (-580 (-406 *6))) (|:| |specpart| (-406 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-618 *4 *5))
(-5 *3
- (-2 (|:| |eigval| (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5))))
- (|:| |eigmult| (-765)) (|:| |eigvec| (-638 *4))))
- (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5)))))
- (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))))
+ (-1 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112))) (-544) *4))
+ (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7))) (-4 *7 (-1229 *6))
+ (-5 *3 (-406 *7)) (-4 *6 (-362))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-571 *6 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -2290 (-406 *6)) (|:| |coeff| (-406 *6))))
+ (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3522 *7) (|:| |sol?| (-112))) (-544) *7))
+ (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-571 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5 (-1 (-3 (-2 (|:| -2290 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-571 *7 *8)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
+ (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
+ (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-635 *6) "failed") (-544) *6 *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-580 *3) *3 (-1166)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1166)))
+ (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1031 *4)) (-4 *3 (-420 *7))
+ (-5 *4 (-1166)) (-4 *7 (-609 (-883 (-544)))) (-4 *7 (-450))
+ (-4 *7 (-879 (-544))) (-4 *7 (-844)) (-5 *2 (-580 *3))
+ (-5 *1 (-570 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2))
+ (-4 *2 (-283)) (-4 *2 (-420 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-554)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2))
+ (-4 *2 (-420 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-1166)) (-4 *6 (-420 *5)) (-4 *5 (-844))
+ (-5 *2 (-635 (-606 *6))) (-5 *1 (-570 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-606 *6))) (-5 *4 (-1166)) (-5 *2 (-606 *6))
+ (-4 *6 (-420 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *2 (-406 (-945 *4))) (-5 *1 (-917 *4 *5 *6 *3))
- (-4 *3 (-942 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *2 (-682 (-406 (-945 *4))))
- (-5 *1 (-917 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
- (-4 *6 (-787)) (-5 *2 (-638 (-406 (-945 *4))))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
+ (-12 (-5 *3 (-635 (-606 *5))) (-4 *4 (-844)) (-5 *2 (-606 *5))
+ (-5 *1 (-570 *4 *5)) (-4 *5 (-420 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-606 *5))) (-5 *3 (-1166)) (-4 *5 (-420 *4))
+ (-4 *4 (-844)) (-5 *1 (-570 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146)))
+ (-5 *2 (-2 (|:| -2290 (-406 (-939 *5))) (|:| |coeff| (-406 (-939 *5)))))
+ (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 (-406 (-939 *6))))
+ (-5 *3 (-406 (-939 *6))) (-4 *6 (-13 (-554) (-1031 (-544)) (-146)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-567 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166))
+ (-4 *4 (-13 (-554) (-1031 (-544)) (-146))) (-5 *1 (-567 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146)))
+ (-5 *2 (-580 (-406 (-939 *5)))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3))
- (-4 *3 (-680 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553))
- (-5 *2 (-765)))))
+ (|partial| -12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-544))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *5 *6)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| -2290 (-406 *5)) (|:| |coeff| (-406 *5))))
+ (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3))
+ (-4 *3 (-13 (-362) (-146) (-1031 (-544)))) (-5 *1 (-565 *3 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544))))
+ (-4 *5 (-879 (-544)))
+ (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3))
+ (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-836 *2)) (-4 *2 (-1129))
+ (-4 *2 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-609 (-883 (-544))))
+ (-4 *5 (-879 (-544)))
+ (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544))))
+ (-5 *1 (-564 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544))))
+ (-4 *5 (-879 (-544)))
+ (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3))
+ (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544))))
+ (-5 *2 (-2 (|:| -2461 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-420 *5))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-606 *4)) (-5 *6 (-1166)) (-4 *4 (-13 (-420 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4))))
+ (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166)))
+ (-4 *2 (-13 (-420 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1091)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3))
+ (-4 *3 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1091)))))
(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-607 *3))
- (-4 *3 (-13 (-429 *5) (-27) (-1190)))
- (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3)))
- (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-561)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4)))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
+ (|partial| -12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3 *6))
+ (-4 *6 (-1091)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-580 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1091)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2289 *3)))
+ (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-561))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |answer| (-406 *6)) (|:| -2289 (-406 *6))
+ (|:| |specpart| (-406 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-765)) (-5 *1 (-559)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))))
+(((*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))))
+(((*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306))
+ (-5 *1 (-178 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1221 (-561)))
- (-4 *7 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-561)))
- (-4 *3 (-13 (-27) (-1190) (-429 *7)))
- (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-561)) (-4 *4 (-1042)) (-4 *1 (-1216 *4 *3))
- (-4 *3 (-1245 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1214 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-561)) (-4 *1 (-1083 *3)) (-4 *3 (-1205)))))
-(((*1 *1 *1 *2)
- (-12
+ (-12 (-5 *3 (-635 *8))
+ (-5 *4
+ (-635
+ (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-682 *7)))))
+ (-5 *5 (-765)) (-4 *8 (-1229 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-349))
(-5 *2
- (-2 (|:| -3309 (-638 (-856))) (|:| -1403 (-638 (-856)))
- (|:| |presup| (-638 (-856))) (|:| -2690 (-638 (-856)))
- (|:| |args| (-638 (-856)))))
- (-5 *1 (-1166))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-1166)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-4 *2 (-1230 *4))
- (-5 *1 (-915 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-840)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-856))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3))
- (-4 *3
- (-13 (-844)
- (-10 -8 (-15 -2315 ((-1148) $ (-1166))) (-15 -1479 (*2 $))
- (-15 -3699 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-393))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-393))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500))))
- ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-704))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1185))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1259)) (-5 *1 (-1185)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
-(((*1 *2) (-12 (-5 *2 (-638 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-150 *2)) (-4 *2 (-1205))
- (-4 *2 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4399)) (-4 *1 (-150 *3))
- (-4 *3 (-1205))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090))
- (-5 *1 (-731 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
- (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-638 (-112))))))
-(((*1 *2)
+ (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7))))
+ (-5 *1 (-496 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-606 *4)) (-5 *6 (-1160 *4))
+ (-4 *4 (-13 (-420 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4))))
+ (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-606 *4)) (-5 *6 (-406 (-1160 *4)))
+ (-4 *4 (-13 (-420 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4))))
+ (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-606 *2))
+ (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1166))) (-5 *5 (-1160 *2))
+ (-4 *2 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1166)))
+ (-5 *5 (-406 (-1160 *2))) (-4 *2 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1160 *3))
+ (-4 *3 (-13 (-420 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-406 (-1160 *3)))
+ (-4 *3 (-13 (-420 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3))
+ (-4 *3 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7))
+ (-4 *7 (-1091))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3)))
+ (-4 *3 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7))
+ (-4 *7 (-1091)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3))
+ (-4 *3 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3)))
+ (-4 *3 (-13 (-420 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))))
+ (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))))
+(((*1 *2 *3)
(-12
- (-5 *2 (-2 (|:| -3140 (-638 (-1166))) (|:| -2438 (-638 (-1166)))))
- (-5 *1 (-1207)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1254 *4)) (-5 *3 (-765)) (-4 *4 (-348))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1230 *4))
- (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1230 *5)) (-14 *6 (-914))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1273 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
- ((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-362)) (-4 *2 (-367)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1257))))
- ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1257)))))
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1589
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-557)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166))
- (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-765))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-5 *5 (-765))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6))
- (-4 *6 (-13 (-27) (-1190) (-429 *5)))
- (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3))
- (-4 *3 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1221 (-765)))
- (-4 *7 (-13 (-27) (-1190) (-429 *6)))
- (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1221 (-765)))
- (-4 *3 (-13 (-27) (-1190) (-429 *7)))
- (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1245 *3)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27))
- (-5 *2 (-638 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-741)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1205)) (-4 *2 (-995))
- (-4 *2 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-52)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4399)) (-4 *1 (-150 *2)) (-4 *2 (-1205))
- (-4 *2 (-1090)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1589
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-557)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-638
+ (-635
(-2
- (|:| -2285
- (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
- (|:| -2185 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| -4267
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
- (|:| -2677
+ (|:| -2226
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -16623,1736 +12474,4008 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1146 (-224)))
+ (-3 (|:| |str| (-1143 (-224)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2185
+ (|:| -1589
(-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-556)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-765)) (-4 *3 (-1205)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1) (-5 *1 (-170)))
- ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1090))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388))))
- ((*1 *1) (-5 *1 (-393)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
- ((*1 *1)
- (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090))
- (-4 *4 (-659 *3))))
- ((*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042))))
- ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042))))
- ((*1 *1 *1) (-5 *1 (-1166))) ((*1 *1) (-5 *1 (-1166)))
- ((*1 *1) (-5 *1 (-1185))))
+ (-5 *1 (-557)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-557)))))
+(((*1 *1) (-5 *1 (-557))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-543)))))
+(((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-635 (-606 *3))) (-5 *5 (-606 *3))
+ (-4 *3 (-13 (-27) (-1190) (-420 *7)))
+ (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-580 *3)) (-5 *1 (-555 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-420 *5))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *3))
+ (-4 *3 (-13 (-27) (-1190) (-420 *6)))
+ (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-555 *6 *3)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-420 *5))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765))
- (-14 *4 (-765)) (-4 *5 (-171)))))
+ (-12 (-5 *2 (-2 (|:| -1920 *1) (|:| -4387 *1) (|:| |associate| *1)))
+ (-4 *1 (-554)))))
+(((*1 *1 *1) (-4 *1 (-554))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-544))) (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))))
+(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-551)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-27) (-420 *4))) (-4 *4 (-13 (-844) (-554) (-1031 (-544))))
+ (-4 *7 (-1229 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2))
+ (-4 *2 (-341 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5)))
+ (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7)))
+ (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5)))
+ (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7)))
+ (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-606 *3)) (-5 *5 (-1 (-1160 *3) (-1160 *3)))
+ (-4 *3 (-13 (-27) (-420 *6))) (-4 *6 (-13 (-844) (-554))) (-5 *2 (-580 *3))
+ (-5 *1 (-549 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-544) #1="failed") *5)) (-4 *5 (-1042))
+ (-5 *2 (-544)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-544) #1#) *4)) (-4 *4 (-1042)) (-5 *2 (-544))
+ (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-544) #1#) *4)) (-4 *4 (-1042)) (-5 *2 (-544))
+ (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765)))
+ (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1229 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-844) (-553))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-638 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5)))))
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6))
+ (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6))
+ (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1166))) (-4 *6 (-362))
+ (-5 *2 (-635 (-292 (-939 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *7 (-13 (-362) (-842))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-4 *6 (-450))
+ (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362))
+ (-4 *5 (-13 (-362) (-842))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1160 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6))
+ (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-939 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6))
+ (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
+(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-533))))
+ ((*1 *2 *3) (-12 (-5 *3 (-533)) (-5 *1 (-534 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-5 *2 (-533)) (-5 *1 (-534 *4)) (-4 *4 (-1204)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-533))) (-5 *1 (-533)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-533)))))
+(((*1 *1 *1) (-5 *1 (-533))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-533)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-533)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-533))) (-5 *2 (-1166)) (-5 *1 (-533)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-533))) (-5 *1 (-533)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-638 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-638 *4))))
- (-5 *1 (-1176 *6)) (-5 *5 (-638 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1603 (-776 *3)) (|:| |coef1| (-776 *3))))
- (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *2 (-2 (|:| -1603 *1) (|:| |coef1| *1)))
- (-4 *1 (-1056 *3 *4 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378)))))
+ (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-404 (-1160 *6)) (-1160 *6)))
+ (-4 *6 (-362))
+ (-5 *2
+ (-635
+ (-2 (|:| |outval| *7) (|:| |outmult| (-544))
+ (|:| |outvect| (-635 (-682 *7))))))
+ (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1160 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6))
+ (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-406 *5)) (-4 *5 (-1230 *4)) (-4 *4 (-553))
- (-4 *4 (-1042)) (-4 *2 (-1245 *4)) (-5 *1 (-1248 *4 *5 *6 *2))
- (-4 *6 (-649 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1255))))
- ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1230 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1160 *4))
+ (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-912)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1160 *1))
+ (-4 *1 (-328 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)))))
+(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *4)) (-4 *4 (-417 *3)) (-4 *3 (-306)) (-4 *3 (-554))
+ (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-4 *4 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *4))))
+ ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *3))))
((*1 *2)
- (-12 (-4 *2 (-1230 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042))))
+ (-12 (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *1))
+ (-4 *1 (-409 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1254 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
- (-4 *4 (-1230 *3)) (-4 *5 (-1230 (-406 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-2 (|:| -2285 *3) (|:| -2677 *4))))
- (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *1 (-1181 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6))
+ (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6))
+ (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-417 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 *4))) (-5 *1 (-526 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-526 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-912))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-912)) (-5 *1 (-526 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
- ((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
- ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
- ((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553))
- (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1205))))
- ((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1230 *4))
- (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1230 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561)))
- (-5 *1 (-189))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-682 (-315 (-224)))) (-5 *3 (-638 (-1166)))
- (-5 *4 (-1254 (-315 (-224)))) (-5 *1 (-204))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1090))
- (-4 *3 (-1205)) (-5 *1 (-293 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-308 *2)) (-4 *2 (-1090)) (-4 *2 (-1205))
- (-5 *1 (-293 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 (-638 *1))))
- (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 (-638 *1))))
- (-4 *1 (-301))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1090))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-561))) (-5 *4 (-1168 (-406 (-561))))
- (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-561))))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *1)) (-4 *1 (-373 *4 *5))
- (-4 *4 (-844)) (-4 *5 (-171))))
- ((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-638 *1)))
- (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765)))
- (-5 *4 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-844))
- (-4 *5 (-1042))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765)))
- (-5 *4 (-638 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-844))
- (-4 *5 (-1042))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 *1)) (-5 *4 (-1166))
- (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-534)))))
- ((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1166)) (-4 *1 (-429 *4)) (-4 *4 (-844))
- (-4 *4 (-609 (-534)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-534)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-638 (-1166))) (-4 *1 (-429 *3)) (-4 *3 (-844))
- (-4 *3 (-609 (-534)))))
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1110)) (-4 *4 (-349)) (-5 *1 (-526 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-526 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1253 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-349))
+ (-5 *1 (-526 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))
+ (-4 *4 (-349)) (-5 *2 (-1259)) (-5 *1 (-526 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-128))))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-547))))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1212))))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-545))))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1210))))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-546))))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1211))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-129)) (-5 *2 (-765)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-326 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-514 *3 *4)) (-14 *4 (-544)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-326 *3)) (-4 *3 (-1204))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))
- (-4 *3 (-609 (-534)))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1205))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *5)) (-4 *1 (-512 *4 *5))
- (-4 *4 (-1090)) (-4 *5 (-1205))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-827 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090))))
- ((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166)) (-4 *4 (-553))
- (-5 *1 (-1036 *4))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-638 (-1166))) (-5 *4 (-638 (-406 (-945 *5))))
- (-5 *2 (-406 (-945 *5))) (-4 *5 (-553)) (-5 *1 (-1036 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-293 (-406 (-945 *4)))) (-5 *2 (-406 (-945 *4)))
- (-4 *4 (-553)) (-5 *1 (-1036 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-638 (-293 (-406 (-945 *4))))) (-5 *2 (-406 (-945 *4)))
- (-4 *4 (-553)) (-5 *1 (-1036 *4))))
+ (-12 (-5 *2 (-544)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1204))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-844)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765))
+ (-4 *5 (-171))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765))
+ (-4 *5 (-171))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ (-12
+ (-5 *2
+ (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))
+ (-5 *3 (-635 (-858 *4))) (-14 *4 (-635 (-1166))) (-14 *5 (-765))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-635 (-1166))) (-14 *5 (-765))
+ (-5 *2
+ (-635
+ (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))))
+ (-5 *1 (-503 *4 *5))
+ (-5 *3
+ (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-502 (-406 (-544)) (-238 *4 (-765)) (-858 *3) (-246 *3 (-406 (-544)))))
+ (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))
+ (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))
+ (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-301 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1079 (-836 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
+ (-5 *1 (-302))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1146 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042))
- (-4 *6 (-1230 *5)) (-5 *2 (-1162 (-1162 *7)))
- (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1230 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-561))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249))))
- (-5 *2 (-1028)) (-5 *1 (-742)))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-129))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-435)))))
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1254 *1)) (-4 *1 (-366 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090))
- (-4 *6 (-1090)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6)))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2))
+ (-4 *2 (-943 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *3 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *2
+ (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4))
+ (|:| |genIdeal| (-502 *4 *5 *6 *7))))
+ (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3))
+ (|:| |genIdeal| (-502 *3 *4 *5 *6))))
+ (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6))
+ (-4 *6 (-943 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5))
+ (-4 *5 (-943 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1090)) (-4 *3 (-844))
- (-4 *2 (-1205))))
- ((*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
- ((*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
+ (-5 *2 (-412 *4 (-406 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4)))
+ (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306))
+ (-5 *1 (-412 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-943 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2))
+ (-4 *2 (-943 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *6 (-609 (-1166)))
+ (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *2 (-1155 (-635 (-939 *4)) (-635 (-292 (-939 *4)))))
+ (-5 *1 (-502 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-213 *4))
+ (-4 *4
+ (-13 (-844)
+ (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $))
+ (-15 -2115 (*2 $)))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1205)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
+ (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $))
+ (-15 -2115 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *6 (-1229 *5))
+ (-5 *2 (-1160 (-1160 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1229 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-682 (-1160 *8)))
+ (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *6))
+ (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1229 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1160 *7))
+ (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5))
+ (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1160 *7)) (-4 *5 (-1042)) (-4 *7 (-1042))
+ (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *4 (-1229 *5))
+ (-5 *2 (-1160 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1229 *4)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3))))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3))
+ (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-765)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-682 *2)) (-5 *4 (-544))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2))
+ (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-682 *2)) (-5 *4 (-765))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2))
+ (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-349)) (-4 *6 (-1229 *5))
+ (-5 *2
+ (-635
+ (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-682 *6)))))
+ (-5 *1 (-496 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6))))
+ (-4 *7 (-1229 *6)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-544)))))
+ (-5 *1 (-404 *3)) (-4 *3 (-554))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-765)) (-4 *3 (-349)) (-4 *5 (-1229 *3))
+ (-5 *2 (-635 (-1160 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1229 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-487 *3))
+ (-4 *3 (-1204)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4))
+ (-4 *4 (-1204)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4))
+ (-4 *4 (-1204)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091))
+ (-5 *2 (-765))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4))
+ (-4 *4 (-1204)) (-5 *2 (-765)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3))
+ (-4 *5 (-371 *3)) (-5 *2 (-635 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553))
- (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
+ (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204))
+ (-5 *2 (-635 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-544)) (-5 *1 (-484 *4))
+ (-4 *4 (-1229 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544))))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-544))) (-5 *1 (-246 *3 *4)) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-1042))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1205))))
- ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) ((*1 *1) (-4 *1 (-543)))
- ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692))))
- ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+ (-12 (-5 *2 (-635 (-544))) (-14 *3 (-635 (-1166))) (-5 *1 (-452 *3 *4 *5))
+ (-4 *4 (-1042)) (-4 *5 (-237 (-4364 *3) (-765)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-544))) (-5 *1 (-479 *3 *4)) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-1042)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-478)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-478)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450))
+ (-5 *2 (-2 (|:| |dpolys| (-635 (-246 *5 *6))) (|:| |coords| (-635 (-544)))))
+ (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-858 *4)))
+ (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6))
+ (-4 *6 (-450)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450))
+ (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7))
+ (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
+(((*1 *1) (-5 *1 (-466))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867)))
+ (-5 *4 (-635 (-912))) (-5 *5 (-635 (-260))) (-5 *1 (-466))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867)))
+ (-5 *4 (-635 (-912))) (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466))))
+ ((*1 *1 *1) (-5 *1 (-466))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *3 (-635 (-260))) (-5 *1 (-261))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *2 (-1259))
+ (-5 *1 (-466))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-912))
+ (-5 *2 (-1259)) (-5 *1 (-466)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867)))
+ (-5 *1 (-466)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-682 (-406 (-945 (-561)))))
- (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2970 *1) (|:| -1744 *1))) (-4 *1 (-306))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3))))
- (-5 *1 (-385 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2970 (-765)) (|:| -1744 (-765))))
- (-5 *1 (-765))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -2970 *3) (|:| -1744 *3)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
+ (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-224)))
+ (-5 *1 (-466)))))
+(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-5 *2 (-1177 (-638 *4))) (-5 *1 (-1176 *4))
- (-5 *3 (-638 *4)))))
+ (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 (-544)))) (-5 *1 (-464)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 (-1253 (-544)))) (-5 *3 (-912)) (-5 *1 (-464)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787)) (-4 *6 (-554))
+ (-4 *7 (-943 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1031 (-406 (-544))) (-362)
+ (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *2))
+ (-2 (|:| -2535 *5) (|:| -2536 *2))))
+ (-4 *2 (-237 (-4364 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-844)) (-4 *7 (-943 *4 *2 (-858 *3))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5))
+ (-2 (|:| -2535 *2) (|:| -2536 *5))))
+ (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-943 *4 *5 (-858 *3))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-635 (-1166))) (-4 *2 (-171)) (-4 *4 (-237 (-4364 *5) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *4))
+ (-2 (|:| -2535 *3) (|:| -2536 *4))))
+ (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844))
+ (-4 *7 (-943 *2 *4 (-858 *5))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-4 *3 (-237 (-4364 *4) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *3))
+ (-2 (|:| -2535 *5) (|:| -2536 *3))))
+ (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844))
+ (-4 *7 (-943 *2 *3 (-858 *4))))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-635 *3)) (-5 *5 (-912)) (-4 *3 (-1229 *4)) (-4 *4 (-306))
+ (-5 *1 (-458 *4 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-912)) (-4 *5 (-306)) (-4 *3 (-1229 *5))
+ (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3))
+ (-5 *4 (-635 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8))))
- (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
-(((*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))))
-(((*1 *1 *1) (-5 *1 (-1054))))
+ (-12 (-5 *4 (-635 *5)) (-4 *5 (-1229 *3)) (-4 *3 (-306)) (-5 *2 (-112))
+ (-5 *1 (-453 *3 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1253 (-635 *3))) (-4 *4 (-306)) (-5 *2 (-635 *3))
+ (-5 *1 (-453 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1229 *4))
+ (-5 *2 (-1253 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-306)) (-5 *2 (-765))
+ (-5 *1 (-453 *5 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-451 *3 *4 *5 *6))
+ (|:| -2162 (-635 (-451 *3 *4 *5 *6)))))
+ (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-451 *3 *4 *5 *6))
+ (|:| -2162 (-635 (-451 *3 *4 *5 *6)))))
+ (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912))
+ (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1253 (-1166))) (-5 *3 (-1253 (-451 *4 *5 *6 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912))
+ (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-451 *4 *5 *6 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 *2))
+ (-14 *7 (-1253 (-682 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 (-1166))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-912)) (-14 *5 (-635 *2)) (-14 *6 (-1253 (-682 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-912))
+ (-14 *4 (-635 (-1166))) (-14 *5 (-1253 (-682 *2))))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-5 *2 (-1160 (-939 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
- (-4 *4 (-1042)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 *3 (-638 *1)))
- (-4 *1 (-1062 *4 *5 *6 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1166)) (-5 *1 (-534))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3))
- (-4 *3 (-609 (-534))))))
+ (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-5 *2 (-1160 (-939 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2)
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2)
+ (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-635 (-939 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-635 (-939 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-939 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-635 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554))
+ (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))
+ (-14 *6 (-1253 (-682 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-939 *4)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) (-14 *5 (-912))
+ (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450))))
+ ((*1 *1 *1 *1) (-4 *1 (-450))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765))
+ (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -2154 *4))) (-5 *5 (-765))
+ (-4 *4 (-943 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
(-5 *2
- (-2 (|:| -3233 (-765)) (|:| |curves| (-765))
- (|:| |polygons| (-765)) (|:| |constructs| (-765)))))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
+ (-5 *1 (-448 *6 *7 *8 *4)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
+ (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-970 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-117 *4)) (-14 *4 *3)
- (-5 *3 (-561))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-406 (-561))) (-5 *1 (-864 *4)) (-14 *4 *3)
- (-5 *3 (-561))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-406 (-561))) (-5 *1 (-865 *4 *5))
- (-5 *3 (-561)) (-4 *5 (-862 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-561)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362)))
- (-4 *3 (-1230 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4064 (*2 (-1166))))
- (-4 *2 (-1042)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
- (-4 *3 (-960)))))
+ (-12 (-5 *3 (-544)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-544))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844))
+ (-5 *1 (-448 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-544))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844))
+ (-5 *1 (-448 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259))
+ (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-544))
+ (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844))
+ (-5 *1 (-448 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-787)) (-4 *2 (-943 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2))
+ (-4 *4 (-450)) (-4 *6 (-844)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 *3)))) (-5 *4 (-765))
+ (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *1 (-448 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *2))
+ (-4 *2 (-943 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-448 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-787)) (-4 *6 (-943 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844))
+ (-5 *1 (-448 *4 *3 *5 *6)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844))
+ (-5 *1 (-448 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-787)) (-4 *3 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
+ (-5 *1 (-448 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3767 (-638 (-224)))))
- (-5 *2 (-638 (-1166))) (-5 *1 (-266))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
+ (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-544)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7))
+ (-5 *3 (-635 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8))
+ (-5 *3 (-635 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-638 *5))
- (-5 *1 (-320 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-386))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-638 (-1166)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-638 *5))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7))
+ (-5 *3 (-635 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8))
+ (-5 *3 (-635 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7))
+ (-5 *3 (-635 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8))
+ (-5 *3 (-635 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-446 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-444)) (-5 *3 (-544)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
+(((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-544)) (-5 *1 (-443 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-404 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-1042))
+ (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-912)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-912)) (-5 *4 (-765)) (-5 *1 (-440 *2))
+ (-4 *2 (-1229 (-544)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *1 (-440 *2))
+ (-4 *2 (-1229 (-544)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765))
+ (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765))
+ (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-912)) (-5 *4 (-404 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-442 *5 *2))
+ (-4 *5 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544)))))
+ (-4 *4 (-1229 (-544))) (-5 *2 (-730 (-765))) (-5 *1 (-440 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
- (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *5))
- (-5 *1 (-943 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1092 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786))
- (-4 *5 (-844)) (-5 *2 (-638 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5))))
+ (-12 (-5 *3 (-404 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1042))
+ (-5 *2 (-730 (-765))) (-5 *1 (-442 *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *5 *3 *6))
+ (-4 *3 (-1229 *5)) (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))))
((*1 *2 *3)
- (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-1166)))
- (-5 *1 (-1036 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
- (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-942 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
- (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190)))))
- ((*1 *1 *1 *1) (-4 *1 (-787))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169))))
- ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259))
- (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259))
- (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-912)) (-4 *5 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1087 (-765))) (-5 *6 (-765))
+ (-5 *2
+ (-2 (|:| |contp| (-544))
+ (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544)))))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2957 (-544)) (|:| -2812 (-635 *3)))) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-544))))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-404 *3)) (-4 *3 (-554))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544)))))
+ (-4 *4 (-1229 (-544))) (-5 *2 (-765)) (-5 *1 (-440 *4)))))
+(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-544)))))
+ (-4 *2 (-554)) (-5 *1 (-404 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-544))
+ (|:| -2812 (-635 (-2 (|:| |irr| *4) (|:| -2530 (-544)))))))
+ (-4 *4 (-1229 (-544))) (-5 *2 (-404 *4)) (-5 *1 (-440 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-436)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 "void"))) (-5 *1 (-435)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-435)))))
+(((*1 *1) (-5 *1 (-435))))
+(((*1 *1) (-5 *1 (-435))))
+(((*1 *1) (-5 *1 (-435))))
+(((*1 *1) (-5 *1 (-435))))
+(((*1 *1) (-5 *1 (-435))))
+(((*1 *1) (-5 *1 (-435))))
+(((*1 *1) (-5 *1 (-435))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1031 (-48)))
+ (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4))
+ (-5 *2 (-404 (-1160 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48)))
+ (|:| -3019 (-112))))
+ (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4))
+ (-5 *2 (-404 (-1160 (-406 (-544))))) (-5 *1 (-434 *4 *5 *3))
+ (-4 *3 (-1229 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4))
+ (-5 *2 (-404 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1259))
+ (-5 *1 (-432 *3 *4)) (-4 *4 (-420 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-406 (-544)))
+ (-5 *1 (-432 *4 *3)) (-4 *3 (-420 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-606 *3)) (-4 *3 (-420 *5))
+ (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1160 (-406 (-544))))
+ (-5 *1 (-432 *5 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544)))))
+ (-4 *2 (-13 (-844) (-21))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544)))))
+ (-4 *2 (-13 (-844) (-21))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7))
- (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
- (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8))))
- (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
- (-4 *2 (-844))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
- (-4 *4 (-844)))))
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1091)) (-5 *2 (-765)))))
+(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-367)))))
+(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-367)) (-4 *2 (-1091)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8)))
- (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-981 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1495 *8)))
- (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
- (-5 *1 (-1097 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1162 (-406 (-1162 *2)))) (-5 *4 (-607 *2))
- (-4 *2 (-13 (-429 *5) (-27) (-1190)))
- (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
- (-5 *1 (-557 *5 *2 *6)) (-4 *6 (-1090))))
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))
+ (-14 *4 (-1166)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-4 *2 (-13 (-27) (-1190) (-420 *3) (-10 -8 (-15 -4353 ($ *4)))))
+ (-4 *4 (-842))
+ (-4 *5
+ (-13 (-1232 *2 *4) (-362) (-1190)
+ (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $)))))
+ (-5 *1 (-423 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7)))))
+ (-4 *7 (-842))
+ (-4 *8
+ (-13 (-1232 *3 *7) (-362) (-1190)
+ (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
+ (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8))
+ (-14 *10 (-1166)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7)))))
+ (-4 *7 (-842))
+ (-4 *8
+ (-13 (-1232 *3 *7) (-362) (-1190)
+ (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
+ (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8))
+ (-14 *10 (-1166)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-312 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
+ (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))
+ (-14 *6 (-1166)) (-14 *7 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-635 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| -4361 (-544)) (|:| |var| (-606 *1)))) (-4 *1 (-420 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-404 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1162 *1)) (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *3 (-844))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209))
+ (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1162 *4)) (-4 *4 (-1042)) (-4 *1 (-942 *4 *5 *3))
- (-4 *5 (-787)) (-4 *3 (-844))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-1162 *2))) (-4 *5 (-787)) (-4 *4 (-844))
- (-4 *6 (-1042))
- (-4 *2
- (-13 (-362)
- (-10 -8 (-15 -4064 ($ *7)) (-15 -4077 (*7 $)) (-15 -4088 (*7 $)))))
- (-5 *1 (-943 *5 *4 *6 *7 *2)) (-4 *7 (-942 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-1162 (-406 (-945 *5))))) (-5 *4 (-1166))
- (-5 *2 (-406 (-945 *5))) (-5 *1 (-1036 *5)) (-4 *5 (-553)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3))
- (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171))
+ (-4 *1 (-369 *4 *5)) (-4 *5 (-1229 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4))
+ (-4 *4 (-1229 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
+ ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
+ ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
+ ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
+ ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1148))
- (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224))
- (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))))
-(((*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765))
- (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130))
- (-5 *2 (-765))))
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4))))
((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1090))))
- ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1090))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306))
+ (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *6 (-409 *4 *5))
+ (-14 *7 (-1253 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-984 *3))
+ (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-414 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-306)) (-4 *3 (-984 *2)) (-4 *4 (-1229 *3))
+ (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-1253 *2)) (-4 *5 (-306)) (-4 *6 (-984 *5))
+ (-4 *2 (-13 (-409 *6 *7) (-1031 *6))) (-5 *1 (-412 *5 *6 *7 *2))
+ (-4 *7 (-1229 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
((*1 *2)
- (-12 (-4 *4 (-1090)) (-5 *2 (-765)) (-5 *1 (-423 *3 *4))
- (-4 *3 (-424 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090))
- (-4 *4 (-23)) (-14 *5 *4)))
+ (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))
+ (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-171)) (-4 *5 (-1230 *4)) (-5 *2 (-765))
- (-5 *1 (-717 *3 *4 *5)) (-4 *3 (-718 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
- ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
- (-4 *3 (-1230 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
-(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
- (-5 *2 (-1162 *3))))
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-682 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
- (-5 *2 (-1162 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-638 (-914))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-914))
- (-4 *2 (-362)) (-14 *5 (-986 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844))
- (-4 *6 (-237 (-3548 *4) (-765)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2442 *5) (|:| -4181 *6))
- (-2 (|:| -2442 *5) (|:| -4181 *6))))
- (-14 *4 (-638 (-1166))) (-4 *2 (-171))
- (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-942 *2 *6 (-858 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4))
- (-4 *4 (-1230 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5))
- (-4 *4 (-1042)) (-4 *5 (-844))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042))
- (-4 *2 (-844))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6))
- (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042))
- (-4 *5 (-787)) (-4 *2 (-844))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 *5)) (-4 *1 (-966 *4 *5 *6))
- (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786))
- (-4 *2 (-844)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-682 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-544)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-404 *4)) (-4 *4 (-554)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-544)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-404 *2)) (-4 *2 (-554)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-260))))
+ ((*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))))
+(((*1 *1 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-765))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765))))
+ ((*1 *1 *1) (-4 *1 (-401))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146)))
+ (-5 *1 (-398 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1229 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-362) (-146)))
+ (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4))))
+ (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-394)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166)))))
+ (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166)))))
+ (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-635 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166)) (-5 *2 (-1093))
+ (-5 *1 (-394)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390)))))
+(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-390))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-390)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-390)))))
+(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
+(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765))
+ (-4 *5 (-171)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765))
+ (-4 *5 (-171)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-406 (-939 (-544))))) (-5 *4 (-635 (-1166)))
+ (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-842) (-362)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-842) (-362))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-939 (-167 (-544))))) (-5 *2 (-635 (-167 *4)))
+ (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544)))))) (-5 *4 (-635 (-1166)))
+ (-5 *2 (-635 (-635 (-167 *5)))) (-5 *1 (-378 *5))
+ (-4 *5 (-13 (-362) (-842))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561))))))
- (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4))
+ (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544))))))
+ (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4))
(-4 *4 (-13 (-362) (-842)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-293 (-406 (-945 (-168 (-561)))))))
- (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4))
+ (-12 (-5 *3 (-635 (-292 (-406 (-939 (-167 (-544)))))))
+ (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4))
(-4 *4 (-13 (-362) (-842)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 (-168 (-561)))))
- (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4))
+ (-12 (-5 *3 (-406 (-939 (-167 (-544)))))
+ (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4))
(-4 *4 (-13 (-362) (-842)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-945 (-168 (-561))))))
- (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4))
+ (-12 (-5 *3 (-292 (-406 (-939 (-167 (-544))))))
+ (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4))
(-4 *4 (-13 (-362) (-842))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-544)) (-5 *1 (-377)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377)))))
+(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-377)))
+ ((*1 *1) (-5 *1 (-377))))
+(((*1 *1 *1) (-5 *1 (-224)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166)))
+ (-4 *4 (-386))))
+ ((*1 *1 *1) (-5 *1 (-377))) ((*1 *1) (-5 *1 (-377))))
+(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-377))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377))))
+ ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377))))
+ ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377))))
+ ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3))
+ (-4 *3 (-1204)))))
+(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-366 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1253 *4))) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554))
+ (-5 *2 (-635 (-1253 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1091)) (-4 *4 (-1091))))
+ ((*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1148)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))))
+(((*1 *1 *1) (-4 *1 (-172)))
+ ((*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-856)) (-5 *1 (-1146 *3)) (-4 *3 (-1090))
- (-4 *3 (-1205)))))
+ (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-1148)))))
+(((*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349))
+ (-4 *2
+ (-13 (-401)
+ (-10 -7 (-15 -4353 (*2 *4)) (-15 -2160 ((-912) *2))
+ (-15 -2162 ((-1253 *2) (-912))) (-15 -4335 (*2 *2)))))
+ (-5 *1 (-356 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-951 (-1160 *4))) (-5 *1 (-355 *4))
+ (-5 *3 (-1160 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))))
+(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))))
+(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))))
+(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 (-899 *3)) (|:| -2535 (-1110))))))
+ (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110))))))
+ (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110))))))
+ (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))))
+(((*1 *2)
+ (-12 (-5 *2 (-682 (-899 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-912))
+ (-14 *4 (-912))))
+ ((*1 *2)
+ (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
+ (-14 *4
+ (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-682 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))
+ (-4 *4 (-349)) (-5 *2 (-765)) (-5 *1 (-346 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
+ (-14 *4
+ (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349))
+ (-5 *2 (-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-544)) (-5 *2 (-1177 (-912) (-765))))))
+(((*1 *1) (-4 *1 (-349))))
+(((*1 *2)
+ (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-912))
+ (-5 *2
+ (-3 (-1160 *4) (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))))
+ (-5 *1 (-346 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-912))
+ (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))
+ (-5 *1 (-346 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))
+ (-4 *4 (-349)) (-5 *2 (-682 *4)) (-5 *1 (-346 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349))
+ (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))
+ (-5 *1 (-346 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-951 (-1110)))
+ (-5 *1 (-346 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-14 *3 (-912))
+ (-14 *4 (-912))))
+ ((*1 *2)
+ (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-1160 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-912)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1209)) (-4 *5 (-1229 *3)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209))
+ (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209))
+ (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5))))))
(((*1 *2 *3)
(-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1190) (-995))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
- (-5 *2 (-1028)) (-5 *1 (-746)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
-(((*1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))))
+ (-4 *3 (-13 (-362) (-1190) (-995)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4))
+ (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209))
+ (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4))
+ (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209))
+ (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1209))
+ (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
+ (-4 *1 (-341 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1229 *5))
+ (-4 *7 (-1229 (-406 *6))) (-5 *2 (-635 (-939 *5)))
+ (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209))
+ (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *4 (-362))
+ (-5 *2 (-635 (-939 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6))
+ (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166)))
+ (-14 *4 (-635 (-1166))) (-4 *5 (-386))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166)))
+ (-14 *4 (-635 (-1166))) (-4 *5 (-386)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-362)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3)))
+ (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-544)) (-4 *2 (-362)) (-4 *4 (-1229 *2))
+ (-4 *5 (-1229 (-406 *4))) (-4 *1 (-335 *2 *4 *5 *6))
+ (-4 *6 (-341 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3)))
+ (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *1 (-335 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *3 (-939 (-544))) (-5 *1 (-329))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *1 (-329)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))))
+(((*1 *1 *2) (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-313 (-687))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-313 (-694))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-313 (-692))) (-5 *1 (-329))))
+ ((*1 *1) (-5 *1 (-329))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329)))))
+(((*1 *1) (-5 *1 (-329))))
+(((*1 *1) (-5 *1 (-329))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-329)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *6))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call")
+ (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat")
+ (|:| |Goto| "goto") (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-329)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544))))
+ (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1166)) (|:| |rand| (-857))
+ (|:| |ints2Floats?| (-112))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329))
+ (|:| |elseClause| (-329))))
+ (|:| |returnBranch|
+ (-2 (|:| -3807 (-112))
+ (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857))))))
+ (|:| |blockBranch| (-635 (-329))) (|:| |commentBranch| (-635 (-1148)))
+ (|:| |callBranch| (-1148))
+ (|:| |forBranch|
+ (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544)))
+ (|:| -3634 (-329))))
+ (|:| |labelBranch| (-1110))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 (-329))))
+ (|:| |commonBranch|
+ (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166)))))
+ (|:| |printBranch| (-635 (-857)))))
+ (-5 *1 (-329)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-329)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-329)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
+ (-5 *2 (-1160 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-4 *3 (-171)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-417 *4)) (-4 *4 (-553)))))
+ (-12 (-5 *3 (-544)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1091)) (-4 *2 (-130)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130)) (-4 *3 (-786)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-544)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042))
+ (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-943 *2 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1160 *7)) (-5 *3 (-544)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *1 (-320 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-1160 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1042)) (-5 *2 (-1160 *6)) (-5 *1 (-320 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8)) (-4 *7 (-844))
+ (-4 *8 (-1042)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-1160 *8))
+ (-5 *1 (-320 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-544))) (-5 *1 (-318 *3 *4 *5))
+ (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224)))
+ (-5 *6 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224)))
+ (-5 *6 (-544)) (-5 *7 (-1148)) (-5 *2 (-1200 (-920))) (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224)))
+ (-5 *6 (-224)) (-5 *7 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224)))
+ (-5 *6 (-224)) (-5 *7 (-544)) (-5 *8 (-1148)) (-5 *2 (-1200 (-920)))
+ (-5 *1 (-317)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5))
- (-4 *5 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-292 *6)) (-5 *4 (-113)) (-4 *6 (-420 *5))
+ (-4 *5 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
(-5 *1 (-316 *5 *6))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-638 *7))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-635 *7)) (-4 *7 (-420 *6))
+ (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
+ (-5 *1 (-316 *6 *7))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ (-12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7))
+ (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
+ (-5 *1 (-316 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-638 (-293 *8))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *8))
- (-5 *6 (-638 *8)) (-4 *8 (-429 *7))
- (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-635 (-292 *8))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *8))
+ (-5 *6 (-635 *8)) (-4 *8 (-420 *7))
+ (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
(-5 *1 (-316 *7 *8))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7))
+ (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
+ (-5 *1 (-316 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-114))) (-5 *6 (-638 (-293 *8)))
- (-4 *8 (-429 *7)) (-5 *5 (-293 *8))
- (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-113))) (-5 *6 (-635 (-292 *8)))
+ (-4 *8 (-420 *7)) (-5 *5 (-292 *8))
+ (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
(-5 *1 (-316 *7 *8))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6))
- (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-292 *5)) (-5 *4 (-113)) (-4 *5 (-420 *6))
+ (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
(-5 *1 (-316 *6 *5))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
- (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6))
+ (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
(-5 *1 (-316 *6 *3))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
- (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6))
+ (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
(-5 *1 (-316 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-638 *3))
- (-4 *3 (-429 *7)) (-4 *7 (-13 (-844) (-553) (-609 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))))
-(((*1 *1) (-5 *1 (-290))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042))
- (-4 *4 (-786)))))
-(((*1 *2)
- (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902))
- (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-942 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902))
- (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-902)) (-5 *1 (-900 *2 *3)) (-4 *3 (-1230 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3249)))) (-5 *3 (-224))
- (-5 *2 (-1028)) (-5 *1 (-742)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2615 (-638 *1))))
- (-4 *1 (-366 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-451 *3 *4 *5 *6))
- (|:| -2615 (-638 (-451 *3 *4 *5 *6)))))
- (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-682 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042))
- (-5 *1 (-847 *2 *3)) (-4 *3 (-846 *2)))))
+ (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-5 *6 (-635 *3)) (-4 *3 (-420 *7))
+ (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51))
+ (-5 *1 (-316 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-544)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1)))
+ (-4 *1 (-306)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-842)) (-5 *1 (-303 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224)))
+ (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-406 (-544))) (-5 *2 (-224)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-313 (-377))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-224)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348))))
- ((*1 *1) (-4 *1 (-367)))
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377))
+ (|:| |expense| (-377)) (|:| |accuracy| (-377))
+ (|:| |intermediateResults| (-377))))
+ (-5 *2 (-1028)) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1589
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1028)) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148)))))
+ (-5 *2 (-1028)) (-5 *1 (-302))))
((*1 *2 *3)
- (-12 (-5 *3 (-914)) (-5 *2 (-1254 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348))))
- ((*1 *1 *1) (-4 *1 (-543))) ((*1 *1) (-4 *1 (-543)))
- ((*1 *1 *1) (-5 *1 (-561))) ((*1 *1 *1) (-5 *1 (-765)))
- ((*1 *2 *1) (-12 (-5 *2 (-898 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
+ (-12
+ (-5 *3
+ (-2 (|:| -3050 (-377)) (|:| -3949 (-1148))
+ (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))))
+ (-5 *2 (-1028)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191))))
+ ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-300))))
+ ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-1253 (-313 (-377))))
+ (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1253 (-692))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))
+ (-5 *2 (-635 (-224))) (-5 *1 (-302)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1079 (-836 (-224)))) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-406 (-544)))) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-313 (-224))))
+ (-5 *2
+ (-2 (|:| |additions| (-544)) (|:| |multiplications| (-544))
+ (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544))))
+ (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))
+ (-5 *2 (-377)) (-5 *1 (-266))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-224)) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-406 (-544))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-544))) (-5 *1 (-302)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1079 (-836 (-377)))) (-5 *2 (-1079 (-836 (-224))))
+ (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-836 (-377))) (-5 *2 (-836 (-224))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-313 (-377))) (-5 *2 (-313 (-224))) (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-302)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *4 (-1166))
+ (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-300)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-1143 (-224))) (-5 *1 (-191))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166)))
+ (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166)))
+ (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4))
- (-4 *4 (-1090))))
- ((*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-543)) (-4 *2 (-553)))))
-(((*1 *1) (-5 *1 (-1255))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-1204))) (-5 *3 (-1204)) (-5 *1 (-674)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166)))
+ (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224))))
+ (-5 *2 (-635 (-224))) (-5 *1 (-191))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224))))
+ (-5 *2 (-635 (-224))) (-5 *1 (-300)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-638 (-638 (-561)))) (-5 *1 (-964))
- (-5 *3 (-638 (-561))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-112)) (-5 *1 (-300)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-297)) (-4 *2 (-1204))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-606 *1))) (-5 *3 (-635 *1)) (-4 *1 (-297))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *1))) (-4 *1 (-297))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-292 *1)) (-4 *1 (-297)))))
+(((*1 *1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-4 *1 (-297))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-297)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297)))))
+(((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-635 (-113))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-606 *5)) (-4 *5 (-420 *4)) (-4 *4 (-1031 (-544)))
+ (-4 *4 (-13 (-844) (-554))) (-5 *2 (-1160 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-606 *1)) (-4 *1 (-1042)) (-4 *1 (-297)) (-5 *2 (-1160 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-310)) (-5 *1 (-295))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1148))) (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-561))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))))
+ (-12 (-4 *3 (-1042)) (-4 *4 (-1229 *3)) (-5 *1 (-163 *3 *4 *2))
+ (-4 *2 (-1229 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-362) (-146)))
- (-5 *2 (-638 (-2 (|:| -4181 (-765)) (|:| -2298 *4) (|:| |num| *4))))
- (-5 *1 (-398 *3 *4)) (-4 *4 (-1230 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-561)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1090))
- (-4 *2 (-130)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
- (-5 *1 (-1118 *3 *2)) (-4 *3 (-1230 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042))
- (-4 *3 (-1090)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224)))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1028)) (-5 *1 (-747)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1209)) (-4 *5 (-1230 *4))
+ (-12 (-5 *2 (-635 (-292 *3))) (-5 *1 (-292 *3)) (-4 *3 (-554))
+ (-4 *3 (-1204)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5))
- (|:| |c2| (-406 *5)) (|:| |deg| (-765))))
- (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1230 (-406 *5))))))
-(((*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1) (-4 *1 (-624)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
- (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
- (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+ (-635
+ (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4))))
+ (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 *4))))))))
+ (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-638 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1205))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-638 (-607 *1))) (-5 *3 (-638 *1)) (-4 *1 (-301))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-638 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787))
- (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
- (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *7 (-1056 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
- (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
- (-4 *1 (-1062 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
+ (-12 (-4 *4 (-450))
+ (-5 *2
+ (-635
+ (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4))))
+ (|:| |geneigvec| (-635 (-682 (-406 (-939 *4))))))))
+ (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4)))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-406 (-939 *6)) (-1155 (-1166) (-939 *6)))) (-5 *5 (-765))
+ (-4 *6 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *6))))) (-5 *1 (-291 *6))
+ (-5 *4 (-682 (-406 (-939 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5))))
+ (|:| |eigmult| (-765)) (|:| |eigvec| (-635 *4))))
+ (-4 *5 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5))
+ (-5 *4 (-682 (-406 (-939 *5)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5)))) (-4 *5 (-450))
+ (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5))
+ (-5 *4 (-682 (-406 (-939 *5)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-4 *4 (-450))
+ (-5 *2 (-635 (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4)))))
+ (-5 *1 (-291 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1075))) (-5 *1 (-290)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-290)))))
+(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-290)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-635 (-958))) (-5 *1 (-290)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-290)))))
+(((*1 *1) (-5 *1 (-290))))
+(((*1 *1) (-5 *1 (-290))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2))
+ (-4 *5 (-371 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091))
+ (-4 *2 (-1204)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5))
+ (-5 *3 (-1143 *4)) (-4 *5 (-1246 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-281 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3))
+ (-4 *3 (-1091))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-279)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-279)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-406 (-544)))
+ (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-606 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4)))
+ (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-276 *4 *2)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-1166))
+ (-4 *2 (-13 (-27) (-1190) (-420 *5)))
+ (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-276 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-635 (-606 *3))) (|:| |vals| (-635 *3))))
+ (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3))
+ (-4 *3 (-13 (-420 *4) (-995))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-420 *4) (-995))) (-4 *4 (-13 (-844) (-554)))
+ (-5 *1 (-275 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-420 *3) (-995))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-844) (-554))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-844) (-554))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274)))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224)))
+ (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224))))
+ (|:| |ub| (-635 (-836 (-224))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))
+ (-5 *2 (-635 (-1148))) (-5 *1 (-266)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266)))))
+(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *4 (-765)) (-5 *2 (-682 (-224)))
+ (-5 *1 (-266)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))))
+(((*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224)))
+ (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224))))
+ (|:| |ub| (-635 (-836 (-224))))))
+ (-5 *1 (-266)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-836 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4))
+ (-5 *1 (-266)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-117 *3)) (-14 *3 (-561))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-173 (-561))) (-5 *1 (-759 *3)) (-4 *3 (-403))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-864 *3)) (-14 *3 (-561))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-561)) (-5 *2 (-173 (-406 (-561))))
- (-5 *1 (-865 *3 *4)) (-4 *4 (-862 *3)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3))
- (-4 *2 (-1230 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-914))))
+ (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4))
+ (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-1254 *4)) (-4 *4 (-348)) (-5 *2 (-914))
- (-5 *1 (-526 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844))
- (-5 *1 (-1096 *5 *4)) (-4 *4 (-429 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
- (-5 *1 (-657 *3 *4))))
+ (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787))
+ (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-113))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1274 *3 *4))
- (-4 *3 (-844)) (-4 *4 (-171)))))
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
- (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-315 *5)))
- (-5 *1 (-1119 *5))))
+ (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-51))
+ (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
- (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-315 *5))))
- (-5 *1 (-1119 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
- (-14 *5 (-638 (-1166)))
- (-5 *2
- (-638 (-2 (|:| -2016 (-1162 *4)) (|:| -3752 (-638 (-945 *4))))))
- (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-638 (-1166)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *1 (-262 *2))
+ (-4 *2 (-1204)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *1) (-5 *1 (-143)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-260))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918))
(-5 *2
- (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5))))))
- (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-638 (-945 *5)))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ (-2 (|:| |brans| (-635 (-635 (-936 (-224)))))
+ (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))))
+ (-5 *1 (-152))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544)))
(-5 *2
- (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5))))))
- (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-638 (-945 *5)))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-2 (|:| |brans| (-635 (-635 (-936 (-224)))))
+ (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))))
+ (-5 *1 (-152))))
+ ((*1 *2 *3)
+ (-12
(-5 *2
- (-638 (-2 (|:| -2016 (-1162 *5)) (|:| -3752 (-638 (-945 *5))))))
- (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-638 (-945 *5)))
- (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ (-2 (|:| |brans| (-635 (-635 (-936 (-224)))))
+ (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))))
+ (-5 *1 (-152)) (-5 *3 (-635 (-936 (-224))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-12
(-5 *2
- (-638 (-2 (|:| -2016 (-1162 *4)) (|:| -3752 (-638 (-945 *4))))))
- (-5 *1 (-1280 *4 *5 *6)) (-5 *3 (-638 (-945 *4)))
- (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
-(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))))
+ (-2 (|:| |brans| (-635 (-635 (-936 (-224)))))
+ (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))))
+ (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 (-224)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))))
+(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))))
+(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-260)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-406 (-544))))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-112)) (-5 *1 (-260)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256))
+ (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1256)) (-5 *1 (-254 *3))
+ (-4 *3 (-13 (-609 (-533)) (-1091)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260)))
+ (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-377)))
+ (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260)))
+ (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377)))
+ (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257))
+ (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1257)) (-5 *1 (-254 *3))
+ (-4 *3 (-13 (-609 (-533)) (-1091)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260)))
+ (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377)))
+ (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260)))
+ (-5 *2 (-1256)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256))
+ (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256))
+ (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257))
+ (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257))
+ (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257))
+ (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *2 (-1257)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *2 (-1257)) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-292 *7)) (-5 *4 (-1166)) (-5 *5 (-635 (-260)))
+ (-4 *7 (-420 *6)) (-4 *6 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-1256))
+ (-5 *1 (-256 *6 *7))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1256)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1256))
+ (-5 *1 (-259))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *2 (-1256)) (-5 *1 (-259))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-635 (-260))) (-5 *2 (-1256))
+ (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1257)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1257))
+ (-5 *1 (-259)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224)))
+ (-5 *2 (-1257)) (-5 *1 (-257)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224)))
+ (-5 *5 (-112)) (-5 *2 (-1257)) (-5 *1 (-257)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224)))
+ (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-255)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260)))
+ (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-254 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377)))
+ (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-254 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *3))
+ (-4 *3 (-13 (-609 (-533)) (-1091)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260)))
+ (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-254 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377)))
+ (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-254 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-255)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-221 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-253 *3))))
+ ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-635 (-765)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 (-765))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-787))
+ (-4 *2 (-265 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844))
+ (-4 *4 (-265 *3)) (-4 *5 (-787)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844))
+ (-4 *4 (-265 *3)) (-4 *5 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-247)))))
+(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-247)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-765))
+ (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-544))))))
+ (-5 *1 (-245 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-240))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-544)) (-5 *1 (-240)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-240))))
+ ((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1259)) (-5 *1 (-240)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1204)) (-4 *1 (-237 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-292 (-939 (-544))))
(-5 *2
- (-3 (|:| |%expansion| (-312 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
- (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
- (-14 *6 (-1166)) (-14 *7 *3))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1042)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-1230 *3)))))
+ (-2 (|:| |varOrder| (-635 (-1166)))
+ (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed"))
+ (|:| |hom| (-635 (-1253 (-765))))))
+ (-5 *1 (-235)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-234 *3))))
+ ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1091)))))
+(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-939 *6)) (-5 *4 (-1166))
+ (-5 *5 (-836 *7)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1160 *6)) (-5 *4 (-836 *6))
+ (-4 *6 (-13 (-1190) (-29 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-223 *5 *6)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-836 *4)) (-5 *3 (-606 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1190) (-29 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *1 (-223 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))))
+ (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
+ (-14 *3 (-635 (-1166))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-635 (-1166)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-635 (-1166))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-313 *3)) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4))
+ (-14 *4 (-635 (-1166))))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))))
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
+ (-14 *3 (-635 (-1166))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *6 (-112))
+ (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))))
+ (-4 *3 (-13 (-1190) (-953) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| "failed")
+ (|:| |pole| "potentialPole")))
+ (-5 *1 (-218 *7 *3)) (-5 *5 (-836 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4))))
- (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-638 (-607 *3)))
- (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *7)))
- (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
- (-5 *2 (-2 (|:| -3413 *3) (|:| |coeff| *3)))
- (-5 *1 (-554 *7 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3)) (-4 *3 (-1090))
- (-4 *3 (-1205)))))
+ (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *3))))
+ (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-349))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544)))))))
+ (-5 *1 (-215 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1229 (-406 *2)))
+ (-4 *2 (-1229 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912)) (-4 *2 (-1091)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-635 (-313 (-224))))
+ (|:| |constraints|
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765))
+ (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224)))
+ (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148))
+ (|:| |tol| (-224))))
+ (-5 *2 (-112)) (-5 *1 (-209)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-635 (-313 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
+ (-5 *1 (-209)))))
+(((*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-209)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-377)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-377)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-377)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-377)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))))
+ (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-313 (-224))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))))
+ (-5 *1 (-204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-682 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-204))))
+ ((*1 *2 *2 *3) (-12 (-5 *3 (-635 (-377))) (-5 *2 (-377)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-544)) (-5 *1 (-203)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-635 (-224))) (-5 *1 (-203)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-2 (|:| -2881 (-113)) (|:| |w| (-224)))) (-5 *1 (-203)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-377)) (-5 *1 (-191)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular| "There is a singularity at the lower end point")
+ (|:| |upperSingular| "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-191)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224)))
+ (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-191)))))
+(((*1 *2 *3) (-12 (-5 *2 (-404 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-635 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171))
+ (-5 *2 (-1253 (-682 (-939 *4)))) (-5 *1 (-188 *4)))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-635 (-112))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-183)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-684 (-182))) (-5 *1 (-182)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1204)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3)) (-4 *3 (-667 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-842)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2812 (-404 *3)))) (-5 *1 (-180 *4 *3))
+ (-4 *3 (-1229 (-167 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-167 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-167 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-842)))
+ (-4 *3 (-1229 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-167 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-167 *2))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-1229 (-167 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3))
+ (-4 *3 (-1229 (-167 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-1229 (-167 *3))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842)))
+ (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *5))))
+ (-5 *1 (-180 *5 *3)) (-4 *3 (-1229 (-167 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-362) (-842)))
+ (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *4))))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-167 *4))) (-5 *1 (-154 *3 *4))
+ (-4 *3 (-1229 (-167 (-544)))) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4)))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4)))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
+(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *1 *1) (-5 *1 (-160)))
+ ((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-160)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2))
- (-4 *2 (-429 *4))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-420 *4))))
((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166))))
((*1 *1 *1) (-4 *1 (-159))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-420 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554)))
+ (-5 *1 (-157 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *1 *1 *1) (-4 *1 (-142)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))))
+(((*1 *1 *1) (-4 *1 (-142)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1254 (-638 (-2 (|:| -2506 *4) (|:| -2442 (-1110))))))
- (-4 *4 (-348)) (-5 *2 (-765)) (-5 *1 (-345 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-350 *3 *4)) (-14 *3 (-914))
- (-14 *4 (-914))))
- ((*1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
- (-14 *4
- (-3 (-1162 *3)
- (-1254 (-638 (-2 (|:| -2506 *3) (|:| -2442 (-1110)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-914)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-378)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-554))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1090)) (-4 *5 (-1090))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
- (-4 *6 (-1056 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -4020 *1) (|:| |upper| *1)))
- (-4 *1 (-969 *4 *5 *3 *6)))))
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-554))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-348))
- (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -3046 *3))))
- (-5 *1 (-215 *4 *3)) (-4 *3 (-1230 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1205))
- (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))))
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-554))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-554))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-554))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-554))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))))
+(((*1 *1) (-5 *1 (-156))))
+(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-156)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-224))
+ (-5 *2
+ (-2 (|:| |brans| (-635 (-635 (-936 *4)))) (|:| |xValues| (-1079 *4))
+ (|:| |yValues| (-1079 *4))))
+ (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918))
+ (-5 *2
+ (-2 (|:| |brans| (-635 (-635 (-936 (-224)))))
+ (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))))
+ (-5 *1 (-152))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544)))
+ (-5 *2
+ (-2 (|:| |brans| (-635 (-635 (-936 (-224)))))
+ (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))))
+ (-5 *1 (-152)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-912)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362))
+ (-14 *5 (-986 *3 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4)))
- (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
- (-5 *1 (-276 *4 *2)))))
+ (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204))
+ (-4 *2 (-1091)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5))
+ (|:| |c2| (-406 *5)) (|:| |deg| (-765))))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3))
+ (-4 *3 (-1229 (-406 *4))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-914)) (-4 *5 (-553)) (-5 *2 (-682 *5))
- (-5 *1 (-949 *5 *3)) (-4 *3 (-649 *5)))))
+ (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1229 *5))
+ (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *6)))
+ (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1229 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
- (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1190))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *3 (-638 (-561)))
- (-5 *1 (-876)))))
-(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+ (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765))))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| -4361 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3))
+ (-4 *3 (-1229 (-406 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143))))
+ ((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140)))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-832))) (-5 *1 (-139)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-544))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544))
+ (-14 *4 (-765)) (-4 *5 (-171)))))
+(((*1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))))
+(((*1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1042)) (-5 *2 (-1254 *3)) (-5 *1 (-706 *3 *4))
- (-4 *4 (-1230 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))))
-(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-635 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544))
+ (-14 *4 (-765)) (-4 *5 (-171)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544))
+ (-14 *4 (-765)))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1259)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-544))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1091)) (-4 *2 (-844))
+ (-5 *1 (-114 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-844)) (-4 *3 (-1091)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1091))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-1 *4 (-635 *4))))
+ (-5 *1 (-114 *4)) (-4 *4 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-958))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-767)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-109)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-107 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-105)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-5 *2
+ (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224)))
+ (|:| |singularities| (-1143 (-224)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4402 "*"))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2))
+ (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2))
+ (-4 *4 (-679 *2 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4402 "*"))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2))
+ (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2))
+ (-4 *4 (-679 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1603 *3)))
- (-5 *1 (-962 *4 *3)) (-4 *3 (-1230 *4)))))
+ (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6))
+ (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1230 *4))))
+ (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6))
+ (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1091)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-100 *4 *3))
+ (-4 *3 (-1229 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-638 *3)) (-4 *3 (-1230 *5)) (-4 *5 (-13 (-450) (-146)))
- (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-856))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-638 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042))
- (-5 *2 (-765)))))
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-13 (-450) (-146)))
+ (-5 *2 (-404 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))))
+(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-97)))))
+(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-97)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-91 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *5 (-554))
+ (-5 *2
+ (-2 (|:| |minor| (-635 (-912))) (|:| -3667 *3)
+ (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
- (-14 *5 (-638 (-1166))) (-14 *6 (-1254 (-682 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2395 *3) (|:| |coef2| (-776 *3))))
- (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
+ (-12 (-4 *4 (-554)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-682 *4)) (-4 *5 (-651 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-554))
+ (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 (-635 (-912))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-58 *3)) (-4 *3 (-1204))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-58 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-371 *4))
+ (-4 *5 (-371 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1204)) (-4 *5 (-371 *4))
+ (-4 *3 (-371 *4)))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4))))
+ (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-635 (-1065 *4 *5 *2))) (-4 *4 (-1091))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4))))
+ (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-635 (-1065 *5 *6 *2))) (-5 *4 (-912)) (-4 *5 (-1091))
+ (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-883 *5))))
+ (-4 *2 (-13 (-420 *6) (-879 *5) (-609 (-883 *5)))) (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *3 (-767)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-51)))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-51)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1230 (-561))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1205)))))
+ (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-113)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844))
+ (-4 *5 (-1031 (-544))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) (-4 *2 (-420 *5))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *5 (-606 $)) $))
+ (-15 -3380 ((-1115 *5 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *5 (-606 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $))
+ (-15 -3380 ((-1115 *3 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *3 (-606 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $))
+ (-15 -3380 ((-1115 *3 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *3 (-606 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $))
+ (-15 -3380 ((-1115 *3 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *3 (-606 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-554)) (-5 *2 (-1160 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $))
+ (-15 -3380 ((-1115 *4 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *4 (-606 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $))
+ (-15 -3380 ((-1115 *3 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *3 (-606 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $))
+ (-15 -3380 ((-1115 *3 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *3 (-606 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $))
+ (-15 -3380 ((-1115 *4 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *4 (-606 $)))))))
+ (-4 *4 (-554)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-606 *2)))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $))
+ (-15 -3380 ((-1115 *4 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *4 (-606 $)))))))
+ (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-297)
+ (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $))
+ (-15 -3380 ((-1115 *3 (-606 $)) $))
+ (-15 -4353 ($ (-1115 *3 (-606 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *2 (-1259))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1229 (-406 *5))) (-14 *7 *6))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))
+ (-5 *2 (-2 (|:| -4267 *3) (|:| -2226 *4))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-638 (-109))) (-5 *1 (-174)))))
-(((*1 *1) (-5 *1 (-1072))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
- (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))))
+ (-12 (-5 *4 (-544)) (-4 *2 (-420 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1031 *4))
+ (-4 *3 (-13 (-844) (-554))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-844) (-554)))
+ (-5 *2 (-857)) (-5 *1 (-32 *4 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4400)))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1090))
- (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
- (-5 *2 (-638 (-1166))) (-5 *1 (-1066 *3 *4 *5))
- (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
- (-5 *1 (-750)))))
-((-1287 . 735219) (-1288 . 735015) (-1289 . 734878) (-1290 . 734735)
- (-1291 . 734706) (-1292 . 734647) (-1293 . 734575) (-1294 . 734487)
- (-1295 . 734425) (-1296 . 734348) (-1297 . 734217) (-1298 . 734035)
- (-1299 . 733951) (-1300 . 733846) (-1301 . 733694) (-1302 . 733660)
- (-1303 . 733412) (-1304 . 733282) (-1305 . 733211) (-1306 . 733156)
- (-1307 . 733054) (-1308 . 732760) (-1309 . 732709) (-1310 . 732612)
- (-1311 . 732503) (-1312 . 732265) (-1313 . 732135) (-1314 . 731968)
- (-1315 . 731882) (-1316 . 731759) (-1317 . 731620) (-1318 . 731189)
- (-1319 . 731068) (-1320 . 730939) (-1321 . 730460) (-1322 . 730172)
- (-1323 . 730082) (-1324 . 729788) (-1325 . 729666) (-1326 . 729583)
- (-1327 . 729499) (-1328 . 729170) (-1329 . 729102) (-1330 . 727800)
- (-1331 . 727475) (-1332 . 727251) (-1333 . 727192) (-1334 . 727073)
- (-1335 . 726929) (-1336 . 726831) (-1337 . 726322) (-1338 . 725362)
- (-1339 . 725083) (-1340 . 725006) (-1341 . 724950) (-1342 . 724826)
- (-1343 . 724742) (-1344 . 724604) (-1345 . 724460) (-1346 . 724403)
- (-1347 . 724170) (-1348 . 723993) (-1349 . 723901) (-1350 . 723768)
- (-1351 . 723691) (-1352 . 723594) (-1353 . 723427) (-1354 . 723359)
- (-1355 . 723113) (-1356 . 723006) (-1357 . 722913) (-1358 . 722839)
- (-1359 . 722664) (-1360 . 722583) (-1361 . 722554) (-1362 . 721904)
- (-1363 . 721513) (-1364 . 721105) (-1365 . 720911) (-1366 . 720877)
- (-1367 . 720567) (-1368 . 720466) (-1369 . 720383) (-1370 . 720355)
- (-1371 . 718504) (-1372 . 718384) (-1373 . 718162) (-1374 . 718109)
- (-1375 . 718043) (-1376 . 717909) (-1377 . 717795) (-1378 . 717702)
- (-1379 . 717050) (-1380 . 716970) (-1381 . 715341) (-1382 . 715139)
- (-1383 . 715111) (-1384 . 715059) (-1385 . 715003) (-1386 . 714000)
- (-1387 . 713944) (-1388 . 713886) (-1389 . 713833) (-1390 . 713659)
- (-1391 . 713489) (-1392 . 713345) (-1393 . 712479) (-1394 . 712406)
- (-1395 . 711949) (-1396 . 711863) (-1397 . 711660) (-1398 . 711544)
- (-1399 . 711297) (-1400 . 711184) (-1401 . 710792) (-1402 . 710602)
- (-1403 . 710501) (-1404 . 710230) (-1405 . 708856) (-1406 . 708761)
- (-1407 . 708695) (-1408 . 708019) (-1409 . 707859) (-1410 . 707684)
- (-1411 . 707238) (-1412 . 707181) (-1413 . 707021) (-1414 . 706925)
- (-1415 . 706893) (-1416 . 706820) (-1417 . 706762) (-1418 . 706706)
- (-1419 . 706459) (-1420 . 706354) (-1421 . 705919) (-1422 . 705804)
- (-1423 . 705558) (-1424 . 704945) (-1425 . 704802) (-1426 . 704731)
- (-1427 . 704635) (-1428 . 704566) (-1429 . 704507) (-1430 . 704341)
- (-1431 . 704289) (-1432 . 704203) (-1433 . 704062) (-1434 . 703988)
- (-1435 . 703812) (-1436 . 699814) (-1437 . 699387) (-1438 . 699296)
- (-1439 . 699218) (-1440 . 699166) (-1441 . 699107) (-1442 . 699022)
- (-1443 . 698869) (-1444 . 698770) (-1445 . 698704) (-1446 . 698502)
- (-1447 . 698371) (-1448 . 697658) (-1449 . 697596) (-1450 . 697437)
- (-1451 . 697274) (-1452 . 696958) (-1453 . 696658) (-1454 . 696460)
- (-1455 . 696317) (-1456 . 696205) (-1457 . 696092) (-1458 . 695322)
- (-1459 . 693876) (-1460 . 693842) (-1461 . 693743) (-1462 . 693692)
- (-1463 . 693599) (-1464 . 693498) (-1465 . 693349) (-1466 . 692919)
- (-1467 . 692794) (-1468 . 692704) (-1469 . 690866) (-1470 . 690750)
- (-1471 . 690448) (-1472 . 690351) (-1473 . 690241) (-1474 . 690182)
- (-1475 . 689583) (-1476 . 689530) (-1477 . 689459) (-1478 . 689385)
- (-1479 . 688631) (-1480 . 688324) (-1481 . 688221) (-1482 . 687943)
- (-1483 . 687866) (-1484 . 686356) (-1485 . 686084) (-1486 . 685502)
- (-1487 . 685423) (-1488 . 684816) (-1489 . 684331) (-1490 . 684238)
- (-1491 . 684181) (-1492 . 683889) (-1493 . 683811) (-1494 . 683395)
- (-1495 . 683333) (-1496 . 681785) (-1497 . 681594) (-1498 . 681510)
- (-1499 . 681426) (-1500 . 681275) (-1501 . 680901) (-1502 . 680810)
- (-1503 . 680728) (-1504 . 680678) (-1505 . 680461) (-1506 . 680174)
- (-1507 . 679536) (-1508 . 679429) (-1509 . 679397) (-1510 . 679342)
- (-1511 . 679269) (-1512 . 679131) (-1513 . 678972) (-1514 . 678829)
- (-1515 . 678760) (-1516 . 678607) (-1517 . 678459) (-1518 . 678398)
- (-1519 . 677662) (-1520 . 677606) (-1521 . 677557) (-1522 . 677094)
- (-1523 . 676991) (-1524 . 676931) (-1525 . 675591) (-1526 . 675488)
- (-1527 . 675424) (-1528 . 675323) (-1529 . 675157) (-1530 . 674995)
- (-1531 . 674907) (-1532 . 674824) (-1533 . 674706) (-1534 . 674596)
- (-1535 . 674536) (-1536 . 674355) (-1537 . 674167) (-1538 . 674093)
- (-1539 . 673984) (-1540 . 673766) (-1541 . 673544) (-1542 . 673417)
- (-1543 . 670490) (-1544 . 670383) (-1545 . 670213) (-1546 . 670111)
- (-1547 . 670037) (-1548 . 669978) (-1549 . 669926) (-1550 . 669575)
- (-1551 . 669508) (-1552 . 669199) (-1553 . 669089) (-1554 . 669008)
- (-1555 . 668925) (-1556 . 668830) (-1557 . 668186) (-1558 . 668088)
- (-1559 . 665956) (-1560 . 665843) (-1561 . 665750) (-1562 . 665694)
- (-1563 . 665607) (-1564 . 665548) (-1565 . 665444) (-1566 . 665351)
- (-1567 . 665142) (-1568 . 665089) (-1569 . 664974) (-1570 . 664735)
- (-1571 . 664701) (-1572 . 663529) (-1573 . 663497) (-1574 . 663284)
- (-1575 . 663125) (-1576 . 663007) (-1577 . 662849) (-1578 . 662603)
- (-1579 . 662551) (-1580 . 662502) (-1581 . 662375) (-1582 . 662321)
- (-1583 . 662259) (-1584 . 662144) (-1585 . 662094) (-1586 . 661756)
- (-1587 . 661655) (-1588 . 661280) (-1589 . 661221) (-1590 . 661154)
- (-1591 . 661052) (-1592 . 660951) (-1593 . 660649) (-1594 . 660564)
- (-1595 . 660498) (-1596 . 659090) (-1597 . 658812) (-1598 . 657675)
- (-1599 . 657337) (-1600 . 657224) (-1601 . 657190) (-1602 . 657069)
- (-1603 . 655967) (-1604 . 655894) (-1605 . 655765) (-1606 . 655713)
- (-1607 . 655347) (-1608 . 655273) (-1609 . 655157) (-1610 . 654954)
- (-1611 . 654644) (-1612 . 654589) (-1613 . 654476) (-1614 . 654423)
- (-1615 . 654373) (-1616 . 654276) (-1617 . 651861) (-1618 . 651792)
- (-1619 . 651718) (-1620 . 651651) (-1621 . 650181) (-1622 . 650048)
- (-1623 . 649900) (-1624 . 649763) (-1625 . 649613) (-1626 . 649173)
- (-1627 . 649032) (-1628 . 648831) (-1629 . 648774) (-1630 . 648387)
- (-1631 . 648289) (-1632 . 647939) (-1633 . 642425) (-1634 . 642348)
- (-1635 . 642278) (-1636 . 642170) (-1637 . 642118) (-1638 . 642039)
- (-1639 . 641955) (-1640 . 641827) (-1641 . 641700) (-1642 . 641640)
- (-1643 . 641248) (-1644 . 641143) (-1645 . 640913) (-1646 . 640571)
- (-1647 . 640461) (-1648 . 640362) (-1649 . 640228) (-1650 . 640086)
- (-1651 . 639913) (-1652 . 639772) (-1653 . 639674) (-1654 . 639591)
- (-1655 . 639136) (-1656 . 639014) (-1657 . 638621) (-1658 . 638569)
- (-1659 . 637193) (-1660 . 637008) (-1661 . 636924) (-1662 . 636852)
- (-1663 . 636743) (-1664 . 636601) (-1665 . 636252) (-1666 . 636192)
- (-1667 . 635785) (-1668 . 635655) (-1669 . 635542) (-1670 . 635456)
- (-1671 . 635387) (-1672 . 635266) (-1673 . 634896) (-1674 . 634822)
- (-1675 . 634742) (-1676 . 634490) (-1677 . 634308) (-1678 . 634228)
- (-1679 . 634140) (-1680 . 633932) (-1681 . 633790) (-1682 . 633611)
- (-1683 . 633524) (-1684 . 632992) (-1685 . 632939) (-1686 . 632802)
- (-1687 . 632642) (-1688 . 632518) (-1689 . 632176) (-1690 . 632057)
- (-1691 . 631945) (-1692 . 631889) (-1693 . 631590) (-1694 . 631469)
- (-1695 . 631400) (-1696 . 631313) (-1697 . 631098) (-1698 . 630991)
- (-1699 . 630803) (-1700 . 630736) (-1701 . 630617) (-1702 . 630473)
- (-1703 . 629888) (-1704 . 629758) (-1705 . 629664) (-1706 . 628368)
- (-1707 . 628079) (-1708 . 627995) (-1709 . 627917) (-1710 . 627537)
- (-1711 . 627290) (-1712 . 627196) (-1713 . 627103) (-1714 . 626864)
- (-1715 . 626798) (-1716 . 626739) (-1717 . 626665) (-1718 . 626542)
- (-1719 . 626372) (-1720 . 626234) (-1721 . 626183) (-1722 . 626087)
- (-1723 . 625815) (-1724 . 625642) (-1725 . 625548) (-1726 . 625460)
- (-1727 . 625237) (-1728 . 625184) (-1729 . 624891) (-1730 . 624823)
- (-1731 . 624513) (-1732 . 624211) (-1733 . 624044) (-1734 . 623853)
- (-1735 . 623736) (-1736 . 623310) (-1737 . 623253) (-1738 . 621821)
- (-1739 . 621771) (-1740 . 621715) (-1741 . 621505) (-1742 . 621422)
- (-1743 . 620976) (-1744 . 620768) (-1745 . 620685) (-1746 . 620454)
- (-1747 . 619794) (-1748 . 618933) (-1749 . 618775) (-1750 . 618240)
- (-1751 . 618168) (-1752 . 618118) (-1753 . 618066) (-1754 . 617959)
- (-1755 . 617791) (-1756 . 617668) (-1757 . 617600) (-1758 . 617513)
- (-1759 . 617350) (-1760 . 617135) (-1761 . 616809) (-1762 . 616756)
- (-1763 . 616677) (-1764 . 616296) (-1765 . 616015) (-1766 . 615925)
- (-1767 . 615872) (-1768 . 615747) (-1769 . 615670) (-1770 . 615511)
- (-1771 . 615414) (-1772 . 615361) (-1773 . 614273) (-1774 . 614131)
- (-1775 . 613988) (-1776 . 613901) (-1777 . 613793) (-1778 . 613663)
- (-1779 . 613486) (-1780 . 613287) (-1781 . 613200) (-1782 . 613166)
- (-1783 . 612940) (-1784 . 612692) (-1785 . 612604) (-1786 . 612508)
- (-1787 . 612400) (-1788 . 612346) (-1789 . 612318) (-1790 . 612197)
- (-1791 . 612031) (-1792 . 611934) (-1793 . 611848) (-1794 . 611752)
- (-1795 . 611682) (-1796 . 611386) (-1797 . 610074) (-1798 . 609796)
- (-1799 . 609744) (-1800 . 609586) (-1801 . 609509) (-1802 . 609354)
- (-1803 . 609224) (-1804 . 608963) (-1805 . 608811) (-1806 . 608779)
- (-1807 . 608705) (-1808 . 608190) (-1809 . 608122) (-1810 . 606936)
- (-1811 . 606850) (-1812 . 606727) (-1813 . 606479) (-1814 . 606373)
- (-1815 . 606321) (-1816 . 606196) (-1817 . 605905) (-1818 . 605624)
- (-1819 . 604442) (-1820 . 604364) (-1821 . 604311) (-1822 . 604068)
- (-1823 . 603908) (-1824 . 603665) (-1825 . 603499) (-1826 . 603360)
- (-1827 . 603229) (-1828 . 601023) (-1829 . 600924) (-1830 . 600414)
- (-1831 . 600199) (-1832 . 600119) (-1833 . 600055) (-1834 . 599680)
- (-1835 . 599514) (-1836 . 599486) (-1837 . 599333) (-1838 . 599250)
- (-1839 . 599036) (-1840 . 598981) (-1841 . 598786) (-1842 . 598709)
- (-1843 . 598557) (-1844 . 598451) (-1845 . 598314) (-1846 . 598190)
- (-1847 . 598093) (-1848 . 597935) (-1849 . 597608) (-1850 . 597508)
- (-1851 . 597407) (-1852 . 597303) (-1853 . 597053) (-1854 . 596963)
- (-1855 . 596891) (-1856 . 596803) (-1857 . 596207) (-1858 . 595984)
- (-1859 . 595668) (-1860 . 595527) (-1861 . 595411) (-1862 . 595267)
- (-1863 . 595195) (-1864 . 595145) (-1865 . 595092) (-1866 . 594562)
- (-1867 . 594302) (-1868 . 593791) (-1869 . 593253) (-1870 . 592365)
- (-1871 . 592207) (-1872 . 592148) (-1873 . 591574) (-1874 . 591429)
- (-1875 . 591252) (-1876 . 591160) (-1877 . 590132) (-1878 . 590079)
- (-1879 . 590024) (-1880 . 589695) (-1881 . 589455) (-1882 . 589381)
- (-1883 . 589327) (-1884 . 589055) (-1885 . 588089) (-1886 . 587986)
- (-1887 . 587879) (-1888 . 587800) (-1889 . 587751) (-1890 . 587445)
- (-1891 . 587202) (-1892 . 586931) (-1893 . 586675) (-1894 . 586580)
- (-1895 . 586220) (-1896 . 586083) (-1897 . 585986) (-1898 . 585881)
- (-1899 . 585788) (-1900 . 585679) (-1901 . 585590) (-1902 . 585519)
- (-1903 . 585445) (-1904 . 585151) (-1905 . 585099) (-1906 . 585027)
- (-1907 . 584210) (-1908 . 584109) (-1909 . 583995) (-1910 . 583842)
- (-1911 . 583768) (-1912 . 583482) (-1913 . 583410) (-1914 . 583300)
- (-1915 . 583184) (-1916 . 583132) (-1917 . 583035) (-1918 . 582969)
- (-1919 . 582890) (-1920 . 582762) (-1921 . 582604) (-1922 . 582384)
- (-1923 . 582274) (-1924 . 582095) (-1925 . 581961) (-1926 . 581851)
- (-1927 . 581637) (-1928 . 581498) (-1929 . 580995) (-1930 . 580573)
- (-1931 . 580122) (-1932 . 580070) (-1933 . 579842) (-1934 . 579748)
- (-1935 . 579361) (-1936 . 579107) (-1937 . 578955) (-1938 . 578881)
- (-1939 . 578831) (-1940 . 578613) (-1941 . 578483) (-1942 . 578355)
- (-1943 . 578231) (-1944 . 578160) (-1945 . 578007) (-1946 . 577848)
- (-1947 . 577739) (-1948 . 577506) (-1949 . 577402) (-1950 . 577300)
- (-1951 . 577203) (-1952 . 577148) (-1953 . 577078) (-1954 . 576887)
- (-1955 . 576645) (-1956 . 576574) (-1957 . 576521) (-1958 . 576403)
- (-1959 . 576337) (-1960 . 576185) (-1961 . 576112) (-1962 . 576006)
- (-1963 . 575518) (-1964 . 574400) (-1965 . 574291) (-1966 . 574224)
- (-1967 . 573816) (-1968 . 573692) (-1969 . 573569) (-1970 . 573235)
- (-1971 . 573183) (-1972 . 573044) (-1973 . 572859) (-1974 . 572707)
- (-1975 . 572275) (-1976 . 572099) (-1977 . 571955) (-1978 . 571664)
- (-1979 . 571593) (-1980 . 571174) (-1981 . 570541) (-1982 . 570226)
- (-1983 . 570122) (-1984 . 570021) (-1985 . 569587) (-1986 . 569517)
- (-1987 . 569430) (-1988 . 569393) (-1989 . 569247) (-1990 . 569106)
- (-1991 . 568915) (-1992 . 568653) (-1993 . 568591) (-1994 . 568370)
- (-1995 . 568304) (-1996 . 568216) (-1997 . 568146) (-1998 . 568028)
- (-1999 . 567870) (-2000 . 567774) (-2001 . 567348) (-2002 . 567089)
- (-2003 . 566571) (-2004 . 566441) (-2005 . 566329) (-2006 . 566164)
- (-2007 . 566063) (-2008 . 562764) (-2009 . 562529) (-2010 . 562411)
- (-2011 . 562208) (-2012 . 562136) (-2013 . 561886) (-2014 . 561728)
- (-2015 . 561633) (-2016 . 561318) (-2017 . 561259) (-2018 . 561148)
- (-2019 . 561079) (-2020 . 561027) (-2021 . 560967) (-2022 . 560840)
- (-2023 . 560732) (-2024 . 560559) (-2025 . 560316) (-2026 . 560264)
- (-2027 . 560166) (-2028 . 560084) (-2029 . 559857) (-2030 . 559271)
- (-2031 . 559118) (-2032 . 558925) (-2033 . 558723) (-2034 . 557461)
- (-2035 . 557404) (-2036 . 557318) (-2037 . 557214) (-2038 . 557143)
- (-2039 . 557094) (-2040 . 556887) (-2041 . 556655) (-2042 . 556497)
- (-2043 . 556348) (-2044 . 556069) (-2045 . 556017) (-2046 . 555957)
- (-2047 . 555894) (-2048 . 555811) (-2049 . 555683) (-2050 . 555588)
- (-2051 . 555522) (-2052 . 555394) (-2053 . 555315) (-2054 . 555135)
- (-2055 . 554980) (-2056 . 554645) (-2057 . 554501) (-2058 . 554305)
- (-2059 . 554091) (-2060 . 553881) (-2061 . 553728) (-2062 . 553476)
- (-2063 . 553424) (-2064 . 552851) (-2065 . 552780) (-2066 . 552185)
- (-2067 . 551621) (-2068 . 551520) (-2069 . 551453) (-2070 . 551382)
- (-2071 . 547222) (-2072 . 545439) (-2073 . 545330) (-2074 . 545275)
- (-2075 . 544615) (-2076 . 544336) (-2077 . 544277) (-2078 . 544158)
- (-2079 . 544044) (-2080 . 543519) (-2081 . 543453) (-2082 . 543239)
- (-2083 . 542786) (-2084 . 542610) (-2085 . 542411) (-2086 . 542313)
- (-2087 . 542126) (-2088 . 542053) (-2089 . 541910) (-2090 . 541824)
- (-2091 . 541303) (-2092 . 541249) (-2093 . 541142) (-2094 . 540924)
- (-2095 . 540847) (-2096 . 540738) (-2097 . 540547) (-2098 . 540495)
- (-2099 . 540464) (-2100 . 540217) (-2101 . 539936) (-2102 . 539908)
- (-2103 . 539858) (-2104 . 539757) (-2105 . 539691) (-2106 . 539361)
- (-2107 . 539257) (-2108 . 539147) (-2109 . 538986) (-2110 . 538790)
- (-2111 . 538631) (-2112 . 538494) (-2113 . 538421) (-2114 . 538366)
- (-2115 . 538313) (-2116 . 538204) (-2117 . 538100) (-2118 . 538028)
- (-2119 . 537955) (-2120 . 537640) (-2121 . 537545) (-2122 . 537451)
- (-2123 . 537392) (-2124 . 537117) (-2125 . 536735) (-2126 . 536707)
- (-2127 . 536679) (-2128 . 536462) (-2129 . 536366) (-2130 . 536304)
- (-2131 . 536174) (-2132 . 536096) (-2133 . 535999) (-2134 . 535625)
- (-2135 . 535543) (-2136 . 535385) (-2137 . 535190) (-2138 . 535087)
- (-2139 . 534934) (-2140 . 534882) (-2141 . 534494) (-2142 . 534360)
- (-2143 . 534252) (-2144 . 534126) (-2145 . 534073) (-2146 . 534024)
- (-2147 . 533938) (-2148 . 533800) (-2149 . 533281) (-2150 . 532969)
- (-2151 . 532867) (-2152 . 532835) (-2153 . 532505) (-2154 . 532419)
- (-2155 . 532324) (-2156 . 532137) (-2157 . 532083) (-2158 . 531945)
- (-2159 . 531813) (-2160 . 531309) (-2161 . 530900) (-2162 . 530827)
- (-2163 . 530692) (-2164 . 530624) (-2165 . 530123) (-2166 . 529943)
- (-2167 . 529834) (-2168 . 529772) (-2169 . 529617) (-2170 . 529523)
- (-2171 . 529223) (-2172 . 529174) (-2173 . 528971) (-2174 . 528900)
- (-2175 . 528828) (-2176 . 528669) (-2177 . 528500) (-2178 . 528347)
- (-2179 . 528291) (-2180 . 528160) (-2181 . 528012) (-2182 . 527935)
- (-2183 . 527589) (-2184 . 527364) (-2185 . 527225) (-2186 . 527108)
- (-2187 . 526893) (-2188 . 526841) (-2189 . 526769) (-2190 . 526684)
- (-2191 . 526520) (-2192 . 526468) (-2193 . 526396) (-2194 . 526238)
- (-2195 . 525986) (-2196 . 525811) (-2197 . 525672) (-2198 . 525575)
- (-2199 . 523312) (-2200 . 523211) (-2201 . 523111) (-2202 . 523016)
- (-2203 . 522858) (-2204 . 522791) (-2205 . 522558) (-2206 . 522036)
- (-2207 . 521893) (-2208 . 521796) (-2209 . 521250) (-2210 . 521137)
- (-2211 . 520699) (-2212 . 520632) (-2213 . 520505) (-2214 . 520084)
- (-2215 . 519957) (-2216 . 519822) (-2217 . 519765) (-2218 . 519603)
- (-2219 . 518964) (-2220 . 518793) (-2221 . 518513) (-2222 . 518415)
- (-2223 . 518053) (-2224 . 518024) (-2225 . 517728) (-2226 . 517633)
- (-2227 . 517475) (-2228 . 517420) (-2229 . 517370) (-2230 . 516261)
- (-2231 . 516189) (-2232 . 515916) (-2233 . 515769) (-2234 . 512433)
- (-2235 . 512327) (-2236 . 512275) (-2237 . 512171) (-2238 . 512083)
- (-2239 . 511791) (-2240 . 511623) (-2241 . 511200) (-2242 . 511141)
- (-2243 . 510967) (-2244 . 510869) (-2245 . 510594) (-2246 . 510423)
- (-2247 . 510280) (-2248 . 510100) (-2249 . 509978) (-2250 . 509532)
- (-2251 . 509362) (-2252 . 509124) (-2253 . 508773) (-2254 . 508693)
- (-2255 . 508386) (-2256 . 508124) (-2257 . 507877) (-2258 . 507774)
- (-2259 . 507607) (-2260 . 507247) (-2261 . 507213) (-2262 . 507150)
- (-2263 . 506759) (-2264 . 506613) (-2265 . 506562) (-2266 . 506477)
- (-2267 . 506361) (-2268 . 506277) (-2269 . 506017) (-2270 . 505934)
- (-2271 . 505810) (-2272 . 505708) (-2273 . 505674) (-2274 . 505236)
- (-2275 . 505106) (-2276 . 504852) (-2277 . 504796) (-2278 . 504680)
- (-2279 . 504595) (-2280 . 504324) (-2281 . 504178) (-2282 . 503757)
- (-2283 . 503614) (-2284 . 503403) (-2285 . 503249) (-2286 . 503181)
- (-2287 . 503074) (-2288 . 502976) (-2289 . 502758) (-2290 . 502651)
- (-2291 . 502508) (-2292 . 502309) (-2293 . 502229) (-2294 . 502099)
- (-2295 . 502047) (-2296 . 501968) (-2297 . 501916) (-2298 . 501585)
- (-2299 . 501478) (-2300 . 501449) (-2301 . 501213) (-2302 . 501106)
- (-2303 . 501005) (-2304 . 500628) (-2305 . 500295) (-2306 . 500140)
- (-2307 . 499957) (-2308 . 499898) (-2309 . 498977) (-2310 . 498849)
- (-2311 . 498275) (-2312 . 498010) (-2313 . 497916) (-2314 . 497571)
- (-2315 . 492458) (-2316 . 491852) (-2317 . 491708) (-2318 . 491468)
- (-2319 . 491311) (-2320 . 491252) (-2321 . 491182) (-2322 . 491050)
- (-2323 . 490870) (-2324 . 490720) (-2325 . 490576) (-2326 . 490542)
- (-2327 . 490482) (-2328 . 490374) (-2329 . 490128) (-2330 . 490048)
- (-2331 . 489984) (-2332 . 489905) (-2333 . 489848) (-2334 . 489693)
- (-2335 . 488623) (-2336 . 488482) (-2337 . 488398) (-2338 . 488291)
- (-2339 . 487734) (-2340 . 487570) (-2341 . 487455) (-2342 . 487293)
- (-2343 . 487198) (-2344 . 486959) (-2345 . 486780) (-2346 . 485715)
- (-2347 . 485638) (-2348 . 485579) (-2349 . 485497) (-2350 . 485117)
- (-2351 . 484230) (-2352 . 484027) (-2353 . 483883) (-2354 . 483685)
- (-2355 . 483587) (-2356 . 483409) (-2357 . 483303) (-2358 . 482985)
- (-2359 . 482914) (-2360 . 482596) (-2361 . 482523) (-2362 . 482454)
- (-2363 . 481865) (-2364 . 481766) (-2365 . 481695) (-2366 . 481600)
- (-2367 . 481382) (-2368 . 481163) (-2369 . 480636) (-2370 . 480432)
- (-2371 . 480240) (-2372 . 480154) (-2373 . 480089) (-2374 . 479816)
- (-2375 . 479700) (-2376 . 479327) (-2377 . 479256) (-2378 . 479123)
- (-2379 . 478976) (-2380 . 478863) (-2381 . 478810) (-2382 . 478672)
- (-2383 . 478614) (-2384 . 478441) (-2385 . 478252) (-2386 . 478198)
- (-2387 . 478099) (-2388 . 477980) (-2389 . 477843) (-2390 . 477108)
- (-2391 . 477036) (-2392 . 476777) (-2393 . 476709) (-2394 . 476650)
- (-2395 . 476263) (-2396 . 476085) (-2397 . 475875) (-2398 . 475498)
- (-2399 . 475429) (-2400 . 475307) (-2401 . 475204) (-2402 . 475041)
- (-2403 . 474495) (-2404 . 474337) (-2405 . 474117) (-2406 . 474043)
- (-2407 . 473851) (-2408 . 473735) (-2409 . 473656) (-2410 . 473582)
- (-2411 . 472040) (-2412 . 471941) (-2413 . 471844) (-2414 . 471742)
- (-2415 . 471708) (-2416 . 471631) (-2417 . 471545) (-2418 . 471474)
- (-2419 . 471374) (-2420 . 471151) (-2421 . 470662) (-2422 . 470521)
- (-2423 . 470403) (-2424 . 470243) (-2425 . 470159) (-2426 . 470074)
- (-2427 . 469895) (-2428 . 469788) (-2429 . 469316) (-2430 . 469238)
- (-2431 . 469000) (-2432 . 468881) (-2433 . 468804) (-2434 . 468453)
- (-2435 . 468357) (-2436 . 468315) (-2437 . 468249) (-2438 . 468192)
- (-2439 . 468134) (-2440 . 467967) (-2441 . 467802) (-2442 . 467475)
- (-2443 . 467447) (-2444 . 467289) (-2445 . 467237) (-2446 . 467054)
- (-2447 . 467002) (-2448 . 466641) (-2449 . 466541) (-2450 . 466463)
- (-2451 . 466080) (-2452 . 466022) (-2453 . 465956) (-2454 . 465906)
- (-2455 . 465823) (-2456 . 465481) (-2457 . 465360) (-2458 . 465307)
- (-2459 . 465200) (-2460 . 465085) (-2461 . 464971) (-2462 . 464901)
- (-2463 . 464719) (-2464 . 464610) (-2465 . 464475) (-2466 . 464099)
- (-2467 . 464000) (-2468 . 463639) (-2469 . 463500) (-2470 . 463420)
- (-2471 . 463292) (-2472 . 463221) (-2473 . 462742) (-2474 . 462669)
- (-2475 . 462423) (-2476 . 462329) (-2477 . 462235) (-2478 . 462031)
- (-2479 . 461604) (-2480 . 461508) (-2481 . 461329) (-2482 . 461049)
- (-2483 . 460950) (-2484 . 460862) (-2485 . 460724) (-2486 . 460536)
- (-2487 . 460338) (-2488 . 460168) (-2489 . 459989) (-2490 . 459846)
- (-2491 . 459712) (-2492 . 459614) (-2493 . 459390) (-2494 . 459310)
- (-2495 . 459062) (-2496 . 458284) (-2497 . 457992) (-2498 . 457601)
- (-2499 . 457482) (-2500 . 457454) (-2501 . 457368) (-2502 . 457253)
- (-2503 . 456854) (-2504 . 456717) (-2505 . 456576) (-2506 . 456264)
- (-2507 . 456212) (-2508 . 455907) (-2509 . 455668) (-2510 . 455443)
- (-2511 . 455391) (-2512 . 455294) (-2513 . 455171) (-2514 . 455088)
- (-2515 . 454898) (-2516 . 454845) (-2517 . 454503) (-2518 . 454366)
- (-2519 . 454212) (-2520 . 453955) (-2521 . 453900) (-2522 . 453506)
- (-2523 . 453440) (-2524 . 453370) (-2525 . 453293) (-2526 . 452833)
- (-2527 . 452736) (-2528 . 452636) (-2529 . 452584) (-2530 . 452496)
- (-2531 . 452377) (-2532 . 452186) (-2533 . 452100) (-2534 . 452030)
- (-2535 . 451875) (-2536 . 451657) (-2537 . 451403) (-2538 . 451290)
- (-2539 . 451175) (-2540 . 450568) (-2541 . 450368) (-2542 . 450154)
- (-2543 . 449965) (-2544 . 449866) (-2545 . 449751) (-2546 . 449699)
- (-2547 . 449415) (-2548 . 448969) (-2549 . 448916) (-2550 . 448888)
- (-2551 . 448807) (-2552 . 448711) (-2553 . 448516) (-2554 . 448336)
- (-2555 . 448258) (-2556 . 448004) (-2557 . 447557) (-2558 . 447444)
- (-2559 . 447377) (-2560 . 446985) (-2561 . 446823) (-2562 . 446772)
- (-2563 . 439773) (-2564 . 439628) (-2565 . 439421) (-2566 . 438994)
- (-2567 . 438855) (-2568 . 438764) (-2569 . 438415) (-2570 . 438048)
- (-2571 . 437917) (-2572 . 437751) (-2573 . 437038) (-2574 . 436734)
- (-2575 . 435449) (-2576 . 434963) (-2577 . 434741) (-2578 . 434631)
- (-2579 . 434351) (-2580 . 434176) (-2581 . 433954) (-2582 . 433905)
- (-2583 . 433494) (-2584 . 433390) (-2585 . 433210) (-2586 . 433065)
- (-2587 . 432986) (-2588 . 432899) (-2589 . 432795) (-2590 . 432718)
- (-2591 . 432572) (-2592 . 432436) (-2593 . 432355) (-2594 . 432272)
- (-2595 . 432235) (-2596 . 432083) (-2597 . 431940) (-2598 . 431654)
- (-2599 . 431568) (-2600 . 431349) (-2601 . 431276) (-2602 . 430957)
- (-2603 . 430747) (-2604 . 430603) (-2605 . 430423) (-2606 . 430263)
- (-2607 . 430098) (-2608 . 429915) (-2609 . 429704) (-2610 . 429312)
- (-2611 . 429175) (-2612 . 428903) (-2613 . 428826) (-2614 . 428708)
- (-2615 . 427842) (-2616 . 427624) (-2617 . 426806) (-2618 . 426042)
- (-2619 . 425884) (-2620 . 425802) (-2621 . 425552) (-2622 . 425436)
- (-2623 . 425358) (-2624 . 424804) (-2625 . 424680) (-2626 . 424438)
- (-2627 . 424265) (-2628 . 424177) (-2629 . 423877) (-2630 . 423848)
- (-2631 . 423786) (-2632 . 423680) (-2633 . 423424) (-2634 . 423322)
- (-2635 . 423229) (-2636 . 423158) (-2637 . 423106) (-2638 . 423011)
- (-2639 . 422910) (-2640 . 422780) (-2641 . 422582) (-2642 . 422357)
- (-2643 . 422078) (-2644 . 421691) (-2645 . 421554) (-2646 . 421396)
- (-2647 . 421287) (-2648 . 421214) (-2649 . 421071) (-2650 . 420880)
- (-2651 . 420797) (-2652 . 420609) (-2653 . 420180) (-2654 . 419786)
- (-2655 . 419733) (-2656 . 419699) (-2657 . 419562) (-2658 . 419418)
- (-2659 . 419193) (-2660 . 419000) (-2661 . 418247) (-2662 . 417830)
- (-2663 . 417802) (-2664 . 417749) (-2665 . 417506) (-2666 . 417384)
- (-2667 . 417279) (-2668 . 417208) (-2669 . 417112) (-2670 . 417022)
- (-2671 . 416858) (-2672 . 416599) (-2673 . 416175) (-2674 . 415821)
- (-2675 . 415768) (-2676 . 415665) (-2677 . 414463) (-2678 . 413868)
- (-2679 . 413517) (-2680 . 413465) (-2681 . 413412) (-2682 . 413199)
- (-2683 . 413147) (-2684 . 413078) (-2685 . 412984) (-2686 . 412536)
- (-2687 . 412337) (-2688 . 412263) (-2689 . 412169) (-2690 . 412135)
- (-2691 . 412082) (-2692 . 411994) (-2693 . 411900) (-2694 . 411848)
- (-2695 . 411765) (-2696 . 411683) (-2697 . 411371) (-2698 . 411305)
- (-2699 . 411226) (-2700 . 411175) (-2701 . 410731) (-2702 . 410505)
- (-2703 . 410394) (-2704 . 410270) (-2705 . 410158) (-2706 . 409936)
- (-2707 . 409810) (-2708 . 409562) (-2709 . 409466) (-2710 . 409398)
- (-2711 . 409310) (-2712 . 409261) (-2713 . 408775) (-2714 . 408494)
- (-2715 . 408442) (-2716 . 408368) (-2717 . 408220) (-2718 . 407875)
- (-2719 . 407822) (-2720 . 407227) (-2721 . 407175) (-2722 . 406844)
- (-2723 . 406605) (-2724 . 406220) (-2725 . 405831) (-2726 . 405664)
- (-2727 . 405537) (-2728 . 405465) (-2729 . 405358) (-2730 . 405297)
- (-2731 . 405104) (-2732 . 404881) (-2733 . 404738) (-2734 . 404485)
- (-2735 . 404325) (-2736 . 404237) (-2737 . 404043) (-2738 . 403702)
- (-2739 . 403571) (-2740 . 403485) (-2741 . 403402) (-2742 . 403339)
- (-2743 . 403308) (-2744 . 403253) (-2745 . 402866) (-2746 . 402811)
- (-2747 . 402653) (-2748 . 402616) (-2749 . 402545) (-2750 . 402477)
- (-2751 . 402397) (-2752 . 402192) (-2753 . 401489) (-2754 . 400859)
- (-2755 . 400786) (-2756 . 400562) (-2757 . 400513) (-2758 . 400345)
- (-2759 . 400220) (-2760 . 400161) (-2761 . 400091) (-2762 . 399639)
- (-2763 . 399583) (-2764 . 399193) (-2765 . 399136) (-2766 . 399083)
- (-2767 . 399018) (-2768 . 398903) (-2769 . 398797) (-2770 . 398769)
- (-2771 . 398640) (-2772 . 398445) (-2773 . 398359) (-2774 . 398164)
- (-2775 . 397871) (-2776 . 397585) (-2777 . 397511) (-2778 . 397410)
- (-2779 . 396808) (-2780 . 396777) (-2781 . 396703) (-2782 . 396648)
- (-2783 . 396515) (-2784 . 396487) (-2785 . 396434) (-2786 . 396310)
- (-2787 . 396237) (-2788 . 396159) (-2789 . 396057) (-2790 . 395779)
- (-2791 . 395713) (-2792 . 395606) (-2793 . 395486) (-2794 . 395155)
- (-2795 . 395039) (-2796 . 394987) (-2797 . 394958) (-2798 . 394892)
- (-2799 . 394416) (-2800 . 394213) (-2801 . 394107) (-2802 . 394043)
- (-2803 . 393928) (-2804 . 393787) (-2805 . 393638) (-2806 . 393543)
- (-2807 . 393391) (-2808 . 393339) (-2809 . 393255) (-2810 . 393085)
- (-2811 . 392986) (-2812 . 392852) (-2813 . 392778) (-2814 . 392483)
- (-2815 . 392310) (-2816 . 392165) (-2817 . 392061) (-2818 . 391966)
- (-2819 . 391864) (-2820 . 391787) (-2821 . 391213) (-2822 . 391051)
- (-2823 . 390742) (-2824 . 390689) (-2825 . 390493) (-2826 . 390310)
- (-2827 . 390257) (-2828 . 389988) (-2829 . 389617) (-2830 . 389139)
- (-2831 . 389046) (-2832 . 388947) (-2833 . 388849) (-2834 . 388621)
- (-2835 . 388542) (-2836 . 388397) (-2837 . 388340) (-2838 . 388104)
- (-2839 . 388034) (-2840 . 387981) (-2841 . 387734) (-2842 . 387648)
- (-2843 . 387552) (-2844 . 386736) (-2845 . 386552) (-2846 . 386423)
- (-2847 . 386389) (-2848 . 386290) (-2849 . 386179) (-2850 . 385675)
- (-2851 . 385555) (-2852 . 385469) (-2853 . 385351) (-2854 . 385290)
- (-2855 . 384829) (-2856 . 384755) (-2857 . 384723) (-2858 . 384671)
- (-2859 . 384254) (-2860 . 384065) (-2861 . 383888) (-2862 . 383837)
- (-2863 . 383697) (-2864 . 383575) (-2865 . 383432) (-2866 . 383018)
- (-2867 . 382916) (-2868 . 382851) (-2869 . 382799) (-2870 . 382580)
- (-2871 . 382053) (-2872 . 381893) (-2873 . 381808) (-2874 . 381574)
- (-2875 . 381414) (-2876 . 380948) (-2877 . 380621) (-2878 . 380533)
- (-2879 . 380429) (-2880 . 380240) (-2881 . 380049) (-2882 . 379986)
- (-2883 . 379830) (-2884 . 379752) (-2885 . 379538) (-2886 . 379485)
- (-2887 . 379052) (-2888 . 378880) (-2889 . 378777) (-2890 . 378704)
- (-2891 . 378544) (-2892 . 377900) (-2893 . 377755) (-2894 . 377599)
- (-2895 . 377527) (-2896 . 377405) (-2897 . 377371) (-2898 . 377276)
- (-2899 . 377205) (-2900 . 377135) (-2901 . 377106) (-2902 . 376814)
- (-2903 . 376587) (-2904 . 376484) (-2905 . 376418) (-2906 . 376297)
- (-2907 . 376002) (-2908 . 375856) (-2909 . 375233) (-2910 . 374857)
- (-2911 . 374504) (-2912 . 374405) (-2913 . 374344) (-2914 . 374263)
- (-2915 . 373584) (-2916 . 373266) (-2917 . 373121) (-2918 . 373027)
- (-2919 . 372974) (-2920 . 372767) (-2921 . 372520) (-2922 . 372338)
- (-2923 . 372270) (-2924 . 372204) (-2925 . 372041) (-2926 . 371904)
- (-2927 . 371790) (-2928 . 371762) (-2929 . 371678) (-2930 . 371525)
- (-2931 . 371446) (-2932 . 371323) (-2933 . 371162) (-2934 . 370931)
- (-2935 . 370857) (-2936 . 370798) (-2937 . 370682) (-2938 . 370594)
- (-2939 . 370535) (-2940 . 370082) (-2941 . 369990) (-2942 . 369886)
- (-2943 . 369779) (-2944 . 369630) (-2945 . 369560) (-2946 . 369490)
- (-2947 . 369382) (-2948 . 369272) (-2949 . 369205) (-2950 . 369122)
- (-2951 . 369020) (-2952 . 368928) (-2953 . 368831) (-2954 . 368708)
- (-2955 . 368581) (-2956 . 368419) (-2957 . 368284) (-2958 . 368206)
- (-2959 . 368154) (-2960 . 367895) (-2961 . 367748) (-2962 . 367635)
- (-2963 . 367516) (-2964 . 367430) (-2965 . 367001) (-2966 . 366823)
- (-2967 . 366751) (-2968 . 366678) (-2969 . 366460) (-2970 . 366210)
- (-2971 . 366151) (-2972 . 366042) (-2973 . 365972) (-2974 . 365916)
- (-2975 . 365833) (-2976 . 365481) (-2977 . 365401) (-2978 . 365349)
- (-2979 . 365305) (-2980 . 365153) (-2981 . 364885) (-2982 . 364802)
- (-2983 . 364674) (-2984 . 364567) (-2985 . 364511) (-2986 . 364360)
- (-2987 . 364304) (-2988 . 364141) (-2989 . 363343) (-2990 . 363280)
- (-2991 . 363186) (-2992 . 363092) (-2993 . 363020) (-2994 . 361290)
- (-2995 . 361154) (-2996 . 361010) (-2997 . 360855) (-2998 . 360710)
- (-2999 . 360586) (-3000 . 360534) (-3001 . 360457) (-3002 . 359770)
- (-3003 . 359551) (-3004 . 359498) (-3005 . 359279) (-3006 . 359171)
- (-3007 . 358941) (-3008 . 358723) (-3009 . 358526) (-3010 . 358276)
- (-3011 . 358213) (-3012 . 358182) (-3013 . 358002) (-3014 . 357315)
- (-3015 . 357203) (-3016 . 357104) (-3017 . 356826) (-3018 . 356510)
- (-3019 . 356451) (-3020 . 356311) (-3021 . 356256) (-3022 . 356179)
- (-3023 . 356077) (-3024 . 355887) (-3025 . 355832) (-3026 . 355257)
- (-3027 . 354817) (-3028 . 354690) (-3029 . 354416) (-3030 . 354258)
- (-3031 . 354202) (-3032 . 353998) (-3033 . 353894) (-3034 . 353704)
- (-3035 . 353487) (-3036 . 353303) (-3037 . 352785) (-3038 . 352637)
- (-3039 . 352062) (-3040 . 351889) (-3041 . 351782) (-3042 . 351729)
- (-3043 . 351679) (-3044 . 351338) (-3045 . 349482) (-3046 . 349385)
- (-3047 . 349320) (-3048 . 349107) (-3049 . 348984) (-3050 . 348898)
- (-3051 . 348162) (-3052 . 347587) (-3053 . 347302) (-3054 . 347147)
- (-3055 . 346850) (-3056 . 346778) (-3057 . 346708) (-3058 . 346599)
- (-3059 . 346504) (-3060 . 346314) (-3061 . 346226) (-3062 . 346149)
- (-3063 . 345332) (-3064 . 344758) (-3065 . 344397) (-3066 . 344275)
- (-3067 . 343748) (-3068 . 343608) (-3069 . 343264) (-3070 . 343112)
- (-3071 . 343023) (-3072 . 342914) (-3073 . 342367) (-3074 . 342199)
- (-3075 . 342147) (-3076 . 341573) (-3077 . 341297) (-3078 . 341113)
- (-3079 . 340967) (-3080 . 340636) (-3081 . 340314) (-3082 . 340180)
- (-3083 . 340120) (-3084 . 339803) (-3085 . 339658) (-3086 . 339084)
- (-3087 . 338943) (-3088 . 338891) (-3089 . 338678) (-3090 . 338608)
- (-3091 . 338421) (-3092 . 338368) (-3093 . 337941) (-3094 . 337749)
- (-3095 . 337696) (-3096 . 337631) (-3097 . 337502) (-3098 . 337399)
- (-3099 . 336825) (-3100 . 336711) (-3101 . 336436) (-3102 . 336354)
- (-3103 . 336103) (-3104 . 335851) (-3105 . 335795) (-3106 . 335444)
- (-3107 . 334893) (-3108 . 334841) (-3109 . 334760) (-3110 . 334630)
- (-3111 . 334527) (-3112 . 334326) (-3113 . 333752) (-3114 . 333554)
- (-3115 . 333413) (-3116 . 333251) (-3117 . 333198) (-3118 . 333091)
- (-3119 . 333042) (-3120 . 332869) (-3121 . 332756) (-3122 . 332538)
- (-3123 . 332485) (-3124 . 332207) (-3125 . 332009) (-3126 . 331929)
- (-3127 . 331744) (-3128 . 331408) (-3129 . 331355) (-3130 . 331304)
- (-3131 . 331253) (-3132 . 331128) (-3133 . 331076) (-3134 . 330960)
- (-3135 . 330883) (-3136 . 330625) (-3137 . 330472) (-3138 . 329589)
- (-3139 . 329476) (-3140 . 329419) (-3141 . 329307) (-3142 . 329200)
- (-3143 . 329148) (-3144 . 328856) (-3145 . 328782) (-3146 . 328400)
- (-3147 . 328191) (-3148 . 328047) (-3149 . 327795) (-3150 . 327386)
- (-3151 . 327279) (-3152 . 327209) (-3153 . 327143) (-3154 . 326311)
- (-3155 . 326243) (-3156 . 326157) (-3157 . 325355) (-3158 . 324858)
- (-3159 . 324505) (-3160 . 324407) (-3161 . 324278) (-3162 . 324171)
- (-3163 . 324119) (-3164 . 323912) (-3165 . 323585) (-3166 . 322985)
- (-3167 . 322881) (-3168 . 322810) (-3169 . 322729) (-3170 . 322523)
- (-3171 . 322405) (-3172 . 322247) (-3173 . 322028) (-3174 . 321483)
- (-3175 . 321395) (-3176 . 317774) (-3177 . 317703) (-3178 . 317547)
- (-3179 . 317479) (-3180 . 317316) (-3181 . 317229) (-3182 . 317176)
- (-3183 . 317061) (-3184 . 316957) (-3185 . 316744) (-3186 . 316689)
- (-3187 . 316581) (-3188 . 316355) (-3189 . 316235) (-3190 . 316157)
- (-3191 . 316038) (-3192 . 315851) (-3193 . 315643) (-3194 . 315032)
- (-3195 . 314827) (-3196 . 314616) (-3197 . 314564) (-3198 . 314399)
- (-3199 . 314305) (-3200 . 313995) (-3201 . 313909) (-3202 . 313809)
- (-3203 . 313781) (-3204 . 313479) (-3205 . 313378) (-3206 . 313237)
- (-3207 . 313033) (-3208 . 312923) (-3209 . 312871) (-3210 . 312550)
- (-3211 . 312364) (-3212 . 312135) (-3213 . 312057) (-3214 . 311851)
- (-3215 . 311774) (-3216 . 311425) (-3217 . 311133) (-3218 . 310958)
- (-3219 . 310780) (-3220 . 309623) (-3221 . 309412) (-3222 . 308669)
- (-3223 . 308400) (-3224 . 308221) (-3225 . 308154) (-3226 . 308036)
- (-3227 . 307951) (-3228 . 307865) (-3229 . 307461) (-3230 . 307406)
- (-3231 . 307279) (-3232 . 307069) (-3233 . 306976) (-3234 . 306846)
- (-3235 . 306789) (-3236 . 306539) (-3237 . 306483) (-3238 . 306305)
- (-3239 . 306165) (-3240 . 306050) (-3241 . 305973) (-3242 . 305887)
- (-3243 . 305786) (-3244 . 305687) (-3245 . 305534) (-3246 . 305241)
- (-3247 . 305099) (-3248 . 304975) (-3249 . 304897) (-3250 . 304778)
- (-3251 . 304672) (-3252 . 304580) (-3253 . 304467) (-3254 . 304308)
- (-3255 . 304189) (-3256 . 303957) (-3257 . 303824) (-3258 . 303635)
- (-3259 . 303516) (-3260 . 303438) (-3261 . 302908) (-3262 . 302779)
- (-3263 . 302727) (-3264 . 302512) (-3265 . 302376) (-3266 . 302302)
- (-3267 . 302146) (-3268 . 302012) (-3269 . 301914) (-3270 . 301777)
- (-3271 . 301529) (-3272 . 301307) (-3273 . 301102) (-3274 . 300984)
- (-3275 . 300927) (-3276 . 299852) (-3277 . 299798) (-3278 . 299727)
- (-3279 . 299463) (-3280 . 299365) (-3281 . 299281) (-3282 . 299126)
- (-3283 . 298781) (-3284 . 298711) (-3285 . 298518) (-3286 . 298394)
- (-3287 . 298061) (-3288 . 298006) (-3289 . 297649) (-3290 . 297450)
- (-3291 . 297370) (-3292 . 297258) (-3293 . 297094) (-3294 . 296964)
- (-3295 . 296898) (-3296 . 296729) (-3297 . 296645) (-3298 . 296538)
- (-3299 . 296412) (-3300 . 296305) (-3301 . 296196) (-3302 . 296140)
- (-3303 . 296017) (-3304 . 295957) (-3305 . 295239) (-3306 . 294898)
- (-3307 . 294774) (-3308 . 294593) (-3309 . 294559) (-3310 . 294435)
- (-3311 . 293767) (-3312 . 293648) (-3313 . 293454) (-3314 . 293323)
- (-3315 . 293181) (-3316 . 292589) (-3317 . 292506) (-3318 . 292478)
- (-3319 . 292353) (-3320 . 292238) (-3321 . 292106) (-3322 . 292007)
- (-3323 . 291979) (-3324 . 291727) (-3325 . 291581) (-3326 . 291253)
- (-3327 . 291149) (-3328 . 290657) (-3329 . 290571) (-3330 . 290505)
- (-3331 . 289903) (-3332 . 289798) (-3333 . 288894) (-3334 . 288826)
- (** . 285737) (-3336 . 285605) (-3337 . 285531) (-3338 . 285164)
- (-3339 . 285112) (-3340 . 285049) (-3341 . 284982) (-3342 . 284954)
- (-3343 . 284736) (-3344 . 284705) (-3345 . 284623) (-3346 . 284549)
- (-3347 . 284444) (-3348 . 284085) (-3349 . 283839) (-3350 . 283683)
- (-3351 . 283631) (-3352 . 283537) (-3353 . 283472) (-3354 . 282623)
- (-3355 . 279842) (-3356 . 279769) (-3357 . 279458) (-3358 . 279367)
- (-3359 . 279266) (-3360 . 279113) (-3361 . 278867) (-3362 . 278491)
- (-3363 . 278309) (-3364 . 278208) (-3365 . 278180) (-3366 . 278035)
- (-3367 . 277863) (-3368 . 277689) (-3369 . 277629) (-3370 . 277574)
- (-3371 . 277163) (-3372 . 276955) (-3373 . 276818) (-3374 . 276706)
- (-3375 . 276368) (-3376 . 275771) (-3377 . 275562) (-3378 . 275503)
- (-3379 . 275223) (-3380 . 274639) (-3381 . 274258) (-3382 . 273926)
- (-3383 . 273780) (-3384 . 273727) (-3385 . 273584) (-3386 . 273248)
- (-3387 . 273139) (-3388 . 273087) (-3389 . 272986) (-3390 . 272622)
- (-3391 . 272526) (-3392 . 272444) (-3393 . 272356) (-3394 . 272200)
- (-3395 . 271643) (-3396 . 271505) (-3397 . 271420) (-3398 . 271294)
- (-3399 . 271215) (-3400 . 269965) (-3401 . 269640) (-3402 . 269528)
- (-3403 . 269339) (-3404 . 268159) (-3405 . 267621) (-3406 . 267520)
- (-3407 . 267447) (-3408 . 267326) (-3409 . 267154) (-3410 . 266905)
- (-3411 . 266837) (-3412 . 266735) (-3413 . 266680) (-3414 . 266598)
- (-3415 . 266512) (-3416 . 266362) (-3417 . 266031) (-3418 . 265224)
- (-3419 . 265087) (-3420 . 265004) (-3421 . 264936) (-3422 . 264791)
- (-3423 . 264134) (-3424 . 263944) (-3425 . 263871) (-3426 . 263553)
- (-3427 . 263422) (-3428 . 263394) (-3429 . 262640) (-3430 . 262570)
- (-3431 . 262299) (-3432 . 262225) (-3433 . 262034) (-3434 . 261904)
- (-3435 . 261795) (-9 . 261767) (-3437 . 261445) (-3438 . 261270)
- (-3439 . 261134) (-3440 . 260737) (-3441 . 260571) (-3442 . 260497)
- (-3443 . 260383) (-3444 . 260355) (-8 . 260327) (-3446 . 260245)
- (-3447 . 260092) (-3448 . 259990) (-3449 . 259754) (-3450 . 259699)
- (-3451 . 259475) (-3452 . 259325) (-3453 . 259217) (-3454 . 258703)
- (-3455 . 258671) (-3456 . 258542) (-3457 . 258352) (-7 . 258324)
- (-3459 . 258185) (-3460 . 258044) (-3461 . 257926) (-3462 . 257832)
- (-3463 . 257766) (-3464 . 257648) (-3465 . 257485) (-3466 . 257433)
- (-3467 . 257380) (-3468 . 257311) (-3469 . 257140) (-3470 . 257088)
- (-3471 . 256904) (-3472 . 256803) (-3473 . 256766) (-3474 . 256698)
- (-3475 . 256544) (-3476 . 256427) (-3477 . 255511) (-3478 . 255425)
- (-3479 . 255303) (-3480 . 255162) (-3481 . 254778) (-3482 . 254286)
- (-3483 . 254198) (-3484 . 254032) (-3485 . 253683) (-3486 . 252471)
- (-3487 . 252364) (-3488 . 252281) (-3489 . 251991) (-3490 . 251873)
- (-3491 . 251535) (-3492 . 251452) (-3493 . 251146) (-3494 . 251003)
- (-3495 . 250827) (-3496 . 250627) (-3497 . 250489) (-3498 . 250331)
- (-3499 . 250302) (-3500 . 250122) (-3501 . 249729) (-3502 . 249498)
- (-3503 . 249126) (-3504 . 248958) (-3505 . 248765) (-3506 . 248560)
- (-3507 . 246782) (-3508 . 246527) (-3509 . 246413) (-3510 . 246309)
- (-3511 . 246123) (-3512 . 245960) (-3513 . 245802) (-3514 . 245747)
- (-3515 . 245652) (-3516 . 245495) (-3517 . 245342) (-3518 . 245103)
- (-3519 . 244745) (-3520 . 244631) (-3521 . 244551) (-3522 . 243370)
- (-3523 . 243271) (-3524 . 243199) (-3525 . 243072) (-3526 . 243023)
- (-3527 . 242857) (-3528 . 242757) (-3529 . 241576) (-3530 . 241233)
- (-3531 . 241023) (-3532 . 240894) (-3533 . 240756) (-3534 . 240557)
- (-3535 . 240487) (-3536 . 240269) (-3537 . 240144) (-3538 . 240050)
- (-3539 . 239976) (-3540 . 239689) (-3541 . 239615) (-3542 . 239452)
- (-3543 . 239345) (-3544 . 239221) (-3545 . 239117) (-3546 . 238689)
- (-3547 . 238606) (-3548 . 238239) (-3549 . 238168) (-3550 . 238062)
- (-3551 . 237821) (-3552 . 236548) (-3553 . 236402) (-3554 . 236239)
- (-3555 . 236135) (-3556 . 235882) (-3557 . 235438) (-3558 . 235267)
- (-3559 . 235180) (-3560 . 235125) (-3561 . 235013) (-3562 . 234827)
- (-3563 . 234737) (-3564 . 234623) (-3565 . 234328) (-3566 . 234276)
- (-3567 . 234157) (-3568 . 233986) (-3569 . 233690) (-3570 . 233593)
- (-3571 . 233505) (-3572 . 233453) (-3573 . 233426) (-3574 . 233261)
- (-3575 . 233167) (-3576 . 233114) (-3577 . 232866) (-3578 . 232212)
- (-3579 . 232071) (-3580 . 231990) (-3581 . 231846) (-3582 . 230836)
- (-3583 . 230702) (-3584 . 230629) (-3585 . 230555) (-3586 . 230400)
- (-3587 . 230338) (-3588 . 230306) (-3589 . 230163) (-3590 . 230065)
- (-3591 . 229907) (-3592 . 229740) (-3593 . 229652) (-3594 . 229599)
- (-3595 . 229121) (-3596 . 228777) (-3597 . 228691) (-3598 . 228607)
- (-3599 . 228436) (-3600 . 228380) (-3601 . 228346) (-3602 . 228179)
- (-3603 . 228084) (-3604 . 227541) (-3605 . 227472) (-3606 . 227366)
- (-3607 . 227296) (-3608 . 227198) (-3609 . 227089) (-3610 . 226249)
- (-3611 . 226161) (-3612 . 225674) (-3613 . 225575) (-3614 . 224955)
- (-3615 . 224696) (-3616 . 224588) (-3617 . 224494) (-3618 . 224221)
- (-3619 . 224137) (-3620 . 223887) (-3621 . 223808) (-3622 . 223724)
- (-3623 . 223484) (-3624 . 223347) (-3625 . 222646) (-3626 . 222468)
- (-3627 . 222347) (-3628 . 222278) (-3629 . 222172) (-3630 . 222056)
- (-3631 . 221658) (-3632 . 221574) (-3633 . 221306) (-3634 . 220990)
- (-3635 . 220881) (-3636 . 220822) (-3637 . 219824) (-3638 . 219214)
- (-3639 . 219098) (-3640 . 218924) (-3641 . 218697) (-3642 . 218642)
- (-3643 . 218517) (-3644 . 218434) (-3645 . 218319) (-3646 . 218201)
- (-3647 . 218058) (-3648 . 217980) (-3649 . 217867) (-3650 . 217766)
- (-3651 . 217496) (-3652 . 217384) (-3653 . 217183) (-3654 . 217076)
- (-3655 . 216830) (-3656 . 216574) (-3657 . 216467) (-3658 . 216091)
- (-3659 . 215896) (-3660 . 215808) (-3661 . 215552) (-3662 . 215500)
- (-3663 . 215203) (-3664 . 214984) (-3665 . 214882) (-3666 . 214753)
- (-3667 . 214646) (-3668 . 214590) (-3669 . 214460) (-3670 . 214318)
- (-3671 . 213982) (-3672 . 213883) (-3673 . 213551) (-3674 . 213391)
- (-3675 . 213338) (-3676 . 213200) (-3677 . 213137) (-3678 . 212979)
- (-3679 . 212664) (-3680 . 212630) (-3681 . 212577) (-3682 . 212489)
- (-3683 . 212228) (-3684 . 212040) (-3685 . 211828) (-3686 . 211734)
- (-3687 . 211627) (-3688 . 211553) (-3689 . 211433) (-3690 . 211287)
- (-3691 . 210684) (-3692 . 210504) (-3693 . 210414) (-3694 . 210306)
- (-3695 . 210129) (-3696 . 210001) (-3697 . 209804) (-3698 . 209749)
- (-3699 . 209327) (-3700 . 209239) (-3701 . 209171) (-3702 . 207973)
- (-3703 . 207721) (-3704 . 207689) (-3705 . 206979) (-3706 . 206832)
- (-3707 . 206622) (-3708 . 206441) (-3709 . 206351) (-3710 . 206120)
- (-3711 . 205873) (-3712 . 205845) (-3713 . 205768) (-3714 . 205695)
- (-3715 . 205571) (-3716 . 205408) (-3717 . 204984) (-3718 . 204929)
- (-3719 . 204796) (-3720 . 204539) (-3721 . 204483) (-3722 . 204397)
- (-3723 . 204170) (-3724 . 204118) (-3725 . 204002) (-3726 . 203914)
- (-3727 . 203804) (-3728 . 203703) (-3729 . 203547) (-3730 . 203469)
- (-3731 . 203235) (-3732 . 202941) (-3733 . 202780) (-3734 . 202679)
- (-3735 . 201463) (-3736 . 201060) (-3737 . 200987) (-3738 . 200791)
- (-3739 . 200625) (-3740 . 200572) (-3741 . 200501) (-3742 . 198533)
- (-3743 . 197856) (-3744 . 197773) (-3745 . 197679) (-3746 . 196818)
- (-3747 . 196735) (-3748 . 196680) (-3749 . 196097) (-3750 . 195738)
- (-3751 . 195609) (-3752 . 194417) (-3753 . 194259) (-3754 . 194054)
- (-3755 . 193939) (-3756 . 193761) (-3757 . 193638) (-3758 . 193481)
- (-3759 . 193348) (-3760 . 193234) (-3761 . 192957) (-3762 . 192814)
- (-3763 . 192716) (-3764 . 192580) (-3765 . 192480) (-3766 . 192342)
- (-3767 . 192217) (-3768 . 190103) (-3769 . 190075) (-3770 . 189890)
- (-3771 . 189784) (-3772 . 189731) (-3773 . 189629) (-3774 . 189576)
- (-3775 . 189548) (-3776 . 189430) (-3777 . 189321) (-3778 . 189183)
- (-3779 . 189131) (-3780 . 189015) (-3781 . 188870) (-3782 . 188790)
- (-3783 . 188734) (-3784 . 188549) (-3785 . 187736) (-3786 . 187607)
- (-3787 . 187449) (-3788 . 186957) (-3789 . 186880) (-3790 . 186784)
- (-3791 . 186397) (-3792 . 186317) (-3793 . 186204) (-3794 . 186049)
- (-3795 . 185930) (-3796 . 185807) (-3797 . 185754) (-3798 . 185683)
- (-3799 . 185500) (-3800 . 185414) (-3801 . 185348) (-3802 . 185288)
- (-3803 . 185200) (-3804 . 185101) (-3805 . 184759) (-3806 . 184680)
- (-3807 . 184558) (-3808 . 184487) (-3809 . 184426) (-3810 . 184252)
- (-3811 . 184139) (-3812 . 184016) (-3813 . 183863) (-3814 . 183747)
- (-3815 . 183678) (-3816 . 183530) (-3817 . 183376) (-3818 . 183307)
- (-3819 . 183154) (-3820 . 183039) (-3821 . 182957) (-3822 . 182084)
- (-3823 . 182028) (-3824 . 181975) (-3825 . 181817) (-3826 . 181588)
- (-3827 . 181345) (-3828 . 181138) (-3829 . 181086) (-3830 . 180959)
- (-3831 . 180903) (-3832 . 180820) (-3833 . 180788) (-3834 . 180714)
- (-3835 . 179750) (-3836 . 179627) (-3837 . 179507) (-3838 . 179261)
- (-3839 . 179028) (-3840 . 178842) (-3841 . 178703) (-3842 . 178584)
- (-3843 . 178454) (-3844 . 178330) (-3845 . 178261) (-3846 . 178154)
- (-3847 . 178099) (-3848 . 177756) (-3849 . 177511) (-3850 . 177293)
- (-3851 . 177182) (-3852 . 177089) (-3853 . 176931) (-3854 . 176874)
- (-3855 . 176822) (-3856 . 176745) (-3857 . 176689) (-3858 . 176606)
- (-3859 . 176498) (-3860 . 176024) (-3861 . 175947) (-3862 . 175876)
- (-3863 . 175844) (-3864 . 175758) (-3865 . 175680) (-3866 . 175535)
- (-3867 . 175507) (-3868 . 175325) (-3869 . 175122) (-3870 . 174880)
- (-3871 . 174708) (-3872 . 174460) (-3873 . 174066) (-3874 . 173993)
- (-3875 . 173501) (-3876 . 173386) (-3877 . 173302) (-3878 . 173246)
- (-3879 . 172930) (-3880 . 172870) (-3881 . 172793) (-3882 . 172727)
- (-3883 . 172599) (-3884 . 172478) (-3885 . 172319) (-3886 . 172236)
- (-3887 . 172117) (-3888 . 172034) (-3889 . 171846) (-3890 . 171671)
- (-3891 . 171556) (-3892 . 171329) (-3893 . 171148) (-3894 . 170960)
- (-3895 . 170664) (-3896 . 170224) (-3897 . 170030) (-3898 . 169977)
- (-3899 . 169806) (-3900 . 169672) (-3901 . 169589) (-3902 . 169503)
- (-3903 . 169415) (-3904 . 169210) (-3905 . 169152) (-3906 . 168947)
- (-3907 . 168848) (-3908 . 168795) (-3909 . 168702) (-3910 . 168668)
- (-3911 . 168526) (-3912 . 168379) (-3913 . 167515) (-3914 . 167269)
- (-3915 . 167155) (-3916 . 167059) (-3917 . 166978) (-3918 . 166875)
- (-3919 . 166776) (-3920 . 166623) (-3921 . 166416) (-3922 . 164254)
- (-3923 . 164098) (-3924 . 163988) (-3925 . 163936) (-3926 . 163834)
- (-3927 . 163763) (-3928 . 163623) (-3929 . 163422) (-3930 . 163313)
- (-3931 . 162770) (-3932 . 161182) (-3933 . 161098) (-3934 . 160013)
- (-3935 . 159918) (-3936 . 159699) (-3937 . 159627) (-3938 . 159568)
- (-3939 . 159471) (-3940 . 159398) (-3941 . 159346) (-3942 . 159218)
- (-3943 . 159074) (-3944 . 158993) (-3945 . 158912) (-3946 . 158792)
- (-3947 . 158707) (-3948 . 158630) (-3949 . 158328) (-3950 . 158233)
- (-3951 . 158173) (-3952 . 157800) (-3953 . 157769) (-3954 . 157692)
- (-3955 . 157608) (-3956 . 157483) (-3957 . 157430) (-3958 . 157381)
- (-3959 . 157244) (-3960 . 156747) (-3961 . 156662) (-3962 . 156431)
- (-3963 . 156206) (-3964 . 156099) (-3965 . 155648) (-3966 . 155546)
- (-3967 . 155480) (-3968 . 155400) (-3969 . 155283) (-3970 . 155167)
- (-3971 . 155087) (-3972 . 155035) (-3973 . 154826) (-3974 . 154760)
- (-3975 . 154677) (-3976 . 154573) (-3977 . 154449) (-3978 . 154334)
- (-3979 . 148996) (-3980 . 148869) (-3981 . 148714) (-3982 . 148281)
- (-3983 . 147945) (-3984 . 147636) (-3985 . 146471) (-3986 . 146437)
- (-3987 . 146336) (-3988 . 145970) (-3989 . 145824) (-3990 . 145633)
- (-3991 . 145551) (-3992 . 145493) (-3993 . 145386) (-3994 . 145334)
- (-3995 . 145083) (-3996 . 145028) (-3997 . 144957) (-3998 . 144876)
- (-3999 . 144601) (-4000 . 144429) (-4001 . 144243) (-4002 . 144109)
- (-4003 . 144049) (-4004 . 143513) (-4005 . 143389) (-4006 . 143276)
- (-4007 . 143225) (-4008 . 143007) (-4009 . 142894) (-4010 . 142797)
- (-4011 . 142560) (-4012 . 142451) (-4013 . 142289) (-4014 . 141976)
- (-4015 . 141867) (-4016 . 141724) (-4017 . 141616) (-4018 . 141509)
- (-4019 . 141386) (-4020 . 141286) (-4021 . 141133) (-4022 . 140980)
- (-4023 . 140900) (-4024 . 140688) (-4025 . 140622) (-4026 . 140397)
- (-4027 . 138128) (-4028 . 138021) (-4029 . 137955) (-4030 . 137788)
- (-4031 . 137696) (-4032 . 137622) (-4033 . 137501) (-4034 . 137382)
- (-4035 . 137238) (-4036 . 137186) (-4037 . 137127) (-4038 . 136376)
- (-4039 . 136017) (-4040 . 135818) (-4041 . 135746) (-4042 . 135673)
- (-4043 . 135585) (-4044 . 135497) (-4045 . 134893) (-4046 . 134841)
- (-4047 . 134551) (-4048 . 134444) (-4049 . 134407) (-4050 . 134235)
- (-4051 . 134105) (-4052 . 134045) (-4053 . 133958) (-4054 . 133694)
- (-4055 . 133628) (-4056 . 133354) (-4057 . 133271) (-4058 . 133106)
- (-4059 . 132910) (-4060 . 132858) (-4061 . 128316) (-4062 . 128036)
- (-12 . 127864) (-4064 . 109150) (-4065 . 109071) (-4066 . 108985)
- (-4067 . 108850) (-4068 . 108737) (-4069 . 108679) (-4070 . 108538)
- (-4071 . 108071) (-4072 . 107927) (-4073 . 107804) (-4074 . 107724)
- (-4075 . 107651) (-4076 . 107620) (-4077 . 106919) (-4078 . 104098)
- (-4079 . 103448) (-4080 . 103376) (-4081 . 103083) (-4082 . 103016)
- (-4083 . 102852) (-4084 . 102363) (-4085 . 101622) (-4086 . 101445)
- (-4087 . 101392) (-4088 . 100714) (-4089 . 100586) (-4090 . 100505)
- (-4091 . 100332) (-4092 . 100255) (-4093 . 100182) (-4094 . 99892)
- (-4095 . 99633) (-4096 . 99580) (-4097 . 98839) (-4098 . 98683)
- (-4099 . 98595) (-4100 . 98497) (-4101 . 98402) (-4102 . 98104)
- (-4103 . 98009) (-4104 . 97860) (-4105 . 97336) (-4106 . 96648)
- (-4107 . 96195) (-4108 . 95787) (-4109 . 95699) (-4110 . 95592)
- (-4111 . 95327) (-4112 . 95169) (-4113 . 94923) (-4114 . 94779)
- (-4115 . 94560) (-4116 . 94482) (-4117 . 94387) (-4118 . 93811)
- (-4119 . 93732) (-4120 . 93623) (-4121 . 93570) (-4122 . 93463)
- (-4123 . 93340) (-4124 . 93285) (-4125 . 93112) (-4126 . 93056)
- (-4127 . 92924) (-4128 . 92537) (-4129 . 92384) (-4130 . 91808)
- (-4131 . 91568) (-4132 . 91323) (-4133 . 91144) (-4134 . 91058)
- (-4135 . 90970) (-4136 . 90805) (-4137 . 90422) (-4138 . 90252)
- (-4139 . 90153) (-4140 . 89577) (-4141 . 89467) (-4142 . 89414)
- (-4143 . 88966) (-4144 . 88881) (-4145 . 88224) (-4146 . 88069)
- (-4147 . 88038) (-4148 . 87935) (-4149 . 87882) (-4150 . 87196)
- (-4151 . 86867) (-4152 . 86716) (-4153 . 86646) (-4154 . 86339)
- (-4155 . 86158) (-4156 . 85997) (-4157 . 85894) (-4158 . 85579)
- (-4159 . 85463) (-4160 . 85404) (-4161 . 85119) (-4162 . 84433)
- (-4163 . 84230) (-4164 . 74668) (-4165 . 60554) (* . 56008)
- (-4167 . 51945) (-4168 . 51888) (-4169 . 51728) (-4170 . 51651)
- (-4171 . 51435) (-4172 . 51034) (-4173 . 50979) (-4174 . 50370)
- (-4175 . 49621) (-4176 . 49304) (-4177 . 49191) (-4178 . 49136)
- (-4179 . 49042) (-4180 . 48971) (-4181 . 48490) (-4182 . 48359)
- (-4183 . 48271) (-4184 . 47697) (-4185 . 47592) (-4186 . 47463)
- (-4187 . 47411) (-4188 . 46756) (-4189 . 45886) (-4190 . 45789)
- (-4191 . 45468) (-4192 . 44894) (-4193 . 44813) (-4194 . 44673)
- (-4195 . 44570) (-4196 . 44399) (-4197 . 44126) (-4198 . 43899)
- (-4199 . 43798) (-4200 . 43633) (-4201 . 43580) (-4202 . 43006)
- (-4203 . 42774) (-4204 . 42638) (-4205 . 42458) (-4206 . 40113)
- (-4207 . 38809) (-4208 . 38638) (-4209 . 38572) (-4210 . 38504)
- (-4211 . 38433) (-4212 . 38353) (-4213 . 37666) (-4214 . 37526)
- (-4215 . 37473) (-4216 . 33807) (-4217 . 33727) (-4218 . 33236)
- (-4219 . 33104) (-4220 . 32943) (-4221 . 32851) (-4222 . 32733)
- (-4223 . 31929) (-4224 . 31803) (-4225 . 31476) (-4226 . 31118)
- (-4227 . 31065) (-4228 . 30684) (-4229 . 30089) (-4230 . 30008)
- (-4231 . 29934) (-4232 . 29864) (-4233 . 29798) (-4234 . 29541)
- (-4235 . 29430) (-4236 . 29212) (-4237 . 29156) (-4238 . 29012)
- (-4239 . 28959) (-4240 . 28879) (-4241 . 28780) (-4242 . 28518)
- (-4243 . 28277) (-4244 . 27643) (-4245 . 27530) (-4246 . 27470)
- (-4247 . 27380) (-4248 . 27163) (-4249 . 27060) (-4250 . 26944)
- (-4251 . 26574) (-4252 . 24716) (-4253 . 24643) (-4254 . 24428)
- (-4255 . 24377) (-4256 . 24209) (-4257 . 24116) (-4258 . 23237)
- (-4259 . 23018) (-4260 . 22910) (-4261 . 21333) (-4262 . 21236)
- (-4263 . 21114) (-4264 . 21058) (-4265 . 20984) (-4266 . 20463)
- (-4267 . 20411) (-4268 . 20232) (-4269 . 20132) (-4270 . 19947)
- (-4271 . 19838) (-4272 . 19739) (-4273 . 19653) (-4274 . 19600)
- (-4275 . 19544) (-4276 . 19473) (-4277 . 19399) (-4278 . 19371)
- (-4279 . 19228) (-4280 . 19156) (-4281 . 19067) (-4282 . 19033)
- (-4283 . 18926) (-4284 . 18874) (-4285 . 18701) (-4286 . 18597)
- (-4287 . 18538) (-4288 . 18222) (-4289 . 18115) (-4290 . 17861)
- (-4291 . 17479) (-4292 . 17405) (-4293 . 17328) (-4294 . 17224)
- (-4295 . 17153) (-4296 . 16988) (-4297 . 16682) (-4298 . 16571)
- (-4299 . 16187) (-4300 . 16113) (-4301 . 16004) (-4302 . 15812)
- (-4303 . 15509) (-4304 . 15381) (-4305 . 15295) (-4306 . 14996)
- (-4307 . 14853) (-4308 . 14287) (-4309 . 14115) (-4310 . 13441)
- (-4311 . 13318) (-4312 . 13266) (-4313 . 13215) (-4314 . 13059)
- (-4315 . 12980) (-4316 . 12629) (-4317 . 12069) (-4318 . 11967)
- (-4319 . 11747) (-4320 . 11575) (-4321 . 11501) (-4322 . 10935)
- (-4323 . 10668) (-4324 . 10307) (-4325 . 10203) (-4326 . 10130)
- (-4327 . 10074) (-4328 . 9990) (-4329 . 9868) (-4330 . 9794)
- (-4331 . 9681) (-4332 . 9509) (-4333 . 9302) (-4334 . 9184)
- (-4335 . 9028) (-4336 . 8937) (-4337 . 8863) (-4338 . 8702)
- (-4339 . 8484) (-4340 . 8274) (-4341 . 8125) (-4342 . 7953)
- (-4343 . 7723) (-4344 . 7671) (-4345 . 7029) (-4346 . 6862)
- (-4347 . 6782) (-4348 . 6720) (-4349 . 6637) (-4350 . 6502)
- (-4351 . 6452) (-4352 . 5456) (-4353 . 5347) (-4354 . 4968)
- (-4355 . 4898) (-4356 . 4773) (-4357 . 4642) (-4358 . 4571)
- (-4359 . 4497) (-4360 . 3739) (-4361 . 3388) (-4362 . 3136)
- (-4363 . 3069) (-4364 . 1831) (-4365 . 1724) (-4366 . 1650)
- (-4367 . 1541) (-4368 . 1467) (-4369 . 1366) (-4370 . 1175)
- (-4371 . 1043) (-4372 . 862) (-4373 . 734) (-4374 . 604) (-4375 . 576)
- (-4376 . 444) (-4377 . 346) (-4378 . 59) (-4379 . 30)) \ No newline at end of file
+ (-12 (-5 *3 (-1160 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554)))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-939 (-544))) (-5 *3 (-1166)) (-5 *4 (-1079 (-406 (-544))))
+ (-5 *1 (-30)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554))))))
+((-1287 . 727023) (-1288 . 726596) (-1289 . 726475) (-1290 . 726360)
+ (-1291 . 726234) (-1292 . 726104) (-1293 . 726035) (-1294 . 725981)
+ (-1295 . 725846) (-1296 . 725770) (-1297 . 725614) (-1298 . 725386)
+ (-1299 . 724422) (-1300 . 724175) (-1301 . 723873) (-1302 . 723571)
+ (-1303 . 723269) (-1304 . 722931) (-1305 . 722839) (-1306 . 722747)
+ (-1307 . 722655) (-1308 . 722563) (-1309 . 722471) (-1310 . 722379)
+ (-1311 . 722284) (-1312 . 722189) (-1313 . 722097) (-1314 . 722005)
+ (-1315 . 721913) (-1316 . 721821) (-1317 . 721729) (-1318 . 721627)
+ (-1319 . 721525) (-1320 . 721423) (-1321 . 721331) (-1322 . 721264)
+ (-1323 . 721213) (-1324 . 721161) (-1325 . 721110) (-1326 . 721059)
+ (-1327 . 720989) (-1328 . 720551) (-1329 . 720349) (-1330 . 720322)
+ (-1331 . 720199) (-1332 . 720076) (-1333 . 719932) (-1334 . 719762)
+ (-1335 . 719638) (-1336 . 719399) (-1337 . 719326) (-1338 . 719185)
+ (-1339 . 719134) (-1340 . 719085) (-1341 . 719015) (-1342 . 718880)
+ (-1343 . 718745) (-1344 . 718517) (-1345 . 718269) (-1346 . 718089)
+ (-1347 . 717918) (-1348 . 717841) (-1349 . 717767) (-1350 . 717612)
+ (-1351 . 717457) (-1352 . 717271) (-1353 . 717088) (-1354 . 716911)
+ (-1355 . 716854) (-1356 . 716798) (-1357 . 716742) (-1358 . 716668)
+ (-1359 . 716590) (-1360 . 716559) (-1361 . 716490) (-1362 . 716416)
+ (-1363 . 716360) (-1364 . 716289) (-1365 . 716215) (-1366 . 716141)
+ (-1367 . 716089) (-1368 . 716037) (-1369 . 715985) (-1370 . 715862)
+ (-1371 . 715540) (-1372 . 715452) (-1373 . 715351) (-1374 . 715230)
+ (-1375 . 715149) (-1376 . 715068) (-1377 . 714911) (-1378 . 714760)
+ (-1379 . 714682) (-1380 . 714624) (-1381 . 714551) (-1382 . 714486)
+ (-1383 . 714421) (-1384 . 714359) (-1385 . 714286) (-1386 . 714170)
+ (-1387 . 714118) (-1388 . 714063) (-1389 . 714011) (-1390 . 713959)
+ (-1391 . 713915) (-1392 . 713844) (-1393 . 713792) (-1394 . 713743)
+ (-1395 . 713691) (-1396 . 713639) (-1397 . 713523) (-1398 . 713407)
+ (-1399 . 713315) (-1400 . 713223) (-1401 . 713100) (-1402 . 713041)
+ (-1403 . 712982) (-1404 . 712923) (-1405 . 712895) (-1406 . 712867)
+ (-1407 . 712839) (-1408 . 712811) (-1409 . 712701) (-1410 . 712649)
+ (-1411 . 712597) (-1412 . 712545) (-1413 . 712493) (-1414 . 712441)
+ (-1415 . 712389) (-1416 . 712361) (-1417 . 712258) (-1418 . 712206)
+ (-1419 . 712040) (-1420 . 711856) (-1421 . 711645) (-1422 . 711530)
+ (-1423 . 711297) (-1424 . 711198) (-1425 . 711104) (-1426 . 710989)
+ (-1427 . 710591) (-1428 . 710373) (-1429 . 710324) (-1430 . 710296)
+ (-1431 . 710205) (-1432 . 710093) (-1433 . 709981) (-1434 . 709869)
+ (-1435 . 709757) (-1436 . 709645) (-1437 . 709533) (-1438 . 709360)
+ (-1439 . 709284) (-1440 . 709102) (-1441 . 709044) (-1442 . 708986)
+ (-1443 . 708648) (-1444 . 708363) (-1445 . 708279) (-1446 . 708146)
+ (-1447 . 708088) (-1448 . 708036) (-1449 . 707981) (-1450 . 707929)
+ (-1451 . 707855) (-1452 . 707781) (-1453 . 707700) (-1454 . 707619)
+ (-1455 . 707564) (-1456 . 707490) (-1457 . 707416) (-1458 . 707342)
+ (-1459 . 707265) (-1460 . 707210) (-1461 . 707151) (-1462 . 707052)
+ (-1463 . 706953) (-1464 . 706854) (-1465 . 706755) (-1466 . 706656)
+ (-1467 . 706557) (-1468 . 706458) (-1469 . 706344) (-1470 . 706230)
+ (-1471 . 706116) (-1472 . 706002) (-1473 . 705888) (-1474 . 705774)
+ (-1475 . 705657) (-1476 . 705581) (-1477 . 705505) (-1478 . 705118)
+ (-1479 . 704772) (-1480 . 704670) (-1481 . 704408) (-1482 . 704306)
+ (-1483 . 704101) (-1484 . 703988) (-1485 . 703886) (-1486 . 703729)
+ (-1487 . 703640) (-1488 . 703546) (-1489 . 703466) (-1490 . 703391)
+ (-1491 . 703331) (-1492 . 703272) (-1493 . 703169) (-7 . 703141) (-8 . 703113)
+ (-9 . 703085) (-1497 . 702966) (-1498 . 702884) (-1499 . 702802)
+ (-1500 . 702720) (-1501 . 702638) (-1502 . 702556) (-1503 . 702462)
+ (-1504 . 702392) (-1505 . 702322) (-1506 . 702231) (-1507 . 702137)
+ (-1508 . 702055) (-1509 . 701973) (-1510 . 701482) (-1511 . 700929)
+ (-1512 . 700719) (-1513 . 700644) (-1514 . 700390) (-1515 . 700163)
+ (-1516 . 699953) (-1517 . 699823) (-1518 . 699742) (-1519 . 699593)
+ (-1520 . 699238) (-1521 . 698946) (-1522 . 698654) (-1523 . 698362)
+ (-1524 . 698070) (-1525 . 698011) (-1526 . 697904) (-1527 . 697476)
+ (-1528 . 697378) (-1529 . 697218) (-1530 . 697019) (-1531 . 696883)
+ (-1532 . 696783) (-1533 . 696683) (-1534 . 696589) (-1535 . 696530)
+ (-1536 . 696188) (-1537 . 696087) (-1538 . 695968) (-1539 . 695752)
+ (-1540 . 695571) (-1541 . 695404) (-1542 . 695189) (-1543 . 694750)
+ (-1544 . 694641) (-1545 . 694526) (-1546 . 694457) (-1547 . 694388)
+ (-1548 . 694319) (-1549 . 694253) (-1550 . 694128) (-1551 . 693911)
+ (-1552 . 693833) (-1553 . 693783) (-1554 . 693712) (-1555 . 693569)
+ (-1556 . 693428) (-1557 . 693347) (-1558 . 693266) (-1559 . 693210)
+ (-1560 . 693154) (-1561 . 693081) (-1562 . 692941) (-1563 . 692888)
+ (-1564 . 692836) (-1565 . 692784) (-1566 . 692632) (-1567 . 692514)
+ (-1568 . 692396) (-1569 . 692278) (-1570 . 692145) (-1571 . 691864)
+ (-1572 . 691728) (-1573 . 691672) (-1574 . 691616) (-1575 . 691557)
+ (-1576 . 691498) (-1577 . 691442) (-1578 . 691386) (-1579 . 691189)
+ (-1580 . 688847) (-1581 . 688720) (-1582 . 688574) (-1583 . 688446)
+ (-1584 . 688394) (-1585 . 688342) (-1586 . 688290) (-1587 . 684251)
+ (-1588 . 684156) (-1589 . 684017) (-1590 . 683808) (-1591 . 683706)
+ (-1592 . 683604) (-1593 . 682688) (-1594 . 682611) (-1595 . 682482)
+ (-1596 . 682355) (-1597 . 682278) (-1598 . 682201) (-1599 . 682074)
+ (-1600 . 681947) (-1601 . 681781) (-1602 . 681654) (-1603 . 681527)
+ (-1604 . 681310) (-1605 . 680872) (-1606 . 680506) (-1607 . 680399)
+ (-1608 . 680180) (-1609 . 680111) (-1610 . 680052) (-1611 . 679971)
+ (-1612 . 679860) (-1613 . 679794) (-1614 . 679728) (-1615 . 679654)
+ (-1616 . 679582) (-1617 . 679205) (-1618 . 679153) (-1619 . 679094)
+ (-1620 . 678990) (-1621 . 678886) (-1622 . 678779) (-1623 . 678672)
+ (-1624 . 678565) (-1625 . 678458) (-1626 . 678351) (-1627 . 678244)
+ (-1628 . 678137) (-1629 . 678030) (-1630 . 677923) (-1631 . 677816)
+ (-1632 . 677709) (-1633 . 677602) (-1634 . 677495) (-1635 . 677388)
+ (-1636 . 677281) (-1637 . 677174) (-1638 . 677067) (-1639 . 676960)
+ (-1640 . 676853) (-1641 . 676746) (-1642 . 676639) (-1643 . 676532)
+ (-1644 . 676425) (-1645 . 676318) (-1646 . 676211) (-1647 . 676104)
+ (-1648 . 675925) (-1649 . 675803) (-1650 . 675552) (-1651 . 675249)
+ (-1652 . 675043) (-1653 . 674876) (-1654 . 674705) (-1655 . 674653)
+ (-1656 . 674590) (-1657 . 674527) (-1658 . 674475) (-1659 . 674286)
+ (-1660 . 674132) (-1661 . 674052) (-1662 . 673972) (-1663 . 673892)
+ (-1664 . 673762) (-1665 . 673530) (-1666 . 673502) (-1667 . 673474)
+ (-1668 . 673393) (-1669 . 673303) (-1670 . 673225) (-1671 . 673138)
+ (-1672 . 673078) (-1673 . 672920) (-1674 . 672727) (-1675 . 672242)
+ (-1676 . 672000) (-1677 . 671738) (-1678 . 671637) (-1679 . 671556)
+ (-1680 . 671475) (-1681 . 671405) (-1682 . 671335) (-1683 . 671176)
+ (-1684 . 670872) (-1685 . 670629) (-1686 . 670505) (-1687 . 670446)
+ (-1688 . 670384) (-1689 . 670322) (-1690 . 670257) (-1691 . 670195)
+ (-1692 . 669916) (-1693 . 669706) (-1694 . 669432) (-1695 . 668861)
+ (-1696 . 668347) (-1697 . 668202) (-1698 . 668135) (-1699 . 668054)
+ (-1700 . 667973) (-1701 . 667871) (-1702 . 667797) (-1703 . 667716)
+ (-1704 . 667642) (-1705 . 667433) (-1706 . 667220) (-1707 . 667130)
+ (-1708 . 667063) (-1709 . 666927) (-1710 . 666860) (-1711 . 666778)
+ (-1712 . 666697) (-1713 . 666595) (-1714 . 666395) (-1715 . 666327)
+ (-1716 . 666085) (-1717 . 665834) (-1718 . 665592) (-1719 . 665350)
+ (-1720 . 665282) (-1721 . 664946) (-1722 . 663945) (-1723 . 663725)
+ (-1724 . 663644) (-1725 . 663570) (-1726 . 663496) (-1727 . 663422)
+ (-1728 . 663318) (-1729 . 663245) (-1730 . 663177) (-1731 . 662967)
+ (-1732 . 662915) (-1733 . 662860) (-1734 . 662770) (-1735 . 662683)
+ (-1736 . 660832) (-1737 . 660753) (-1738 . 660008) (-1739 . 659878)
+ (-1740 . 659671) (-1741 . 659509) (-1742 . 659347) (-1743 . 659186)
+ (-1744 . 659047) (-1745 . 658953) (-1746 . 658855) (-1747 . 658761)
+ (-1748 . 658646) (-1749 . 658561) (-1750 . 658463) (-1751 . 658267)
+ (-1752 . 658176) (-1753 . 658082) (-1754 . 658015) (-1755 . 657962)
+ (-1756 . 657909) (-1757 . 657856) (-1758 . 656718) (-1759 . 656208)
+ (-1760 . 656129) (-1761 . 656070) (-1762 . 656042) (-1763 . 656014)
+ (-1764 . 655955) (-1765 . 655842) (-1766 . 655465) (-1767 . 655412)
+ (-1768 . 655301) (-1769 . 655248) (-1770 . 655195) (-1771 . 655139)
+ (-1772 . 655083) (-1773 . 654918) (-1774 . 654848) (-1775 . 654753)
+ (-1776 . 654658) (-1777 . 654563) (-1778 . 654406) (-1779 . 654249)
+ (-1780 . 654096) (-1781 . 653338) (-1782 . 653085) (-1783 . 652774)
+ (-1784 . 652422) (-1785 . 652205) (-1786 . 651942) (-1787 . 651567)
+ (-1788 . 651383) (-1789 . 651249) (-1790 . 651083) (-1791 . 650917)
+ (-1792 . 650783) (-1793 . 650649) (-1794 . 650515) (-1795 . 650381)
+ (-1796 . 650250) (-1797 . 650119) (-1798 . 649988) (-1799 . 649605)
+ (-1800 . 649478) (-1801 . 649350) (-1802 . 649098) (-1803 . 648974)
+ (-1804 . 648722) (-1805 . 648598) (-1806 . 648346) (-1807 . 648222)
+ (-1808 . 647937) (-1809 . 647664) (-1810 . 647391) (-1811 . 647093)
+ (-1812 . 646991) (-1813 . 646846) (-1814 . 646705) (-1815 . 646554)
+ (-1816 . 646393) (-1817 . 646305) (-1818 . 646277) (-1819 . 646195)
+ (-1820 . 646098) (-1821 . 645630) (-1822 . 645279) (-1823 . 644846)
+ (-1824 . 644705) (-1825 . 644635) (-1826 . 644565) (-1827 . 644495)
+ (-1828 . 644404) (-1829 . 644313) (-1830 . 644222) (-1831 . 644131)
+ (-1832 . 644040) (-1833 . 643954) (-1834 . 643868) (-1835 . 643782)
+ (-1836 . 643696) (-1837 . 643610) (-1838 . 643536) (-1839 . 643431)
+ (-1840 . 643205) (-1841 . 643127) (-1842 . 643052) (-1843 . 642959)
+ (-1844 . 642855) (-1845 . 642759) (-1846 . 642590) (-1847 . 642513)
+ (-1848 . 642436) (-1849 . 642345) (-1850 . 642254) (-1851 . 642054)
+ (-1852 . 641899) (-1853 . 641744) (-1854 . 641589) (-1855 . 641434)
+ (-1856 . 641279) (-1857 . 641124) (-1858 . 641057) (-1859 . 640902)
+ (-1860 . 640747) (-1861 . 640592) (-1862 . 640437) (-1863 . 640282)
+ (-1864 . 640127) (-1865 . 639972) (-1866 . 639817) (-1867 . 639743)
+ (-1868 . 639669) (-1869 . 639614) (-1870 . 639559) (-1871 . 639504)
+ (-1872 . 639449) (-1873 . 639378) (-1874 . 639173) (-1875 . 639072)
+ (-1876 . 638881) (-1877 . 638788) (-1878 . 638651) (-1879 . 638514)
+ (-1880 . 638377) (-1881 . 638309) (-1882 . 638193) (-1883 . 638077)
+ (-1884 . 637961) (-1885 . 637908) (-1886 . 637711) (-1887 . 637626)
+ (-1888 . 637318) (-1889 . 637263) (-1890 . 636611) (-1891 . 636296)
+ (-1892 . 636012) (-1893 . 635893) (-1894 . 635841) (-1895 . 635789)
+ (-1896 . 635737) (-1897 . 635684) (-1898 . 635631) (-1899 . 635572)
+ (-1900 . 635459) (-1901 . 635346) (-1902 . 635288) (-1903 . 635230)
+ (-1904 . 635180) (-1905 . 635045) (-1906 . 634995) (-1907 . 634932)
+ (-1908 . 634872) (-1909 . 634275) (-1910 . 634215) (-1911 . 634048)
+ (-1912 . 633956) (-1913 . 633843) (-1914 . 633759) (-1915 . 633644)
+ (-1916 . 633553) (-1917 . 633462) (-1918 . 633273) (-1919 . 633218)
+ (-1920 . 633031) (-1921 . 632908) (-1922 . 632835) (-1923 . 632762)
+ (-1924 . 632642) (-1925 . 632569) (-1926 . 632496) (-1927 . 632423)
+ (-1928 . 632203) (-1929 . 631870) (-1930 . 631686) (-1931 . 631542)
+ (-1932 . 631181) (-1933 . 631013) (-1934 . 630845) (-1935 . 630589)
+ (-1936 . 630333) (-1937 . 630138) (-1938 . 629943) (-1939 . 629349)
+ (-1940 . 629273) (-1941 . 629135) (-1942 . 628733) (-1943 . 628606)
+ (-1944 . 628447) (-1945 . 628121) (-1946 . 627632) (-1947 . 627143)
+ (-1948 . 626625) (-1949 . 626557) (-1950 . 626486) (-1951 . 626415)
+ (-1952 . 626232) (-1953 . 626113) (-1954 . 625994) (-1955 . 625903)
+ (-1956 . 625812) (-1957 . 625520) (-1958 . 625398) (-1959 . 625346)
+ (-1960 . 625294) (-1961 . 625242) (-1962 . 625190) (-1963 . 625138)
+ (-1964 . 624989) (-1965 . 624808) (-1966 . 624568) (-1967 . 624373)
+ (-1968 . 624345) (-1969 . 624317) (-1970 . 624289) (-1971 . 624261)
+ (-1972 . 624233) (-1973 . 624205) (-1974 . 624177) (-1975 . 624125)
+ (-1976 . 624035) (-1977 . 623985) (-1978 . 623916) (-1979 . 623847)
+ (-1980 . 623742) (-1981 . 623371) (-1982 . 623220) (-1983 . 623069)
+ (-1984 . 622864) (-1985 . 622742) (-1986 . 622667) (-1987 . 622589)
+ (-1988 . 622514) (-1989 . 622436) (-1990 . 622358) (-1991 . 622283)
+ (-1992 . 622205) (-1993 . 621971) (-1994 . 621816) (-1995 . 621517)
+ (-1996 . 621362) (-1997 . 621036) (-1998 . 620896) (-1999 . 620756)
+ (-2000 . 620675) (-2001 . 620594) (-2002 . 620329) (-2003 . 619596)
+ (-2004 . 619459) (-2005 . 619368) (-2006 . 619231) (-2007 . 619163)
+ (-2008 . 619094) (-2009 . 619006) (-2010 . 618918) (-2011 . 618747)
+ (-2012 . 618673) (-2013 . 618529) (-2014 . 618069) (-2015 . 617689)
+ (-2016 . 616925) (-2017 . 616781) (-2018 . 616637) (-2019 . 616475)
+ (-2020 . 616237) (-2021 . 616096) (-2022 . 615949) (-2023 . 615710)
+ (-2024 . 615474) (-2025 . 615235) (-2026 . 615043) (-2027 . 614920)
+ (-2028 . 614716) (-2029 . 614493) (-2030 . 614254) (-2031 . 614113)
+ (-2032 . 613975) (-2033 . 613836) (-2034 . 613583) (-2035 . 613327)
+ (-2036 . 613170) (-2037 . 613016) (-2038 . 612775) (-2039 . 612490)
+ (-2040 . 612352) (-2041 . 612265) (-2042 . 611599) (-2043 . 611423)
+ (-2044 . 611241) (-2045 . 611065) (-2046 . 610883) (-2047 . 610704)
+ (-2048 . 610525) (-2049 . 610338) (-2050 . 609956) (-2051 . 609777)
+ (-2052 . 609598) (-2053 . 609411) (-2054 . 609029) (-2055 . 608036)
+ (-2056 . 607652) (-2057 . 607268) (-2058 . 607150) (-2059 . 606993)
+ (-2060 . 606851) (-2061 . 606733) (-2062 . 606551) (-2063 . 606427)
+ (-2064 . 606137) (-2065 . 605847) (-2066 . 605563) (-2067 . 605279)
+ (-2068 . 605000) (-2069 . 604912) (-2070 . 604827) (-2071 . 604728)
+ (-2072 . 604629) (-2073 . 604405) (-2074 . 604305) (-2075 . 604202)
+ (-2076 . 604124) (-2077 . 603799) (-2078 . 603507) (-2079 . 603434)
+ (-2080 . 603049) (-2081 . 603021) (-2082 . 602822) (-2083 . 602648)
+ (-2084 . 602407) (-2085 . 602352) (-2086 . 602276) (-2087 . 601905)
+ (-2088 . 601789) (-2089 . 601712) (-2090 . 601639) (-2091 . 601558)
+ (-2092 . 601477) (-2093 . 601396) (-2094 . 601295) (-2095 . 601236)
+ (-2096 . 601017) (-2097 . 600778) (-2098 . 600654) (-2099 . 600530)
+ (-2100 . 600303) (-2101 . 600250) (-2102 . 600195) (-2103 . 599863)
+ (-2104 . 599539) (-2105 . 599351) (-2106 . 599160) (-2107 . 598996)
+ (-2108 . 598661) (-2109 . 598494) (-2110 . 598253) (-2111 . 597925)
+ (-2112 . 597733) (-2113 . 597516) (-2114 . 597343) (-2115 . 596921)
+ (-2116 . 596694) (-2117 . 596423) (-2118 . 596285) (-2119 . 596144)
+ (-2120 . 595666) (-2121 . 595543) (-2122 . 595307) (-2123 . 595053)
+ (-2124 . 594803) (-2125 . 594508) (-2126 . 594367) (-2127 . 594023)
+ (-2128 . 593882) (-2129 . 593689) (-2130 . 593496) (-2131 . 593321)
+ (-2132 . 593047) (-2133 . 592612) (-2134 . 592538) (-2135 . 592377)
+ (-2136 . 592214) (-2137 . 592053) (-2138 . 591886) (-2139 . 591833)
+ (-2140 . 591780) (-2141 . 591651) (-2142 . 591591) (-2143 . 591538)
+ (-2144 . 591485) (-2145 . 591415) (-2146 . 591355) (-2147 . 591296)
+ (-2148 . 591236) (-2149 . 591177) (-2150 . 591117) (-2151 . 591058)
+ (-2152 . 590999) (-2153 . 590857) (-2154 . 590762) (-2155 . 590671)
+ (-2156 . 590555) (-2157 . 590461) (-2158 . 590363) (-2159 . 590269)
+ (-2160 . 590128) (-2161 . 589863) (-2162 . 589006) (-2163 . 588850)
+ (-2164 . 588481) (-2165 . 588425) (-2166 . 588373) (-2167 . 588270)
+ (-2168 . 588185) (-2169 . 588097) (-2170 . 587951) (-2171 . 587802)
+ (-2172 . 587512) (-2173 . 587434) (-2174 . 587359) (-2175 . 587306)
+ (-2176 . 587253) (-2177 . 587222) (-2178 . 587159) (-2179 . 587040)
+ (-2180 . 586951) (-2181 . 586831) (-2182 . 586536) (-2183 . 586342)
+ (-2184 . 586154) (-2185 . 586009) (-2186 . 585864) (-2187 . 585578)
+ (-2188 . 585133) (-2189 . 585099) (-2190 . 585062) (-2191 . 585025)
+ (-2192 . 584988) (-2193 . 584951) (-2194 . 584920) (-2195 . 584889)
+ (-2196 . 584858) (-2197 . 584824) (-2198 . 584790) (-2199 . 584735)
+ (-2200 . 584546) (-2201 . 584304) (-2202 . 584062) (-2203 . 583825)
+ (-2204 . 583773) (-2205 . 583718) (-2206 . 583648) (-2207 . 583559)
+ (-2208 . 583490) (-2209 . 583418) (-2210 . 583188) (-2211 . 583136)
+ (-2212 . 583081) (-2213 . 583050) (-2214 . 582944) (-2215 . 582711)
+ (-2216 . 582393) (-2217 . 582211) (-2218 . 582018) (-2219 . 581739)
+ (-2220 . 581666) (-2221 . 581601) (-2222 . 581573) (-2223 . 581523)
+ (-2224 . 580100) (-2225 . 578952) (-2226 . 577814) (-2227 . 577322)
+ (-2228 . 576744) (-2229 . 576002) (-2230 . 575425) (-2231 . 574781)
+ (-2232 . 574202) (-2233 . 574128) (-2234 . 574076) (-2235 . 574024)
+ (-2236 . 573950) (-2237 . 573895) (-2238 . 573843) (-2239 . 573791)
+ (-2240 . 573739) (-2241 . 573669) (-2242 . 573221) (-2243 . 573007)
+ (-2244 . 572750) (-2245 . 572408) (-2246 . 572146) (-2247 . 571836)
+ (-2248 . 571625) (-2249 . 571325) (-2250 . 570755) (-2251 . 570617)
+ (-2252 . 570414) (-2253 . 570133) (-2254 . 570047) (-2255 . 569702)
+ (-2256 . 569560) (-2257 . 569268) (-2258 . 569047) (-2259 . 568922)
+ (-2260 . 568798) (-2261 . 568652) (-2262 . 568509) (-2263 . 568394)
+ (-2264 . 568264) (-2265 . 567892) (-2266 . 567632) (-2267 . 567357)
+ (-2268 . 567117) (-2269 . 566787) (-2270 . 566442) (-2271 . 566034)
+ (-2272 . 565611) (-2273 . 565414) (-2274 . 565139) (-2275 . 564971)
+ (-2276 . 564770) (-2277 . 564548) (-2278 . 564393) (-2279 . 564200)
+ (-2280 . 564097) (-2281 . 564069) (-2282 . 563890) (-2283 . 563816)
+ (-2284 . 563755) (-2285 . 563702) (-2286 . 563633) (-2287 . 563563)
+ (-2288 . 563444) (-2289 . 563266) (-2290 . 563211) (-2291 . 562965)
+ (-2292 . 562875) (-2293 . 562685) (-2294 . 562612) (-2295 . 562542)
+ (-2296 . 562477) (-2297 . 562422) (-2298 . 562331) (-2299 . 562024)
+ (-2300 . 561679) (-2301 . 561605) (-2302 . 561283) (-2303 . 561076)
+ (-2304 . 560990) (-2305 . 560904) (-2306 . 560818) (-2307 . 560732)
+ (-2308 . 560646) (-2309 . 560560) (-2310 . 560474) (-2311 . 560388)
+ (-2312 . 560302) (-2313 . 560216) (-2314 . 560130) (-2315 . 560044)
+ (-2316 . 559958) (-2317 . 559872) (-2318 . 559786) (-2319 . 559700)
+ (-2320 . 559614) (-2321 . 559528) (-2322 . 559442) (-2323 . 559356)
+ (-2324 . 559270) (-2325 . 559184) (-2326 . 559098) (-2327 . 559012)
+ (-2328 . 558926) (-2329 . 558840) (-2330 . 558737) (-2331 . 558648)
+ (-2332 . 558438) (-2333 . 558379) (-2334 . 558323) (-2335 . 558234)
+ (-2336 . 558122) (-2337 . 558034) (-2338 . 557886) (-2339 . 557701)
+ (-2340 . 557537) (-2341 . 557370) (-2342 . 557185) (-2343 . 556964)
+ (-2344 . 556840) (-2345 . 556632) (-2346 . 556540) (-2347 . 556448)
+ (-2348 . 556312) (-2349 . 556217) (-2350 . 556122) (-2351 . 554606)
+ (-2352 . 554546) (-2353 . 554456) (-2354 . 554361) (-2355 . 554280)
+ (-2356 . 553973) (-2357 . 553778) (-2358 . 553685) (-2359 . 553579)
+ (-2360 . 553161) (-2361 . 553108) (-2362 . 553080) (-2363 . 553027)
+ (-2364 . 552852) (-2365 . 552775) (-2366 . 552586) (-2367 . 552406)
+ (-2368 . 551982) (-2369 . 551830) (-2370 . 551650) (-2371 . 551477)
+ (-2372 . 551215) (-2373 . 550963) (-2374 . 550152) (-2375 . 549983)
+ (-2376 . 549764) (-2377 . 548860) (-2378 . 548716) (-2379 . 548572)
+ (-2380 . 548428) (-2381 . 548284) (-2382 . 548140) (-2383 . 547996)
+ (-2384 . 547801) (-2385 . 547607) (-2386 . 547464) (-2387 . 547149)
+ (-2388 . 547034) (-2389 . 546694) (-2390 . 546534) (-2391 . 546395)
+ (-2392 . 546256) (-2393 . 546127) (-2394 . 546042) (-2395 . 545990)
+ (-2396 . 545502) (-2397 . 544224) (-2398 . 544109) (-2399 . 543980)
+ (-2400 . 543673) (-2401 . 543422) (-2402 . 543347) (-2403 . 543272)
+ (-2404 . 543197) (-2405 . 543138) (-2406 . 543067) (-2407 . 543014)
+ (-2408 . 542952) (-2409 . 542881) (-2410 . 542518) (-2411 . 542231)
+ (-2412 . 542120) (-2413 . 542027) (-2414 . 541934) (-2415 . 541847)
+ (-2416 . 541627) (-2417 . 541407) (-2418 . 541264) (-2419 . 541171)
+ (-2420 . 541028) (-2421 . 540876) (-2422 . 540722) (-2423 . 540651)
+ (-2424 . 540442) (-2425 . 540264) (-2426 . 540054) (-2427 . 539876)
+ (-2428 . 539842) (-2429 . 539808) (-2430 . 539777) (-2431 . 539659)
+ (-2432 . 539344) (-2433 . 539066) (-2434 . 538945) (-2435 . 538818)
+ (-2436 . 538733) (-2437 . 538660) (-2438 . 538570) (-2439 . 538499)
+ (-2440 . 538443) (-2441 . 538387) (-2442 . 538331) (-2443 . 538260)
+ (-2444 . 538189) (-2445 . 538118) (-2446 . 538039) (-2447 . 537961)
+ (-2448 . 537876) (-2449 . 537616) (-2450 . 537527) (-2451 . 537229)
+ (-2452 . 537131) (-2453 . 537053) (-2454 . 536975) (-2455 . 536832)
+ (-2456 . 536753) (-2457 . 536681) (-2458 . 536478) (-2459 . 536422)
+ (-2460 . 536234) (-2461 . 536135) (-2462 . 536017) (-2463 . 535896)
+ (-2464 . 535753) (-2465 . 535610) (-2466 . 535470) (-2467 . 535330)
+ (-2468 . 535187) (-2469 . 535060) (-2470 . 534930) (-2471 . 534806)
+ (-2472 . 534682) (-2473 . 534576) (-2474 . 534470) (-2475 . 534367)
+ (-2476 . 534217) (-2477 . 534064) (-2478 . 533911) (-2479 . 533767)
+ (-2480 . 533613) (-2481 . 533536) (-2482 . 533456) (-2483 . 533301)
+ (-2484 . 533221) (-2485 . 533141) (-2486 . 533061) (-2487 . 532958)
+ (-2488 . 532899) (-2489 . 532837) (-2490 . 532662) (-2491 . 532509)
+ (-2492 . 532356) (-2493 . 532182) (-2494 . 531990) (-2495 . 531691)
+ (-2496 . 531496) (-2497 . 531381) (-2498 . 531255) (-2499 . 531178)
+ (-2500 . 531046) (-2501 . 530740) (-2502 . 530557) (-2503 . 530012)
+ (-2504 . 529792) (-2505 . 529618) (-2506 . 529448) (-2507 . 529349)
+ (-2508 . 529250) (-2509 . 529032) (-2510 . 528930) (-2511 . 528857)
+ (-2512 . 528781) (-2513 . 528702) (-2514 . 528405) (-2515 . 528306)
+ (-2516 . 528144) (-2517 . 527910) (-2518 . 527468) (-2519 . 527338)
+ (-2520 . 527198) (-2521 . 526889) (-2522 . 526587) (-2523 . 526271)
+ (-2524 . 525865) (-2525 . 525797) (-2526 . 525729) (-2527 . 525661)
+ (-2528 . 525566) (-2529 . 525458) (-2530 . 525350) (-2531 . 525248)
+ (-2532 . 525146) (-2533 . 525044) (-2534 . 524966) (-2535 . 524642)
+ (-2536 . 524161) (-2537 . 523534) (-2538 . 523470) (-2539 . 523351)
+ (-2540 . 523232) (-2541 . 523124) (-2542 . 523016) (-2543 . 522860)
+ (-2544 . 522258) (-2545 . 522020) (-2546 . 521852) (-2547 . 521730)
+ (-2548 . 521332) (-2549 . 521096) (-2550 . 520895) (-2551 . 520687)
+ (-2552 . 520494) (-2553 . 520224) (-2554 . 520051) (-2555 . 519872)
+ (-2556 . 519803) (-2557 . 519727) (-2558 . 519586) (-2559 . 519383)
+ (-2560 . 519239) (-2561 . 518989) (-2562 . 518681) (-2563 . 518325)
+ (-2564 . 518166) (-2565 . 517960) (-2566 . 517800) (-2567 . 517727)
+ (-2568 . 517608) (-2569 . 517489) (-2570 . 517329) (-2571 . 517149)
+ (-2572 . 516966) (-2573 . 516868) (-2574 . 516770) (-2575 . 516669)
+ (-2576 . 516565) (-2577 . 516439) (-2578 . 516313) (-2579 . 516184)
+ (-2580 . 516052) (-2581 . 515954) (-2582 . 515856) (-2583 . 515755)
+ (-2584 . 515654) (-2585 . 515488) (-2586 . 515322) (-2587 . 515128)
+ (-2588 . 514962) (-2589 . 514794) (-2590 . 514623) (-2591 . 514458)
+ (-2592 . 514293) (-2593 . 514193) (-2594 . 514001) (-2595 . 513900)
+ (-2596 . 513705) (-2597 . 513455) (-2598 . 513210) (-2599 . 512888)
+ (-2600 . 512500) (-2601 . 512299) (-2602 . 512035) (-2603 . 511492)
+ (-2604 . 511198) (-2605 . 511061) (-2606 . 510815) (-2607 . 510611)
+ (-2608 . 510504) (-2609 . 510403) (-2610 . 510293) (-2611 . 510183)
+ (-2612 . 510055) (-2613 . 509948) (-2614 . 509844) (-2615 . 509688)
+ (-2616 . 509554) (-2617 . 509420) (-2618 . 509310) (-2619 . 509191)
+ (-2620 . 509014) (-2621 . 508880) (-2622 . 508743) (-2623 . 508612)
+ (-2624 . 508502) (-2625 . 508380) (-2626 . 508255) (-2627 . 508154)
+ (-2628 . 507970) (-2629 . 507796) (-2630 . 507597) (-2631 . 507423)
+ (-2632 . 507307) (-2633 . 507182) (-2634 . 507054) (-2635 . 506935)
+ (-2636 . 506710) (-2637 . 506539) (-2638 . 506368) (-2639 . 506191)
+ (-2640 . 506039) (-2641 . 505762) (-2642 . 505370) (-2643 . 505239)
+ (-2644 . 505034) (-2645 . 504851) (-2646 . 504667) (-2647 . 504538)
+ (-2648 . 504434) (-2649 . 504293) (-2650 . 504161) (-2651 . 504047)
+ (-2652 . 503899) (-2653 . 503760) (-2654 . 503659) (-2655 . 503555)
+ (-2656 . 503448) (-2657 . 503338) (-2658 . 503237) (-2659 . 503130)
+ (-2660 . 503023) (-2661 . 502910) (-2662 . 502803) (-2663 . 502690)
+ (-2664 . 502559) (-2665 . 502410) (-2666 . 501872) (-2667 . 501729)
+ (-2668 . 501579) (-2669 . 501456) (-2670 . 501352) (-2671 . 501248)
+ (-2672 . 501141) (-2673 . 501003) (-2674 . 500896) (-2675 . 500765)
+ (-2676 . 500609) (-2677 . 500336) (-2678 . 500189) (-2679 . 499986)
+ (-2680 . 499885) (-2681 . 499731) (-2682 . 499611) (-2683 . 499482)
+ (-2684 . 499387) (-2685 . 499299) (-2686 . 499211) (-2687 . 499123)
+ (-2688 . 499035) (-2689 . 498947) (-2690 . 498853) (-2691 . 498765)
+ (-2692 . 498677) (-2693 . 498589) (-2694 . 498501) (-2695 . 498413)
+ (-2696 . 498325) (-2697 . 498237) (-2698 . 498149) (-2699 . 498061)
+ (-2700 . 497973) (-2701 . 497835) (-2702 . 497697) (-2703 . 497577)
+ (-2704 . 497457) (-2705 . 497316) (-2706 . 497228) (-2707 . 497140)
+ (-2708 . 497052) (-2709 . 496964) (-2710 . 496826) (-2711 . 496688)
+ (-2712 . 496600) (-2713 . 496512) (-2714 . 496424) (-2715 . 496336)
+ (-2716 . 496248) (-2717 . 496160) (-2718 . 496069) (-2719 . 495975)
+ (-2720 . 495881) (-2721 . 495784) (-2722 . 495734) (-2723 . 495684)
+ (-2724 . 495631) (-2725 . 495377) (-2726 . 495328) (-2727 . 495278)
+ (-2728 . 495244) (-2729 . 495179) (-2730 . 495142) (-2731 . 495005)
+ (-2732 . 494767) (-2733 . 494696) (-2734 . 494510) (-2735 . 494261)
+ (-2736 . 494103) (-2737 . 493562) (-2738 . 493363) (-2739 . 493148)
+ (-2740 . 492986) (-2741 . 492587) (-2742 . 492420) (-2743 . 491345)
+ (-2744 . 491222) (-2745 . 491005) (-2746 . 490874) (-2747 . 490743)
+ (-2748 . 490585) (-2749 . 490481) (-2750 . 490422) (-2751 . 490363)
+ (-2752 . 490257) (-2753 . 490151) (-2754 . 489233) (-2755 . 487104)
+ (-2756 . 486288) (-2757 . 484483) (-2758 . 484415) (-2759 . 484347)
+ (-2760 . 484279) (-2761 . 484211) (-2762 . 484143) (-2763 . 484065)
+ (-2764 . 483663) (-2765 . 483307) (-2766 . 483125) (-2767 . 482596)
+ (-2768 . 482420) (-2769 . 482198) (-2770 . 481976) (-2771 . 481754)
+ (-2772 . 481535) (-2773 . 481316) (-2774 . 481097) (-2775 . 480878)
+ (-2776 . 480659) (-2777 . 480440) (-2778 . 480339) (-2779 . 479606)
+ (-2780 . 479551) (-2781 . 479496) (-2782 . 479441) (-2783 . 479386)
+ (-2784 . 479236) (-2785 . 478943) (-2786 . 478684) (-2787 . 478656)
+ (-2788 . 478606) (-2789 . 478014) (-2790 . 477480) (-2791 . 477031)
+ (-2792 . 476859) (-2793 . 476668) (-2794 . 476379) (-2795 . 475991)
+ (-2796 . 475115) (-2797 . 474773) (-2798 . 474604) (-2799 . 474381)
+ (-2800 . 474130) (-2801 . 473780) (-2802 . 472762) (-2803 . 472447)
+ (-2804 . 472235) (-2805 . 471668) (-2806 . 471152) (-2807 . 469374)
+ (-2808 . 468902) (-2809 . 468303) (-2810 . 468053) (-2811 . 467919)
+ (-2812 . 467467) (-2813 . 466978) (-2814 . 466618) (-2815 . 466335)
+ (-2816 . 466220) (-2817 . 466105) (-2818 . 465890) (-2819 . 465837)
+ (-2820 . 465784) (-2821 . 465732) (-2822 . 465680) (-2823 . 465588)
+ (-2824 . 465517) (-2825 . 465443) (-2826 . 465372) (-2827 . 465319)
+ (-2828 . 465248) (-2829 . 465195) (-2830 . 465142) (-2831 . 465089)
+ (-2832 . 465036) (-2833 . 464983) (-2834 . 464930) (-2835 . 464877)
+ (-2836 . 464824) (-2837 . 464771) (-2838 . 464718) (-2839 . 464665)
+ (-2840 . 464612) (-2841 . 464559) (-2842 . 464506) (-2843 . 464435)
+ (-2844 . 464364) (-2845 . 464292) (-2846 . 464220) (-2847 . 464145)
+ (-2848 . 464092) (-2849 . 464039) (-2850 . 463986) (-2851 . 463933)
+ (-2852 . 463880) (-2853 . 463827) (-2854 . 463774) (-2855 . 463721)
+ (-2856 . 463668) (-2857 . 463615) (-2858 . 463562) (-2859 . 463509)
+ (-2860 . 463456) (-2861 . 463403) (-2862 . 463351) (-2863 . 463299)
+ (-2864 . 463246) (-2865 . 463193) (-2866 . 463102) (-2867 . 463049)
+ (-2868 . 463021) (-2869 . 462993) (-2870 . 462965) (-2871 . 462937)
+ (-2872 . 462859) (-2873 . 462799) (-2874 . 462747) (-2875 . 462695)
+ (-2876 . 462643) (-2877 . 462591) (-2878 . 462539) (-2879 . 461735)
+ (-2880 . 461658) (-2881 . 461581) (-2882 . 461515) (-2883 . 461448)
+ (-2884 . 461381) (-2885 . 461324) (-2886 . 461248) (-2887 . 461180)
+ (-2888 . 461109) (-2889 . 461038) (-2890 . 460972) (-2891 . 460885)
+ (-2892 . 460813) (-2893 . 460706) (-2894 . 460520) (-2895 . 460351)
+ (-2896 . 460171) (-2897 . 459580) (-2898 . 459417) (-2899 . 458839)
+ (-2900 . 458709) (-2901 . 458634) (-2902 . 458268) (-2903 . 457589)
+ (-2904 . 457411) (-2905 . 457339) (-2906 . 457199) (-2907 . 457009)
+ (-2908 . 456902) (-2909 . 456795) (-2910 . 456679) (-2911 . 456563)
+ (-2912 . 456447) (-2913 . 456169) (-2914 . 456018) (-2915 . 455874)
+ (-2916 . 455800) (-2917 . 455714) (-2918 . 455640) (-2919 . 455566)
+ (-2920 . 455492) (-2921 . 455348) (-2922 . 455197) (-2923 . 455022)
+ (-2924 . 454871) (-2925 . 454720) (-2926 . 454593) (-2927 . 454204)
+ (-2928 . 453918) (-2929 . 453632) (-2930 . 453221) (-2931 . 452935)
+ (-2932 . 452862) (-2933 . 452715) (-2934 . 452609) (-2935 . 452535)
+ (-2936 . 452465) (-2937 . 452386) (-2938 . 452309) (-2939 . 452232)
+ (-2940 . 452080) (-2941 . 451977) (-2942 . 451880) (-2943 . 451783)
+ (-2944 . 451623) (-2945 . 451536) (-2946 . 451449) (-2947 . 451362)
+ (-2948 . 451303) (-2949 . 451244) (-2950 . 451111) (-2951 . 451052)
+ (-2952 . 450882) (-2953 . 450794) (-2954 . 450697) (-2955 . 450663)
+ (-2956 . 450632) (-2957 . 450548) (-2958 . 450492) (-2959 . 450430)
+ (-2960 . 450396) (-2961 . 450362) (-2962 . 450328) (-2963 . 450294)
+ (-2964 . 450260) (-2965 . 447507) (-2966 . 447473) (-2967 . 447439)
+ (-2968 . 447405) (-2969 . 447293) (-2970 . 447259) (-2971 . 447207)
+ (-2972 . 447173) (-2973 . 447076) (-2974 . 447014) (-2975 . 446923)
+ (-2976 . 446832) (-2977 . 446777) (-2978 . 446725) (-2979 . 446673)
+ (-2980 . 446621) (-2981 . 446569) (-2982 . 446145) (-2983 . 445979)
+ (-2984 . 445926) (-2985 . 445857) (-2986 . 445804) (-2987 . 445648)
+ (-2988 . 445127) (-2989 . 444986) (-2990 . 444952) (-2991 . 444897)
+ (-2992 . 444186) (-2993 . 443871) (-2994 . 443366) (-2995 . 443288)
+ (-2996 . 443236) (-2997 . 443184) (-2998 . 443000) (-2999 . 442948)
+ (-3000 . 442896) (-3001 . 442820) (-3002 . 442758) (-3003 . 442540)
+ (-3004 . 442285) (-3005 . 442218) (-3006 . 442124) (-3007 . 442030)
+ (-3008 . 441847) (-3009 . 441765) (-3010 . 441643) (-3011 . 441521)
+ (-3012 . 441375) (-3013 . 440720) (-3014 . 440013) (-3015 . 439909)
+ (-3016 . 439808) (-3017 . 439707) (-3018 . 439596) (-3019 . 439428)
+ (-3020 . 439222) (-3021 . 439129) (-3022 . 439052) (-3023 . 438996)
+ (-3024 . 438925) (-3025 . 438805) (-3026 . 438704) (-3027 . 438606)
+ (-3028 . 438526) (-3029 . 438446) (-3030 . 438369) (-3031 . 438298)
+ (-3032 . 438227) (-3033 . 438156) (-3034 . 438085) (-3035 . 438014)
+ (-3036 . 437943) (-3037 . 437850) (-3038 . 437655) (-3039 . 437411)
+ (-3040 . 437241) (-3041 . 436869) (-3042 . 436700) (-3043 . 436584)
+ (-3044 . 436080) (-3045 . 435698) (-3046 . 435452) (-3047 . 435023)
+ (-3048 . 434931) (-3049 . 434834) (-3050 . 431544) (-3051 . 430724)
+ (-3052 . 430611) (-3053 . 430537) (-3054 . 430445) (-3055 . 430251)
+ (-3056 . 430057) (-3057 . 429986) (-3058 . 429915) (-3059 . 429834)
+ (-3060 . 429753) (-3061 . 429628) (-3062 . 429494) (-3063 . 429413)
+ (-3064 . 429339) (-3065 . 429174) (-3066 . 429015) (-3067 . 428784)
+ (-3068 . 428636) (-3069 . 428532) (-3070 . 428428) (-3071 . 428343)
+ (-3072 . 427975) (-3073 . 427894) (-3074 . 427807) (-3075 . 427726)
+ (-3076 . 427480) (-3077 . 427260) (-3078 . 427073) (-3079 . 426751)
+ (-3080 . 426458) (-3081 . 426165) (-3082 . 425855) (-3083 . 425538)
+ (-3084 . 425409) (-3085 . 425221) (-3086 . 424748) (-3087 . 424666)
+ (-3088 . 424451) (-3089 . 424236) (-3090 . 423977) (-3091 . 423546)
+ (-3092 . 423025) (-3093 . 422895) (-3094 . 422621) (-3095 . 422442)
+ (-3096 . 422327) (-3097 . 422223) (-3098 . 422168) (-3099 . 422091)
+ (-3100 . 422021) (-3101 . 421948) (-3102 . 421893) (-3103 . 421820)
+ (-3104 . 421765) (-3105 . 421410) (-3106 . 421002) (-3107 . 420849)
+ (-3108 . 420696) (-3109 . 420615) (-3110 . 420462) (-3111 . 420309)
+ (-3112 . 420174) (-3113 . 420039) (-3114 . 419904) (-3115 . 419769)
+ (-3116 . 419634) (-3117 . 419499) (-3118 . 419443) (-3119 . 419290)
+ (-3120 . 419179) (-3121 . 419068) (-3122 . 419000) (-3123 . 418890)
+ (-3124 . 418787) (-3125 . 414636) (-3126 . 414188) (-3127 . 413761)
+ (-3128 . 413144) (-3129 . 412543) (-3130 . 412325) (-3131 . 412147)
+ (-3132 . 411887) (-3133 . 411476) (-3134 . 411182) (-3135 . 410739)
+ (-3136 . 410561) (-3137 . 410168) (-3138 . 409775) (-3139 . 409590)
+ (-3140 . 409383) (-3141 . 409162) (-3142 . 408856) (-3143 . 408657)
+ (-3144 . 408028) (-3145 . 407871) (-3146 . 407480) (-3147 . 407428)
+ (-3148 . 407379) (-3149 . 407327) (-3150 . 407278) (-3151 . 407226)
+ (-3152 . 407080) (-3153 . 407028) (-3154 . 406882) (-3155 . 406830)
+ (-3156 . 406684) (-3157 . 406632) (-3158 . 406257) (-3159 . 406205)
+ (-3160 . 406156) (-3161 . 406104) (-3162 . 406055) (-3163 . 406003)
+ (-3164 . 405954) (-3165 . 405902) (-3166 . 405853) (-3167 . 405801)
+ (-3168 . 405752) (-3169 . 405686) (-3170 . 405568) (-3171 . 404406)
+ (-3172 . 403989) (-3173 . 403881) (-3174 . 403636) (-3175 . 403487)
+ (-3176 . 403338) (-3177 . 403171) (-3178 . 400920) (-3179 . 400643)
+ (-3180 . 400489) (-3181 . 400343) (-3182 . 400197) (-3183 . 399978)
+ (-3184 . 399846) (-3185 . 399771) (-3186 . 399696) (-3187 . 399561)
+ (-3188 . 399431) (-3189 . 399301) (-3190 . 399174) (-3191 . 399047)
+ (-3192 . 398920) (-3193 . 398793) (-3194 . 398690) (-3195 . 398590)
+ (-3196 . 398496) (-3197 . 398366) (-3198 . 398215) (-3199 . 397836)
+ (-3200 . 397721) (-3201 . 397478) (-3202 . 397015) (-3203 . 396702)
+ (-3204 . 396134) (-3205 . 395564) (-3206 . 394552) (-3207 . 394009)
+ (-3208 . 393696) (-3209 . 393358) (-3210 . 393027) (-3211 . 392707)
+ (-3212 . 392654) (-3213 . 392527) (-3214 . 391998) (-3215 . 390841)
+ (-3216 . 390786) (-3217 . 390731) (-3218 . 390655) (-3219 . 390536)
+ (-3220 . 390461) (-3221 . 390386) (-3222 . 390308) (-3223 . 390157)
+ (-3224 . 390065) (-3225 . 389995) (-3226 . 389903) (-3227 . 389833)
+ (-3228 . 389741) (-3229 . 389671) (-3230 . 389579) (-3231 . 389509)
+ (-3232 . 389454) (-3233 . 389384) (-3234 . 389264) (-3235 . 389209)
+ (-3236 . 389139) (-3237 . 389105) (-3238 . 389071) (-3239 . 388974)
+ (-3240 . 388877) (-3241 . 388659) (-3242 . 388381) (-3243 . 388231)
+ (-3244 . 388101) (-3245 . 387971) (-3246 . 387871) (-3247 . 387694)
+ (-3248 . 387534) (-3249 . 387434) (-3250 . 387257) (-3251 . 387097)
+ (-3252 . 386938) (-3253 . 386799) (-3254 . 386649) (-3255 . 386519)
+ (-3256 . 386389) (-3257 . 386242) (-3258 . 386115) (-3259 . 386012)
+ (-3260 . 385905) (-3261 . 385808) (-3262 . 385643) (-3263 . 385495)
+ (-3264 . 385066) (-3265 . 384966) (-3266 . 384863) (-3267 . 384775)
+ (-3268 . 384695) (-3269 . 384545) (-3270 . 384415) (-3271 . 384363)
+ (-3272 . 384273) (-3273 . 384161) (-3274 . 383848) (-3275 . 383667)
+ (-3276 . 382056) (-3277 . 381423) (-3278 . 381363) (-3279 . 381245)
+ (-3280 . 381127) (-3281 . 380983) (-3282 . 380828) (-3283 . 380667)
+ (-3284 . 380506) (-3285 . 380298) (-3286 . 380109) (-3287 . 379954)
+ (-3288 . 379796) (-3289 . 379638) (-3290 . 379483) (-3291 . 379343)
+ (-3292 . 378917) (-3293 . 378789) (-3294 . 378661) (-3295 . 378533)
+ (-3296 . 378390) (-3297 . 378247) (-3298 . 378105) (-3299 . 377960)
+ (-3300 . 377207) (-3301 . 377047) (-3302 . 376859) (-3303 . 376702)
+ (-3304 . 376462) (-3305 . 376215) (-3306 . 375968) (-3307 . 375757)
+ (-3308 . 375618) (-3309 . 375407) (-3310 . 375117) (-3311 . 374906)
+ (-3312 . 374767) (-3313 . 374556) (-3314 . 374250) (-3315 . 374105)
+ (-3316 . 373963) (-3317 . 373739) (-3318 . 373597) (-3319 . 373372)
+ (-3320 . 373173) (-3321 . 373016) (-3322 . 372686) (-3323 . 372526)
+ (-3324 . 372366) (-3325 . 372206) (-3326 . 372034) (-3327 . 371862)
+ (-3328 . 371687) (-3329 . 371335) (-3330 . 371141) (-3331 . 370979)
+ (-3332 . 370905) (-3333 . 370831) (-3334 . 370757) (-3335 . 370683)
+ (-3336 . 370609) (-3337 . 370535) (-3338 . 370411) (-3339 . 370237)
+ (-3340 . 370113) (-3341 . 370027) (-3342 . 369961) (-3343 . 369895)
+ (-3344 . 369829) (-3345 . 369763) (-3346 . 369697) (-3347 . 369631)
+ (-3348 . 369565) (-3349 . 369499) (-3350 . 369433) (-3351 . 369367)
+ (-3352 . 369301) (-3353 . 369235) (-3354 . 369169) (-3355 . 369103)
+ (-3356 . 369037) (-3357 . 368971) (-3358 . 368905) (-3359 . 368839)
+ (-3360 . 368773) (-3361 . 368707) (-3362 . 368641) (-3363 . 368575)
+ (-3364 . 368509) (-3365 . 368443) (-3366 . 368377) (-3367 . 368311)
+ (-3368 . 367662) (-3369 . 367013) (-3370 . 366885) (-3371 . 366762)
+ (-3372 . 366639) (-3373 . 366498) (-3374 . 366343) (-3375 . 366199)
+ (-3376 . 366024) (-3377 . 365386) (-3378 . 365263) (-3379 . 365139)
+ (-3380 . 364461) (-3381 . 363763) (-3382 . 363662) (-3383 . 363606)
+ (-3384 . 363550) (-3385 . 363494) (-3386 . 363438) (-3387 . 363379)
+ (-3388 . 363315) (-3389 . 363207) (-3390 . 363099) (-3391 . 362991)
+ (-3392 . 362712) (-3393 . 362638) (-3394 . 362412) (-3395 . 362331)
+ (-3396 . 362253) (-3397 . 362175) (-3398 . 362097) (-3399 . 362018)
+ (-3400 . 361940) (-3401 . 361847) (-3402 . 361748) (-3403 . 361680)
+ (-3404 . 361631) (-3405 . 360938) (-3406 . 360288) (-3407 . 359495)
+ (-3408 . 359413) (-3409 . 359308) (-3410 . 359215) (-3411 . 359122)
+ (-3412 . 359047) (-3413 . 358972) (-3414 . 358897) (-3415 . 358841)
+ (-3416 . 358785) (-3417 . 358718) (-3418 . 358651) (-3419 . 358588)
+ (-3420 . 358197) (-3421 . 357695) (-3422 . 357228) (-3423 . 356973)
+ (-3424 . 356782) (-3425 . 356438) (-3426 . 356140) (-3427 . 355970)
+ (-3428 . 355838) (-3429 . 355697) (-3430 . 354612) (-3431 . 354456)
+ (-3432 . 354286) (-3433 . 352892) (-3434 . 352754) (-3435 . 352608)
+ (-3436 . 352377) (-3437 . 352107) (-3438 . 352047) (-3439 . 351990)
+ (-3440 . 351933) (-3441 . 351720) (-3442 . 351580) (-3443 . 351472)
+ (-3444 . 351354) (-3445 . 351287) (-3446 . 351213) (-3447 . 351098)
+ (-3448 . 350841) (-3449 . 350739) (-3450 . 350541) (-3451 . 350225)
+ (-3452 . 349751) (-3453 . 349644) (-3454 . 349536) (-3455 . 349385)
+ (-3456 . 349243) (-3457 . 348824) (-3458 . 348574) (-3459 . 347897)
+ (-3460 . 347742) (-3461 . 347627) (-3462 . 347516) (-3463 . 346686)
+ (-3464 . 346633) (-3465 . 346580) (-3466 . 346384) (-3467 . 345029)
+ (-3468 . 344578) (-3469 . 343176) (-3470 . 342313) (-3471 . 342263)
+ (-3472 . 342213) (-3473 . 342163) (-3474 . 342095) (-3475 . 342019)
+ (-3476 . 341815) (-3477 . 341742) (-3478 . 341666) (-3479 . 341593)
+ (-3480 . 341475) (-3481 . 341423) (-3482 . 341343) (-3483 . 341263)
+ (-3484 . 341183) (-3485 . 341131) (-3486 . 340884) (-3487 . 340566)
+ (-3488 . 340481) (-3489 . 340396) (-3490 . 340334) (-3491 . 339944)
+ (-3492 . 339069) (-3493 . 338493) (-3494 . 337255) (-3495 . 336445)
+ (-3496 . 336193) (-3497 . 335941) (-3498 . 335514) (-3499 . 335268)
+ (-3500 . 335022) (-3501 . 334776) (-3502 . 334530) (-3503 . 334284)
+ (-3504 . 334038) (-3505 . 333791) (-3506 . 333544) (-3507 . 333297)
+ (-3508 . 333050) (-3509 . 332620) (-3510 . 332502) (-3511 . 331656)
+ (-3512 . 331624) (-3513 . 331277) (-3514 . 331050) (-3515 . 330950)
+ (-3516 . 330850) (-3517 . 329080) (-3518 . 328966) (-3519 . 327911)
+ (-3520 . 327818) (-3521 . 326827) (-3522 . 326492) (-3523 . 326157)
+ (-3524 . 326052) (-3525 . 325965) (-3526 . 325936) (-3527 . 325879)
+ (-3528 . 325799) (-3529 . 325727) (-3530 . 325652) (-3531 . 325577)
+ (-3532 . 325545) (-3533 . 325513) (-3534 . 325481) (-3535 . 325449)
+ (-3536 . 325417) (-3537 . 325385) (-3538 . 325353) (-3539 . 325321)
+ (-3540 . 325292) (-3541 . 325179) (-3542 . 325066) (-3543 . 324953)
+ (-3544 . 324840) (-3545 . 323751) (-3546 . 323629) (-3547 . 323492)
+ (-3548 . 323358) (-3549 . 323224) (-3550 . 322927) (-3551 . 322630)
+ (-3552 . 322282) (-3553 . 322052) (-3554 . 321822) (-3555 . 321709)
+ (-3556 . 321596) (-3557 . 316315) (-3558 . 311942) (-3559 . 311630)
+ (-3560 . 311475) (-3561 . 310947) (-3562 . 310614) (-3563 . 310417)
+ (-3564 . 310220) (-3565 . 310023) (-3566 . 309826) (-3567 . 309710)
+ (-3568 . 309584) (-3569 . 309468) (-3570 . 309352) (-3571 . 309257)
+ (-3572 . 309162) (-3573 . 309049) (-3574 . 308843) (-3575 . 307686)
+ (-3576 . 307591) (-3577 . 307475) (-3578 . 307380) (-3579 . 307131)
+ (-3580 . 307018) (-3581 . 306800) (-3582 . 306681) (-3583 . 306380)
+ (-3584 . 305608) (-3585 . 305025) (-3586 . 304531) (-3587 . 304283)
+ (-3588 . 304035) (-3589 . 303736) (-3590 . 303122) (-3591 . 302674)
+ (-3592 . 302517) (-3593 . 302371) (-3594 . 302045) (-3595 . 301887)
+ (-3596 . 301744) (-3597 . 301601) (-3598 . 301458) (-3599 . 301177)
+ (-3600 . 300955) (-3601 . 300428) (-3602 . 300213) (-3603 . 299998)
+ (-3604 . 299610) (-3605 . 299430) (-3606 . 299218) (-3607 . 298908)
+ (-3608 . 298707) (-3609 . 298525) (-3610 . 297371) (-3611 . 296982)
+ (-3612 . 296772) (-3613 . 296559) (-3614 . 295716) (-3615 . 295687)
+ (-3616 . 295618) (-3617 . 295547) (-3618 . 295380) (-3619 . 295351)
+ (-3620 . 295322) (-3621 . 295266) (-3622 . 295105) (-3623 . 295045)
+ (-3624 . 294349) (-3625 . 293171) (-3626 . 293110) (-3627 . 292886)
+ (-3628 . 292814) (-3629 . 292757) (-3630 . 292700) (-3631 . 292643)
+ (-3632 . 292586) (-3633 . 292511) (-3634 . 291919) (-3635 . 291560)
+ (-3636 . 291485) (-3637 . 291425) (-3638 . 291307) (-3639 . 290356)
+ (-3640 . 290229) (-3641 . 290016) (-3642 . 289941) (-3643 . 289887)
+ (-3644 . 289768) (-3645 . 289659) (-3646 . 289346) (-3647 . 289238)
+ (-3648 . 289135) (-3649 . 288974) (-3650 . 288873) (-3651 . 288775)
+ (-3652 . 288637) (-3653 . 288499) (-3654 . 288361) (-3655 . 288099)
+ (-3656 . 287889) (-3657 . 287751) (-3658 . 287462) (-3659 . 287309)
+ (-3660 . 287030) (-3661 . 286808) (-3662 . 286655) (-3663 . 286502)
+ (-3664 . 286349) (-3665 . 286196) (-3666 . 286043) (-3667 . 285887)
+ (-3668 . 285768) (-3669 . 285377) (-3670 . 285042) (-3671 . 284697)
+ (-3672 . 284346) (-3673 . 284001) (-3674 . 283656) (-3675 . 283269)
+ (-3676 . 282882) (-3677 . 282495) (-3678 . 282124) (-3679 . 281394)
+ (-3680 . 281043) (-3681 . 280589) (-3682 . 280160) (-3683 . 279543)
+ (-3684 . 278942) (-3685 . 278550) (-3686 . 278214) (-3687 . 277822)
+ (-3688 . 277486) (-3689 . 277264) (-3690 . 276737) (-3691 . 276522)
+ (-3692 . 276307) (-3693 . 276091) (-3694 . 275911) (-3695 . 275695)
+ (-3696 . 275515) (-3697 . 275127) (-3698 . 274947) (-3699 . 274735)
+ (-3700 . 274645) (-3701 . 274555) (-3702 . 274464) (-3703 . 274377)
+ (-3704 . 274287) (-3705 . 274206) (-3706 . 274017) (-3707 . 273961)
+ (-3708 . 273880) (-3709 . 273799) (-3710 . 273718) (-3711 . 273583)
+ (-3712 . 273448) (-3713 . 273324) (-3714 . 273203) (-3715 . 273085)
+ (-3716 . 272949) (-3717 . 272816) (-3718 . 272697) (-3719 . 272438)
+ (-3720 . 272204) (-3721 . 272132) (-3722 . 272040) (-3723 . 271948)
+ (-3724 . 271862) (-3725 . 271764) (-3726 . 271647) (-3727 . 271506)
+ (-3728 . 271449) (-3729 . 271392) (-3730 . 271332) (-3731 . 270935)
+ (-3732 . 270411) (-3733 . 270133) (-3734 . 269712) (-3735 . 269599)
+ (-3736 . 269157) (-3737 . 268925) (-3738 . 268722) (-3739 . 268540)
+ (-3740 . 268410) (-3741 . 268204) (-3742 . 267997) (-3743 . 267806)
+ (-3744 . 267241) (-3745 . 266985) (-3746 . 266694) (-3747 . 266400)
+ (-3748 . 266103) (-3749 . 265803) (-3750 . 265673) (-3751 . 265540)
+ (-3752 . 265404) (-3753 . 265265) (-3754 . 263986) (-3755 . 263661)
+ (-3756 . 263280) (-3757 . 263167) (-3758 . 262913) (-3759 . 262617)
+ (-3760 . 262321) (-3761 . 262060) (-3762 . 261885) (-3763 . 261806)
+ (-3764 . 261718) (-3765 . 261617) (-3766 . 261522) (-3767 . 261440)
+ (-3768 . 261368) (-3769 . 260567) (-3770 . 260495) (-3771 . 260163)
+ (-3772 . 260091) (-3773 . 259759) (-3774 . 259687) (-3775 . 259238)
+ (-3776 . 259166) (-3777 . 259061) (-3778 . 258986) (-3779 . 258911)
+ (-3780 . 258839) (-3781 . 258496) (-3782 . 258366) (-3783 . 258289)
+ (-3784 . 257740) (-3785 . 257597) (-3786 . 257454) (-3787 . 256956)
+ (-3788 . 256610) (-3789 . 256382) (-3790 . 256112) (-3791 . 255732)
+ (-3792 . 255492) (-3793 . 255252) (-3794 . 255012) (-3795 . 254772)
+ (-3796 . 254544) (-3797 . 254316) (-3798 . 254164) (-3799 . 253980)
+ (-3800 . 253875) (-3801 . 253752) (-3802 . 253644) (-3803 . 253536)
+ (-3804 . 253209) (-3805 . 252943) (-3806 . 252631) (-3807 . 252326)
+ (-3808 . 252016) (-3809 . 251281) (-3810 . 250686) (-3811 . 250509)
+ (-3812 . 250364) (-3813 . 250209) (-3814 . 250086) (-3815 . 249981)
+ (-3816 . 249866) (-3817 . 249767) (-3818 . 249283) (-3819 . 249173)
+ (-3820 . 249063) (-3821 . 248953) (-3822 . 247849) (-3823 . 247334)
+ (-3824 . 247267) (-3825 . 247193) (-3826 . 246320) (-3827 . 246246)
+ (-3828 . 246190) (-3829 . 246134) (-3830 . 246102) (-3831 . 246016)
+ (-3832 . 245984) (-3833 . 245898) (-3834 . 245474) (-3835 . 245050)
+ (-3836 . 244493) (-3837 . 243381) (-3838 . 241657) (-3839 . 240095)
+ (-3840 . 239299) (-3841 . 238795) (-3842 . 238303) (-3843 . 237895)
+ (-3844 . 237235) (-3845 . 237160) (-3846 . 237088) (-3847 . 237016)
+ (-3848 . 236974) (-3849 . 236852) (-3850 . 236412) (-3851 . 235972)
+ (-3852 . 235532) (-3853 . 235010) (-3854 . 234845) (-3855 . 234680)
+ (-3856 . 234369) (-3857 . 234282) (-3858 . 234192) (-3859 . 233834)
+ (-3860 . 233717) (-3861 . 233636) (-3862 . 233477) (-3863 . 233363)
+ (-3864 . 233288) (-3865 . 232436) (-3866 . 231250) (-3867 . 231150)
+ (-3868 . 231050) (-3869 . 230709) (-3870 . 230630) (-3871 . 230554)
+ (-3872 . 230447) (-3873 . 230289) (-3874 . 230181) (-3875 . 230045)
+ (-3876 . 229909) (-3877 . 229786) (-3878 . 229690) (-3879 . 229541)
+ (-3880 . 229445) (-3881 . 229290) (-3882 . 229135) (-3883 . 228455)
+ (-3884 . 227775) (-3885 . 227032) (-3886 . 226464) (-3887 . 225896)
+ (-3888 . 225328) (-3889 . 224647) (-3890 . 223966) (-3891 . 223285)
+ (-3892 . 222716) (-3893 . 222147) (-3894 . 221578) (-3895 . 221010)
+ (-3896 . 220442) (-3897 . 219874) (-3898 . 219306) (-3899 . 218738)
+ (-3900 . 218170) (-3901 . 218066) (-3902 . 217477) (-3903 . 217371)
+ (-3904 . 217295) (-3905 . 217152) (-3906 . 217059) (-3907 . 216966)
+ (-3908 . 216873) (-3909 . 216774) (-3910 . 216668) (-3911 . 216544)
+ (-3912 . 216420) (-3913 . 216053) (-3914 . 215930) (-3915 . 215828)
+ (-3916 . 215464) (-3917 . 214930) (-3918 . 214854) (-3919 . 214778)
+ (-3920 . 214685) (-3921 . 214502) (-3922 . 214406) (-3923 . 214330)
+ (-3924 . 214237) (-3925 . 214144) (-3926 . 213981) (-3927 . 213420)
+ (-3928 . 212859) (-3929 . 210062) (-3930 . 209889) (-3931 . 208425)
+ (-3932 . 207863) (-3933 . 207664) (-12 . 207492) (-3935 . 207320)
+ (-3936 . 207148) (-3937 . 206976) (-3938 . 206804) (-3939 . 206632)
+ (-3940 . 206460) (-3941 . 206345) (-3942 . 206075) (-3943 . 206012)
+ (-3944 . 205949) (-3945 . 205886) (-3946 . 205608) (-3947 . 205341)
+ (-3948 . 205288) (-3949 . 204573) (-3950 . 204522) (-3951 . 204329)
+ (-3952 . 204256) (-3953 . 204176) (-3954 . 204063) (-3955 . 203873)
+ (-3956 . 203509) (-3957 . 203237) (-3958 . 203186) (-3959 . 203135)
+ (-3960 . 203065) (-3961 . 202946) (-3962 . 202917) (-3963 . 202815)
+ (-3964 . 202693) (-3965 . 202639) (-3966 . 202462) (-3967 . 202401)
+ (-3968 . 202220) (-3969 . 202159) (-3970 . 202087) (-3971 . 201612)
+ (-3972 . 201237) (-3973 . 197953) (-3974 . 197900) (-3975 . 197772)
+ (-3976 . 197620) (-3977 . 197567) (-3978 . 197425) (-3979 . 195567)
+ (-3980 . 186210) (-3981 . 186059) (-3982 . 186008) (-3983 . 185957)
+ (-3984 . 185906) (-3985 . 185836) (-3986 . 185638) (-3987 . 185495)
+ (-3988 . 185381) (-3989 . 185260) (-3990 . 185142) (-3991 . 185030)
+ (-3992 . 184912) (-3993 . 184807) (-3994 . 184726) (-3995 . 184622)
+ (-3996 . 183685) (-3997 . 183465) (-3998 . 183228) (-3999 . 183146)
+ (-4000 . 182799) (-4001 . 182725) (-4002 . 182630) (-4003 . 182556)
+ (-4004 . 182354) (-4005 . 182263) (-4006 . 182147) (-4007 . 182034)
+ (-4008 . 181943) (-4009 . 181852) (-4010 . 181762) (-4011 . 181672)
+ (-4012 . 181582) (-4013 . 181494) (-4014 . 179132) (-4015 . 179064)
+ (-4016 . 179010) (-4017 . 178885) (-4018 . 178821) (-4019 . 178696)
+ (-4020 . 178577) (-4021 . 177809) (-4022 . 177748) (-4023 . 177629)
+ (-4024 . 176877) (-4025 . 176824) (-4026 . 176696) (-4027 . 176632)
+ (-4028 . 176578) (-4029 . 176469) (-4030 . 175146) (-4031 . 175064)
+ (-4032 . 174974) (-4033 . 174916) (-4034 . 174651) (-4035 . 174566)
+ (-4036 . 174491) (-4037 . 174406) (-4038 . 174349) (-4039 . 174133)
+ (-4040 . 173991) (-4041 . 173256) (-4042 . 172686) (-4043 . 172116)
+ (-4044 . 171546) (-4045 . 170811) (-4046 . 170129) (-4047 . 169537)
+ (-4048 . 168945) (-4049 . 168667) (-4050 . 168212) (-4051 . 167863)
+ (-4052 . 167505) (-4053 . 167181) (-4054 . 167048) (-4055 . 166915)
+ (-4056 . 166583) (-4057 . 166474) (-4058 . 166365) (-4059 . 166256)
+ (-4060 . 166147) (-4061 . 166038) (-4062 . 165929) (-4063 . 165820)
+ (-4064 . 165711) (-4065 . 165602) (-4066 . 165493) (-4067 . 165384)
+ (-4068 . 165275) (-4069 . 165166) (-4070 . 165057) (-4071 . 164948)
+ (-4072 . 164839) (-4073 . 164730) (-4074 . 164621) (-4075 . 164512)
+ (-4076 . 164403) (-4077 . 164294) (-4078 . 164185) (-4079 . 164076)
+ (-4080 . 163967) (-4081 . 163858) (-4082 . 163660) (-4083 . 163345)
+ (-4084 . 161774) (-4085 . 161619) (-4086 . 161481) (-4087 . 161338)
+ (-4088 . 161135) (-4089 . 159180) (-4090 . 159052) (-4091 . 158927)
+ (-4092 . 158799) (-4093 . 158575) (-4094 . 158351) (-4095 . 158223)
+ (-4096 . 158020) (-4097 . 157841) (-4098 . 157314) (-4099 . 156787)
+ (-4100 . 156506) (-4101 . 156088) (-4102 . 155561) (-4103 . 155376)
+ (-4104 . 155233) (-4105 . 154733) (-4106 . 154091) (-4107 . 154035)
+ (-4108 . 153941) (-4109 . 153820) (-4110 . 153749) (-4111 . 153675)
+ (-4112 . 153444) (-4113 . 152819) (-4114 . 152387) (-4115 . 152305)
+ (-4116 . 152163) (-4117 . 151685) (-4118 . 151563) (-4119 . 151441)
+ (-4120 . 151301) (-4121 . 151114) (-4122 . 150998) (-4123 . 150737)
+ (-4124 . 150668) (-4125 . 150469) (-4126 . 150310) (-4127 . 150155)
+ (-4128 . 150048) (-4129 . 149997) (-4130 . 149613) (-4131 . 149264)
+ (-4132 . 149074) (-4133 . 148884) (-4134 . 148643) (-4135 . 148552)
+ (-4136 . 146737) (-4137 . 146148) (-4138 . 146069) (-4139 . 140600)
+ (-4140 . 139809) (-4141 . 139430) (-4142 . 139358) (-4143 . 139169)
+ (-4144 . 138994) (-4145 . 138504) (-4146 . 138082) (-4147 . 137642)
+ (-4148 . 136778) (-4149 . 136654) (-4150 . 136527) (-4151 . 136418)
+ (-4152 . 136266) (-4153 . 136152) (-4154 . 136013) (-4155 . 135931)
+ (-4156 . 135849) (-4157 . 135741) (-4158 . 135321) (-4159 . 134897)
+ (-4160 . 134822) (-4161 . 134556) (-4162 . 134289) (-4163 . 133906)
+ (-4164 . 133205) (-4165 . 133145) (-4166 . 133070) (-4167 . 132995)
+ (-4168 . 132872) (-4169 . 132620) (-4170 . 132533) (-4171 . 132457)
+ (-4172 . 132381) (-4173 . 132285) (-4174 . 128321) (-4175 . 127139)
+ (-4176 . 126475) (-4177 . 126288) (-4178 . 124065) (-4179 . 123739)
+ (-4180 . 123358) (-4181 . 122914) (-4182 . 122679) (-4183 . 122431)
+ (-4184 . 122340) (-4185 . 120844) (-4186 . 120765) (-4187 . 120659)
+ (-4188 . 119123) (-4189 . 118710) (-4190 . 118293) (-4191 . 118191)
+ (-4192 . 118109) (-4193 . 117951) (-4194 . 116652) (-4195 . 116570)
+ (-4196 . 116491) (-4197 . 116136) (-4198 . 116079) (-4199 . 116007)
+ (-4200 . 115950) (-4201 . 115893) (-4202 . 115763) (-4203 . 115559)
+ (-4204 . 115190) (-4205 . 114768) (-4206 . 109695) (-4207 . 109092)
+ (-4208 . 108464) (-4209 . 108249) (-4210 . 108034) (-4211 . 107866)
+ (-4212 . 107651) (-4213 . 107483) (-4214 . 107315) (-4215 . 107147)
+ (-4216 . 106979) (-4217 . 104836) (-4218 . 104564) (-4219 . 97627)
+ (** . 94564) (-4221 . 94144) (-4222 . 93896) (-4223 . 93839) (-4224 . 93341)
+ (-4225 . 90436) (-4226 . 90286) (-4227 . 90122) (-4228 . 89958)
+ (-4229 . 89862) (-4230 . 89744) (-4231 . 89620) (-4232 . 89477)
+ (-4233 . 89306) (-4234 . 89179) (-4235 . 89034) (-4236 . 88881)
+ (-4237 . 88721) (-4238 . 88235) (-4239 . 88145) (-4240 . 87477)
+ (-4241 . 87283) (-4242 . 87187) (-4243 . 86877) (-4244 . 85701)
+ (-4245 . 85494) (-4246 . 84317) (-4247 . 84242) (-4248 . 83061)
+ (-4249 . 79456) (-4250 . 79092) (-4251 . 78815) (-4252 . 78723)
+ (-4253 . 78630) (-4254 . 78353) (-4255 . 78260) (-4256 . 78167)
+ (-4257 . 78074) (-4258 . 77690) (-4259 . 77619) (-4260 . 77527)
+ (-4261 . 77369) (-4262 . 77015) (-4263 . 76857) (-4264 . 76749)
+ (-4265 . 76720) (-4266 . 76653) (-4267 . 76499) (-4268 . 76340)
+ (-4269 . 75946) (-4270 . 75871) (-4271 . 75765) (-4272 . 75693)
+ (-4273 . 75615) (-4274 . 75542) (-4275 . 75469) (-4276 . 75396)
+ (-4277 . 75324) (-4278 . 75252) (-4279 . 75179) (-4280 . 74938)
+ (-4281 . 74598) (-4282 . 74450) (-4283 . 74377) (-4284 . 74304)
+ (-4285 . 74231) (-4286 . 73977) (-4287 . 73833) (-4288 . 72497)
+ (-4289 . 72303) (-4290 . 72032) (-4291 . 71884) (-4292 . 71736)
+ (-4293 . 71496) (-4294 . 71301) (-4295 . 71031) (-4296 . 70835)
+ (-4297 . 70806) (-4298 . 70705) (-4299 . 70604) (-4300 . 70503)
+ (-4301 . 70402) (-4302 . 70301) (-4303 . 70200) (-4304 . 70099)
+ (-4305 . 69998) (-4306 . 69897) (-4307 . 69796) (-4308 . 69681)
+ (-4309 . 69566) (-4310 . 69515) (-4311 . 69398) (-4312 . 69340)
+ (-4313 . 69239) (-4314 . 69138) (-4315 . 69037) (-4316 . 68921)
+ (-4317 . 68892) (-4318 . 68160) (-4319 . 68035) (-4320 . 67910)
+ (-4321 . 67770) (-4322 . 67652) (-4323 . 67527) (-4324 . 67372)
+ (-4325 . 66389) (-4326 . 65530) (-4327 . 65476) (-4328 . 65422)
+ (-4329 . 65214) (-4330 . 64840) (-4331 . 64426) (-4332 . 64065)
+ (-4333 . 63704) (-4334 . 63551) (-4335 . 63249) (-4336 . 63093)
+ (-4337 . 62767) (-4338 . 62696) (-4339 . 62625) (-4340 . 62413)
+ (-4341 . 61606) (-4342 . 61400) (-4343 . 61026) (-4344 . 60506)
+ (-4345 . 60238) (-4346 . 59688) (-4347 . 59138) (-4348 . 59012)
+ (-4349 . 57783) (-4350 . 56577) (-4351 . 55975) (-4352 . 55757)
+ (-4353 . 37198) (-4354 . 37012) (-4355 . 34912) (-4356 . 32737)
+ (-4357 . 32589) (-4358 . 32407) (-4359 . 31999) (-4360 . 31698)
+ (-4361 . 31347) (-4362 . 31179) (-4363 . 31011) (-4364 . 30647)
+ (-4365 . 16686) (-4366 . 15566) (* . 11070) (-4368 . 10814) (-4369 . 10628)
+ (-4370 . 9623) (-4371 . 9354) (-4372 . 8719) (-4373 . 7437) (-4374 . 6178)
+ (-4375 . 5298) (-4376 . 4032) (-4377 . 382) (-4378 . 280) (-4379 . 160)
+ (-4380 . 30)) \ No newline at end of file